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Preface

During and after World War II, the principle of feedback control became well un-
derstood in biological systems and was applied in many technical disciplines to re-
lieve humans from boring workloads in systems control. N. Wiener considered it 
universally applicable as a basis for building intelligent systems and called the new 
discipline “Cybernetics” (the science of systems control) [Wiener 1948]. Following 
many early successes, these arguments soon were oversold by enthusiastic follow-
ers; at that time, many people realized that high-level decision–making could 
hardly be achieved only on this basis. As a consequence, with the advent of suffi-
cient digital computing power, computer scientists turned to quasi-steady descrip-
tions of abstract knowledge and created the field of “Artificial Intelligence” (AI) 
[McCarthy 1955; Selfridge 1959; Miller et al. 1960; Newell, Simon 1963; Fikes, Nilsson 
1971]. With respect to achievements promised and what could be realized, a similar 
situation developed in the last quarter of the 20th century. 

In the context of AI also, the problem of computer vision has been tackled (see, 
e.g., [Selfridge, Neisser 1960; Rosenfeld, Kak 1976; Marr 1982]. The main paradigm ini-
tially was to recover a 3-D object shape and orientation from single images (snap-
shots) or from a few viewpoints. On the contrary, in aerial or satellite remote sens-
ing, another application of image evaluation, the task was to classify areas on the 
ground and to detect special objects. For these purposes, snapshot images, taken 
under carefully controlled conditions, sufficed. “Computer vision” was a proper 
name for these activities since humans took care of accommodating all side con-
straints to be observed by the vehicle carrying the cameras.  

When technical vision was first applied to vehicle guidance [Nilsson 1969], sepa-
rate viewing and motion phases with static image evaluation (lasting for minutes 
on remote stationary computers in the laboratory) had been adopted initially.  Even 
stereo effects with a single camera moving laterally on the vehicle between two 
shots from the same vehicle position were investigated [Moravec 1983]. In the early 
1980s, digital microprocessors became sufficiently small and powerful, so that on-
board image evaluation in near real time became possible. DARPA started its pro-
gram “On strategic computing” in which vision architectures and image sequence 
interpretation for ground vehicle guidance were to be developed (‘Autonomous 
Land Vehicle’ ALV) [Roland, Shiman 2002]. These activities were also subsumed 
under the title “computer vision”, and this term became generally accepted for a 
broad spectrum of applications. This makes sense, as long as dynamic aspects do 
not play an important role in sensor signal interpretation. 

For autonomous vehicles moving under unconstrained natural conditions at 
higher speeds on nonflat ground or in turbulent air, it is no longer the computer 
which “sees” on its own.  The entire body motion due to control actuation and to 
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perturbations from the environment has to be analyzed based on information com-
ing from many different types of sensors. Fast reactions to perturbations have to be 
derived from inertial measurements of accelerations and the onset of rotational 
rates, since vision has a rather long delay time (a few tenths of a second) until the 
enormous amounts of data in the image stream have been digested and interpreted 
sufficiently well. This is a well-proven concept in biological systems also operating 
under similar conditions, such as the vestibular apparatus of vertebrates with many 
cross-connections to ocular control. 

This object-oriented sensor fusion task, quite naturally, introduces the notion of 
an extended presence since data from different times (and from different sensors) 
have to be interpreted in conjunction, taking additional delay times for control ap-
plication into account. Under these conditions, it does no longer make sense to talk 
about “computer vision”. It is the overall vehicle with an integrated sensor and 
control system, which achieves a new level of performance and becomes able “to 
see”, also during dynamic maneuvering. The computer is the hardware substrate 
used for data and knowledge processing. 

In this book, an introduction is given to an integrated approach to dynamic vis-
ual perception in which all these aspects are taken into account right from the be-
ginning. It is based on two decades of experience of the author and his team at 
UniBw Munich with several autonomous vehicles on the ground (both indoors and 
especially outdoors) and in the air. The book deviates from usual texts on computer 
vision in that an integration of methods from “control engineering/systems dynam-
ics” and “artificial intelligence” is given. Outstanding real-world performance has 
been demonstrated over two decades. Some samples may be found in the accom-
panying DVD. Publications on the methods developed have been distributed over 
many contributions to conferences and journals as well as in Ph.D. dissertations 
(marked “Diss.” in the references). This book is the first survey touching all as-
pects in sufficient detail for understanding the reasons for successes achieved with 
real-world systems. 

With gratitude, I acknowledge the contributions of the Ph.D. students S. Baten, 
R. Behringer, C. Brüdigam, S. Fürst, R. Gregor, C. Hock, U. Hofmann, W. Kinzel, 
M. Lützeler, M. Maurer, H.-G. Meissner, N. Mueller, B. Mysliwetz, M. Pellkofer, 
A. Rieder, J. Schick, K.-H. Siedersberger, J. Schiehlen, M. Schmid, F. Thomanek, 
V. von Holt, S. Werner, H.-J. Wünsche, and A. Zapp as well as those of my col-
league V. Graefe and his Ph.D. students. When there were no fitting multi-
microprocessor systems on the market in the 1980s, they realized the window-
oriented concept developed for dynamic vision, and together we have been able to 
compete with “Strategic Computing”. I thank my son Dirk for generalizing and 
porting the solution for efficient edge feature extraction in “Occam” to “Transput-
ers” in the 1990s, and for his essential contributions to the general framework of 
the third-generation system EMS vision. The general support of our work in “con-
trol theory and application” by K.-D. Otto over three decades is appreciated as well 
as the infrastructure provided at the institute ISF by Madeleine Gabler. 

 Ernst D. Dickmanns 
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1  Introduction 

The field of “vision” is so diverse and there are so many different approaches to 
the widespread realms of application that it seems reasonable first to inspect it and 
to specify the area to which the book intends to contribute. Many approaches to 
machine vision have started with the paradigm that easy things should be tackled 
first, like single snapshot image interpretation in unlimited time; an extension to 
more complex applications may later on build on the experience gained. Our ap-
proach on the contrary was to separate the field of dynamic vision from its (quasi-) 
static counterpart right from the beginning and to derive adequate methods for this 
specific domain. To prepare the ground for success, sufficiently capable methods 
and knowledge representations have to be introduced from the beginning. 

1.1  Different Types of Vision Tasks and Systems 

Figure 1.1 shows juxtapositions of several vision tasks occurring in everyday life. 
For humans, snapshot interpretation seems easy, in general, when the domain is 
well known in which the image has been taken. We tend to imagine the temporal 
context and the time when the image has been shot. From motion smear and un-
usual poses, the embedding of the snapshot in a well-known maneuver is con-
cluded. So in general, even single images require background knowledge on mo-
tion processes in space for more in-depth understanding; this is often overlooked in 
machine or computer vision. The approach discussed in this book (bold italic let-
ters in Figure 1.1) takes motion processes in “3-D space and time” as basic knowl-
edge required for understanding image sequences in an approach similar to our 
own way of image interpretation. This yields a natural framework for using lan-
guage and terms in the common sense. 

Another big difference in methods and approaches required stems from the fact 
that the camera yielding the video stream is either stationary or moving itself. If 
moving, linear or/and rotational motion also may require special treatment. Sur-
veillance is done, usually, from a stationary position while the camera may pan (ro-
tation around a vertical axis, often also called yaw) and tilt (rotation around the 
horizontal axis, also called pitch) to increase its total field of view. In this case, 
motion is introduced purposely and is well controlled, so that it can be taken into 
account during image evaluation. If egomotion is to be controlled based on vision, 
the body carrying the camera(s) may be subject to strong perturbations, which can-
not be predicted, in general.  
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 Pictorial vision     ------- Motion vision
(single image interpretation)   

Surveillance       ------- Motion control 
detection, inspection      

(prey) (predator)
    [hybrid systems]  

 Monocular         ------- Bin- (multi-) ocular stereo 
 motion stereo 

 Passive         ------- Active: fixation type 
   inertially stabilized,  

    attention focused

2-D shape         ------- Spatial interpretation 

 Off-line         -------     Real-time  

 Monochrome         ------- Color vision 

Intensity         ------- Range 

Figure 1.1. Types of vision systems and vision tasks

In cases with large rotational rates, motion blur may prevent image evaluation at 
all; also, due to the delay time introduced by handling and interpreting the large 
data rates in vision, stable control of the vehicle may no longer be possible. 

Biological systems have developed close cooperation between inertial and opti-
cal sensor data evaluation for handling this case; this will be discussed to some de-
tail and applied to technical vision systems in several chapters of the book. Also 
from biologists stems the differentiation of vision systems into “prey” and “preda-
tor” systems. The former strive to cover a large simultaneous field of view for de-
tecting predators sufficiently early and approaching from any direction possible. 
Predators move to find prey, and during the final approach as well as in pursuit 
they have to estimate their position and speed relative to the dynamically moving 
prey quite accurate to succeed in a catch. Stereovision and high resolution in the 
direction of motion provides advantages, and nature succeeded in developing this 
combination in the vertebrate eye. 

Once active gaze control is available, feedback of rotational rates measured by 
inertial sensors allows compensating for rotational disturbances on the own body 
just by moving the eyes (reducing motion blur), thereby improving their range of 
applicability. Fast moving targets may be tracked in smooth pursuit, also reducing 
motion blur for this special object of interest; the deterioration of recognition and 
tracking of other objects of less interest are accepted.  
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Since images are only in two dimensions, the 2-D framework looks most natural 
for image interpretation. This may be true for almost planar objects viewed ap-
proximately normal to their plane of appearance, like a landscape in a bird’s-eye 
view. On the other hand, when a planar surface is viewed with the optical axis al-
most parallel to it from an elevation slightly above the ground, the situation is quite 
different. In this case, each line in the image corresponds to a different distance on 
the ground, and the same 3-D object on the surface looks quite different in size ac-
cording to where it appears in the image. This is the reason why homogeneously 
distributed image processing by vector machines, for example, does have a hard 
time in showing its efficiency; locally adapted methods in image regions seem 
much more promising in this case and have proven their superiority. Interpreting 
image sequences in 3-D space with corresponding knowledge bases right from the 
beginning allows easy adaptation to range differences for single objects. Of course, 
the analysis of situations encompassing several objects at various distances now 
has to be done on a separate level, building on the results of all previous steps. This 
has been one of the driving factors in designing the architecture for the Third-
generation “expectation-based, multi-focal saccadic” (EMS) vision system de-
scribed in this book. This corresponds to recent findings in well-developed biologi-
cal systems where for image processing and action planning based on the results of 
visual perception, different areas light up in magnetic resonance images [Talati, 
Hirsch 2005].

Understanding motion processes of 3-D objects in 3-D space while the body 
carrying the cameras also moves in 3-D space, seems to be one of the most difficult 
tasks in real-time vision. Without the help of inertial sensing for separating egomo-
tion from relative motion, this can hardly be done successfully, at least in dynamic 
situations.

Direct range measurement by special sensors such as radar or laser range finders 
(LRF) would alleviate the vision task. Because of their relative simplicity and low 
demand of computing power, these systems have found relatively widespread ap-
plication in the automotive field. However, with respect to resolution and flexibil-
ity of data exploitation as well as hardware cost and installation volume required, 
they have much less potential than passive cameras in the long run with computing 
power available in abundance. For this reason, these systems are not included in 
this book. 

1.2  Why Perception and Action? 

For technical systems which are intended to find their way on their own in an ever 
changing world, it is impossible to foresee every possible event and to program all 
required capabilities for appropriate reactions into its software from the beginning. 
To be flexible in dealing with situations actually encountered, the system should 
have perceptual and behavioral capabilities which it may expand on its own in re-
sponse to new requirements. This means that the system should be capable of judg-
ing the value of control outputs in response to measured data; however, since out-
puts of control affect state variables over a certain amount of time, ensuing time 
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histories have to be observed and a temporally deeper understanding has to be de-
veloped. This is exactly what is captured in the “dynamic models” of systems the-
ory (and what biological systems may store in neuronal delay lines). 

Also, through these time histories, the ground is prepared for more compact 
“frequency domain” (integral) representations. In the large volume of literature on 
linear systems theory, time constants T as the inverse of eigenvalues of first-order 
system components, as well as frequency, damping ratio, and relative phase as 
characteristic properties of second-order components are well known terms for de-
scribing temporal characteristics of processes, e.g., [Kailath 1980]. In the physio-
logical literature, the term “temporal Gestalt” may even be found [Ruhnau 1994a, b],
indicating that temporal shape may be as important and characteristic as the well 
known spatial shape. 

Usually, control is considered an output resulting from data analysis to achieve 
some goal. In a closed-loop system, where one of its goals is to adapt to new situa-
tions and to act autonomously, control outputs may be interpreted as questions 
asked with respect to real-world behavior. Dynamic reactions are now interpreted 
to better understand the behavior of a body in various states and under various en-
vironmental conditions. This opens up a new avenue for signal interpretation: be-
side its use for state control, it is now also interpreted for system identification and 
modeling, that is, learning about its temporal behavioral characteristics. 

In an intelligent autonomous system, this capability of adaptation to new situa-
tions has to be available to reduce dependence on maintenance and adaptation by 
human intervention. While this is not yet state of the art in present systems, with 
the computing power becoming available in the future, it clearly is within range. 
The methods required have been developed in the fields of system identification 
and adaptive control. 

The sense of vision should yield sufficient information about the near and far-
ther environment to decide when state control is not so important and when more 
emphasis may be put on system identification by using special control inputs for 
this purpose. This approach also will play a role when it comes to defining the no-
tion of a “self” for the autonomous vehicle. 

1.3  Why Perception and Not Just Vision? 

Vision does not allow making a well-founded decision on absolute inertial motion 
when another object is moving close to the ego-vehicle and no background can be 
seen in the field of view (known to be stationary). Inertial sensors like accelerome-
ters and angular rate sensors, on the contrary, yield the corresponding signals for 
the body they are mounted on; they do this practically without any delay time and 
at high signal rates (up to the kHz range).  

Vision needs time for the integration of light intensity in the sensor elements (33 
1/3, respectively, 40 ms corresponding to the United States or European standard), 
for frame grabbing and communication of the (huge amount of) image data, as well 
as for feature extraction, hypothesis generation, and state estimation. Usually, three 
to five video cycles, that are 100 to 200 ms, will have passed until a control output 



1.4  What are Appropriate Interpretation Spaces?      5 

derived from vision will hit the real world. For precise control of highly dynamic 
systems, this time delay has to be taken into account.  

Since perturbations should be counteracted as soon as possible, and since visu-
ally measurable results of perturbations are the second integral of accelerations 
with corresponding delay times, it is advisable to have inertial sensors in the sys-
tem for early pickup of perturbations. Because long-term stabilization may be 
achieved using vision, it is not necessary to resort to expensive inertial sensors; on 
the contrary, when jointly used with vision, inexpensive inertial sensors with good 
properties for the medium- to high-frequency part are sufficient as demonstrated by 
the vestibular systems in vertebrates.  

Accelerometers are able to measure rather directly the effects of most control 
outputs; this alleviates system identification and finding the control outputs for re-
flex-like counteraction of perturbations. Cross-correlation of inertial signals with 
visually determined signals allows temporally deeper understanding of what in the 
natural sciences is called “time integrals” of input functions.  

For all these reasons, the joint use of visual and inertial signals is considered 
mandatory for achieving efficient autonomously mobile platforms. Similarly, if 
special velocity components can be measured easily by conventional devices, it 
does not make sense to try to recover these from vision in a “purist” approach. 
These conventional signals may alleviate perception of the environment considera-
bly since the corresponding sensors are mounted onto the body in a fixed way, 
while in vision the measured feature values have to be assigned to some object in 
the environment according to just visual evidence. There is no constantly estab-

lished link for each measurement value in vision as is the case for conventional 
sensors.

1.4  What are Appropriate Interpretation Spaces?

Images are two-dimensional arrays of data; the usual array size today is from about 
64 × 64 for special “vision” chips to about 770 × 580 for video cameras (special 
larger sizes are available but only at much higher cost, e.g., for space or military 
applications). A digitized video data stream is a fast sequence of these images with 
data rates up to ~ 11 MB/s for black and white and up to three times this amount 
for color. 

Frequently, only fields of 320 × 240 pixels (either only the odd or the even lines 
with corresponding reduction of the resolution within the lines) are being evaluated 
because of computing power missing. This results in a data stream per camera of 
about 2 MB/s. Even at this reduced data rate, the processing power of a single mi-
croprocessor available today is not yet sufficient for interpreting several video sig-
nals in parallel in real time. High-definition TV signals of the future may have up 
to 1080 lines and 1920 pixels in each line at frame rates of up to 75 Hz; this corre-
sponds to data rates of more than 155 MB/s. Machine vision with this type of reso-
lution is way out in the future. 

Maybe, uniform processing of entire images is not desirable at all, since differ-
ent objects will be seen in different parts of the images, requiring specific image 
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processing algorithms for efficient evaluation, usually. Very often, lines of discon-
tinuity are encountered in images, which should be treated with special methods 
differing essentially from those used in homogeneous parts. Object- and situation-
dependent methods and parameters should be used, controlled from higher evalua-
tion levels. 

The question thus is, whether any basic feature extraction should be applied uni-
formly over the entire image region. In biological vision systems, this seems to be 
the case, for example, in the striate cortex (V1) of vertebrates where oriented edge 
elements are detected with the help of corresponding receptive fields. However, 
vertebrate vision has nonhomogeneous resolution over the entire field of view. Fo-
veal vision with high resolution at the center of the retina is surrounded by recep-
tive fields of increasing spread and a lower density of receptors per unit of area in 
the radial direction.  

Vision of highly developed biological systems seems to ask three questions, 
each of which is treated by a specific subsystem:  
1. Is there something of special interest in a wide field of view? 
2. What is it precisely, that attracted interest in question one? Can the individual 

object be characterized and classified using background knowledge? What is its 
relative state “here and now”? 

3. What is the situation around me and how does it affect optimal decisions in be-
havior for achieving my goals? For this purpose, a relevant collection of objects 
should be recognized and tracked, and the likely future behavior should be pre-
dicted.

To initialize the vision process at the beginning and to detect new objects later on, 
it is certainly an advantage to have a bottom-up detection component available all 
over the wide field of view. Maybe, just a few algorithms based on coarse resolu-
tion for detecting interesting groups of features will be sufficient to achieve this 
goal. The question is, how much computing effort should be devoted to this bot-
tom-up component compared to more elaborate, model based top-down compo-
nents for objects already detected and being tracked. Usually, single objects cover 
only a small area in an image of coarse resolution. 

To answer question 2 above, biological vision systems direct the foveal area of 
high resolution by so-called saccades, which are very fast gaze direction changes 
with angular rates up to several hundred degrees per second, to the group of fea-
tures arousing most interest. Humans are able to perform up to five saccades per 
second with intermediate phases of smooth pursuit (tracking) of these features, in-
dicating a very dynamic mode of perception (time-sliced parallel processing). 
Tracking can be achieved much more efficiently with algorithms controlled by 
prediction according to some model. Satisfactory solutions may be possible only in 
special task domains for which experience is available from previous encounters. 

Since prediction is a very powerful tool in a world with continuous processes, 
the question arises: What is the proper framework for formulating the continuity 
conditions? Is the image plane readily available as plane of reference? However, it 
is known that the depth dimension in perspective mapping has been lost com-
pletely: All points on a ray have been mapped into a single point in the image 
plane, irrespective of their distance, which has been lost. Would it be better to for-
mulate all continuity conditions in 3-D physical space and time? The correspond-
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ing models are available from the natural sciences since Newton and Leibnitz have 
found that differential equations are the proper tools for representing these continu-
ity conditions in generic form; over the last decades, simulation technology has 
provided the methods for dealing with these representations on digital computers. 

In communication technology and in the field of pattern recognition, video 
processing in the image plane may be the best way to go since no understanding of 
the content of the scene is required. However, for orienting oneself in the real 
world through image sequence analysis, early transition to the physical interpreta-
tion space is considered highly advantageous because it is in this space that occlu-
sions become easily understandable and motion continuity persists. Also, it is in 
this space that inertial signals have to be interpreted and that integrals of accelera-
tions yield 3-D velocity components; integrals of these velocities yield the corre-
sponding positions and angular orientations for the rotational degrees of freedom. 
Therefore, for visual dynamic scene understanding, images are considered inter-
mediate carriers of data containing information about the spatiotemporal environ-
ment. To recover this information most efficiently, all internal modeling in the in-
terpretation process is done in 3-D space and time, and the transition to this 
representation should take place as early as possible. Knowledge for achieving this 
goal is specific to single objects and the generic classes to which they belong. 
Therefore, to answer question 2 above, specialist processes geared to classes of ob-
jects and individuals of these classes observed in the image sequence should be de-
signed for direct interpretation in 3-D space and time. 

Only these spatiotemporal representations then allow answering question 3 by 
looking at these data of all relevant objects in the near environment for a more ex-
tended period of time. To be able to understand motion processes of objects more 
deeply in our everyday environment, a distinction has to be made between classes 
of objects. Those obeying simple laws of motion from physics are the ones most 
easily handled (e.g., by some version of Newton’s law). Light objects, easily 
moved by stochastically appearing (even light) winds become difficult to grasp be-
cause of the variable properties of wind fields and gusts. 

Another large class of objects – with many different subclasses – is formed by 
those able to sense properties of their environment and to initiate movements on 
their own, based on a combination of the data sensed and background knowledge 
internally stored. These special objects will be called subjects; all animals includ-
ing humans belong to this (super-) class as well as autonomous agents created by 
technical means (like robots or autonomous vehicles). The corresponding sub-
classes are formed by combinations of perceptual and behavioral capabilities and, 
of course, their shapes. Beside their shapes, individuals of subclasses may be rec-
ognized also by stereotypical motion patterns (like a hopping kangaroo or a wind-
ing snake). 

Road vehicles (independent of control by a human driver or a technical subsys-
tem) exhibit typical behaviors depending on the situation encountered. For exam-
ple, they follow lanes and do convoy driving, perform lane changes, pass other ve-
hicles, turn off onto a crossroad or slow down for parking. All of the maneuvers 
mentioned are well known to human drivers, and they recognize the intention of 
performing one of those by its typical onset of motion over a short period of time. 
For example, a car leaving the center of its lane and moving consistently toward 
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the neighboring lane is assumed to initiate a lane change. If this occurs within the 
safety margin in front, egomotion should be adjusted to this (improper) behavior of 
other traffic participants. This shows that recognition of the intention of other sub-
jects is important for a defensive style of driving. This cannot be recognized with-
out knowledge of temporally extended maneuvers and without observing behav-
ioral patterns of subjects in the environment. Question 3 above, thus, is not 
answered by interpreting image patterns directly but by observing symbolic repre-
sentations resulting as answers to question 2 for a number of individual ob-
jects/subjects over an extended period of time.  

Simultaneous interpretation of image sequences on multiple scales in 3-D space 
and time is the way to satisfy all requirements for safe and goal-oriented behavior. 

1.4.1 Differential Models for Perception “Here and Now” 

Experience has shown that the simultaneous use of differential and integral models 
on different scales yields the most efficient way of data fusion and joint data inter-
pretation. Figure 1.2 shows in a systematic fashion the interpretation scheme de-
veloped. Each of the axes is subdivided into four scale ranges. In the upper left 
corner the point “here and now” is shown as the point where all interaction with 
the real world takes place. The second scale range encompasses the local (as op-
posed to global) environment which allows introducing new differential concepts 
compared to the pointwise state. Local embedding, with characteristic properties 

Figure 1.2. Multiple interpretation scales in space and time for dynamic perception. 
Vertical axis: 3-D space; horizontal axis: time 
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such as spatial or temporal change rates, spatial gradients, or directions of extreme 
values such as intensity gradients are typical examples. 

These differentials have shown to be powerful concepts for representing knowl-
edge about physical properties of classes of objects. Differential equations repre-
sent the natural mathematical element for coding knowledge about motion proc-
esses in the real world. With the advent of the Kalman filter [Kalman 1960], they 
have become the key element for obtaining the best state estimate of the variables 
describing the system, based on recursive methods implementing a least-squares 
model fit. Real-time visual perception of moving objects is hardly possible without 
this very efficient approach. 

1.4.2 Local Integrals as Central Elements for Perception 

Note that the precise definition of what is local depends on the problem domain in-
vestigated and may vary in a wide range. The third column and row in Figure 1.2 
are devoted to “local integrals”; this term again is rather fuzzy and will be defined 
more precisely in the task context. On the timescale, it means the transition from 
analog (continuous, differential) to digital (sampled, discrete) representations. In 
the spatial domain, typical local integrals are rigid bodies, which may move as a 
unit without changing their 3-D shape. 

These elements are defined such that the intersection in field (3, 3) in Figure 1.2 
becomes the central hub for data interpretation and data fusion: it contains the in-
dividual objects as units to which humans attach most of their knowledge about the 
real world. Abstraction of properties has lead to generic classes which allow sub-
suming a large variety of single cases into one generic concept, thereby leading to 
representational efficiency. 

1.4.2.1 Where is the Information in an Image? 

It is well known that information in an image is contained in local intensity 
changes: A uniformly gray image has only a few bits of information, namely, (1) 
the gray value and (2) uniform distribution of this value over the entire image. The 
image may be completely described by three bytes, even though the amount of data 
may be about 400 000 bytes in a TV frame or even 4 MB (2k × 2k pixels). If there 
are certain areas of uniform gray values, the boundary lines of these areas plus the 
internal gray values contain all the information in the image. This object in the im-
age plane may be described with much less data than the pixel values it encom-
passes.
In a more general form, image areas defined by a set of properties (shape, texture, 
color, joint motion, etc.) may be considered image objects, which originated from 
3-D objects by perspective mapping. Due to the numerous aspect conditions, which 
such an object may adopt relative to the camera, its potential appearances in the 
image plane are very diverse. Their representation will require orders of magnitude 
more data for an exhaustive description than its representation in 3-D space plus 
the laws of perspective mapping, which are the same for all objects. Therefore, an 
object is defined by its 3-D shape, which may be considered a local spatial integral 
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of its differential geometry description in curvature terms. Depending on the task at 
hand, both the differential and the integral representation, or a combination of both 
may be used for visual recognition. As will be shown for the example of road vehi-
cle guidance, the parallel use of these models in different parts of the overall rec-
ognition process and control system may be most efficient.  

1.4.2.2 To Which Units Do Humans Affix Knowledge? 

Objects and object classes play an important role in human language and in learn-
ing to understand “the world”. This is true for their appearance at one time, and 
also for their motion behavior over time. 

On the temporal axis, the combined use of differential and integral models may 
allow us to refrain from computing optical flow or displacement vector fields, 
which are very compute-intensive and susceptible to noise. Because of the huge 
amount of data in a single image, this is not considered the best way to go, since an 
early transition to the notion of physical objects or subjects with continuity condi-
tions in 3-D space and time has several advantages: (1) it helps cut the amount of 
data required for adequate description, and (2) it yields the proper framework for 
applying knowledge derived from previous encounters (dynamic models, stereo-
typical control maneuvers, etc.). For this reason, the second column in Figure 1.2 is 
avoided intentionally in the 4-D approach. This step is replaced by the well-known 
observer techniques in systems dynamics (Kalman filter and derivatives, Luenber-
ger observers). These recursive methods reconstruct the time derivatives of state 
variables by prediction error feedback and knowledge about the dynamic behavior 
of the object and (for the Kalman filter) of the statistical properties of the system 
(dubbed “plant” in systems dynamics) and of the measurement processes. The 
stereotypical behavioral capabilities of subjects in different situations form an im-
portant part of the knowledge base. 

Two distinctly different types of “local temporal integrals” are used widely: 
Single step integrals for video sampling and multiple step (local) integrals for ma-
neuver understanding. Through the imaging process, the analog motion process in 
the real world is made discrete along the time axis. By forming the (approximate, 
since linearized) integrals, the time span of the analog video cycle time (33 1/3 ms 
in the United States and 40 ms in Europe, respectively, half these values for the 
fields) is bridged by discrete transition matrices from kT to (k + 1)T, k = running 
index. 

Even though the intensity values of each pixel are integrals over the full range 
or part of this period, they are interpreted as the actually sampled intensity value at 
the time of camera readout. Since all basic interpretations of the situation rest on 
these data, control output is computed newly only after this period; thus, it is con-
stant over the basic cycle time. This allows the analytical computation of the corre-
sponding state transitions, which are evaluated numerically for each cycle in the 
recursive estimation process (Chapter 6); these are used for state prediction and in-
telligent control of image feature extraction. 
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1.4.3  Global Integrals for Situation Assessment 

More complex situations encompassing many objects or missions consisting of se-
quences of mission elements are represented in the lower right corner of Figure 
1.2. Again, how to best choose the subdivisions and the absolute scales on the time 
axis or in space depends very much on the problem area under study. This will be 
completely different for a task in manufacturing of micro-systems compared to one 
in space flight. The basic principle of subdividing the overall task, however, may 
be according to the same scheme given in Figure 1.2, even though the technical 
elements used may be completely different. 

On a much larger timescale, the effect of entire feed-forward control time histo-
ries may be predicted which have the goal of achieving some special state changes 
or transitions. For example, lane change of a road vehicle on a freeway, which may 
take 2 to 10 seconds in total, may be described as a well-structured sequence of 
control outputs resulting in a certain trajectory of the vehicle. At the end of the ma-
neuver, the vehicle should be in the neighboring lane with the same state variables 
otherwise (velocity, lateral position in the lane, heading). The symbol “lane 
change”, thus, stands for a relatively complex maneuver element which may be 
triggered from the higher levels on demand by just using this symbol (maybe to-
gether with some parameters specifying the maneuver time and, thereby, the 
maximal lateral acceleration to be encountered). Details are discussed in Section 
3.4. 

These “maneuver elements”, defined properly, allow us to decompose complex 
maneuvers into stereotypical elements which may be pieced together according to 
the actual needs; large sections of these missions may be performed by exploiting 
feedback control, such as lane following and distance keeping for road vehicles. 
Thereby, scales of distances for entire missions depend on the process to be con-
trolled; these will be completely different for “autonomously guided vehicles” 
(AGVs) on the factory floor (hundreds of meters) compared to road vehicles (tens 
of km) or even aircraft (hundreds or thousands of km). 

The design of the vision system should be selected depending on the task at 
hand (see next section). 

1.5  What Type of Vision System Is Most Adequate? 

For motion control, due to inertia of a body, the actual velocity vector determines 
where to look to avoid collisions with other objects. Since lateral control may be 
applied to some extent and since other objects and subjects may have a velocity 
vector of their own, the viewing range should be sufficiently large for detecting all 
possible collision courses with other objects. Therefore, the simultaneous field of 
view is most critical nearby. 

On the other hand, if driving at high speed is required, the look-ahead range 
should be sufficiently large for reliably detecting objects at distances which allow 
safe braking. At a speed of 30 m/s (108 km/h or about 65 mph), the distance for 
braking [with a deceleration level of 0.4 Earth gravity g (9.81 m/s2, that is ax  4 
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m/s²) and with 0.5 seconds reaction time] is 15 + 113 = 128 m. For half the magni-
tude in deceleration (  2 m/s2, e.g., under unfavorable road conditions) the braking 
distance would be 240 m. 

Reliable distance estimation for road vehicles occurs under mapping conditions 
with at least about 20 pixels on the width of the vehicle (typically of about 2 m in 
dimension). The total field of view of a single camera at a distance of 130 m, 
where this condition is satisfied, will be about 76 m (for ~ 760 pixel per line). This 
corresponds to an aperture angle of ~ 34°. This is certainly not enough to cover an 
adequate field of view in the near range. Therefore, at least a bifocal camera ar-
rangement is required with two different focal lengths (see Figure 1.3). 

At distance L5 ~ 20 m (~ 60 m),
the resolution is 5 cm/pixel 

Wide 
 
 

angle 

f = 7.5 mm f = 24 mm

15° 46°

Tele  

Figure 1.3. Bifocal arrangement of miniature TV–cameras on a pan platform in front of 
the rear view mirror of test vehicles VaMP and VITA 2, Prometheus, 1994. Left: Fields 
of view and ranges (schematically), right: System realized in VaMP 

For a rather flexible high performance “technical eye” a trifocal camera ar-
rangement as shown in Figure 1.4 is recommended. The two wide-angle CCD-
cameras with focal length of 4 to 6 mm and with divergent optical axes do have a 
central range of overlapping image areas, which allows stereo–interpretation 
nearby. In total, a field of view of about 100 to 130 degrees can be covered; this al-
lows surveying about one–third of the entire panorama. 

The mild telecamera with three to four times the focal length of the wide-angle 
one should be a three–chip color camera for more precise object recognition. Its 
field of view is contained in the stereo field of view of the wide-angle cameras 
such that trinocular stereointerpretation becomes possible [Rieder 1996].  

Figure 1.4. Trifocal camera arrangement with wide field of view 
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To detect objects in special areas of interest far away, a camera with a third fo-
cal length (again with a factor of 3 to 4 relative to the mild telelens), and the field 
of view within that of the mild telecamera should be added (see Figure 1.4). This 
camera may be chosen to be especially light-sensitive; black-and-white images 
may be sufficient to limit the data rate. The focal length ratio of 4 does have the 
advantage that the coarser image represents the same scene at a resolution corre-
sponding to the second pyramidal stage of the finer one. 

This type of sensor combination is ideally suited for active viewing direction 
control: the coarse resolution, large simultaneous field of view allows discovering 
objects of possible interest in a wide area, and a viewing direction change will 
bring this object into the center of the images with higher resolution. Compared to 
a camera arrangement with maximal resolution in the same entire field of view, the 
solution shown has only 2 to 4 % the data rate. It achieves this in exchange for the 
need of fast viewing direction control and at the expense of delay times required to 
perform these gaze changes. Figure 1.5 gives an impression of the fields of view of 
this trifocal camera arrangement. 

Figure 1.5. Fields of view of trifocal camera arrangement. Bottom: Two divergent wide 
angle cameras; top left: mild tele camera, top right: strong tele-camera. Dashed white 
lines show enlarged sections 

The lower two wide-angle images have a central region of overlap marked by 
vertical white lines. To the left, the full road junction is imaged with one car com-
ing out of the crossroad and another one just turning into the crossroad; the rear of 
this vehicle and the vehicle directly in front can be seen in the upper left image of 
the mild telecamera. This even allows trinocular stereo interpretation. The region 
marked in white in this mild teleimage is shown in the upper right as a full image 
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of the strong telecamera. Here, letters on the license plate can be read, and it can be 
seen from the clearly visible second rearview mirror on the left-hand side that there 
is a second car immediately in front of the car ahead. The number of pixels per 
area on the same object in this image is one hundred times that of the wide-angle 
images. 

For inertial stabilization of the viewing direction when riding over a nonsmooth 
surface or for aircraft flying in a turbulent air, an active camera suspension is 
needed anyway. The simultaneous use of almost delay-free inertial measurements 
(time derivatives such as angular rates and linear accelerations) and of images, 
whose interpretation introduces several tenths of a second delay time, requires ex-
tended representations along the time axis. There is no single time for which it is 
possible to make consistent sense of all data available. Only the notion of an “ex-
tended presence” allows arriving at an efficient invariant interpretation (in 4-D!). 
For this reason, the multifocal, saccadic vision system is considered to be the pref-
erable solution for autonomous vehicles in general.  

1.6  Influence of the Material Substrate on System Design:
Technical vs. Biological Systems 

Biological vision systems have evolved over millions of generations with the selec-
tion of the fittest for the ecological environment encountered. The basic neural 
substrate developed (carbon-based) may be characterized by a few numbers. The 
electrochemical units do have switching times in the millisecond (ms) range; the 
traveling speed of signals is in the 10 to 100 m/s range. Cross-connections between 
units exist in abundance (1000 to 10 000 per neuron). A single brain consists of up 
to 1011 of these units. The main processing step is summation of the weighted input 
signals which contain up to now unknown (multiple?) feedback loops [Handbook of 
Physiology 1984, 1987].

These systems need long learning times and adapt to new situations only slowly. 
In contrast, technical substrates for sensors and microprocessors (silicon-based) 
have switching times in the nanosecond range (a factor of 106 compared to biologi-
cal systems). They are easily programmable and have various computational 
modes between which they can switch almost instantaneously; however, the direct 
cross-connections to other units are limited in number (one to six, usually) but may 
have very high bandwidth (in the hundreds of MB/s range).  

While a biological eye is a very complex unit containing several types and sizes 
of sensors and computing elements, technical imaging sensors are rather simple up 
to now and mostly homogeneous over the entire array area. However, from televi-
sion and computer graphics, it is well known that humans can interpret the images 
thus generated without problems in a natural way if certain standards are main-
tained.

In developing dynamic machine vision, two groups of thinking have formed: 
One tries to mimic biological vision systems on the silicon substrate available, and 
the other continues to build on the engineering platform developed in systems– and 
computer science.  
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A few years ago, many systems were investigated with single processors de-
voted to single pixels (Connection Machine [Hillis 1985, 1992], Content-
Addressable Associative Parallel Processors (CAAPP) [Scudder, Weems 1990] and 
others). The trend now clearly is toward more coarsely granulated parallel architec-
tures. Since a single microprocessor on the market at the turn of the century is ca-
pable of performing about 109 instructions per second, this means in excess of 
2000 instructions per pixel of a 770 × 525 pixel image. Of course, this should not 
be confused with information processing operations. For the year 2010, general-
purpose PC processors are expected to have a performance level of about 1011 in-
structions per second. 

On the other hand, the communication bandwidths of single channels will be so 
high, that several image matrices may be transferred at a sufficiently high rate to 
allow smooth recognition and control of motion processes. (One should refrain 
from video norms, presently dominating the discussion, once imaging sensors with 
digital output are in wide use.) Therefore, there is no need for more elaborate data 
processing on the imaging chip except for ensuring sufficiently high intensity dy-
namics. Technical systems do not have the bandwidth problems, which may have 
forced biological systems to do extensive data preprocessing near the retina (from 
120 million light sensitive elements in the retina to 1.2 million nerves leading to 
the lateral geniculate nucleus in humans). 

Interesting studies have been made at several research institutions which tried to 
exploit analog data processing on silicon chips [Koch 1995]; future comparisons of 
results will have to show whether the space needed on the chip for this purpose can 
be justified by the advantages claimed. 

The mainstream development today is driven by commercial TV for the sensors 
and by personal computers and games for the processors. With an expected in-
crease in computing power of one order of magnitude every 4 to 5 years over the 
next decade, real-time machine vision will be ready for a wide range of applica-
tions using conventional engineering methods as represented by the 4-D approach. 

  A few (maybe a dozen) of these processors will be sufficient for solving even 
rather complex tasks like ground and air vehicle guidance; dual processors on a 
single chip are just entering the market. It is the goal of this monograph to make 
the basic methods needed available to a wide public for efficient information ex-
traction from huge data streams. 

1.7  What Is Intelligence? A Practical (Ecological) 
Definition 

The sensors of complex autonomous biological or technical systems yield an enor-
mous data rate containing information about both the state of the vehicle body rela-
tive to the environment and about other objects or subjects in the environment. It is 
the task of an intelligent information extraction (data interpretation) system to 
quickly get rid of as many data as possible, however simultaneously, to retain all of 
the essential information for the task to be solved. Essential information is geared 
to task domains; however, complex systems like animals and autonomous vehicles 
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do not have just one single task to perform. Depending on their circumstances, 
quite different tasks may predominate. 

Systems will be labeled intelligent if they are able to: 

recognize situations readily that require certain behavioral capabilities and  
trigger this behavior early and correctly, so that the overall effort to deal with 
the situation is lower than for direct reaction to some combination of values 
measured but occurring later (tactical – strategic differentiation).  

This “insight” into processes in the real world is indicative of an internal temporal 
model for this process in the interpretation system. It is interesting to note that the 
word “intelligent” is derived from the Latin stem “inter-legere”: To read in be-
tween the lines. This means to understand what is not explicitly written down but 
what can be inferred from the text, given sufficient background knowledge and the 
capability of associative thinking. Therefore, intelligence understood in this sense 
requires background knowledge about the processes to be perceived and the capa-
bility to recognize similar or slightly different situations in order to be able to ex-
tend the knowledge base for correct use. 

Since the same intelligent system will have to deal with many different situa-
tions, those individuals will be superior which can extract information from actual 
experience not just for the case at hand but also for proper use in other situations. 
This type of “knowledge transfer” is characteristic of truly intelligent systems. 
From this point of view, intelligence is not the capability of handling some abstract 
symbols in isolation but to have symbolic representations available that allow ade-
quate or favorable decisions for action in different situations which have to be rec-
ognized early and reliably.  

These actions may be feedback control laws with very fast implementations 
gearing control output directly to measured quantities (reflex-like behavior), or 
stereotypical feed-forward control time histories invoked after some event, known 
to achieve the result desired (rule-based instantiation). To deal robustly with per-
turbations common in the real world, expectations of state variable time histories 
corresponding to some feed-forward control output may be determined. Differ-
ences between expected and observed states are used in a superimposed feedback 
loop to modify the total control output so that the expected states are achieved at 
least approximately despite unpredictable disturbances.  

Monitoring these control components and the resulting state variable time histo-
ries, the triggering “knowledge-level” does have all the information available for 
checking the internal models on which it based its predictions and its decisions. In 
a distributed processing system, this knowledge level need not be involved in any 
of the fast control implementation and state estimation loops. If there are system-
atic prediction errors, these may be used to modify the models. Therefore, predic-
tion error minimization may be used not just for state estimation according to some 
model but also for adapting the model itself, thereby learning to better understand 
behavioral characteristics of a body or the perturbation environment in the actual 
situation. Both of these may be used in the future to advantage. The knowledge 
thus stored is condensed information about the (material) world including the body 
of the vehicle carrying the sensors and data processing equipment (its “own” body, 
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one might say); if it can be invoked in corresponding situations in the future, it will 
help to better control one’s behavior in similar cases (see Chapter 3). 
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Figure 1.6. Symbolic representation of the interactions between the ‘mental-’ and the ‘real 
world’ (point ‘here and now’) in closed-loop form 

Intelligence, thus, is defined as allowing deep understanding of processes and 
the way the “own” body may take advantage of this. Since proper reactions depend 
on the situation encountered, recognizing situations early and correctly and know-
ing what to do in these cases (decision-making) is at the core of intelligence. In the 
sense of steady learning, all resulting actions are monitored and exploited to im-
prove the internal representations for better use in the future. Figure 1.6 shows a 
symbolic representation of the overall interaction between the (individual) “mental 
world” as data manipulation activity in a prediction-error feedback loop. It spans 
part of the time axis (horizontal line) and the “real world” represented by the spa-
tial point “here” (where the sensors are). The spatial point “here”, with its local en-
vironment, and the temporal point “now”, where the interaction of the subject with 
the real world takes place, is the only 4-D point for the autonomous system to 
make real-world experience. All interactions with the world take place “here and 
now” (see central box). The rest of the world, its extensions in space and time, are 
individual constructs in the “mental world” to “make sense” of the sensor data 
stream and its invariance properties observed individually, and as a social endeavor 
between agents capable of proper information exchange. 

The widely varying interpretations of similar events in different human cultures 
are an indication of the wide variety of relatively stable interpretation systems pos-
sible. Biological systems had to start from scratch; social groups were content with 
interpretations, which allowed them to adjust their lives correspondingly. Inconsis-
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tencies were accepted, in general, if satisfying explanations could be found. Pro-
gress toward more consistent overall models of “the world” was slow and took mil-
lennia for humankind. 

The natural sciences as a specific endeavor of individuals in different cultural 
communities looking for a consistent description of “the world” and trying to avoid 
biases imposed by their specific cultures have come up with a set of “world mod-
els”, which yield very good predictions. Especially over the last three centuries af-
ter the discovery of differential calculus by Leibnitz and Newton and most promi-
nently over the last five decades after electronic computers became available for 
solving the resulting sets of equations in their most general form, these prediction 
capabilities soared.

In front of this background, it seems reasonable to equip complex technical sys-
tems with a similarly advanced sensor suite as humans have, with an interpretation 
background on the latest state of development in the natural sciences and in engi-
neering. It should encompass a (for all practical purposes) correct description of 
the phenomena directly observable with its sensor systems. This includes the light-
ing conditions through sun and moon, the weather conditions as encountered over 
time and over different locations on the globe, and basic physical effects dominat-
ing locomotion such as Earth–gravity, dry and fluid friction, as well as sources for 
power and information. With respect to the latter ones, technical systems do have 
the advantage of being able to directly measure their position on the globe through 
the “Global Positioning System” (GPS). This is a late achievement of human tech-
nology only less than two decades of age, which is based on a collection of human-
made Earth satellites revolving in properly selected orbits.  

With this information and with digital maps of the continents, technical 
autonomous systems will have global navigation capabilities far exceeding those of 
biological systems. Adding all-weather capable imaging sensors in the millimeter 
wave range will make these systems truly global with respect to space and time in 
the future. 

1.8  Structuring of Material Covered 

Chapters 1 to 4 give a general introduction to dynamic vision and provide the basic 
knowledge representation schemes underlying the approach developed. Active sub-
jects with capabilities for perception and control of behaviors are at the core of this 
unconventional approach.  

Chapter 2 will deal with methods for describing models of objects and processes 
in the real world. Homogeneous coordinates as the basic tool for representing 3-D 
space and perspective mapping will be discussed first. Perspective mapping and its 
inversion are discussed next. Then, spatiotemporal embedding for circumnaviga-
tion of the inversion problems is treated. Dynamic models and integration of in-
formation over time are discussed as a general tool for representing the evolution 
of processes observed. A distinction between objects and subjects is made for 
forming (super-) classes. The former (treated in Chapter 2) are stationary, or obey 
relatively simple motion laws, in general. Subjects (treated in Chapter 3) have the 
capability of sensing information about the environment and of initiating motion 
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on their own by associating data from sensors with background knowledge stored 
internally.

Chapter 4 displays several different kinds of knowledge components useful for 
mission performance and for behavioral decisions in the context of a complex 
world with many different objects and subjects. This is way beyond actual visual 
interpretation and takes more extended scales in space and time into account, for 
which the foundation has been laid in Chapters 2 and 3. Chapter 4 is an outlook 
into future developments. 

Chapters 5 and 6 encompass procedural knowledge enabling real-time visual in-
terpretation and scene understanding. Chapter 5 deals with extraction methods for 
visual features as the basic operations in image sequence processing; especially the 
bottom-up mode of robust feature detection is treated here. Separate sections deal 
with efficient feature extraction for oriented edges (an “orientation-selective” 
method) and a new orientation-sensitive method which exploits local gradient in-
formation for a collection of features: “2-D nonplanarity” of a 2-D intensity func-
tion approximating local shading properties in the image is introduced as a new 
feature separating homogeneous regions with approximately planar shading from 
nonplanar intensity regions. Via the planar shading model, beside homogeneous 
regions with linear 2-D shading, oriented edges are detected including their precise 
direction from the gradient components [Hofmann 2004].

Intensity corners can be found only in nonplanar regions; since the planarity 
check is very efficient computationally and since nonplanar image regions (with 
residues  3% in typical road scenes) are found in < 5% of all mask locations, 
computer–intensive corner detection can be confined to these promising regions. In 
addition, most of the basic image data needed have already been determined and 
are used in multiple ways.   

This bottom-up image feature extraction approach is complemented in Chapter 
6 by specification of algorithms using predicted features, in which knowledge 
about object classes and object motion is exploited for recognizing and intelligent 
tracking of objects and subjects over time. These recursive estimation schemes 
from the field of systems dynamics and their extension to perspective mapping as 
measurement processes constitute the core of Chapter 6. They are based on dy-
namic models for object motion and provide the link between image features and 
object description in 3-D space and time; at the same time, they are the major 
means for data fusion. This chapter builds on the foundations laid in the previous 
ones. Recursive estimation is done for n single objects in parallel, each one with 
specific parameter sets depending on the object class and the aspect conditions. All 
these results are collected in the dynamic object data base (DOB).  

Chapters 7 to 14 encompass system integration for recognition of roads, lanes, 
other vehicles, and corresponding experimental results. Chapter 7 as a historic re-
view shows the early beginnings. In Chapter 8, the special challenge of initializa-
tion in dynamic road scene understanding is discussed, whereas Chapter 9 gives a 
detailed description of various application aspects for recursive road parameter and 
ego-state estimation while cruising. Chapter 10 is devoted to the perception of 
crossroads and to performing autonomous turnoffs with active vision. Detection 
and tracking of other vehicles is treated in Chapter 11. 
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Based on experience gained in these areas, Chapter 12 discusses sensor re-
quirements for advanced vision systems in automotive applications and shows an 
early result of saccadic perception of a traffic sign while passing. Chapters 13 and 
14 give an outlook on the concept of such an expectation-based, multifocal, sac-
cadic (EMS) vision system and discuss some experimental results. Chapter 13 pre-
sents the concept for a dynamic knowledge representation (DKR) serving as an iso-
lation layer between the lower levels of the system, working mainly with methods 
from systems dynamics/engineering, and higher ones leaning mainly on “artificial 
intelligence” methods. The DOB as one part of DKR is the main memory for all 
objects and subjects detected and tracked in the environment. Recent time histories 
of state variables may be stored as well; they alleviate selecting the most relevant 
objects/subjects to be observed more closely for safe mission performance. Chapter 
14 deals with a few aspects of “real-world” situation assessment and behavior–
decisions based on these data. Some experimental results with this system are 
given: Mode transition from unrestricted roadrunning to convoy driving, multi–
sensor adaptive cruise control by radar and vision, autonomous visual lane 
changes, and turnoffs onto crossroads as well as onto grass-covered surfaces; de-
tecting and avoiding negative obstacles such as ditches is one task solved in cross-
country driving in a joint project with U.S. partners. 

Chapter 15 gives some conclusions on the overall approach and an outlook on 
chances for future developments. 
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“the World” 

Vision is a process in which temporally changing intensity and color values in the 
image plane have to be interpreted as processes in the real world that happen in 3-
D space over time. Each image of today’s TV cameras contains about half a mil-
lion pixels. Twenty five (or thirty) of these images are taken per second. This high 
image frame rate has been chosen to induce the impression of steady and continu-
ous motion in human observers. If each image were completely different from the 
others, as in a slide show with snapshots from scenes taken far apart in time and 
space, and were displayed at normal video rate as a film, nobody would understand 
what is being shown. The continuous development of action that makes films un-
derstandable is missing. 

This should make clear that it is not the content of each single image, which 
constitutes the information conveyed to the observer, but the relatively slow devel-
opment of motion and of action over time. The common unit of 1 second defines 
the temporal resolution most adequate for human understanding. Thus, relatively 
slow moving objects and slow acting subjects are the essential carriers of informa-
tion in this framework. A bullet flying through the scene can be perceived only by 
the effect it has on other objects or subjects. Therefore, the capability of visual per-
ception is based on the ability to generate internal representations of temporal proc-
esses in 3-D space and time with objects and subjects (synthesis), which are sup-
ported by feature flows from image sequences (analysis). This is an animation 
process with generically known elements; both parameters defining the actual 3-D 
shape and the time history of the state variables of objects observed have to be de-
termined from vision. 

In this “analysis by synthesis” procedure chosen in the 4-D approach to dynamic 
vision, the internal representations in the interpretation process have four inde-
pendent variables: three orthogonal space components (3-D space) and time. For 
common tasks in our natural (mesoscale, that is not too small and not too large) 
environment, these variables are known to be sufficiently representative in the 
classical nonrelativistic sense.  

As mentioned in the introduction, fast image sequences contain quite a bit of re-
dundancy, since only small changes occur from one frame to the next, in general; 
massive bodies show continuity in their motion. The characteristic frequencies of 
human and most animal motion are less than a few oscillations per second (Hz), so 
that at video rate, at least a dozen image frames are taken per oscillation period. 
According to sampled data theory, this allows good recognition of the dynamic pa-
rameters in frequency space (time constants, eigenfrequencies, and damping). So, 
the task of visual dynamic scene understanding can be described as follows:  



22     2  Basic Relations: Image Sequences – “the World”

Looking at 2-D data arrays generated by several hundred thousands of sen-
sor elements, come up with a distribution of objects in the real world and of 
their relative motion. The sensor elements are arranged in a uniform array 
on the chip, usually. Onboard vehicles, it cannot be assumed that the sensor 
orientation is known beforehand or even stationary. However, inertial sen-
sors for linear acceleration components and rotational rates are available for 
sensing ego-motion. 

It is immediately clear that knowledge about object classes and the way their 
visible features are mapped into the image plane is of great importance for image 
sequence understanding. These objects may be grouped in classes with similar 
functionality and/or appearance. The body of the vehicle carrying the sensors and 
providing the means for locomotion is, of course, of utmost importance. The 
lengthy description of the previous sentence will be abbreviated by the term:  the 
“own” body. To understand its motion directly and independently of vision, signals 
from other sensors such as odometers, inertial angular rate sensors and linear ac-
celerometers as well as GPS (from the “Global Positioning System” providing geo-
graphic coordinates) are widely used.  

Image data points carry no direct information on the distance at which their light 
sources, which have stimulated the sensor signal are in the real world; the third di-
mension (range) is completely lost in a single image (except maybe for intensity at-
tenuation over longer distances). In addition, since perturbations may invalidate the 
information content of a single pixel almost completely, useful image features con-
sist of signals from groups of sensor elements where local perturbations tend to be 
leveled out. In biological systems, these are the receptive fields; in technical sys-
tems, these are evaluation masks of various sizes. This now allows a more precise 
statement of the vision task:

By looking at the responses of feature extraction algorithms, try to find ob-
jects and subjects in the real world and their relative state to the own body. 
When knowledge about motion characteristics or typical behaviors is avail-
able, exploit this in order to achieve better results and deeper understanding 
by filtering the measurement data over time.  

For simple massive objects (e.g., a stone, our sun and moon) and man-made ve-
hicles, good “dynamic models” describing motion constraints are known very of-
ten. To describe relative or absolute motion of objects precisely, suitable reference 
coordinate systems have to be introduced. According to the wide scale of space ac-
cessible by vision, certain scales of representation are advantageous: 

Sensor elements have dimensions in the micrometer range ( m). 
Humans operate directly in the meter (m) range: reaching space, single step 
(body size). 
For projectiles and fast vehicles, the range of immediate reactions extends to 
several hundred meters or kilometers (km). 
Missions may span several hundred to thousands of kilometers, even one-third 
to one-half around the globe in direct flight. 
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Space flight and lighting from our sun and moon extend up to 150 million km as 
a characteristic range (radius of Earth orbit). 
Visible stars are far beyond these distances (not of interest here). 
Is it possible to find one single type of representation covering the entire range? 

This is certainly not achievable by methods using grids of different scales as often 
done in “artificial intelligence”- approaches. Rather, the approach developed in 
computer graphics with normalized shape descriptions and overall scaling factors 
is the prime candidate. Homogeneous coordinates as introduced by [Roberts 1965, 
Blinn 1977] also allow, besides scaling, incorporating the perspective mapping 
process in the same framework. This yields a unified approach for computer vision 
and computer graphics; however, in computer vision, many of the variables enter-
ing the homogeneous transformation matrices are the unknowns of the problem. A 
direct application of the methods from computer graphics is thus impossible, since 
the inversion of perspective projection is a strongly nonlinear problem with the 
need to recover one space component completely lost in mapping (range).  

Introducing strong constraints to the temporal evolution of (3-D) spatial trajec-
tories, however, allows recovering part of the information lost by exploiting first- 
order derivatives. This is the big advantage of spatiotemporal models and recursive 
least-squares estimation over direct perspective inversion (computational vision). 
The Jacobian matrix of this approach to be discussed throughout the text plays a vi-
tal role in the 4-D approach to image sequence understanding. 

Before this can be fully appreciated, the chain of coordinate transformations 
from an object-centered feature distribution for each object in 3-D space to the 
storage of the 2-D image in computer memory has to be understood.  

2.1 Three-dimensional (3-D) Space and Time 

Each point in space may be specified fully by giving three coordinates in a well-
defined frame of reference. This reference frame may be a “Cartesian” system with 
three orthonormal directions (Figure 2.1a), a spherical (polar) system with one (ra-
dial) distance and two angles (Figure 2.1b), or a cylindrical system as a mixture of 
both, with two orthonormal axes and one angle (Figure 2.1c).  

The basic plane of reference is usually chosen to yield the most simple descrip-
tion of the problem: In orbital mechanics, the plane of revolution is selected for 
reference. To describe the shape of objects, planes of symmetry are preferred; for 
example, Figure 2.2 shows a rectangular box with length L, width B and height H.
The total center of gravity St is 
given by the intersection of two 
space diagonals. It may be con-
sidered the box encasing a road 
vehicle; then, typically, L is 
largest and its direction deter-
mines the standard direction of 
travel. Therefore, the centerline 
of the lower surface is selected 

Figure 2.1. Basic coordinate systems (CS): (a)
Cartesian CS, (b) spherical CS, (c) cylindrical CS
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as the x-direction of a body-fixed coordinate system (xb, yb, zb) with its origin 0b at 
the projection Sb of St onto the ground plane. 

To describe motion in an all-dominating field of gravity, the plane of reference 
may contain both the gravity and the velocity vector with the origin at the center of 
gravity of the moving object. The “horizontal” plane normal to the gravity vector 
also has some advantages, especially for vehicle dynamics since no gravity com-
ponent affects motion in it. 

If a rigid object moves in 3-D space, it is most convenient to describe the shape 
of the object in an object-oriented frame of reference with its origin at the center 

(possibly even the center of gravity) or some other 
convenient, easily definable point (probably at its 
surface). In Figure 2.2, the shape of the rectangular 
box is defined by the lengths of its sides L, B, and H.
The origin is selected at the center of the ground 
plane Sb. If the position and orientation of this box 
has to be described relative to another object, the 
frame of reference given in the figure has to be re-
lated to the independently defined one of the other 
object by three translations and three rotations, in 
general.  

Figure 2.2. Object-orien-
ted coordinate system for 
a rectangular box

yb
zb

xb
Sb = Ob

B

H

L / 2 L / 2
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To describe the object (box) shape in the new frame of reference, a coordinate 
transformation for all significant points defining the shape has to be performed. For 
the rectangular box, these are its eight corner points located at L/2 and B/2 for 
zb= 0 and H. The straight edges of the box remain linear connections between 
these points. [The selection of the coordinate axes has been performed according to 
the international standard for aero-space vehicles. X is in the standard direction of 
motion, x and z are in the plane of vehicle symmetry, and y completes a right-
handed set of coordinates. The origin at the lower outside of the body alleviates 
measurements and is especially suited for ground vehicles, where the encasing box 
touches the ground due to gravity, in the normal case. Measuring altitude (eleva-
tion) positively upward requires a sign change from the positive z-direction (direc-
tion of the gravity vector in normal level flight). For this reason, some national 
standards for ground vehicles rotate the coordinate system by 180° around the x-
axis (z upward and y to the left).] 

In general, the coordinate transformations between two systems in 3-D space 
have three translational and three rotational components. In the 1970s, when these 
types of operations became commonplace in computer graphics, together with per-
spective mapping as the final stage of visualization for human observers, so-called 
“homogeneous coordinates” were introduced [Roberts 1965, Blinn 1977]. They al-
low the representation of all transformations required by transformation matrices of 
size 4 by 4 with different entries. Special microprocessors have been developed in 
the 1970s allowing us to handle these operations efficiently. Extended concatena-
tions of several sequential transformations turn out to be products of these matri-
ces; to achieve real-time performance for realistic simulations with visual feedback 
and human operators in the loop, these operations have shaped computer graphics 
hardware design (computer generated images, CGI [Foley et al. 1990]).
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2.1.1 Homogeneous Coordinate Transformations in 3-D Space 

Instead of the Cartesian vector rC = (x, y, z), the homogeneous vector 
 ( ,  ,  ,  )hr p x p y p z p (2.1)

is used with p as a scaling parameter. The specification of a point in one coordinate 
system can be “transformed” into a description in a second coordinate system by 
three translations along the axes and three rotations around reference axes, some of 
which may not belong to any of the two (initial and final) coordinate systems.  

2.1.1.1 Translations 

This allows writing translations along all three axes by the amount r = ( x, y,

z) in the form of a matrix · vector multiplication with the homogeneous transfor-
mation matrix (HTM) for translation:  

1 0
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0 1 0
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r r

z (2.2)

The three translation components shift the reference point for the rotated origi-
nal coordinate system.  

2.1.1.2 Rotations 

Rotations around all axes may be described with the shorthand notation c = 
cos(angle) and s = sin(angle) by the corresponding HTMs: 
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c s s c
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0 (2.3)

The position of the 1 on the main diagonal indicates the axis around which the 
rotation takes place.  

The sequence of the rotations is of importance in 3-D space because the final re-
sult depends on it. Because of the dominant importance of gravity on Earth, the 
usual nomenclature for Euler angles (internationally standardized in mechanical 
engineering disciplines) requires the first rotation be around the gravity vector, de-
fined as “heading angle”  (or pan angle for cameras). This reference system is 
dubbed the “geodetic coordinate system”; the x- and y-axes then are in the horizon-
tal plane. The x-direction of this coordinate system (CS) may be selected as the 
main direction of motion or as the reference direction on a global scale (e.g., mag-
netic North). The magnitude of rotation  is selected such that the x-axis of the ro-
tated system comes to lie vertically underneath the x-axis of the new CS [e.g., the 
body-fixed x-axis of the vehicle (xO in Figure 2.3, upper right corner)]. As the sec-
ond rotation, the turn angle of the vehicle’s x-axis perpendicular to the horizontal 
plane has proven to be convenient. It is called “pitch angle”  for vehicles (or tilt 
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angle for cameras); the rota-
tion takes place around an in-
termediate y-axis, called node 
axis ky. This already yields the 
new x-direction xO, around 
which the final rotation takes 
place: The roll– or bank angle 

 indicates the angle around 
this axis between the plane of 
symmetry of the vehicle and 
the vertical plane. All of these 
angles are shown twice in the 
figure for easier identification 
of the individual axis of rota-
tion.

2.1.1.3 Scaling 

Due to Equation 2.1 scaling can be achieved simply by setting the last element in 
the HTM [lower right element p (4, 4)] different from 1. All components are then 
interpreted as scaled by the same factor p. This scaling is conveniently exploited by 
application to perspective mapping. 

2.1.1.4 Perspective Mapping 

Figure 2.4 shows some properties of perspective projection by a pinhole model. All 
points on a ray through the projection center Pp are mapped into a single point in 
the image plane at a distance f (the focal length) behind the plane xp = 0. For ex-
ample, the points Q1, Q2, and Q3 are all mapped into the single point Qi. This is to 
say that the 3-D depth to the point in the real world mapped is lost in the image. 
This is the major challenge for monocular vision. Therefore, the rectangle in the 
image plane Rei may correspond both to the two rectangles Re1 and Re2 and to the 
trapezoids Trap1 and Trap2 at 
different ranges and with dif-
ferent orientations in the real 
world. Any four-sided poly-
gon in space (also nonplanar 
ones) with the corner points 
on the four rays through the 
corners given will show up as 
the same (planar, rectangular) 
shape in the image. 

To get rid of the sign 
changes in the image plane 
incurred by the projection 
center Pp (pinhole), the posi-
tion of this plane is mirrored 

Figure 2.4. Perspective projection by a pinhole 
camera model
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Figure 2.3. Transformation of a coordinate system
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4

4

at xp = 0 (as shown). This allows us to easily write down the mathematical relation-
ship of perspective mapping when the xp-axis is selected perpendicularly to the im-
age plane and the origin is at the pin hole (projection center):  

/     /                  

      /     /  ,
i

i

     y f y x

z f z x

or
          /  (   (1 /  ))     

          /  (   (1 /  )).
i

i

y y x f

z z x f

(2.4)

This perspective projection equation may be included in 
the HTM–scheme by the projection matrix P (Pp for pixel 
coordinates). It has to be applied as the last matrix multipli-
cation and yields (for each point-vector xFk in the real world) 
the “homogeneous” feature vector “e”. The image coordi-
nates yi and zi of a feature point are then obtained from the 
“homogeneous” feature vector e by dividing the second and 
third component resulting from Equation 2.4a by the fourth 
one (see Figure 2.5 for the coordinates): 

Figure 2.5. Image 
coordinates
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The image coordinates yi and zi of a feature point are then obtained from the 
“homogeneous” feature vector e by dividing the second and third component result-
ing from Equation 2.4a by the fourth one (see Figure 2.5 for the coordinates):  

i 2

i 3

 = (second component e )/(fourth component e )

 = (third component e )/(fourth component e ).

y

z (2.5)

The left matrix in Equation 2.4a leaves the y-component (within each image 
line) and the z-component (for each image line) as metric pixel coordinates.

The x-component has lost its meaning during projection and is used for scaling 
as indicated by Equation 2.4 and the last row of Equation 2.4a. If coordinates are to 
be given in pixel values in the image plane, the “1”s on the diagonal are replaced 
by ky (element 2, 2) and kz (element 3, 3) representing the number of pixels per unit 
length (Equation 2.4a right). Typical pixel sizes at present are 5 to 20 micrometer 
(approximately square), or ky, kz ~ 200 to 50 pixels per mm length.  

After a shift of the origin from the center to the upper left corner (see Figure 
2.5) this y-z sequence (now dubbed u-v) is convenient for the way pixels are digi-
tized line by line by frame grabbers from the video signal. (For real-world applica-
tions, it has to be taken into account that frame-grabbing may introduce offsets in 
y- and z-directions, which lead to additive terms in the corresponding fourth col-
umn.)  
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2.1.1.5 Transformation of a Planar Road Scene into an Image 

The set of HCTs needed for linking a simple road scene with corresponding fea-
tures in an image is shown in Figure 2.6. The road is assumed to be planar, level 
and straight. The camera is somewhere above the road at an elevation Hc (usually 

known in vision tasks) and at a lateral offset ygc (usually unknown) from the road 
centerline. The width B of the road is assumed to be constant in the look-ahead 
range; the marked centerline of the road partitions it into two equal parts. Some 
distance down the road there is a rod of length L as an obstacle to be detected. To 
simplify the task, it is assumed to be a one-dimensional object, easily describable 
in an object centered coordinate system to extend from xo = –L/2 to +L/2. (The 
real-world object does have a cross section of some extension and shape that war-
rants treating it as an obstacle not to be driven over.)  Relative to the road the rod 
does have a lateral position yoR of its center point C from the centerline of the road 
and an orientation o between the object-fixed x-axis Xo and the tangent direction 
of the road XgRo. Figure 2.6 shows the situation with the following CS:  

Figure 2.6. Coordinate systems for transforming a simple road scene into an image
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2. Geodetic CS of the object (rod); geodetic CSs are defined with their X-Y-plane 

in the horizontal plane and their origin at the center of gravity of the object. The 
orientation of the x-axis in the horizontal plane is left open for a convenient 
choice in connection with the actual task. In this case, there is only one road di-
rection, and therefore, XgRo is selected as the reference for object orientation. 
There is only one rotation-angle o between the two CS 1 and 2 because gravity 
keeps the rod on the road surface (Xg - Yg plane). The corresponding HTM is R o

[with a 1 in (3, 3) for rotation around the z-axis]. 
3. The road-centered geodetic CS (indexed “gR”) at the longitudinal location of 

the camera has its origin at 0Rc , and XgR is directed along the road. Between the 
CS 2 and 3 there are (in the special case given here) the two translations xco and 
yoR. The corresponding HTM is TRo with entries xco and yoR in the last column of 
the first two rows.

4. The geodetic CS is at the projection center of the camera (not shown in Figure 
2.6 for clarity); between the CS 3 and 4 there are again (in the special case given 
here) the two translations ygc and Hc . The latter one is negative since zg is posi-
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tive downward. The corresponding HTM is TRc with entries ygc and Hc in the last 
column of the second and third rows. 

5. The camera-oriented CS (indexed “c”): The gaze direction of the camera is as-
sumed to be fixed on the center of the road at the look-ahead distance of the ob-
ject center. The elevation Hc of the camera above the ground and its lateral off-
set ygc yield the camera pan (yaw) and tilt (pitch) angles c and c. The camera 
CS is obtained from CS 4 by two rotations: First, rotating around the Zgc -axis 
(vertical line through camera projection center, not directly shown but indicated 
by the vector Hc in the opposite direction) by the amount c yields the horizon-
tal direction of sight. The corresponding HCT–matrix is R c. Now the X-Z-plane 
cuts the axis XgR at distance xco. Within this X-Z-plane now the intermediate x-
axis has to be rotated until it also cuts the axis XgR at distance xco (pitch angle -

c) and becomes Xc. The corresponding HTM is R c [with a 1 in position (2, 2) 
for rotation around the intermediate y-axis]. 

6. The image CS into which the scene is now mapped by perspective projection. 
7. The CS for the image matrix of pixel points in computer memory. During data 

acquisition and transfer, shifts may occur: By misalignments of a frame grabber, 
unintentional shifts of the image center may occur. Intentionally, the origin of 
the image CS may be shifted to the upper left corner of the image (see coordi-
nates u, v in Figure 2.5).  
Since all these transformations can be applied to only one point at a time, ob-

jects consisting of sequences of straight lines (so-called “polygons”) have to be de-
scribed by the ensemble of their corner points. This will be treated in Section 2.2. 
Note here that each object described in a certain CS has to be given by the ensem-
ble of its corner points. For example, the rod is given by the two endpoints E and T
on the Xo -axis at –L/2 and +L/2. The straight road is given by its left and right 
boundary lines Bl and Br, and by the centerline ClR in the road-CS. All three lines 
are realized by a straight line connection between two end points with indices 1 
(left side of Figure 2.6) and 2 (right); all end points of lines defining the road lie at 
z = 0. The points on the left-hand side of the road are at y = B/2, and those on the 
right-hand side are at + B/2. The centerline ClR is at y = 0.

Let us consider the transformation of the endpoint T of the rod into the image 
taken by the camera according to Figure 2.6. In the 3-D homogeneous object CS of 
the rod, this point has the coordinate description xo

T = ( L/2, 0, 0, 1). After transi-
tion to the geodetic CS Xgo , the state vector according to point 2 in the list above 
changes to  

go o ox R x . (2.6) 

To describe the point T in the road-oriented CS, the second HTM TRo for trans-
lation from C to 0Rc according to point 3 above has to be applied:  

   gR Ro o ox T R x . (2.7) 

For the transition to the geodetic CS of the camera, multiplication by the HTM 
TRc with entries ygc and Hc has to be performed according to point 4 above: 

gc Rc Ro o ox T T R x . (2.8) 

The two translations may be combined into a single matrix containing in the up-
per three rows of the fourth column the sum of the elements in the corresponding 
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rows of the HTMs in Equation 2.8. It has not been done here because the direction 
of the local road tangents would not be the same for a curved road. Therefore, be-
fore performing the second translation to the origin of the camera CS, a rotation 
around the vertical axis by the difference in local road direction would have to be 
inserted (yielding another rotation matrix R co between TRc and TRo.

Now the two rotation-angles c and c for the optical axis of the camera have to 
be applied. Since c according to the definition has to be applied first, R c has to 
stand to the right because this matrix will be encountered first when the column-
vector xo is multiplied from the right. This finally yields the state vector for the 
point T in camera coordinates:  

x   x .co c c Rc Ro o oR R T T R (2.9) 

Applying perspective projection (Equation (2.4) to this 3-D-point xco yields the 
“homogeneous” feature data for the image coordinates e according to Equation 2.5; 
note that the five HTMs contain the unknown variables of the vision task written 
below each matrix: 

c c gc co oR o

e   [ ] x   x .

unknowns: , , ( , ) !

p c c Rc Ro o o tot oP R R T T R T

y x y
(2.10) 

The explicitly written down (transposed) form (e)T = (e1, e2, e3, e4) then yields 
the image coordinates 

2 4 3 4   /   ;         /  .i iy e e z e e (2.11) 

 The expression in square brackets is the same for any point to be transformed 
from object- into camera- coordinates. Therefore, in computer graphics, where all 
elements entering the HTMs are known beforehand, the so-called concatenated 
transformation matrix Ttot is computed as the product of all single HTMs once for 
each object and aspect condition. A single matrix-vector multiplication Ttot · xo then 
yields the position in homogeneous feature coordinates for the image of a point on 
the object at xo in object-centered coordinates. Equation 2.11 finally gives the im-
age coordinates. 

Note that these coordinates are real numbers, which means that the positions of 
the points mapped into the image are known to subpixel accuracy. If measurements 
of image features (Chapter 5) can be done to subpixel accuracy, too, the methods 
applied in recursive estimation (see Chapter 6) yield improved results by not 
rounding off feature coordinates to integer numbers (as is often done in a naive ap-
proach).  

2.1.1.6 General Concatenations of HCTs; the Scene Tree 

While the use of these transformation matrices in computer graphics is common-
place as a flexible tool for adaptation to new or modified tasks, in machine vision, 
until very recently, they have been exploited only during the formulation phase of 
the problem. Then, to be numerically more efficient on general-purpose processors, 
the resulting expressions of the matrix product Ttot have been hand-coded, initially. 
With the processing power available now, more easily adaptable codes become 
preferable; this is achieved by keeping each HTMs separate until numerical evalua-
tion because in each matrix variables to be iterated may appear.  
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The challenge in machine vision as opposed to computer graphics is that some 
of the transformation parameters entering the matrices are not known beforehand 
but are the unknowns of the vision process, which have to be determined from im-
age sequence analysis. Therefore, in each transformation, its sensitivity to small 
parameter changes has to be determined to compute the corresponding overall 
“Jacobian” matrices (JM, the first-order approximation for the nonlinear functional 
relationship describing the mapping of features on objects in the real world to those 
measured in the images). This rather compute-intensive operation and an efficient 
implementation will be discussed in Section 2.1.2. 

The tendency toward separation of application-oriented aspects from those 
geared to the general methods of dynamic vision required a major change from the 
initial approach with respect to handling homogeneous coordinates. Concatenation 
is shifted to the evaluation of the scene model at runtime; then, both the nominal 
total HTM and the partial-derivative matrices for all unknown parameters and state 
variables are computed in conjunction (maybe numerically). This allows efficient 
use of intermediate results and makes the setup of new problems much easier for 
the user. The corresponding representation scheme for all objects and CSs in a so-
called “scene tree” has been developed by D. Dickmanns (1997) and will be dis-
cussed in the following paragraphs. 

Figure 2.7 without the shaded areas gives an example of a scene tree for describ-
ing the geometrical relations among several objects of relevance for the vision task 

shown in Figure 2.6 a single 
camera on a straight road. The 
nodes and edges in the shaded 
areas on the right-hand side 
and on top will be needed for 
the more general case of a 
camera onboard a vehicle 
moving on a curved road. In 
the straight road scene, the 
“object” represents the rod on 
the road at some look-ahead 
distance xco; its lateral position 
on the road can be recovered 
in the image from the road 
boundaries nearby and from 
the vanishing point at the hori-
zon (see Figure 2.8).The figure 
shows the resulting image, into 
which some labels for later 
image interpretation have been 
inserted.

Figure 2.7. Scene tree for representing spatial rela-
tionships between objects seen and their image in 
perspective projection
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For a horizontal straight road with parallel lines, the vanishing point, at which 
all parallel lines intersect, lies on the horizon line. Its distance components to the 
image center yield the direction of the optical axis: c to the direction of the road 
and c to the horizon line. The center of gravity (cg) of the rod has the averaged 
coordinates of the end points E and T in 3-D space.  
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The location of this point relative to the road centerline gives the lateral offset 
yoR at the look-ahead distance xco . The yaw angle o of the rod relative to the road 
can be determined by computing the difference in the positions of the end points E
and T; however, the distortions from perspective mapping have to be taken into ac-
count. All these interpretations are handled automatically by the 4-D approach to 

dynamic vision (see Chapter 6). 
Since the camera looks from 
above almost tangentially to the 
plane containing the road, the dis-
tance in the real world increases 
with decreasing row index. If a 
certain geometric resolution for 
each pixel is required, there is a 
limit to the look-ahead range us-
able (shown on the left-hand side 
in Figure 2.8). 

For example, if each pixel is 
not allowed to cover more than 5 
cm normal to the optical axis, the 
look-ahead range L0.05 (in meters) 
or simply L5 (in cm) is thus de-

fined. This makes sense in road–scene analysis since lane markings, usually, are 10 
to 50 cm wide and at least two pixels normal to a line are required for robust rec-
ognition under perturbations with edge feature extractors (Chapter 5).  

Figure 2.8. Image resulting from the scene 
given in Figure 2.6 after perspective mapping

Looking at sequences of images like these, the camera motion and the relative 
state of all objects of relevance for performing a driving mission have to be recog-
nized sufficiently well and early with minimal time delay. The approach given in 
this book has proven to solve this problem reliably. Before the overall solution for 
precise and robust recognition can be discussed, all components needed have to be 
introduced first. Starting in Chapter 7, they will be applied together; the perform-
ance and complexity level will be open-ended for future growth.  

Back to the scene tree: In Figure 2.7 each node represents an object in the real 
world (including virtual ones such as the CS at certain locations). The edges repre-
sent HCTs, i.e., encodings of geometric relations. In combination with knowledge 
about the effects of these transformations, this allows a very compact description 
of all objects of relevance in the visual scene. Only the components of spatial state 
vectors and a few parameters of generic models for the objects are needed to repre-
sent the scene. The rest of the knowledge is coded in the object classes from which 
the objects hypothesized are generated.  

The edges (a) and (b) at the center of Figure 2.7 (from the camera, respectively, 
from the “object” to the “road at the object location”) are two alternative ways to 
determine where the object is. Edge (a) represents the case, where the bearing an-
gles to some features of the road and to the object are interpreted separately; the 
road features need not necessarily be exactly at the location of the object. From 
these results, the location of the road and the lateral position of the object on the 
road can be derived indirectly in a second step. The difference in bearing angle to 
the road center at the range of the object yields the lateral position relative to the 
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road. In the case of edge (b), first only the range and bearing to the object are de-
termined. Then at the position of the object, the features of the road are searched 
and measured, yielding directly the explicit lateral position of the object relative to 
the road. This latter procedure has yielded more stable results in recursive estima-
tion under perturbations in vehicle pitch and yaw angles (see Chapter 6). 

The sequence of edges in Figure 2.7 specifies the individual transformation 
steps; each node represents a coordinate system (frequently attached to a physical 
body) and each edge represents HCTs, generally implying several HTMs. The un-
known parameters entering the HCTs are displayed in the boxes attached to the 
edge. At the bottom of each branch, the relevant object is represented in an object-
centered coordinate system; this will be discussed in Section 2.2. A set of cameras 
(instead of a single one) may be included in the set of nodes making their handling 
schematic and rather easy. This will be discussed in connection with EMS vision 
later.

The additional nodes and edges in the shaded areas show how easily more de-
tailed models may be introduced in the interpretation process. Figure 2.9 gives a 
sketch of the type of road scene represented by the full scene tree of Figure 2.7. 

Now, the position of the own vehicle relative to the road has to be determined. In 
the general case, these are three translational and three rotational components. Ne-
glecting movements in bank angle (they average around 0) and in heave (vertical 
translation) and taking the longitudinal position as the moving origin of the vehicle 
CS, the same components as in the previous case have to be determined.  

Figure 2.9. Coordinate systems for a general scene with own vehicle (index b) and one 
other vehicle (index o) on a curved road
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However, now the camera is located somewhere in the vehicle. The three trans-
lational components are usually fixed and do not change; the two rotational com-
ponents from gaze control can be measured conventionally on the platform and are 
assumed known, error-free. So, there is no new unknown variable for active gaze 
control; however, the transformations corresponding to the known variables from 
mounting the platform on the vehicle have to be applied.  
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For the more general case of a curved road (shaded area to the right in Figure 
2.7), the road models to be discussed in later sections have to be applied. They in-
troduce several more unknowns into the vision process. However, using differen-
tial-geometry models minimizes the number of these terms; for planar roads, two 
sets of additional CSs allow large look-ahead ranges even with up to two inflection 
points of the road (changes of the sign of curvature; Figure 2.9 has just one).  

General scheme of the scene tree: The example of a scene tree given above can 
be generalized for perspective mapping of many objects in the real world into im-
ages by several cameras. For practical reasons, one CS will be selected as the main 
reference; in vehicle guidance, this may be the geodetic CS linked to the center of 
gravity of the vehicle (or some easily definable one with similar advantages). This 
is called the “root node” and is drawn as the topmost node in standard notation. 

 The letter T shall designate all transformations for uniformity (both translations 
and rotations). The standard way of describing these transformations is from the 
leaves (bottom) to the root node. Therefore, when forming the total chain of trans-
formations Ttot from features on objects in the real world into features in an image, 
denoted by K in Figure 2.10, the inverse transformation matrices Tkj

1 have to be 
used from the root to the leaves (left-hand 
side). A total transformation Ttot exists for 
each object-sensor pair, of which the ob-
ject can be visually observed from the 
sensor. Once the scene tree has been de-
fined for m cameras and n objects, the 
evaluation of the (at most n · m) total 
transformation matrices is independent of 
the special task and can be coded as part 
of the general method [D. Dickmanns 
1997].

Since objects may appear and disap-
pear during a mission, the perception sys-
tem has to have the capability of autono-
mously inserting and deleting object 
branches in the scene tree. This object 
hypothesis generation and deletion capa-
bility is a crucial part of intelligent visual 

perception. Detailed discussions of various task domains will be given in later sec-
tions after the elements necessary for a flexible overall system have been intro-
duced. Let the computation of Ttot be called the “traverse” of the scene graph. The 
recursive estimation method presented in Chapter 6 requires that this traverse is 
done not just once for each object-sensor pair but (q + 1) times, if there are q un-
known state variables and parameters entering the HTMs in Ttot. This model-based 
approach yields a first-order approximation (so-called “Jacobian matrices” or in 
short “Jacobians” of perspective mapping) describing the relationship between all 
model parameters and state components in the mentally represented world on the 
one hand, and feature positions in the images, on the other hand. Note that for 3-D 
models, there is also spatial information available in the Jacobians, allowing depth 
perception even with monocular vision (motion stereo). Because of this heavy 

Figure 2.10. General scheme for object 
mapping in the scene graph
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workload in computation, efficient evaluation of all these traverses is very impor-
tant. This is the subject of the next section.  

Again, all of this is independent of the special application, once the scene tree 
for the set of problems has been defined.  

2.1.2 Jacobian Matrices for Concatenations of HTMs 

To be flexible in coding and to reduce setup time for new task domains, the ele-
ments of Jacobian matrices may be determined by numerical differencing instead 
of fully analytical derivations; this is rather computer-intensive. An analytical deri-
vation based on the factored matrices may be most computer-efficient. Figure 2.11 
shows in the top row the total HTM for the homogeneous feature vector e of the 
example Equation 2.10 from road vehicle guidance with scene perception through 
an active camera. The two translations T have two and one unknown components 
here (maximally six are possible in total); all three rotation-angles have to be de-
termined from vision as well. So there are six unknowns in the problem, for which 
the entries in the Jacobian matrix have to be computed. 

To obtain these elements, nominal value and the systematically perturbed values 
due to changes in each unknown state variable or parameter dxi have to be com-
puted for each feature point, just one at a time to obtain partial derivatives. If there 
are n state variables and q parameters to be iterated during recursive estimation, (n
+ q + 1) total transformations have to be computed for each feature point. To be ef-
ficient, the nominal values should be exploited as much as possible also for com-
puting the n + q perturbed values. This procedure for the unknown state compo-
nents is sketched in the sequel; adaptable parameters will be discussed in Section 
2.2 and Chapter 6. 

2.1.2.1 Partial Derivatives of Homogeneous Transformation Matrices  

The overall transformation matrix for each feature point xFk on the object (the rod 
in our case) in 3-D space was given by Equation 2.10: 

p c c Rc Ro o o tot o

c c gc co oR o

e =  [ ] x  = x .

unknowns: , , ( , )  !

P R R T T R T

y x y
(2.10) 

To describe the state of the rod relative to the camera, first its state relative to 
the road CS has to be specified by ( o , xco , yoR). Then the state of the camera rela-
tive to the road is given by [ygc , (the known elevation Hc), c , c]. Under the as-
sumption of a planar straight road, the geometric arrangement of the objects “cam-
era” and “rod” is fully described by specifying these “state components”. The 
unknown state vector xS of this problem with six components thus is 

T
S o co oR gc c cx  = ( ,   , ,  ,   , ).x y y (2.12) 

These components have to be iterated during the vision process so that the un-
derlying models yield a good fit to the visual features observed. In Equation 2.10 
each R represents a single rotational and each T up to three translational compo-
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nents, the unknowns of which are written below them. The total HTM including 
perspective mapping, designated by Tt is written

tot c c Rc Ro o = .T P R R T T R (2.13) 

The partial derivative of Tt with respect to any component of the state vector xS

(Equation 2.12) is characterized by the fact that each component enters just one of 
the HTMs and not the other ones. Applying the chain rule for derivatives of prod-
ucts such as Tt/ (x) yields zeros for all the other matrices, so that the overall deriva-
tive matrix, for example, with respect to ygc (abbreviated here for simplicity by just 
x) entering the central HTM  TRc is given by 

t tx c c Rc Ro o

c c Rcx Ro o

/ ( ) '  = / ( )

                                '      .

T x T R R T x T R

R R T T R
(2.14) 

Two cases have to be distinguished for the general partial derivatives of the 
HTMs containing the variables to be iterated: Translations and rotations.  

Translations: These components are represented by the first three values in col-
umn 4 of HTMs. In addition to the nominal value for the transformation matrix TN

as given in Equation 2.2, also the partial derivative matrices for the unknown vari-
ables are computed in parallel. The full set of these matrices is given by 

         Rc
1 0 0

1 0 0 0 0 0 1

0 1 0 0 0 0 0
 ;     = ' ,

0 0 1 0 0 0 0( )

0 0 0 1 0 0 0 0

x

y

rN

z x

r

r T
r r T r

r r
rxT

 (2.15) 

(a)

Rc Rc
ry rz

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
 = '                ;   '  .

0 0 0 0 0 0 0 1( ) ( )

0 0 0 0 0 0 0 0
y z

T T
T T

r r

.
0

(2.15) 

(b) 

Rotations: According to Equation 2.3 the nominal HTMs for rotation (around the 
x-, y- and z- axis respectively) are repeated below: s stands for the sine and c for 
the cosine of the corresponding angle of rotation, say .

x y z

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0
=  ;  =  ;  =

0 0 0 0 0 0 1

0 0 0 1 0 0 0 1 0 0 0 1

c s c s

c s s c
R R R

s c s c
   (2.3) 

The partial derivatives of the transformation matrices R/
s

, may be obtained from 
d(sin ) / cos   ;   (cos ) / sin  .d c d d (2.16) 

This leads to the derivative matrices for rotation 

xx yy zz

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
'  = ; '  = ; ' = .

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

s c s c

s c c s
R R R

c s c s 0
(2.17) 

It is seen that exactly the same entries s and c as in the nominal case are re-
quired, but at different locations and some with different signs. The constant values 
1 have disappeared, of course.  
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2.1.2.2 Concatenations and Efficient Computation Schemes 

The overall transformation matrix for each point (see Equation 2.10) together with 
the concatenated derivative matrices for computing the Jacobian matrices are 
shown in Figure 2.11. It can be seen that many multiplications of matrices are the 

same for the nominal case and for the concatenated derivative matrices. Since the 
elements of the overall derivative matrix (Equation 2.14) are sparsely filled (Equa-
tion 2.15 and 2.17), let us first have a look at their matrix products for efficient 
coding. 

ekN = P R c R c TRc TRo R c xFk = Tt xFk

Nominal case (index N):

Tt = P R c R c TRc TRo R c xFk

Partial derivatives:

ek / o = P R c R c TRc TRo R’ o xFk

ek / xco = P R c R c TRc T’Rox R c xFk

ek / yoR = P R c R c TRc T’Roy R c xFk

ek / ygc = P R c R c T’Rc TRo R c xFk

ek / c = P R c R’ c TRc TRo R c xFk

ek / c = P R’ c R c TRc TRo R c xFk

State
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ects
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=  eD

2

3

4

5

6

V2

V4

V3

Tt = M5

V1

V1

M1

M2

M3

M4

= 1 .. 6

Figure 2.11. Scheme of matrix multiplication for efficient computation of concatenated 
homogeneous coordinate transformations (top) and elements of the Jacobian matrices

The derivatives of the translation matrices all have a single “1” in the upper 
three rows of the last columns, the positions depend on the variable for partial deri-
vation; the rest of the elements are zero, allowing efficient computation of the 
products. If such a matrix is multiplied from the right by another matrix, the multi-
plication just copies the last row of this matrix into the corresponding row of the 
product matrix where the 1 is in the derivative matrix (row 1 for x, 2 for y, and 3 
for z). If such a matrix is multiplied to the left by another matrix, the multiplication 
just copies the ith column of this matrix into the last column of the product matrix. 
The index i designates the row, in which the 1 is in the derivative matrix (row 1 for 
x, 2 for y, and 3 for z). Note that the zeros in the first three columns lead to the ef-
fect that in all further matrix multiplications to the left, these three columns remain 
zero and need not be computed any longer. The significant column of the matrix 
product is the last one, filled in each row by the inner product of the row-vector 
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with the last column of the old (intermediate) product matrix. This analytical in-
sight can save 75% of the computational steps for all matrices to the left if column 
vectors are used and matrix multiplication starts from the right-hand side.  

The derivative matrices for rotational variables have four nonzero elements. 
These trigonometric functions have already been evaluated for the nominal case. 
The nonzero elements appear in such a pattern that working with sets of row– or 
column–vectors for matrices cuts in half the number of multiplications necessary 
for the elements of the product matrix.  

As a final step toward image coordinates, the leftmost matrix P for perspective 
projection has to be applied. Note that this matrix product and the following scal-
ing operations with element e4 (Equation 2.11) yield two feature positions y and z
in the image for each real-world feature. Thus, two Jacobian elements are also ob-
tained for each image feature.  

To get from the partial derivative of the total homogeneous transformation ma-
trix T’t  to the correspondingly varied feature position in the image, this matrix has 
to be multiplied from the right-hand side by the 3-D feature vector xFk for the fea-
ture point (see Figure 2.11). This yields n vectors eDk  ,  = 1 to n (6 in our case), 
each of which has four components. This is shown in the lower part of Figure 2.11. 
Multiplying these expressions by a finite variation in the state component xS  re-

sults in the corresponding changes in the homogeneous feature vector:

D S .e e x (2.18) 

The virtually displaced “homogeneous” feature position vector e (index p)
around the nominal point (designated by index N) is computed from the “homoge-
neous” feature vectors eN for the nominal case and e  from Equation 2.18.   

p 2 N2 D 2 S p 3 N3 D 3 S

p 4 N4 D 4 S

;     e ;     

                              e .

e e e x e e x

e e x
 (2.19) 

Now the perturbed image feature positions after Equation 2.5 are 

p p 2 p 4 p p 3 p 4 = /   ;        = / .y e e z e e (2.20) 

Inserting the proper expressions from Equation 2.19 yields, with  
N2 N4 pNe  / e  = y

p N2 D 2 S N4 D 4 S

pN D 2 S N2 D 4 S N4

 = ( ) /( ) 

      = [1 / ] / [1 / ].

y e e x e e x

y e x e e x e
(2.21) 

Since the components of eD contain unknown variations x , a linear relation-
ship between these unknowns and small variations in feature positions are sought. 
If D4 N4/e e 1 , the ratio in Equation 2.21 can be approximated by 

p pN D 2 N2 S D 4 N4 S

pN D 2 N2 D 4 N4 S

2
D 2 D 4 N2 N4 S

(1 / ) (1 / )

     [1 ( / /e )  ( )

                         ( ) /( ) ].

y y e e x e e x

y e e e x

e e e e x

(2.22) 

Neglecting the last term with x
2
S  as being at least one order of magnitude 

smaller than the linear term with xS , a linear relationship between changes in y
due to xS  has been found 

p p pN pN D 2 N2 D 4 N4 S =  ( / / )y y y y e e e e x . (2.23) 
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e

The element of the Jacobian matrix linked to the horizontal (yi) feature at point 
xFk in the real world and to the unknown state variable xS  now becomes 

k y k S p S pN D 2 N2 D 4 N4y / x / ( / / ).J y x y e e e (2.24) 
The corresponding relation for the vertical feature position in the image is ob-

tained in a similar way as 

k z k S p S pN D 3 N3 D 4 N4/ / ( / /J z x z x z e e e e ). (2.25) 
This approach is a very flexible scheme for obtaining the entries into the Jaco-

bian matrix efficiently. Adaptations to changing scene trees, due to new objects 
appearing with knew unknown states to be determined visually, can thus be made 
in an easy way. 

The general approach discussed leaves two variants open to be selected for the 
actual case at hand:  
1. Very few feature points for an object: In this case, it may be more economic 

with respect to computational load to multiply the sequence of transformations 
in Figure 2.11 from the left by the homogeneous 3-D feature point xFk (four 
components). This always requires only four inner vector products (= 25% of a ma-
trix product). So, in total, for 6 matrix vector products, 24 inner products are 
needed; for the 7 expressions in Figure 2.11, a total of 168 such products result. 

2. Many feature points on an object: Multiplying (concatenating) the elemental 
transformation matrices for the seven expressions in Figure 2.11 from right to 
left, in a naive approach requires at most 16 · 5 · 7 = 560 inner vector products. 
For each feature point in the real world on a single object, 7·4 = 28 inner vector 
products have to be added to obtain the e-vector and its six partial derivatives. 
Asking for the number of features m on an object for which this approach is 
more economic as the one above, the relation m · 168 = 560 + m · 28 has to be 
solved for m as the break-even point, yielding m = 560/140 = 4. 
So for more than four features on a single object, in our case with six unknowns 

in five transformation matrices plus perspective projection, the concatenation of 
transformation matrices first, and the multiplication with the coordinates of the fea-
ture points xFk afterward, is more computer-efficient.  

Considering the fact that the derivative matrices are sparsely filled, as discussed 
above, and that many matrix products can be reused, frequently more than once, 
concatenation, performed as standard method in computer graphics, also becomes 
of interest in computer vision. However, as Figure 2.11 shows, much larger mem-
ory space has to be allotted for the iteration of transformation variables (the partial 
derivative matrices and their products). Note that to the left of derivative matrices 
of translations, also just a vector results for all further products, as in method 1 
above. Taking advantage of all these points, method 2 is usually more efficient for 
more that two to three feature points on an object.  

2.1.3 Time Representation 

Time is considered an independent variable, monotonically increasing at a constant 
rate (as a good approximation to experience in the spatiotemporal domain of inter-
est here). The temporal resolution required of measurement and control processes 
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depends on the application area; with humans as the main partner in dealing with 
the real world, their characteristic timescale will also predominate for the technical 
systems under investigation here. 

Due to the fact that humans need at least 30 ms between two signals sensed, to 
be able to tell their correct sequence (independent of the sensory modality: tactile, 
auditory, or visual) [Pöppel et al. 1991; Pöppel, Schill 1995], this time-window of 30 
ms is considered the “window of simultaneity”. It is the basic temporal unit within 
which all signals are treated as simultaneous [Ruhnau 1994a, b].  This fact has also 
been the decisive factor in fixing the video frame rate. (More precisely, the subdi-
vision into fields of interleaved odd and even lines and the reduced field rate by a 
factor of 2 was introduced to cheat human perception because of missing techno-
logical performance levels at the time of definition in the 1930s). This was done to 
achieve the impression of smooth analog motion for the observer, even though the 
fields are discrete and do represent jumps. When looking at field sequences of 
video signals from a static scene, taken at a large angular rate of the camera in the 
direction of image lines, a noticeable shift between frames can be observed. For 
precise interpretation and early detection of an onset of motion, therefore, the al-
ternating fields at twice the frame rate (frequency of 50, respectively, 60 Hz) 
should be analyzed.  

Since today’s machine vision very often relies on the old standard video equip-
ment, the basic cycle time for full images is adopted for dynamic machine vision 
and for control output. The sampling periods are 16 2/3 ms in the US (33 1/3 ms 
for full images or for each odd or even field) and 20 ms (40 ms) in Europe. The de-
cision is justified by the fact that the corner frequency of human extremities for 
control actuation is about 2 Hz (arms and legs). In sampled control theory, a dozen 
samplings per period are considered sufficient to achieve analogue-like overall be-
havior. Therefore, constant control outputs over one video period are acceptable 
from this point of view. Note that the transition to fully digital image sensors in the 
near future will allow more freedom in the choice of frame rates. 

Processes in the real world are described most compactly by relating temporal 
change rates of state variables to the values of the state variables, to the control 
variables involved, and to additional perturbations, which can hardly be modeled; 
these relations are called differential equations.  

They can be transformed into difference equations according to sampled data 
theory with constant control output over the sampling period by numerical (or ana-
lytical) integration; perturbations will show up as added accumulated values with 
similar statistical properties, as in the analog case. The standard forms for (lin-
earized) state transitions over a time period T are the state transition matrix A(T)
and the control effect matrix B(T). A(T) multiplied by the old state vector yields the 
homogeneous part of the new state vector; B(T) describes the effect of constant 
unit control inputs onto the new state; multiplying B(T) with the actual control out-
put and adding this to the homogeneous part yields the new state.  

Using this knowledge about motion processes of 3-D objects in 3-D space for 
image sequence interpretation is the core of the 4-D approach to dynamic vision 
developed by [Dickmanns, Wuensche 1987, 1999]. Combining temporal prediction 
with the first-order derivative matrix of perspective projection (the “Jacobian ma-
trix” of spatial vision discussed in previous sections) allows bypassing perspective 
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inversion. Since each row of the Jacobian matrix contains the first-order sensitivity 
elements of the relation, how the feature measured depends on each state variable, 
spatial interpretation may become (at least partially) possible even with monocular 
vision, if either the object or the observer is moving. This will be discussed further 
down. Temporal embedding thus alleviates image interpretation despite the higher 
data rates. Temporal continuity conditions and attention control can counteract 
these higher data rates. 

In addition, the eigenvalues of the transition matrix A represent characteristic 
time scales of the process. These and the frequency content of control inputs and of 
perturbations determine the temporal characteristics of the motion process.  

In the framework of mission performance, other timescales may have special 
importance. The time needed for stabilizing image sequence interpretation is cru-
cial for arriving at meaningful decisions based on this perception process. About a 
half second to one second are typical values for generating object hypotheses and 
having the transients settle down from poor initialization. Taking limited rates of 
change of state variables into account, preview (and thus prediction) times of sev-
eral seconds seem to be reasonable in many cases. Total missions may last for sev-
eral hours.

With respect to flawless functioning and maintenance of the vehicle’s body, 
special timescales have to be observed, which an autonomous system should be 
aware of. All these aspects will be briefly discussed in the next section together 
with similar multiple scale problems in the spatial domain. To be flexible, an 
autonomous visual perception system should be capable of easy adjustment to 
temporal and spatial scales according to the task at hand.

2.1.4 Multiple Scales 

The range of scales in the temporal and spatial domains needed to understand pro-
cesses in the real world is very large. They are defined by typical sensor and mis-
sion dimensions as well as by the environmental conditions affecting both the sen-
sors and the mission to be performed. 

2.1.4.1 Multiple Space Scales 

In the spatial domain, the size of the light sensitive elements in the sensor array 
may be considered the lower limit of immediate interest here. Typically, 5 to 20 
micrometer ( m) is common today. Alternatively, as an underlying characteristic 
dimension, the typical width of the electronic circuitry may be chosen. This is 
about 0.1 to 2 m, and this dimension characterizes the state of the art of micro-
processors. Taking the 1-meter (m) scale as the standard, since this is the order of 
magnitude of typical body dimension of interest, the lower bound for spatial scales 
then is 10 7 m. 

As the upper limit, the distance of the main light source on Earth, the orbital ra-
dius of the planet Earth circling the Sun (about 150 million km, that is 1.5 ·1011 m), 
may be chosen with all other stars at infinity. The scale range of practical interest 
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thus is about 18 orders of magnitude. However, the different scales are not of equal 
and simultaneous interest. 

Looking at the mapping conditions for perspective imaging, the 10 5 m range 
has immediate importance as the basic grid size of the sensor. For remote sensing 
of the environment, when the characteristic speed is in the order of magnitude of 
tens of m/s, several hundred meters may be considered a reasonable viewing range 
yielding about 3 to 10 seconds reaction time until the vehicle may reach the loca-
tion inspected. If objects with a characteristic dimension of about 5 cm = 0.05 m 
should just fill a single pixel in the image when seen at the maximum distance of, 
say 200 m, the focal length f required is f /10 5 = 200/0.05 or f = 0.04 m or 40 mm. 
If one would like to have a 1 cm wide line mapped onto 2 pixel at 10 m distance 
(e.g., to be able to read the letters on a license plate), the focal length needed is f = 
20 mm. To recognize lane markings 12 cm wide at 6m distance with 6 pixels on 
this width, a focal length of 3 mm would be sufficient. This shows that for practical 
purposes, focal lengths in the millimeter to decimeter range are adequate. This also 
happens to be the physical dimension of modern CCD-TV cameras. 

Because the wheel diameters of typical vehicles are of the order of magnitude of 
about 1 m, objects become serious obstacles if their height exceeds about 0.1 m. 
Therefore, the 0.1 to 100 m range (typical look-ahead distance) is the most impor-
tant and most frequently used one for ground vehicles. Entire missions, usually, 
measure 1 to 100 km in range. For air vehicles, several thousand km are typical 
travel distances since the Earth radius is about 6 371 km. 

It may be interesting to note that the basic scale “1 m” was defined initially as 
10 7 of one quarter of the circumference around the globe via both poles about 2 
centuries ago. 

Inverse use of multiple space scales in vision: In a visual scene, the same object 
may be a few meters or a few hundred meters away; the system should be able to 
recognize the object as the same unit independent of the distance viewed. To 
achieve this more easily, multiple focal lengths for a set of cameras will help since 
a larger focal length directly counteracts the downscaling of the image size due to 
increased range. This is the main reason for using multifocal camera arrangements 
in EMS vision. With a spacing of focal lengths by a factor of 4 (corresponding to 
the second pyramid stage each time), a numerical range of 16 may be bridged with 
three cameras.  

In practical applications, a new object is most likely picked up in the wide field 
of view having least resolution. As few as four pixels (2 × 2) may be sufficient for 
detecting a new object reliably without being able to classify it. Performing a sac-
cade to bring the object into the field of view of a camera with higher resolution, 
would result in suddenly having many pixels available, additionally. In a bifocal 
system with a focal length ratio of 4, the resolution would increase to 8 × 8 (64 
pixels); in a trifocal system it would even go up to 32 × 32 (i.e., 1K pixels) on the 
same area in the real world. Now the object may be analyzed on these scales in 
parallel. The coarse space scale may be sufficient for tracking the object with high 
temporal resolution up to video rate. On the high-resolution space scale, the object 
may then be analyzed with respect to its detailed shape, possibly on a lower time-
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scale if computing power is limited. This approach has proven to be efficient and 
robust.

Even with this approach, to cover a range of possible object distances of two to 
three orders of magnitude, the size of objects in the images still varies over more 
than one order of magnitude; this fact has to be dealt with. Pyramid techniques 
[Burt et al. 1981] and multiple scales of feature extraction operators are used to 
achieve this. This requires that the same object be represented on different scales 
(with different spatial resolution and corresponding shape descriptors). Homoge-
neous coordinates allow representing different scales by just one parameter, the 
scaling factor. In the 4 × 4 transformation matrices, it enters at position (4, 4). 

2.1.4.2 Multiple Timescales  

On the time axis, the lower limit of resolution is considered the cycle time of elec-
tronic devices such as sensors and processors; it is presently in the 10 8 to 10 10

second (s) range. Typical process elements in digital computing such as message 
overheads for communication with other processing elements last of the order of 
magnitude of 0.1 to 1 ms; this also is a typical range of cycle times for conven-
tional sensing as with inertial sensors.  

The video cycle times mentioned above are the next characteristic timescale. 
Human reaction times are characterized by and may well be the reason for the 
1 second basic timescale. Therefore, the 0.1 to 10 s scale ranges are the most im-
portant and most frequently used. “Maneuvers” as typical time histories of control 
outputs for achieving desired transitions from one regime of steady behavior to an-
other last up to several minutes. Quasi-steady behaviors such as road-running on a 
highway or flying across an ocean may last several hours. Beyond this, the astro-
nomically based scales of days and years predominate. One day means one revolu-
tion with respect to the sun around the Earth’s axis; it has subdivisions into 24 
hours of 60 minutes of 60 seconds each that is 86 400 seconds in total. One “year” 
means one revolution of Earth around the Sun and includes about 365 days. The 
corresponding lighting and climatic conditions (seasonal effects) affect the opera-
tion of vehicles in natural and man-made environments to a large degree. 

The lifetimes of typical man-made objects are the order of 10 years (vehicles, 
sensors); human life expectancy is 5 to 10 decades. Objects encountered in the en-
vironment may be hundreds (trees, buildings, etc.) or many thousands of years of 
age (geological formations). Therefore, also in the temporal domain the range of 
scales of interest spans from 10 9 to about 1010 seconds or 19 orders of magnitude. 
Autonomous systems to be developed should have the capability of handling this 
range of scales as educated humans are able to do. In a single practical application, 
the actual range of interest is much lower, usually. 

2.2 Objects 

Beside background knowledge of the environmental conditions at some point or 
region on the globe and the variations over the seasons, most of our knowledge 
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about “the world” is affixed to object and subject classes. Of course, the ones of 
most importance are those one has to deal with most frequently in everyday life. 
Therefore, developing the sense of vision for road or air vehicles requires knowl-
edge about objects and subjects encountered in these contexts most frequently; but 
also critical events which may put the achievement of mission goals at risk have to 
be known, even when their appearance is rather rare. 

2.2.1 Generic 4-D Object Classes 

The efficiency of the 4-D approach to dynamic vision is achieved by associating 
background knowledge about classes of objects and their behavioral capabilities 
with measurement data input. This knowledge is available in generic form, that is, 
structural information typical for object classes is fixed while specific parameters 
in the models have to be adapted to the special case at hand. Motion descriptions 
for the center of gravity (the translational trajectory of the cg in space) forming the 
so-called “where”-problem, are separated from shape descriptions, called the 
“what”-problem. Typically, summing and averaging of feature positions is needed 
to solve the “where”-problem while differencing of feature positions contributes to 
solving the “what”-problem. In the approach chosen, the “where”-problem con-
sists of finding the translational transformation parameters in the homogeneous 
transformations involved. The “what”-problem consists of finding an appropriate 
generic shape model and the best fitting shape and photometric parameters for this 
model after perspective projection (possibly including rotational degrees of free-
dom to account for the effects of aspect conditions). 

As in computer graphics, all shape description is done in object-centered coor-
dinates in 3-D, if possible, to take full advantage of a decoupled motion description 
relative to other objects. 

2.2.2 Stationary Objects, Buildings 

In road traffic, the road network and vegetation as well as buildings near the road 
are the stationary objects of most interest; roads will be discussed in Chapters 7 to 
10. Highly visible large structures may be used as landmarks for orientation. The 
methods for shape representation are the same as for mobile objects; they do not 
need a motion description, however. These techniques are well known from com-
puter graphics and are not treated here.  

2.2.3 Mobile Objects in General 

In this introductory chapter, only the basic ideas for object representation in the 4-
D approach will be discussed. Detailed treatment of several object classes is done 
in connection with the application domain (Chapter 14). As far as possible, the 
methods used are taken from computer graphics to tap the large experience accu-
mulated in that area. The major difference is that in computer vision, the actual 
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model both with respect to shape and to motion is not given but has to be inferred 
from the visual appearance in the image sequence. This makes the use of complex 
shape models with a large number of tesselated surface elements (e.g., triangles) 
obsolete; instead, simple encasing shapes like rectangular boxes, cylinders, poly-
hedra, or convex hulls are preferred. Deviations from these idealized shapes such 
as rounded edges or corners are summarized in fuzzy symbolic statements (like 
“rounded”) and are taken into account by avoiding measurement of features in 
these regions. 

2.2.4 Shape and Feature Description 

With respect to shape, objects and subjects are treated in the same fashion. Only 
rigid objects and objects consisting of several rigid parts linked by joints are 
treated here; for elastic and plastic modeling see, e.g., [Metaxas, Terzepoulos 1993].
Since objects may be seen at different distances, the appearance in the image may 
vary considerably in size. At large distances, the 3-D shape of the object, usually, 
is of no importance to the observer, and the cross section seen contains most of the 
information for tracking. However, this cross section may depend on the angular 
aspect conditions; therefore, both coarse-to-fine and aspect-dependent modeling of 
shape is necessary for efficient dynamic vision. This will be discussed for simple 
rods and for the task of perceiving road vehicles as they appear in normal road traf-
fic.

2.2.4.1 Rods  

An idealized rod (like a geometric line) is an object with an extension in just one 
direction; the cross section is small compared to its length, ideally zero. To exist in 
the real 3-D world, there has to be matter in the second and third dimensions. The 
simplest shapes for the cross section in these dimensions are circles (yielding a thin 
cylinder for a constant radius along the main axis) and rectangles, with the square 
as a special case. Arbitrary cross sections and arbitrary changes along the main axis 
yield generalized cylinders, discussed in [Nevatia, Binford 1977] as a flexible generic 
3-D-shape (sections of branches or twigs from trees may be modeled this way). In 
many parts of the world, these “sticks” are used for marking the road in winter 
when snow may eliminate the ordinary painted markings. With constant 
cross sections as circles and triangles, they are often encountered in road traffic 
also: Poles carrying traffic signs (at about 2 m elevation above the ground) very of-
ten have circular cross sections. Special poles with cross sections as rounded trian-
gles (often with reflecting glass inserts of different shapes and colors near the top 
at about 1 m) are in use for alleviating driving at night and under foggy conditions. 
Figure 2.12 shows some shapes of rods as used in road traffic. No matter what the 
shape, the rod will appear in an image as a line with intensity edges, in general. 
Depending on the shape of the cross section, different shading patterns may occur. 
Moving around a pole with cross section (b) or (c) at constant distance R, the width 
of the line will change; in case (c), the diagonals will yield maximum line width 
when looked at orthogonally. 
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Under certain lighting conditions, due to different reflection angles, the two 
sides potentially visible may appear at different intensity values; this allows recog-
nizing the inner edge. However, this is not a stable feature for object recognition in 
the general case.

The length of the rod can be 
recognized only in the image di-
rectly when the angle between the 
optical axis and the main axis of 
the rod is known. In the special 
case where both axes are aligned, 
only the cross section as shown in 
(a) to (c) can be seen and rod 
length is not at all observable. When a rod is thrown by a human, usually, it has 
both translational and rotational velocity components. The rotation occurs around 
the center of gravity (marked in Figure 2.12), and rod length in the image will os-
cillate depending on the plane of rotation. In the special case where the plane of ro-
tation contains the optical axis, just a growing and shrinking line appears. In all 
other cases, the tips of the rod describe an ellipse in the image plane (with different 
excentricities depending on the aspect conditions on the plane of rotation). 

Figure 2.12. Rods with special applications in 
road traffic 

(a) (b) (c) Enlarged

cross–sections

Rod length L

Center  of gravity (cg)

2.2.4.2 Coarse-to-fine 2-D Shape Models  

Seen from behind or from the front at a large distance, any road vehicle may be 
adequately described by its encasing rectangle. This is convenient since this shape 
has just two parameters, width B and height H. Precise absolute values of these pa-
rameters are of no importance at large distances; the proper scale may be inferred 
from other objects seen such as the road or lane width at that distance. Trucks (or 
buses) and cars can easily be distinguished. Experience in real-world traffic scenes 
tells us that even the upper boundary and thus the height of the object may be omit-
ted without loss of functionality. Reflections in this spatially curved region of the 
car body together with varying environmental conditions may make reliable track-
ing of the upper boundary of the body very difficult. Thus, a simple U-shape of 
unit height (corresponding to about 1 m turned out to be practically viable) seems 
to be sufficient until 1 to 2 dozen pixels on a line cover the object in the image. 
Depending on the focal length used, this corresponds to different absolute dis-
tances.

Figure 2.13a shows this very simple shape model from straight ahead or exactly 
from the rear (no internal details). If 
the object in the image is large 
enough so that details may be distin-
guished reliably by feature extrac-
tion, a polygonal shape approxima-
tion of the contour as shown in 
Figure 2.13b or even with internal 
details (Figure 2.13c) may be chosen. 
In the latter case, area-based features 
such as the license plate, the dark 

Figure 2.13. Coarse-to-fine shape model of 
a car in rear view: (a) encasing rectangle of 
width B (U-shape); (b) polygonal silhou-
ette; (c) silhouette with internal structure

(a) (b) (c)
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tires, or the groups of signal lights (usually in orange or reddish color) may allow 
more robust recognition and tracking.  

2.2.4.3 Coarse-to-fine 3-D Shape Models 

If multifocal vision allows tracking the silhouette of the entire object (e.g., a vehi-
cle) and of certain parts, a detailed measurement of tangent directions and curves 
may allow determining the curved contour. Modeling with Ferguson curves [Shirai
1987], “snakes” [Blake 1992], or linear curvature models easily derived from tangent 
directions at two points relative to the chord direction between those points [Dick-
manns 1985] allows efficient piecewise representation. For vehicle guidance tasks, 
however, this will not add new functionality.  

If the view onto the other car is from an oblique direction, the depth dimension 
(length of the vehicle) comes into play. Even with viewing conditions slightly off 
the axis of symmetry of the vehicle observed, the width of the car in the image will 
start increasing rapidly because of the larger length L of the body and due to the 
sine-effect in mapping.  

Usually, it is very hard to determine the lateral aspect angle, body width B and 
length L simultaneously from visual measure-
ments. Therefore, switching to the body diago-
nal D as a shape representation parameter has 
proven to be much more robust and reliable in 
real-world scenes [Schmid 1993]. Figure 2.14 
shows the generic description for all types of 
rectangular boxes. For real objects with 
rounded shapes such as road vehicles, the en-
casing rectangle often is a sufficiently precise 
description for many purposes. More detailed 
shape descriptions with sub–objects (such as 
wheels, bumper, light groups, and license 
plate) and their appearance in the image due to 
specific aspect conditions will be discussed in 
connection with applications. 

B/2

B

L/2

-L/2

L

H
O

xf

yf

Diagonal D

Figure 2.14. Object-centered re-
presentation of a generic box 
with dimension L, B, H; origin in 
center of ground plane

3-D models with different degrees of detail: Just for tracking and relative state 
estimation of cars, taking one of the vertical edges of the lower body and the lower 
bound of the object into account has proven sufficient in many cases [Thomanek 
1992, 1994, 1996]. This, of course, is domain specific knowledge, which has to be 
introduced when specifying the features for measurement in the shape model. In 
general, modeling of highly measurable features for object recognition has to de-
pend on aspect conditions. 

Similar to the 2-D rear silhouette, different models may also be used for 3-D 
shape. Figure 2.13a corresponds directly to Figure 2.14 when seen from behind. 
The encasing box is a coarse generic model for objects with mainly perpendicular 
surfaces. If these surfaces can be easily distinguished in the image and their separa-
tion line may be measured precisely, good estimates of the overall body dimen-
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sions can be obtained for oblique aspect conditions even from relatively small im-
age sizes. The top part of a truck and trailer frequently satisfies these conditions.  

Polyhedral 3-D shape models with 12 independent shape parameters (see Figure 
2.15 for four orthonormal projections as frequently used in engineering) have been 
investigated for road vehicle recognition [Schick 1992]. By specializing these pa-
rameters within certain ranges, different types of road vehicles such as cars, trucks, 
buses, vans, pickups, coupes, and sedans may be approximated sufficiently well for 
recognition [Schick, Dickmanns 1991; Schick 1992; Schmid 1993]. With these models, 
edge measurements should be confined to vehicle regions with small curvatures, 
avoiding the idealized sharp 3-D edges and corners of the generic model. 

Aspect graphs for simplifying models and visibility of features: In Figure 2.15, 
the top-down the side view and the frontal and rear views of the polygonal model 
are given. It is seen that the same 3-D object may look completely different in 
these special cases of aspect conditions. Depending on them, some features may be 
visible or not. In the more general case with oblique viewing directions, combined 
features from the views shown may be visible. All aspect conditions that allow see-
ing the same set of features (reliably) are collected into one class. For a rectangular 
box on a plane and the camera at a fixed elevation above the ground, there are 
eight such aspect classes (see Figures 2.15 and 2.16): Straight from the front, from 
each side, from the rear, and an additional four from oblique views. Each can con-
tain features from two neighboring groups.  

BBR

LRLM LTr

HrW

Hr

H

HfW

Due to this fact, a single 3-D model for unique (forward perspective) shape rep-
resentation has to be accompanied by a set of classes of aspect conditions, each 
class containing the same set of highly visible features. These allow us to infer the 
presence of an object corresponding to this model from a collection of features in 
the image (inverse 3-D shape recognition including rough aspect conditions, or – in 
short – “hypothesis generation in 3-D”). 
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LfW
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Figure 2.15. More detailed (idealized) generic shape model for road vehicles of type 
“car” [Schick 1992]
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This difficult task has to be solved in the initialization phase. Within each class 
of aspect conditions hypothesized, in addition, good initial estimates of the relevant 
state variables and parameters for recursive iteration have to be inferred from the 
relative distribution of features. Figure 2.16 shows the features for a typical car; for 
each vehicle class shown at the top, the lower part has special content. 

In Figure 2.17, a sequence of appearances of a car is shown driving in simula-
tion on an oval course. The car is tracked from some distance by a stationary cam-
era with gaze control that keeps the car always in the center of the image; this is 
called fixation-type vision and is assumed to function ideally in this simulation, 
i.e., without any error).  

The figure shows but a few snapshots of a steadily moving vehicle with sharp 
edges in simulation. The actual aspect conditions are computed according to a mo-
tion model and graphically displayed on a screen, in front of which a camera ob-
serves the motion process. To be able to associate the actual image interpretation 
with the results of previous measurements, a motion model is necessary in the 
analysis process also, constraining the actual motion in 3-D; in simulation, of 
course, the generic dynamical model is the same as in simulation. However, the ac-
tual control input is unknown and has to be reconstructed from the trajectory 
driven and observed (see Section 14.6.1). 

2.2.5 Representation of Motion  

The laws and characteristic parameters describing motion behavior of an object or 
a subject along the fourth dimension, time, are the equivalent to object shape repre-
sentations in 3-D space. At first glance, it might seem that pixel position in the im-
age plane does not depend on the actual speed components in space but only on the 
actual position. For one time this is true; however, since one wants to understand 3-
D motion in a temporally deeper fashion, there are at least two points requiring 
modeling of temporal aspects:  

Figure 2.16. Vehicle types, aspect conditions, and feature distributions for recognition 
and classification of vehicles in road scenes
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1. Recursive estimation as used in this approach starts from the values of the state 
variables predicted for the next time of measurement taking.  

2. Deeper understanding of temporal processes results from having representa-
tional terms available describing these processes or typical parts thereof in sym-
bolic form, together with expectations of motion behavior over certain time-
scales.
A typical example is the maneuver of lane changing. Being able to recognize 

these types of maneuvers provides more certainty about the correctness of the per-
ception process. Since everything in vision has to be hypothesized from scratch, 
recognition of processes on different scales simultaneously helps building trust in 
the hypotheses pursued. Figure 2.17 may have been the first result from hardware-
in-the-loop simulation where a technical vision system has determined the input 
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Figure 2.17. Changing aspect conditions and edge feature distributions while a simu-
lated vehicle drives on an oval track with gaze fixation (smooth visual pursuit) by a sta-
tionary camera. Due to continuity conditions in 3-D space and time, “catastrophic 
events” like feature appearance/disappearance can be handled easily. 
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control time history for a moving car from just the trajectory observed, but, of 
course, with a motion model “in mind” (see Section 14.6.1). 

The translations of the center of gravity (cg) and the rotations around this cg de-
scribe the motion of objects. For articulated objects also, the relative motion of the 
components has to be represented. Usually, the modeling step for object motion re-
sults in a (nonlinear) system of n differential equations of first order with n state 
components X, q (constant) parameters p and r control components U (for subjects 
see Chapter 3).  

2.2.5.1 Definition of State and Control Variables  

A set of 
State variables is a collection of variables for describing temporal processes, 
which allows decoupling future developments from the past. State variables 
cannot be changed at one time. (This is quite different from “states” in computer 
science or automaton theory. Therefore, to accentuate this difference, sometimes 
use will be made of the terms s-state for systems dynamics states and a-state for 
automaton-state to clarify the exact meaning.) The same process may be de-
scribed by different state variables, like Cartesian or polar coordinates for posi-
tions and their time derivatives for speeds. Mixed descriptions are possible and 
sometimes advantageous. The minimum number of variables required to com-
pletely decouple future developments from the past is called the order n of the 
system. Note that because of the second-order relationship between forces or 
moments and the corresponding temporal changes according to Newton’s law, 
velocity components are state variables.  
Control variables are those variables in a dynamic system, that may be changed 
at each time “at will”. There may be any kind of discontinuity; however, very 
frequently control time histories are smooth with a few points of discontinuity 
when certain events occur. 

Differential equations describe constraints on temporal changes in the system. 
Standard forms are n equations of first order (“state equations”) or an n-th order 
system, usually given as a transfer function of nth order for linear systems. There 
are an infinite variety of (usually nonlinear) differential equations for describing 
the same temporal process. System parameters p allow us to adapt the representa-
tion to a class of problems 

/ ( , ,dX dt f X p t) . (2.26) 
Since real-time performance, usually, requires short cycle times for control, lin-

earization of the equations of motion around a nominal set point (index N) is suffi-
ciently representative of the process if the set point is adjusted along the trajectory. 
With the substitution 

NX X x , (2.27) 

one obtains 
/ /NdX dt dX dt dx dt/ . (2.28) 

The resulting sets of differential equations then are for the nominal trajectory: 
/ ( , ,N NdX dt f X p t) ; (2.29) 
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for the linearized perturbation system follows: 
/ 'dx dt F x v t( ) , (2.30) 

with / NF df dX (2.31) 

as an (n × n)-matrix and v’(t) an additive noise term. 

2.2.5.2 Transition Matrices for Single Step Predictions 

Equation 2.30 with matrix F may be transformed into a difference equation with 
cycle time T for grid point spacing by one of the standard methods in systems dy-
namics or control engineering. (Precise numerical integration from 0 to T for v = 0 
may be the most convenient one for complex right–hand sides.) The resulting gen-
eral form then is  

[( 1) ] [ ] [ ]x k T A x kT v kT

or in short-hand  1   k k kx A x v ,
(2.32) 

with matrix A of the same dimension as F. In the general case of local lineariza-
tion, all entries of this matrix may depend on the nominal state variables. Proce-
dures for computing the elements of matrix A from F have to be part of the 4-D 
knowledge base for the application at hand.  

For objects, the trajectory is fixed by the initial conditions and the perturbations 
encountered. For subjects having additional control terms in these equations, de-
termination of the actual control output may be a rather involved procedure. The 
wide variety of subjects is discussed in Chapter 3. 

2.2.5.3 Basic Dynamic Model: Decoupled Newtonian Motion  

The most simple and yet realistic dynamic model for the motion of a rigid body 
under external forces Fe is the Newtonian law 

² / ² ( ) /ed x dt F t m . (2.33) 

With unknown forces, colored noise v(t) is assumed, and the right–hand side is 
approximated by first–order linear dynamics (with time constant TC = 1/  for ac-
celeration a). This general third-order model for each degree of freedom may be 
written in standard state space form [BarShalom, Fortmann 1988]

0 1 0 0

/ 0 0 1 0

0 0 - 1

x x

d dt V V v t

a a

( ).

                                                     F                      g 

(2.34) 

For the corresponding discrete formulation with sampling period T and 
- Te , the transition matrix A becomes 

0

1 [ - (1- ) / ] 1 / 2

0 1 (1- ) / ;   0 : 0 1 .

0 0 0 0 1

T T T T

A for A T (2.35) 

The perturbation input vector is modeled by 

 , 2   with     [ / 2,  ,  1]T

k k kb v b T T (2.36) 
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k

which yields the discrete model 

1k k kx A x b v .  (2.37) 

The value of the expectation is E[ ] 0kv , and the variance is 2E[ ]kv 2
q  (essen-

tial for filter tuning).The covariance matrix Q for process noise is given by 
4 3 2

2 3 2
q q

2

4 2 2

2 .

2 1

T

k k

T T T

Q b b T T T

T T

2
(2.38) 

This model may be used independently in all six degrees of freedom as a default 
model if no more specific knowledge is given. 

2.3 Points of Discontinuity in Time

The aspects discussed above for smooth parts of a mission with nice continuity 
conditions alleviate perception; however, sudden changes in behavior are possible, 
and sticking to the previous mode of interpretation would lead to disaster. 

Efficient dynamic vision systems have to take advantage of continuity condi-
tions as long as they prevail; however, they always have to watch out for disconti-
nuities in object motion observed to adjust readily. For example, a ball flying on an 
approximately parabolic trajectory through the air can be tracked efficiently using 
a simple motion model. However, when the ball hits a wall or the ground, elastic 
reflection yields an instantaneous discontinuity of some trajectory parameters, 
which can nonetheless be predicted by a different model for the motion event of re-
flection. So the vision process for tracking the ball has two distinctive phases 
which should be discovered in parallel to the primary vision task. 

2.3.1 Smooth Evolution of a Trajectory 

Flight phases (or in the more general case, smooth phases of a dynamic process) in 
a homogeneous medium without special events can be tracked by continuity mod-
els and low-pass filtering components (like Section 2.2.5.3). Measurement values 
with oscillations of high frequency are considered to be due to noise; they have to 
be eliminated in the interpretation process. The natural sciences and engineering 
have compiled a wealth of models for different domains. The least-squares error 
model fit has proven very efficient both for batch processing and for recursive es-
timation. Gauss [1809] opened up a new era in understanding and fitting motion 
processes when he introduced this approach in astronomy. He first did this with the 
solution curves (ellipses) for the differential equations describing planetary motion.  

Kalman [1960] derived a recursive formulation using differential models for the 
motion process when the statistical properties of error distributions are known. 
These algorithms have proven very efficient in space flight and many other appli-
cations. Meissner, Dickmanns [1983]; Wuensche [1987] and Dickmanns [1987] extended 
this approach to perspective projection of motion processes described in physical 
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space; this brought about a quantum leap in the performance capabilities of real-
time computer vision. These methods will be discussed for road vehicle applica-
tions in later sections. 

2.3.2 Sudden Changes and Discontinuities 

The optimal settings of parameters for smooth pursuit lead to unsatisfactory track-
ing performance in case of sudden changes. The onset of a harsh braking maneuver 
of a car or a sudden turn may lead to loss of tracking or at least to a strong transient 
motion estimated. If the onsets of these discontinuities can be predicted, a switch in 
model or tracking parameters at the right moment will yield much better results. 
For a bouncing ball, the moment of discontinuity can easily be predicted by the 
time of impact on the ground or wall. By just switching the sign of the angle of in-
cidence relative to the normal of the reflecting surface and probably decreasing 
speed by some percentage, a new section of a smooth trajectory can be started with 
very likely initial conditions. Iteration will settle much sooner on the new, smooth 
trajectory arc than by continuing with the old model disregarding the discontinuity 
(if this recovers at all). 

In road traffic, the compulsory introduction of the braking (stop) lights serves 
the same purpose of indicating that there is a sudden change in the underlying be-
havioral mode (deceleration), which can otherwise be noticed only from integrated 
variables such as speed and distance. The pitching motion of a car when the brakes 
are applied also gives a good indication of a discontinuity in longitudinal motion; it 
is, however, much harder to observe than braking lights in a strong red color. 

Conclusion: 

As a general scheme in vision, it can be concluded that partially smooth sec-
tions and local discontinuities have to be recognized and treated with proper 
methods both in the 2-D image plane (object boundaries) and on the time 
line (events). 

2.4 Spatiotemporal Embedding and First-order 
Approximations

After the rather lengthy excursion to object modeling and how to embed temporal 
aspects of visual perception into the recursive estimation approach, the overall vi-
sion task will be reconsidered in this section. Figure 2.7 gave a schematic survey of 
the way features at the surface of objects in the real 3-D world are transformed into 
features in an image by a properly defined sequence of “homogeneous coordinate 
transformations” (HCTs). This is easily understood for a static scene.  

To understand a dynamically changing scene from an image sequence taken by 
a camera on a moving platform, the temporal changes in the arrangements of ob-
jects also have to be grasped by a description of the motion processes involved. 
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Therefore, the general task of real-time vision is to achieve a compact internal rep-
resentation of motion processes of several objects observed in parallel by evaluat-
ing feature flows in the image sequence. Since egomotion also enters the content of 
images, the state of the vehicle carrying the cameras has to be observed simultane-
ously. However, vision gives information on relative motion only between objects, 
unfortunately, in addition, with appreciable time delay (several tenths of a second) 
and no immediate correlation to inertial space. Therefore, conventional sensors on 
the body yielding relative motion to the stationary environment (like odometers) or 
inertial accelerations and rotational rates (from inertial sensors like accelerometers 
and angular rate sensors) are very valuable for perceiving egomotion and for telling 
this apart from the visual effects of motion of other objects. Inertial sensors have 
the additional advantage of picking up perturbation effects from the environment 
before they show up as unexpected deviations in the integrals (speed components 
and pose changes). All these measurements with differing delay times and trust 
values have to be interpreted in conjunction to arrive at a consistent interpretation 
of the situation for making decisions on appropriate behavior. 

Before this can be achieved, perceptual and behavioral capabilities have to be 
defined and represented (Chapters 3 to 6). Road recognition as indicated in Figures 
2.7 and 2.9 while driving on the road will be the application area in Chapters 7 to 
10. The approach is similar to the human one: Driven by the optical input from the 
image sequence, an internal animation process in 3-D space and time is started 
with members of generically known object and subject classes that are to duplicate 
the visual appearance of “the world” by prediction-error feedback. For the next 
time for measurement taking (corrected for time delay effects), the expected values 
in each measurement modality are predicted. The prediction errors are then used to 
improve the internal state representation, taking the Jacobian matrices and the con-
fidence in the models for the motion processes as well as for the measurement 
processes involved into account (error covariance matrices). 

For vision, the concatenation process with HCTs for each object-sensor pair 
(Figure 2.7) as part of the physical world provides the means for achieving our 
goal of understanding dynamic processes in an integrated approach. Since the 
analysis of the next image of a sequence should take advantage of all information 
collected up to this time, temporal prediction is performed based on the actual best 
estimates available for all objects involved and based on the dynamic models as 
discussed.  Note that no storage of image data is required in this approach, but only 
the parameters and state variables of those objects instantiated need be stored to 
represent the scene observed; usually, this reduces storage requirements by several 
orders of magnitude. 

Figure 2.9 showed a road scene with one vehicle on a curved road (upper right) 
in the viewing range of the egovehicle (left); the connecting object is the curved 
road with several lanes, in general. The mounting conditions for the camera in the 
vehicle (lower left) on a platform are shown in an exploded view on top for clarity. 
The coordinate systems define the different locations and aspect conditions for ob-
ject mapping. The trouble in vision (as opposed to computer graphics) is that the 
entries in most of the HCT-matrices are the unknowns of the vision problem (rela-
tive distances and angles). In a tree representation of this arrangement of objects 
(Figure 2.7), each edge between circles represents an HCT and each node (circle) 
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represents an object or sub–object as a movable or functionally separate part. Ob-
jects may be inserted or deleted from one frame to the next (dynamic scene tree). 

This scene tree represents the mapping process of features on the surface of ob-
jects in the real world up to hundreds of meters away into the image of one or more 
camera(s). They finally have an extension of several pixels on the camera chip (a 
few dozen micrometers with today’s technology). Their motion on the chip is to be 
interpreted as body motion in the real world of the object carrying these features, 
taking body motion affecting the mapping process properly into account. Since 
body motions are smooth, in general, spatiotemporal embedding and first-order ap-
proximations help making visual interpretation more efficient, especially at high 
image rates as in video sequences. 

2.4.1 Gain by Multiple Images in Space and/or Time for Model Fitting 

High–frequency temporal embedding alleviates the correspondence problem be-
tween features from one frame to the next, since they will have moved only by a 
small amount. This reduces the search range in a top-down feature extraction mode 
like the one used for tracking. Especially, if there are stronger, unpredictable per-
turbations, their effect on feature position is minimized by frequent measurements. 
Doubling the sampling rate, for example, allows detecting a perturbation onset 
much earlier (on average). Since tracking in the image has to be done in two di-
mensions, the search area may be reduced by a square effect relative to the one-
dimensional (linear) reduction in time available for evaluation. As mentioned pre-
viously for reference, humans cannot tell the correct sequence of two events if they 
are less than 30 ms apart, even though they can perceive that there are two separate 
events [Pöppel, Schill 1995]. Experimental experience with technical vision systems 
has shown that using every frame of a 25 Hz image sequence (40 ms cycle time) 
allows object tracking of high quality if proper feature extraction algorithms to 
subpixel accuracy and well-tuned recursive estimation processes are applied. This 
tuning has to be adapted by knowledge components taking the situation of driving 
a vehicle and the lighting conditions into account. 

This does not include, however, that all processing on the higher levels has to 
stick to this high rate. Maneuver recognition of other subjects, situation assess-
ment, and behavior decision for locomotion can be performed on a (much) lower 
scale without sacrificing quality of performance, in general. This may partly be due 
to the biological nature of humans. It is almost impossible for humans to react in 
less than several hundred milliseconds response time. As mentioned before, the 
unit “second” may have been chosen as the basic timescale for this reason.  

However, high image rates provide the opportunity both for early detection of 
events and for data smoothing on the timescale with regard to motion processes of 
interest. Human extremities like arms or legs can hardly be activated at more than 
2 Hz corner frequency. Therefore, efficient vision systems should concentrate 
computing resources to where information can be gained best (at expected feature 
locations of known objects/subjects of interest) and to regions where new objects 
may occur. Foveal–peripheral differentiation of spatial resolution in connection 
with fast gaze control may be considered an optimal vision system design found in 
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nature, if a corresponding management system for gaze control, knowledge appli-
cation and interpretation of multiple, piecewise smooth image sequences is avail-
able.

2.4.2 Role of Jacobian Matrix in the 4-D Approach to Dynamic Vision 

It is in connection with 4-D spatiotemporal motion models that the sensitivity ma-
trix of perspective feature mapping gains especial importance. The dynamic mod-
els for motion in 3-D space link feature positions from one time to the next. Con-
trary to perspective mapping in a single image (in which depth information is 
completely lost), the partial first-order derivatives of each feature with respect to 
all variables affecting its appearance in the image do contain spatial information. 
Therefore, linking the temporal motion process in 4-D with this physically mean-
ingful Jacobian matrix has brought about a quantum leap in visual dynamic scene 
understanding [Dickmanns, Meissner 1983, Wünsche 1987, Dickmanns 1987, Dickmanns, 
Graefe 1988, Dickmanns, Wuensche 1999]. This approach is fundamentally different 
from applying some (arbitrary) motion model to features or objects in the image 
plane as has been tried many times before and after 1987. It was surprising to learn 
from a literature review in the late 1990s that about 80 % of so-called Kalman–
filter applications in vision did not take advantage of the powerful information 
available in the Jacobian matrices when these are determined, including egomotion 
and the perspective mapping process.

The nonchalance of applying Kalman filtering in the image plane has led to the 
rumor of brittleness of this approach. It tends to break down when some of the (un-
spoken) assumptions are not valid. Disappearance of features by self-occlusion has 
been termed a catastrophic event. On the contrary, Wünsche [1986] was able to 
show that not only temporal predictions in 3-D space were able to handle this situa-
tion easily, but also that it is possible to determine a limited set of features allowing 
optimal estimation results. This can be achieved with relatively little additional ef-
fort exploiting information in the Jacobian matrix. It is surprising to notice that this 
early achievement has been ignored in the vision literature since. His system for 
visually perceiving its state relative to a polyhedral object (satellite model in the 
laboratory) selected four visible corners fully autonomously out of a much larger 
total number by maximizing a goal function formed by entries of the Jacobian ma-
trix (see Section 8.4.1.2).  

Since the entries into a row of the Jacobian matrix contain the partial derivatives 
of feature position with respect to all state variables of an object, the fact that all 
the entries are close to zero also carries information. It can be interpreted as an in-
dication that this feature does not depend (locally) on the state of the object; there-
fore, this feature should be discarded for a state update.  

If all elements of a column of the Jacobian matrix are close to zero, this is an in-
dication that all features modeled do not depend on the state variable correspond-
ing to this column. Therefore, it does not make sense to try to improve the esti-
mated value of this state component, and one should not wonder that the 
mathematical routine denies delivering good data. Estimation of this variable is not 
possible under these conditions (for whatever reason), and this component should 
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be removed from the list of variables to be updated. It has to be taken as a standard 
case, in general in vision, that only a selection of parameters and variables describ-
ing another object are observable at one time with the given aspect conditions. 
There has to be a management process in the object recognition and tracking pro-
cedures, which takes care of these particular properties of visual mapping (see later
section on system integration). 

If this information in properly set up Jacobian matrices is observed during track-
ing, much of the deplored brittleness of Kalman filtering should be gone. 



3  Subjects and Subject Classes 

Extending representational schemes found in the literature up to now, this chapter 
introduces a concept for visual dynamic scene understanding centered on the phe-
nomenon of control variables in dynamic systems. According to the international 
standard adopted in mathematics, natural sciences, and engineering, control vari-
ables are those variables of a dynamic system, which can be changed at any mo-
ment. On the contrary, state variables are those, which cannot be changed instan-
taneously, but have to evolve over time. State variables de-couple the future 
evolution of a system from the past; the minimal number required to achieve this is 
called the order of the system. 

It is the existence of control variables in a system that separates subjects from 
objects (proper). This fact contains the kernel for the emergence of a “free will” 
and consciousness, to be discussed in the outlook at the end of the book. Before 
this can be made understandable, however, this new starting point will be demon-
strated to allow systematic access to many terms in natural language. In combina-
tion with well-known methods from control engineering, it provides the means for 
solving the symbol grounding problem often deplored in conventional AI [Wino-
grad, Flores 1990]. The decisions made by subjects for control application in a given 
task and under given environmental conditions are the driving factors for the evo-
lution of goal-oriented behavior. This has to be seen in connection with perform-
ance evaluation of populations of subjects. Once this loop of causes becomes suffi-
ciently well understood and explicitly represented in the decision-making process, 
emergence of “intelligence” in the abstract sense can be stated.  

Since there are many factors involved in understanding the actual situation 
given, those that influence the process to be controlled have to be separated from 
those that are irrelevant. Thus, perceiving the situation correctly is of utmost im-
portance for proper decision-making. It is not intended here to give a general dis-
cussion of this methodical approach for all kinds of subjects; rather, this will be 
confined to vehicles with the sense of vision just becoming realizable for transport-
ing humans and their goods. It is our conviction, however, that all kinds of subjects 
in the biological and technical realm can be analyzed and classified this way.  

Therefore, without restrictions, subjects are defined as bodily objects with 

the capability of measurement intake and control output depending on the 

measured data as well as on stored background knowledge.

This is a very general definition subsuming all animals and technical devices with 
these properties.
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3.1 General Introduction: Perception – Action Cycles 

Remember the definition of control variables given in the previous chapter: They 
encompass all variables describing the dynamic process, which can be changed at 
any moment. Usually, it is assumed as an idealization that a mental or computa-
tional decision for a control variable can be implemented without time delay and 
distortion of the time history intended. This may require high gains in the imple-
mentation chain. In addition, fast control actuation relative to slow body motion 
capabilities may be considered instantaneous without making too large an error. If 
these real-world effects cannot be neglected, these processes have to be modeled 
by additional components in the dynamic system and taken into account by in-
creasing the order of the model.  

The same is true for the sensory devices transducing real-world state variables 
into representations on the information processing level. Situation assessment and 
control decision-making then are computational activities on the information proc-
essing level in which measured data are combined with stored background knowl-
edge to arrive at an optimal (or sufficiently good) control output. The quality of re-
alization of this desired control and the performance level achieved in the mission 
context may be monitored and stored to allow us to detect discrepancies between 
the mental models used and the real-world processes observed. The motion-state of 
the vehicle’s body is an essential part of the situation given, since both the quality 
of measurement data intake and control output may depend on this state. 

Therefore, the closed loop of perception, situation assessment/decision–making 
and control activation of a moving vehicle always has to be considered in conjunc-
tion. Potential behavioral capabilities of subjects can thus be classified by first 
looking at the capabilities in each of these categories separately and then by stating 
which of these capabilities may be combined to allow more complex maneuvering 
and mission performance. All of this is not considered a sequence of quasi-static 
states of the subject that can be changed in no time (as has often been done in con-
ventional AI). Rather, it has to be understood as a dynamic process with alternating 
smooth phases of control output and sudden changes in behavioral mode due to 
some (external or internal) event. Spatiotemporal aspects predominate in all phases 
of this process. 

3.2 A Framework for Capabilities 

To link image sequences to understanding motion processes in the real world, a 
few basic properties of control application are mentioned here. Even though con-
trol variables, by definition, can be changed arbitrarily from one time to the next, 
for energy and comfort reasons one can expect sequences of smooth behaviors. For 
the same reason, it can even be expected that there are optimal sequences of con-
trol application (however “optimal” is defined) which occur more often than oth-
ers. These stereotypical time histories for achieving some state transition effi-
ciently constitute valuable knowledge not only for controlling movements of the 
vehicle’s body, but also for understanding motion behavior of other subjects. Hu-
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man language has special expressions for these capabilities of motion control, 
which often are performed sub-consciously: They are called maneuvers and have a 
temporal extension in the seconds-to-minutes range.  

Other control activities are done to maintain an almost constant state relative to 
some desired one, despite unforeseeable disturbances encountered. These are 
called regulatory control activities, and there are terms in human language describ-
ing them. For example, “lane keeping” when driving a road vehicle is one such ac-
tivity where steering wheel input is somehow linked to road curvature, lateral off-
set, and yaw angle relative to the road. The speed V driven may depend on road 
curvature since lateral acceleration depends on V²/R, with R the radius of the curve. 
When driving on a straight road, it is therefore also essential to recognize the onset 
of a beginning curvature sufficiently early so that speed can be reduced either by 
decreasing fuel injection or by activating the brakes. The deceleration process takes 
time, and it depends on road conditions too [dry surface with good friction coeffi-
cient or wet (even icy) with poor friction]. Vision has to provide this input by con-
centrating attention on the road sections both nearby and further away. Only 
knowledgeable agents will be able to react in a proper way: They know where to 
look and for what (which types of features yield reliable and good hints). This ex-
ample shows that there are situations where a more extended task context has to be 
taken into account to perform the vision task satisfactorily. 

Another example is given in 
Figure 3.1. If both vehicles have 
just a radar (or laser) sensor on 
board, which is not able to rec-
ognize the road and lane 
boundaries, the situation per-
ceived seems quite dangerous. 
Two cars are moving toward 
each other at high speed (shown 
by the arrows in front) on a 
common straight line. 

Humans and advanced tech-
nical vision systems seeing the S-shaped road curvature conclude that the other ve-
hicle is going to perform lane keeping as an actual control mode. The subject vehi-
cle doing the same will result in no stress and a harmless passing maneuver. The 
assumption of a suicidal driver in the other car is extremely unlikely. This shows, 
however, that the decision process from basic vision “here and now” to judgment 
of a situation and coming up with a reasonable or optimal solution for one’s own 
behavior may be quite involved. Intelligent reactions and defensive driving require 
knowledge about classes of subjects encountered in a certain domain and about 
likely perceptual and behavioral capabilities of the participants. 

Figure 3.1. Judgment of a situation depends on 
the environmental context and on knowledge 
about behavioral capabilities and goals 

Driving in dawn or dusk near woods on minor roads may lead to an encounter 
with animals. If a vehicle has killed an animal previously and the cadaver lies on 
the road, there may be other animals including birds feeding on it. The behavior to 
be expected of these animals is quite different depending on their type. 

Therefore, for subjects and proper reactions when encountering them, a knowl-
edge base should be available on  
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1. How to recognize members of classes of subjects.  
2. Which type of reaction may be expected in the situation given. Biological 

subjects, in general, have articulated bodies with some kind of elasticity or 
plasticity. This may complicate visual recognition in a snapshot image. In 
real life or in a video stream, typical motion sequences (even of only parts 
of the body) may alleviate recognition considerably. Periodic motion of 
limbs or other body parts is such an example. This will not be detailed here; 
we concentrate on typical motion behaviors of vehicles as road traffic par-
ticipants, controlled by humans or by devices for automation.

Before this is analyzed in the next section, Table 3.1 ends this general introduction 
to the concept of subjects by showing a collection of different categories of capa-
bilities (not complete). 

Table 3.1. Capabilities characterizing subjects (type: road vehicles) 

Categories of capabilities Devices/algorithms Capabilities

Sensing odometry,  
inertial sensor set, radar,  
laser range finder,  
body-fixed imaging  
sensors, active 
vertebrate-type vision.

measure distance traveled, 
speed; 3 linear accelera-
tions, 3 rotational rates;  
range to objects, bearing;  
body-fixed fields of view,  
gaze controlled vision

Perception (data  
association with  
knowledge stored)  

data processing algorithms, 
data fusion,
data interpretation,   
knowledge representation

motion understanding,
scene interpretation,  
situation assessment

Decision-making  rule bases,  
integration methods, 
value systems

prediction of trajectories, 
evaluation of goal oriented 
behaviors;

Motion control  controllers, feed-forward 
and feedback algorithms, 
actuators 

locomotion,  
viewing direction control,  
articulated motion

Data logging and  
retrieval, 
statistical evaluation

storage media,  
algorithms

remembrance,
judge data quality,  
form systematic databases 

Learning value system, quality  
criteria, application rules 

improvement and extension 
of own behavior  

Team work,  
cooperation

communication channels, 
visual interpretation 

joint (coordinated) solution 
of tasks and missions,
increase efficiency 

Reasoning AI software group planning 

The concept of explicitly represented capabilities allows systematic structuring 
of subject classes according to the performance expected from its members. Beside 
shape in 3-D space, subjects can be recognized (and sometimes even identified as 
individual) by their stereotypical behavior over time. To allow a technical vision 
system to achieve this level of performance, the corresponding visually observable 
motion and gaze control behaviors should be modeled into the knowledge base. It 
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has to be allocated at a higher perceptual level for deeper understanding of dy-
namic scenes.  

The basic capabilities of a subject are 

1. Sensing (measuring) some states of environmental conditions, of other ob-
jects/subjects in the environment, and of components of the subject state. 

2. Storing results of previous sensing activities and linking them to overall situ-
ational aspects, to behavior decisions, and to resulting changes in states ob-
served. 

3. Behavior generation depending on 1 and 2. 

Step 2 may already require a higher developmental level not necessarily needed in 
the beginning of an evolutionary biological process. For the technical systems of 
interest here, this step is included right from the beginning by goal-oriented engi-
neering, since later capabilities of learning and social interaction have to rely on it. 
Up to now, these steps are mostly provided by the humans developing the system. 
They perform adaptations to changing environmental conditions and expand the 
rule base for coping with varying environments. In these cases, only data logging is 
performed by the system itself; the higher functions are provided by the developer 
on this basis. Truly autonomous systems, however, should be able to perform more 
and more of these activities by themselves; this will be discussed in the outlook at 
the end of the book. The suggestion is that all rational mental processes can be de-
rived on this basis.  

The decisive factors for these learning activities are (a) availability of time 
scales and the scales for relations of interest, like spatial distances; (b) knowledge 
about classes of objects and of subjects considered; (c) knowledge about perform-
ance indices; and (d) about value systems for behavior decisions; all these enter the 
decision-making process. 

3.3 Perceptual Capabilities 

For biological systems, five senses have become proverbial: Seeing, hearing, 
smelling, tasting, and touching. It is well known from modern natural sciences that 
there are a lot more sensory capabilities realized in the wide variety of animals. 
The proprioceptive systems telling the actual state of an articulated body and the 
vestibular systems yielding information on a subject’s motion-state relative to iner-
tial space are but two essential ones widely spread. Ultrasound and magnetic and 
infrared sensors are known to exist for certain species. 

The sensory systems providing access to information about the world to animals 
of a class (or to each individual in the class by its specific realization) are charac-
teristic of their potential behavioral capabilities. Beside body shape and the specific 
locomotion system, the sensory capabilities and data processing as well as knowl-
edge association capabilities of a subject determine its behavior. 
Perceptual capabilities will be treated separately for conventional sensors and the 
newly affordable imaging sensors, which will receive most attention later on. 
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3.3.1 Sensors for Ground Vehicle Guidance 

In ground vehicles, speed sensors (tachometers) and odometers (distance traveled) 
are the most common sensors for vehicle guidance. Formerly, these signals were 
derived from sensing at just one wheel. After the advent of antilock braking sys-
tems (ABS), the rotational speed of each wheel is sensed separately. Because of the 
availability of a good velocity signal, this state variable does not need to be deter-
mined from vision but can be used for motion prediction over one video cycle. 

Measuring oil or water temperature and oil pressure, rotational engine speeds 
(revolutions per minute) and fuel remaining mainly serves engine monitoring. In 
connection with one or more inertial rotational rate sensors and the steering angle 
measured, an “electronic stability program” (ESP or similar acronym) can help 
avoid dangerous situations in curve steering. A few top-range models may be or-
dered with range measurement devices to objects in front for distance keeping (ei-
ther by radar or laser range finders). Ultrasound sensors for (near-range) parking 
assistance are available, too. Video sensors for lane departure warning just entered 
the car market after being available for trucks since 2000. 

Since the U.S. Global Positioning System (GPS) is up and open to the general 
public, the absolute position on the globe can be determined to a few meters accu-
racy (depending on parameters set by the military provider). The future European 
Galileo system will make global navigation more reliable and precise for the gen-
eral public. 

The angular orientations of the vehicle body are not measured conventionally, in 
general, so that these state variables have to be determined from visual motion 
analysis. This is also true for the slip (drift) angle in the horizontal plane stating the 
difference in azimuth as angle between the vehicle body and the trajectory tangent 
at the location of the center of gravity (cg).  

Though ground vehicles did not have any inertial sensors till lately, modern cars 
have some linear accelerometers and angular rate sensors for their active safety 
systems like airbags and electronic stability programs (ESP); this includes meas-
urement of the steering angle. Since full sets of inertial sensors have become rather 
inexpensive with the advent of microelectronic devices, it will be assumed that in 
the future at least coarse acceleration and rotational rate sensors will be available in 
any car having a vision system. This allows the equivalent of vestibular – ocular 
data communication in vertebrates. As discussed in previous chapters, this consid-
erably alleviates the vision task under stronger perturbations, since a subject’s body 
orientation can be derived with sufficient accuracy before visual perception starts 
analyzing data on the object level. Slow inertial drifts may be compensated for by 
visual feedback. External thermometers yield data on the outside temperature 
which may have an important effect on visual appearance of the environment 
around the freezing point. This may sometimes help in disambiguating image data 
not easily interpretable.

For a human driver guiding a ground vehicle, the sense of vision is the most im-
portant source of information, especially in environments with good look-ahead 
ranges and sudden surprising events. Over the last two decades, the research com-
munity worldwide has started developing the sense of vision for road vehicles, too. 
[Bertozzi et al. 2000] and [Dickmanns 2002 a, b] give a review on the development. 
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3.3.2 Vision for Ground Vehicles 

Similar to the differences between insect and vertebrate vision systems in the bio-
logical realm, two classes of technical vision systems can also be found for ground 
vehicles. The more primitive and simple ones have the sensory elements directly 
mounted on the body. Vertebrate vision quickly moves the eyes (with very little in-
ertia by themselves) relative to the body, allowing much faster gaze pointing con-
trol independent of body motion. 
The performance levels achievable with vision systems depend very much on the 
field of view (f.o.v.) available, the angular resolution within the f.o.v., and the ca-
pability of pointing the f.o.v. in certain directions. Figure 3.2 gives a summary of 
the most important performance parameters of a vision system. Data and knowl-
edge processing capabilities available for real-time analysis are the additional im-
portant factors determining the performance level in visual perception. 

Cameras mounted directly on a vehicle body are subjected to any motion of the 
entire vehicle; they can be turned towards an object of interest only by turning the 
vehicle body. Note that with typical “Ackermann”-type steering of ground vehicles 
(front wheels on the tips of the front axle can be turned around an almost vertical 
axis), the vehicle cannot change viewing direction when stopped, and only in a 
very restricted manner otherwise. In AI-literature, this is called a nonholonomic 
constraint.

Resolution within the field of view is homogeneous for most vision sensors. 
This is not a good match to the problem at hand, where looking almost parallel to a 
planar surface from an observation point at small elevation above the surface 
means that distance on the ground in the real world changes with the image row 
from the bottom to the horizon. Non-homogeneous image sensors have been re-
searched [e.g., Debusschere et al. 1990] but have not found wider application yet. Us-
ing two cameras with different focal lengths and almost parallel optical axes has 
also been studied [Dickmanns, Mysliwetz 1992]; the results have led to the MarVEye–
concept to be discussed in Chapter 12. 

Angular resolution

per pixel

Potential
pointing directions

- Light sensitivity, dynamic range (up to 106)
- Shutter control
- Black & white,
- Color

Figure 3.2. Performance parameters for vision systems 

- Number
of pixels on chip

- Frame rates possible
- Number of chips for color

Single camera or arrangement of a diverse set of cameras for

stereovision, multifocal imaging, and various light sensitivities.

Simultaneous field of view

Fixed focus or 
zoom lense
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Since most of the developments of vision systems for road vehicles are using the 
simple approach of mounting cameras directly on the vehicle body, some of the 
implications will be discussed first so that the limitations of this type of visual sen-
sor are fully understood. Then, the more general and much more powerful verte-
brate-type active vision capabilities will be discussed. 

3.3.2.1 Eyes Mounted Directly on the Body 

Since spatial resolution capabilities improve with elevation above the ground, most 
visual sensors are mounted at the top of the front windshield. Figure 3.3 shows an 

example of stereovision. A single camera 
or two cameras with different focal 
lengths, not requiring a large stereo base, 
can be hidden nicely behind the rear-view 
mirror inside the vehicle. The type of vi-
sion system may thus be discovered by 
visual inspection when the underlying 
principles are known. 

Figure 3.3. Two cameras mounted fix 
on vehicle body 

Pitch effects: When driving on smooth surfaces, pitch perturbations on the body 
are small (less than 1°), usually. Strong braking actions and accelerations may lead 
to pitch angle changes of up to 3 or 4°. Pitch angles have an influence on the verti-
cal range of rows to be evaluated when searching for objects on a planar ground at 
a given distance in the 3-D world. For a camera with a strong telelens (f.o.v. of ~ 
same size as the perturbation, 3 to 4°), this means that an object of interest previ-
ously tracked may no longer be visible at all in a future image! In a camera with a 
normal lens of ~ 35° vertical f.o.v., this corresponds to a shift of only ~ 10 % of the 
total number of rows (~ 50 rows in absolute terms). This clearly indicates that 
body-fixed vision sensors are limited to cameras with small focal lengths. They 
may be manageable for seeing large objects in the near range; however, they are 
unacceptable for tracking objects of the same size further away.  

When the front wheels of a car drive over an obstacle on the ground of about 10 
cm height with the rear wheels on the flat ground (at a typical axle distance ~ 2.5 
m), an oscillatory perturbation in pitch with amplitude of about 2° will result. At 10 
meters distance, this perturbation will shift the point, where an optical ray through 
a fixed pixel hits an object with a vertical surface, by almost half a meter up and 
down. However, at 200 meters distance, the vertical shift will correspond to plus or 
minus 10 meters! Assuming that the highly visible car body height is ~ 1 m, this 
perturbation in pitch (min. to max.) will lead to a shift in the vertical direction of 1 
unit (object size) at 10 m distance, while at 200 m distance, this will be 20 units. 
This shows that object-oriented feature extraction under perturbations requires a 
much larger search range further away for this type of vision system. Looking al-
most parallel to a flat ground, the shift in look-ahead distance L for a given image 
line z is much greater. To be precise, for a camera elevation of 1.5 m above the 
ground, a perturbation of 50 mrad (~ 3°) upward shifts the look-ahead distance 
from 30 m to infinity (to the horizon).  

If the pitch rate could be measured inertially, the gaze-controllable eye would 
allow commanding the vertical gaze control by the negative value of the pitch rate 
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measured. Experiments with inexpensive rate sensors have shown that perturba-
tions in the pitch angle amplitude of optical rays can be reduced by at least one or-
der of magnitude this way (inertial angular rate feedback, see Figure 12.2).  

Driving cross-country on rough terrain may lead to pitch amplitudes of ± 20° at 
frequencies up to more than 1 Hz. Pitch rates up to ~ 100°/s may result. In addition 
to pitch, bank and yaw angles may also have large perturbations. Visual orientation 
with cameras mounted directly on the vehicle body will be difficult (if not 
impossible) under these conditions. This is especially true since vision, usually, has 
a rather large delay time (in the tenths of a second range) until the situation has 
been understood purely based on visual perception. 

If a subject’s body motion can be perceived by a full set of inertial sensors 
(three linear accelerometers and three rate sensors), integration of these sensor sig-
nals as in “strap-down navigation” will yield good approximations of the true an-
gular position with little time delay (see Figure 12.1). Note however, that for cam-
eras mounted directly on the body, the images always contain the effects of motion 
blur due to integration time of the vision sensors! On the other hand, the drift errors 
accumulating from inertial integration have to be handled by visual feedback of 
low-pass filtered signals from known stationary objects far away (like the horizon).  

In a representation with a scene tree as discussed in Chapter 2, the reduction in 
complexity by mounting the cameras directly on the car body is only minor. Once 
the computing power has been there for handling this concept, there is almost no 
advantage in data processing compared to active vision with gaze control. Hard-
ware costs and space for mounting the gaze control system are the issues keeping 
most developers away from taking advantage of a vertebrate type eye. As soon as 
high speeds with large look-ahead distances or dynamic maneuvering are required, 
the visual perception capabilities of cameras mounted directly on body will no 
longer be sufficient.  

Yaw effects: For roads with small radii of curvature R, another limit shows up. For 
example, for R = 100 m, the azimuth change along the road is curvature C = 1/R
(0.01 m 1) times arc–length l. The lateral offset y at a given look-ahead range is 
given by the second integral of curvature C (assumed constant here, see Figure 3.4) 
and can be approximated for small angles by the term to the right in Equation 3.1.  

2
0 0 0;   sin  dl / 2.C l y y l C l    (3.1) 

For a horizontal f.o.v. of 45° (  22.5°), the look-ahead range up to which other 
vehicles on the road are still in the f.o.v. is ~ 73 m ( 0 = 0). (Note that the distance 
traveled on the arc is 45° · / 180° · 100 m = 78.5 m.) At this point, the heading 
angle of the road is 0.785 radian (~ 45°), and the lateral offset from the tangent 
vector to the subject’s motion is ~ 30 m; the bearing angle is 22.5°, so that the as-
pect angle of the other vehicle is 45° – 22.5° = 22.5° from the rear right-hand side. 
Increasing the f.o.v. to 60° (+ 33%) increases the look-ahead range to 87 m (+ 
19%) with a lateral range of 50 m (+67%). The aspect angle of the other vehicle 
then is 30°. This numerical example clearly shows the limitations of fixed camera 
arrangements. For roads with even smaller radii of curvature, look-ahead ranges 
decrease rapidly (see circles 50 and 10 m radius on lower right in Figure 3.4).  
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Especially tight maneu-
vering with radii of curva-
ture R down to ~ 6 m (stan-
dard for road vehicles) re-
quires active gaze control if 
special sensors for these 
rather rare opportunities are 
to be avoided. By increasing 
the range of yaw control in 
gaze azimuth to about 70° 
relative to the vehicle body, 
all cases mentioned can be 
handled easily. 

In addition, without ac-
tive gaze control, all angular 
perturbations from rough 
ground are directly inflicted 
upon the camera viewing 
conditions leading to motion blur. Centering of other objects in the image may be 
impossible if this is in conflict with the driving task. 

3.3.2.2 Active Gaze Control 

The simplest and most effective degree of freedom for active gaze control of road 
vehicles on smooth surfaces with small look-ahead ranges is the pan (yaw) angle 
(see Figure 1.3). Figure 3.5 shows a solution with the pan as the outer and the tilt 
degree of freedom as the inner axis for the test vehicle VaMoRs, designed for driv-
ing on uneven ground. This allows a large horizontal viewing range and improves 
the problem due to pitching motion by inertial stabilization; inertial rate sensors for 
a single axis are mounted directly on the platform so that pitch stabilization is in-

dependent from gaze direction in yaw. Be-
side the possibility of view stabilization, 
active gaze control brings new degrees of 
freedom for visual perception. The poten-
tial gaze directions enlarge the total field of 
view. The pointing ranges in yaw and pitch 
characterize the design. Typical values for 
automotive applications are ± 70° in yaw 
(pan) and 25° in pitch (tilt). They yield a 
very much enlarged potential field of view 
for a given body orientation. Depending on 
the missions to be performed, the size of 
and the magnification factor between the 
simultaneous fields of view (given one 
viewing direction) as well as the potential 
angular viewing ranges have to be selected 
properly. Of course, only features appear-

Figure 3.5. Two-axes gaze control 
platform with large stereo base of ~ 
30 cm for VaMoRs. Angular ranges: 
Pan (yaw)  ± 70°, tilt (pitch)  ± 
25°. It is mounted behind the upper 
center of the front windshield, about 
2 m above the ground
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Figure 3.4. Horizontal viewing ranges 

R =

100m

60°

~ 87 m

~ 73m

~ 52°= 0.9 rad

60°

= 1.05 rad

45°

~ 30 m

45° = 0.785 rad
~ 78m

R = 50m

R = 10m0 100 m

Look-

ahead

ranges

Direction

change

Lateral

offset



3.3 Perceptual Capabilities      69 

ing in the actual simultaneous field of view can be detected and can attract atten-
tion (if there is no other sensory modality like hearing in animals, calling for atten-
tion in a certain direction). If the entire potential field of view has to be covered for 
detecting other objects, this can be achieved only by time-slicing attention with the 
wide field of view through sequences of viewing direction changes (scans). Usu-
ally, in most applications there are mission elements and maneuvers for which the 
viewing area of interest can be determined from the mission plan for the task to be 
solved next. For example, turning off onto a crossroad to the right or left automati-
cally requires shifting the field of view in this direction (Chapter 10 and Section 
14.6.5).

The request for economy in vision data leads to foveal-peripheral differentia-
tion, as mentioned above. The size and the increase in resolution of the foveal 
f.o.v. are interesting design parameters to be discussed in Chapter 12. They should 
be selected such that several seconds of reaction time for avoiding accidents can be 
guaranteed. The human fovea has a f.o.v. from 1 to 2°. For road vehicle applica-
tions, a ratio of focal lengths from 3 to 10 as compared to wide-angle cameras has 
proven sufficient for the same size of imaging chips in all cameras.  

Once gaze control is given, the modes of operation available are characteristic 
of the system. Being able to perform very fast gaze direction changes reduces the 
time delays in saccadic vision. In order to achieve this, usually, nonlinear control 
modes taking advantage of the maximal power available are required. Maximum 
angular speeds of several hundred degrees per second are achievable in both bio-
logical and technical systems. This allows reducing the duration of saccades to a 
small fraction of a second even for large amplitudes. 

For visual tracking of certain objects, keeping their image centered in the field 
of view by visual feedback reduces motion blur (at least for this object of special 
interest). With only small perturbations remaining, the relative direction to this ob-
ject can be read directly from the angle encoders for the pointing platform (solving 
part of the so-called “where”-problem by conventional measurements). The overall 
vision process will consist of sequences of saccades and smooth pursuit phases.  

Search behavior for surveillance of a certain area in the outside world (3-D 
space) is another mode of operation for task performance. For optimal results, the 
parameters for search should depend on the distance to be covered. 

When the images of the camera system (vehicle eye) are analyzed by several de-
tection and recognition processes, there may be contradictory requirements for 
gaze control from these specialists for certain object classes. Therefore, there has to 
be an expert for the optimization of viewing behavior taking the information gain 
for mission performance of the overall system into account. If the requirements of 
the specialist processes cannot be satisfied by a single viewing direction, sequential 
phases of attention with intermediate saccadic gaze shifts have to be chosen 
[Pellkofer 2003]; more details will be discussed in Chapter 14. It is well known that 
the human vision system can perform up to five saccades per second. In road traf-
fic environments, about one to two saccades per second may be sufficient; coarse 
tracking of the object not viewed by the telecamera may be done by one of the 
wide-angle cameras meanwhile. 

If the active vision system is not able to satisfy the needs of the specialists for 
visual interpretation, it has to notify the central decision process to adjust mission 
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performance to this situation (see Figure 14.1). Usually in ground vehicle guid-
ance, slowing down or stopping under safe conditions is the way out for buying 
more time for perception. 

3.3.2.3 Capability Network for Active Vision 

The perceptual capabilities discussed above can be grouped according to signal 
flows required during execution and according to the complexity needed for solv-
ing typical classes of tasks. No general survey on active vision is intended here. A 
number of publications dealing with this problem are [Aloimonos et al. 1987; Ballard 
1991; Blake and Yuille 1992; more recent ones]. Here, we will follow the approach de-
veloped by [Pellkofer 2003] (see also [Pellkofer et al. 2001, 2002]).

Figure 3.6 shows a graphical representation of the capabilities available for gaze 
control in the EMS-vision system (to be discussed in more detail in Chapters 12 
and 14). The lowest row in the figure contains the hardware for actuation in two 
degrees of freedom and the basic software for gaze control (box, at right). 

On the second level from the bottom, the basic skills are represented with the 
expert for gaze control (GC) in the box to the right. This process runs on the proc-
essor closest to the hardware to minimize delay times. It receives its commands 
from the process for behavior decision for gaze and attention (BDGA). By combin-
ing two of its basic skills in a sequence with proper transitions, more complex 
skills on the third level originate. Scans differ from fixation (visual feedback) in 
that they are performed with constant angular speed (a parameter set by BDGA). 
GC is the process executing the commands from BDGA; these may be given partly 
by symbols and partly by just specifying the parameters needed. 

The algorithms for planning sequences of saccades and phases of smooth pursuit 
are represented in the capability network on the upper level by the capability node 
“optimization of viewing behavior” (OVB, upper left). By representing these capa-

Figure 3.6. Capability network for active gaze control (after [Pellkofer 2003])
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bilities explicitly on the abstract level in the capability network, the process “cen-
tral decision” (CD, upper right) can parameterize and use it in a flexible way. The 
capability OVB depends on the availability of the complex skill saccade and 

smooth pursuit. It possesses as parameters the maximal number of saccades, the 
planning horizon, eventually, a constant angular position for one of the platform 
axes, and the potential for initiating a new plan for gaze direction control. The de-
mand of attention and the combination of regions of attention for certain objects to 
be observed are communicated by the specialists for recognizing and tracking these 
objects (see Chapters 13 and 14). Complex patterns in visual perception may 
emerge this way depending on the priorities set in the system. The second sche-
matic capability beside OVB on this level is 3-D search. This allows scanning a 
certain area in the environment of the vehicle in the real world by sequences of 
saccades and scans. The scans are performed with constant angular speeds so that 
image evaluation is possible; saccades may be interspersed so that the scanning di-
rection is always the same. Scan rate may depend on the distance viewed. 

Central decision (CD), the process in charge of achieving the goals of the mis-
sion, has contact only with BDGA, not to the lower levels directly. This modulari-
zation alleviates system development and naturally leads to multiple scales (coarse- 
to-fine differentiation). It should have become clear that this scheme allows charac-
terizing vision systems to a relatively fine degree. Compact representation schemes 
for a wide variety of vision systems are possible and left open for future develop-
ments. The concept has been designed to be flexible and easily expandable. 

3.3.2.4 Feature Extraction Capabilities 

Beside the capabilities of gaze control, the capabilities of visual feature extraction 
characterize the performance level achievable by a subject. Thresholds in percep-
tion of edge and corner features are as important as recognizing shades of gray val-
ues or colors in a stable way. Recognizing shapes originating from boundaries of 
homogeneous image areas or from smooth or connected boundary sections allows 
inferences for hypothesis generation of objects or subjects seen, especially when 
continuity conditions over time can be discovered and also tracked. This will be 
one of the major topics of this book. 

Biological vision systems have developed a high standard in recognizing tex-
tures, even two different ones simultaneously, as when one surface moves behind a 
partially obscuring other object (for example, an animal behind a tree or bush). The 
state of development of processing power of computers does not yet allow this in 
technical systems. In biological evolution, in certain situations like a predator ap-
proaching prey, maybe only those prey animals had a chance to survive which 
were able to solve this problem sufficiently well. For many applications of techni-
cal systems, this high level of visual capabilities is probably not necessary. 
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3.3.3 Knowledge Base for Perception Including Vision 

At least as important for high-performance vision systems as the bottom-up capa-
bilities for sensor data acquisition and processing is the knowledge that can be 
made readily available to the interpretation process for integration of information. 
Deeper understanding of complex situations and the case decisions necessary for 
proper reaction can be achieved only if relevant knowledge is available to a suffi-
cient degree. This will be discussed in later chapters to some extent because of its 
importance, after the notions of subjects and situations have been fully introduced 
in this and the next chapter. This broad topic is considered a major area of devel-
opment for intelligent systems with the sense of vision.  

3.4 Behavioral Capabilities for Locomotion 

The behavior most easily detectable by a vision system is motion of other objects 
or subjects. Therefore, this will be treated here ahead of decision making, even 
though decisions have to precede egomotion internally after signals from sensors 
have been received. 

Motion capabilities depend very much on the basic shape of the body and on the 
means for locomotion of the subject. Legged motion widely spread in biological 
systems is hardly found in technical systems. On the other hand, the “axle-and-
wheels” solution for locomotion abundant in technical systems cannot be found in 
biological systems because nature has not been able to solve the maintenance prob-
lems of these devices with soft tissue and blood vessels. Also, special preparation 
of the natural environment needed for using wheels efficiently could not be pro-
vided; humans solved this problem by road building, one of the outstanding 
achievements of human civilization. Tracked vehicles for going cross-country also 
use wheels, but have a special device for smoothing the surface these wheels roll 
on (tracks with articulated chain members).  

Birds are able to walk on two legs and to hop, and, in addition, most species 
have the capability to fly by flapping their wings which they can fold to the body 
and unfold for flying. On the contrary, human technology again uses the “axle-and-
wheels” solution with blades mounted to the wheel for generating propulsion (in 
propellers and partly in jet engines) or lift (in helicopters). Both principles are di-
rectly reflected in the visual appearance of these subjects. In the realm of insects, 
many more locomotion solutions can be found. Snakes solved their locomotion 
problem by typical wave-like sliding motion. For locomotion in vertical structures 
like trees, many-legged solutions may be of advantage. 

The most highly developed creatures in biology with four limbs have developed 
special skills with their backward “legs” for running on almost flat ground. As 
soon as vertical structures have to be dealt with, the forward “arms” may support 
locomotion by grasping and swinging. This multiple use of extremities in connec-
tion with the wide variety of image processing needed for this purpose (including 
evaluation of data from inertial sensor of their body) may have led to the develop-



3.4 Behavioral Capabilities for Locomotion      73 

ment of the most powerful brain found on our planet. Some species even use their 
tail to improve climbing and swinging performance in trees. 

Without locomotion of the body, subjects with articulated bodies in both the 
biological and the technical realm are able to move their limbs for some kind of 
behavior. Grasping for objects nearby may be found in both areas (arm motion of 
animals or of industrial robots). Humans may use their arms for conveying infor-
mation to a partner or to opponents. Cranes move their arms for loading and un-
loading vehicles or for lifting goods.  

This may suffice to show the generality of the approach for understanding dy-
namic scenes by body shapes, their articulations, and their degrees of freedom for 
motion, controlled by some actuators with constrained motion capabilities, which 
get their commands from some data and knowledge processing device. Species 
may be recognized by their stereotypical motion behaviors, beside their appearance 
with 3-D shape and surface properties. 

3.4.1 The General Model: Control Degrees of Freedom 

To enable the link between image sequence interpretation and understanding mo-
tion processes with subjects in the real world, a few basic properties of control ap-
plication are discussed here. Again, it is not intended to treat all possible classes of 
subjects but to concentrate on just one class of technical subjects from which a lot 
of experience has been gained by our group over the last two decades: Road vehi-
cles (and air vehicles not treated here).  

3.4.1.1 Differential Equations with Control Variables  

As mentioned in the introduction, control variables are the variables in a dynamic 
system that distinguishes subjects from objects (proper). Control variables may be 
changed at each time “at will”. Any kind of discontinuities are allowed; however, 
very frequently control time histories are smooth with a few points of discontinuity 
when certain events occur. 

Differential equations describe constraints on temporal changes in the system, 
including the effects of control input. Again, standard forms are n equations of first 
order (“state equations”) for an nth order system. In the transformed frequency 
domain, they are usually given as a set of transfer functions of nth order for linear 
systems. There is an infinite variety of (usually nonlinear) differential equations for 
describing the same temporal process. System parameters p allow us to adapt the 
representation to a class of problems 

dX/dt = f (X , U , p , t ) . (3.2)

Since real-time performance usually requires short cycle times for control, lin-
earization of the equations of motion around a nominal set point (index N) is suffi-
ciently representative of the process, if the set point is adjusted along the trajectory. 
With the substitutions 

N NX = X  + x ,            U = U  + u , (3.3)
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one obtains 

NdX/dt = dX /dt + dx/dt . (3.4)
The resulting sets of differential equations for the nominal trajectory then are  

N N NdX  /dt = f ( X  , U  , p , t ) , (3.5)

and for the linearized perturbation system, 

N N

dx/dt = F  x + G u + v'(t),

with      F = df / dX|  ;      G = df / dU|
   (3.6) 

as (n × n)- respectively (n × r)-matrices and v’(t) an additive noise-term. In systems 
with feedback components, the local feedback component simultaneously ensures 
(or at least improves) the validity of the linearized model, if the loop is stable.  

Figure 3.7 shows this approximation of a nonlinear process with perturbations 
by a nominal nonlinear part (without perturbations), superimposed by a linear 

(usually time-varying) feedback part taking care of unpredictable perturbations. 
The nominal nonlinear part is numerically optimized off-line in advance of the 
nominal conditions exploiting powerful numerical optimization methods derived 
from the calculus of variation. Along the optimal trajectory, the time histories of 
the partial derivative matrices F and G are stored; this is the basis for time-varying 
feedback with the linear perturbation system.  

This approach is very common in engineering (for example in aero/space trajec-
tory control) since the advent of digital computers in the second half of the last 
century. From here on, underlining of vectors will be dropped; the context will 
make the actual meaning clear. 

X

Figure 3.7. Approximation of a nonlinear process by superposition of a nominal nonlin-
ear part and a superimposed linear part with a vector of perturbations v(t)
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3.4.1.2 Transition Matrices for Single Step Predictions  

Equation 3.6 with matrices F and G may be transformed into a difference equation 
with the cycle time T for grid point spacing by one of the standard methods. (Pre-
cise numerical integration from 0 to T for v = 0 may be the most convenient one for 
complex right-hand sides.) The resulting general form then is  

1

                                   [( 1) ]  [ ]  [ ]  [ ]

or in short-hand notation,          ,k k k k

x k T A x kT B u kT v kT

x A x B u v
(3.7)

where the matrices A, B have the same dimensions as F, G. In the general case of 
local linearization, all entries of these matrices may depend on the nominal state 
and control variables (XN, UN). The procedures for computing the elements of A
and B have to be part of the “4-D knowledge base” for the application at hand. 
Software packages for these transformations are standard in control engineering. 

For deeper understanding of motion processes of subjects observed, a knowl-
edge base has to be available linking the actual state and its time history to goal-
oriented behaviors and to stereotypical control outputs on the time line. This will 
be discussed in Section 3.4.3. 

Once the initial conditions of the state are fixed or given, the evolving trajectory 
will depend both on this state (through matrix A, the so-called homogeneous part) 
and on the controls applied (the non-homogeneous part). Of course, this part also 
has to take the initial conditions into account to achieve the goals set in a close-to-
optimal way. The collection of conditions influencing the decision for control out-
put is called the “situation” (to be discussed in Chapters 4 and 13).  

3.4.2 Control Variables for Ground Vehicles 

A wheeled ground vehicle has three control variables, usually, two for longitudinal 
control and one for lateral control, the steering system. Longitudinal control is 
achieved by actuating either fuel injection (for acceleration or mild decelerations) 
or brakes (for decelerations up to 1 g (Earth gravity acceleration  9.81 m s 2)).
Ground vehicles are controlled through proper time histories of these three control 
variables. In synchronization with the video signal this is done 25 (PAL-imagery) 
or 30 times a second (NTSC). Characteristic maneuvers require corresponding 
stereotypical temporal sequences of control output. The result will be correspond-
ing time histories of changing state variables. Some of these can be measured di-
rectly by conventional sensors, while others can be observed from analyzing image 
sequences.  

After starting a maneuver, these expected time histories of state variables form 
essential knowledge for efficient guidance of the vehicle. The differences between 
expectations and actual measurements give hints on the situation with respect to 
perturbations and can be used to apply corrective feedback control with little time 
delay; the lower implementation level does not have to wait for the higher system 
levels to respond with a change in the behavioral mode running. To a first degree 
of approximation, longitudinal and lateral control can be considered decoupled (not 
affecting each other). There are very sophisticated dynamic models available in 
automotive engineering in the car industry and in research for simulating and ana-
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lyzing dynamical motion in response to control input and perturbations; only a very 
brief survey is given here. Mitschke (1988, 1990) is the standard reference in this 
field in German. (The announced reference [Giampiero 2007] may become a coun-
terpart in English.) 

3.4.2.1 Longitudinal Control Variables 

For longitudinal acceleration, the following relation holds: 
2 2/   {           + }/a r g b c pd x dt F F F F F F m . (3.8)

Fa = aerodynamic forces proportional to velocity squared (V2),
Fr   = roll-resistance forces from the wheels, 
Fg   = weight component in hilly terrain ( m·g·sin( );  = slope angle); 
Fb  = braking force, depends on friction coefficient  (tire – ground), normal 

force on tire, and on brake pressure applied (control ulon1);
Fc  = longitudinal force due to curvature of trajectory, 
Fp  = propulsive forces from engine torque through wheels (control ulon2),

 m = vehicle mass. 

Figure 3.8 shows the basic effects of propulsive forces Fp at the rear wheels. Add-
ing and subtracting the same force at the cg yields torque-free acceleration of the 
center of gravity and a torque around 
the cg of magnitude Hcg·Fp which is 
balanced by the torque of additional 
vertical forces V at the front and rear 
axles. Due to spring stiffness of the 
body suspension, the car body will 
pitch up by p, which is easily noticed 
in image analysis. 

Similarly, the braking forces at the 
wheels will result in additional vertical 
force components of opposite sign, 
leading to a downward pitching motion 

b, which is also easily noticed in vision. Figure 3.9 shows the forces, torque, and 
change in pitch angle. Since the braking force is proportional to the normal (verti-
cal) force on the tire, it can be seen that the front wheels will take more of the brak-
ing load than the rear wheels. Since vehicle acceleration and deceleration can be 
easily measured by linear accelerometers mounted to the car body, the effects of 

control application can be directly 
“felt” by conventional sensors. This al-
lows predicting expected values for 
several sensors.  Tracking the differ-
ence between predicted and measured 
values helps gain confidence in motion 
models and their assumed parameters, 
on the one hand, and monitoring envi-
ronmental conditions, on the other 
hand. The change in visual appearance 

Figure 3.8. Propulsive acceleration con-
trol: Forces, torques and orientation 
changes in pitch 
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of the environment due to pitching effects must correspond to accelerations sensed. 
A downward pitch angle leads to a shift of all features upward in the images. [In 
humans, perturbations destroying this correspondence may lead to “motion sick-
ness”. This may also originate from different delay times in the sensor signal paths 
(e.g., “simulator sickness”) or from additional rotational motion around other axes 
disturbing the vestibular apparatus in humans which delivers the inertial data.]  

For a human driver, the direct feedback of inertial data after applying one of the 
longitudinal controls is essential information on the situation encountered. For ex-
ample, when the deceleration felt after brake application is much lower than ex-
pected the friction coefficient to the ground may be smaller than expected (slippery 
or icy surface). With a highly powered car, failing to meet the expected accelera-
tion after a positive change in throttle setting may be due to wheel spinning. If a ro-
tation around the vertical axis occurs during braking, the wheels on the left- and 
right-hand sides may have encountered different frictional properties of the local 
ground. To counteract this immediately, the system should activate lateral control 
with steering, generating the corresponding countertorque. 

3.4.2.2 Lateral Control of Ground Vehicles 

A generic steering model for lateral control is given in Figure 3.10; it shows the so-
called Ackermann–steering, in which (in an idealized quasi-steady state) the axes 
of rotation of all wheels always point 
to a single center of rotation on the 
extended rear axle. The simplified 
“bicycle model” (shown) has an aver-
age steering angle  at the center of 
the front axle and a turn radius R Rf

Rr. The curvature C of the trajectory 
driven is given by C = 1/R; its rela-
tion to the steering angle  is shown 
in the figure. 

Setting the cosine of the steering 
angle equal to 1 and the sine equal to 
the argument for magnitudes  smaller than 15° leads to the simple relation 

/a R a C , or 

Figure 3.10. Ackermann steering for 
ground vehicles: Steer angle , turn radius 
R, curvature C = 1/R, axle distance a
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tan = a/Rr = a · C
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Rfin
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bTr
Rfout = (Rr + bTr /2 )² + a²

/ .C a (3.9)
Since curvature C is defined as “heading change over arc length” (d /dl), this 

simple (idealized) model neglecting tire softness and drift angles yields a direct in-
dication of heading changes due to steering control: 

/ / /d dt d dl dl dt C V V a/ . (3.10)
Note that the trajectory heading angle  is rarely equal to the vehicle heading 

angle ; the difference is called the slip angle . The simple relation Equation 3.10 
yields an expected turn rate depending linearly on speed V multiplied by the steer-
ing angle. The vehicle heading angle  can be easily measured by angular rate sen-
sors (gyros or tiny modern electronic devices). Turn rates also show up in image 
sequences as lateral shifts of all features in the images. 



         3  Subjects and Subject Classes 78

Simple steering maneuvers: Applying a constant steering rate A (considered the 
standard lateral control input and representing a good approximation to the behav-
ior of real vehicles) over a period TSR yields the final steering angle and path curva-
ture

0 0 0

0 0

,            ( ) / / ;

,                          / .f SR f SR

A t C A t a C A t a

A T C C A T a (3.11)

Integrating Equation 3.10 with the top relation 3.11 for C yields the (idealistic!) 
change in heading angle for constant speed V

0

2
0

 = ( ) [ / ]  

                         [  /(2 )].SR SR

C V dt V C A t a dt

V C T A T a
(3.12)

The first term on the right-hand side is the heading change due to a constant steer-
ing angle (corresponding to C0); a constant steering angle for the duration  thus 
leads to a circular arc of radius 1/C0 with a heading change of magnitude 

0 .C V C (3.13a)

The second term (after the plus sign) in Equation 3.12 describes the contribution of 
the ramp-part of the steering angle. For initial curvature C0 = 0, there follows 

2[  / ] 0.5  / .ramp V A t a dt V A t a   (3.13b) 

Turn behavior of road vehicles can be characterized by their minimal turn radius 
(Rmin = 1/Cmax). For cars with axle distance “a” from 2 to 3.5 m, R may be as low 
as 6 m, which according to Figure 3.10 and Equation 3.9 yields max around 30°. 
This means that the linear approximation for the equation in Figure 3.10 is no 
longer valid. Also the bicycle model is only a poor approximation for this case. 
The largest radius of all individual wheel tracks stems from the outer front wheel 
Rfout. For this radius, the relation to the radius of the center of the rear axle Rr, the 
width of the vehicle track bTr and the axle distance are given at the lower left of 
Figure 3.10. The smallest radius for the rear inner wheel is Rr - bTr/2. For a track 
width of a typical car bTr = 1.6 m, a = 2.6 m, and Rfout = 6 m, the rear axle radius 
for the bicycle model would be 4.6 m (and thus the wheel tracks would be 3.8 m 
for the inner and 5.4 m for the outer rear wheel) while the radius for the inner front 
wheel is also 4.6 m (by chance here equal to the center of the rear axle). This gives 
a feeling for what to expect from standard cars in sharp turns. Note that there are 
four distinct tracks for the wheels when making tight turns, e.g., for avoiding nega-
tive obstacles (ditches). For maneuvering with large steering angles, the linear ap-
proximation of Equation 3.9 for the bicycle model is definitely not sufficient! 

Another property of curve steering is also very important and easily measurable 
by linear accelerometers mounted on the vehicle body with the sensitive axis in the 
direction of the rear axle (y-axis in vehicle coordinates). It measures centrifugal ac-
celerations ay which from mechanics are known to obey the law of physics: 

2 2/ya V R V C . (3.14)

For a constant steering rate A over time t this yields with Equation 3.11 a con-
stantly changing curvature C, assuming no other effects due to dynamics, time de-
lays, bank angle or soft tires: 

2
0( )ya V A t a/ . (3.15)
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At the end of a control input phase starting from 0 = 0 with constant steering 
rate over a period TSR, the maximal lateral acceleration is 

2
, max /y Sa V A T R a . (3.16)

For passenger comfort in public transportation, horizontal accelerations are usu-
ally kept below 0.1 g  1 m/s². In passenger cars, levels of 0.2 to 0.4 g are com-
monly encountered. With a typical steering rate of |A|  1.15 °/s = 0.02 rad/s, the 
lateral acceleration level of  0.2 g (2 m/s²) is achieved in a maneuver-time 
dubbed T2. For the test vehicle “VaMP”, a Mercedes sedan 500-SEL with an axle 
distance a = 3.14 m, this maneuver time T2 (divided by a factor of 2 for scaling in 
the figure) is shown in Figure 3.11 as a curved solid line. Table 3.2 contains some 
numerical values for low speeds and precise values for higher speeds. 

It can be seen that for low speeds this maneuver time is relatively large (row 3 
of the table); a large steering angle (line with triangles and row four) has to be built 
up until the small radius of curvature (line with stars, third row from bottom) yields 
the lateral acceleration set as limit. For very low speeds, of course, this limit cannot 
be reached because of the limited steering angle. At a speed of 15 m/s (54 km/h, a 
typical maximal speed for city traffic) the acceleration level of 0.2 g is reached af-
ter  1.4 seconds. The (idealized) radius of curvature then is  113 m; this shows 
that the speed is too high for tight curving. Also when the heading angle reaches 
the lateral acceleration limit (falling dashed curved line in Figure 3.11), the (ideal-
ized) lateral speed at that point (dashed curved line) and the lateral positions (dot-
ted line) become small rapidly with higher speeds V driven.  
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These numbers may serve as a first reference for grasping the real-world effects 
when the corresponding control output is used with a real vehicle in testing. In Sec-
tion 3.4.5, some of the most essential effects stemming from systems dynamics ne-
glected here will be discussed.  

Table 3.2. Typical final state variables as function of speed V for a steering maneuver with 
constant control output (steering-rate A = 0.02 rad/s) starting from  = 0 until a centrifugal 
acceleration of 0.2 g is reached (idealized with infinite cornering stiffness) 

0 1 2 3 4 5 6 7 8 

V (m/s) 5.278 7.5 10 15 20 30 40 70 

T2 (s) 11.27 5.58 3.14 1.396 0.785 0.349 0.196 0.064 

f (˚) 12.9 6.40 3.60 1.60 0.89 0.40 0.225 0.073 

f (˚) 122.    42.6    18.0    5.33    2.25    0.666    0.281    0.0525 
Rf (m) 13.9 28.1 50 113 200 450 800 2.450 

vf (m/s) (-) (5.58) (3.14) 1.396 0.785 0.349 0.196 0.064 
yf (m) - (10.4) (3.29) 0.65 0.205 0.041 0.013 0.0014 

Column 1 (for about 19 km/h) marks the maximal steering angle for which the 
linearization for the relation C( ) (Equation 3.10) is approximately correct; the fol-
lowing columns show the rapid decrease in maneuver time until 0.2 g is reached. 
Columns 2, 3, and 4 correspond to speeds for driving in urban areas (27, 36, and 54 
km/h), while 30 m/s  67.5 mph  108 km/h (column 6) is typical for U.S. high-
ways; average car speed on a free German Autobahn is around 40 m/s (  145 
km/h), and the last column corresponds to the speed limit electronically set in 
many premium cars (  250 km/h). Of course, the turn rate A at high speeds has to 
be reduced for increased accuracy in lateral control. Notice that for high speeds, 
the lateral acceleration level of 2 m/s² is reached in a small fraction of a second 
(row 3) and that the heading angles f (row 5) are very small.  

Real-world effects of tire stiffness (acting like springs in the lateral direction in 
combination with the vector of the moment of momentum) will change the results 
dramatically for this type of control input as a function of speed. This will be dis-
cussed in Section 3.4.5. To judge the changes in behavior due to speed driven by 
these types of vehicles, these results are important components of the knowledge 
base needed for safe driving. High-speed driving requires control inputs quite dif-
ferent from those for low-speed driving; many drivers missing corresponding ex-
perience do not know this. Section 3.4.5.2 is devoted to high-speed driving with 
impulse-like steering control inputs. 

For small steering and heading ( ) angles, lateral speed vf and lateral position yf

relative to a straight reference line can be determined as integrals over time. For 0

= 0, the resulting final lateral speed and position of this simple model according to 
Equation 3.14 would be 

2 2

2 3
2 2

0.5 / .

( ) 0.5 /  =
6

f ramp SR

SR
f ramp

v V V A T a

V A T
y V dt V A t dt a

a
. (3.17)
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Row 7 (second from the bottom) in Table 3.2 shows lateral speed vf and row 8 
lateral distance yf traveled during the maneuver. Note that for speeds V < 10 m/s 
(columns 1 to 3), the heading angle (row 5) is so large that computation with the 
linear model (Equation 3.17) is no longer valid (see terms in brackets in the dotted 
area at bottom left of the table). On the other hand, for higher speeds (>  30 m/s), 
both lateral speed and position remain quite small when the acceleration limit is 
reached; at top speed (last column), they remain close to zero. This indicates again 
quite different behavior of road vehicles in the lower and upper speed ranges. The 
full nonlinear relation replacing Equation 3.17 for large heading angles is, with 
Equation 3.13b, 

2
ramp( )  sin( )  sin(0.5 / )v t V V V A t a . (3.18)

Since the cosine of the heading angle can no longer be approximated by 1, there 
is a second equation for speed and distances in the original x-direction:

2/ cos( ) cos(0.5 / )rampdx dt V V V A t a . (3.19)

The time integrals of these equations yield the lateral and longitudinal positions 
for larger heading angles as needed in curve steering; this will not be followed 
here. Instead, to understand the consequences of one of the simplest maneuvers in 
lateral control, let us adjoin a negative 
ramp of equal magnitude directly after 
the positive ramp. This so-called “dou-
blet” is shown in Figure 3.12.  

Figure 3.12. Doublet in constant steering 
rate Uff (t) = d /dt as control time history 
over two periods TSR with opposite sign ± 
A yields a “pulse” in steer angle for head-
ing change

Steer rate d /dt
(= piecewise constant control input (doublet))

A

2
0

-A

Steer angle (state)

Time/TSR

max = A ·TSR

TSI = 2 ·TSR

TSR

1
0

The integral of this doublet is a tri-
angular “pulse” in steering angle time 
history (dashed line). Scaling time by 
TSR leads to the general description 
given in the figure. Since the maneuver 
is locally symmetrical at around point 
“1” and since the steering angle is zero 
at the end, this maneuver leads to a 
change in heading direction.  

Pulses in steering angle: Mirroring the steering angle time history at TSR = T2

(when a lateral acceleration of 0.2 g is reached), that is, applying a constant nega-
tive steering rate –A from T2 to 2T2 yields a heading change maneuver (idealized) 
with maximum lateral acceleration of  2 m/s².  

The steering angle is zero at the end, and the heading angle is twice the value 
given in row 5 of Table 3.2 for infinite tire stiffness. From column 2, row 5 it can 
be seen that for a speed slightly lower than 7.5 m/s  25 km/h a 90°-turn should re-
sult with a minimal turn radius of about 28 m (row 6). For exact computation of the 
trajectory driven, the sine– and cosine–effects of the heading angle  (according to 
Equations 3.18/3.19) have to be taken into account. 

For speeds higher than 50 km/h (  14 m/s), all angles reached with a “pulse”–
maneuver in steering and moderate maximum lateral acceleration will be so small 
that Equation 3.17 is valid. The last two rows in Table 3.2 indicate for this speed 
range that a driving phase with constant f (and thus constant lateral acceleration) 
over a period of duration  should be inserted at the center of the pulse to decrease 
the time for lane changing (lane width is typically 2.5 to 3.8 m) achievable by a 
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proper sequence of two opposite 
pulses. This maneuver, in contrast, 
will be called an “extended pulse” 
(Figure 3.13). It leads to an in-
creased heading angle and thus to 
higher lateral speed at the end of the 
extended pulse. However, tire stiff-
ness not taken into account here will 
change the picture drastically for 
higher speeds, as will be discussed 
below; for low speeds, the magni-
tude of the steering rate A and the 
absolute duration of the pulse or the 
extended pulse allow a wide range of maneuvering, taking other limits in lateral 
acceleration into account. 

Steering by extended pulses at moderate speeds: In the speed range beyond 
about 20 m/s (  70 km/h), lateral speed vf and offset yf (last two rows in Table 3.2) 
show very small numbers when reaching the lateral acceleration limit of ay,max = 
0.2 g with a ramp. A period of constant lateral acceleration with steering angle f

(infinite tire stiffness assumed again!) and duration  is added (see Figure 3.13) to 
achieve higher lateral speeds. To make a smooth lane change (of lane width wL

3.6 m lateral distance) in a reasonable time, therefore, a phase with constant f over 
a duration  (e.g.,  = 0.5 seconds) at the constant (quasi-steady) lateral acceleration 
level of ay,max (2 m/s²) increases lateral speed by vC = ay,max ·  (= 1 m/s for  = 0.5 
s). The lateral distance traveled in this period due to the constant steering angle is 

yC0 ay,max· ² /2 (= 2 · 0.5² /2 = 0.25 m in the example chosen). Due to the small 
angles involved (sine  argument), the total “extended pulse” builds up a lateral ve-
locity vEP (vf from Equation 3.17, row 7 in Table 3.2) and a lateral offset yEP at the 
end of the extended pulse (yf from row 8 of the table) of  

0( 2 );                 2EP C f EP Cv v v y y y f . (3.20)

Lane change maneuver: A generic lane change maneuver can be derived from 
two extended pulses in opposite directions. In the final part of this maneuver, an 
extended pulse similar to the initial one is used (steering rate parameter A); it will 
need the same space and time to turn the trajectory back to its original direction. 
Subtracting the lateral offset gained in these phases (2 yEP) from lane width wL

yields the lateral distance to be passed in the intermediate straight line section be-
tween the two extended pulses; dividing this distance by the lateral speed vEP at the 
end of the first pulse yields the time LC spent driving straight ahead in the center 
section.

LC L EP EP = (w 2 ) / y v . (3.21)

Turning the vehicle back to the original driving direction in the new lane requires 
triggering the opposite extended pulse at the lateral position yEP from the center of 
the new lane (irrespective of perturbations encountered or not precisely known lane 
width). This (quasi-static) maneuver will be compared later on to real ones taking 
dynamic effects into account. 

Steer rate d /dt
= piecewise constant control input: A, 0, -A

A

TSR0

-A

0

steer angle 

time

TDC

max = A·TSR(state)

TSR

TDC = 2 · TSR +

Figure 3.13. “Extended pulse” steering 
with central constant lateral acceleration 
level as maneuver control time history uff (t)
= d /dt for controlled heading changes at 
higher speeds 
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Learning parameters of generic steering maneuvers: Performing this “lane 
change maneuver” several times at different speeds and memorizing the parameters 
as well as the real outcome constitutes a learning process for car driving. This will 
be left open for future developments. The essential point here is that knowledge 
about these types of maneuvers can trigger a host of useful (even optimal) behav-
ioral components and adaptations to real-world effects depending on the situation 
encountered. Therefore, the term “maneuver” is very important for subjects: Its 
implementation in accordance with the laws and limits of physics provides the be-
havioral skills of the subject. Its compact representation with a few numbers and a 
symbolic name is important for planning, where only the (approximate) left and 
right boundary values of the state variables, the transition time, and some extreme 
values in between (quasi-static parameters) are sufficient for decision-making. This 
will be discussed in Section 3.4.4.1. 

Effects of maneuvers on visual perception: The final effects to be discussed here 
are the centrifugal forces in curves and their influence on measurement data, in-
cluding vision. The 
centrifugal forces pro-
portional to curvature 
of the trajectory C·V²
may be thought to at-
tack at the center of 
gravity. The counter-
acting forces keeping 
the vehicle on the road 
occur at the points 
where the vehicle 
touches the ground. 
Figure 3.14 shows the balance of forces and torques leading to a bank angle  of 
the vehicle body in the outward direction of the curve driven. Therefore, the eleva-
tion Hcg of the cg above the ground is an important factor determining the inclina-
tion to banking of a vehicle in curves. Sports utility vehicles (SUV) or vans (Figure 
3.14 right) tend to have a higher cg than normal cars (left) or even racing cars. 
Their bank angle  is usually larger for the same centrifugal forces; as a conse-
quence, speed in curves has to be lower for these types of vehicles. However, sus-
pension system design allows reducing this banking effect by some amount. 

Critical situations may occur in dynamic maneuvering when both centrifugal 
and braking forces are applied. In the real world, the local friction coefficients at 
the wheels may be different.  In addition, the normal forces at each wheel also dif-
fer due to the torque balance from braking and curve steering. Figure 3.15 shows a 
qualitative representation in a bird’s-eye view. Unfortunately, quite a few accidents 
occur because human drivers are not able to perceive the environmental conditions 
and the inertial forces to be expected correctly. Vehicles with autonomous percep-
tion capabilities could help reduce the accident rate. A first successful step in this 
direction has been made with the device called ESP (electronic stability program or 
similar acronym, depending on the make). Up to now, this unit looks just at the 
yaw rate (maybe linear accelerations in addition) and the individual wheel speeds. 
If these values do not satisfy the conditions for a smooth curve, individual braking 
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Figure 3.14. Vehicle banking in a curve due to centrifugal 
forces ~ C·V²; influence of elevation of cg
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forces are applied at proper wheels. This device has 
been introduced as a mass product (especially in 
Europe) after the infamous “moose tests” of a Swed-
ish journalist with a brand new type of vehicle. 

He was able to topple over this vehicle toward 
the end of a maneuver intended to avoid collision 
with a moose on the road; the first sharp turn did not 
do any serious harm. Only the combination of three 
sharp turns in opposite directions at a certain fre-
quency in resonance with the eigenfrequencies of 
the car suspension produced this effect. Again, this 
indicates how important knowledge of dynamic be-
havior of the car and “maneuvers” as stereotypical 
control sequences can be.  

3.4.3 Basic Modes of Control Defining Skills 

In general, there are two components of control activation involved in intelligent 
systems. If a payoff function is to be optimized by the maneuver, previous experi-
ence will have shown that certain control time histories perform better than others. 
It is essential knowledge for good or even optimal control of dynamic systems to 
know, in which situations what type of maneuver should be performed with which 
set of parameters; usually, the maneuver is defined by certain time histories of (co-
ordinated) control input. The unperturbed trajectory corresponding to this nominal 
feed-forward control time history is also known, either stored or computed in par-
allel by numerical integration of the dynamic model exploiting the given initial 
conditions and the nominal control input. If perturbations occur, another important 
knowledge component is how to link additional control inputs to the deviations 
from the nominal (optimal) trajectory to counteract the perturbations effectively 
(see Figure 3.7). This has led to the classes of feed-forward and feedback control in 
systems dynamics and control engineering:  

1. Feed-forward components Uff derived from a deeper understanding of the proc-
ess controlled and the maneuver to be performed.  

2. Feedback components ufb to force the trajectory toward the desired one despite 
perturbations or poor models underlying step 1. 

3.4.3.1 Feed-forward Control: Maneuvers 

There are classes of situations for which the same (or similar) kinds of control laws 
are useful; some parameters in these control laws may be adaptable depending on 
the actual states encountered.  

Heading change maneuvers: For example, to perform a change in driving direc-
tion, the control time history input displayed in Figure 3.13 is one of a generic 
class of realizations. It has three phases with constant steering rate, two of the same 
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Figure 3.15. Frictional and 
inertial forces yield torques 
around all axes; in curves, 
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magnitude A, but with opposite signs and one with zero output in between. The two 
characteristic time durations are TSR for ± A and  for the central zero-output.  

A·TSR yields the maximum steering angle f (fixing the turn radius), with which 
a circular arc of duration  is driven (see Table 3.2); the total maneuver time TDC

for a change in heading direction then is 2·TSR + . The total angular change in 
heading is the integral of curvature over the arc length and depends on the axle dis-
tance of the car (see Figure 3.10 for the idealized case of infinitely stiff tires). 
Proper application of Equation 3.12 yields the (idealized) numerical values. 

A special case is the 90° heading change for turning off onto a crossroad. If the 
vehicle chosen drives at 27 km/h (V  7.5 m/s, column 2 in Table 3.2) then TSR = 
T2 is  5.6 seconds, and the limit of 2 m/s² for lateral acceleration is reached with 

f = 6.4° and f  42.6°. The radius of curvature R is 28.1 m (C =  0.0356 m 1,
Equation 3.9); this yields a turn rate C·V (Equation 3.10) of 15.3°/s. Steering back 
to straight-ahead driving on the crossroad with the mirrored maneuver for the steer-
ing angle leaves almost no room for a circular arc with radius Rf [  = (90 – 
2·42.6)/15.3  0.3 s]; the total turn–off–duration then is  11.2 s and the total dis-
tance traveled is about 84 m.  

For tight turns on narrow roads, either the allowed lateral acceleration has to be 
increased, or lower speed has to be selected. A minimal turn radius of 6 m driven at 
V = 7 m/s yields an ideal turn rate V/R of about 67°/s and a (nominal) lateral accel-
eration V²/R of about 0.82 g (~ 8 m/s²); this is realizable only on dry ground with 
good homogeneous friction coefficients at all wheels. Slight variations will lead to 
slipping motion and uncontrollable behavior. For the selected convenient limit of 
maximum lateral acceleration of 2 m/s² with the minimal turn radius possible (6 
m), a speed of V  3.5 m/s (  12.5 km/h or 7.9 mph)should be chosen. These ef-
fects have to be kept in mind when planning turns. 

The type of control according to Figure 3.13 is often used at higher speeds with 
smaller values for A and TSR (  close to 0) for heading corrections after some per-
turbation. Switching the sequence of the sign of A results in a heading change in 
the opposite direction.  

Lane change maneuvers: Combining two extended pulses of opposite sign with 
proper control of magnitude and duration results in a “lane change maneuver” dis-
cussed above and displayed in Figure 3.16. 

The numerical values and the temporal extensions of these segments for a lateral 
translation of one lane width depend on the speed driven and the maximum lateral 
acceleration level acceptable. The behavioral capability of lane changing may thus 
be represented symbolically by a name and the parameters specifying this control 
output (just a few numbers, as given in the legend of the figure). Together with the 
initial and final boundary values of the state variables and maybe some extreme 
values in between, this is sufficient for the (abstract) planning and decision level. 
Only the processor directly controlling the actuator needs to know the details of 
how the maneuver is realized. For very high speeds, maneuver times for the pulses 
become very small [see T2–curve (solid) in Figure 3.11]. In these cases, tire stiff-
ness effects play an important role; there will be additional dynamic responses 
which interact with vehicle dynamics. This will be discussed in Section 3.4.5.2. 
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Steering rate uff(t) = d / dt piecewise constant control input:

A, 0, A A, 0, A)

TSR

0

Steering angle 
(state variable)

Time

THC

Table 3.3 shows in column 2 a list of standard maneuvers for ground vehicles 
(rows 1 – 6 for longitudinal, 7 – 11 for lateral, and 12 –18 for combined longitudi-
nal and lateral control). Detailed realizations have been developed by [Zapp 1988, 
Bruedigam 1994; Mueller 1996; Maurer 2000; and Siedersberger 2003]. Especially the 
latter two references elaborate the approach presented here. 

The development of behavioral capabilities is an ongoing challenge for autono-
mous vehicles and will need attention for each new type of vehicle created. It 
should be a long–term goal that each new autonomous vehicle is able to adapt to its 
own design parameters at least some basic generic behavioral capabilities from a 
software pool by learning via trial and error. Well-defined payoff functions (quality 
and safety measures) should guide the learning process for these maneuvers.  

3.4.3.2 Feedback Control 

Suitable feedback control laws are selected for keeping the state of the vehicle 
close to the ideal reference state or trajectory; different control laws may be neces-
sary for various types and levels of perturbations. The general control law for state 
feedback with gain matrix K and x = xC  x  (the difference between commanded 
and actual state values) is 

fbu  ( ) = x( )TkT K kT . (3.22)

For application to the subject vehicle, either the numerical values of the ele-
ments of the matrix K directly or procedures for determining them from values of 
the actual situation and/or state have to be stored in the knowledge base. To 
achieve better long-term precision in some state variable, the time integral of the 
error xi = xCi xi may be chosen as an additional state with a commanded value of 
zero.

For observing and understanding behaviors of other subjects, realistic expected 
perturbations of trajectory parameters are sufficient knowledge for decision–

Figure 3.16. High-speed lane change maneuver with two steering “pulses”, including a 
central constant lateral acceleration phase of duration  at the beginning and end, as well 
as a straight drift period TD in between; the duration TD is adapted such that at the end of 
the second (opposite) pulse, the vehicle is at the center of the neighboring lane driving 
tangentially to the road. The maneuver control time history uff(t) = d /dt for lane change 
at higher speeds is [legend: magnitude(duration)]: A(TSR), 0( ), A(TSR), 0(TD), A(TSR),
0( ), A(TSR)

0.5 *THC
0

A

A

Lateral drift period TD
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making with respect to safe behavior; the exact feedback laws used by other sub-
jects need not be known.  

Table 3.3. Typical behavioral capabilities (skills) needed for road vehicles 

Longi-

tudinal

Feed-forward control  

(maneuver)

Feedback control 

1 Acceleration from standstill to speed 
set

Drive at constant speed 

Transition to convoy driving from 
higher speed 

Distance keeping to vehicle ahead 
(average values, fluctuations) 

2 Observe right of way at intersections 
3 Braking to a preset speed Safe convoy driving with  

distance = f(speed) 
4 Braking to stop at reasonable distance 

(moderate, early onset) 
Halt at preset location 

5 Stop and Go driving 
6 Emergency stops 

Lateral

7 Lane changing [ranges and maneuver 
times as f (speed)] 

Lane keeping (accuracy), Road-
running, Line following 

8 Follow vehicle ahead (in maneuvers 
recognized)

Follow vehicle ahead in same 
track

9 Obstacle avoidance Keep safety margin to moving ob-
stacle 

10 Handling of road forks Distance keeping to border line 
11 Proper setting of turn lights before 

start of maneuver 
Longit.

+lateral

12 Turning off onto crossroad Moving into lane with flowing 
traffic

13 Entering and leaving a traffic circle Entering and driving in a traffic 
circle 

14 Overtaking behavior [safety margins 
as f (speed)] 

Observe safety margins 

15 Negotiating “hairpin” curves 
(switchbacks)

Proper reaction to animals de-
tected on or near the driveway 

16 U-turns on bidirectional roads 
17 Observing traffic regulations 

(max. speed, passing interdiction) 
Proper reaction to static obstacles 

detected in own lane 
18 Parking in a parking bay Parking alongside the road 

 More detailed treatment of modeling will be given in the application domains in 
later chapters. To aid practical understanding, a simple example of modeling 
ground vehicle dynamics will be given in Section 3.4.5. Depending on the situation 
and maneuver intended, different models may be selected. In lateral control, a 
third-order model is sufficient for smooth and slow control of lateral position of a 
vehicle when tire dynamics does not play an essential role. A fifth-order model tak-
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ing tire stiffness and rotational dynamics into account will be shown as contrast for 
demonstrating the effects of short maneuver times on dynamic behavior. 

Depending on the situation and maneuver intended, different models may be se-
lected. In lateral control, a third-order model is sufficient for smooth and slow con-
trol of lateral position of a vehicle when tire dynamics does not play an essential 
role. A fifth-order model taking tire stiffness and rotational dynamics into account 
will be shown as contrast for demonstrating the effects of short maneuver times on 
dynamic behavior. 

Instead of full state feedback, often simple output feedback with a PD- or PID-
controller is sufficient. Taking visual features in 2-D as output variable even works 
sometimes (in relatively simple cases like lane following on planar high-speed 
roads). Typical tasks solved by feedback control for ground vehicles are given in 
the right-hand column of Table 3.3. Controller design for automotive applications 
is a well–established field of engineering and will not be detailed here. 

3.4.4 Dual Representation Scheme 

To gain flexibility for the realization of complex systems and to accommodate the 
established methods from both systems engineering (SE) and artificial intelligence 
(AI), behaviors are represented in duplicate form: (1) in the way they are imple-
mented on real-time processors for controlling actuators in the real vehicle, and (2) 
as abstracted entities for supporting the process of decision making on the mental 
representation level, as indicated above (see Figure 3.17).  

In the case of simple maneuvers, even approximate analytical solutions of the 
dynamic maneuver are available; 
they will be discussed in more de-
tail in Section 3.4.5 and can be 
used twofold: 
1. For computing reference time 

histories of some state variables 
or measurement values to be 
expected, like heading or lateral 
position or accelerometer and 
gyro readings at each time, and  

2. for taking the final boundary 
values of the predicted maneu-
ver as base for maneuver plan-
ning on the higher levels. Just 
transition time and the state 
variables achieved at that time, 
altogether only a few (quasi-
static) numbers, are sufficient 
(symbolic) representations of 
the process treated, lasting sev-
eral seconds in general.  

Figure 3.17. Dual representation of behav-
ioral modes: 1. Decision level (dashed), quasi-
static AI-methods, extended state charts 
[Harel 1987] with conditions for transitions 
between modes. 2. Realization on (embedded, 
distributed) processors close to the actuators 
through feed-forward and feedback control 
laws [Maurer 2000; Siedersberger 2004]
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3.4.4.1 Representation for Supporting the Process of Decision-Making 

Point 2 constitutes a sound grounding of linguistic situation aspects. For example, 
the symbolic statement: The subject is performing a lane change (lateral offset of 
one lane width) is sufficiently precise for decision-making if the percentage of the 
maneuver already performed and vehicle speed are known. With respect to the end 
of this maneuver, two more linguistic aspects can be predicted: The subject will 

have the same heading direction as at the start of the maneuver and the tangential 
velocity vector will be at the center of the neighboring lane being changed to.

In more complicated situations without analytical solutions available, today's 
computing power allows numerical integration of the corresponding equations over 
the entire maneuver time within a fraction of a video cycle and the use of the nu-
merical results in a way similar to analytical solutions.  

Thus, a general procedure for combining control engineering and AI methods 
may be incorporated. Only the generic nominal control time histories uff(·) and 
feedback control laws guaranteeing stability and sufficient performance for this 
specific maneuver have to be stored in a knowledge base for generating these “be-
havioral competencies”. Beside dynamical models, given by Equation 3.6 and 3.8 
for each generic maneuver element, the following items have to be stored:  
1. The situations when it is applied (started and ended), and 
2. the feed-forward control time histories uff(·); together with the dynamic models. 

This includes the capability of generating reference trajectories (commanded 
state time histories) when feedback control is applied in addition to deal with 
unpredictable perturbations. 

All these maneuvers can be performed in different fashions characterized by some 
parameters such as total maneuver time, maximum acceleration or deceleration al-
lowed, rate of control actuation, etc. For example, lane change may either be done 
in 2, 6, or in 10 seconds at a given speed. The characteristics of a lane change ma-
neuver will differ profoundly for the speed range of modern vehicles when all real-
world dynamic effects are taken into account. Therefore, the concept of maneuvers

may be quite involved from the point of view of systems dynamics. Maneuver time 
need not be identical with the time of control input; it is rather defined as the time 
until all state variables settle down to their (quasi-) steady values. These real-world 
effects will be discussed in Section 3.4.5; they have to be part of the knowledge 
base and have to be taken into account during decision-making. Otherwise, the dis-
crepancies between internal models and real-world processes may lead to serious 
problems. 

It also has to be ensured that the models for prediction and decision-making on 
the abstract (AI-) level are equivalent – with respect to their outcome – to those 
underlying the implementation algorithms on the systems engineering level. Figure 
3.17 shows a visualization of the two levels for behavior decision and implementa-
tion [Maurer 2000, Siedersberger 2004].

3.4.4.2 Implementation for Control of Actuator Hardware 

In modern vehicles with specific digital microprocessors for controlling the actua-
tors (qualified for automotive environments), there will be no direct access to ac-
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tuators for processors on higher system levels. On the contrary, it is more likely 
that after abstract decision-making, there will be several processors in the down-
link chain to the actuators. To achieve efficient system architectures, the question 
then is which level should be assigned which task. Here, it is assumed that (as in 
the EMS–implementation for VaMoRs and VaMP, see Figure 14.7), a PC-type 
processor forms the interface between the perception- and evaluation level (PEL), 
on one hand, and specific microprocessors for actuator control, on the other hand. 
This processor has direct access to conventional measurement data and can close 
loops from measurements to actuator output with minimal time delay.  

The control process has to know what to do with the symbolic commands com-
ing from the PEL for implementing basic strategic decisions, taking the actual state 
of the vehicle into account. It has more up-to-date information available on local 
aspects and should, therefore, not be forced to work as a slave, but should have the 
freedom to choose how to optimally achieve the goals set by the strategic decision 
received from the PEL. For example, quick reactions to unforeseen perturbations 
should be performed under the subject’s responsibility. Of course, these cases have 
to be communicated back to the higher levels for more thorough and in-depth 
evaluation.

It is on this level that all control time histories for standard maneuvers and all 
feedback laws for regulation of desired states have to be decided in detail. This is 
the usual task of controller design and of proper triggering in systems dynamics. In 
Figure 3.17, this is represented by the lower level shown for longitudinal control. 

3.4.5 Dynamic Effects in Road Vehicle Guidance 

Due to the relatively long delay times associated with visual scene interpretation it 
is important for instant correct appreciation of newly developing situations that two 
facts mentioned above already are taken into account: First, inertial sensing allows 
immediate perception of effects of perturbations onto the own body. It also imme-
diately reflects actual control implementation in most degrees of freedom. Second, 
exploiting the dynamical models in connection with measured control outputs, ex-
pectations for state variable time histories can be computed. Comparing these to 
actually measured or observed ones allows checking the correctness of conditions 
for which the behavioral decisions have been made. If discrepancies exceed thresh-
old values, careful and attentive checking of the developing states may help avoid-
ing dangerous situations.  

A typical example is a braking action on a winter road. In response to a com-
manded brake pressure with steering angle zero, a certain deceleration level with 
no rotations around the longitudinal and the vertical axes are expected. There will 
be a small pitching motion due to the distance between the points where forces act 
(see Figure 3.9 above). With body suspension by springs and dampers, a second- 
order (oscillatory or critically damped) rotational motion can be expected. Very of-
ten in winter, road conditions are not homogeneous for all wheels. Assume that the 
wheels on one side move on snow or ice while on the other side the wheels run on 
asphalt (MacAdam, concrete). This yields different friction coefficients and thus 
different braking forces on both sides of the vehicle. Since total friction has de-
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creased, the measured longitudinal deceleration (ax < 0) will be lower than ex-
pected. However, due to the torque developed by the different braking forces on 
both sides of the vehicle, there also will be a rotational onset around the vertical 
axis and maybe a slight banking (rolling) motion around the longitudinal axis. This 
situation is rather common, and therefore, one standard automotive test procedure 
is the so-called “ -split braking” behavior of vehicles (testing exactly this). 

Because of the importance of these effects for safe driving, they have to be 
taken into account in visual scene interpretation. The 4-D approach to vision has 
the advantage of allowing us to integrate this knowledge into visual perception 
right from the beginning. Typical motion behaviors are represented by generic 
models that are available to the recursive estimation processes for prediction–error 
feedback when interpreting image sequences (see Chapter 6). This points to the 
fact that humans developing dynamic vision systems for ground vehicles should 
have a good intuition with respect to understanding how vehicles behave after spe-
cific control inputs; maybe they should have experience, at least to some degree, in 
test driving. 

3.4.5.1 Longitudinal Road Vehicle Guidance 

The basic differential equation for locomotion in longitudinal degrees of freedom 
(dof) has been given in a coarse form in Equation 3.8. However, longitudinal dof 
encompass one more translation (vertical motion or “heave”), dominated by Earth 
gravity, and an additional rotation (pitch) around the y-axis (parallel to the rear 
axle and going through the cg).  

Vertical curvature effects: Normally, Earth gravity (g  9.81 m/s²) keeps the 
wheels in touch with the ground and the suspension system compressed to an aver-
age level. On a flat horizontal surface, there will be almost no vertical wheel and 
body motion (except for acceleration and deceleration). However, due to local sur-
face slopes and curvatures, the vertical forces on a wheel will vary individually. 
Depending on the combination of local slopes and bumps, the vehicle will experi-
ence all kinds of motion in all degrees of freedom. Roads are designed as networks 
of surface “bands” having horizontal curvatures (in vertical projection) in a limited 
range of values. However, for the vertical components of the surface, minimal cur-
vatures in both lateral and longitudinal directions are attempted by road building. 
In hilly terrain and in mountainous areas, vertical curvatures CV may still have 
relatively large values because of the costs of road building. This will limit top 
speed allowed on hilly roads since at the lift-off speed VL, the centrifugal accelera-

tion will compensate for gravity. From 2
L VV C g there follows 

/L VV g C . (3.23)

Driving at higher speed, the vehicle will lift off the ground (lose instant controlla-
bility). Only a small fraction of weight is allowed to be lost due to vertical cen-
trifugal forces V²·CV for safe driving. At V = 30 m/s (108 km/h), the vertical radius 
of curvature for liftoff will be RV = 1/CV  92 m; to lose at most 20% of normal 
weight as contact force, the maximal vertical radius of curvature would be 450 m. 
Going cross-country at 5 m/s (18 km/h), local vertical radii of curvature of about 
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2.5 m would have the local (say, the front) wheels leave the ground. Since, in gen-
eral, there will be forces on the rear wheels, pitch acceleration downward will also 
result. These are conditions well-known from rallye-driving. Vertical curvatures 
can be recognized by vision in the look-ahead range so that these dynamic effects 
on vehicle motion can be foreseen and will not come by surprise.  

Autonomous vehicles going cross-country have to be aware of these conditions 
to select proper speed as well as the shape and location of the track for steering. 
This is a complex optimization task: On the tracks, for the wheels on both sides of 
the vehicle the vertical surface profiles have to be recognized at least approxi-
mately correctly. From this information, the vertical and rotational perturbations 
(heave, pitch, and roll) to be expected can be estimated. Since lateral control leaves 
a degree of freedom in the curvature of the horizontal track through steering, a 
compromise allowing a safe trajectory at a good speed with acceptable perturba-
tions from uneven terrain has to be found. This will remain a challenging task for 
some time to come.  

Slope effects on longitudinal motion: Figure 3.18 is a generalization of the hori-
zontal case with acceleration, shown in Figure 3.8, to the case of driving on terrain 
that slopes in the driving direction. Now, the all dominating gravity vector has a 
component of magnitude (m · g · sin ) in the driving direction. Going uphill, it will 

oppose vehicle acceleration, 
and downhill it will push in the 
driving direction. It will be 
measured by an accelerometer 
sensitive in this direction even 
when standing still. In this case, 
it may be used for determining 
the orientation in pitch of the 
vehicle body. Also when driv-
ing, this part will not corre-
spond to real vehicle accelera-
tion (dV/dt) relative to the 
environment. The gravity com-
ponent has to be subtracted 

from the reading of the accelerometer (sensor signal) for interpretation. The effect 
of slopes on speed control is tremendous for normal road vehicles. Uphill, speeds 
achievable are much reduced; for example, a vehicle of 2000 kg mass driving at 20 
m/s on a slope of 10% (5.7°) needs  40 kW power just for weight lifting. Going 
downhill, at a slope angle of 11.5° the braking action has to correspond to 0.2 · g in 
order not to gain speed. 

Axle distance “a”

p

Driving not in the direction of maximum slope (angle  relative to gradient di-
rection) will complicate the situation, since there will be a lateral force component 
acting in addition to the longitudinal one. Note that the longitudinal component 
aLon will remain almost constant for small deviations  from the gradient direc-
tion (cosine-effect cos  1 up to 15°, that is, aLon agrad = g · sin ), while the 
lateral component will increase linearly according to the sine of the relative head-
ing angle  (alat g · sin  · sin , yielding  0.2 g · sin  for an angle  of 
11.5°). At  = 45° (midway between the vertical gradient and horizontal direc-

Figure 3.18. Longitudinal acceleration compo-
nents going uphill: Forces, torques, and orienta-
tion changes in pitch 
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tion), both longitudinal and lateral components of gravity acceleration will be 0.7 · 
agrad , yielding a sum of the components of  141% of agrad. These facts lead to the 
rule that going uphill or downhill should preferably be done in gradient direction, 
especially since the width of the vehicle track, usually, is smaller than the axle dis-
tance so that the danger of toppling over after hitting a perturbation is minimized. 

Horizontal longitudinal acceleration capabilities: An essential component for 
judging vehicle performance is the acceleration capability from one speed level to 
another, measured in seconds. Standard tests for cars are acceleration from rest to 
100 km/h and from 80 to 120 km/h (e.g., for passing). Assuming a constant accel-
eration level of “1 g” (9.81 m/s²) would yield 2.83 seconds from 0 to 100 km/h. 
Since the friction coefficient is, usually, less than 1, this value may be considered a 
lower limit for the acceleration time from 0 to 100 km/h of very-high-performance 
vehicles. Racing cars with downward aerodynamic lift can exploit higher normal 
forces on the tires and thus higher acceleration levels at higher speeds if engine 
power permits. Today’s premium cars typically achieve values from 4 to 8 sec-
onds, while standard cars and vans show values between 10 and 20 seconds from 0 
to 100 km/h.  

Figure 3.19 shows test results of our test vehicle VaMoRs, a 5-ton van with top 
speed of around 90 km/h (  25 m/s). It needed about 40 s to accelerate from 1.5 to 
10 m/s (left plot) and  55 s from 13 to 20 m/s (right-hand plot). The approach of 
top speed is very slow (as usual in low-powered vehicles). Taking the throttle posi-
tion back decelerates the vehicle at a rate of about 0.3 m/s² at 10 m/s (left) and 
about 0.45 m/s² at 20 m/s (right). To achieve higher deceleration levels, the brakes 
have to be used. 

Braking capability: A big advantage of ground vehicles as compared to aquatic or 
air vehicles is the fact that large deceleration forces can easily be generated by 
braking. Modern cars on dry surfaces achieve braking decelerations close to “– 1g”
(gravity acceleration). This corresponds to a braking distance of about 38.6 m (in 
2.83 s) from V = 100 km/h to halt. Here the friction coefficient is close to 1, and 

the measured total acceleration magnitude including gravity is 2 g  (45° down-

ward to the rear). It is immediately clear that all objects lying loosely in the vehicle 
body will experience a large acceleration relative to the body; therefore, they have 

Figure 3.19. Speed over time as a step response to throttle setting: Experimental results 
for test vehicle VaMoRs, 5-ton van [ Brüdigam 1994] 
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to be fastened to the vehi-
cle body (e.g., by seat 
belts or nets). On most re-
alistic surfaces, decelera-
tion will certainly be 
smaller. In normal traffic 
conditions, a realized fric-
tion coefficient of  = 0.5 
is considered harsh brak-
ing (deceleration ax 5
m/s², that is, from 100 
km/h to a stop in 5.56 s). 
Figure 3.20 shows the 

components for judging the dynamic effects of braking. 
Since the center of gravity is at elevation hcg above the point where the braking 

forces of the wheels attack (Fbf at front and Fbr at the rear wheels in the contact re-
gion with the ground), there will be an additional torque in the vertical plane, coun-
teracted initially by the moment of inertia in pitch ( Iy·d² /dt²). This leads to a 

downward pitch acceleration (with Iy = m · iy²) via of 2 2/cg x yh m a I d dt

2 2         / / .cg x yd dt h a i2 (3.24)

Now, due to the suspension system of the body relative to the wheels with 
springs and damping elements, vertical forces Vf in wheel suspension will build 
up, counteracting the torque from the braking forces. Spring force components Vf

are proportional to vertical displacements (fz · z ~ ), and damping force compo-
nents are proportional to displacement speed (d( z)/dt ~ d /dt). Usually, the result-
ing motion will be a damped rotational oscillation (second–order system). Since 
this immediately affects vision when the cameras are mounted directly on the vehi-
cle body, the resulting visual effects of (self-initiated) braking actions should be 
taken into account at all interpretation levels. This is the reason that expectations of 
motion behavior are so beneficial for vision with its appreciable, unavoidable delay 
times of several video cycles.  

In a steady deceleration phase ( ax = constant), the corresponding change in 
pitch angle b can be determined from the equilibrium condition of the additional 
horizontal and vertical forces acting at axle distance a, taking into account that the 
vertical motion at the axles is b·a/2 = z (cg at a/2) and cg x fh m a  a V

which yields b / 2za f a

2
b  = [2 /( )]  cg z x b xh m f a a p a (3.25)

The term in brackets is a proportionality factor pb between constant linear decel-
eration ( ax) and resulting stationary additional pitch angle b (downward positive 
here). The time history of  after braking control initiation will be constrained by a 
second-order differential equation taking into account the effects discussed in con-
nection with Equation 3.24. In visual state estimation to be discussed in Chapter 9, 
this knowledge will be taken into account; it is directly exploited in the recursive 
estimation process. Figure 3.21 shows, in the top left graph, the pitch rate response 
to a step input in acceleration. The softness of the suspension system in combina-

Figure 3.20. Deceleration by braking: Forces, torques, 
and orientation change in pitch 
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tion with inertia of the body lead to the oscillation extending to almost 2 seconds 
after the change in control input. The general second-order dynamic model for an 
arbitrary excitation f [ax (t)] for braking is given by 

2 2/ / [Sp xd dt D d dt f f a t( )].

2

(3.26)

Since the eigenfrequency of the vehicle does not change over time and since it is 
characteristic of the vehicle in a given loading state, this oscillation over as many 
as 50 video cycles can be expected for a certain control input. This alleviates image 
sequence interpretation when properly represented in the perception system. 

Pitching motion due to partial loss of wheel support: This topic would also fit 
under “vertical curvature effects” (above). However, the eigenmotion in pitch after 
a step input in wheel support may be understood more easily after the step input in 
deceleration has been discussed. Figure 3.22 shows a vehicle that just lost ground 

under the front wheels 
due to a negative step 
input of the supporting 
surface while driving at 
a certain speed. 
The weight (m · g) of the 
vehicle together with the 
forces at the rear axle 
will produce both a 
downward acceleration 
of the cg and a rotational 
acceleration around the 
cg. The relations given 
at the bottom of the fig-

ure (including D’Alembert inertial forces and moments) yield the differential equa-
tion

2 2 2 2/ ( / 4 ) /yd dt a i g a . (3.27)

Normalizing the inertial radius iy by half the axle distance a/2 to the non-
dimensional inertial radius iyN finally yields the initial rotational acceleration 

/dt
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Figure 3.21. Simulation of vehicle suspension model: Pitch rate (top left) and heave re-
sponse (top right) of ground vehicle suspension after step input in acceleration (center) 
as well as the height profile of the ground (bottom)

Figure 3.22. Pitch and downward acceleration after losing 
ground contact with the front wheels (cg assumed at cen-
ter of axle distance) 
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2 2 2/ 2 /[ (1 yNd dt g a i )] . (3.28)

 With iyN in the range of 0.8 to 0.9, usually, and axle distances between 2 and 
3.5 m for cars, angular accelerations to be expected are in the range from about 6 to 
12 rad/s², that is 350 to 700°/s squared resulting in a build–up of  angular speed of 
about 14 to 28°/s per video cycle time of 40 ms. Inertial sensors will immediately 
measure this crisply way, while image interpretation will be confused initially; this 
is a strong argument in favor of combined inertial/visual dynamic scene interpreta-
tion. Nature, of course, has discovered these complementarities early and continues 
to use them in vertebrate type vision. Figure 3.21 has shown pitch rate and heave 
motion after a step input in surface elevation in the opposite direction in the top 
two graphs (right-hand part); the response extends over many video cycles (~ 1.5 
seconds, i.e., about 35 cycles). Due to tire softness, the effects of a positive or 
negative step input will not be exactly the same, but rather similar, especially with 
respect to duration. 

Pitching and rolling motion due to wheel – ground interaction: A very general 
approach to combined visual/inertial perception in ground vehicle guidance  would 
be to mount linear accelerometers in the vertical direction at each suspension point 
of the (four) wheels and additional angular rate sensors around all body axes. The 
sum of the linear accelerations measured, integrated over time, would yield heave 
motion. Integrals of pairwise sums of accelerometer signals (front vs. rear and left 
vs. right-hand side) would indicate pitch and roll accelerations which could then be 
fused with the rate sensor data for improved reliability. Their integral would be 
available with almost no time delay compared to visual interpretation and could be 
of great help when driving in rough terrain, since at least the high-frequency part of 
the body orientation would be known for visual interpretation. The (low-
frequency) drift errors of inertial integrals can be removed by results from visual 
perception.  

Remember the big difference between inertial and visual data interpretation: In-
ertial data are “lead” signals (measured time derivatives) containing the influence 
of all kinds of perturbations, while visual interpretation relies very much on models 
containing (time-integrated) state variables. In vision, perturbations have to be dis-
covered “in hindsight” when assumptions made do not show up to be valid (after 
considerable delay time).   

3.4.5.2 Lateral Road Vehicle Guidance 

To demonstrate some dynamic effects of details in modeling of the behavior of 
road vehicles, the lane change maneuvers with the so-called “bicycle model” (see 
Figure 3.10) of a different order are discussed here. First, let us consider an ideal-

ized maneuver (completely decoupled translational motion and no rotations). Ap-
plying a constant lateral acceleration ay (of, say, 2 m/s²) in a symmetrical positive 
and negative fashion, we look for the time TLC in which one lane width WL of 3.6 
m can be traversed with lateral speed vy back to zero again at the end. One obtains 

2 /LC LT W ya . (3.29)
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For the data mentioned, the lane change time is TLC = 2.68 seconds, and the 
maximum speed at the center of the idealized maneuver is vymaxLCi {t = TLC/2} = 
2.68 m/s. Since Ackermann steering is nonholonomic, real cars cannot perform this 
type of lane change maneuver; however, it is nice as a reference for realizable ma-
neuvers to be discussed in the following. For ay = 4 m/s², lane change time would 
be 1.9 seconds and maximum lateral speed vy (TLC/2) = 3.8 m/s. 

Fifth-order dynamic model for lateral road vehicle guidance: The very busy 
Figure 3.23 shows the basic properties of a simple but full order (linear) bicycle 

model, taking combined tire forces from both the left- and right-hand side as well 
as translational and rotational dynamics into account. [The full model with all 
nonlinearities and separately modeled dynamics for the wheel groups and the body 
is too complex to allow analytical solutions; these are used in numerical simula-
tions.] Here, interest lies in some major effects of lateral maneuvering for turns and 
lane changes. More involved models may be found in [Mitschke 1990; Giampiero 
2007].

Inertial reference direction

Side forces on the wheels (index y) are generated by introducing an angle of at-
tack at the front wheel(s) through a steering angle . Tires may be considered to act 
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as springs in the lateral direction with an approximately linear characteristic for 
small angles of attack (| | <  3°); only this regime is considered here. For the test 
vehicle VaMoRs, this allows lateral accelerations up to about 0.4 g = 4 m/s² in the 
linear range. 

With kT as the lateral tire force coefficient linking vertical tire force FN = mWL·g
(wheel load due to gravity) via angle of attack to lateral tire force Fy, there follows 

;           .yf T f Nf yr T r NrF k F F k F (3.30)

If the vehicle weight is distributed almost equally onto all wheels of a four-
wheel vehicle, mWL is close to one quarter of total vehicle mass; in the bicycle 
model, it is close to one half the total mass both on the front and rear axle. Defin-
ing the mass related lateral force coefficient kltf

/( )  (in m/s²/rad)ltf y WL f Tk F m k g , (3.31)

and multiplying this coefficient with both the actual wheel load (in terms of mass) 
and the angle of attack yields the lateral tire force Fy. The sum of all torques (in-
cluding the inertial D’Alembert-term with Iz = m · iz² as the moment of inertia 
around the vertical axis) yields (see Figure 3.23)  

( sin cos )z yr r xf yfI F l F F lf 0 . (3.32) 

The force balance normal to the vehicle body yields with d /dt = d /ds · ds/dt = 
(curvature C of the trajectory driven times speed V), and thus with the centrifugal 
force at the cg: C ·V² = m· V· d /dt

/ cos / sin

                  sin cos 0.yr xf yf

m V d dt m d dt

F F F (3.33) 

From the center of Figure 3.23, it can be seen that trajectory heading  is the 
sum of vehicle body heading  and side slip angle  (  =  + ) and thus 

/ / /d dt d dt d dt. (3.34) 
For small angles of attack at the wheels, the following relations hold after 

[Mitschke 1990]:

/ / ;           / /f f rd dt l V d dt l Vr
. (3.35) 

For further simplification of the relations, the cg is assumed to lie at the center 
between the front and rear axles (lf = lr = a/2), so that half of the vehicle mass rests 
on each axle (wheel of bicycle model: FNr = FNf = mg/2). Then, the following lin-
ear fifth-order dynamic model for lateral control of a vehicle with Ackermann-
steering at constant speed and with the state vector xLa (steering angle , inertial 
yaw rate d /dt, slip angle , body heading angle , and lateral position y) results: 

T
Lax   [ ,   ,   ,   ,   ]y . (3.36) 

With the following abbreviations: 
2 2

2

[ /( / 2)] ;     

/ ;     and    

/ ,

zB z

zB ltf

ltf

i i a

T V i k

T V k

(3.37) 

the set of first-order differential equations is written 
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10 0 0 0 0

0/( ) 1/ 0 0 0

01/(2 ) 1 1/ 0 0

00 1 0 0 0

00 0 0
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V aT T
d

uT T
dt

y yV V

t                            x     b d d .La t

 (3.38) 

For the test vehicle VaMP, a 240 kW (325 HP) powered sedan Mercedes 500 
SEL, the parameters involved are (average representative values) m = 2650kg (that 
is, mWL = m/2 = 1325 kg for the bicycle model), kT = 96 kN/rad, Iz = 5550 kg m²; 
and a = 3.14 m. This leads to izB² = 0.85 and kltf  72 (m/s² per rad) = 1.25 (m/s² per 
degree wheel angle of attack), and finally to the following speed-dependent time 
constants for lateral motion (V in m/s):  

/ 84.7 0.01389  ( ) ,

/ 72   0.0118  ( ).

T V V s

T V V s
(3.39) 

These values as a func-
tion of speed V already 
have been shown in Figure 
3.11 for the test vehicle 
VaMP (top right). They in-
crease up to values of 0.9 
seconds at maximum 
speed. The block diagram 
corresponding to Equation 
3.38 is shown in Figure 
3.24.  

From the fact that the 
systems dynamics matrix 

 has only zeros above the 
diagonal and the negative 

inverse values of the two time constants on the diagonal, the specialist in systems 
dynamics immediately recognizes that the system has three eigenvalues at the ori-
gin of the Laplace-transform “s”-plane (integrators) and two first-order subsystems 
with eigenvalues as inverse time constants on the negative real axis; the corre-
sponding time histories are exponentials of the natural number e = 2.71828 of the 
form ci · exp( t/Ti). Since the maximum speed of VaMP is 70 m/s, the eigenvalue 

1/T  will range from  to 1 s 1. Since amplitudes of first-order systems have 
diminished to below 5% in the time range of three time constants, it can be seen 
that for speeds above about 1 m/s (  3.6 km/h), the dynamic effects should be no-
ticeable in image sequence analysis at video rate (40 ms cycle time). On the other 
hand, four video cycles (160 ms) are typical delay times for recognition of complex 
scenes by vision including proper reaction so that up to speeds of 4 m/s (  14 
km/h), neglecting the dynamic effects may be within the noise level (1/T 3  18 
s 1).

Figure 3.24. Block diagram of fifth-order (bicycle) 
model for lateral control of road vehicles taking rota-
tional dynamics around the vertical axis into account 
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The eigenfrequency of human 
arms and legs is in the 2 Hz range (
= 12.6 s-1) so that the first-order de-
lay effects at lower speeds will 
hardly be noticeable by humans too. 
However, when speed increases, 
there will be strong dynamical ef-
fects. This will be shown with an 
idealized maneuver: The doublet as 
shown in Figure 3.12 is redrawn in 
Figure 3.25 on an absolute timescale 
with control output beginning at zero. 
From Table 3.2, it can be seen that 
time T2, in which a preset accelera-
tion limit can be reached with con-
stant control output A, decreases rap-
idly with speed V. Let us, therefore, 
look at the limiting case for the dou-
blet when its duration 2  goes to 
zero.

The doublets in Figure 3.25 can be 
generated as a sum of three step func-

tions. From 0 to  the only step function u1(t) = A’·1(t) is active; from  to 2  a su-
perposition of two step functions, the second one delayed by , yields u2(t) = 
A’·[1(t) – 2·1(t – )]. For the third phase from 2  forward, the previous function 
plus a step delayed by 2  is valid: u(t) = u2(t) + A’· 1(t – 2 ). 

This yields the control input time history of superimposed delayed step func-
tions shown in the figure, which can be summarized as control function with the 
two parameters A’ and :

( ) ' [1( ) 2( ) 1( 2 )]u t A t t t . (3.40) 
For making the transition to distribution theory [Papoulis 1962] when the period 

of the doublet  goes to zero, we rewrite the amplitude A’ in Equation 3.40 under 
the side constraint that the product (Ai’· i²) is kept constant when duration i is de-
creased to zero 

2'( , ) /i iA t A i . (3.41) 

This (purely theoretical) time function has a simple description in the frequency 
domain; Equation 3.40 can now be written with A = constant 

2( , )  [1( ) 2 1( ) 1( 2 )] /u t A t t t . (3.42) 

As a two-step difference approximation based on step functions, there follows 
1( ) 1( ) 1( ) 1( 2 )

( , )  
t t t t

u t A . (3.43) 

Recognizing that each expression in the square bracket describes a Dirac impulse 
for  toward 0, nice theoretical results for the (ideal) doublet and doublet responses 
are obtained easily.  

Figure 3.25. Doublet in constant steer rate 
uff (·) = d /dt as control time history over 
two periods  with opposite sign of ampli-
tude ± A’ yields an “ideal impulse” in steer 
angle for heading change and  0

Steering rate d /dt
piecewise constant control input (doublet)

A 2 · 0
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time
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In the (idealized) limit, when  decreases to 0 with the product A’· ² = A kept 
constant (that is, A’ increases strongly, see Figure 3.25), the doublet input function 
becomes the derivative of the Dirac impulse:  

idd 0
0

( ) ( )
lim ( , ) | ( )

t t
u u t t . (3.44) 

This shows that the “idealized” doublet is the second derivative of the step func-
tion and the first derivative of the Dirac impulse; since in the Lapace-domain form-
ing the derivative means multiplication by s, there follows uidd(s) = A·s.

Applying the Laplace transform to Equation 3.38 and grouping terms yields, 
with the initial values xLa(0), 

La La( ) x ( ) ( )  x (0).sI s b u s (3.45) 

As derived in Appendix B.2, the time responses to the idealized doublet in steer-
ing rate uidd(s) = A·s as input are simple products of the transfer function with this 
input function. Figure 3.26 shows results not scaled on the time axis with data for 

the test vehicle VaMP. It can be seen that for small velocities V, the effect of the 
doublet on steering rate is concentrated around t = 0. For higher speeds, the energy 
stored initially in the tires due to their stiffness (spring property) has an effect on 
lateral acceleration over several seconds. Maximal lateral acceleration occurs be-
tween T  and T  (see Figure B.1); the absolute value for the same input amplitude 
A at high speeds is about an order of magnitude larger than at low speeds. This re-
quires adaptation in behavior. The control input A has to be adjusted with speed so 
that the underlying conditions for linearity and for comfort are not violated. 

20

At top speed of V = 70 m/s, about half of the final lateral speed results from this 
effect, while for V = 5 m/s (lowest thin line in bottom figure), this part is negligi-
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Figure 3.26. Lateral acceleration and speed after (an idealized) doublet in steer rate (Dirac 
impulse in steer angle) at t = 0. This leads to a change in driving direction (heading). Due 
to tire dynamics, maximum lateral acceleration occurs at later times (between T  and T )
up to about 1 second after the control input (for VaMP) with increasing forward velocity V
(parameter on curves). Lateral acceleration effects after a steer angle impulse extend over 
more than 100 video cycles with no control activity. At higher driving speeds V, a large 
percentage of the lateral velocity vy develops over time due to dynamic effects from tires 
and rotational motion. 
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ble. These differences in dynamic behavior have to be taken into account when 
computing expectations after a control input in steering angle. They play an impor-
tant role in decision-making, for example, when the amplitude of a control input as 
a function of speed driven has to be determined as one of the situational aspects. 

Lane changes with realistic control input: The idealized relations discussed 
above yield a good survey of the basic behavioral properties of road vehicles as a 
function of speed driven. Real maneuvers have to take the saturation effects in 
steering rate into account. Analytical solutions become rather complex for these 
conditions. Simulation results with the nonlinear set of equations are easily avail-
able today. Table 3.4 and Figure 3.27 show some simulation results for a typical 
vehicle. Three different characteristic control input times TC have been selected: 6, 
4, and 2 seconds (column 1, Table 3.4) for two speeds. Column 2 shows the steer-
ing rates leading to a final lateral offset of one lane width (3.75 m) after the tran-
sients have settled, with the other parameters pre–selected (duration of central 0-
input time beside TC).

Table 3.4. Expectations for lane change maneuvers ( y = 3.75 m) with preset control in-
put times according to the 5th-order bicycle model with piecewise constant steering rates 

Column

Speed 
V/km/h

1
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control
time /s 

2

d /dt

/ °/s 

3

max 

/ ° 

4

max

/ ° 

5

max

/ ° 

6

aymax

/ m/s2

7

vymax

/ m/s 

8
state 

transit.  
time /s 
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6

4.4 (c)

It is seen that state transition time (column 8) increases relative to TC with in-
creased speed; the ratio of these times increases with decreasing TC. Figure 3.27a 
(corresponding to row 4 in Table 3.4, maneuver time 6 seconds) shows that the 
state transitions are almost finished when the control input is finished. Figure 3.27b 
(corresponding to row 6 in Table 3.4, maneuver time 2 seconds) shows in the lower 
right part, that maximum (negative) lateral acceleration occurs after control input 
has been finished (is back to 0). The maximum positive acceleration has increased 
4.5-fold compared to a), while the maximal lateral speed has almost doubled. 
Steering rate (column 2) for the 2-second maneuver is 24 times as high as for the 6-
second maneuver while the maximum steering angle increased by a factor of 9 
(column 3). Maximum slip angle (column 5) increases fivefold while the maximum 
heading angles (column 4) differ by a factor of only 2.6. In the short maneuver 
with TC = 2 [1/3 of case a)], state transition needs about twice the control input time 
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(column 8): compared to (a), maneuver time for the complete state transition is re-
duced from 7.9 to 4.4 s (by ~ 45%).  

Inserting a central section of 20% duration (0.4 seconds) with zero control input 
(last row in the table corresponding to Figure 3.27c requires an increase in steering 
rate by about 30% for the same lateral offset yf = 3.75 m at the end of the maneu-
ver. This leads to the same maximal steering angle (column 2) as the case without 
the central 0-input section. However, the maximal values of lateral acceleration 
and of the other state variables ( , , vy) are reduced slightly.  

Figure 3.27. Comparison of lane change maneuvers with fifth-order dynamic model at a 
speed of V = 100 km/h (27.8 m/s) and realistic steer rate inputs. The amplitude A is ad-
justed such that the lateral offset yf is exactly one lane width of 3.75 m after the tran-
sients have settled. Left column shows the variables (over time): d /dt = steer rate  

(        ) in (°/s); angle  (      ); slip angle  (       ) in (°); d /dt = yaw rate (         ) in (°/s), angle 

(       ). Right column the variables (over distance): lateral acceleration ay (       ) in (m/s²) and 

the integral of its magnitude over time (       ); lateral velocity vy (       ), offset y (      ); integral of 

magnitude of ay (dash-dotted line).
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Since perturbations are abundant in road traffic, toward the end of the lane 
change maneuver after taking the new lane as reference for perception, a feedback 
component is superimposed leading to automatic centering in the new lane. This 
also takes care of curvature onsets during the lane change maneuver.

Driving on curved roads: The assumption is made that longitudinal speed V is 
controlled in dependence of road curvature in order not to exceed lateral accelera-
tion limits. Speed acts as a parameter in selecting lateral behaviors as discussed 
above.

The heading angle of the vehicle body with respect to inertial space is desig-
nated by abs and with respect to the local road tangent by rel. Between abs and 

rel is the heading angle of the road . The temporal change in road heading at 
speed V is (see Equation 3.10) 

0d  / d ht C V . (3.46) 

The visually recognizable curvature C0h of the road at the actual location of ve-
hicle cg can be introduced as an additional term in the dynamic model (see Chapter 
6). In the block diagram Figure 3.24 (center top), this has been used to decouple 
local roadrunning from the absolute geodetic direction. Local heading rel times 
speed V yields the lateral speed v on the road. 

With representations like these, the linguistic symbol “lane keeping” is activated 
by organizing the feedback control output computed by Equation 3.22 with a 
proper matrix K to be used for the steering rate -dot. Note that the visually deter-
mined quantities “road curvature C0h”, lateral position in the lane y, relative head-
ing angle rel as well as the conventionally measured value of vehicle speed V are 
used in the closed-loop action-perception cycle taking a dynamic model for the 
motion process into account. It has been shown in linear control theory that com-
plete state feedback yields optimal control laws with respect to a chosen payoff 
function.

This feedback control constitutes the behavioral capability “roadrunning” made 
up of the perceptual capability road (lane) recognition with relative egostate (in-
cluding reconstruction of the slip angle  not directly measurable) and the locomo-
tion capability lane keeping by state feedback. Since visual evaluation of the situa-
tion and control computation as well as implementation take their time (a few 
tenths of a second), this time delay between measurement taking and control output 

has to be taken into account when determining the control output. The spatio-
temporal models of the process allow doing this with well-known methods from 
control engineering. Tuning all the parameters such that the abstract symbolic ca-
pabilities for roadrunning coincide with real-world behavior of subjects is the 
equivalent of “symbol grounding”, often deplored in AI as missing. 

3.4.6 Phases of Smooth Evolution and Sudden Changes 

Similar to what has been discussed for “lane keeping” (by feedback control) and 
for “lane change” (by feed-forward control), corresponding control laws and their 
abstract representation in the system have to be developed for all behavioral capa-
bilities like turningoff, etc. This is not only true for locomotion but also for gaze 
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control in an active vision system. By extending these types of explicit representa-
tions to all processes for perception, decision-making, and mission planning as 
well as mission performance and monitoring, a very flexible overall system will re-
sult. These aspects have been discussed here to motivate the need for both smooth 
parts of mission performance with nice continuity conditions alleviating percep-
tion, and sudden changes in behavior where sticking to the previous mode would 
lead to failure (or probably disaster). 

Efficient dynamic vision systems have to take advantage of continuity condi-
tions as long as they prevail; however, they always have to watch out for disconti-
nuities in motion, both of the subject’s body and of other object observed, to be 
able to adjust readily. For example, a vehicle following the rightmost lane on a 
road can be tracked efficiently using a simple motion model. However, when an 
obstacle occurs suddenly in this lane, for example, a ball or an animal running onto 
the road, there may be a harsh reaction to one side. At this moment, a new motion 
phase begins, and it cannot be expected that the filter tuning for optimal tracking 
remains the same. So the vision process for tracking (similar to the bouncing ball 
example in Section 2.3.2) has two distinctive phases which should be handled in 
parallel.

3.4.6.1 Smooth Evolution of a Trajectory 

Continuity models and low-pass filtering components can help to easily track 
phases of a dynamic process in an environment without special events. Measure-
ment values with high-frequency oscillations are considered due to noise, which 
has to be eliminated in the interpretation process. The natural sciences and engi-
neering have compiled a wealth of models for different domains. The methods de-
scribed in this book have proven to be well suited for handling these cases on net-
works of roads. 

However, in road traffic environments, continuity is interrupted every now and 
then due to initiation of new behavioral components by subjects and maybe by 
weather. 

3.4.6.2 Sudden Changes and Discontinuities 

The optimal settings of parameters for smooth pursuit lead to unsatisfactory track-
ing performance in cases of sudden changes. The onset of a harsh braking maneu-
ver of a car or a sudden turn may lead to loss of tracking or at least to a strong tran-
sient motion estimated, especially so, if delay times in the visual perception 
process are large. If the onsets of these discontinuities could be well predicted, a 
switch in model or tracking parameters at the right time would yield much better 
results. The example of a bouncing ball has already been mentioned.  

In road traffic, the compulsory introduction of the braking (stop) lights serves 
the same purpose of indicating that there is a sudden change in the underlying be-
havioral mode (deceleration). Braking lights have to be detected by vision for de-
fensive driving; this event has to trigger a new motion model for the car at which it 
is observed. The level of braking is not yet indicated by the intensity of the braking 
lights. There are some studies under way for the new LED-braking lights to couple 
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the number of LEDs lighting up to the level of braking applied; this could help 
finding the right deceleration magnitude for the hypothesis of the observed braking 
vehicle and thus reduce transients.  

Sudden onsets of lateral maneuvers are supposed to be preceded by warning 
lights blinking at the proper side. However, the reliability of behaving according to 
this convention is rather low in many parts of the world. 

As a general scheme in vision, it can be concluded that partially smooth sections 
and local discontinuities have to be recognized and treated with proper methods 
both in the 2-D image plane (object boundaries) and on the time line (events). 

3.4.6.3 A Capability Network for Locomotion 

The capability network shows how more complex behaviors depend on more basic 
ones and finally on the actuators available. The timing (temporal sequencing) of 
their activation has to be learned by testing and corresponding feedback of errors 
occurring in the real world. Figure 3.28 shows the capability network for locomo-
tion of a wheeled ground vehicle. Note that some of the parameters determining the 
trigger point for activation depend on visual perception and on other measurement 
values. The challenges of system integration will be discussed in later chapters af-
ter the aspects of knowledge representation have been discussed. 

Figure 3.28. Network of behavioral capabilities of a road vehicle: Longitudinal 
and lateral control is fully separated only on the hardware level with three actua-
tors; many basic skills are realized by diverse parameterized feed-forward and 
feedback control schemes. On the upper level, abstract schematic capabilities as 
triggered from “central decision” are shown [Maurer 2000, Siedersberger 2004]
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3.5 Situation Assessment and Decision-Making

Subjects differ from objects (proper) in that they have perceptual impressions from 
the environment and the capability of decision-making with respect to their control 
options. For subjects, a control term appears in the differential equation constraints 
on their motion activities, which allows them to influence their motion; this makes 
subjects basically different from objects.  

If decisions on control selection are not implicitly given in the code implement-
ing subject behavior, but may be made according to some explicit goal criteria, 
something like free will occurs in the behavior decision process of the subject. Be-
cause of the fundamentally new properties of subjects, these require separate meth-
ods for knowledge representation and for combining this knowledge with actual 
perception to achieve their goals in an optimal fashion (however defined). The col-
lection of all facts of relevance for decision-making is called the situation. It is es-
pecially difficult if other subjects, who also may behave at will to achieve their 
goals, form part of this process; these behaviors are unknown, usually, but may be 
guessed sometimes from reasoning as for own decision-making. 

Some expectations for future behavior of other subjects can be derived from try-
ing to understand the situation as it might look for oneself in the situation supposed 
to be given for the other subject. At the moment, this is beyond the actual state of 
the art of autonomous systems. But the methods under development for the sub-
ject’s decision-making will open up this avenue. In the long run, capabilities of 
situation assessment of other subjects may be a decisive factor in the development 
of really intelligent systems. Subjects may group together, striving for common 
goals; this interesting field of group behavior taking real-world constraints into ac-
count is even further out in the future than individual behavior. But there is no 
doubt that the methods will become available in the long run. 

3.6 Growth Potential of the Concept, Outlook 

The concept of subjects characterized by their capabilities in sensory perception, in 
data processing (taking large knowledge bases for object/subject recognition and 
situation assessment into account), in decision-making and planning as well as in 
behavior generation is very general. Through an explicit representation of these ca-
pabilities, avenues for developing autonomous agents with new mental capabilities 
of learning and cooperation in teams may open up. In preparation for this long-
term goal, representing humans with all their diverse capabilities in this framework 
should be a good exercise. This is especially valuable for mixed teams of humans 
and autonomous vehicles as well as for generating intelligent behavior of these ve-
hicles in environments abounding with activities of humans, which will be the 
standard case in traffic situations.  

In road traffic, other subjects frequently encountered (at least in rural environ-
ments) beside humans are four-legged animals of different sizes: horses, cattle, 
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sheep, goats, deer, dogs, cats, etc.; birds and poultry are two-legged animals, many 
of which are able to fly.  

Because of the eminent importance of humans and four-legged animals in any 
kind of road traffic, autonomous vehicles should be able to understand the motion 
capabilities of these living beings in the long run. This is out into the future right 
now; the final section of this chapter shows an approach and first results developed 
in the early 1990s for recognition of humans. This field has seen many activities 
since the early work of Hogg (1984) in the meantime and has grown to a special 
area in technical vision; two recent papers with application to road traffic are [Ber-
tozzi et al. 2004; Franke et al. 2005] 

3.6.1 Simple Model of Human Body as Traffic Participant 

Elaborate models for the motion ca-
pabilities of human bodies are avail-
able in different disciplines of physi-
ology, sports, and computer 
animation [Alexander 1984; Bruderlin, 
Calvert 1989; Kroemer 1988]. Humans 
as traffic participants with the behav-
ioral modes of walking, running, rid-
ing bicycles or motor bikes as well as 
modes for transmitting information 
by waving their arms, possibly with 
additional instruments, show a much 
reduced set of stereotypical move-
ments. Kinzel (1994a, b), therefore, se-
lected the articulated body model 
shown in Figure 3.29 to represent 
humans in traffic activities in connec-
tion with the 4-D approach to dy-
namic vision. Visual recognition of 
moving humans becomes especially 
difficult due to the vast variety of 
clothing encountered and of objects 
carried. For normal Western style 

clothing the cyclic activities of extremities are characteristic of humans moving. 
Motion of limbs should be separated from body motion since they behave in dif-
ferent modes and at different eigenfrequencies, usually. 
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Figure 3.29. Simple generic model for hu-
man shape with 22 degrees of freedom, af-
ter [Kinzel 1994]

 Limbs tend to be used in typical cyclic motion, while the body moves more 
steadily. The rotational movements of limbs may be in the same or in opposite di-
rection depending on the style and the phase of grasping or running. 

Figure 3.30 shows early results achieved with the lower part of the body model 
from Figure 3.29; cyclic motion of the upper leg (hip angle, amplitude  60°, upper 
graph) and the lower leg (knee angle, amplitude  100°, bottom graph) has been 
recognized roughly in a computer simulation with real-time image sequence 
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Fig. 3.31. Quantitative recognition of motion parameters of a human leg while 
running: simulation with real image sequence processing (after [Kinzel 1994]).

Figure 3.30. Quantitative recognition of motion parameters of a human 
leg while running: simulation with real image sequence processing, after 
[Kinzel 1994]. 

evaluation and tracking. At that time, microprocessor resources were not sufficient 
to do this onboard a car in real time (at least a factor of 5 was missing). In the 
meantime, computing power has increased by more than two orders of magnitude 
per processor, and human gesture recognition has attracted quite a bit of attention. 
Also the wide-spread activities in computer animation with humanoid robots, and 
especially the demanding challenge of the humanoid robo-cup league have ad-
vanced this field considerably, lately.  

From the field last-mentioned and from analysis of sports as well as dancing ac-
tivities there will be a pressure towards automatically recognizing human (-oid) 
motion. This field can be considered developing on its own; application within 
semi-autonomous road or autonomous ground vehicles will be more or less a side 
product. The knowledge base for these application areas of ground vehicles has to 
be developed as a specific effort, however. In case of construction sites or accident 
areas with human traffic regulation, future (semi-) autonomous vehicles should 
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also have the capability of proper understanding of regulatory arm gestures and of 
proper behavior in these unusual situations. Recognizing grown-up people and 
children wearing various clothing and riding bicycle or carrying bulky loads will 
remain a challenging task.  

3.6.2 Ground Animals and Birds 

Beside humans, two superclasses of other animals play a role in rural traffic: Four-
legged animals of various sizes and with various styles of running, and birds (from 
crows, hen, geese, turkeys, to ostrich), most of which can fly and run or hop on the 
ground. This wide field of subjects has hardly been touched for technical vision 
systems. In principle, there is no basic challenge for successful application of the 
4-D approach. In practice, however, a huge volume of work lies ahead until techni-
cal vision systems will perceive animals reliably. 



4  Application Domains, Missions, and Situations 

In the previous chapters, the basic tools have been treated for representing objects 
and subjects with homogeneous coordinates in a framework of the real 3-D world 
and with spatiotemporal models for their motion. Their application in combination 
with procedural computing methods will be the subject of Chapters 5 and 6. The 
result will be an estimated state of single objects/subjects for the point “here and 
now” during the visual observation process. These methods can be applied multiple 
times in parallel to n objects in different image regions representing different spa-
tial angles of the world around the set of cameras.  

Vision is not supposed to be a separate exercise of its own but to serve some 
purpose in a task or mission context of an acting individual (subject). For deeper 
understanding of what is being seen and perceived, the goals of egomotion and of 
other moving subjects as well as the future trajectories of objects tracked should be 
known, at least vaguely. Since there is no information exchange between oneself 
and other subjects, usually, their future behavior can only be hypothesized based 
on the situation given and the behavioral capabilities of the subjects observed. 
However, out of the set of all objects and subjects perceived in parallel, generally 
only a few are of direct relevance to their own plans of locomotion.  

To be efficient in perceiving the environment, special attention and thus percep-
tual resources and computing power for understanding should be concentrated on 
the most important objects/subjects. The knowledge needed for this decision is 
quite different from that one needed for visual object and state recognition. The de-
cision has to take into account the mission plan and the likely behavior of other 
subjects nearby as well as the general environmental conditions (like quality of 
visual perception, weather conditions and likely friction coefficient for maneuver-
ing, as well as surface structure). In addition, the sets of rules for traffic regulation 
valid in the part of the world, where the vehicle is in operation, have to be taken 
into account. 

4.1  Structuring of Application Domains 

To survey where the small regime, onto which the rest of the book will be concen-
trating, fits in the overall picture, first (contributions to) a loosely defined ontology 
for ground vehicles will be given. Appendix A shows a structured proposal which, 
of course, is only one of many possible approaches. Here, only some aspects of 
certain missions and application domains are discussed to motivate the items se-
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lected for presentation in this book. An all-encompassing and complete ontology 
for ground vehicles would be desirable but has not yet been assembled in the past. 

From the general environmental conditions grouped under A.1, up to now only 
a few have been perceived explicitly by sensing, relying on the human operator to 
take care for the rest. More autonomous systems have to have perceptual capabili-
ties and knowledge bases available to be able to recognize more of them by them-
selves. Contrary to humans, intelligent vehicles will have much more extended ac-
cess to satellite navigation (such as GPS now or Galileo in the future). In 
combination with digital maps and geodetic information systems, this will allow 
them improved mission planning and global orientation. 

Obstacle detection both on roads and in cross-country driving has to be per-
formed by local perception since temporal changes are too fast, in general, to be re-
liably represented in databases; this will presumably also be the fact in the future. 
In cross-country driving, beside the vertical surface profiles in the planned tracks 
for the wheels, the support qualities of the ground for wheels and tracks also have 
to be estimated from visual appearance. This is a very difficult task, and decisions 
should always be on the safe side (avoid entering uncertain regions).  

Representing national traffic rules and regulations (Appendix A.1.1) is a 
straightforward task; their ranges of validity (national boundaries) have to be 
stored in the corresponding databases. One of the most important facts is the gen-
eral rule of right- or left-hand traffic. Only a few traffic signs like stop and one-way
are globally valid. With speed signs (usually a number on a white field in a red cir-
cle) the corresponding dimension has to be inferred from the country one is in 
(km/h in continental Europe or mph in the United Kingdom or the United States, 
etc.).

Lighting conditions (Appendix A.1.2) affect visual perception directly. The dy-
namic range of light intensity in bright sunshine with snow and harsh shadows on 
dark ground can be extremely large (more than six orders of magnitude may be en-
countered). Special high-dynamic-range cameras (HDRC) have been developed to 
cope with the situation. The development is still going on, and one has to find the 
right compromise in the price-performance trade-off. To perceive the actual situa-
tion correctly, representing the recent time history of lighting conditions and of po-
tential disturbances from the environment may help. Weather conditions (e.g., blue 
skies) and time of day in connection with the set of buildings in the vicinity of the 
trajectory planned (tunnel, underpass, tall houses, etc.) may allow us to estimate 
expected changes which can be counteracted by adjusting camera parameters or 
viewing directions. The most pleasant weather condition for vision is an overcast 
sky without precipitation. 

In normal visibility, contrasts in the scene are usually good. Under foggy condi-
tions, contrasts tend to disappear with increasing distance. The same is true at dusk 
or dawn when the light intensity level is low. Features linked to intensity gradients 
tend to become unreliable under these conditions. To better understand results in 
state estimation of other objects from image sequences (Chapters 5 and 6), it is 
therefore advantageous to monitor average image intensities as well as maximal 
and minimal intensity gradients. This may be done over entire images, but comput-
ing these characteristic values for certain image regions in parallel (such as sky or 
larger shaded regions) gives more precise results.  



4.1  Structuring of Application Domains      113 

It is recommended to have a steady representation available of intensity statis-
tics and their trends in the image sequence: Averages and variances of maximum 
and minimum image intensities and of maximum and minimum intensity gradients 
in representative regions. When surfaces are wet and the sun comes out, light re-
flections may lead to highlights. Water surfaces (like puddles) rippled by wind may 
exhibit relatively large glaring regions which have to be excluded from image in-
terpretation for meaningful results. Driving toward a low standing sun under these 
conditions can make vision impossible. When there are multiple light sources like 
at night in an urban area, regions with stable visual features have to be found al-
lowing tracking and orientation by avoiding highlighted regions.  

Headlights of other vehicles may also become hard to deal with in rainy condi-
tions.  Backlights and stoplights when braking are relatively easy to handle but re-
quire color cameras for proper recognition. In RGB-color representation, stop 
lights are most efficiently found in the R-image, while flashing blue lights on vehi-
cles for ambulance or police cars are most easily detected in the B-channel. Yellow 
or orange lights for signaling intentions (turn direction indicators) require evalua-
tion of several RGB channels or just the intensity signal. Stationary flashing lights 
at construction sites (light sequencing, looking like a hopping light) for indication 
of an unusual traffic direction require good temporal resolution and correlation 
with subject vehicle perturbations to be perceived correctly. 

Recognition of weather conditions (Appendix A.1.3) is especially important 
when they affect the interaction of the vehicle with the ground (acceleration, decel-
eration through friction between tires and surface material). Recognizing and ad-
justing behavior to rain, hail, and snow conditions may prevent accidents by cau-
tious driving. Slush and loose or wet dirt or gravel on the road may have similar 
effects and should thus be recognized. Heavy winds and gusts can have a direct ef-
fect on driving stability; however, they are not directly visible but only by secon-
dary effects like dust or leaves whirling up or by moving grass surfaces and plants 
or branches of trees. Advanced vision systems should be able to perceive these 
weather conditions (maybe supported by inertial sensors directly feeling the accel-
erations on the body). Recognizing fine shades of texture may be a capability for 
achieving this; at present, this is beyond the performance level of microprocessors 
available at low cost, but the next decade may open up this avenue. 

Roadway recognition (Appendix A.2) has been developed to a reasonable state 
since recursive estimation techniques and differential geometry descriptions have 
been introduced two decades ago. For freeways and other well-kept, high-speed 
roads (Appendices A.2.1 and A.2.2), lane and road recognition can be considered 
state of the art. Additional developments are still required for surface state recogni-
tion, for understanding the semantics of lane markings, arrows, and other lines 
painted on the road as well as detailed perception of the infrastructure along the 
road. This concerns repeating poles with different reflecting lights on both sides of 
the roadway, the meaning of which may differ from one country to the next, and 
guiderails on road shoulders and many different kinds of traffic and navigation 
signs which have to be distinguished from advertisements. On these types of roads 
there is only unidirectional traffic (one-way), usually, and navigation has to be 
done by proper lane selection. 
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On ordinary state roads with two-way traffic (Appendix A.2.3) the perceptual 
capabilities required are much more demanding. Checking free lanes for passing 
has to take oncoming traffic with high speed differences between vehicles and the 
type of central lane markings into account. With speeds allowed of up to 100 km/h 
in each direction, relative speed can be close to 60 m/s (or 2.4 m per video cycle of 
40 ms). A 4-second passing maneuver thus requires about 250 m look-ahead range, 
way beyond what is found in most of today’s vision systems. With the resolution 
required for object recognition and the perturbation level in pitch due to nonflat 
ground, inertial stabilization of gaze direction seems mandatory. 

These types of roads may be much less well kept. Lane markings may be re-
duced to a central line indicating by its type whether passing is allowed (dashed 
line) or not (solid line). To the sides of the road, there may be potholes to be 
avoided; sometimes these may be found even on the road itself. 

On all of these types of road, for short periods after (re-) construction there may 
be no lane markings at all. In these cases, vehicles and drivers have to orient them-
selves according to road width and to the distance from “their” side of the sealed 
surface. “Migrating construction sites” like for lane marking may be present and 
have to be dealt with properly. The same is true for maintenance work or for grass 
cutting in the summer. 

Unmarked country roads (Appendix A.2.4) are usually narrow, and oncoming 
traffic may require slowing down and touching the road shoulders with their outer 
wheels. The road surface may not be well kept, with patches of dirt and high-
spatial frequency surface perturbations. The most demanding item, however, may 
be the many different kinds of subjects on the road: People and children walking, 
running and bicycling, carrying different types of loads or guarding animals. Wild 
animals range from hares to deer (even moose in northern countries) and birds 
feeding on cadavers. 

On unsealed roads (Appendix A.2.5) where speed driven is much slower, usu-
ally, in addition to the items mentioned above, the vertical surface structure be-
comes of increasing interest due to its unstable nature. Tracks impressed into the 
surface by heavily loaded vehicles can easily develop, and the likelihood of pot-
holes (even large ones into which wheels of usual size will fit) requires stereovi-
sion for recognition, probably with sequential view fixation on especially interest-
ing areas.  

Driving cross-country, tracks (Appendix A.2.6) can alleviate the task in that 
they show where the ground is sufficiently solid to support a vehicle. However, 
due to non-homogeneous ground properties, vertical curvature profiles of high spa-
tial frequency may have developed and have to be recognized to adjust speed so 
that the vehicle is not bounced around losing ground contact. After a period of rain 
when the surface tends to be softer than usual, it has to be checked whether the 
tracks are not so deep that the vehicle touches the ground with its body when the 
wheels sink into the track. Especially, tracks filled with water pose a difficult chal-
lenge for decision-making. 

In Appendix A.2.7, all infrastructure items for all types of roads are collected to 
show the gamut of figures and objects which a powerful vision system for traffic 
application should be able to recognize. Some of these are, of course, specific to 
certain regions of the world (or countries). There have to be corresponding data 
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bases and algorithms for recognizing these items; they have to be swapped when 
entering a zone with new regulations.  

In section Appendix A.3 the different types of vehicles are listed. They have to 
be recognized and treated according to their form (shape), appearance and function
of the vehicle (Appendix A.4). This type of structuring may not seem systematic at 
first glance. There is, of course, one column like A.4 for each type of vehicle under 
A.3. Since this book concentrates on the most common wheeled vehicles (cars and 
trucks), only these types are discussed in more detail here. Geometric size and 3-D 
shape (Appendix A.4.1) have been treated to some extent in Section 2.2.3 and will 
be revisited for recognition in Chapters 7 to 10.  

Subpart hierarchies (Appendix A.4.2) are only partially needed for vehicles 
driving, but when standing, open doors and hoods may yield quite different ap-
pearances of the same vehicle. The property of glass with respect to mirroring of 
light rays has a fundamental effect on features detected in these regions. Driving 
through an environment with tall buildings and trees at the side or with branches 
partially over the road may lead to strongly varying features on the glass surfaces 
of the vehicle, which have nothing to do with the vehicle itself. These regions 
should, therefore, be discarded for vehicle recognition, in general. On the other 
hand, with low light levels in the environment, the glass surfaces of the lighting 
elements on the front and rear of the vehicle (or even highlights on windscreens) 
may be the only parts discernible well and moving in conjunction; under these en-
vironmental conditions, these groups are sufficient indication for assuming a vehi-
cle at the location observed.  

Variability of image shape over time depending on the 3-D aspect conditions of 
the 3-D object “vehicle” (Appendix A.3) is important knowledge for recognizing 
and tracking vehicles. When machine vision was started in the second half of the 
last century, some researchers called the appearance or disappearance of features 
due to self-occlusion a “catastrophic event” because the structure of their (insuffi-
cient) algorithm with fixed feature arrangements changed. In the 4-D approach 
where objects and aspect conditions are represented as in reality and where tempo-
ral changes also are systematically represented by motion models, there is nothing 
exciting with the appearance of new or disappearance of previously stable features. 
It has been found rather early that whenever the aspect conditions bring two fea-
tures close to each other so that they may be confused (wrong feature correspon-
dence), it is better to discard these features altogether and to try to find unambigu-
ous ones [Wünsche 1987]. The recursive estimation process to be discussed in 
Chapter 6 will be perturbed by wrong feature correspondence to a larger extent 
than by using slightly less well-suited, but unambiguous features. Grouping re-
gimes of aspect conditions with the same highly recognizable set of features into 
classes is important knowledge for hypothesis generation and tracking of objects. 
When detecting new feature sets in a task domain, it may be necessary to start 
more than one object hypothesis for fast recognition of the object observed. Such 
4-D object hypotheses allow predicting other features which should be easily visi-
ble; in case they cannot be found in the next few images, the hypothesis can be dis-
carded immediately. An early jump to several 4-D hypotheses thus has advantages 
over too many feature combinations before daring an object hypothesis (known as 
a combinatorial explosion in the vision literature). 
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Photometric appearance (Appendix A.4.4) can help in connection with the as-
pect conditions to find out the proper hypothesis. Intensity and color shading as 
well as high resolution in texture discrimination contribute positively to eliminat-
ing false object hypotheses. Computing power and algorithms are becoming avail-
able now for using these region-based features efficiently. The last four sections 
discussed are concerned with single object (vehicle) recognition based on image 
sequence analysis. In our approach, this is done by specialist processes for certain 
object classes (roads and lanes, other vehicles, landmarks, etc.).

When it comes to understanding the semantics of processes observed, the func-

tionality aspects (Appendix A.4.5) prevail. For proper recognition, observations 
have to be based on spatially and temporally more extended representation. Trying 
to do this with data-intensive images is not yet possible today, and maybe even not 
desirable in the long run for data efficiency and corresponding delay times in-
volved. For this reason, the results of perceiving single objects (subjects) “here and 
now” directly from image sequence analysis with spatiotemporal models are col-
lected in a “dynamic object database” (DOB) in symbolic form. Objects and sub-
jects are represented as members of special classes with an identification number, 
their time of appearance, and their relative state defined by homogeneous coordi-
nates, as discussed in Section 2.1.1. Together with the algorithms for homogeneous 
coordinate transformations and shape computation, this represents a very compact 
but precise state and shape description. Data volumes required are decreased by 
two to three orders of magnitude (KB instead of MB). Time histories of state vari-
ables are thus manageable for several (the most important) objects/subjects ob-
served.  

For subjects, this allows recognizing and understanding maneuvers and behav-

iors of which one knows members of this type of subject class are capable (Appen-
dix A.4.6). Explicit representations of perceptual and behavioral capabilities of 
subjects are a precondition for this performance level. Tables 3.1 and 3.3 list the 
most essential capabilities and behavioral modes needed for road traffic partici-
pants. Based on data in the ring-buffer of the DOB for each subject observed, this 
background knowledge now allows guessing the intentions of the other subject. 
This qualitatively new information may additionally be stored in special slots of 
the subject’s representation. Extended observations and comparisons to standards 
for decisions–making and behavior realization now allows attributing additional 
characteristic properties to the subject observed. Together with the methods avail-
able for predicting movements into the future (fast-in-advance simulation), this al-
lows predicting the likely movements of the other subject; both results can be 
compared and assessed for dangerous situations encountered. Thus, real-time vi-
sion as propagated here is an animation process with several individuals based on 
previous (actual) observations and inferences from a knowledge base of their inten-
tions (expected behavior).  

This demanding process cannot be performed for all subjects in sight but is con-
fined to the most relevant ones nearby. Selecting and perceiving these most rele-
vant subjects correctly and focusing attention on them is one of the decisive tasks 
to be performed steadily. The judgment, which subject is most relevant, also de-
pends on the task to be performed. When just cruising with ample time available, 
the situation is different from the same cruising state in the leftmost of three lanes, 
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but an exit at the right is to be taken in the near future. On a state road, cruising in 
the rightmost lane but having to take a turnoff to the left from the leftmost lane 
yields a similar situation. So the situation is not just given by the geometric ar-
rangement of objects and subjects but also depends on the task domain and on the 
intentions to be realized. 

Making predictions for the behavior of other subjects is a difficult task, espe-
cially when their perceptual capabilities (Appendix A.4.7) and those for planning 
and decision-making (Appendix A.4.8) are not known. This may be the case with 
respect to animals in unknown environments. These topics (Appendix A.6) and the 
well-known but very complex appearance and behavior of humans (Appendix A.5) 
are not treated here. 

Appendix A.7 is intended to clarify some notions in vehicle and traffic control 
for which different professional communities have developed different terminol-
ogies. (Unfortunately, it cannot be assumed that, for example, the terms “dynamic 
system” or “state” will be understood with the same meaning by one person from 
the computer science and a second one from the control engineering communities.) 

4.2  Goals and Their Relations to Capabilities 

To perform a mission efficiently under perturbations, both the goal of the mission 
together with some quality criteria for judging mission performance and the capa-
bilities needed to achieve them have to be known.  

The main goal of road vehicle traffic is to transport humans or goods from point 
A to point B safely and reliably, observing some side constraints and maybe some 
optimization criteria. A smooth ride with low values of the time integrals of (longi-
tudinal and lateral) acceleration magnitudes (absolute values) is the normal way of 
driving (avoiding hectic control inputs). For special missions, e.g., on ambulance 
or touring sightseers, these integrals should be minimized.  

An extreme type of mission is racing, exploiting vehicle capabilities to the ut-
most and probably reducing safety by taking more risks. Minimal fuel consumption 
is the other extreme where travel time is of almost no concern. 

Safety and collision avoidance even under adverse conditions and in totally un-
expected situations is the most predominant aspect of vehicle guidance. Driving at 
lower speed very often increases safety; however, on high-speed roads during 
heavy traffic, it can sometimes worsen safety. Going downhill, the additional thrust 
from gravity has to be taken into account which may increase braking distance 
considerably. When entering a crossroad or when starting a passing maneuver on a 
road with two-way traffic, estimation of the speed of other vehicles has to be done 
with special care, and an additional safety margin for estimation errors should be 
allowed. Here, it is important that the acceleration capabilities of the subject vehi-
cle under the given conditions (actual mass, friction coefficient, power reserves) 
are well known and sufficient.  

When passing on high-speed roads with multiple lanes, other vehicles in the 
convoy being passed sometimes start changing into your lane at short distances, 
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without using indication signs (blinker); even these critical situations not conform-
ing to standard behavior have to be coped with successfully. 

4.3  Situations as Precise Decision Scenarios 

The definition for “situation” used here is the following: A situation encompasses 

all aspects of relevance for decision-making in a given scenario and mission con-
text. This includes environmental conditions affecting perception and limit values 
for control application (such as wheel to ground friction coefficients) as well as the 
set of traffic regulations actually valid that have been announced by traffic signs 
(maximum speed allowed, passing prohibited, etc.). With respect to other ob-
jects/subjects, a situation is not characterized by a single relation to one other unit 
but to the total number of objects of relevance. Which of those detected and 
tracked are relevant is a difficult decision. Even the selected regions of special at-
tention are of importance. The objects/subjects of relevance are not necessarily the 
nearest ones; for example, driving at higher speed, some event happening at a far-
ther look-ahead distance than the two preceding vehicles may be of importance: A 
patch of dense fog or a front of heavy rain or snow can be detected reliably at rela-
tively long distance. One should start reacting to these signs at a safe distance ac-
cording to independent judgment and not only when the preceding vehicles start 
their reactions.  

Some situational aspects can be taken into account during mission planning. For 
example, driving on roads heading into the low-standing sun at morning or evening 
should be avoided by proper selection of travel time. Traffic congestion during 
rush hour also may be avoided by proper timing. Otherwise, the driver/autonomous 
vehicle has to perceive the indicators for situational aspects, and from a knowledge 
base, the proper behavior has to be selected. The three components required to per-
form this reliably are discussed in the sections below: Environmental background, 
objects/subjects of relevance, and the rule systems for decision-making. Beside the 
rules for handling planned missions, another set of perceptual events has to be 
monitored which may require another set of rules to be handled for selecting 
proper reactions to these events.  

4.3.1  Environmental Background 

This has not received sufficient attention in the recent past since, at first, the basic 
capabilities of perceiving roads and lanes as well as other vehicles had to be dem-
onstrated. Computing power for including at least some basic aspects of environ-
mental conditions at reasonable costs is now coming along. In Section 4.1 and Ap-
pendix A.1.2 (lighting conditions)/A.1.3 (weather conditions), some aspects have 
already been mentioned. Since these environmental conditions change rather 
slowly, they may be perceived at a low rate (in the range of seconds to minutes). 
An economical way to achieve this may be to allot remaining processing time per 
video cycle of otherwise dedicated image processing computers to this “environ-
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mental processing” algorithm. These low-frequency results should be made avail-
able to all other processes by providing special slots in the DOB and depositing the 
values with proper time stamps. The situation assessment algorithm has to check 
these values for decision-making regularly.  

The specialist processes for visual perception should also have a look at them to 
adjust parameters in their algorithms for improving results. In the long run, a direct 
feedback component for learning may be derived. Perceiving weather conditions 
through textures may be very computer-intensive; once the other basic perception 
tasks for road and other vehicles run sufficiently reliable, additional computing 
power becoming available may be devoted to this task, which again can run at a 
very low rate. Building up a knowledge base for the inference from distributed tex-
tures in the images toward environmental conditions will require a large effort. 
This includes transitions in behavior required for safe mission performance. 

4.3.2  Objects/Subjects of Relevance 

A first essential step is to direct attention (by gaze control and corresponding im-
age evaluation) to the proper environmental regions, depending on the mission 
element being performed. This is, of course, different for simple roadrunning, for 
preparing lane changes, or for performing a turnoff maneuver. Turning off to the 
left on roads with oncoming (right-hand) traffic is especially demanding since their 
lane has to be crossed. 

Driving in urban environments with right-of-way for vehicles on crossroads 
coming from the right also requires special attention (looking into the road). Enter-
ing traffic circles requires checking traffic in the circle, because these vehicles 
have the right-of-way. Especially difficult are 4-way-stops in use in some coun-
tries; here the right-of-way depends on the time of reaching the stop–lines on all 
four incoming roads.  

Humans may be walking on roads through populated areas and in stop-and-go

traffic. On state, urban and minor roads, humans may ride bicycles, may be roller 
skating, jogging, walking, or leisurely strolling. Children may be playing on the 
road. Recognizing these situations with their semantic context is actually out of 
range for machine vision. However, detecting and recognizing moving volumes 
(partially) filled with massive bodies is in the making and will become available 
soon for real-time application. Avoiding these areas with a relatively large safety 
margin may be sufficient for driver assistance and even for autonomous driving. 
Some nice results for assistance in recognizing humans crossing in front of the ve-
hicle (walking or biking) have been achieved in the framework of the project “In-
vent” [Franke et al. 2005].

With respect to animals on the road, there are no additional principal difficulties 
for perception except the perhaps erratic motion behavior some of these animals 
may show. Birds can both move on the ground and lift off for flying; in the transi-
tion period there are considerable changes in their appearance. Both their shapes 
and the motion characteristics of their limbs and wings will change to a large ex-
tent.
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4.3.3  Rule Systems for Decision-Making 

Perception systems for driver assistance or for autonomous vehicle guidance will 
need very similar sets of rules for the perception part (maybe specialized to some 
task of special interest). Once sufficient computing power for visual scene analysis 
and understanding is affordable, the information anyway in the image streams can 
be fully exploited, since both kinds of application will gain from deeper under-
standing of motion processes observed. This tends to favor three separate rule 
bases in a modular system: The first one for perception (control of gaze direction 
and attention) has to be available for both types of systems. In addition, there have 
to be two different sets, one for assistance systems and one for autonomous driving 
(locomotion, see Chapters 13 and 14).  

Since knowledge components for these task domains may differ widely, they 
will probably be developed by different communities. For driver assistance sys-
tems, the human-machine-interface with many psychological aspects poses a host 
of challenges and interface parameters. Especially, if the driver is in charge of all 
safety aspects for liability reasons, the choice of interface (audio, visual, or tactile) 
and the ways of implementing the warnings are crucial. Quite a bit of effort is go-
ing into these questions in industry at present (see the proceedings of the yearly In-
ternational Symposium on Intelligent Vehicles [Masaki 1992–1999]). Tactile inputs 
may even include motion control of the whole vehicle. Horseback riders develop a 
fine feeling for slight reactions of the animal to its own perceptions. The question 
is whether similar types of special motion are useful for the vehicle to direct atten-
tion of the driver to some event the vehicle has noticed. Introducing vibrations at 
the proper side of the driver seat when the vehicle approaches one of the two lane 
markers left or right too closely is a first step done in this direction [Citroen 2004].
First correcting reactions in the safe direction or slight resistance to maneuvers in-
tended may be further steps; because of the varying reactions from the population 
of drivers, finding the proper parameters is a delicate challenge. 

For autonomous driving, the relatively simple task is to find the solution when 
to use which maneuvers or/and feedback algorithms with which set of optimal pa-
rameters. Monitoring the process initiated is mandatory for checking actual per-
formance achieved in contrast to the nominal one expected. Statistics should be 
kept on the behavior observed, for learning reasons. 

In case some unexpected “event” occurs (like a vehicle changing into your lane 
immediately in front of you without giving signs), this situation has to be handled 
by a transition in behavior; reducing throttle setting or hitting the brakes has to be 
the solution in the example given. These types of transitions in behavior are coded 
in extended state charts [Harel 1987; Maurer 2000]; actual implementation and results 
will be discussed in later chapters. The development of these algorithms and their 
tuning, taking delay times of the hardware involved into account is a challenging 
engineering task requiring quite a bit of effort. 

Note that in the solution chosen here, the rule base for decision–making does 
not contain the control output for the maneuvers but only the conditions, when to 
switch from one maneuver or driving state to another one. Control implementation 
is done at a lower level with processors closer to the actuators (see Section 3.4.4).  
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4.4  List of Mission Elements 

Planning entire missions is usually done before the start of the mission. During this 
process, the mission is broken down into mission elements which can be performed 
with the same set of behavioral modes. The list of mission elements is the task de-
scription for the process governing situation assessment and behavior decision. It 
also calls for implementation of behavioral capabilities actually available. In case 
some nominal behavioral capability is actually not available because of some 
hardware failure, this fact is detected by this process (by polling corresponding bits 
in the hardware monitoring system), and mission replanning has to take this new 
situation into account.  

The duration of mission elements may be given by local timescales or by some 
outside event; for example, lane following should be done until a certain geo-
graphical position has been reached at which a turnoff at an intersection has to be 
taken. This is independent of the time it took to get there.  

During these mission elements defined by nominal “strategic” aspects of mis-
sion performance, tactical deviations from the nominal plan are allowed such as 
lane changing for passing slower traffic or convoy driving at speeds lower than 
planned for the mission element. To compensate for the corresponding time losses, 
the vehicle may increase travel speed for some period after passing the convoy (pa-
rameter adjustment) [Gregor 2002; Hock 1994].

In the region of transition between two mission elements, the perception system 
may be alerted to detect and localize the relative position so that a transient ma-
neuver can be started in time, taking time delays for implementation into account. 
A typical example is when to start the steer rate maneuver for a turnoff onto a 
crossroad. Sections 14.6.5 and 14.6.6 will discuss this maneuver as one important 
element of mission performance as implemented on the test vehicle VaMoRs. Fig-
ure 14.15 shows the graphical visualization of the overall mission. The correspond-
ing list of mission elements (coarse resolution) is as follows: 

1. Perform roadrunning from start till GPS signals the approach of a crossroad 
onto which a turnoff to the left shall be made.  

2. While approaching the crossroad, determine by active vision the precise width 
and orientation of the cross road as well as the distance to the intersection. 

3. Perform the turnoff to the left. 
4. At a given GPS-waypoint on the road, leave the road at a right angle to the right 

for cross-country driving. 
5. Drive toward a sequence of landmarks (GPS-based); while driving, detect and 

perceive negative obstacles (ditches) visually and avoid them through bypass-
ing on the most convenient side. [There is no one, actually in this part of the 
mission.]

6. Visually detect and recognize a road being approached during cross-country 
driving (point 6 in Figure 14.5). Estimate intersection angle, road width, and 
distance to the road (continually while driving).  

7. Turn onto road to the left from cross-country driving; adjust speed to surface 
inclination encountered.

8. Perform roadrunning, recognizing crossroad as landmarks (points 6 to 8). 
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9. Cross both intersections (T-junction left and right). 
10. Leave road to the left at GPS-waypoint (9) for cross-country driving. 
11. While driving toward a sequence of landmarks (GPS-based), detect and per-

ceive negative obstacles (ditches) visually and avoid them through bypassing 
on the most convenient side. [In the case of Figure 14.15 there is one ditch on 
trajectory-arc 10; it should be avoided by evading to the right. If a ditch is en-
countered, there is a new list of tasks to be performed in a similar manner for 
this complex evasive maneuver consisting of several perceptual tasks and se-
quences of motion control.] 

12. Finish mission at GPS-landmark X (in front of a road). 

In driver assistance systems, similar mission elements exist, such as roadrunning 
(with “lane departure warning”), convoy driving (with “adaptive cruise control”), 
or “stop-and-go” traffic. The assistance functions can be switched on or off sepa-
rately by the human operator. A survey on this technology including the human-
machine-interface (HMI) may be found in [Maurer, Stiller 2005].



5  Extraction of Visual Features 

In Chapters 2 and 3, several essential relations among features appearing in images 
and objects in the real world have been discussed. In addition, basic properties of 
members of the classes “objects” and “subjects” have been touched upon to enable 
efficient recognition from image sequences. Not only spatial shape but also motion 
capabilities have been described as background for understanding image sequences 
of high frequency (video rate). This complex task can be broken down into three 
consecutive stages (levels), each requiring specialized knowledge with some over-
lap. Since the data streams required for analysis are quite different in these stages, 
namely (1) whole images, (2) image regions, and (3) symbolic descriptions, they 
should be organized in specific data bases. 

The first stage is to discover the following items in the entire fields of view (im-
ages): (a) what are characteristic image parameters of influence for interpreting the 
image stream, and (b) where are regions of special interest in the images?  

The answer to question (a) has to be determined to tap background knowledge 
which allows deeper understanding of the answers found under (b). Typical ques-
tions to be answered by the results to complex (a) are (1) What are the lowest and 
the highest image intensities found in each image? It is not so much the value of a 
single pixel of interest here [which might be an outlier (data error)] but of small lo-
cal groups of pixels, which can be trusted more. (2) What are the lowest and high-
est intensity gradients (again evaluated by receptive fields containing several pix-
els)? (3) Are these values drastically different in different parts of the images? 
Here, an indication of special image regions such as ‘above and below the hori-
zon’, or ‘near a light source or further away from it’ may be of importance. (4) Are 
there large regions with approximately homogeneous color or texture distribution 
(representing areas in the world with specific vegetation or snow cover, etc.)? At 
what distance are they perceived? 

Usually, the answer to (b) will show up in collections of certain features. Which 
features are good indicators for objects of interest is, of course, domain specific. 
Therefore, the knowledge base for this stage 1 concentrates on types and classes of 
image features for certain task domains and environmental conditions; this will be 
treated in Section 5.1. 

At this level, only feature data are to be computed as background material for 
the higher levels, which try to associate environmental aspects with these data sets 
by also referring to the mission performed and to knowledge about the environ-
ment, taking time of day and year into account. 

In the second stage, the question is asked ‘What type of object is it, generating 
the feature set detected’, and ‘what is its relative state at the present time’? Of 
course, this can be answered for only one object/subject at one time by a single in-
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Figure 5.1. Structured knowledge base for three stages of visual dynamic scene under-
standing in expectation-based, multi-focal, saccadic (EMS) vision” 

terpretation process. So, the amount of image data to be touched is reduced drasti-
cally, while background knowledge on the object/subject class allows asking spe-
cific questions in image interpretation with correspondingly tuned feature extrac-
tors. Continuity conditions over time play an important role in state estimation 
from image data. In a complex scene, many of these questions have to be answered 
in parallel during each video cycle. This can be achieved by time slicing attention 
of a single processor/software combination or by operating with several or many 
processors (maybe with special software packages) in parallel. Increasing comput-
ing power available per processor will shift the solution to the former layout. Over 
the last decade, the number of processors in the vision systems of UniBwM has 
been reduced by almost an order of magnitude (from 46 to 6) while at the same 
time the performance level increased considerably. The knowledge bases for rec-
ognizing single objects/subjects and their motion over time will be treated in Chap-
ters 6 and 12. 
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The results of all of these single-object–recognition processes have to be pre-
sented to the situation assessment level in unified form so that relative motion be-
tween objects and movements of subjects can be appreciated on a larger spatial and 
temporal scale. The dynamic object database (DOB) solves this task. On the situa-
tion level, working on huge volumes of image data is no longer possible. There-
fore, the DOB also serves the purpose of presenting the scene recognized in an ob-
ject-oriented, symbolic way. Figure 5.1 shows the three levels for image sequence 
processing and understanding. The results of the right-hand branch from level 1 are 
fed into this scheme to provide background information on the lighting and other 
environmental conditions. 

The situation to be assessed on the decision level has to include all of this and 
the trajectory planned for the subject body in the near future. Both safety aspects 
and mission goals have to be taken into account here; a selection has to be made 
between more and less relevant objects/subjects by judging hazard potentials from 
their trajectories/behaviors. This challenge will be discussed in Chapter 13. Figure 
5.1 visualizing the stages mentioned for visual dynamic scene interpretation will be 
discussed in more detail after the foundations for feature extraction and ob-
ject/subject recognition have been laid down. 

5.1 Visual Features 

The discussion of the topic of feature extraction will be done here in an exemplary 
fashion only for road scenes. Other domains may require different feature sets; 
however, edge and corner features are very robust types of features under a wide 
range of varying lighting and aspect conditions in many domains. Additional fea-
ture sets are gray value or color blobs, certain intensity or color patterns, and tex-
tures. The latter cover a wide range; they are very computer-intensive, in general.  

In biological vertebrate vision, edge features of different size and under different 
orientations are one of the first stages of visual processing (in V1 [Hubel and Wiesel 
1962]). There are many algorithms available for extracting these features (see 
[Duda, Hart 1973; Ballard, Brown 1982; Canny 1983; http://iris.usc.edu/Vision-
Notes/bibliography/contents.html]. A very efficient algorithm especially suited for 
road-scene analysis has been developed by Kuhnert (1988) and Mysliwetz (1990).
Search directions or patterns are also important for efficient feature extraction. A 
version of this well-proven algorithm, the workhorse of the 4-D approach over two 
decades, will be discussed in detail in Section 5.2. Computing power in the 1980s 
did not allow more computer-intensive features for real-time applications at that 
time. Now that four orders of magnitude in computing power per microprocessor 
have been gained and are readily available, a more general feature extraction 
method dubbed “UBM”, the basic layout of which has been developed by Hof-
mann (2004) and the author, will be discussed in Section 5.3. It unifies the extrac-
tion of the following features in a single pass: Nonplanar regions of the image in-
tensity function, linearly shaded blobs, edges of any orientation, and corners.
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5.1.1 Introduction to Feature Extraction 

The amount of data collected by an imaging sensor is the same when looking at a 
uniformly gray region or at a visually complex colored scene. However, the 
amount of information perceived by an intelligent observer is considerably differ-
ent. A human would characterize the former case exhaustively by using just three 
words: “uniformly gray”, and possibly a term specifying the gray tone (intensity). 
The statement “uniformly” may be the result of rather involved low-level parallel 
computations; but this high-level representational symbol in combination with the 
intensity value contains all the information in the image. In contrast, if several ho-
mogeneously colored or textured subregions are being viewed, the borderlines be-
tween these regions and the specification of the color value per region contain all 
the information about the scene (see Figure 5.2).  

Instead of having to deal with all 
the color values of all pixels, this 
number of data may be considerably 
reduced by just listing the coordinates 
of the boundary elements; depending 
on the size of the regions, this may be 
orders of magnitude less data for the 
same amount of information. This is 
the reason that sketches of boundary 
lines are so useful and widely spread.  

Uniformly textured (gray)
Boundary curve

Uniformly white

Very often in images of the real 
world, line elements change direction 
smoothly over arc-length, except at 

discrete points called “corners”. The direction change per unit arc-length is termed 
curvature and is the basis for differential geometry [Spivak 1970]. The differential 
formulation of shapes is coordinate-free and does not depend on the position and 
angular orientation of the object described. The same 2-D shape on different scales 
can be described in curvature terms by the same function over arc length and one 
scaling factor. Measurement of the tangent direction to a region, therefore, is a ba-
sic operation for efficient image processing. For measuring tangent directions pre-
cisely at a given scale, a sufficiently large environment of the tangent point has to 
be taken into account to be precise as a function of scale level and to avoid “spuri-
ous details” [Florack et al. 1992]. Direction coding over arc length is a common 
means for shape description [Freeman 1974; Marshall 1989].

Figure 5.2. Two homogeneous regions; 
most information is in the boundary curve 

Curvature coding over arc length is less widely spread. In [Dickmanns 1985], an 
approximate, general, efficient, coordinate-free 2-D shape description scheme in 
differential-geometry terms has been given, based on local tangent direction meas-
urements relative to the chord line linking two consecutive boundary points with 
limited changes in tangent direction (< 0.2 radians). It is equivalent to piecewise 
third-order Hermite polynomial approximations based on boundary points and their 
tangent directions. 

However, sticking to the image plane for shape description of 3-D bodies in the 
real world may not be the best procedure; rigid 3-D bodies and curves yield an in-
finite number of 2-D views by perspective mapping (at least theoretically), depend-
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ing on the aspect conditions. The shape invariance in this case can be captured only 
by using 3-D shape models and models for mapping by central projection. This ap-
proach is much better suited for visually recognizing the environment during ego–
motion and for tracking other (massive) objects over time, than for single snapshot 
interpretation. This is true since massive bodies move smoothly over time, and in-
variance properties with respect to time, such as eigen–frequencies, damping, and 
stereotypic motion characteristics (like style of walking), may be exploited as 
knowledge about specific objects/subjects in the real world. Therefore, embedding 
the image analysis task in a temporal continuum and exploiting known motion 
characteristics in an object-oriented way will alleviate the image sequence interpre-
tation task (extended idea of gestalt). It requires, however, that the internal repre-
sentation be in four dimensions right from the beginning: in 3-D space and time for 
single objects. This is the essence of the 4-D approach to dynamic machine vision 
developed in the early 1980s [Meissner, Dickmanns 1983; Dickmanns 1987; Wünsche 
1987].

By embedding (a) simple feature extraction with linear edge elements, (b) re-
gions with linear shading models, and (c) horizontal and vertical image stripes into 
this framework of spatio–temporal object orientation, these methods gain consid-
erably in power and useful range of application. By exploiting a knowledge base 
on dynamic motion derived from previous experience in observing motion proc-
esses in 3-D space of specific 3-D objects carrying highly visible features on their 
surface, scene understanding is considerably alleviated. Specific groups of linearly 
extended edge feature sets and adjacent homogeneous areas of gray, color (or in 
the future texture) values are interpreted as originating from these spatial objects 
under specific aspect conditions. This background may also be one of the reasons, 
beside their robustness to changing lighting conditions, that in highly developed 
biological vision systems (like the mammalian ones) edge element operators 
abound [Hubel, Wiesel 1962; Koenderink, van Doorn 1990]. Without 3-D invariance 
and without knowledge about motion processes and about perspective projection 
(implicit or explicit), the situation would be quite different with respect to the use-
fulness of these operators. 

The edge-based approach has an advantage over region-based approaches if in-
variance under varying lighting conditions is considered. Even though the intensi-
ties and color values may change differently with time in adjacent image regions, 
the position of the boundaries between them does not, and the edge will remain 
visible as the locus of highest intensity or color gradient. In natural environments, 
changing lighting conditions are more the rule than an exception. Therefore, Sec-
tion 5.2 will be devoted to edge-based methods. 

However, for robust interpretation of complex images, region-based image 
evaluation is advantageous. Since today's processors do not allow full scale area-
based processing of images in real time, a compromise has to be sought.  Some as-
pects of region-based image evaluation may be exploited by confining the regional 
operations to the vicinity of edges. This is done in conjunction with the edge-based 
approach, and it can be of help in establishing feature correspondence for object 
recognition using a knowledge base and in detecting occlusions by other objects. 

A second step toward including area-based information in the 4-D scheme under 
the constraint of limited computing power is to confine the evaluation areas to 
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stripes, whose orientation and width have to be chosen intelligently ad hoc, exploit-
ing known continuity conditions in space and time. These stripes will be condensed 
to one-dimensional (averaged over the width of the stripes) representation vectors 
by choosing proper schemes of symbolic descriptions for groups of pixel values in 
the stripe direction. 

Coming back to the difference between data and information, in knowledge- 
based systems, there may be a large amount of information in relatively few data, if 
these data allow a unique retrieval access to a knowledge base containing informa-
tion on the object recognized. This, in turn, may allow much more efficient recog-
nition and visual tracking of objects by attention focusing over time and in image 
regions of special interest (window concept). 

According to these considerations, the rest of Chapter 5 will be organized as fol-
lows: In Section 5.1.2, proper scaling of fields of view in multi-focal vision and in 
selecting scales for templates is discussed. Section 5.2 deals with an efficient basic 
edge feature extraction operator optimized for real-time image sequence under-
standing. In Sections 5.3, (2-D) region-based image evaluation is approached as a 
sequence of one-dimensional image stripe evaluations with transition to symbolic 
representations for alleviating data fusion between neighboring stripes and for im-
age interpretation. An efficient method with some characteristics of both previous 
approaches is explained in Section 5.4; it represents a trade-off between accuracy 
achievable in perception and computational expense.  

Contrasting the feature extraction methods oriented towards single-object rec-
ognition, Section 5.5 gives an outlook on methods and characteristic descriptors for 
recognizing general outdoor environments and situations. Computing power avail-
able in the past has not allowed applying this in real-time onboard vehicles; the 
next decade should allow tackling this task for better and more robust scene under-
standing. 

5.1.2 Fields of View, Multi-focal Vision, and Scales 

In dealing with real-world tasks of surveillance and motion control very often cov-
erage of the environment with a large field of view is needed only nearby. For a 
vehicle driving at finite speed, only objects within a small distal range will be of 
interest for collision avoidance. When one is traveling at high speed, other low-
speed objects become of interest for collision avoidance only in a rather small an-
gular region around the subject’s velocity vector. [For several high-speed vehicles 
interacting in the same space, special rules have to be established to handle the 
situations, such as in air traffic control, where different altitudes are assigned to 
airplanes depending on their heading angle (in discrete form by quadrants).] 

Central projection is the basic physical process of imaging; depending on the 
distal range of the object mapped into the image, this results in one pixel represent-
ing areas of different size on objects in the real world. Requiring a certain resolu-
tion normal to the optical axis for objects in the real world, therefore, requires 
range-dependent focal lengths for the imaging system.  

Biological systems have mastered this problem by providing different pixel and 
receptive field sizes in the sensor hardware eye. In the foveal area designed for 
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long-range, high-resolution viewing, the density of sensor elements is very high; in 
the peripheral areas added for large angular viewing range, element density is 
small. By this combination, a large viewing range can be combined with high reso-
lution at least in some area with relatively moderate overall data rates. The area of 
high resolution can be shifted by active viewing direction (gaze) control by both 
the eye and the head.  

 In technical systems, since inexpensive sensors are available only with homo-
geneous pixel distributions, an equivalent mapping system is achieved by mount-
ing two or mores cameras with lenses of different focal lengths fixed relative to 
each other on a platform. The advantage of a suite of sensors covering the same 
part of the scenery is that this part is immediately available to the system in a mul-
ti-scale data set. If the ratio of the focal lengths is four, the image produced by the 
shorter focal length represents (coarse) information on the second pyramid level of 
the image taken with the higher resolution (larger focal length). This dual scale fac-
tor may sometimes be advantageous in real-time vision where time delays are criti-
cal. On one hand, efficient handling of objects requires that a sufficiently large 
number of pixels be available on each object for recognition and identification; on 
the other hand, if there are too many pixels on a single object, image processing 
becomes too involved and slow. 

As mentioned in the introduction, in complex scenes with many objects or with 
some objects with a complex pattern of sub-objects, relying solely on edge features 
may lead to difficulties and ambiguities. Combining the interpretation of edge fea-
tures with area-based features (average intensity, color, or texture) often allows 
easy disambiguation. Figure 5.3 shows a case of efficient real-time image sequence 
processing. Large homogeneous areas can be tracked by both edge features and re-
gion-based features. In the near range, the boundaries between the regions are not 
sharp but fuzzy (strongly perturbed, unsealed country road with grass spreading 
onto the road). For initialization from a normal driving situation, searching edges 
with large receptive fields in most likely areas is very efficient. 

The area-based method covering the entire image width would improve robust-
ness to road parameters other than expected, but would also be costly because of 

Figure 5.3. Combining edge and area-based features for robust object detection and rec-
ognition. Near range: Only edge detection in regions and with parameters selected accord-
ing to a normal driving situation. Far range: Four stripes covering the entire width of the 
image; determine steep edges and intensity plateaus (lower part) to discover road forks. 
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the many pixels to be touched. Working with large receptive fields has proven to 
be reasonably reliable and efficient here. However, if computing power will allow 
color and texture processing with new area-based features, a new quality of recog-
nition and higher robustness will result. Therefore, a compromise has been found 
that allows using some of the advantages of area-based features efficiently in con-
nection with the 4-D approach. 

In road vehicle guidance where the viewing direction is essentially parallel to 
the ground, this method offers some advantages. Due to the scaling effect of range 
(distance x) in perspective mapping, features further away will be reduced in size; 
this may cause trouble in the interpretation process for a stereotypical application 
of pyramid-methods over larger image regions. In the upper rows, each pixel cov-
ers a much larger distance in range than in the lower ones.  

Figure 5.4 with the inserted table shows the effect of distance in a vertical stripe 
of an image, scaled by the camera elevation H above the ground; the same stripe 
width in the real world on the ground shows up in a decreasing number of rows 
with distance. 

Figure 5.4. Mapping of a horizontal slice at distance L/H  (from Zu = (L/H – 0.5) to Zo
= (L/H + 0.5) into the image plane (focal length f = 750 pixel) 

L/H 4 5 7 10 20 30

Zo/ pel 167 136 100 71 36.6 24.6

Zu / pel 214 167 115 79 38.5 25.4

Z / pel 47 31 15 8 1.9 0.8

H 20.5

19.5

Optical axis horizontal; 

0.5   1 2 3 4 5 6 7  ==> L/H 9 10  10.5

f

Confining regional representations to image slices or stripes at almost constant 
distance, these problems may be reduced by proper selection of stripe width (see 
Figure 5.3, upper part). Due to unknown road curvature, the road may appear any-
where in the image, and it may have a forking point somewhere. Therefore, the 
horizontal stripes SB1 to SB4 in Figure 5.3 are selected as a bunch of regions ex-
tending over the entire image width. The resulting image intensity distributions are 
shown in the lower part. In SB1, the road fork does not yet show up. SB2 has a 
small dark section between two brighter ones (with almost the same total width in 
the image between the outer edges, even though further away), indicating that the 
road may have branched. This is confirmed in SB3 with a widened dark area in be-
tween. The value of stripe SB4 is doubtful in this case since the branched-off road 
fills only a few pixels; with the hypothesis of a road fork from SB2, 3, it would be 
more meaningful to search in a separate stripe for the off-going branch with prop-
erly adapted parameters in the next image, if possible with higher image resolution. 

In other cases, the stripes need not cover the entire image width right from the 
beginning but may be confined to some meaningful fraction depending on object 
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size expected (domain knowledge) or known from previous images, thereby reduc-
ing the computational load.   

It can be seen from Figure 5.4 that the same width at scaled distance 5 (depth in 
viewing direction, 31 pixels wide) is reduced to about 2 pixels at a scaled distance 
of 20. Clearly, features in the real world will change in appearance accordingly! In 
the stripe-based method to be discussed in Section 5.3, these facts may be taken 
into account by proper parameter specifica-
tion depending on the actual situation en-
countered. At longer distances, often the 
center of homogeneous regions in a stripe 
can be more reliably detected than the exact 
position of edges belonging to the same re-
gion. For example, crossroad detection as 
shown in Figure 5.5 is much more robust 
based on area-based features than based on 
edge features since these may abound in the 
region along the road. Checking aggrega-
tions of homogeneous areas in road direc-
tion, as needed in the next step for hypothe-
sis generation, is much more efficient than 
checking edge aggregations with their com-
binatorial explosion. 

Crossroad, area-based

Measurement model
Distant

road

Area-based

detection

Local road, edge-based
measurement model

Figure 5.5. Crossroad detection in 
look-ahead region further away. 

5.2 Efficient Extraction of Oriented Edge Features

In general, multiple scales are advantageous in image processing to optimally ex-
ploit information in noise corrupted images [Florack et al. 1992]. To avoid spurious 
details, the finest scale should be much larger than pixel size; a mask size of three 
or four pixels is considered a practical lower bound for the extraction of linearly 
extended features. The upper scale limit is given by image size, since during the 
search process, no image boundary should be hit; a maximum mask size of one-
half or one-third of the image size seems to be a meaningful upper limit. Spacing 
mask sizes by a factor of 2 then results in seven or eight mask sizes for 1K×1K 
pixel images.  

An alternative approach to working with large mask sizes is to compute pyramid 
images [Burt et al. 1981] by averaging four neighboring pixels on the ith level to one 
pixel at the (i+1)th pyramid level and then applying a smaller mask size to the 
higher level image. Note however, that these two operations are not exactly the 
same, since in the latter case resolution in the image plane has been lost. Therefore, 
to preserve high resolution at the small scale, mask sizes up to 17 pixels in width 
have been generated and implemented. Masks of larger size have not been neces-
sary in the problem areas treated up to now. If they are needed, either four or five 
pyramid levels have to be generated or, for the sake of saving computing time, 
simple sub-sampling may be done, substituting one intensity value of level i for the 
mean of four neighboring ones on level i 1 in the exact pyramid. Thus, about half 



      5  Extraction of Visual Features 132

the scale range is covered by different mask sizes while the other half is handled on 
larger scales by image size reduction. 

Literature on edge feature extraction abounds (see, e.g., World Wide Web: 
http://iris.usc.edu/Vision-Notes/bibliography/contents.html; detection and analysis 
of edges and lines (Chapter 5 there); 2-D feature analysis, extraction, and represen-
tations (Chapter 7); Chapter 3 there gives a survey on books (3.2), collections, 
overviews, and surveys).

5.2.1 Generic Types of Edge Extraction Templates 

A substantial reason for the efficiency of the methods developed at UniBwM for 
edge feature extraction stems from the fact that both low-pass filtering in one di-
rection and accurate search in an almost normal direction were combined. By 
proper partitioning of the overall task, simple but efficient pixel processing in just 
one dimension has been achieved consecutively. It is assumed that the direction of 
the edge to be found is known approximately. While this is true for tracking, it 
turned out that the algorithms are also useful for initialization if proper parameter 
settings are chosen. The software packages developed for edge extraction are gen-
eralizations of the Prewitt operator [Ballard, Brown 1982]; they have matured over 
three generations of coding in different computer languages. The original ideas of 
Kuhnert (1988) have been refined and coded first in the second half of the 1980s in 
the language FORTRAN by Mysliwetz (1990); the current version was developed in 
the early 1990s under the name KRONOS D.Dickmanns (1997) in the language Oc-

cam for transputers. For the next generation of processors, it has been converted to 
C under the name CRONOS and polished by S. Fuerst.

5.2.1.1 Low-pass Filtering of an Oriented Pixel Field into a Vector 

To obtain good correlation values for a local edge extraction operator, its orienta-
tion should be almost tangential to the edge in the image. Figure 5.6 shows a trape-
zoidal dark area in front of a pixel grid, the edges of which are to be detected. The 
mask for edge detection shown to the 
left in the pixel grid has approximately 
the same inclination as the left edge of 
the area to be detected; the mask is nw = 
17 pixels wide and md = 5 pixels deep. 
To be independent of absolute light in-
tensity, the number of plus signs and 
minus signs in the mask has to be equal; 
in the case shown, there are two pixel 
formations along the edge (called “mask 
elements” henceforth, one pixel wide) 
with minus and two with plus signs. 
Separating these two blocks is a mask 
element with zeros which reduces sensi-
tivity to slightly deviating edge direction 

Figure 5.6. Edge localization by shifting 
a ternary correlation mask
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from the mask direction or to slightly curving edges; image pixels under the zero-
mask elements need not be touched, of course, since their weight in the mask van-
ishes.

For efficient computation of correlations, search direction should be either hori-
zontal (in the y-direction, rows, dash-dotted arrow in the figure) or vertical (in the 
z-direction, columns); diagonal searches have also been used, initially, but because 
of the square-root-of-2 effect in spacing, when proceeding in diagonal search direc-
tion, they have not gained acceptance. The wider the masks chosen, the more angu-
lar orientations may be specified. Figure 5.7 shows the basic pixel alignments for 
mask elements of different mask widths nw (3, 5, 9, 17) and the orientation angles 
achievable.  

These numbers also give the 
angular resolution achievable 
per quadrant (45° for nw = 3 
down to 5.6° for nw = 17). Mir-
roring at the horizontal and/or 
vertical boundaries yields all 
directions. In a first step of the 
algorithm, all pixels for one 
mask element (directions 
shown gray in Figure 5.7) in 
the entire search range are 
summed up and stored at the 
center position (black pixel in 
the figure). Mask correlation 
then only has to deal with a 
vector instead of a 2-D pixel 
array, independent of mask 
width nw. This corresponds to 
low-pass filtering in the edge 
direction. Due to the discrete 
pixel size, the spacing between 
the edge element orientations is 
not exactly the same; this is in-
dicated in Figure 5.7 for an ex-

treme case with nw = 17 by shifting the black pixel by one unit. Since the results 
are used in recursive estimation with a high sampling rate (25 Hz) this has not been 
detrimental; it is one minor component in measurement noise. 

nw = 3 nw = 5 nw = 9 nw = 17

Figure 5.7. Basic edge directions as used in the 
edge extractor “CRONOS”: four mask widths of 
nw = 3, 5, 9, 17 pixels (nw = 2i + 1, i = 1, …4)

The zero-direction is defined as horizontal to the right; clockwise counting is 
applied. The set of edge directions shown in Figure 5.8 is generated from the basic 
set for horizontal search with edge directions between 270 and 315° (above the di-
agonal); the set for the angles from 225 to 270° is obtained by mirroring at the ver-
tical axis. The sets needed for vertical search (315 to 360° and 180 to 225°) are ob-
tained by mirroring those given at the 315° respectively, at the 225°-line. Mirroring 
all of these at the horizontal line completes the full set from 0 to 360°. (However, 
in the way these elements will be used, only one half set is needed since the other 
is just an inversion of the sign, see below).  
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After specification of search 
range, mask width, and orienta-
tion to be used, the first computa-
tional step is to sum up all the 
pixel values over the mask width 
nw and, thus, collapse the width to 
a single vector component. This 
vector spans over the search range 
(named PathLen in CRONOS, see
Figure 5.9).  

It represents the average inten-
sity values in the direction of 
mask orientation; this corresponds 
to low-pass filtering in this mask 
direction. With more than 16-bit 
processors and 8-bit intensity val-
ues for each pixel, there is no 

need to divide by the number of pixels summed, thus saving computing time. (If 
intensity values close to the original ones are preferred, shift operations may be 
used.)  In the software packages in use at UniBwM, the options for mask widths 
are nw = 2i + 1, with preference for i = 2 to 4; this means that the smallest mask 
width with only three pixels is not used. 

185.6

5.6

Figure 5.8. Definition of edge orientation as 
used in CRONOS: Starting from the horizontal 
direction to the right, angular increments are 
counted clockwise 

This odd value of nw has been chosen initially to have a symmetrical distribution 
of the image stripe represented around the center of the nominal pixel position, 
which is convenient if no 
subpixel resolution is used. 
Using subpixel resolution, 
defining nw = 2i is the 
cleaner solution for work-
ing on different scales. 

It is seen from Figure 
5.9 that part of the search 
path length is lost at the 
boundaries for oblique 
mask orientations; this has 
to be taken into account 
when specifying the search 
range.

5.2.1.2 Computation of Ternary Correlation Values 

The vector obtained in the previous section is the basis for edge localization by ter-
nary correlation. By subtracting two consecutive vector components from each 
other, gradient information in the search direction for the given angular orientation 
of the mask is obtained (see Figure 5.10a, upper left). At the point where this dif-

Mask elementy(i)

z(j)

Vector representing low-pass

filtered values along edge
nw

Figure 5.9. Low-pass (high spatial frequency) filtering 
orthogonal to the expected edge direction reduces the 
search stripe to a vector, independent of mask width nw

for efficient computation of correlation values 
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ference is largest in amplitude, 
the gradient over two consecu-
tive mask elements is maxi-
mal.

However, due to local per-
turbations, this need not corre-
spond to an actual extreme 
gradient on the scale of inter-
est. Experience with images 
from natural environments has 
shown that two additional pa-
rameters may considerably 
improve the results obtained:  
1. By allowing a yet to be 

specified number n0 of 
entries in the mask center 
to be dropped, the results achieved may be more robust. This can be 
immediately appreciated when taking into account that either the actual edge 
direction may deviate from the mask orientation used or the edge is not 
straight but curved; by setting central elements of the mask to zero, the 
extreme intensity gradient becomes more pronounced. The rest of Figure 5.10 
shows typical mask parameters with n0 = 1 for masks three and five pixels in 
depth (md = 3 or 5), and with n0 = 2 for md = 8 as well as n0 = 3 for md = 17 
(rows b, c).  

2. Local perturbations are suppressed by assigning to the mask a significant 
depth nd, which designates the number of pixels along the search path in each 
row or column in each positive and negative field. The total mask depth md

then is md = 2 nd + n0. Figure 5.10 shows the corresponding mask schemes. In 
line (b) a rather large mask for finding the transition between relatively large 
homogeneous areas with ragged boundaries is given (md = 17 pixels wide and 
each field with seven elements, so that the correlation value is formed from 
large averages; for a mask width nw of 17 pixels, the correlation value is 
formed from 7·17 = 119 pixels). With the number of zero-values in between 
chosen as n0 = 3, the total receptive field (= mask) size is 17·17 = 289 pixels.  
The sum formed from nd mask elements (vector values “ColSum”) divided by 
(nw· nd) represents the average intensity value in the oblique image region 
adjacent to the edge. At the maximum correlation value found, this is the 
average gray value on one side of the edge. This information may be used for 
recognizing a specific edge feature in consecutive images or for grouping 
edges in a scene context. 

For larger mask depths, it is more efficient when shifting the mask along the 
search direction, to subtract the last mask element (ColSum-value) from the 
summed field intensities and add the next one at the front in the search direction, 
see line (c) in Figure 5.10); the number of operations needed is much lower than 
for summing all ColSum elements anew in each field. 

The optimal value of these additional mask parameters nd and n0 as well as the 
mask width nw depend on the scene at hand and are considered knowledge gained 

Figure 5.10. Efficient mask evaluation with the 
“Colsum”-vector; the nd-values given are typical 
for sizes of “receptive fields” formed 

b)

md = 2;  md = 3;       md = 5;                           md = 8 

7      3      7       

Masks characterized by: (nd     n0     nd)

md = 17 (Total mask depth)

(a)

(b)

(c)
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by experience in visually similar environments. From these considerations, generic 
edge extraction mask sets for specific problems have resulted. In Figure 5.11, some 
representative receptive fields for different tasks are given. The mask parameters 
can be changed from one video frame to the next, allowing easy adaptation to 
changing scenes observed continuously, like driving on a curved road. 

The large mask in the center top of Figure 5.11 may be used on dirt roads in the 
near region with ragged transitions from road to shoulder. For sharp, pronounced 
edges like well-kept lane markings, a receptive field like that in the upper right cor-
ner (probably with nd = 2, that is, md = 5) will be most efficient. The further one 
looks ahead, the more the mask width nw should be reduced (9 or 5 pixels); part (c) 
in the lower center shows a typical mask for edges on the right-hand side of a 
straight road further away (smaller and oblique to the right).  

The 5 × 5 (2, 1, 2) mask at the left hand side of Figure 5.11 has been the stan-
dard mask for initial detection of other vehicles and obstacles on the road through 
horizontal edges; collections of horizontal edge elements are good indicators for 
objects torn by gravity to the road surface. Additional masks are then applied for 
checking object hypotheses formed.  

If narrow lines like lane markings have to be detected, there is an optimal mask 
width depending on the width of the line in the image: If the mask depth nd chosen 
is too large, the line will be low-pass-filtered and extreme gradients lose in magni-
tude; if mask depth is too small, sensitivity to noise increases. 

As an optional step, while adding up pixel values for mask elements “ColSum” 
or while forming the receptive fields, the extreme intensity values of pixels in Col-
Sum and of each ColSum vector component (max. and min.) may be determined. 
The former gives an indication of the validity of averaging (when the extreme val-
ues are not too far apart), while the latter may be used for automatically adjusting 
threshold parameters. In natural environments, in addition, this gives an indication 

Figure 5.11. Examples of receptive fields and search paths for efficient edge feature ex-
traction; mask parameters can be changed from one video-frame to the next, allowing 
easy adaptation to changing scenes observed continuously 
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of the contrasts in the scene. These are some of the general environmental parame-
ters to be collected in parallel (right-hand part of Figure 5.1). 

5.2.2 Search Paths and Subpixel Accuracy 

The masks defined in the previous section are applied to rectangular search ranges 
to find all possible candidates for an edge in these ranges. The smaller these search 
ranges can be kept, the more efficient the overall algorithm is going to be. If the 
high-level interpretation via recursive estimation is stable and good information on 
the variances is available, the search region for specific features may be confined 
to the 3  region around the predicted value, which is not very large, usually (  = 
standard variation). It does not make sense first to perform the image processing 
part in a large search region fixed in advance and afterwards sort out the features 
according to the variance criterion. In order not to destabilize the tracking process, 
prediction errors > 3  are considered outliers and are usually removed when they 
appear for the first time in a sequence.] 

Figure 5.6 shows an example of edge localization with a ternary mask of size nw

= 17, nd = 2, and n0 = 1 (i.e., mask depth md = 5). The mask response is close to 
zero when the region to which it is applied is close to homogeneously gray (irre-
spective of the gray value); this is an important design factor for abating sensitivity 
to light levels. It means that the plus– and minus regions have to be the same size. 

The lower part of the figure shows the resulting correlation values (mask re-
sponses) which form the basis for determining edge location. If the image areas 
within each field of the mask are homogeneous, the response is maximal at the lo-
cation of the edge. With different light levels, only the magnitude of the extreme 
value changes but not its location. Highly discernible extreme values are obtained 
also for neighboring mask orientations. The larger the parameter n0, the less pro-
nounced is the extreme value in the search direction, and the more tolerant it is to 
deviations in angle. These robustness aspects make the method well suited for 
natural outdoor scenes. 

Search directions (horizontal or vertical) are automatically chosen depending on 
the feature orientation specified. The horizontal search direction is used for mask 
orientations between 45 to 135° as well as between 225 and 315°; vertical search is 
applied for mask directions between 135 to 225° and 315 to 45°. To avoid too fre-
quent switching between search directions, a hysteresis (dead zone of about one di-
rection–increment for the larger mask widths) is often used that means switching is 
actually performed (automatically) 6 to 11° beyond the diagonal lines, depending 
on the direction from which these are approached. 

5.2.2.1 Subpixel Accuracy by Second-Order Interpolation 

Experience with several interpolation schemes, taking up to two correlation values 
on each side of the extreme value into account, has shown that the simple second-
order parabola interpolation is the most cost-effective and robust solution (Figure 
5.12). Just the neighboring correlation values around a peak serve as a basis. 
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If an extreme value of the magnitude of 
the mask response above the threshold 
level (see Figure 5.6) has been found by 
stating that the new value is smaller than 
the old one, the last three values are used 
to find the interpolating parabola of second 
order. Its extreme value yields the position 
yextr of the edge to subpixel accuracy and 
the corresponding magnitude Cextr; this po-
sition is obtained at the location where the 
derivative of the parabolic unction is zero. 
Designating the largest correlation value 
found as C0 at pixel position 0, the previ-
ous one Cm at 1, and the last correlation 
value Cp at position +1  (which indicated 
that there is an extreme value by its magni-
tude Cp < C0), the following differences 

0 0 m 1 m = ;                = D C C D C Cp (5.1)

yield the location of the extreme value at distance 

0 1

extr 0

extr 0 1

                                      d  0.5 / (2 / 1)

from pixel position 0, such that:       y  = y  + d

with the value                    = 0.25 d .

y   D D

y

C C D y

(5.2)

From the last expressions of Equation 5.1 and 5.2 it is seen that the interpolated 
value lies on the side of C0 on which the neighboring correlation value measured is 
larger. Experience with real-world scenes has shown that subpixel accuracy in the 
range of 0.3 to 0.1 may be achieved. 

5.2.2.2 Position and Direction of an Optimal Edge  

Determining precise edge direction by applying, additionally, the two neighboring 
mask orientations in the same search path and performing a bi–variant interpola-
tion has been investigated, but the 
results were rather disappointing. 
Precise edge direction can be de-
termined more reliably by exploit-
ing results from three neighboring 
search paths with the same mask 
direction (see Figure 5.13).  

The central edge position to 
subpixel accuracy yields the posi-
tion of the tangent point, while the 
tangent direction is determined 
from the straight line connecting 
the positions of the (equidistant) 
neighboring edge points; this is 

Figure 5.13. Determination of the tangent di-
rection of a slightly curved edge by sub-pixel 
localization of edge points in three neighboring 
search paths and parabolic interpolation 

Figure 5.12. Subpixel edge localiza-
tion by parabolic interpolation after 
passing a maximum in mask response
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the result of a parabolic interpolation for the three points.
Once it is known that the edge is curved – because the edge point at the center 

does not lie on the straight line connecting the neighboring edge points – the ques-
tion arises whether the amount of curvature can also be determined with little effort 
(at least approximately). This is the case. 

5.2.2.3 Approximate Determination of Edge Curvature 

When applying a series of equidistant search stripes to an image region, the method 
of the previous section yields to each point on the edge also the corresponding edge 
direction that is its tangent. Two points and two slopes determine the coefficients 
of a third-order polynomial, dubbed Hermite-interpolation after a French mathema-
tician. As a third-order curve, it can have at most one inflection point. Taking the 
connecting line (dash-dotted in Figure 5.14) between the two tangent points P-d and 
P+d as reference (chord line or secant), a simple linear relationship for a smooth 
curve with small angles  relative to the chord line can be derived. Tangent direc-
tions are used in differential-geometry terms, yielding a linear curvature model; the 
reference is the slope of the straight line connecting the tangent points (secant). Let 
m d and m+d be the slopes of the tangents at points P d and P+d respectively; s be the 
running variable in the direction of the arc (edge line); and  the angle between the 
local tangent and the chord direction (| | < 0.2 radian so that cos( ) 1).

The linear curvature model in differential-geometry terms with s as running 
variable along the arc s from x d to x  +d is: 

0 1 +  ;       d   dC C C s C s

1C s

. (5.3)

Since curvature is a second-order concept with respect to Cartesian coordinates, 
lateral position y results from a second integral of the curvature model. With the 
origin at the center of the chord, x in the direction of the chord, y normal to it, and 

d = arctan(m-d) m d as the angle between the tangent and chord directions at 
point P d , the equation describing the curved arc then is given by Equation 5.4 be-
low [with  in the range ± 0.2 radian (~ 11°), the cosine can be approximated by 1 
and the sine by the argument ]:

0 0 0 1

0

2 3
0 0 0 0

0

x =  + ;   (s)  + ( ) d + /2 ;

y(s) =  + sin[ ( )] d       / 2 /6.
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 At the tangent points at the ends of the chord (± d), there is 
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At the points of intersection of chord and curve, there is, by definition y(± d) = 0, 
2 3

0 0 0 1

2 3
0 0 0 1

( ) / 2 / 6  0;              (a)

( ) / 2 / 6  0.             (b)

y d y d C d C d

y d y d C d C d
(5.6)

Equations 5.5 and 5.6 can be solved for the curvature parameters C0 and C1 as 
well as for the state values y0 and m0 ( 0) at the origin x = 0 to yield 
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The linear curva-
ture model can be 
computed easily from 
the tangent directions 
relative to the chord 
line and the distance 
(2·d) between the 
tangent points. Of 
course, this distance 
has to be chosen such 
that the angle con-
straint (| | < 0.2 ra-
dian) is not violated. 
On smooth curves, 
this is always possi-
ble; however, for 

large curvatures, the distance d allowed becomes small and the scale for measuring 
edge locations and tangent directions probably has to be adapted. Very sharp 
curves have to be isolated and jumped over as “corners” having large directional 
changes over small arc lengths. In an idealized but simple scheme, they can be ap-
proximated by a Dirac impulse in curvature with a finite change in direction over 
zero arc length. 

Due to the differencing process unavoidable for curvature determination, the re-
sults tend to be noisy. When basic properties of objects recognized are known, a 
post–processing step for noise reduction exploiting this knowledge should be in-
cluded. 

Remark: The special advantage of subscale resolution for dynamic vision lies in 
the fact that the onset of changes in motion behavior may be detected earlier, yield-
ing better tracking performance, crucial for some applications. The aperture prob-
lem inherent in edge tracking will be revisited in Section 9.5 after the basic track-
ing problem has been discussed.

5.2.3 Edge Candidate Selection 

Usually, due to image noise there are many insignificant extreme values in the re-
sulting correlation vector, as can be seen in Figure 5.6. Positioning the threshold 
properly (and selecting the mask parameters in general) depends very much on the 
scene at hand, as may be seen in Figure 5.15, due to shadow boundaries and scene 
noise, the largest gradient values may not be those looked for in the task context 
(road boundary). Colinearity conditions (or even edge elements on a smoothly 

Figure 5.14. Approximate determination of curvature of a 
slightly curved edge by sub-pixel localization of edge points 
and tangent directions: Hermite-interpolation of a third order 
parabola from two tangent points   
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Figure 5.15. The challenge of edge feature selection in road scenes: Good decisions can 
be made only by resorting to higher level knowledge. Road scenes with shadows (and 
texture); extreme correlation values marking road boundaries may not be the absolutely 
largest ones. 

curved line) may be needed for proper feature selection; therefore, threshold selec-
tion in the feature extraction step should not eliminate these candidates. Depending 
on the situation, these parameters have to be specified by the user (now) or by a 
knowledge-based component on the higher system levels of a more mature version. 
Average intensity levels and intensity ranges resulting from region-based methods 
(see Section 5.3) will yield information for the latter case. 

As a service to the user, in the code CRONOS, the extreme values found in one 
function call may be listed according to their correlation values; the user can spec-
ify how many candidates he wants presented at most in the function call. As an ex-
treme value of the search either the pixel position with the largest mask response 
may be chosen (simplest case with large measurement noise), or several neighbor-
ing correspondence values may be taken into account allowing interpolation. 

5.2.4 Template Scaling as a Function of the Overall “Gestalt” 

An additional degree of freedom available to the designer of a vision system is the 
focal length of the camera for scaling the image size of an object to its distance in 
the scene. To analyze as many details as possible of an object of interest, one tends 
to assume that a focal length, which lets the object (in its largest dimension) just 
fill the image would be optimal. This may be the case for a static scene being ob-
served from a stationary camera. If either the object observed or the vehicle carry-
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ing the camera or both can move, there should be some room left for searching and 
tracking over time. Generously granting an additional space of the actual size of 
the object to each side results in the requirement that perspective mapping (focal 
length) should be adjusted so that the major object dimension in the image is about 
one third of the image. This leaves some regions in the image for recognizing the 
environment of the object, which again may be useful in a task context.  

To discover essential shape details of an object, the smallest edge element tem-
plate should not be larger than about one-tenth of the largest object dimension. 
This yields the requirement that the size of an object in the image to be analyzed in 
some detail should be about 20 to 30 pixels. However, due to the poor angular 
resolution of masks with a size of three pixels, a factor of 2 (60 pixels) seems more 
comfortable. This leads to the requirement that objects in an image must be larger 
than about 150 pixels. Keep in mind that objects imaged with a size (region) of 
only about a half dozen pixels still can be noticed (discovered and roughly 
tracked), however, due to spurious details from discrete mapping (rectangular pixel 
size) into the sensor array, no meaningful shape analysis can be performed. 

This has been a heuristic discussion of the effects of object size on shape recog-
nition. A more operational consideration based on straight edge template matching 
and coordinate-free differential geometry shape representation by piecewise func-
tions with linear curvature models is to follow. 

A lower limit to the support region required for achieving accuracy of about 
one-tenth of a pixel in a tangent position and about 1° in the tangent direction (or-
der of magnitude) by subpixel resolution is about eight to ten pixels. The efficient 
scheme given in [Dickmanns 1985] for accurately determining the curvature parame-
ters is limited to a smooth change in the tangent direction of about 20 to 25°; for 
recovering a circle (360°). This means that about nelef  15 to 18 elemental edge 
features have to be measured. Since the ratio of circumference to diameter is  for 
a circle, the smallest circle satisfying these conditions for non–overlapping support 
regions is nelef times (mask size = 8 to 10 pixels) divided by . This yields a re-
quired size of about 40 to 60 pixels in linear extension of an object in an image.  

Since corners (points of finite direction change) can be included as curvature 
impulses measurable by adjacent tangent directions, the smallest (horizontally 
aligned) measurable square is ten pixels wide while the diagonal is about 14 pixels; 
more irregularly shaped objects with concavities require a larger number of tangent 
measurements. The convex hull and its dimensions give the smallest size measur-
able in units of the support region. Fine internal structures may be lost. 

From these considerations, for accurate shape analysis down to the percent 
range, the image of the object should be between 20 and 100 pixel in linear exten-
sion, in general. This fits well in the template size range from 3 (or 5) to 17 (or 33) 
pixels. Usual image sizes of several hundred lines allow the presence of several 
well-recognizable objects in each image; other scales of resolution may require dif-
ferent focal lengths for imaging (from microscopy to far ranging telescopes). 

Template scaling for line detection: Finally, choosing the right scale for detecting 
(thin) lines will be discussed using a real example [Hofmann 2004]. Figure 5.16 
shows results for an obliquely imaged lane marking which appears 16 pixels wide 
in the search direction (top: image section searched, width nw = 9 pixel). Summing 
up the mask elements in the edge direction corresponds to rectifying the image 
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stripe, as shown below in the figure; however, only one intensity value remains, so 
that for the rest of the pixel-operations with different mask sizes in the search di-
rection, about one order of magnitude in efficiency is gained. All five masks inves-
tigated (a) to (e) rely on the same “ColSum”-vector; depending on the depth of the 
masks, the valid search ranges are reduced (see double-arrows at bottom).  

Figure 5.16. Optimal mask size for line recognition: For general scaling, mask size 
should be scaled by line width (= 16 pixels here)

The averaged intensity profile of the mask elements is given in the vertical cen-
ter (around 90 for the road, and ~130 for the lane marker); the lane marking clearly 
sticks out. Curve (e) shows the mask response for the mask of highest possible 
resolution (1, 0, 1); see legend. It can be seen that the edge is correctly detected 
with respect to location, but due to the smaller extreme value, sensitivity to noise is 
higher than that for the other masks. All other masks have been chosen with n0 = 3 
for reducing sensitivity to slightly different edge directions including curved edges. 
In practical terms, this means that the three central values under the mask shifted 
over the ColSum–vector need not be touched; only nd values to the left and to the 
right need be summed. 

Depth values for the two fields of the mask of nd = 4, 8, and 16 (curves a, b, c) 
yield the same gradient values and edge location; the mask response widens with 
increasing field width. By scaling the field depth nd of the mask by the width of the 
line lw to be detected, the curves can be generalized to scaled masks of depths nd/lw

= ¼, ½, and 1. Case (d) shows with nd/lw = 21/16 = 1.3 that for field depths larger 
than line width, the maximal gradient decreases and the edge is localized at a 
wrong position. So, the field width selected should always be smaller than the line 
to be detected. The number of zeros at the center should be less than the field 
depth, probably less than half that value for larger masks; values between 1 and 3 
have shown good results for nd up to 7. For the detection of dirt roads with jagged 
edges and homogeneous intensity values on and off the road, large n0 are favorable. 
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5.3 The Unified Blob-edge-corner Method (UBM) 

The approach discussed above for detecting edge features of single (sub-) objects 
based on receptive fields (masks) has been generalized to a feature extraction 
method for characterizing image regions and general image properties by oriented 
edges, homogeneously shaded areas, and nonhomogeneous areas with corners and 
texture. For characterizing textures by their statistical properties of image intensi-
ties in real time (certain types of textures), more computing power is needed; this 
has to be added in the future. In an even more general approach, stripe directions 
could be defined in any orientation, and color could be added as a new feature 
space. For efficiency reasons, here, only horizontal and vertical stripes in intensity 
images are considered, for which only one matrix index and the gray values vary at 
a time). To achieve reusability of intermediate results, stripe widths are confined to 
even numbers and are decomposed into two half-stripes. 

5.3.1 Segmentation of Stripes through Corners, Edges, and Blobs 

In this image evaluation method, the goal is to start from as few assumptions on in-
tensity distributions as possible. Since pixel noise is an important factor in outdoor 
environments, some kind of smoothing has to be taken into account, however. This 
is done by fitting models with planar intensity distribution to local pixel values if 
they exhibit some smoothness conditions; otherwise, the region will be character-
ized as nonhomogeneous. Surprisingly, it has turned out that the planarity check 
for local intensity distribution itself constitutes a nice feature for region segmenta-
tion.

5.3.1.1 Stripe Selection and Decomposition into Elementary Blocks  

The field size for the least-squares fit of a planar pixel-intensity model is (2·m) × 
(2·n), and is called the “model support region” or mask region. For reusability of 
intermediate results in computation, this support region is subdivided into basic 
(elementary) image regions (called mask elements or briefly “mels”) that can be 
defined by two numbers: The number of pixels in the row direction m, and the 
number of pixels in the column direction n. In Figure 5.17, m has been selected as 
4 and n as 2; the total stripe width for row search thus is 4 pixels. For m = n = 1, 
the highest possible image resolution will be obtained; however, strong influence 
of noise on the pixel level may show up in the results in this case. 

When working with video fields (sub–images with only odd or even row–
indices, as is often done in practical applications), it makes sense for horizontal 
stripes to choose m = 2n; this yields averaging of pixels at least in row direction for 
n = 1. Rendering these mels as squares, finally yields the original rectangular im-
age shape with half the original full-frame resolution. By shifting stripe evaluation 
by only half the stripe width, all intermediate pixel results in one half-stripe can be 
reused directly in the next stripe by just changing sign (see below). The price to be 
paid for this convenience is that the results obtained have to be represented at the 
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center point of the support region which is exactly at pixel boundaries. However, 
since subpixel accuracy is looked for anyway, this is of no concern. 

Figure 5.17. Stripe definition (row = horizontal, column = vertical) for the (multiple) 
feature extractor ‘UBM’ in a pixel-grid; mask elements (mels) are defined as basic rec-
tangular units for fitting a planar intensity model
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Still open is the question of how to proceed within a stripe. Figure 5.17 suggests 
taking steps equal to the width of mels; this covers all pixels in the stripe direction 
once and is very efficient. However, shifting mels by just 1 pixel in the stripe di-

rection yields smoother (low-
pass filtered) results [Hofmann
2004]. For larger mel-lengths, in-
termediate computational results 
can be used as shown in Figure 
5.18.  

This corresponds to the use of 
Colsum in the method CRONOS 
(see Figures 5.9 and 5.10). The 
new summed value for the next 
mel can be obtained by subtract-
ing the value of the last column 
and adding the one of the next 

Figure 5.18. Mask elements (mels) for efficient 
computation of gradients and average intensities
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column [(j 2) and (j+2) in the example shown, bottom row in Figure 5.18]. 
For the vertical search direction, image evaluation progresses top-down within 

the stripe and from left to right in the sequence of stripes. Shifting of stripes is al-
ways done by mel-size m or n (width of half-stripe), while shifting of masks in the 
search direction can be specified from 1 to m or n (see Figure 5.19b below); the lat-
ter number m or n means pure block evaluation, however, only coarse resolution. 
This yields the lowest possible computational load with all pixels used just once in 
one mel. For objects in the near range, this may still be sufficient for tracking. 

The goal was to obtain an algorithm allowing easy adaptation to limited com-
puting power; since high resolution is required in only a relatively small part of 
images, in general in outdoor scenes, only this region needs to be treated with more 
finely tuned parameters (see Figure 5.37 below). Specifying a rectangular region of 
special interest by its upper left and lower right corners, this sub-area can be pre-
cisely evaluated in a separate step. If no view stabilization is available, the decision 
for the corner points may even be based on actual evaluation results with coarse 
resolution. The initial analysis with coarse resolution guarantees that only the most 
promising subregions of the image are selected despite angular perturbations 
stemming from motion of the subject body, which shifts around the inertially fixed 
scene in the image. This attention-focusing avoids unnecessary details in regions of 
less concern. 

Figure 5.19 shows the definitions necessary for performing efficient multiple-
scale feature evaluation. The left part (a) shows the specification of masks of dif-
ferent sizes (with mel-sizes from 1×1 to 4×2 and 4×4, i.e., two pyramid stages). 
Note that the center of a pixel or of mels does not coincide with the origin O of the 
masks, which is for all masks at (0, 0). The mask origin is always defined as the 
point where all four quadrants (mels) meet. The computation of the average inten-

Figure 5.19. With the reference points chosen here for the mask and the average image 
intensities in quadrants Qi, fusing results from different scales becomes simple; (a) basic 
definitions of mask elements, (b) progressive image analysis within stripes and with se-
quences of stripes (shown here for rows)
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sities in each mel (I12, I11, I21, I22 in quadrants Q1 to Q4) is performed with the ref-
erence point at (0.5, 0.5), the center of the first pixel nearest to the mask origin in 
the most recent mel; this yields a constant offset for all mask sizes when rendering 
pixel intensities from symbolic representations. For computing gradients, of 
course, the real mel centers shown in quadrant Q4 have to be used.  

The reconstruction of image intensities from results of one stripe is done for the 
central part of the mask (± half the size of the width normal to the search direction 
of the mask element). This is shown in the right part (b) of the figure by different 
shading. It shows (low-frequency) shifting of the stripe position by n = 2 (index i)
and (high-frequency) shifting of the mask position in search direction by 1 (index 
k). Following this strategy in both row and column direction will yield nice low-
pass-filtered results for the corresponding edges. 

5.3.1.2 Reduction of the Pixel Stripe to a Vector with Attributes  

The first step is to sum up all n pixel or cell values in the direction of the width of 
the half-stripe (lower part in Figure 5.18). This reduces the half-stripe for search to 
a vector, irrespective of stripe width specified. It is represented in Figure 5.18 by 
the bottom row (note the reduction in size at the boundaries). Each and every fur-
ther computation is based on these values that represent the average pixel or cell 
intensity at the location in the stripe if divided by the number of pixels summed. 
However, these individual divisions are superfluous computations and can be 
spared; only the final results have to be scaled properly for image intensity.

In our example with m = 4 in Figure 5.18, the first mel value has to be computed 
by summing up the first four values in the vector. When the mels are shifted by one 
pixel or cell length for smooth evaluation of image intensities in the stripe (center 
row), the four new mel values are obtained by subtracting the trailing pixel or cell 
value at position j 2 and by adding the leading one at j +2 (see lower left in Figure 
5.18). The operations to be performed for gradient computation in horizontal and 
vertical directions are shown in the upper left and center parts of the figure. Sum-
ming two mel values (vertically in the left and horizontally in the center sub-
figure) and subtracting the corresponding other two sums yields the difference in 
(average) intensities in the horizontal and vertical directions of the support region. 
Dividing these numbers by the distances between the centers of the mels yields a 
measure of the (averaged) horizontal and vertical image intensity gradient at that 
location. Combining both results allows computing the absolute gradient direction 
and magnitude. This corresponds to determining a local plane tangent to the image 
intensity distribution for each support region (mask) selected. 

However, it may not be meaningful to enforce a planar approximation if the in-
tensities vary irregularly by a large amount. For example, the intensity distribution 
in the mask top left of Figure 5.17 shows a situation where averaging does not 
make sense. Figure 5.20a shows the situation with intensities as vectors above the 
center of each mel. For simplicity, the vectors have been chosen of equal magni-
tude on the diagonals. The interpolating plane is indicated by the dotted lines; its 
origin is located at the top of the central vector representing the average intensity 
IC. From the dots at the center of each mel in this plane, it can be recognized that 
two diagonally adjacent vectors of average mel intensity are well above, respec-
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tively, below the interpolating 
plane. This is typical for two cor-
ners or a textured area (e.g., four 
checkerboard fields or a saddle 
point).  

Figure 5.20b represents a per-
fect (gray value) corner. Of 
course, the quadrant with the dif-
fering gray value may be located 
anywhere in the mask. In general, 
all gray values will differ from 
each other. The challenge is to 
find algorithms allowing reason-
able separation of these feature 
types versus regions fit for inter-

polation with planar shading models (lower part of Figure 5.20) at low computa-
tional cost. Well known for corner detection among many others are the “Harris”- 
[Harris, Stephens 1988], the KLT- [Tomasi, Kanade 1991] and the “Haralick”- 
[Haralick, Shapiro 1993] algorithms, all based on combinations of intensity gradients 
in several regions and directions. The basic ideas have been adapted and integrated 
into the algorithm UBM. The goal is to segment the image stripe into regions with 
smooth shading, corner points, and extended nonhomogeneous regions (textured 
areas). It will turn out that nonplanarity is a new, easily computable feature on its 
own (see Section 5.3.2.1). 

Figure 5.20. Feature types detectable by UBM 
in stripe analysis 

Corner points are of special value in tracking since they often allow determining 
optical feature flow in image sequences (if robustly recognizable); this is one im-
portant hint for detecting moving objects before they have been identified on 
higher system levels. These types of features have shown good performance for de-
tecting pedestrians or bicyclists in the near range of a car in urban traffic [Franke et
al. 2005].

Stripe regions fit for approximation by sequences of shading models are charac-
terized by their average intensities and their intensity gradients over certain regions 
in the stripe; Figure 5.20c shows such a case. However, it has to be kept in mind 
that a planar fit to intensity profiles with nonlinear intensity changes in only one di-
rection can yield residues of magnitude zero with the four symmetric support 
points in the method chosen (see Figure 5.20d); this is due to the fact that three 
points define a plane in space, and the fourth point (just one above the minimal 
number required for fixing a plane) is not sufficient for checking the real spatial 
structure of the surface to be approximated. This has to be achieved by combining 
results from a sequence of mask evaluations. 

By interpolation of results from neighboring masks, extreme values of gradients 
including their orientation are determined to subpixel accuracy. Note that, contrary 
to the method CRONOS, no direction has to be specified in advance; the direction 
of the maximal gradient is a result of the interpolation process. For this reason the 
method UBM is called “direction-sensitive” (instead of “direction selective” in the 
case of CRONOS). It is, therefore, well suited for initial (strictly “bottom-up”) im-
age analysis [Hofmann 2004], while CRONOS is very efficient once predominant 
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edge directions in the image are known and their changes can be estimated by the 
4-D approach (see Chapter 6). 

During these computations within stripes, some statistical properties of the im-
ages can be determined. In step 1, all pixel values are compared to the lowest and 
the highest values encountered up to then. If one of them exceeds the actual ex-
treme value, the actual extreme is updated. At the end of the stripe, this yields the 
maximal (Imax-st) and the minimal (Imin-st) image intensity values in the stripe. The 
same statistic can be run for the summed intensities normal to the stripe direction 
(Iwmax-st and Iwmin-st) and for each mel (Icmax-st and Icmin-st); dividing the maximal and 
minimal value within each mel by the average for the mel, these scaled values will 
allow monitoring the appropriateness of averaging. A reasonable balance between 
computing statistical data and fast performance has to be found for each set of 
problems. 

Table 5.1 summarizes the parameters for feature evaluation in the algorithm 
UBM; they are needed for categorizing the symbolic descriptions within a stripe, 
for selecting candidates, and for merging across stripe boundaries. Detailed mean-
ings will be discussed in the following sections.  

Table 5.1. Parameters for feature evaluation in image stripes 

ErrMax Maximally allowed percent error of interpolated intensity 
plane through centers of four mels (typically 3 to 10%); 
note that the errors at all mel centers have same magnitude! 
(see Section 5.3.2.2) 

CircMin

(qmin)

Minimal “circularity” required, threshold value on scaled 
second eigenvalue for corner selection [0.75 corresponds to 
an ideal corner (Figure 5.20b), the maximal value 1 to an 
ideal double–corner (checkerboard, Figure 5.20a)]; (see 
section 5.3.3) 

traceNmin (Alternate) threshold value for selection of corner candi-
dates; useful for adjusting the number of corner candidates.  

IntensGradMin Threshold value for intensity gradients to be  accepted as 
edge candidates; (see Section 5.3.2.3) 

AngleFactHor Factor for limiting edge directions to be found in horizontal 
search direction (rows); (see Section 5.3.2.3) 

AngleFactVer Factor for limiting edge directions to be found in vertical 
search direction (columns); (see Section 5.3.2.3) 

VarLim Upper bound on variance allowed for a fit on both ends of 
a linearly shaded blob segment 

Lsegmin Minimum length required of a linearly shaded blob seg-
ment to be accepted (suppression of small regions) 

DelIthreshMerg Tolerance in intensity for merging adjacent regions to 2-D 
blobs

DelSlopeThrsh Tolerance for intensity gradients for merging adjacent re-
gions to 2-D blobs 

The five feature types treated with the method UBM are (1) textured regions 
(see Section 5.3.2.1), (2) edges from extreme values of gradients in the search di-
rection (see Section 5.3.2.3), (3) homogeneous segments with planar shading mod-
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els (see Section 5.3.2.4), (4) corners (see Section 5.3.3), and (5) regions nonline-
arly shaded in one direction, which, however, will not be investigated further here. 
They have to lie between edges and homogeneously shaded areas and may be 
merged with class 1 above.

The sequence of decisions in the unified approach to all these features, exploit-
ing the same set of image data evaluated in a stripe-wise fashion, is visualized in 
Figure 5.21. Both horizontal and vertical stripes may be searched depending on the 
orientation of edges in the image. Localization of edges is best if they are oriented 
close to orthogonal to the search direction; therefore, for detecting horizontal edges 
and horizontal blob boundaries, a vertical search should be preferred. In the general 
case, both search directions are needed, but edge detection can then be limited to 
(orthogonal to the search direction) ± 50°. The advantage of the method lies in the 
fact that (1) the same feature parameters derived from image regions are used 
throughout, and (2) the regions for certain features are mutually exclusive. Com-
pared to investigating the image separately for each feature type, this reduces the 
computer workload considerably. 

Figure 5.21. Decision tree for feature detection in the unified blob-edge-corner method 
(UBM) by local and global gradients in the mask region
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5.3.2 Fitting an Intensity Plane in a Mask Region 

For more efficient extraction of features with respect to computing time, as a first 
step the sum of pixel intensities Ics is formed within rectangular regions, so-called 
cells of size mc× nc ; this is a transition to a coarser scale. For mc= nc, pyramid lev-

els are computed, especially for mc= nc = 2 the often used step-2 pyramids. With Iij

as pixel intensity at location u = i and v = j there follows for the cell 

1 1

.
c cm n

cs ij

i j

I I (5.8)

The average intensity cI of all pixels in the cell region then is  

/( ).c cs c cI I m n (5.9) 

The normalized pixel intensity IpN for each pixel in the cell region is 

/pN p cI I I    around the average value cI . (5.10) 

Cells of different sizes may be used to generate multiple scale images of reduced 
size and resolution for efficient search of features on a larger scale. When working 
with video fields, cells of size 2 in the row and 1 in the column direction will bring 
some smoothing in the row direction and lead to much shorter image evaluation 
times. When coarse-scale results are sufficient, as for example with high-resolution 
images for regions nearby, cells of size 4 × 2 efficiently yield scene characteristics 
for these regions, while for regions further away, full resolution can be applied in 
much reduced image areas; this foveal–peripheral differentiation contributes to ef-
ficiency in image sequence evaluation. The region of high-resolution image 
evaluation may be directed by an attention focusing process on a higher system 
level based on results from a first coarse analysis (in a present or previous image). 

The second step is building mask elements (“mels”) from cells; they contain  
    pixels in the search direction, and

       pixels normal to the search direction.

c p

c p

m m m

n n n
(5.11) 

Define 

,
1 1

m n

MEs cs ij

i j

I I    (sum of cell intensities) CSI , (5.12) 

then the average intensity of cells and thus also of pixels in the mask element is 

/( )ME MEsI I m n . (5.13) 

In the algorithm UBM, mels are the basic units on which efficiency rests. Four 
of those are always used to form masks (see Figures 5.17-5.19) as support regions 
for image intensity description by symbolic terms: 

Masks are support regions for the description and approximation of local 

image intensity distributions by parameterized symbols (image features): 
(1) ‘Textured areas’ (nonplanar elements), (2), ‘oriented edges’ (3) ‘linearly 

shaded regions’, and (4) ‘corners’. Masks consist of four mask elements 

(mels) with average image intensities 11 12 21 22, , ,s s s sI I I I .
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The average intensity of all mels in the mask region is  

, 11 12 21 22( )Mean s s s s sI I I I I / 4. (5.14) 

To obtain intensity elements of the order of magnitude 1, the normalized inten-
sity in mels is formed by division by the mean value of the mask: 

,/ .ijN ijs Mean sI I I (5.15) 

This means that  

/ 4 1.ijNI (5.16) 

The (normalized) gradient components in a mask then are given as the differ-
ence of intensities divided by the distance between mel-centers: 

          
1Nr 12N 11Nf = I I m       (upper row direction)          (a) 

      
2 22 21-

Nr N Nf I I m       (lower row direction)          (b) 

       
1 21 11Nc N Nf I I n       (left column direction)         (c) 

       
2 22 12-

Nc N Nf I I n       (right column direction).      (d) 

(5.17) 

The first two are local gradients in the row-direction (index r) and the last two in 
the column direction (index c). The global gradient components of the mask are 

1 2
2

N N Nr r rf f f        (global row direction) 

1 2
2

N N Nc c cf f f      (global column direction). 
(5.18) 

The normalized global gradient gN and its angular orientation  then are 
2 2

N NN r cg f f         (5.19) 

arctan /
N Nc rf f . (5.20) 

 is the gradient direction in the (u, v)-plane. The direction of the vector normal to 
the tangent plane of the intensity function (measured from the vertical) is given by  

arctan Ng . (5.21) 

5.3.2.1 Adaptation of a Planar Shading Model to the Mask Area 

The origin of the local coordinate system used is chosen at the center of the mask 
area where all four mels meet. The model of the planar intensity approximation 
with least sum of the squared errors in the four mel–centers has the yet unknown 
parameters I0, gy, and gz (intensity at the origin, and gradients in the y- and z-
directions). According to this linear model, the intensities at the mel–centers are 

11 0

12 0

21 0

22 0

/ 2 / 2,

/ 2 / 2,

/ 2 / 2,

/ 2 / 2.

Np y z

Np y z

Np y z

Np y z

I I g m g n

I I g m g n

I I g m g n

I I g m g n

(5.22) 

Let the measured values from the image be 11 12 21, ,N N NI I I  and 22NI . Then the er-

rors eij can be written: 
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(5.23) 

To minimize the sum of the squared errors, this is written in matrix form: 
                                           Ne A g I                                            (a) 

where                                       (b) 
1 1 1 1

/ 2 / 2 / 2 / 2

/ 2 / 2 / 2 / 2

TA m m m m

n n n n

(5.24) 

and                     .                     (c) 11 12 21 22
T

N N N N NI I I I I

The sum of the squared errors is  and shall be minimized by proper selection 

of

Te e

0
T

y zI   g   g p . The necessary condition for an extreme value is that the par-

tial derivative ; this leads to ( ) / 0Td e e dp

T T

NA I A A p , (5.25) 

with solution (pseudo–inverse)         1( )T T

Np A A A I . (5.26) 

From Equation 5.24b follows 

2

2

4 0 0

0 0

0 0

TA A m

n

and

1 2

2

1/ 4 0 0

( ) 0 1/ 0

0 0 1/

TA A m

n

,

(5.27) 

and with Equations 5.24c and 5.14 

1 2

1 2

2

2

4

/ 2

/ 2

N N

N N

T

N r r

c c

A I f f m

f f n

. (5.28) 

Inserting this into Equation 5.26 yields, with Equation 5.17, the solution 

0[      ] = [1       ].T

y z rN cNp I g g f f (5.29) 

5.3.2.2 Recognizing Textured Regions (limit for planar approximations) 

By substituting Equation 5.29 into 5.23, forming 12 11( )e e  and 22 21(e e )  as well 

as  and , and by summing and differencing the results, one fi-

nally obtains 
21 11( )e e 22 12(e e )

21 12e e       (5.30) 
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and                                              11 22e e  ; 

this means that the errors on each diagonal are equal. Summing up all errors  

yields, with Equation 5.16, 

ije

0ije .

This means that the errors on the diagonals have opposite signs, but their magni-
tudes are equal! These results allow an efficient combination of feature extraction 
algorithms by forming the four local gradients after Equation 5.17 and the two 
components of the gradient within the mask after Equations 5.18 and 5.29. All four 
errors of a planar shading model can thus be determined by just one of the four 
Equations 5.23. Even better, inserting proper expressions for the terms in Equation 
5.23, the planar interpolation error with Equation 5.12 turns out to be  

11 22 12 21 MEsErrInterp [( ) ( )] /I I I I I . (5.31) 

Efficiently programmed, its evaluation requires just one additional difference 
and one ratio computation. The planar shading model is used only when the magni-
tude of the residues is sufficiently small 

pl,max| ErrInterp |  (dubbed ErrMax). (5.32) 

 MaxErr =  4%; 1291 features in row–,   2859 in column search 
    0.59% of pixels    1.3% of pixels 

Figure 5.22. Nonplanarity features in central rectangle of an original video–field 
(cell size mc = 1, nc = 1, mel size 1×1, finest possible resolution, MaxErr = 4%) 

Figure 5.22 shows a video field of size 288 × 768 pixels with nonplanar regions 
for mc = nc = m = n =1 (highest possible resolution) and ErrMax = 4% marked by 
white dots; regions at the left and right image boundaries as well as on the motor 
hood (lower part) and in the sky have been excluded from evaluation. 

Only the odd or even rows of a full video frame form a field; fields are transmit-
ted every 40 ms in 25 Hz video. Confining evaluation to the most interesting parts 
of fields leaves the time of the complementary field (20 ms) as additional comput-
ing time; the image resolution lost in the vertical direction is hardly felt with sub-
pixel feature extraction. [Interleaved video frames (from two fields) have the addi-
tional disadvantage that for higher angular turn rates in the row direction while 
taking the video, lateral shifts result between the fields.]  

The figure shows that not only corner regions but also – due to digitization ef-
fects – some but not all edges with certain orientations (lane markings on the left 
and parts of silhouettes of cars) are detected as nonplanar. The number of features 
detected strongly depends on the threshold value ErrMax. 
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Figure 5.23 shows a 
summary of results for the 
absolute number of masks 
with nonplanar intensity 
distribution as a function 
of a variety of cell and 
mask parameters as well 
as of the threshold value 
ErrMax in percent. If this 
threshold is selected too 
small (say, 1%), very 
many nonplanar regions 
are found. The largest 
number of over 35 000 is 
obtained if a mask element 
is selected as a single 
pixel; this corresponds to 
~ 17% of all masks evalu-
ated of the image.  

The number of nonpla-
nar regions comes down 
rapidly for higher values 
of ErrMax. For ErrMax = 
2%, this number drops to 
less than 1/3; for higher 
values of ErrMax, the 
scale has been changed in 
the figure for better resolution. For ErrMax = 5%, the maximum number of non-
planar masks is less than 2000, that is less than 1% of the number of original pix-
els; on the other hand, for all cell and mask parameters investigated in the range [1 

 (mc , nc)  2 and 1  (m, n)  4], the number of nonplanar intensity regions does 
not drop below ~ 600 (for ErrMax = 5%). This is an indication that there is signifi-
cant nonplanarity in intensity distribution over the image which can be picked up 
by any set of cell and mask parameters and also by the computer-efficient ones 
with higher parameter values that show up in the lower curves of Figure 5.23. Note 
that these curves include working on the first pyramid level mc = nc = 2 with mask 
elements m  4 and n  4; only the lowest curve 11.44 (m = n =1, mc = nc = 4), for 
which the second pyramid level has been formed by preprocessing during cell 
computation, shows ~ 450 nonplanar regions for ErrMax = 5%. The results point in 
the direction that a combination of features from different pyramid scales will form 
a stable set of features for corner candidates. 

For the former set of parameters (first pyramid level), decreasing the threshold 
value ErrMax to 3% leaves at least ~ 1500 nonplanar features; for curve 11.44, to 
reach that number of nonplanar features, ErrMax has to be lowered to 2%; how-
ever, this corresponds to ~ 50 % of all cell locations in this case. Averaging over 
cells or mask elements tends to level-off local nonplanar intensity distributions; it 
may therefore be advisable to lower threshold ErrMax in these cases in order not to 

Figure 5.23. Absolute number of mask locations with 
residues exceeding ErrMax for a wide variety of cell 
and mask parameters m, n, mc , nc . For ErrMax  3% a 
new scale is used for better resolution. For ErrMax 
5% at most 2000 nonplanar intensity regions are found 
out of at most ~ 200 000 mask locations for highest 
resolution with mel = pixel in a video–field.
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lose sharp corners of moderate intensity differences. On the contrary, one might 
guess that for high resolution images, analyzed with small parameter values for 
cells and masks, it would be advantageous to increase ErrMax to get rid of edges 
but to retain corners. To visualize the 5%-threshold, Figure 5.24 shows the video 
field with intensities increased within seven rectangular regions by 2, 3, 4, 5, 7.5, 
10, and 15% respectively; the manipulation is hardly visible in darker regions for 
values less than 5%, indicating that this seems to be a reasonable value for the 
threshold ErrMax from a human observer’s point of view. However, in brighter 
image regions (e.g., sky), even 3% is very noticeable. 

The effect of lifting the threshold value ErrMax to 7.5% for planar intensity ap-
proximation for highest resolution (all parameters = 1, in shorthand notation 
(11.11) for the sequel) is shown in Figure 5.25.  

In comparison to Figure 5.22, it can be seen that beside many edge positions 
many corner candidates have also been lost, for example, on tires and on the dark 

truck in front. This indicates that to keep candidates for real corners in the scene, 
ErrMax should not be chosen too large. The threshold has to be adapted to the 
scene conditions treated. There is not yet sufficient experience available to auto-
mate this threshold adaptation which should certainly be done based on results 

ErrMax = 
2 %   3 %  4 %    5 % 7.5 %    10 %  15 % 

Figure 5.24. Visualization of %–threshold values in image intensity for separating pla-
nar from nonplanar local intensity models: In the rectangles, all pixel values have been 
increased by a factor corresponding to the percentage indicated as inset  

Figure 5.25. Nonplanar features superimposed on original videofield for the threshold 
values MaxErr = 4% (left) and 7.5% (right); cell size mc = 1, nc = 1, mel size 1×1 (rows 
compressed after processing). More than 60% of features are lost in right image. 
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from several sets of parameters (mc , nc , m, n) and with a payoff function yet to be 
defined. Values in the range 2  ErrMax  5% are recommended as default for re-
ducing computer load, on the one hand, and for keeping good candidates for cor-
ners, on the other.  

Larger values for mel and cell parameters should be coupled with smaller values 
of ErrMax. Working on the first (2×2) pyramid level of pixels (cell size mc = 2, nc

= 2) reduces the number of mask evaluations needed by a factor of 8 compared to 
working on the pixel level. The third power of 2 is due to the fact that now the 
half-stripe in the number of pixels is twice as wide as in the number of cells; in to-
tal, this is roughly a reduction of one power of 10 in computing effort (if the pyra-
mid image is computed simultaneously with frame grabbing by a special device). 

Figure 5.26 shows a juxtaposition of results on the pixel level (left) and on the 
first pyramid level (right). For ErrMax = 2% on the pixel level (left part), the 4% of 
occurrences of the number of nonplanar regions corresponds to about 8000 loca-
tions, while on the first pyramid level, 16% corresponds to about 4000 locations 
(see reference numbers on the vertical scale). Thus, the absolute number of non-
planar elements decreases by about a factor of 2 on the first pyramid level while 
the relative frequency in the 
image increases by about a 
factor of 4. Keeping in 
mind that the number of 
image elements on the first 
pyramid level has de-
creased by the same factor 
of 4, this tells us that on this 
level, most nonplanar fea-
tures are preserved. On the 
pixel level, many spurious 
details cause the frequency 
of this feature to increase; 
this is especially true if the 
threshold ErrMax is re-
duced (see leftmost ordi-
nate in Figure 5.26 for 
ErrMax = 1%). 

For the largest part of 
standard images from 
roads, therefore, working on the first pyramid level with reduced resolution is suf-
ficient; only for the farther look-ahead regions on the road, which appear in a rela-
tively small rectangle around the center, is full resolution recommended. Quite 
naturally, this yields a foveal–peripheral differentiation of image sequence analysis 
with much reduced computing resources needed. Figure 5.27 demonstrates that 
when working with video fields, a further reduction by a factor of 2 is possible 
without sacrificing detection of significant nonplanar features. 

The right-hand picture is based on cell size (4×2); 4 pixels each in two rows are 
summed to yield cell intensity, while on the left, the cell is a pixel on the (2×2) first 
pyramid level. The subfigures are superpositions of all pixels found to belong to 

Figure 5.26. Relative number of nonplanar mask lo-
cations as a function of parameters for mask element 
formation m, n, mc , nc. Note that in the right part 
ErrMax starts at 2%; in the left part, which represents 
working on the pixel level, the relative frequency of 
nonplanar regions is down to ~ 4% for this value. 
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Figure 5.27. Nonplanar features for parameter set ErrMax = 2.5%, mask elements m = 
n = 2 and cell size nc = mc = 2 (i.e., first pyramid level, left; after processing compressed 
2:1 in rows for better comparison). Changing mc to 4 (right) yields about the same num-
ber of features : ~ 2500.  

nonplanar regions, both in row search (horizontal white bars) and in column search 
(vertical white bars); it can be seen that beside corner candidates many edge candi-
dates are also found in both images. For similar appearance to the viewer, the left 
picture has been horizontally compressed after finishing all image processing. 
From the larger number of local vertical white bars on the left, it can be seen that 
nonplanarity still has a relatively large spread on the first pyramid level; the larger 
cell size of the right-hand image cuts the number of masks to be analyzed in half 
(compare results in corner detection in Figure 5.39, 5.40 below). Note that even the 
reflections on the motor hood are detected. The locations of the features on differ-
ent scales remain almost the same. These are the regions where stable corner fea-
tures for tracking can be found, avoiding the aperture problem (sliding along 
edges). All significant corners for tracking are among the nonplanar features. They 
can now be searched for with more involved methods, which however, have to be 
applied to candidate image regions at least an order of magnitude smaller (see Fig-
ure 5.26). After finding these regions of interest on a larger scale first, for precise 
localization full resolution may be applied in those regions. 

5.3.2.3 Edges from Extreme Values of Gradients in Search Direction 

Gradient values of the intensity 
function have to be determined 
for least-squares fit of a tangent 
plane in a rectangular support re-
gion (Equation 5.29). Edges are 
defined by extreme values of the 
gradient function in the search 
direction (see Figure 5.28). These 
can easily be detected by multi-
plying two consecutive values of 
their differences in the search di-
rection [(g0  gm)·(gp  g0)]; if the 
sign of the product is negative, 
an extreme value has been 

1          0           +1

i 2      i 1         i

Mask location for evaluation

gm

gextr

yextr

y

dy

D0

-D1

gp < g0

g0

gextr

gm

gp

(a) (b)

Intensity

gradient

g Int
intensity

Threshold

parameters:
• IntGradMin

• EpsGradCurv 1

0.

Figure 5.28. Localization of an edge to subpixel 
accuracy by parabolic interpolation after passing 
a maximum value g0 of the intensity gradient
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passed. Exploiting the same procedure shown in Figure 5.12, the location of the ex-
treme value can be determined to sub-cell accuracy. This indicates that accuracy is 
not necessarily lost when cell sizes are larger than single pixels; if the signals are 
smooth (and they become smoother by averaging over cells), the locations of the 
extreme values may be determined to better than one-tenth the cell size. Mel sizes 
of several pixels in length and width (especially in the search direction), therefore, 
are good candidates for efficient and fast determination of edge locations with this 
gradient method. 

Figure 5.28a shows three gradient values gm, g0, and gp determining the parabola 
to be interpolated. The second-order coefficient of this parabolic curve, dubbed 
“mintcurv” is given by 

0mintcurv  0.5 (   ) -  m pg g g . (5.33) 

To eliminate noise effects from data, two threshold values are introduced before an 
edge is computed:  

1. The magnitude of mintcurv has to be larger than a threshold value intcurv; this 
eliminates very shallow extremes (large radii of the osculating circles, dashed 
lines in 5.28a). Leaving this threshold out may often be acceptable. 

2. The absolute value of the maximum gradient encountered has to be larger than a 
threshold value “IntGradMin”; this admits only significant gradients as candi-
dates for edges. The larger the mel size, the smaller this threshold should be 
chosen.

Proper threshold values for classes of problems have to be found by experimenta-
tion; in the long run, the system should be capable of doing this by itself, given 

corresponding payoff functions. 
Since edges oriented directly in 
the search direction are prone to 
larger errors, they can be ex-
cluded by limiting the ratio of 
the gradient components for ac-
ceptance of candidates. Figure 
5.29 shows the principal idea. 
When both gradient compo-
nents |gy| and |gz| are equal, the 
edge direction is 45°. Excluding 
all cases where Equation 5.34 is 
valid, a selection of k  around 1 
will allow finding all edges by a 
combined row and column 
search.

,| |    | |y hor zg k g

   |

 in row search and 

      | | |,z vert yg k g

Figure 5.29. Limiting edge directions to be found 
in row–search around the vertical can be achieved 
by introducing limits for the ratio of gradient 
components (|gy| / |gz| > k ,hor); (analogous for col-
umn search: k ,hor need not be equal to k ,vert)

 in column search , 
(5.34) 

 (Edges with orientation close to diagonal should be detected in both search direc-
tions, leading to redundancy for cross checking.) Sub-mel localization of edges is 
performed only when all conditions mentioned are satisfied. The extreme value is 
found where the derivative of the gradient is zero. Defining 

gy

gz1

gz2 = gy

gy / k ,hort

= gz3

45°
Setting the 

exclusion factor 

k = 0.8 and

requesting

|gy| > k ,hor · |gz| ,

edge directions in 

the range ± ~ 50 °

(case 3) from the 

orthogonal to the 

search direction 

are picked up. 

Edge

directions

case 1

case 3

case 2
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slopegr  = 0.5 ( )p mg g (5.35) 

 for a row search leads to the results: (a) sub-mel location dy from the central refer-
ence 0 and (b) the magnitude of the extreme gradient component gymax:

max 0

     0.5 slopegr/mintcurv,

    (slopegr  0.5 mintcurv ) .y

dy

g g dy dy
(5.36) 

To determine the edge direction precisely, it is necessary to compute the value of 
the orthonormal gradient component (here gz,edge) with a second-order interpolation 
from the corresponding gz values and with the same dy also. The expressions for 
column search (dz, gzmax, and gy,edge) are obtained in analog fashion. Figure 5.30 
shows results of edge finding on the cell level (mc = 2, nc = 1, i.e., pure horizontal 
field compression) with mels of size m = n = 3. 

Even edges in re-
flections on the motor–
hood (bottom of im-
age) and shadow 
boundaries are de-
tected. Road areas are 
almost free of edge 
elements originating 
from noise, but lane 
markings are fully de-
tected in a column 
search; the lane mark-
ing to the right is par-
tially detected in a row 
search also, because of 
the steepness of the 
edge around /4 in the 
image. It was surpris-
ing to see the left front wheel of the truck to the right detected so well with the new 
computation of edge directions from the interpolated gradient components. Such 
results can hardly be expected from radar or even from laser range finders; for this 
reason, once the computing power is available at low cost, machine vision is con-
sidered the favorite sense for perceiving the road environment in detail.  

Figure 5.30. Edges from extreme values in gradient com-
ponents in row (yellow) and column search (red, parame-
ters m, n . mc, nc = 33.21), IntGradMin = 0.016; white re-
gions are bi-directionally nonplanar features.  

Distance to other vehicles can easily be estimated sufficiently accurate by the 
“flat ground”-assumption and by finding the lower bounds of collections of fea-
tures moving in conjunction [Thomanek 1996]; especially, the dark areas underneath 
the vehicles and their boundary lines are highly visible in the figure. Taking the re-
gions of the road blobs into account, seven vehicle hypotheses can be derived im-
mediately (two in the left lane, two upfront in the own lane, and three in the lane to 
the right). Tracking these hypotheses over time will clarify the situation, in general. 

Due to the small size of Figure 5.30, it is hard to appreciate the details; the origi-
nal visualization on a large screen with thinner lines for the results from row and 
column search yields vivid impressions to the human observer. The white line ele-
ments in the figure show the locations of bi-directionally nonplanar features (non-
homogeneous areas determined in the first step of the UBM). Edges can be re-
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garded as uni-directionally nonplanar features. The cross-section shown in Figure 
5.28b is more clearly visualized in perspective projection in Figure 5.31; there is a 
transition between two different intensity levels with the edge at the position of 
steepest gradient (not emphasized here; it would lie approximately at the position 
of the right mel centers I12 and I22,
where the plane fitted cuts the nonlinear 
intensity surface in the figure). 

Normal vector to image 

plane in origin of mask

Image

stripe

Image

inten-
sity

yz

Interpolated 

intensity plane

of mel centers

Locations

I11 = I21 I12 = I22
Imean

Figure 5.31. Visualization of the fact 
that curvature in only one direction of 
the intensity function (orthonormal cur-
vature = 0) yields residues  0, using 
four support points; the mask passes the 
(weak) nonplanarity test of Section 5.3

Usually, edges are boundaries of 
homogeneously shaded, textured, or 
colored regions. Textured regions ex-
hibit nonplanar features all over (e.g.,
see tree in upper left center of Figure 
5.30, left of the dark truck); usually, 
they do not have simple characteristic 
parameters; trees, text on traffic or 
navigation signs, and strongly curved 
edges of vehicles reflecting the envi-
ronment are typical textured areas in 
road scenes (see Figure 5.30). These 
regions are grouped as inhomogeneous 
and are discarded from further analysis, 
at present, except testing for corner fea-
tures (see Section 5.33 below).  

The rest of the image between nonplanar regions and edge features now has to 
be checked for linearly shaded blobs. These candidate regions are analyzed first 
within a single stripe only; to be efficient, linearly shaded segments satisfying cer-
tain variance conditions have to have a certain minimal length Lsegmin to qualify as 
1-D blob features; this suppresses spurious details right from the beginning. After 
finding a blob-centered description for the 1-D blob, merging into larger regions 
with the results of previously analyzed stripes is performed, if certain threshold 
conditions for fusion are met; this leads to so-called 2-D blobs. Stable blobs and 
their centers are very nice features for tracking. Contrary to edges, their shading 
characteristics (average gray value and gradient components) allow easier recogni-
tion of objects from one image to the next, both within a temporal sequence for 
tracking and between images from a pair of cameras for stereo interpretation. 

5.3.2.4 Extended Shading Models in Image Stripes 

Figure 5.32 shows a result of intensity analysis in a vertical stripe [Hofmann 2004].
Regions within stripes with similar shading parameters (average intensity, gradient 
magnitude and gradient direction) are grouped together as homogeneously shaded 
segments with a set of common parameters; they are called (1-D) blob-features

here. The vertical image stripe marked by a white rectangle (at the right-hand side) 
yields the feature set shown graphically to the left, with some dotted lines indicat-
ing correspondences.  
It is proposed here, to group regions satisfying the threshold conditions on the vari-
ance, but of small segment length < Lsegmin, into a special class; depending on the 
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scale of analysis they may be considered as “textured”. Since there will be very 
many of these local features, in general, they are not characteristic for understand-
ing the scene observed. To concentrate on highly visible features that can be rec-
ognized and tracked well, the size of blob features should have an extension of a 
certain percentage of the whole image in at least one dimension, say, a few percent. 
Taking 500 pixels as a characteristic (average) image resolution in one dimension, 
the minimal segment length should be chosen as 5 < Lsegmin < 25 pixels, in general.  

In Figure 5.32, blobs 1, 2, and 4 clearly satisfy this condition. If smaller regions 
show an image intensity level considerably different from their environment, they 
may qualify as blob features also, despite their small size. Maybe a characteristic 
number depending on the product of segment length and intensity difference 
should be chosen for decision-making. Lane markings on roads are typical exam-
ples; blob 3 (at the right-hand side), but also the spike left of blob 2 in Figure 5.32 
are points in case. However, all four edges of these two lane markings are strong 
features by themselves and will be detected independently of the blob analysis, 
usually (see lower bar in the figure with characterization of edges as DH for dark-
to-bright and HD for bright-to-dark transitions [Hofmann 2004]).    

The basic mathematical tool used for the least squares fit of a straight line to 
segments with free floating boundary points at both ends in UBM is derived in Ap-
pendix C. This is an extension of the stripe-wise image interpretation underlying 
Figure 5.32. Figure C.3 in Appendix C shows a close-up view of blob 1 in the fig-
ure, indicating the improvements in line fit achievable. Therefore, after a recursive 
line fit in forward direction, the starting point should be checked against the vari-
ance of the fit achieved in the overall segment for possible improvements by drop-
ping initial values (see Appendix C). This extension to a floating fit by checking 
the boundary points at both ends against the variance criterion has become the 
standard blob fit approach. Figure 5.33 shows some results for different vertical 
cross sections (columns) through an image (white lines in image top left with col-
umn numbers). The video field was compressed with (mc nc) = (2 1); the threshold 
value for the variance allowed at the boundaries was VarLim = 7.5, and the mini-
mal segment length accepted was Lseg > Lsegmin = 4. 

Several typical regions such as road, lane markings, dark shade underneath ve-
hicles, and sky are designated; some correspondences are shown by dotted lines. In 

Figure 5.32. Intensity profile for one vertical image stripe, rows 60 to 200 (white rec-
tangle in part of a video field, see insert at right boundary); sky (rows < 60) and motor 
hood (rows > 200) are excluded (basic figure from [Hofmann 2004], see text)
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creasing Lsegmin and possibly the threshold value VarLim to allow more generous 
grouping would lead to reduced numbers of 1-D blobs; values for VarLim of up to 
100 (ten intensity levels out of 256 typical for 8-bit intensity coding in video) yield 
acceptable results for many applications. 

A good check for the usefulness of the blob concept is the image quality judged 
by humans, after the image has been reconstructed from its abstract blob represen-
tation by average gray values, shading parameters, and the locations of the seg-
ments. In [Hofmann 2004] this has been shown to work well for small masks, disre-
garding the special treatment of nonplanar regions and allowing arbitrarily small 
segment lengths. On the contrary, Figure 5.34 shows the reconstruction result from 
the first pyramid stage of a video field (mc = nc = 2) with mask elements m = n = 2 
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Figure 5.33. Intensity profiles through columns marked by white lines in image top left; 
the solid dark straight lines are the 1-D blobs segmented
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in column search (shorthand nota-
tion: 2222C). The resulting image 
has been compressed in row direc-
tion for standard viewing condi-
tions. Recall that stepping of the 
mask in search direction is done by 
one-pixel-steps, while stripes are 
shifted by m = 2; after compres-
sion, this corresponds to one 
(pyramid-) pixel also. 

The figure shows typical digiti-
zation effects, but object recogni-
tion is very well possible, even for 
an untrained person. Six vehicles 
can be distinguished clearly; four 
cars, one bus and one truck are eas-
ily distinguished. Lane markings 
and shadow boundaries look almost 
natural. The question is, how many 

of these details will be lost when image compression is done together with comput-
ing the pyramid image (i.e., mc nc = 42 instead of 22), when larger segments only 
are accepted for blob building, and when all nonlinear intensity regions (corner 
candidates and edges) are excluded beforehand.  

Figure 5.34. Image reconstruction for the pa-
rameter set (22.22) and vertical search direc-
tion, compressed horizontally 2:1 for display 
after processing. Scene recognition is no 
problem for the human observer 

The scene analyzed is only slightly different from the one before; the variance 
threshold VarLim has been set to 15 and the minimal segment length required is 

Row Over Column; combined results Column Over Row

Cell 42,  mel 11,   column search;    Lsegmin = 4;  VarLim =15, row search

Figure 5.35. Reconstructed images from blob representations: Column search only (top 
left), row search only (top right), superimposed results (bottom); pixels missing have 
been filled by results from the alternate search direction 
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Lsegmin = 4 pyramid-pixels or 16 original image pixels. Figure 5.35 shows the re-
sults for column search (top left), for row search (top right), and superimposed re-
sults, where pixels missing in one reconstructed image have been added from the 
other one, if available.  

The number of blobs to be handled is at least one order of magnitude smaller 
than for the full representation underlying Figure 5.34. For a human observer, rec-
ognizing the road scene is not difficult despite the pixels missing. Since homoge-
neous regions in road scenes tend to be more extended horizontally, the superposi-
tion ‘column over row’ (bottom right) yields the more naturally looking results.  

Note, however, that up to now no merging of blob results from one stripe to the 
next has been done by the program. When humans look at a scene, they cannot but 
do this unwillingly and apparently without special effort. For example, nobody will 
have trouble recognizing the road by its almost homogeneously shaded gray val-
ues. The transition from 1-D blobs in separate stripes to 2-D blobs in the image and 
to a 3-D surface in the outside world are the next steps of interpretation in machine 
vision.

5.3.2.5 Extended Shading Models in Image Regions 

The 1-D blob results from stripe analysis are stored in a list for each stripe, and are 
accumulated over the entire image. Each blob is characterized by  

1. the image coordinates of its starting point (row respectively column num-
ber and its position jref in it), 

2. its extension Lseg in search direction,
3. the average intensity Ic at its center, and 
4. the average gradient components of the intensity au and av.

This allows easy merging of results of two neighboring stripes. Figure 5.36a shows 
the start of 1-D blob merging when the threshold conditions for merger are satis-
fied in the region of overlap in adjacent stripes: (1) The amount of overlap should 
exceed a lower bound, say, two 
or three pixels. (2) The differ-
ence in image intensity at the 
center of overlap should be 
small. Since the 1-D blobs are 
given by their cg-position (ubi

= jref + Lseg,i /2), their ‘weights’ 
(proportional to the segment 
length Lseg,i), and their intensity 
gradients, the intensities at the 
center of overlap can be com-
puted in both stripes (Icovl1) and 
Icovl2) from the distance be-
tween the blob center and the 
center of overlap exploiting the 
gradient information. This 
yields the condition for accep-
tance

•
•

cg2

cg1 Lseg1 = 12

Lseg2 = 6

Figure 5.36. Merging of overlapping 1-D blobs in 
adjacent stripes to a 2-D blob when intensity and 
gradient components match within threshold limits 

cgS

ucg

vcg

ub1
u

v

uS

2

vS2

(a) Merging of first two 1-D blobs to a 2-D blob

(b) Recursive merging of a 2-D blob with an overlap-

ping 1-D blob to an extended 2-D blob.

uS3

cgSnew

S2D = Lseg1 + Lseg2 = 18

•Lseg3 = 6 cg3

vcg

cg2D = cgSold

•

vS3
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cov 1 cov 2| |l lI I  DelIthreshMerg . (5.37) 

Condition (3) for merging is that the intensity gradients should also lie within small 
common bounds (difference < DelSlopeThrsh, see Table 5.1).  

If these conditions are all satisfied, the position of the new cg after merger is 
computed from a balance of moments on the line connecting the cg’s of the regions 
to be merged; the new cg of the combined areas S2D thus has to lie on this line. This 
yields the equation (see Figure 5.36a) 

1 2( )S seg cg S segu L u u L 0, (5.38) 

and, solved for the shift uS with S2D = Lseg1 + Lseg2, the relation

2 1 2 2 2/( ) /S seg seg seg cg cg seg Du L L L u u L S (5.39) 

is obtained. The same is true for the v-component 

2 1 2 2 2/( ) / .S seg seg seg cg cg seg Dv L L L v v L S (5.40) 

Figure 5.36b shows the same procedure for merging an existing 2-D blob, given 
by its weight S2D, the cg-position at cg2D, and the segment boundaries in the last 
stripe. To have easy access to the latter data, the last stripe is kept in memory for 
one additional stripe evaluation loop even after the merger to 2-D blobs has been 
finished. The equations for the shift in cg are identical to those above if Lseg1 is re-
placed by S2Dold. The case shown in Figure 5.36b demonstrates that the position of 
the cg is not necessarily inside the 2-D blob region.  
A 2-D blob is finished when in the new stripe no area of overlap is found any 
more. The size S2D of the 2-D blob is finally given by the sum of the Lseg-values of 
all stripes merged. The contour of the 2-D blob is given by the concatenated lower 
and upper bounds of the 1-D blobs merged. Minimum (umin, vmin) and maximum 
values (umax, vmax) of the coordinates yield the encasing box of area

encbox max min max min= ( ) ( ).A u u v v           (a) (5.41) 

A measure of the compactness of a blob is the ratio 

compBlob 2 encbox/DR S A .                              (b) 

For close to rectangular shapes it is close to 1; for circles it is /4, for a triangle it is 
0.5, and for an oblique wide line it tends toward 0. The 2-D position of the blob is 
given by the coordinates of its center of gravity ucg and vcg. This robust feature 

makes highly visible blobs attractive for tracking. 

5.3.2.6 Image Analysis on two Scales  

Since coarse resolution may be sufficient for the near range and the sky, fine scale 
image analysis can be confined to that part of the image containing regions further 
away. After the road has been identified nearby, the boundaries of these image re-
gions can be described easily around the subject’s lane as looking like a “pencil 
tip” (possibly bent). Figure 5.37 shows results demonstrating that with highest 
resolution (within the white rectangles), almost no image details are lost both for 
the horizontal (left) and the vertical search (right). 

The size and position of the white rectangle can be adjusted according to the ac-
tual situation, depending on the scene content analyzed by higher system levels. 
Conveniently, the upper left and lower right corners need to be given to define the 
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Reconstructed image (horizontal):

Coarse (4x4)

Fine 

Coarse resolution

Reconstructed image (vertical):

Coarse (4x4)

Fine 

Coarse resolution

Figure 5.37. Foveal–peripheral differentiation of image analysis shown by the ‘imag-
ined scene’ reconstructed from symbolic representations on different scales: Outer 
part 44.11, inner part 11.11 from video fields compressed 2:1 after processing; left: 
horizontal search, right: vertical search, with the Hofmann operator. 

rectangle; the region of high resolution should be symmetrical around the horizon 
and around the center of the subject’s lane at the look-ahead distance of interest, in 
general. 

5.3.3 The Corner Detection Algorithm 

Many different types of nonlinearities may occur on different scales. For a long 
time, so-called 2-D-features have been studied that allow avoiding the “aperture 
problem”; this problem occurs for features that are well defined only in one of the 
two degrees of freedom, like edges (sliding along the edge). Since general texture 
analysis requires significantly more computing power not yet available for real-
time applications in the general case right now, we will also concentrate on those 
points of interest which allow reliable recognition and computation of feature flow 
[Moravec 1979; Harris, Stephens 1988; Tomasi, Kanade 1991; Haralick, Shapiro 1993].

5.3.3.1 Background for Corner Detection 

Based on the references just mentioned, the following algorithm for corner detec-
tion fitting into the mask scheme for planar approximation of the intensity function 
has been derived and proven efficient. The structural matrix 

2 2
11 121 2

2 2
21 221 2

(   ) 2

2 (   )
r N r N rN cN

rN cN c N c N

n nf f f f
N

n nf f f f
(5.42) 

has been defined with the terms from Equations 5.17 and 5.18. Note that compared 
to the terms used by previously named authors, the entries on the main diagonal are 
formed from local gradients (in and between half-stripes), while those on the cross-
diagonal are twice the product of the gradient components of the mask (average of 
the local values). With Equation 5.18, this corresponds to half the sum of all four 
cross-products  
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12 21 , 1,2
0.5 ( )riN cjNi j

n n f f . (5.43) 

This selection yields proper tuning to separate corners from planar elements in 
all possible cases (see below). The determinant of the matrix is  

2
11 22 12det -w N n n n . (5.44) 

With the equations mentioned, this becomes 

11 22

11 1 2 22 1 2 1 2 1 2

det    0.75   

  0.5  (   ) .c c r r r r c c

N n n

n f f n f f f f f f
(5.45) 

Haralick calls  the “Beaudet measure of cornerness”, however, 
formed with a different term 

det N w

12 ri cin  f f . The eigenvalues  of the structural 

matrix are obtained from 

11 12 2
11 22 12

12 22

0,
n n

n n n
n n

2 2
11 22 11 22 12 0n n n n n .

(5.46) 

With the quadratic enhancement term Q,

11 22 2Q n n , (5.47) 

there follows for the two eigenvalues 1 2, ,

2
1,2 1 1 detQ N Q . (5.48)

Normalizing these with the larger eigenvalue 1  yields 

1N 2N 2 11    ; / ;

2
2 1 1 det / 1 1 det /N N Q N Q2 .

(5.49)

Haralick defines a measure of circularity q as 
2

1 2 1 2
2

1 2 1 2

4
1q . (5.50)

With Equation 5.48 this reduces to 
2 2

11 22 12 11 22det / 4 ( ) /( )q N Q n n n n n 2 , (5.51)

and in normalized terms (see Equation 5.49), there follows 
2

2N 2N = 4  / (1 + ) .q (5.52)

It can thus be seen that the normalized second eigenvalue 2N and circularity q
are different expressions for the same property. In both terms, the absolute magni-
tudes of the eigenvalues are lost. 

Threshold values for corner points are chosen as lower limits for the determi-
nant detN = w and circularity q:

minw w       

and      

minq q .
(5.53)

In a post-processing step, within a user-defined window, only the maximal value 
of w = w* is selected. 
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Harris was the first to use the eigenvalues of the structural matrix for threshold 
definition. For each location in the image, he defined the performance value 

2( , ) det ( )HR y z N trace N , (5.54)

where 1 2det N  and 

1 2 2trace N Q , (5.55)

yielding
2

1 2 1 2HR .                  (a) (5.56)

With  ( , see Equation 5.49), there follows 2 1/ 2N

22
1 1HR .                  (b) 

For RH  0 and 0  1,  has to be selected in the range, 
2

0 / 1 0.25  . (5.57)

Corner candidates are points for which RH  0 is valid; larger values of  yield 
fewer corners and vice versa. Values around  = 0.04 to 0.06 are recommended. 
This condition on RH is equivalent to (from Equations 5.44, 5.53, and 5.54) 

2det 4N Q . (5.58)

Kanade et al. (1991)  (KLT) use the following corner criterion: After a smooth-
ing step, the gradients are computed over the region D·D (2 D  10 pixels). The 
reference frame for the structural matrix is rotated so that the larger eigenvalue 1

points in the direction of the steepest gradient in the region 
2 2

1KLT r cf f . (5.59)

1 is thus normal to a possible edge direction. A corner is assumed to exist if 2

is sufficiently large (above a threshold value 2thr). From the relation det N = 1· 2,
the corresponding value of  2KLT can be determined 

2 1detKLT KLTN . (5.60)

If

2KLT 2thr , (5.61)

the corresponding image point is put in a candidate list. At the end, this list is 
sorted in decreasing order of 2KLT, and all points in the neighborhood with smaller 

2KLT values are deleted. The threshold value has to be derived from a histogram of 

2 by experience in the domain. For larger D, the corners tend to move away from 
the correct position.  

5.3.3.2 Specific Items in Connection with Local Planar Intensity Models 

Let us first have a look at the meaning of the threshold terms circularity (q in Equa-
tion 5.50) and trace N (Equation 5.55) as well as the normalized second eigenvalue 
( 2N in Equation 5.49) for the specific case of four symmetrical regions in a 2 × 2 
mask, as given in Figure 5.20. Let the perfect rectangular corner in intensity distri-
bution as in Figure 5.38b be given by local gradients fr1 = fc1 = 0 and fr2 = fc2 = K.
Then the global gradient components are fr = fc = K/2. The determinant Equation 
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5.44 then has the value det N = 3/4·K4. The term Q (Equation 5.47) becomes Q = 
K2, and the “circularity” q according to Equation 5.51 is  

2det  /  = 4/3 = 0. 75.q N Q (5.62)

The two eigenvalues of the structure matrix are 1 = 1.5·K2, and 2 = 0.5·K2 so 
that traceN = 2Q is 4·K2; this yields the normalized second eigenvalue as 2N = 1/3. 
Table 5.2 contains this case as the second row. Other special cases according to the 
intensity distributions given in Figure 5.38 are also shown. The maximum circular-
ity of 1 occurs for the checkerboard corners in Figure 5.38a and row 1 in Table 5.2; 
the normalized second eigenvalue also assumes its maximal value of 1 in this case. 
The case Figure 5.38c (third row in the table) shows the more general situation 
with three different intensity levels in the mask region. Here, circularity is still 
close to 1 and 2N is above 0.8. The case in Figure 5.38e with constant average 
mask intensity in the stripe is shown in row 5 of Table 5.2: Circularity is rather 
high at q = 8/9  0.89 and 2N = 0.5. Note that from the intensity and gradient val-
ues of the whole mask this feature can only be detected by gz (IM and gy) remain 
constant along the search path.  

By setting the minimum required circularity qmin as the threshold value for ac-
ceptance to

min 0.7q , (5.63)

Figure 5.38. Local intensity gradients on mel-level for calculation of circularity q in 
corner selection: (a) Ideal checker-board corner: q = 1. (b) ideal single corner: q = 0.75; 
(c) slightly more general case (three intensity levels, closer to planar); (d) ideal shading, 
one direction only (linear case for interpolation, q  0); (e) demanding (idealized) corner 
feature for extraction (see text).
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all significant cases of intensity corners will be picked. Figure 5.38d shows an al-
most planar intensity surface with gradients –K in the column direction and a very 
small gradient ±  in the row direction (K >> ). In this case all characteristic val-
ues: det N, circularity q, and the normalized second eigenvalue 2N all go to zero 
(row 4 in the table). The last case in Table 5.2 shows the special planar intensity 
distribution with the same value for all local and global gradients (–K); this corre-
sponds to Fig 5.20c. It can be seen that circularity and 2N are zero; this nice fea-
ture for the general planar case is achieved through the factor 2 on the cross-
diagonal of the structure matrix Equation 5.42.  
When too many corner candidates are found, it is possible to reduce their number 
not by lifting qmin but by introducing another threshold value traceNmin that limits 
the sum of the two eigenvalues. According to the main diagonals of Equations 5.42 
and 5.46, this means prescribing a minimal value for the sum of the squares of all 
local gradients in the mask. 

Table 5.2. Some special cases for demonstrating the characteristic values of the structure 
matrix in corner selection as a function of a single gradient value K. TraceN is twice the va-
lue of Q (column 4). 

Example Local gradi-
ent values 

Det. N

Equation 
5.44

Term Q
Equation 

5.47

Circula-
rity q

1 2N =

2/ 1

Figure
5.38a

+, – K (2 each) 4 K4 2 K2 1 2 K2 1

Figure
5.38b

0, – K (2 each) ¾ K4 K2 0. 75 1.5 K2 0.3333

Figure
5.38c

0, –K (fc1, fr2),
–2K

5 K4 3 K2 5/9
= 0.556 

5 K2 0.2

Figure
5.38e

fri = ± K
fci = 0; – 2K

8 K4 3 K2 8/9 4 K2 0.5

Figure
5.38d

fri = ±  (<< K)
fci = – K 

4 * 2 K2

 0 
( 2+K2)

 K2
~ 4 2/K2

 0 
 2 * 

(K2- 2)
 2 2/K2

 0 

Planar fi,j = – K (4×) 0 2 K2 0 4 * K2 0

This parameter depends on the absolute magnitude of the gradients and has thus to 
be adapted to the actual situation at hand.  It is interesting to note that the planarity 
check (on 2-D curvatures in the intensity space) for interpolating a tangent plane to 
the actual intensity data has a similar effect as a low boundary of the threshold 
value, traceNmin.

5.3.4 Examples of Road Scenes 

Figure 5.39 left shows the nonplanar regions found in horizontal search (white 
bars) with ErrMax = 3%. Of these, only those locations marked by cyan crosses 
have been found satisfying the corner condition qmin = 0.6 and traceNmin = 0.11. 
The figure on the right-hand side shows results with the same parameters except 
the reduction of the threshold value to traceNmin = 0.09, which leaves an increased 
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Figure 5.39. Corner candidates derived from regions with planar interpolation resi-
dues > 3% (white bars) with parameters (m, n, mc, nc = 3321). The circularity threshold 
qmin = 0.6 eliminates most of the candidates stemming from digitized edges (like lane 
markings). The number of corner candidates can be reduced by lifting the threshold on 
the sum of the eigenvalues traceNmin from 0.09 (right: 103, 121) to 0.11 (left image: 63, 
72 candidates); cyan = row search, red = column search. 

number of corner candidates (over 60% more). Note that all oblique edges (show-
ing minor corners from digitization), which were picked by the nonplanarity check, 
did not pass the corner test (no crosses in both figures). The crosses mark corner 
candidates; from neighboring candidates, the strongest yet has to be selected by 
comparing results from different scales. mc = 2 and nc = 1 means that two original 
pixels are averaged to a single cell value; nine of those form a mask element (18 
pixels), so that the entire mask covers 18×4 = 72 original pixels. 

Figure 5.40 demonstrates all results obtainable by the unified blob-edge-corner 
method (UBM) in a busy highway scene in one pass: The upper left subfigure 
shows the original full video image with shadows from the cars on the right-hand 
side. The image is analyzed on the pixel level with mask elements of size four pix-
els (total mask = 16 pixels). Recall that masks are shifted by steps of 1 in search di-
rection and by steps of mel-size in stripe direction. About 105 masks result for 
evaluation of each image. The lower two subfigures show the small nonplanarity 
regions detected (about 1540), marked by white bars. In the left figure the edge 
elements extracted in row search (yellow, = 1000) and in column search (red, = 
3214) are superimposed. Even the shadow boundaries of the vehicles and the re-
flections from the own motor hood (lower part) are picked. The circularity thresh-
old of qmin = 0.6 and traceNmin = 0.2 filter up to 58 corner candidates out of the 
1540 nonplanar mask results; row and column search yield almost identical results 
(lower right). More candidates can be found by lowering ErrMax and traceNmin.

Combining edge elements to lines and smooth curves, and merging 1-D blobs to 
2-D (regional) blobs will drastically reduce the number of features. These com-
pound features are more easily tracked by prediction error feedback over time. Sets 
of features moving in conjunction, e.g. blobs with adjacent edges and corners, are 
indications of objects in the real world; for these objects, motion can be predicted 
and changes in feature appearance can be expected (see the following chapters). 
Computing power is becoming available lately for handling the features mentioned 
in several image streams in parallel. With these tools, machine vision is maturing 
for application to rather complex scenes with multiple moving objects. However, 
quite a bit of development work yet has to be done. 
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Conclusion of section 5.3 (UBM): Figure 5.41 shows a road scene with all fea-
tures extractable by the unified blob-edge-corner method UBM superimposed. The 
image processing parameters were: MaxErr = 4%; m = n = 3, mc = 2, nc = 1 
(33.21); anglefact = 0.8 and IntGradMin = 0.02 for edge detection; qmin = 0.7; tra-
ceNmin = 0.06 for corner detection and Lsegmin  = 4, VarLim = 64 for shaded blobs.  
Features extracted were 130 corner candidates, 1078 nonplanar regions (1.7%), 
4223 ~vertical edge elements, 5918 ~horizontal edge elements, 1492 linearly 
shaded intensity blobs (from row search) and 1869 from column search; the latter 
have been used only partially to fill gaps remaining from the row search. The non-
planar regions remaining are the white areas. 

Only an image with several colors can convey the information contained to a 
human observer. The entire image is reconstructed from symbolic representations 
of the features stored. The combination of linearly shaded blobs with edges and 
corners alleviates the generation of good object hypotheses, especially when char-

Figure 5.40. Features extracted with unified blob-edge-corner method (UBM): Bi-
directionally nonplanar intensity distributions (white regions in lower two subfigures, ~ 
1540), edge elements and corner candidates (column search in red), and linearly shaded 
blobs. One vertical and one horizontal example is shown (gray straight lines in upper 
right subfigure with dotted lines connecting to the intensity profiles between the images.  
Red and green are the intensity profiles in the two half-stripes used in UBM; about 4600 
1-D blobs resulted, yielding an average of 15 blobs per stripe. The top right subfigure is 
reconstructed from symbolically represented features only (no original pixel values). 
Collections of features moving in conjunction designate objects in the world. 
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Figure 5.41. “Imagined” feature set extracted with the unified blob-edge-corner method 
UBM: Linearly shaded blobs (gray areas), horizontally (green) and vertically extracted 
edges (red), corners (blue crosses) and nonhomogeneous regions (white). 

acteristic sub-objects such as wheels can be recognized. With the background 
knowledge that wheels are circular (for smooth running on flat ground) with the 
center on a horizontal axis in 3-D space, the elliptical appearance in the image al-
lows immediate determination of the aspect angle without any reference to the 
body on which it is mounted. Knowing some state variables such as the aspect an-
gle reduces the search space for object instantiation in the beginning of the recog-
nition process after detection. 

5.4 Statistics of Photometric Properties of Images 

According to the results of planar shading models (Section 5.3.2.4), a host of in-
formation is now available for analyzing the distribution of image intensities to ad-
just parameters for image processing to lighting conditions [Hofmann 2004]. For 
each image stripe, characteristic values are given with the parameters of the shad-
ing models of each segment. Let us assume that the intensity function of a stripe 
can be described by ns segments. Then the average intensity bs of the entire stripe 
over all segments i of length li and average local intensity bi is given by 

1 1

( ) / .
s sn n

S i i

i i

b l b il (5.64)

For a larger region G segmented into n image stripes, then follows G

1 1 1 1

( ) ( )
Sj SjG G

n nn n

G ij ij

j i j i

b l b .ijl (5.65)

The values of and are different from the mean value of the image intensity 

since this is given by 
Sb Gb
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(5.66)

The absolute minimal and maximal value of all mel–intensities of a single stripe 
can be obtained by standard comparisons as and ; similarly, for a 

larger region, there follows
minMin S maxMax S

m in m ax
1 1 1 1

M in (m in ) ; M ax (m ax ) .m ax m axm in m in
SjSj GG

nn nn

G ij G

j i j i

       ij (5.67)

The difference between both expressions yields the dynamic range in intensity 
HS within an image stripe, respectively, HG an image region. The dynamic range in 
intensity of a single segment is given by Hi = maxi – mini. The average dynamic 
range within a stripe, respectively in an image region, then follows as 

1

;
Sn

MeanS i S

i

H H n       resp.,    
1 1 1

.
SjG G

nn n

MeanG ij Sj

j i j

H H n (5.68)

If the maximal or minimal intensity value is to be less sensitive to single outliers 
in intensity, the maximal, respectively, minimal value over all average values bi of 
all segments may be used: 
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(5.69)

similarly, for larger regions there follows 
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j i

b b . (5.70)

Depending on whether the average value of the stripe is closer to the minimal or 
maximal value, the stripe will appear rather darker than brighter. 

An interesting characteristic property of edges is the average intensity on both 
sides of the edge. This has been used for two decades in connection with the 
method CRONOS for the association of edges with objects. When using several 
cameras with independent apertures, gain factors, and shutter times, the ratio of 
these intensities varies least over time; absolute intensities are not that stable, gen-
erally. Statistics on local image areas, respectively, single stripes should always be 
judged in relation to similar statistics over larger regions. Aside from characteris-
tics of image regions at the actual moment, systematic temporal changes should 
also be monitored, for example, by tracking the changes in average intensity values 
or in variances. 

The next section describes a procedure for finding transformations between im-
ages of two cameras looking at the same region (as in stereovision) to alleviate 
joint image (stereo) interpretation. 
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5.4.1 Intensity Corrections for Image Pairs 

This section uses some of the statistical values defined previously. Two images of 
a stereo camera pair are given that have different image intensity distributions due 
to slightly different apertures, gain values, and shutter times that are independently 
automatically controlled over time (Figure 5.42a, b). The cameras have approxi-
mately parallel optical axes and the same focal length; they look at the same scene. 
Therefore, it can be assumed that segmentation of image regions will yield similar 
results except for absolute image intensities. The histograms of image intensities 
are shown in the left-hand part of the figure. The right (lower) stereo image is 
darker than the left one (top). The challenge is to find a transformation procedure 
which allows comparing image intensities to both sides of edges all over the image. 

The lower sub–figure (c) shows the final result. It will be discussed after the 
transformation procedure has been derived. 

At first, the characteristic photometric properties of the image areas within the 
white rectangle are evaluated in both images by the stripe scheme described. The 
left and right bars in Figure 5.43a, b show the characteristic parameters considered. 
In the very bright areas of both images (top), saturation occurs; this harsh nonlin-
earity ruins the possibility of smooth transformation in these regions. The intensity 
transformation rule is to be derived using five support points: bMinG, bdunkelG , bG , 
bhellG and bMaxG of the marked left and right image regions. The full functional rela-
tionship is approximated by interpolation of these values with a fourth-order poly-
nomial. The central upper part of Figure 5.43 shows the resulting function as a 
curve; the lower part shows the scaling factors as a function of the intensity values. 
The support points are marked as dots. Figure 5.42c shows the adapted histogram 
on the left-hand side and the resulting image on the right-hand side. It can be seen 
that after the transformation, the intensity distribution in both images has become 
much more similar. Even though this transformation is only a coarse approxima-
tion, it shows that it can alleviate evaluation of image information and correspon-
dence of features. 

(a)

(b)

(c)

Figure 5.42. Images of different brightness of a stereo system with corresponding his-
tograms of the intensity: (a) left image, (b) right-hand-side image, and (c) right-hand 
image adapted to the intensity distribution of the left-hand image after the intensity 
transformation described (see Figure 5.43, after [Hofmann 2004]). 
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Figure 5.43. Statistical photometric characteristics of (a) the left-hand, and (b) the right-
hand stereo image (Figure 5.42); the functional transformation of intensities shown in 
the center minimizes differences in the intensity histogram (after [Hofmann 2004]).

 The largest deviations occur at high intensity values (right end of histogram); 
fortunately, this is irrelevant for road-scene interpretation since the corresponding 
regions belong to the sky.  

To become less dependent on intensity values of single blob features in two or 
more images, the ratio of intensities of several blob features recognized with uncer-
tainty and their relative location may often be advantageous to confirm an object 
hypothesis.

5.4.2 Finding Corresponding Features  

The ultimate goal of feature extraction is to recognize and track objects in the real 
world, that is the scene observed. Simplifying feature extraction by reducing, at 
first search, spaces to image stripes (a 1-D task with only local lateral extent) gen-
erates a difficult second step of merging results from stripes into regional charac-
teristics (2-D in the image plane). However, we are not so much interested in (vir-
tual) objects in the image plane (as computational vision predominantly is) but in 
recognizing 3-D-objects moving in 3-D space over time! Therefore, all the knowl-
edge about motion continuity in space and time in both translational and rotational 
degrees of freedom has to be brought to bear as early as possible. Self-occlusion 
and partial occlusion by other objects has to be taken into account and observed 
from the beginning. Perspective mapping is the link from spatio–temporal motion 
of 3-D objects in 3-D space to the motion of groups of features in images from dif-
ferent cameras. 

So the difficult task after basic feature extraction is to find combinations of fea-
tures belonging to the same object in the physical world and to recognize these fea-
tures reliably in an image sequence from the same camera and/or in parallel images 
from several cameras covering the same region in the physical world, maybe under 
slightly different aspect conditions. Thus, finding corresponding features is a basic 
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task for interpretation; the following are major challenges to be solved in dynamic 
scene understanding: 

Chaining of neighboring features to edges and merging local regions to homo-
geneous more global ones.  
Selecting the best suited feature from a group of candidates for prediction error 
feedback in recursive tracking (see below). 
Finding the corresponding features in sequences of images for determining fea-
ture flow, a powerful tool for motion understanding. 
Finding corresponding features in parallel images from different cameras for 
stereointerpretation to recover depth information lost in single images.  

The rich information derived in previous sections from stripewise intensity ap-
proximation of one-dimensional segments alleviates the comparison necessary for 
establishing correspondence, that is, to quantify similarity. Depending on whether 
homogeneous segments or segment boundaries (edges) are treated, different crite-
ria for quantifying similarity can be used. 

For segment boundaries as features, the type of intensity change (bright to dark 
or vice versa), the position and the orientation of the edge as well as the ratio of 
average intensities on the right- (R) and left-hand (L) side are compared. Addition-
ally, average intensities and segment lengths of adjacent segments may be checked 
for judging a feature in the context of neighboring features. 

For homogeneous segments as features considered, average segment intensity, 
average gradient direction, segment length, and the type of transition at the 
boundaries (dark-to-bright or bright-to-dark) are compared. Since long segments in 
two neighboring image stripes may have been subdivided in one stripe but not in 
the other (due to effects of thresholding in the extraction procedure), chaining 
(concatenation) procedures should be able to recover from these arbitrary effects 
according to criteria to be specified. Similarly, chaining rules for directed edges are 
able to close gaps if necessary, that is, if the remaining parameters allow a consis-
tent interpretation.

5.4.3 Grouping of Edge Features to Extended Edges 

The stripewise evaluation of image features discussed in Section 5.3 yields (beside 
the nonplanar regions with potential corners) lists of corners, oriented edges, and 
homogeneously shaded segments. These lists together with the corresponding in-
dex vectors allow fast navigation in the feature database retaining neighborhood re-
lationships. The index vectors contain for each search path the corresponding im-
age row (respectively, column), the index of the first segment in the list of results, 
and the number of segments in each search path.  

As an example, results of concatenation of edge elements (for column search) 
are shown in Figure 5.44, lower right (from [Hofmann 2004]); the steps required are 
discussed in the sequel. Analog to image evaluation, concatenation proceeds in 
search path direction [top-down, see narrow rectangle near (a)] and from left to 
right. The figure at the top shows the original video-field with the large white rec-
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tangle marking the part evaluated; the near sky and the motor hood are left off. All 
features from this region are stored in the feature database. The lower two subfig-
ures are based on these data only.  

At the lower left, a full reconstruction of image intensity is shown based on the 
complete set of shading models on a fine scale, disregarding nonlinear image in-
tensity elements like corners and edges; these are taken here only for starting new 
blob segments. The number of segments becomes very large if the quality of the 
reconstructed image is requested to please human observers. However, if edges 
from neighboring stripes are grouped together, the resulting extended line features 
allow to reduce the number of shaded patches to satisfy a human observer and to 
appreciate the result of image understanding by machine vision. 

Linear concatenation of directed 2-D edges: Starting from the first entry in the 
data structure for the edge feature, an entry into the neighboring search stripe is 
looked for, which approximately satisfies the colinearity condition with the stored 
edge direction at a distance corresponding to the width of the search stripe. To ac-
cept correspondence, the properties of a candidate edge point have to be similar to 
the average properties of the edge elements already accepted for chaining. To 
evaluate similarity, criteria like the Mahalanobis-distance may be computed, which 
allow weighting the contributions of different parameters taken into account. A 
threshold value then has to be satisfied to be accepted as sufficiently similar. An-

(a)

(b) (c)

a) S t o r a g e   o f   f e a t u r e s   f  r o m   a l l   s t r i p e s ;    

Reconstructed intensity image 

(Vertical stripes)

Concatenated  
edge features over 

stripes

(single video field, 768 pixel / row)

Figure 5.44. From features in stripes (here vertical) to feature aggregations over the 2-D 
image in direction of object recognition: (a) Reduced vertical range of interest (motor 
hood and sky skipped). (b) Image of the scene as internally represented by symbolically 
stored feature descriptions (‘imagined’ world). (c) Concatenated edge features which to-
gether with homogeneously shaded areas form the basis for object hypothesis generation 
and object tracking over time.
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other approach is to define intervals of similarity as functions of the parameters to 
be compared; only those edge points are considered similar with respect to a yet 
concatenated set of points, whose parameters lie within the intervals. 

If a similar edge point is found, the following items are computed as a measure 
of the quality of approximation to the interpolating straight line: The slope a, the 
average value b, and the variance Var of the differences between all edge points 
and the interpolating straight line. The edge point thus assigned is marked as 
“used” so that it will no longer be considered when chaining other edge candidates, 
thus saving computing time. 

If no candidate in the interval of the search stripe considered qualifies for accep-
tance, a number of gaps up to a predefined limit may be bridged by the procedure 
until concatenation for the contour at hand is considered finished. Then a new con-
tour element is started with the next yet unused edge point. The procedure ends 
when no more edge points are available for starting or as candidates for chaining. 
The result of concatenation is a list of linear edge elements described by the pa-
rameter set given in Table 5.3 [Hofmann 2004].  

Linear concatenation admits edge points as candidates only when the orthogonal 
distance to the interpolated straight line is below a threshold value specified by the 
variance Var. If grouping of edge points along an arbitrary, smooth, continuous 
curve is desired, this procedure is not applicable. For example, for a constantly 
curved line, the method stops after reaching the epsilon-tube with a nominal curve. 
Therefore, the next section gives an extension of the concatenation procedure for 
grouping sets of points by local concatenation. By limiting the local extent of fea-
ture points already grouped, relative to which the new candidate point has to satisfy 
similarity conditions (local window), smoothly changing or constantly curved ag-
gregated edges can be handled. With respect to the local window, the procedure is 
exactly the same as before. 

Table 5.3. Data structure for results of concatenation of linear edge elements 

uBegin, 
vBegin

Starting point in image coordinates (pixel) 

uEnd, vEnd End point in image coordinates 
du, dv Direction components in image coordinates 

AngleEdge Angle of edge direction in image plane 
a Slope in image coordinates  
b Reference point for the edge segment (average) 

Len Length of edge segment 
MeanL Average intensity value on left-hand side of the edge 
MeanR Average intensity value on right-hand side of the edge 

MeanSegPos Average segment length in direction of search path 
MeanSegNeg Average segment length in opposite direction of search path 

NrPoints Number of concatenated edge points 
su, sv sum of u-, resp., v-coordinate values of concatenated edge points 

suu, svv sum of the squares of u-, resp., v-coordinate values of concatenated 
edge points 

When the new edge point satisfies the conditions for grouping, the local window 
is shifted so that the most distant concatenated edge point is dropped from the list 
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for grouping. This grouping procedure terminates as soon as no new point for 
grouping can be found any longer. The parameters in Table 5.3 are determined for 
the total set of points grouped at the end. Since for termination of grouping the ep-
silon-tube is applied only to the local window, the variance of the deviations of all 
edge points grouped relative to the interpolated straight line may and will be larger 
than epsilon. Figure 5.44c (lower right) shows the results of this concatenation 
process. The image has been compressed after evaluation in row direction for stan-
dard viewing conditions). 

The lane markings and the lower bounds of features originating from other ve-
hicles are easily recognized after this grouping step. Handling the effects of shad-
ows has to be done by information from higher interpretation levels. 

5.5 Visual Features Characteristic of General Outdoor 
Situations

Due to diurnal and annual light intensity cycles and due to shading effects from 
trees, woods, and buildings, etc., the conditions for visual scene recognition may 
vary to a large extent. To recognize weather conditions and the state of vegetation 
encountered in the environment, color recognition over large areas of the image 
may be necessary. Since these are slowly changing conditions, in general, the cor-
responding image analysis can be done at a much lower rate (e.g., one to two or-
ders of magnitude less than the standard video rate, i.e., about every half second to 
once every few seconds).  

One important item for efficient image processing is the adaptation of threshold 
values in the algorithms, depending on brightness and contrast in the image. Using 
a few image stripes distributed horizontally and vertically across the image and 
computing the statistic representation mentioned in Section 5.4 allows grasping the 
essential effects efficiently at a relatively high rate. If necessary, the entire image 
can be covered at different resolutions (depending on stripe width selected) at a 
lower rate. 

During the initial summation for reducing the stripe to a single vector, statistics 
can be done yielding the brightest and the darkest pixel value encountered in each 
cross-section and in the overall stripe. If the brightest and the darkest pixel values 
in some cross-sections are far apart, the average values represented in the stripe 
vector may not be very meaningful, and adjustments should be made for the next 
round of evaluation.

On each pyramid level with spatial frequency reduced by a factor of 2, new 
mean intensities and spatial gradients (contrasts)of lower frequency are obtained. 
The maximum and minimum values on each level relative to those on other levels 
yield an indication of the distribution of light in spatial frequencies in the stripe. 
The top pixel of the pyramid represents the average image intensity (gray value) in 
the stripe. The ratio of minimum to maximum brightness on each level yields the 
maximum dynamic range of light intensity in the stripe. Evaluating these extreme 
and average intensity values relative to each other provides the background for 
threshold adaptation in the stripe region.  
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For example, if all maximum light intensity values are small, the scene is dark, 
and gradients should also be small (like when looking to the ground at dusk or 
dawn or moonlight). However, if all maximum light intensity values are large, the 
gradients may either be large or small (or in between). In the former case, there is 
good contrast in the image, while in the latter one, the stripe may be bright all over 
[like when looking to the sky (upper horizontal image stripe)], and contrast may be 
poor on a high intensity level. Vertical stripes in such an image may still yield 
good contrasts, as much so as to disallow image evaluation with standard threshold 
settings in the dark regions (near the ground). Looking almost horizontally toward 
a sunset is a typical example. The upper horizontal stripe may be almost saturated 
all over in light intensity; a few lower stripes covering the ground may have very 
low maximal values over all of the image columns (due to uniform automatic iris 
adjustment over the entire image. The vertical extension of the region with average 
intensities may be rather small. In this case, treating the lower part of the image 
with different threshold values in standard algorithms may lead to successful inter-
pretation not achievable with homogeneous evaluations all over the entire image. 

For this reason, cameras are often mounted looking slightly downward in order 
to avoid the bright regions in the sky. (Note that for the same reason most cars 
have shading devices at the top of the windshield to be adjusted by the human 
driver if necessary.) 

Concentrating attention on the sky, even weather conditions may be recogniz-
able in the long run. This field is wide open for future developments. Results of 
these evaluations of general situational aspects may be presented to the overall 
situation assessment system by a memory device similar to the scene tree for single 
objects. This part has been indicated in Figure 5.1 on the right-hand side. There is a 
‘specialist block’ on level 2 (analogous to the object / subject-specialists labeled 3 
and 4 to the left) which has to derive these non-object-oriented features which, 
nonetheless, contribute to the situation and have to be taken into account for deci-
sion-making. 



6  Recursive State Estimation 

Real-time vision is not perspective inversion of a sequence of images. Spatial re-
cognition of objects, as the first syllable (re-) indicates, requires previous knowl-
edge of structural elements of the 3-D shape of an object seen. Similarly, under-
standing of motion requires knowledge about some basic properties of temporal 
processes to grasp more deeply what can be observed over time. To achieve this 
deeper understanding while performing image evaluation, use will be made of the 
knowledge representation methods described in Chapters 2 and 3 (shape and mo-
tion). These models will be fitted to the data streams observed exploiting and ex-
tending least-squares approximation techniques [Gauss 1809] in the form of recur-
sive estimation [Kalman 1960].

Gauss improved orbit determination from measurements of planet positions in 
the sky by introducing the theoretical structure of planetary orbits as cuts through 
cones. From Newton’s gravitational theory, it was hypothesized that planets move 
in elliptical orbits. These ellipses have only a few parameters to completely de-
scribe the orbital plane and the trajectory in this plane. Gauss set up this descrip-
tion with the structure prespecified but all parameters of the solution open for ad-
justment depending on the measurement values, which were assumed to contain 
noise effects. The parameters now were to be determined such that the sum of all 
errors squared was minimal. This famous idea brought about an enormous increase 
in accuracy for orbit determination and has been applied to many identification 
tasks in the centuries following.  

The model parameters could be adapted only after all measurements had been 
taken and the data had been introduced en bloc (so-called batch processing). It took 
almost two centuries to replace the batch processing method with sequential data 
processing. The need for this occurred with space flight, when trajectories had to 
be corrected after measuring the actual parameters achieved, which, usually, did 
not exactly correspond to those intended. Early correction is important for saving 
fuel and gaining payload. Digital computers started to provide the computing 
power needed for this corrective trajectory shaping. Therefore, it was in the 1960s 
that Kalman rephrased the least-squares approximation for evolving trajectories. 
Now, no longer could the model for the analytically solved trajectory be used (in-
tegrals of the equations of motion), but the differential equations describing the 
motion constraints had to be the starting point. Since the actually occurring distur-
bances are not known when a least-squares approximation is performed sequen-
tially, the statistical distribution of errors has to be known or has to be estimated 
for formulating the algorithm. This step to “recursive estimation” opened up an-
other wide field of applications over the last five decades, especially since the ex-

tended Kalman filter (EKF) was introduced for handling nonlinear systems when 
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they were linearized around a nominal reference trajectory known beforehand [Gelb
1974; Maybeck 1979; Kailath et al. 2000].

This EKF method has also been applied to image sequence processing with arbi-
trary motion models in the image plane (for example, noise corrupted constant 
speed components), predominantly with little success in the general case. In the 
mid-1980s, it had a bad reputation in the vision community. The situation changed, 
when motion models according to the physical laws in 3-D space over time were 
introduced. Of course, now perspective projection from physical space into the im-
age plane was part of the measurement process and had to be included in the meas-
urement model of the EKF. This was introduced by the author’s group in the first 
half of the 1980s. At that time, there was much discussion in the AI and vision 
communities about 2-D, 2.5-D, and 3-D approaches to visual perception of image 
sequences [Marr, Nishihara 1978; Ballard, Brown 1982; Marr 1982; Hanson, Riseman 
1987; Kanade 1987].

Two major goals were attempted in our approach to visual perception by unlim-
ited image sequences: (1) Avoid storing full images, if possible at all, even the last 
few, and (2) introduce continuity conditions over time right from the beginning and 
try to exploit knowledge on egomotion for depth understanding from image se-
quences. This joint use of knowledge on motion processes of objects in all four 
physical dimensions (3-D space and time) has led to the designation “4-D approach 
to dynamic vision” [Dickmanns 1987].

6.1 Introduction to the 4-D Approach for Spatiotemporal 
Perception

Since the late 1970s, observer techniques as developed in systems dynamics [Luen-
berger 1966] have been used at UniBwM in the field of motion control by computer 
vision [Meissner 1982; Meissner, Dickmanns 1983]. In the early 1980s, H.J. Wuensche 
did a thorough comparison between observer and Kalman filter realizations in re-
cursive estimation applied to vision for the original task of balancing an inverted 
pendulum on an electro-cart by computer vision [Wuensche 1983]. Since then, re-
fined versions of the extended Kalman filter (EKF) with numerical stabilization 
(UDUT-factorization, square root formulation) and sequential updates after each 
new measurement have been applied as standard methods to all dynamic vision 
problems at UniBwM [Dickmanns, Wuensche 1999].

This approach has been developed based on years of experience gained from 
applications such as satellite docking [Wuensche 1986], road vehicle guidance, and 
on-board autonomous landing approaches of aircraft by machine vision. It was re-
alized in the mid-1980s that the joint use of dynamic models and temporal predic-
tions for several aspects of the overall problem in parallel was the key to achieving 
a quantum jump in the performance level of autonomous systems based on ma-
chine vision. Recursive state estimation has been introduced for the interpretation 
of 3-D motion of physical objects observed and for control computation based on 
these estimated states. It was the feedback of knowledge thus gained to image fea-
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ture extraction and to the feature aggregation level, which allowed an increase in 
efficiency of image sequence evaluation of one to two orders of magnitude.  

Figure 6.1 gives a graphical overview. 
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Figure 6.1. Multiple feedback loops on different space scales for efficient scene interpreta-
tion and behavior control: control of image acquisition and processing (lower left corner), 3-
D “imagination” space in upper half; motion control (lower right corner). 

Following state prediction, the shape and the measurement models were ex-
ploited for determining: 

viewing direction control by pointing the two-axis platform carrying the cam-
eras with lenses of different focal lengths; 
locations in the image where information for the easiest, non-ambiguous and 
accurate state estimation could be found (feature selection), 
the orientation of edge features which allowed us to reduce the number of 
search masks and directions for robust yet efficient and precise edge localiza-
tion,
the length of the search path as a function of the actual measurement uncer-
tainty,
strategies for efficient feature aggregation guided by the idea of gestalt of ob-
jects, and 
the Jacobian matrices of first-order derivatives of feature positions relative to 
state components in the dynamic models that contain rich information for inter-
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pretation of the motion process in a least-squares error sense, given the motion 
constraints, the features measured, and the statistical properties known.  

This integral use of 
1. dynamic models for motion of and around the center of gravity taking actual 

control outputs and time delays into account,  
2. spatial (3-D) shape models for specifying visually measurable features,  
3. the perspective mapping models, and  
4. feedback of prediction-errors for estimating the object state in 3-D space and 

time simultaneously and in closed-loop form was termed the 4-D approach.
It is far more than a recursive estimation algorithm based on some arbitrary model 
assumption in some arbitrary subspace or in the image plane. It is estimated from a 
scan of publications in the field of vision that even in the mid-1990s, most of the 
papers referring to Kalman filters did not take advantage of this integrated use of 
spatiotemporal models based on physical processes. 

Initially, in our applications just the ego vehicle has been assumed to move on a 
smooth surface or trajectory, with the cameras fixed to the vehicle body. In the 
meantime, solutions of rather general scenarios are available with several cameras 
spatially arranged on a platform, which may be pointed by voluntary control rela-
tive to the vehicle body. These camera arrangements allow a wide simultaneous 
field of view, a central area for trinocular (skew) stereo interpretation, and a small 
area with high image resolution for “tele”-vision (see Chapter 11 below). The ve-
hicle may move in full six degrees of freedom; while moving, several other objects 
may move independently in front of a stationary background. One of these objects 
may be “fixated” (tracked) by the pointing device using inertial and visual feed-
back signals to keep the object (almost) centered in the high-resolution image. A 
newly appearing object in the wide field of view may trigger a fast change in view-
ing direction such that this object can be analyzed in more detail by one of the tele-
cameras. This corresponds to “saccadic” vision as known from vertebrates and al-
lows very much reduced data rates for a complex sense of vision. It trades the need 
for time-sliced attention control and scene reconstruction based on sampled data 
(actual video image) for a data rate reduction of one to two orders of magnitude

compared to full resolution in the entire simultaneous field of view. 
The 4-D approach lends itself to this type of vision since both object-orientation 

and temporal (“dynamic”) models are already available in the system. This com-
plex system design for dynamic vision has been termed EMS vision (from expecta-
tion-based, multifocal, and saccadic vision). It has been implemented with an ex-
perimental set of up to five miniature TV cameras with different focal lengths and 
different spectral characteristics on a two-axis pointing platform named multi-focal

active/reactive vehicle eye (MarVEye). Chapter 12 discusses the requirements lead-
ing to this design; some experimental results will be shown in Chapter 14. 

For subjects (objects with the capability of information intake, behavior deci-
sion, and control output affecting future motion), knowledge required for motion 
understanding has to encompass typical time histories of control output to achieve 
some goal or state transition and the corresponding trajectories resulting. From the 
trajectories of subjects (or parts thereof) observed by vision, the goal is to recog-
nize the maneuvers intended to gain reaction time for own behavior decision. In 
this closed-loop context, real-time vision means activation of animation capabili-
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ties, including the potential behavioral capabilities (maneuvers, trajectory control 
by feedback) of other subjects. As Figure 6.1 indicates, recursive estimation is not 
confined to perceiving simple physical motion processes of objects (proper) but al-
lows recognizing diverse, complex motion processes of articulated bodies if the 
corresponding maneuvers (or trajectories resulting) are part of the knowledge base 
available. Even developments of situations can be tracked by observing these types 
of motion processes of several objects and subjects of interest. Predictions and ex-
pectations allow directing perceptual resources and attention to what is considered 
most important for behavior decision. 

A large part of mental activities thus is an essential ingredient for understanding 
motion behavior of subjects. This field has hardly been covered in the past but will 
be important for future really intelligent autonomous systems. In the next section, a 
summary of the basic assumptions underlying the 4-D approach is given. 

6.2 Basic Assumptions Underlying the 4-D Approach 

It is the explicit goal of this approach to take advantage as much as possible of 
physical and mathematical models of processes happening in the real world. Mod-
els developed in the natural sciences and in engineering over the last centuries in 
simulation technology and in systems engineering (decision and control) over the 
last decades form the base for computer-internal representations of real-world pro-
cesses (see also Chapters 1 to 3): 
1. The (mesoscopic) world observed happens in 3-D space and time as the four 

independent variables; non-relativistic (Newtonian) and non-quantum-
mechanical models are sufficient for describing these processes. 

2. All interactions with the real world happen here and now, at the location of the 
body carrying special input/output devices. Especially the locations of the sen-
sors (for signal or data input) and of the actuators (for control output) as well as 
those body regions with strongest interaction with the world (as, for example, 
the wheels of ground vehicles) are of highest importance. 

3. Efficient interpretation of sensor signals requires background knowledge about 
the processes observed and controlled, that is, both its spatial and temporal 
characteristics. Invariants for process understanding may be abstract model 
components not graspable at one time.  

4. Similarly, efficient computation of (favorable or optimal) control outputs can be 
done only by taking complete (or partial) process models into account; control 
theory provides the methods for fast and stable reactions.  

5. Wise behavioral decisions require knowledge about the longer term outcome of 
special feed-forward or feedback control modes in certain situations and envi-
ronments; these results are obtained from integration of dynamic models. This 
may have been done beforehand and stored appropriately or may be done on 
the spot if analytical solutions are available or numerical ones can be derived in 
a small fraction of real time as becomes possible now with the increasing proc-
essing power at hand. Behaviors are realized by triggering the modes that are 
available from point 4 above. 
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6. Situations are made up of arrangements of objects, other active subjects, and of 
the goals pursued; therefore, 

7. it is essential to recognize single objects and subjects, their relative state, and 
for the latter also, if possible, their intentions to make meaningful predictions 
about the future development of a situation (which are needed for successful 
behavioral decisions).  

8. As the term re-cognition tells us, in the usual case it is assumed that objects 
seen are (at least) generically known already. Only their appearance here (in the 
geometrical range of operation of the senses) and now is new; this allows a fast 
jump to an object hypothesis when first visual impressions arrive through sets 
of features. Exploiting background knowledge, the model based perception 
process has to be initiated. Free parameters in the generic object models may be 
determined efficiently by attention control and the use of special algorithms and 
behaviors.  

9. To do step 8 efficiently, knowledge about “the world” has to be provided in the 
context of task domains in which likely co-occurrences are represented (see 
Chapters 4, 13, and 14). In addition, knowledge about discriminating features is 
essential for correct hypothesis generation (indexing into the object database). 

10. Most efficient object (class) descriptions by invariants are usually done in 3-D 
space (for shape) and time (for motion constraints or stereotypical motion se-
quences). Modern microprocessors are sufficiently powerful for computing the 
visual appearance of an object under given aspect conditions in an image (in a 
single one, or even in several with different mapping parameters in parallel) at 
runtime. They are even powerful enough to numerically compute the elements 
of the Jacobian matrices for sensor/object pairs of features evaluated with re-
spect to object state or parameter values (see Sections 2.1.2 and 2.4.2); this al-
lows a very flexible general framework for recursive state and parameter esti-
mation. The inversion of perspective projection is thus reduced to a least-
squares model fit once the recursive process has been started. The underlying 
assumption here is that local linearization of the overall process is a sufficiently 
good representation of the nonlinear real process; for high evaluation rates like 
video frequency (25 or 30 Hz), this is usually the case.  

11. In a running interpretation process of a dynamic scene, newly appearing objects
will occur in restricted areas of the image such that bottom-up search processes 
may be confined to these areas. Passing cars, for example, always enter the 
field of view from the side just above the ground; a small class of features al-
lows detecting them reliably. 

12. Subjects, i.e., objects with the capability of self-induced generation of control 
actuation, are characterized by typical (sometimes stereotypical, i.e., predictive) 
motion behavior in certain situations. This may also be used for recognizing 
them (similar to shape in the spatial domain). 

13. The same object/subject may be represented internally on different scales with 

various degrees of detail; this allows flexible and efficient use in changing con-
texts (e.g., as a function of distance or degree of attention).  

Since the use of the terms “state variables” and “dimensions” rather often are quite 
different in the AI/computer science communities, on one hand, and the natural sci-
ences and engineering, on the other hand, a few sentences are spent here to avoid 
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confusion in the sequel. In mesoscale physics of everyday life there are no more 
than four basic dimensions, three in space and time. In each spatial dimension there 
is one translational degree of freedom (d.o.f.) along the axis and one rotational 
d.o.f. around the axis, yielding six d.o.f. for rigid body motion, in total. Since New-
tonian mechanics requires a second-order differential equation for properly de-
scribing physical motion constraints, a rigid body requires 12 state variables for 
full description of its motion; beside the 3 positions and 3 angles there are the cor-
responding temporal derivatives (speed components).  

State variables in physical systems are defined as those variables that cannot be 
changed at one time, but have to evolve over time according to the differential 
equation constraints. A full set of state variables decouples the future evolution of a 
system from the past. By choosing these physical state variables of all objects of 
interest to represent scenes observed, there is no need to store previous images. 
The past of all objects (relevant for future motion) is captured in the best estimates 
for the actual state of the objects, at least in theory for objects known with cer-
tainty. Uncertainty in state estimation is reflected into the covariance matrix which 
is part of the estimation process to be discussed. However, since object hypothesis 
generation from sparse data is a weak point, some feature data have to be stored 
over a few cycles for possible revisions needed later on.  

Contrary to common practice in natural sciences and engineering, in computer 
science, state variables change their values at one time (update of sampled data) 
and then remain constant over the cycle time for computing. Since this fate is the 
same for any type of variable data, the distinct property of state variables in phys-

ics tends to be overlooked and the term state variable (or in short state) tends to be 
used abundantly for any type of variable, e.g., an acceleration as well as for a con-
trol variable or an output variable (computed possibly from a collection of both 
state and control variables). 

Another point of possible misunderstanding with respect to the term “dimen-
sion” stems from discretizing a state variable according to thresholds of resolution. 
A total length may be subdivided into a sequence of discrete “states” (to avoid ex-
ceedingly high memory loads and search times); each of these new states is often 
called a dimension in search space. Dealing with 2-D regions or 3-D volumes, this 
discretization introduces strong increases in “problem dimensions” by the second 
or third power of the subdivisions. Contrary to this approach often selected, for ex-
ample, in [Albus, Meystel 2001], here the object state in one entire degree of freedom 
is precisely specified (to any resolution desired) by just two state variables: posi-
tion (pose or angle) and corresponding speed component. Therefore, in our ap-
proach, a rigid body does not need more than 12 state variables to describe its ac-
tual state (at time “now”) in all three spatial dimensions. 

Note that the motion constraints through dynamic models prohibit large search 
spaces in the 4-D approach once the pose of an object/subject has been perceived 
correctly. Easily scalable homogeneous coordinates for describing relative posi-
tions/orientations are the second item guaranteeing efficiency. 
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6.3 Structural Survey of the 4-D Approach 

Figure 6.2 shows the main three activities running in parallel in an advanced ver-
sion of the 4-D approach: 
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Figure 6.2. Survey of the 4-D approach to dynamic machine vision with three major areas 
of activity: Object detection and recognition (central arrow upward), object tracking and 
state estimation (recursive loop at lower right), and learning (loop at center top); the latter 
two are driven by prediction-error feedback. 

1. Detection of objects from typical collections of features not yet assigned to 
some object already tracked (center, arrow upward). When these feature collec-
tions are stable over several frames, an object hypothesis is formed, and the 
new object is added to the list of objects regularly tracked (arrow in upper part 
of center to the right). 

2. Tracking of objects and state estimation is shown in the loop at the lower 
right in Figure 6.2; first, with the control output chosen, a single step prediction 
is done in 3-D space and time, the “imagined real world.” This new state is 
taken for projecting features to be tracked into the individual image planes for 
each camera involved. Prediction-error feedback is then used for improving 
state and parameter estimation based on the rich first-order derivative informa-
tion contained in the Jacobian matrices for each camera-object pair. This chap-
ter is devoted mainly to this topic. 

3. Learning from observation is done with the same data as for tracking; how-
ever, this is not a single step loop but rather a low frequency estimation compo-
nent concentrating on “constant” parameters, or it is even an off-line compo-
nent with batch processing of stored data. This area is still under development 
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at present; it will open up the architecture to becoming more autonomous in 
knowledge acquisition in new task domains as experience with the system 
grows. Both dynamical models (for the “where”-part) and shape models (for 
the “what”-part) shall be learnable in the future. 

Note that in the 4-D approach, system behavior is always considered in a closed, 
real-time loop; both perception and behavior control are derived from spatio-
temporal models. The method has become mature and has remained stable for vis-
ual relative state estimation over two decades by now.  

First, one proven implementation of the extended Kalman filter (EKF) method 
for recursive estimation by vision will be discussed; based on the insight gained, 
steps toward initialization of the tracking method will be mentioned. 

6.4 Recursive Estimation Techniques for Dynamic Vision 

As mentioned in the introduction to this chapter, the basic method is a recursive re-
formulation of the Gaussian least squares approach to fitting a solution curve of 
known structure to a set of measurement data. Many variants have been derived in 
the meantime; they will not be discussed here. There is a rich literature on this 
topic available; even Web-search machines turn up a host of references and re-
views. Some standard references are [Maybeck 1979, 1990; Bar Shalom, Li 1998; 
Kailath et al. 2000]. A recent book dedicated to “probabilistic robotics” is [Thrun et 
al. 2005]. As a basic reference to probability theory, the book [Jaynes 2003] is rec-
ommended. The reader not acquainted with Kalman filtering should refer to one of 
these references if the description given here misses depth.  

In view of these facts, here only the approach as developed at UniBwM will be 
retraced. It has allowed achieving many “firsts” in visual guidance for autonomous 
vehicles. It has been appreciated from the beginning that the linearization of per-
spective mapping, taking the prediction of motion components into account, would 
yield excellent first-order approximations compensating for the loss of depth in-
formation in a single snapshot image. This turned out to be true and immediately 
allowed motion stereointerpretation of dynamic scenes observed. 

6.4.1 Introduction to Recursive Estimation 

The n-vector of state variables x(t) of a dynamical system defined by the differen-
tial equation 

( )  [ ( ),  ( ),  ( ),  ],sx t f x t u t z t p (6.1)

with u(t) an r-vector of control variables, z(t) an n-vector of disturbances, and ps a 
vector of parameters of the system, usually, cannot be measured directly but only 
through an m-vector y(tk) of output variables at discrete points tk in time (index k,
for short: at time k) spoiled by some superimposed measurement noise w’(t), 
whose statistics are assumed to be known sufficiently well. 
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The continuous, usually nonlinear dynamic model Equation 6.1 is transformed 
into a discrete linear state transition model for sampled data with cycle time T by 
one of the standard methods in systems theory (see Sections 2.2.3, 3.4.1 and, for 
example, [Kailath 1980]). The standard form then is (Equation 3.7) 

1 1k k k kx A x Bu v (6.2)

with A the n·n state transition matrix from (k-1)T to kT, B the n·r control effect ma-
trix, and v(z(t), T) the discrete noise term. For linearized systems, all these terms 
may depend on the nominal state and control variables xN and uN, in general. 
The observable output variables y(k) may also depend nonlinearly on the state 
variables, and on some known or unknown (measurement) parameters pm, like in 
perspective mapping for vision 

( )   [ ( ),   ]  ( )my k h x k p w k . (6.3)
Therefore, the state variables have to be reconstructed from the output variables 

by exploiting knowledge about the dynamical process itself and about the meas-
urement process h.

In vision, the measurement process is perspective projection, assumed here to be 
sufficiently well described by a pinhole camera model (straight lines of light rays 
through a pinhole). This is a nonlinear mathematical operation with no direct in-
version available. As will be detailed later, the nonlinear measurement equation is 
linearized around the predicted nominal state xN of the process and the nominal pa-
rameter set pN (q values) yielding (without the noise term) 

*( ) ( ) ( )

           ( ( ), , ) ( ) ( ) ( )
N

N N x p

y k y k y k

h x k p k C k x k C k p
(6.4)

where Cx = h/ x|N and Cp = h/ p|N are the Jacobian matrices of perspective map-
ping with respect to the state components and the parameters involved. Since the 
first terms on the right-hand side of the equality sign are equal by definition, Equa-
tion 6.4 may be used to determine x and p as deviations from the nominal values 
xN and pN in a least-squares sense from y, the measured prediction errors: 

.( ) ( ) ( ) ( )x py k C k x k C k p (6.5) 

To achieve this goal under the side constraints of Equations 6.2 and 6.4, the ac-
tual error covariance matrix P of the overall system and the covariance matrices Q
of the dynamic system as well as R of the measurement model have to be known; 
observability is assumed to be given. This is the core of recursive estimation. The 
basic mathematical relationships will be given in the next section. 

Note that through Equation 6.2 and the covariance matrix Q, temporal continu-
ity with some room for stochastic adjustment is introduced into the interpretation 
process. The challenge is to find out how prediction errors y should contribute to 
improving the various components of x and p.

6.4.2 General Procedure 

The reader is assumed to have some understanding of Kalman filtering as a recur-
sive estimation process; therefore, a somewhat unusual approach is taken here. If 
difficulties in understanding should occur, the reader is recommended to one of the 
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basic textbooks to close the gap. The description is rather pragmatic and com-
pletely oriented towards real-time vision. For this specific application, the treat-
ment is rather exhaustive, so that the reader should be able to gain full understand-
ing of the basic ideas and application details. 

6.4.2.1 Sequence of Steps 

First, starting values x*(0) for the iteration have to be found before the recursive 
loop can be initiated. 

If not available otherwise, find a good guess for the n initial state components 
x*(0) to start with (initial hypothesis). 
Find an estimate for the probability distribution of this initial state in terms of 
the first and second moments of a Gaussian distribution (mean value 0x̂ and the 

(n·n) error covariance matrix P0. The mean value is set to the estimated initial 
state: 0ˆ *(0)x x , which is believed to represent the best knowledge available, 

but of course, is not the real value of x at k = 0. With the covariance matrix P0,
the Gaussian probability distribution from the second moment by definition is 
the following expression: 

1/ 2 11
0 0 0 02

ˆ ˆ( ) det(2 P ) exp ( ) ( )Tp x x x P x x0ˆ . (6.6) 

Assuming that the state components are independent of each other, the off-
diagonal terms in P0 are zero, and the diagonal terms are the variance compo-

nents of the states. This gives hints for finding good guesses for these 

terms. 

2
i

Now the time index is incremented (k 1 = kold; k = kold+1) and the state vari-
ables are predicted over one computing cycle exploiting the dynamic model 
of the plant  (Equation 6.2 with transition matrix A and control effect matrix 
B, but without the noise term) => x*(k) . For nonlinear systems, this may be 
done either with an analytical solution of the linearized state equations or by 
numerical integration using the nonlinear model. 
From the measurement model (Equation 6.3), compute the predicted nominal 
measurement values y* (no noise) 

*( ) [ *( ), ]my k h x k p . (6.7) 

The usual noise model assumed is  
{ } 0E w

and

[ ]      (  )TE w w R white noise .
(6.8) 

Take the actual measurement values y(k) and compute the prediction errors:    
( ) ( ) *( )y k y k y k , (6.9) 

for driving the iteration. Deeper understanding of visual interpretation is a-
chieved through the linear approximation around the expected point according 
to Equation 6.5. Therefore, compute the Jacobian matrices Ci (see Section 
2.1.2). [To simplify notation from here on, new state variables xn+1 to x n+q are 
defined with derivatives = 0 (constants) and driven by a noise term (for ad-
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justment). By increasing the order of the system from nold to n = nold + q and 
by proper adjustment of all matrices involved, there need not be a distinction 
any longer between states and parameters. The C-matrix now has dimension 
m· (nold + q). For efficient coding, state variables and parameters should be 
treated separately, however.] 
Improve the state estimate by the “innovation step” exploiting a (yet open) 
gain matrix K(k) with the assumption that changes are small so that the linear 
terms capture most of the functional relationships around x*(k):

ˆ( ) *( ) ( ) *( )x k x k K k y k (6.10) 

This new estimate for the state variables is the base for the next recursion loop. 

6.4.2.2 Selection of the Matrix for Prediction-Error Feedback 

Depending on the computational scheme for determining K(k), different methods 
are distinguished: 

deterministic scheme (no noise modeled) Luenberger observer

stochastic scheme   Kalman filter.
Here, only the Kalman filter will be discussed, though in the first several years of 
our research into recursive vision, the Luenberger observer has shown very good 
performance, too [Meissner 1982]. In contrast to the (deterministic) observer, the so-
called “Kalman-gain” matrix K(k) is obtained from stochastic reasoning. Let the 
dynamic system (plant) be described by Equation 6.2 with noise property 

[ ] 0,      [ ]TE v E v v Q .  (6.11) 

The covariance matrices Q(k) for the motion prediction step and R(k) for the 
measurement noise have to be determined from existing knowledge or heuristic 
reasoning. Since they affect the convergence process in recursive estimation, spe-
cial care has to be taken when specifying these values. This process is known as 
filter tuning, and the topic has to be revisited below. x*(0), v(0) and w(0) are as-
sumed to be uncorrelated.  

Start of recursive loop: Increment time index k = k+1; predict expected values of 
state variables (Equation 6.2 without noise v) and the expected error covariance 
matrix (both marked by * as expected values);  

1 1ˆ* ( 1) ( 1) ,

*( ) ( 1) ( 1) ( 1) ( 1)

k k k

T

x A k x B k u

P k A k P k A k Q k .
(6.12) 

The challenge now is to find a gain matrix K(k) such that the error covariance after 
inclusion of the new measurement values is minimized [matrix P(k)]. The predic-
tion error ˆ( )x k will be the unknown real state x(k) minus the best estimate 

ˆ( )x k yet to be found: 

ˆ ˆ( ) ( ) ( )x k x k x k . (6.13) 

The covariance matrix of the estimation error follows with 

Equation 6.10 for

ˆ ˆ[ ]TP E x x

ˆ( )x k as
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ˆ ˆ{[ ( ) ( )] [ ( ) ( )] }

   {[ * *] [ * *] }.

T

T

P E x k x k x k x k

E x x K C x x x K C x
(6.14) 

The output error covariance with *y C x v and Equation 6.11 is  

{ } {( * ) ( * ) } *T TE y y E C x v C x v C P C R .
T  (6.15) 

Finding that matrix K that minimizes P under the given side constraints, yields 
1* { * }T TK P C C P C R . (6.16) 

With this result Equation 6.14 reduces to the well-known form for updating the er-
ror covariance matrix 

.( ) *( ) ( ) ( ) *( )P k P k K k C k P k (6.17) 

6.4.2.3 Complete Recursion Loop in Kalman Filtering 

These results are summarized in the following table as algorithmic steps for the ba-
sic version of the extended Kalman filter for real-time vision (4-D approach): 
1. Find a good guess for the n initial state components x*(0) to start with [initial 

hypothesis k = 0, ]. 0ˆ *(0)x x

2. Find an estimate for the probability distribution of this initial state in terms of 
the first and second moments of a Gaussian distribution (mean value 0x̂ and

the (n·n) error covariance matrix P0). The diagonal terms are the components 

of the variance. 2
i

3. Find an estimate for the covariance matrices Q = E{vTv} of system noise v 
and R = E{wTw} of measurement noise w. 

    Entry point for recursively running loop
4. Increment time index k = k+1; 
5. Compute expected values for state variables at time k+1 (state prediction 

x*(k)):    1 1ˆ* ( 1) ( 1)k k kx A k x B k u .

6. Predict expected error covariance matrix P*(k) (components: state prediction 

and noise corruption): *( ) ( 1) ( 1) ( 1) ( 1)TP k A k P k A k Q k .

7. Compute the expected measurement values *( ) [ *( ), ]my k h x k p  and the 

(total) Jacobian matrix C = y*/ x|N as first-order approximations around this 
point. 

8. Compute the gain matrix for prediction error feedback: 
1* { * }T TK P C C P C R .

9. Update the state variables (innovation) to the +best estimates, including the 
last measurement values: ˆ( ) *( ) ( ) [ ( ) *( )]x k x k K k y k y k .

10. Update the error covariance matrix (innovation of statistical properties): 
( ) *( ) ( ) ( ) *( ).P k P k K k C k P k

     Go back to step 4 for next loop.

Steps for monitoring convergence and progress in the vision process will be dis-
cussed in connection with applications. 
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6.4.3 The Stabilized Kalman Filter 

Equation 6.17 is not well conditioned for use on a computer with limited word 
length. Canceling of significant digits may lead to asymmetries not allowed by the 
definition of P*. Numerically better conditioned is the following equation (I = 
identity matrix): 

( ) * ( )T TP I K C P I K C K R K , (6.18) 

which results from using the reformulated Equation 6.16 (multiplying by the {}-
term) 

* *T TKCP C KR P C ( ) * .TK R I K C P C (6.19) 

Multiplying the right-hand form by KT from the right and shifting terms to the left 
side of the equality sign yields 

( ) * T T TI K C P C K K R K 0.

2

(6.20) 

Adding this (0) to Equation 6.17 in the form P = (I - K C ) P*  yields Equation 
6.18. 

6.4.4 Remarks on Kalman Filtering 

Filter tuning, that is, selecting proper parameter settings for the recursive algo-
rithm, is essential for good performance of the method. A few points of view will 
be discussed in this section. 

6.4.4.1 Influence of the Covariance Matrices Q and R on the Gain Matrix K 

The basic effects of the influence of the covariance matrices Q and R on the gain 
matrix K can be seen from the following simple scalar example: Consider the case 
of just one state variable which may be measured directly as the output variable r: 

-1 -1 -1 -1 , -1

, ,

2 2 2

  0 ,

 ,

( ) { } ;         ( ) {  }  .

k k k k k x k

k k k m k y k

x x y

x a x b u v r s

y c x w r s

Q k E s R k E s y

(6.21) 

The variance of the prediction error then is 
2*( )  *( )  ( -1)   ,xP k p k p k (6.22) 

and for the scalar gain factor K, one obtains 
2 2( ) [ ( 1)  ] /[ ( 1) ] .x xK k p k p k 2

y (6.23) 

Two limiting cases for the noise terms  and show the effect of different val-

ues of variances on the progress of the iteration. For <<

2
x

2
y

2
y

2
x , i.e., very good 

measurements, a K value just below 1 results; for example, 
r̂(k) *( ) 0.95{ ( ) *( )} 0.05 *( ) 0.95 ( ).m mr k r k r k r k r k (6.24) 

This tells us for example, that when initial conditions are poor guesses and meas-
urement data are rather reliable, the R elements should be much smaller than the Q-
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elements. But when the dynamic models are good and measurements are rather 

noisy, they should be selected the other way round. For >> , i.e., for very poor 

measurement data, a small filter gain factor K results; for example, 

2
y

2
x

ˆ( ) *( ) 0.1[ ( ) *( )] 0.9 *( ) 0.1 ( ).m mr k r k r k r k r k r k (6.25) 
With poor measurements, also the variance of the estimation error will be im-
proved only a little: 

( ) *( ) *( ) (1 ) *( )p k p k K p k K p k .

e.g.,   K = 0.1    =>   p(k) = 0.9· p*(k).
(6.26) 

These considerations carry over to the multivariate case. 

6.4.4.2 Kalman Filter Design 

For the observer (not treated here), the specification of the filter gain matrix is 
achieved by assigning desired eigenvalues to the matrix (pole positions). In the 
Kalman filter, the gain matrix K(k) is obtained automatically from the covariance 
matrices Q(k) and R(k), assumed to be known for all tk , as well as from the error 
covariance matrix P*0.

K(k) results from P*0, R(k) and Q(k): P*0 may be obtained by estimating the 
quality of in-advance-knowledge about x0 (how good/certain is x0?). R(k) may 
eventually be derived from an analysis of the measurement principle used. On the 
contrary, finding good information about Q(k) is often hard: Both the inaccuracies 
of the dynamic model and perturbations on the process are not known, usually.  

In practice, often heuristic methods are used to determine K(k): Initially, change 
Q(k) only, for fixed R(k), based on engineering judgment. Then, after achieving 
useful results, also change R(k) as long as the filter does not show the desired per-
formance level (filter tuning). 

The initial transient behavior is essentially determined by the choice of P*0: The 
closer P*0 is chosen with respect to (the unknown) P*(k), the better the conver-
gence will be. However, the larger initial covariance values P*0 selected, the more 
will measured values be taken into account. (Compare the single variable case: 
Large initial values of p*(k) resulted in K-values close to 1, => strong influence of 
the measured values.) But note that this can be afforded only if measurement noise
R is not too large; otherwise, there may be no convergence at all. Filter tuning is 
often referred to as an art because of the difficulties in correctly grasping all the 
complex interrelationships. 

6.4.4.3 Computational Load 

For m measurement values, an (m × m) matrix has to be inverted to compute the 
filter gain matrix K(k). In the numerical approach, first a transformation into trian-
gular form via the Householder transformation is done; then recursive elimination 
is performed. 

Especially in the stabilized form (Equation 6.18, called the “Joseph”-form), 
computing load is considerable. This has led to alternative methods: Briefly dis-
cussed will be sequential Kalman filtering and UDUT-factored Kalman filtering.
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Gauss-Markov estimators with postfiltering are not discussed here; in this ap-
proach, in which more measurement equations than state variables have to be 
available, the noise corrupted state variables arrived at by a Gauss-Markov estima-
tor are filtered in a second step. Its advantage lies in the fact that for each state 
variable a filter factor between 0 and 1 can be set separately. Details on several re-
cursive filter types may be found in the reference [Thrun et al. 2005].

6.4.5 Kalman Filter with Sequential Innovation 

At time tk, the mk measurement values are obtained: 

( ) [ ( )] ( );       { } 0;       { } .Ty k h x k w k E w E w w R (6.27) 

For innovation of the state variables (see Section 6.4.2) 
ˆ( ) *( ) ( ) [ ( ) *( )]x k x k K k y k y k

the n×n dimensional filter gain matrix 
-1( ) *( ) ( )[ ( ) *( ) ( )  ( )]T TK k P k C k C k P k C k R k

is obtained by inversion of a matrix of dimension mk × mk. The central statement 
for the so-called “sequential innovation” is 

Under certain conditions, an mk-dimensional measurement vector can always be 

treated like mk scalar single measurements that are exploited sequentially; this re-
duces the matrix inversion to a sequence of scalar divisions. 

6.4.5.1 Preconditions  

The mk measurement values have to be uncorrelated, that means R(k) has to be (es-
sentially) a diagonal matrix. If the covariance matrix R(k) is blockwise diagonal, 
the corresponding subvectors may be treated sequentially. Correlated measure-
ments may always be transformed into uncorrelated pseudo-measurement data 
which then may be treated sequentially [Maybeck 1979, p. 375].

In image processing, different features derived from video signals can be as-
sumed to be uncorrelated if the attributes of such features are gained by different 
processors and with different algorithms. Attributes of a single feature (e.g., the y-
and z- components in the image plane) may well be correlated.

6.4.5.2 Algorithm for Sequential Innovation 

The first scalar measurement at a sampling point tk,
2 2

1 1 1 1 1( ) [ ( )] ( ),     { } 0,      { } ,y k g x k w k E w E w s1

).

(6.28) 

leads to the first partial innovation [in the sequel, the index k will be given only 
when needed for clarity; ki in the following is a column-vector of Kalman gains]: 

1 1 1 1ˆ ( *dx k y y (6.29) 

The (n×1)-dimensional filter vector k1 is computed by 
-1

1 0 1 1 0 1 1 0 (   ) ,           *( ).T T Tk P c c P c s P P k (6.30) 

Here, c1 is the first row (vector) of the Jacobian matrix C(k) corresponding to y1.
After this first partial innovation, the following terms may be computed: 
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1ˆ ( ) *( ) ( ),1ˆx k x k dx k (improved estimate for the state) 

               (improved error covariance matrix). 1 0 1 1P P k c P0

(6.31) 

For the I–th partial innovation 

-1 0ˆ ˆ ˆd ( * ),           1,  ....... ,  ,       I I I I I kx dx k y y I m dx (6.32) 

momentarily the best estimate for yI has to be inserted. This estimate is based on 
the improved estimated value for x:

-1 -1ˆ ˆ* ( ) ( ) *( )  ;I I Ix k x k x k dx (6.33) 
it may be computed either via the complete perspective mapping equation 

( ) [ * ( )],I I Iy k h x k (6.34) 

or, to save computer time, by correction of the predicted measurement value (at tk-1

for tk) y*I,0 : 

,0 -1ˆ* ( ) * ( )I I Iy k y k c dxI ; (simplification: cI ~ const for t = tk). (6.35) 

With this, the complete algorithm for sequential innovation is 
Initialization: 

,0  

2 2
1

,0

0 0

* [ *( ) ],            1,  ........,  ,

{ },                         [ ]  ,

* / ,                    1,  .........,  ,

ˆ 0,                               *( ).

I I k

I I I I

I I k

y g x k I m

s E w y g x w

c dy dx I m

dx P P k

(6.36) 

Recursion for I = 1, … , mk:

,0 -1

2
-1 -1

-1

-1 -1

ˆ*  *  ,  (simplification: ~ const for )

/(   ),

ˆ ˆ  ( * ),

   ,

ˆ ˆFinal step at :     ( ) *( ) ,      ( )  .
k k

I I I I I k

T T

I I I I I I I

I I I I I

I I I I I

k m

y y c dx c t t

k P c c P c s

dx dx k y y

P P k c P

t x k x k dx P k Pm

(6.37) 

6.4.6 Square Root Filters 

Appreciable numerical problems may be encountered even in the so-called stabi-
lized form, especially with computers of limited word length (such as in navigation 
computers onboard vehicles of the not too far past): Negative eigenvalues of P(k) 
for poorly conditioned models could occur numerically, for example,  

very good measurements (eigenvalues of R small compared to those of P*), 
amplified, for example, by large eigenvalues of P0;
large differences in the observability of single state variables, i.e. large differ-
ences in the eigenvalues of P(k).

These problems have led to the development of so-called square root filters [Pot-
ter 1964] for use in the Apollo onboard computer. The equations for recursive com-
putation of P are substituted by equations for a recursion in the square root matrix 
PP

1/2. The filter gain matrix K then is directly computed from P1/2
P . This has the ad-

vantage that the eigenvalues allowable due to the limited word length of the co-
variance matrices P and R are increased considerably. For example, let the variance 
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of the state variable “position of the space vehicle” be  m2
x = 10s 6

- 4

2 and the variance 

of the measurement value “angle”:  rad2
y = 10s

2. The numerical range for P , R

then is 1010, while the numerical range for PP

1/2, R1/2 is 105.
For modern general-purpose microprocessors, this aspect may no longer be of 

concern. However, specialized hardware could still gain from exploiting this prob-
lem formulation. 

What is the “square roots of a matrix”? For each positive semidefinite matrix P
there exist multiple roots PP

1/2 with the property P1/2
P PP

1/2 = P. Of especial interest for 
numerical computations are triangular decompositions. Cholesky decompositions 
use the “lower” triangular matrices L: P = L LT. With the so-called Carlson filter, 
“upper” triangular matrices U' are being used: P = U' U'T. Their disadvantage is the 
relative costly computation of at least n scalar square roots for each recursion step. 
This may be bypassed by using triangular matrices with 1s on the diagonal (unitar-
ian upper triangular matrices U) and a diagonal matrix D that may be treated as a 
vector.

6.4.6.1 Kalman Filter with UDUT-Factorized Covariance Matrix 

This method has been developed by Thornton and Bierman [Thornton, Bierman 
1980]. It can be summarized by the following bullets: 

Use the decomposition of the covariance matrix 

   TP U D U . (6.38) 

Due to the property U D1/2 = U', this filter is considered to belong to the class of 
square root filters. 

In the recursion equations, the following replacement has to be done:  

*      by      * * * .TP U  D   U (6.39) 

Modified innovation equations

Starting from the sequential formulation of the innovation equations (with ki as 
column vectors of the Kalman gain matrix and ci as row vectors of the Jacobian 
matrix)

2
-1 -1/(   ),T T

i i i i i i ik P c c P c s (6.40) 

-1ˆ ˆ ( * ),i i i i idx dx k y y (6.41) 

-1 -1 .i i i i iP P k c P (6.42) 

Equation 6.40 is introduced into Equation 6.42; by substituting 

-1 0      by                (   *   *  *  * ),

        by               (      ),
k

T T

i

T T

i m

P U D U P P U D U

P U D U P P U D U

there follows

2

( ) /(

         [( ) ( ) ] /(  ) .

T T T T T T T

i i i i i

T T T T T T T T

i i i i i

U D U U D U U D U c c U D U c U D U c s

U D D U c D U c c U D U c s U

),T

(6.43) 

With the definition of two column vectors with n components each 

    :  ,                     ,  T T

if U c e D f , (6.44) 
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a scalar q, called the innovation covariance,  
2 2         ,T T T

i i i i jjq c U D U c s s f e D f j

.T

)

(6.45) 

and

(  / )T TU D U U D e e q  U (6.46) 

the innovation of U and D is reduced to a decomposition of the symmetric 

matrix (  /TD e e q :

.     There follows:0 0 0(  / ) =   TD e e q U D U T

T0 0 0

0 0

              (  )  (  ),

that is,             (  )   .

T TU D U U U D U U

U U U D D

 (6.47) 

Computation of the n · 1 filter vector ki follows directly from Equation 6.40:  
/ .ik U  e q (6.48) 

The recursive innovation for each of the mk measurement values then is 

1.    T T

i j if U c .

2. .2
, , ;      1,  .......,  i i i jj i jq s D f j n

3. .   :i ie D fi

)

4. . /i i ik U e q

5.  recursive computation of U  and  from (  /0
i

0
iD

T

i i iD e e q .

6. U U .0
i i iU

iD

7.  . 0
i iD D

8.  Set U U  and1,i i 1,iD  for the next measurement value. 

9.  Repeat steps 1 to 8 for i = 1, …. , mk.
10.  Set U U  and 

km kmD D as starting values for the prediction step. 

Extrapolation of the covariance matrix in UDUT-factorized form: 

The somewhat involved derivation is based on a Gram-Schmidt vector orthogo-
nalization and may be found in [Maybeck 1979, p. 396] or [Thornton, Bierman 1977].

The starting point is the prediction of the covariance matrix: 

*( ) ( -1) ( -1) ( -1) ( -1),TP k A k P k A k Q k ,

with the decompositions, 

     and        (UT    P U D U T

q q qQ U D U .

TD U A U D U

U

)

q = I if Q is diagonal). 

1 0     by                (   *   *  *  * ),

       yb               (  *   *  *  * ).
k

T T

i

T T

i m

P U D U P P U D U

P U D U P P U D U

(6.49) 

U* and D* are to be found such that  

    T T T

q q qU D U (6.50) A U

   =  W   D   WT   +  U D .T

q q q

For this purpose, the following matrices are defined: 
    dimension: n × 2n,( ,  qW A U U (6.51) 
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0

0 q

D
D

D

a d

      dimension: 2n × 2n . (6.52) 

The recursion obtained then is 

Initialization:  (column vectors a1 2[ ,  ,  ......,   ]  T

na a a W i of the transition 

matrix A are rows of W). Recursion backwards for  = n, n-1, …. , 1. 

1.
 ;          (  ,  1,  2,  ....,  ;

dim{ }:  2 ).

j jj jh D a h D a j n

h n
(6.53) 

2.         (scalar). TD a h (6.54) 

3.      (normalizes diagonal terms to 1). /d h D (6.55) 

4a.        For    1,  ....,  -1:    .T

j jj U  (a)  

4b.         Replace  by (  )j j ja a U a .               (b)  
(6.56) 

6.4.6.2 Computational Aspects 

The matrices U and D are stored as compact vectors. The recursion may be further 
speeded up for sparse transition matrices A(k). In this case, index vectors for the 
rows of A indicate at what column index the nonzero elements start and end; only 
these elements contribute to the vector products. In an example with n = 8 state 
variables and mk = 6 measurement values, by using this approach, half the comput-
ing time was needed with simultaneously improved stability compared to a Kalman 
filter with sequential innovation. 

6.4.6.3 General Remarks 

With the UDUT-factored Kalman filter, an innovation, that is, an improvement of 
the existing state estimation, may be performed with just one measurement value 
(observability given). The innovation covariance in Equation 6.45  

2 2 ,           1,  .... ,T T

i i i i jj jq c U D U c s s D f j n

,T T

if U c
(6.57) 

is a measure for the momentary estimation quality; it provides information about 
an error zone around the predicted measurement value yi* that may be used to 
judge the quality of the arriving measurement values. If they are too far off, it may 
be wise to discard this measured value all together. 

6.4.7 Conclusion of Recursive Estimation for Dynamic Vision 

The background and general theory of recursive estimation underlying the 4-D ap-
proach to dynamic vision have been presented in this chapter. Before the overall 
integration for complex applications is discussed in detail, a closer look at major 
components including the specific initialization requirements is in order: This will 
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be done for road detection and tracking in Chapters 7 to 10; for vehicle detection 
and tracking, it is discussed in Chapter 11. The more complex task with many ve-
hicles on roads will be treated in Chapter 14 after the resulting system architecture 
for integration of the diverse types of knowledge needed has been looked at in 
Chapter 13. 

The sequence of increasing complexity will start here with an ideally flat road 
with no perturbations in pitch on the vehicle and the camera mounted directly onto 
the vehicle body. Horizontal road curvature and self-localization on the road are to 
be recognized; [this has been dubbed SLAM (self-localization and mapping) since 
the late 1990s]. As next steps, systematic variations in road (lane) width and rec-
ognition of vertical curvature are investigated. These items have to be studied in 
conjunction to disambiguate the image inversion problem in 3-D space over time. 
There also is a cross-connection between the pitching motion of the vehicle and es-
timation of lane or road width. It even turned out that temporal frequencies have to 
be separated when precise state estimation is looked for. Depending on the loading 
conditions of cars, their stationary pitch angle will be different; due to gas con-
sumption over longer periods of driving, this quasi-stationary pitch angle will 
slowly change over time. To adjust this parameter that is important for visual range 
estimation correspondingly, two separate estimation loops with different time con-
stants and specific state variables are necessary (actual dynamic pitch angle V, and 
the quasi-stationary bias angle b. This shows that in the 4-D approach, even sub-
tle points in understanding visual perception can be implemented straight-
forwardly.   

 Recursive estimation is not just a mathematical tool that can be applied in an 
arbitrary way (without having to bear the consequences), but the models both for 
motion in the real world and for perspective mapping (including motion blur!) have 
to be kept in mind when designing a high-performance dynamic vision system. 

Provisions to be implemented for intelligent control of feature extraction in the 
task context will be given for these application domains. As mentioned before, 
most gain in efficiency is achieved by looking at the perception and control process 
in closed-loop fashion and by exploiting the same spatiotemporal models for all 
subtasks involved. 

The following scheme summarizes the recursive estimation loop with sequential 
innovation and UDUT-factorization as it has been used in standard form with minor 
modifications over almost two decades. 

Complete scheme with recursion loops in sequential Kalman filtering and 

UDU
T
-factorization. 

1. Find a good guess for the n initial state components x*(0) to start with (initial hypothe-
sis k = 0, ).0ˆ *(0)x x

2. Find an estimate for the probability distribution of this initial state in terms of the first 

and second moments of a Gaussian distribution (mean value 0x̂ and the (n×n) error co-

variance matrix P0 in factorized form U0D0U0
T ). The terms on the main diagonal of 

matrix D0 now are the variance components .2
i

3. If the plant noise covariance matrix Q is diagonal, the starting value for Uq is the iden-

tity matrix I, and Q is with D
T

q q qQ U D U q the (guessed or approximately known) 
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values on the diagonal of the covariance matrix E{vTv}. In the sequential formulation, 
the measurement covariance matrix R = E{wTw} is replaced by the diagonal terms 

2 { }i

2
is E w  (Equation 6.28) 

     Entry point for recursively running main loop (over time)

4. Increment time index k = k+1.
5. Compute expected values for state variables at time k+1 [state prediction x*(k)]:  

1 1ˆ* ( 1) ( 1)k k kx A k x B k u .

6. Compute the expected measurement values *( ) [ *( ), ]my k h x k p  and the (total) 

Jacobian matrix C = y*/ x|N as first-order approximations around this point. 
7. Predict expected error covariance matrix P*(k) in factorized form (Equations 6.43 and 

6.49):
7.1 Initialize matricesW A (dimension: n·2n; Equation 6.51)  [ ,  q ]U U

and      (dimension: 2n·2n, Equation 6.52). 
0

0 q

D
D

D

       Entry point for sequential computation of expected error covariance matrix

7.2 Recursion backward for  = n, n 1 , …. , 1 (Equations. 6.53 – 6.56) 

h  = ;      (  ,      1,  2,  ....,  ;   dim{ }: 2 1 );j jj jD a h D a j n h n     

scalar TD a h ; vector /d h D ;

( for   1,  ....,  1:       T

j jj U a d ); replace .   by   (  )j j ja a U a

i

       go back to step 7.2 for prediction of error covariance matrix 

8. Read new measurement values y(k); mk in size (may vary with time k).  
9. Recursive innovation for each of the mk measurement values: 

Initialize with i = 1. 
   Entry point for sequential innovation (Equations 6.40 – 6.48) 

9.1: T T

i jf U  c .,  9.2:  2
, , ,       1,  ..,  .i i i jj i jq s D f j n

9.3: e D ,  9.4: :i i if /i i ik U e q ,

9.5: recursive computation of U  and  from 0
i

0
iD (  /T

i i i )D e e q ,

9.6: U U ,  9.7: ,  0
i i iU

U i

0
i iD D

9.8: Set U  and1,i i 1,iD D  for the next measurement value. 

Increment i by 1 
    go back to 9.1 for next inner innovation loop as long as i  mk.

(Loop 9 yields the matrices U U
km  and 

kmD D for prediction step 7.) 

10. Monitor progress of perception process; 
     go back to step 4 for next time step k = k+1. 

This loop may run indefinitely, controlled by higher perception levels, possibly triggered 
by step 10. 



7  Beginnings of Spatiotemporal Road
and Ego-state Recognition 

In the previous chapters, we have discussed basic elements of the 4-D approach to 
dynamic vision. After an introduction to the general way of thinking (in Chapter 
1), the basic general relations between the real world in 3-D space and time, on one 
hand, and features in 2-D images, on the other, have been discussed in Chapter 2. 
Chapter 5 was devoted to the basic techniques for image feature extraction. In 
Chapter 6, the elementary parts of recursive estimation developed for dynamic vi-
sion have been introduced. They avoid the need for storing image sequences by 
combining 3-D shape models and 3-D motion models of objects with the theory of 
perspective mapping (measurement models) and feature extraction methods. All 
this together was shown to constitute a very powerful general approach for dy-
namic scene understanding by research groups at UniBwM [Dickmanns, Graefe 1988; 
Dickmanns, Wünsche 1999].

Recognition of well-structured roads and the egostate of the vehicle carrying the 
camera relative to the road was one of the first very successful application do-
mains. This method has been extensively used long before the SLAM–acronym 
(simultaneous localization and mapping) became fashionable for more complex 
scenes since the 1990s [Moutarlier, Chatila 1989; Leonhard, Durrant-White 1991; Thrun 
et al. 2005]. This chapter shows the beginnings of spatiotemporal road recognition 
in the early 1980s after the initial simulation work of H.G. Meissner between 1977 
and 1982 [Meissner 1982], starting with observer methods [Luenberger 1964].

Since road recognition plays an essential role in a large application domain, both 
for driver assistance systems and for autonomously driving systems, the next four 
chapters are entirely devoted to this problem class. Over 50 million road vehicles 
are presently built every year worldwide. With further progress in imaging sensor 
systems and microprocessor technology including storage devices and high-speed 
data communication, these vehicles would gain considerably in safety if they were 
able to perceive the environment on their own. The automotive industry worldwide 
has started developments in this direction after the “Pro-Art” activities of the Euro-
pean EUREKA-project “PROMETHEUS” (1987–1994) set the pace [Braess,
Reichart 1995a, b]. Since 1992, there is a yearly International Symposium on Intelli-

gent Vehicles [Masaki 1992++] devoted to this topic. The interested reader is re-
ferred to these proceedings to gain a more detailed understanding of the develop-
ments since then. 

This chapter starts with assembling and arranging components for spatio-
temporal recognition of road borderlines while driving on one side of the road. It 
begins with the historic formulation of the dynamic vision process in the mid-
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1980s which allowed driving at speeds up to ~ 100 km/h on a free stretch of Auto-
bahn in 1987 with a half dozen 16-bit Intel 8086 microprocessors and 1 PC on 
board, while other groups using AI approaches without temporal models, but using 
way more computing power, drove barely one-tenth that speed. Remember that 
typical clock rates of general purpose microprocessors at that time were around 10 
MHz and the computational power of a microprocessor was ~ 10-4 (0.1 per mille) 
of what it is today. These tests proved the efficiency of the 4-D approach which af-
terward was accepted as a standard (without adopting the name); it is considered 
just another extension of Kalman filtering today.  

The task of robust lane and road perception is investigated in Section 7.4 with a 
special approach for handling the discontinuities in the clothoid parameter C1.
Chapter 8 discusses the demanding initialization problem for getting started from 
scratch. The recursive estimation procedure (Chapter 9) treats the simple planar 
problem first (Section 9.1) without perturbations in pitch, before the more general 
cases are discussed in some detail. Extending the approach to nonplanar roads 
(hilly terrain) is done in Section 9.2, while handling larger perturbations in pitch is 
treated in Section 9.3. The perception of crossroads is introduced in Chapter 10.  

Contrary to the approaches selected by the AI community in the early 1980s 
[Davis et al. 1986; Hanson, Riseman 1987; Kuan et al. 1987; Pomerleau 1989, Thorpe et al.
1987; Turk et al. 1987; Wallace et al. 1986], which start from quasi-static single image 
interpretation, the 4-D approach to real-time vision uses both shape and motion 
models over time to ease the transition from measurement data (image features) to 
internal representations of the motion process observed.  

The motion process is given by a vehicle driving on a road of unknown shape; 
due to gravity and vehicle structure (Ackermann steering, see Figure 3.10), the ve-
hicle is assumed to roll on the ground with specific constraints (known in AI as 
“nonholonomic”) and the camera at a constant elevation Hc above the ground. Un-
der normal driving conditions (no free rotations), vehicle rotation around the verti-
cal axis is geared to speed V and steering input , while pitch ( ) and roll (bank) 

angles ( ) are assumed to be small; while pitch angles may vary slightly but can-
not be neglected for large look-ahead ranges, the bank is taken as zero in the aver-
age here. 

( )

7.1 Road Model 

The top equation in Figure 3.10 indicates that for small steering angles, curvature 
C of the trajectory driven is proportional to the steering angle . Driving at constant 
speed V = dl/dt and with a constant steering rate d /dt as control input, this means 
that the resulting trajectory has a linear change of curvature over the arc length. 
This class of curves is called clothoids and has become the basic element for the 
design of high-speed roads. Starting the description from an initial curvature C0 the 
general model for the road element clothoid can then be written 

0 1C C C l , (7.1)

with C1 as the clothoid parameter fixing the rate of change of the inverse of the ra-
dius R of curvature (C = 1/R). This differential geometry model has only two pa-
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rameters and does not fix the location x, y and the heading  of the trajectory. With 
the definition of curvature as the rate of change of heading angle over arc length l
(C = d /dl), there follows as first integral 

2
0 1 / 2C dl C l C l .    (7.2) 

Heading direction is seen to enter as integration constant 0. The transition to Car-
tesian coordinates x (in the direction of the reference line for ) and y (normal to it) 
is achieved by the sine and cosine component of the length increments l. For small 
heading changes (  15°), the sine can be approximated by its argument and the co-
sine by 1, yielding (with index h for horizontal curvature): 

0

2
0 0 1

2 3
0 0 0 1 0 0

cos ,

sin ( / 2)

= y + / 2 / 6 y + .

h h

h h

x dl x x

y dl C l C l dl

l C l C l l yC

.

(a)

(7.3)

    (b) 
The integration constants x0 and y0 of this second integral specify the location of 

the trajectory element. For local perception of the road by vision, all three integra-
tion constants are of no concern; setting them 
to zero means that the remaining description is 
oriented relative to the tangent to the trajectory 
at the position of the vehicle. Only the last two 
terms in Equation 7.3b remain as curvature-
dependent lateral offset yC. This description is 
both very compact and convenient. Figure 7.1 
shows the local trajectory with heading change 

C and lateral offset yC due to curvature. 

Figure 7.1. From differential ge-
ometry to Cartesian coordinates 

l

x

yC

Roads are pieced together from clothoid elements with different parameters C0 and 
C1, but without jumps in curvature at the points of transition (segment boundaries).

Figure 7.2 shows in the top part a road built according to this rule; the lower part 
shows the corresponding curvature over the arc length. For local vehicle guidance 
on flat ground, it is sufficient to perceive the two curvature parameters of the road 

C0h and C1h as well as the 
actual state of the vehicle 
relative to the road: lateral 
offset y0, lateral velocity v,
and heading angle [Dick-
manns, Zapp, 1986].

Design speed 
Ve = 70 km/h

Radius in    450 350               200        250
meters

700 600                      250          300           350

Note that in the general 
case, there may be a slight 
discrepancy between the 
tangent to the trajectory and 
the vehicle heading angle ,
namely, the slip angle ,
due to the type of axles with 
front wheel steering and 
due to tire softness. 

Figure 7.2. Road (upper curve in a bird’s-eye view) as 
a sequence of clothoid elements with continuity in po-
sition, heading, and curvature; the curvature change 
rate C1 is a sequence of step functions. The curvature 
over the arc length is a polygon (lower curve). 
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7.2 Simple Lateral Motion Model for Road Vehicles 

Figure 7.3 shows simplified models based on the more complete one of Chapter 3. 
Figure 3.10 described the simple model for road vehicle motion (see also Section 
3.4.5.2). The lateral extension of the vehicle is idealized to zero, the socalled bicy-
cle model (with no bank angle degree of freedom!). Equation 3.37 and the block 
diagram Figure 3.24 show the resulting fifth order dynamic model. Neglecting the 
dynamic effects on yaw acceleration and slip angle rate  (valid for small 

speeds, T
abs

 and T  0, Equation 3.38), a lateral motion model of third order ac-
cording to block diagram Figure 7.3a results. 

u =

d /dt

(a) Third-order model

1/2 V 2/(2a·kltf)

V

V

V

V

V/a

V/au =

d /dt

++

+

+

y

y

y
•

y
•

C0h

•

•
abs

rel

•

rel

•

•
abs

(b) Fourth-order model

kltf/(2V)

1/T = kltf/V

rel

C0h

rel

Figure 7.3. Block diagram for lateral control of road vehicles taking rotational dynamics 
around the vertical axis only partially into account. (a) Infinite tire stiffness yields simplest 
model. (b) Taking tire force build-up for slip angle into account (not for yaw rates) improves 
observation results. 

Neglecting the dynamic term only in the differential equation for yaw accelera-
tion, the turn rate becomes directly proportional to steering angle (d abs/dt) = V·
/a, and the dynamic model reduces to order four. The split in omitting tire softness 
effects for the yaw rate but not for the slip angle  can be justified as follows: The 
yaw angle is the next integral of the yaw rate and does not influence forces or mo-
ments acting on the vehicle; in the estimation process, it will finally be approxi-
mated by the correct value due to direct visual feedback. On the contrary, the slip 
angle  directly influences tire forces but cannot be measured directly. 

Steering rate is the control input u(t), acting through a gain factor k ; the steering 
angle directly determines the absolute yaw rate in the fourth-order model. By sub-
tracting the temporal heading rate of the road V C0h from this value, the heading 
rate relative to the road results. After integrating, subtracting the slip angle, rel



7.3 Mapping of Planar Road Boundary into an Image      209 

and multiplying the sum by speed V, the lateral speed relative to the road v = dyV/dt
is obtained. The set of differential equations for the reduced state variables then is 

12
0

k0 0 0 0 0

1/ 0 0 00
( ) ,

/ 0 0 0 0

0 0 00

h

relrel

VV

a T
u t C

V a V

V V yy

(7.4)

12 ltfwith 1/(2 ) / ; V/ k  a T V a T ; a = axle distance; kltf = Fy/(mWL· f) (in 

m/s²/rad) (lateral acceleration as a linear function of angle of attack between the 
tire and the ground, dubbed tire stiffness, see Section 3.4.5.2. For the UniBwM test 
van VaMoRs, the actual numbers are a = 3.5 m, kltf  75 m/s²/rad, and T  = 
0.0133·V s-1. For a speed of 10 m/s (36 km/h), the eigenvalue of the dynamic tire 
mode is 1/T  = 7.5 s-1 (= 0.3 times video rate of 25 Hz); this can hardly be ne-
glected for the design of a good controller since it is in the perceptual range of hu-
man observers. For higher speeds, this eigenvalue becomes even smaller. The kltf –
value corresponds to an average lateral acceleration buildup of 1.3 m/s2 per degree 
angle of attack. [This is a rather crude model of the vehicle characteristics assum-
ing the cg at the center between the two axles and the same tire stiffness at the 
front and rear axle; the precise data are as follows: The center of gravity is 1.5 m in 
front of the rear axle and 2 m behind the front axle; the resulting axle loads are rear 
2286 and front 1714 kg (instead of 2000 each). Due to the twin wheels on each 
side of the rear axle, the tire stiffness at the axles differs by almost a factor of 2. 
The values for the simple model selected yield sufficiently good predictions for 
visual guidance; this resulted from tests relative to the more precise model.] 

7.3 Mapping of Planar Road Boundary into an Image 

This section has been included for historical reasons only; it is not recommended 
for actual use with the computing power available today. The simple mapping 
model given here allowed the first autonomous high-speed driving in 1987 with 
very little computing power needed (a few 16-bit microprocessors with clock rates 
of order of magnitude 10 MHz). Only intelligently selected subregions of images 
(256×256 pixels) could be evaluated at a rate of 12.5 Hz. Moving at speed V along 
the road, the curvature changes C(l) appear in the image plane of the camera as 
time-varying curves. Therefore, exploiting Equation 7.1 and the relationship V = 
dl/dt, a simple dynamic model for the temporal change of the image of the road 
while driving along the road can be derived.  

7.3.1 Simple Beginnings in the Early 1980s 

For an eye–point at elevation h above the road and at the lane center, a line element 
of the borderline at the look-ahead distance L is mapped onto the image plane yB,
z

B

BB according to the laws of perspective projection (see Figure 7.4). 
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P* would be the image point for a straight planar road and the camera looking par-
allel to the road. Road curvature according to a clothoid element of the form Equa-
tion 7.1 would yield the lateral offset y*BF corresponding to yC given by Equa-
tion 7.3b at the look-ahead distance l = Lf between points P* and P. 

Figure 7.4. Symbols for planar curvature analysis, look-ahead range from nearby (index 
N) to Lf (row zBF in image)

Figure 7.5 shows the more general situation in a top-down view where both a 
lateral offset yV of the camera from the lane center line (b/2 – yv) and a viewing di-
rection K not tangential to the road at the vehicle (camera) position have been al-
lowed. At the look-ahead distance Lf, K yields an offset Lf K in addition to yV.
Both contribute to shifts of image points P and P*. 

Figure 7.5. Top view of general imaging situation for a borderline with lateral offset yV,
nontangential viewing direction K, and road curvature; two preview ranges LN and Lf

y L

Lf rel

projection center

image plane

b/2

yV
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rel = RV

Tangent to lane center line

right borderline
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The effects of small off-
sets on P* can be seen from 
Figure 7.6. Lateral offsets 
of the camera to the road or 
lane center turn the road 
image around the vanishing 
point at L =  (horizon) 
and show up in the lower 
part of the image essen-
tially (near ranges), while 
gaze shifts translate the 
mapped object laterally in 
the image.  

vanishing point
at range 

yv K

Here, the camera is as-
sumed to be fixed directly 
to the vehicle body in the xV-direction which forms an angle rel with the road tan-
gent (Figure 7.5). The effects on a point on the curved borderline of the road are 
more involved and require perspective mapping. Using the pinhole model (see Fig-
ure 2.4, Equation 2.4), perspective projection onto a focal plane at distance f from 
the projection center (on left side in Figure7.5 at lateral position yV from the lane 
center line) yields for small angles and perturbations (cos  1, sine  argument) the 
approximate image coordinates 

( / 2 ) /

/ .
B V C

B

y f b y y L

z fh L

rel L
(7.5)

Let us introduce for convenience the back-projected lateral offset yB in the im-
age to the look-ahead distance L as y

B

L. Then with the first of Equations 7.5 multi-
plied by L/f,

/ 2 /L V C rel By b y y L Ly f . (7.6)

A dynamic model for road curvature determination is obtained by taking the 
time derivative (constant lane width and look-ahead distance are assumed) 

L V C rey y y L l

el

2

Figure 7.6. Effects of lateral offset yv (left) and camera 
pointing direction rel (right) on image of a straight 
road (reference: thin lines). Positive yv turns lines to 
left around  the “vanishing” point at ; negative rel

shifts the entire image horizontally to the right. 

. (7.7)

Now some substitutions are introduced: The lateral speed relative to the road 

may be expressed by the relative path angle  between the vehicle velocity vector 
and the road tangent. With the viewing direction fixed to the car body axis x

Vy

V, the 
sideslip angle  (see Figure 7.5) between the velocity vector V and rel has to be 
taken into account yielding 

( )V ry V V . (7.8)

This equation represents the right-hand part of Figure 7.3. For the term re-

garding the curvature effects from the position of the vehicle (l = 0) to the look-
ahead distance L, by applying the chain rule, one obtains 

Cy

/ / / /C C Cdy dt dy dl dl dt dy dl V . (7.9)

From Equation 7.3b, there follows for constant values C0h, C1h,
2

0 1/ /C h hdy dl C L C L . (7.10)
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Similarly, there follows for the change with time of the curvature C0h at the lo-
cation of the vehicle with Equation 7.1, 

0 0 1 1i/ / / ( ( ))h h h CidC dt dC dl dl dt C l C l l V . (7.11)

C1h is piecewise constant; the stepwise change at transition points lCi means a 
Dirac impulse C1i · (l lCi) in the derivative dC1h/dl. For practical purposes, the 
approximation of the last term in Equation 7.11 by Gaussian random noise w(t) 
driving the time derivative of C1h has proven to work sufficiently well with proper 
tuning of the recursive filter (at least for these early trials, see Section 7.4).  

The term in Equation 7.7 is the inertial yaw rate of the vehicle (= camera) 

minus the heading change of the road over time, which is the curvature at the vehi-
cle location times speed 

rel

 . 0 0( / )rel abs h hC V V a C V (7.12)

Equations 7.7 – 7.12 yield the state space model for estimating the curvature of 
the right-hand road boundary; since the effects of a lateral offset yV are contained 
in the variable yL and since dyL/dt does not depend on it, for curvature estimation 
(as a separately coded routine), this variable can be deleted from the state vector 
yielding the third-order dynamic model, 

2

0 0

11

0 2 / 2 / 0

0 0 0 0 0 0 .

0 0 0 0 0 0 ( )

L L

h h

relhh

y yLV L V LV a V V

C V C

w tCC

 (7.13) 

The second block gives the coupling of vehicle motion into the process of road 
observation. The fourth state variable yV of the vehicle has been omitted here since 
its coefficients in the vehicle part (right) are all zero; the observation part is in-
cluded in yL. This yields the historic formulation for road perception which looks a 
bit unsystematic nowadays. For the near range, the effects of C1h have been ne-
glected and the four vehicle states have been used to compute from Equation 7.5 
the predicted distance yBN in the image for any look-ahead distance LN

{ / 2 ( )}/BN V C N N rely f b y y L L . (7.14)

With Equation 7.3b for the curvature effects, the combined (total) state vector 
(index t) becomes from Equations 7.4 and 7.13 

0 1( , , , , , , )
t

T

rel V L h hx y y C C . (7.15)

With this terminology, the measurement equations for image interpretation from 
the two edge positions yBN and yBF in the near and far range are 

/(2 )0 / 0 / 2 0
.

0 0 0 0 / 0 0       0
BN NN N

t

FBF

y b f Lf f f L f L
x

f Ly
(7.16)

Note that the introduction of the new state variable yL for visual measurements 
in the far range (Equation 7.6) contains the effects of the goal distance b/2 from the 
road boundary for the trajectory to be driven, of the lateral offset yV from this line 
and of the curvature yC; for this reason, all entries in the lower row of Equation 
7.16 are zero except for the position corresponding to yL. However, yL also contains 
a term proportional to the heading direction ; since this angle determines future 
lateral offsets. Its feedback to corrective control in steering automatically yields a 
lead term, which is known to be beneficial for damping oscillations [Zapp 1988].
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7.3.2 Overall Early Model for Spatiotemporal Road Perception 

Since the images are taken cyclically as temporal samples with evaluation time 
twice the video cycle time (TB = 80 ms), the linear differential Equations 7.4 and 
7.13 are transformed into difference equations by one of the standard methods in 
sampled data theory. The complete set of differential equations to be transformed 
into algebraic transition equations in matrix form for the time step from kT

B

BB to 
(k+1) TB is B

0 ;y g

( ) ( ),   wheret t nx F x g u t g n t (7.17)
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g n

f ltf1/(2 ) / ;       V/ k ;       Equation 3.30.T V a T

This equation shows the internal dependences among the variables. The steering 
angle  depends only on the control input u(t) = steering rate. The lateral position 
of the vehicle yV as well as the variable yL does not affect vehicle dynamics directly 
(columns 4, 5 in F). Vehicle dynamics (upper left block) depends on steering angle 
(first column), slip and heading angle as well as curvature input (sixth column). 
[Equation 3.37 shows that in the fifth-order model, with an additional time constant 
in yaw rate buildup, this yaw rate also plays a role (e.g., for higher speeds). To gain 
experience, it has sometimes been included in the model; note that for five state 
variables, the number of entries in the upper left block of the F-matrix goes up by 
56 % compared to just four.]  

The two models for vehicle state estimation (upper left) and for road perception 
(lower right) have been coded as separate fourth-order and third-order models with 
cross-feeds of V·C0h into the yaw equation, and of the first three vehicle states into 
the yL equation . Instead of 49 elements of the full matrix F, 

the sum of elements of the decoupled matrices is just 25. This rigorous minimiza-
tion may have lost importance with the processors available nowadays. 

rel[ / ( )]LV a V

The clothoid parameter curvature change with arc length, C1h is driven by a 
noise input nC1(t) here; since C1h affects C0h via integrals, introducing a properly 
chosen noise level for this variable directly may help improve convergence; simi-
larly, introducing some noise input into the equation for rel and yL may compen-
sate for neglecting dynamic effects in the real world. The best parameters have to 
be found by experimentation with the real setup (filter tuning). 

The big advantage of this formulation of the visual perception process as a pre-
diction-error feedback task is automatic adjustment of the variables in a least 
squares sense to the models chosen. The resulting linear measurement model Equa-
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tion 7.16 yields the Jacobian matrix directly for prediction-error feedback in recur-
sive estimation.  

A perception model like that given (including the yaw acceleration equation) 
was used for the first high-speed tests with VaMoRs [Dickmanns, Zapp 1987] when 
autonomous driving elsewhere was at least one order of magnitude slower.  

7.3.3 Some Experimental Results 

This setup has allowed driving behavior up to higher speeds; details may be found 
in [Zapp 1988]. Two consequential tests will be shown here since they had an im-
pact on the development of vision for road vehicle guidance in Europe. Figure 7.7 
shows a demonstration setup in the skidpan of the Daimler-Benz AG (now part of 
DaimlerChrysler) in November/December 1986.  

The skidpan consists 
of circular areas with dif-
ferent road surface mate-
rials. This is normally 
used for testing reactions 
to different friction coef-
ficients between tire and 
ground. For our pur-
poses, the differences in 
brightness between con-
crete and basalt were es-
sential. After accelerat-
ing along a straight line 
(upper left), a tightening 
spiral arc followed, lead-
ing to the natural bound-
ary between concrete and 
basalt (area in ellipse, 

upper right). The vehicle 
then had to pick up the 
edge in brightness be-
tween these materials (no 
additional line markers; 
see the two video images 
in lower part). It can be 
seen that the transition 
was not exactly tangen-
tial (as asked for) but 
showed a slight corner 
(to the left), which 
turned out to pose no 
problem to perception; 
the low-pass filtering 

Figure 7.7. Historic first demonstration of visual road 
vehicle guidance to Daimler-Benz AG in their skidpan in 
Stuttgart: The test vehicle VaMoRs performed autono-
mous longitudinal and lateral guidance. It initially accel-
erated along a straight line which then turned into a spiral 
with increasing curvature that ended at a transition 
boundary between circular areas of concrete and basalt in 
the skid pan. Speed had to be adjusted automatically such 
that a lateral acceleration of 0.1 g (~ 1 m/s2) was not ex-
ceeded (see text). 
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component of the algorithm just smoothed it away. (In crisp detailed perception, 
there should have been a small section with negative curvature.) The downward 
dip in the lower part of Figure 7.8 around 100 m was all that resulted. 

The task then was to follow the circular edge at a speed such that the lateral ac-
celeration was 0.1 g (~ 1 m/s2). The top curve in Figure 7.8 shows on the right-
hand side that speed varied around V = 7.3 m/s, while the estimated curvature os-
cillated between 1/R = C = 0.019 and 0.025 m-1. These demonstrations encouraged 
Daimler-Benz to embark on a joint project with UniBwM named Autonomous Mo-

bile Systems that was supported by the German Ministry of Research and Technol-
ogy (BMFT). During this project, a major achievement in 1987 was the demonstra-
tion of the capability of visual autonomous driving at high speed on a free stretch 
of Autobahn near Munich. 

Figure 7.9 shows the speed history (top) over a stretch of 13 kilometers and the 
estimated road curvature (bottom). It can be seen that speed is around 25 m/s (90 
km/h) for about ten kilometers. The dips with speed reduction are due to erroneous 
feature selection and stronger perturbations in the estimation process. The vehicle 
then reduces speed which, usually, means fewer hazards and more time for reac-
tion; when the correct features are recovered after a few evaluation cycles of 80 
ms, the vehicle accelerates again. Top speed achieved at around 9 km was 96 km/h, 
limited by the engine power of the 5-ton van (actual weight was 4 metric tons). 

The far look-ahead range was a little more than 20 m with a distribution of three 
windows for image evaluation similar to Figure 7.7b. Due to the limited computing 
power of the (16-bit) Intel 8086 microprocessors used for image processing, only 

V speed

Figure 7.8. Skidpan test results (1986) for speed driven (top) and curvature estimated 
(bottom). (See text for a more detailed explanation)

Distance in meter
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the video signals within these 
windows were grabbed by 
one processor each. The loca-
tion of the windows in the 
image could be shifted from 
one frame to the next. Up to 
three search paths could be 
set up within each window, 
but only the best looking one 
would be used for interpreta-
tion (see further down be-
low). The left-hand window 
was used for picking up the 
left lane or road boundary 
when higher curvatures were 
met (mainly on minor roads 
also investigated). 

The relatively short look-
ahead range is the reason for 
the long transient in averag-
ing out the correct road cur-
vature (bottom graph, left 

side). In almost flat country-
side, a “post-WW2 Autobahn” in Germany should have radii of curvature R  1 
km (C0h = 0.001 m-1); it is seen that the estimated curvature, starting from the ini-
tial value zero, increases in magnitude to almost 0.002 (R = 500 m) before leveling 
out in the correct range |C0h|  0.001 m-1 only after about 1 km. Even though curva-
ture estimation looks rather jagged, the lateral offset from the ideal centerline aver-
aged about 15 cm with occasional deviations up to 30 cm. This has to be judged 
against a usual lane width of 3.75 m provided for vehicles less than ~2 m wide; 
thus, the initial autonomous results were better than those normally shown by an 
average human driver.  

Figure 7.9. Historic autonomous high-speed driving 
with VaMoRs on a free stretch of Autobahn near 
Munich in 1987: Top: Speed over distance driven 
(Vmax = 26.7 m/s = 96 km/h  60 mph). Bottom:

Curvature as estimated (note initial transient when 
starting from straight-road assumption C = 0) 

With the advent of higher performance microprocessors, more robust road and 
lane recognition using multiple windows on lane markings or border lines on both 
sides of the vehicle has been achieved with more advanced perception models 
[Mysliwetz 1990]. The early results shown are considered of special importance 
since they proved the high potential of computer vision for lateral guidance of road 
vehicles versus buried cables as initially intended in the EUREKA-project “Prome-
theus” in 1987. This has led, within a few years, about a dozen car manufacturing 
companies and about four dozen university institutes to start initiatives in visual 
road vehicle guidance in the framework of this large EUREKA-project running 
from 1987 till the end of 1994. As a consequence of the results demonstrated since 
1986 both in the U.S. and in Europe, Japanese activities were initiated in 1987 with 
the Personal Vehicle System (PVS) [Tsugawa, Sadayuki 1994]; these activities were 
followed soon by several other car companies. 

Though artificial neural net approaches (ANN) have been investigated for road 
vehicle guidance on all continents, the derivatives of the method shown above fi-
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nally outperformed the ANN-approaches; nowadays, spatiotemporal modeling and 
recursive estimation predominate all applications for vehicle guidance around the 
globe.

7.3.4 A Look at Vertical Mapping Conditions  

Vertical mapping ge-
ometry is shown in Fig-
ure 7.10. The elevation 
of the camera above the 
ground strongly affects 
the depth–resolution in 
the viewing direction. 
Since the sky is of little 
interest, in general, but 
may introduce high im-
age brightness in the up-
per part of the image 
(sky–region), cameras in 
vehicles are mounted 
with a downward look-
ing pitch angle, usually. 

The slope of the mapping ray through points at the far look-ahead range Lf rela-
tive to the road tangent in the vertical plane according to the figure is

Bfz K arctan( /( )Bf zz f k

with

Bfz arctan( / ).K fH L

(7. 18) 

Equating the tan of these expressions and exploiting the addition theorem for tan 
(  + ) = (tan  + tan )/(1- tan  · tan ) leads to  

tan /( ) 1 tan /( ) .K f K Bf z K Bf zH L z f k z f k (7.19) 

Solving for the vertical image coordinate zBf as a function of the look-ahead 
range Lf yields 

tan tan .Bf z K f K f K Kz f k H L L H (7.20) 

For K = 0, this reduces to the known simple pinhole model of perspective map-
ping. Inverting Equation 7.19 and taking the derivative with respect to the camera 
pitch angle shows the sensitivity of the look-ahead range Lf with respect to changes 
in pitch angle  (shorthand: /B Bf zz z f k ): 
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which for the optical axis zBf = 0 reduces to 
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Figure 7.10. Vertical perspective mapping geometry with 
downward looking camera ( K) for better imaging in near 
range (index N) 
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For the van VaMoRs, the camera elevation HK above the ground is 1.8 to 2 m; 
for the sedan VaMP, it is ~ 1.3 m. Table 7.1 gives some typical numbers for the 
gaze angles relative to the horizontal (downward negative) and for the sensitivity 
of the look-ahead range to small changes in pitch angles for these elevations. Col-
umns 3, 4 and 7, 8 show range changes in meters per image row (pixel) for two dif-
ferent focal lengths realizing resolutions of 8, respectively, 40 pixels per degree; 
columns 3 and 7 are typical for images with 240 lines and a 30° vertical field of 
view which has often been used as a standard lens, while columns 4 and 8 corre-
spond to a tele–lens with an 8° vertical field of view.  

Table 7.1. Pitch angles  of optical axes for certain look-ahead ranges L, for two camera 
elevations HK above a planar ground, and for two focal lengths (resolutions) 

0   1 2 3 4 5 6 7 8 
vehicle VaMoRs VaMP 
HK in m camera elevation = 1.8 m = 1.3 m    above ground
resolut. 8 pel/° 30 pel/° 8 pel/° 30 pel/° 

Lo
in m
pt axis in

degrees
dL/d
m/deg

dL/dpel
m/pixel

dL/dpel
m/pixel 

in
degrees

dL/d
m/deg

dL/dpel
m/pixel

dL/dpel
m/pixel

100 -1.03 97 12.1 3.2 -0.745 134 16.7 4.47 
60 -1.72 19.4 2.4 0.65 -1.24 48 6 1.6 
40 -2.58 15.5 1.9 0.52 -1.86 21.5 2.7 0.72 
20 -5.14 3.91 0.5 0.13 -3.72 5.4 0.68 0.18 
15 -6.84 2.2 0.275 0.073 -4.95 3.04 0.38 0.10 
10 -10.2 1.00 0.125 0.033 -7.4 1.36 0.17 0.045 
5 -19.8 0.274 0.034 0.009 -14.6 0.358 0.045 0.012 

1.8 -45 0.063 0.008 0.002 (-35.8) (0.066) (0.008) (0,002) 

1° change in pitch angle at a look-ahead range of 20 m leads to look-ahead 
changes of 3.9 m (~ 20 %, column 2) for the van and 5.4 m (27 %, column 6) for 
the car; this corresponds to a half meter range change for the standard focal length 
in the van and 68 cm in the car. For the telelens, the range change is reduced to 
about 10 cm per pixel for the van and 14 cm for the car. However, at a look-ahead 
range of 100 m, even the telelens experiences a 2.4 m range change per pixel (= 
1/40 = 0.025° pitch angle) in the van and 3.35 m in the car.   

A look at these values for larger look-ahead ranges shows that the pitch angle 
cannot be neglected as a state variable for these cases, since minor nonplanarity of 
the ground may lead to pitch perturbations in the range of a few tenths of 1°. This 
problem area will be discussed in Section 9.3 after some experience has been 
gained with the basic estimation process for perceiving road parameters.  

7.4 Multiple Edge Measurements for Road Recognition 

Since disturbances in the visual perception process in natural environments are 
more the rule than an exception, multiply redundant measurements are mandatory 
for robust road or lane recognition; the least-squares estimation process handles 
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this case without additional problems. However, it has proven advantageous to take 
a special approach for dealing with the discontinuity in C1 over arc the length. 

7.4.1 Spreading the Discontinuity of the Clothoid Model 

Figure 7.11 shows a piece of a road skeleton line consisting of several clothoid 
arcs: (1, see bottom of figure) straight line with C0h = C1h = 0; (2): clothoid (proper) 
with increasing curvature C; (3) circular arc (positive curvature = turning to the 
right); (4 and 5) clothoid with decreasing curvature (inflection point at the transi-
tion from 4 to 5); (6) negative circular arc (turning left); (7) clothoid back to 
straight driving. [Note that this maneuver driven by a vehicle on a wide road would 
mean a lane change when the parameters are properly chosen. The steering rate as 
control input for constant speed driven would have to make jumps like C1h (second
curve from top); this of course is an idealization.] The location and magnitude of 
these jumps is hard to measure from perspective image data.

Figure 7.12 displays the basic idea of the approach for avoiding the ideal Dirac 
impulse and approximating it by a substitute system (index m); this should yield 
the same lateral offset yC at the far end of the look-ahead distance. In principle, it 
starts working when the look-ahead region up to the distance L in front of the vehi-
cle just touches the location of the impulse lC1i , which is of course unknown. Con-
tinuing egomotion, an increasing part of the road with C1h  0 moves into the field 
of view; its extension is measured by the running variable lc starting from zero at 
the location l = lC1i – L. To obtain a non-dimensional description of the process, the 
variable  = lc/L is introduced (lc is a fraction of the look-ahead distance). The idea 

Figure 7.11. Clothoid road section: 
Top in Cartesian coordinates x, y; sec-
ond row: clothoid parameters C1h = 
dC/dl; third row: curvature C over arc 
length; fourth row: dC1h/dl as Dirac 
impulses (step jumps in C1h)
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Figure 7.12. Handling a discontinuity in 
the clothoid parameter C1 (top) by intro-
ducing an averaging model (index m) for 
the curvature parameters (bottom) 
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is to obtain “spread-out” variables as new curvature parameters C0hm and C1hm of a 
dynamic system that generate the same lateral offset yC of the curved line at the 
look-ahead distance L at any moment as the real road curvature (see lower right 
corner of Figure 7.12). 

The assumption for computing the offset yC of the real clothoid by the spread-
out system is that C0hm and C1hm of this virtual system are constants with respect to 
integration over the look-ahead distance (at each moment) even though they are 
dynamic variables evolving with penetration of the look-ahead range into the re-
gion with C1h  0.  

The real lateral offset as function of penetration lc for 0 lc L and C0h = 0, is 
3

1( ) / 6Cr c h cy l C l . (7.23)

For the spread-out system, we write 

1( )  ; Cm c Cohm C hmy l y y

where 
3

1 1

2 2
0 1

0

( ) / 6

( ) / 2 ( ) d / 2.
c

C hm hm c

l

Cohm hm c hm

y C l L

y C l L C L

(7.24)

Setting Equations 7.23 and 7.24 equal yields 

2 3
1 1

0

( ) d / 2 ( ) / 6 / 6
cl

hm hm c h cC L C l L C l3
1 . (7.25)

By dividing by L2/6, differentiating with respect to lc, and introducing  = lc/L,
the following differential equation is obtained: 

2
1 1 1/ 3 ( ) = 3hm hm hdC d C C

3

1

. (7.26)

Solving by one of the standard methods (e.g. Laplace transform) finally yields: 
2

1 1 1h( ) (0) exp( 3 ) + C { 2 / 3 + 2/9[1- exp( 3 )]}.hm hmC C (7.27)

With C1hm(0) = 0, one obtains the value C1hm(1) = 0.5445 C1h at the location of 
the jump in C1h (  = 1). The magnitude of C1h is yet unknown. Due to the disconti-
nuity in C1h, a new descriptive equation has to be chosen for  > 1. Selecting ’ = 
( -1) and the final value from the previous part (C1hm(1C1i) = 0.5445 C1h) as the ini-
tial value for the following one, again the resulting lateral offset yCm should be 
equal to the real one. The vehicle is now moving in the region where C0h is increas-
ing linearly with C1h. Therefore, instead of Equation 7.24, we now have 

 . 2 3 2
0 1 0 1( ) / 2 / 6 ( ) / 2 ( ) / 6h c h hm c hm cC l L C L C l L C l L (7.28)

 Dividing again by L2/6, changing to ’ as a dimensionless variable, and taking 
the derivative with respect to ’ now yields Equation 7.29. Since dC0h /d ’ = C1h,
dC1h /d ’ = 0 and dC0hm/d ’ = C1hm, there follows the differential equation for the 
part after passing the discontinuity: 

1 1/ 3 ( ) = 3hm hm hdC d C C . (7.29)

It has the solution 

1 1 1h

1h

( ) ( = 0) exp( 3 ) + C [1 exp( 3 )]

              = C [1 0.4555 exp( 3 )].
hm hmC C

(7.30)
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Figure 7.13 shows these functions scaled by C1h. It can be seen that the (theo-
retical) impulse at  = 1 is now spread out in the range 0 to  2.5; it has a maxi-
mum value of 1,3665 at  = 1. At this point, the variable C1hm is about 54 % of C1h

and continues to grow smoothly toward this value (1). 
The differential Equations 7.26 and 7.29 can be written as time derivatives with 

d(·)/dl = d(·)/dt/dl/dt and dl/dt = V in the form  

1 13 / { [ ( / )] }, hm h c hmC V L C f l L C1

where 
2( / ) ( / )    for   c c cf l L l L l L

or
( / ) 1              for   .c cf l L l L

(7.31)

Since the locations lC1i of steps 
in C1h are unknown, the term in 
square brackets is always set equal 
to 1. C1h is driven by noise in the 
recursive estimation process. This 
corresponds to neglecting the con-
tributions of C1h to curvature as 
long as the vehicle has not passed 
the point of the occurrence; in 
Figure 7.13 this means neglecting 
the shaded half plane on the left. 
For this reason, the starting value 
for C1hm now has to be zero at ’ = 
0 (instead of 0.5445 C1h); it can be 
seen from the dashed-double-
dotted line how fast the new vari-
able C1hm approaches the actual 
value C1h. After driving the dis-
tance of one look-ahead range L,
the 5 % limit of (C1hm(0) C1h) is 
reached. In [Mysliwetz 1990; 
Behringer 1996] it was shown that 
this simple, pragmatic approach yields very good estimation results compared with 
both known solutions in simulation studies and real experiments. Neglecting the 
part  < 1 has the additional advantage that for multiple observation windows along 
the look-ahead range, no special management is necessary for checking which of 
those are within or outside the C1h  0 region.  

The model for the new spread-out curvature variables is supposed to be valid in 
the entire look-ahead range; all windows at different observation ranges contribute 
to the same model via prediction-error feedback, so that an averaged model will re-
sult.

0 0.5 1.0 ’ 0.5               1.0 

1.4

1.2

1.0

0.6

0.2

1.3665

0.5

C1hm / C1h

(dC1hm /d )/C1h

0.5445

Figure 7.13. Approximation of the Dirac im-
pulse in curvature change rate dC1h/d  by a fi-
nite model for improved recursive estimation 
with the 4-D approach. For simplicity, only the 
non-shaded part ( ’ > 0) is used in the method 
(see text); convergence is given by the dash-

double-dotted curve starting from zero for ’.
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7.4.2 Window Placing and Edge Mapping 

Contrary to Figure 7.4, where the goal was to drive in the center of an imagined 
lane of width b by observing just the right-hand borderline, here, we assume to be 
driving on a road with lane markings. Lane width b and the subject’s lateral posi-
tion in the lane yV off the lane center have to be determined visually by exploiting 
many edge measurements for improved robustness and accuracy. In each of the 
horizontal stripes in Figure 7.14, edges (and eventually bright lines) have to be 
found that mark the lanes for driving. Two basically different approaches may be 
chosen: One can first look for lines that constitute lane markings and determine 
their shape over the arc length. Second-order or third-order parabolas have been 
used frequently; in a second step, the lane is determined from two neighboring lane 
markings. This approach, looking straightforward at a first glance, is not taken 
here.  

Figure 7.14. Multiple horizontal stripes with measurement windows for lane recogni-
tion by edge detection and model based grouping. Image rows correspond to look-ahead 
ranges Li; yBr - yBl = bB(Li) shows lane width. Features are used for derivation of initial 
values to start recursive estimation (see text). 
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The main reason is that the vehicle is supposed to drive in the center of the lane, 
so the clothoid model should be valid there; the lane markings then are normal to 
this skeleton line at distances ± b/2. Lane width should be observed steadily while 
driving; this model allows width to be one (smoothly varying) parameter in the re-
cursive estimation process. Lane observation can thus be continued in the case that 
one marking line is strongly perturbed or even missing. Using the curvature model 
of the previous section for the skeleton line, it can be described at the vertical cen-
ter of each horizontal stripe by 

 . 2 3
0 1/ 2 / 6

icsk hm i hm iy C L C L (7.32)
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Assuming small heading changes of the road in the look-ahead region, the lat-
eral positions of the left and right lane markings then are at 

/ 2;          / 2.
i i i icl csk cr csky y b y y b (7.33)

To obtain their mapping into the image, a more detailed overall model of the 
vehicle–sensor arrangement has to be taken into account. First, the vehicle center 
of gravity (cg for which the lateral offset yV is defined) is not identical with the lo-
cation of the camera; in the test vehicle VaMoRs, there is a distance d  2 m in the 
longitudinal direction (see Figure 7.15). Similar to Figure 7.5, one can now write 
for the lateral distance yL on the left-hand road boundary with b/2 (index l) or on 
the right-hand side with + b/2 (index r),

, , K/ 2 ( )
l r l rL C V V Vy b y y y y , (7.34)

where y V = L· V and y KV = L· KV are the shifts due to vehicle and camera head-
ing angles. With a pinhole camera model and the scaling factor ky for the camera, 
one obtains for the image coordinates yBl,r in the row direction 

, ,
/

l r l rBi y Li iy f k y L . (7.35)

image plane

Rblr = 1/Coh – b/2 

yL

yRg

yCr

yCl

Figure 7.15. Precise model for recognition of lane and relative egostate: exact camera 
location d and gaze angle KV relative to the vehicle body. (Focal length f is extremely 
exaggerated for better visibility) 

For the vertical image coordinates zBi, Figure 7.10 and Equation 7.20 are valid 
here, too. Subtracting the left-hand value yBil from the right-hand one yBir for the 
same zBi-coordinate yields the imaged lane width bB(LB i). However, in the 4-D ap-
proach, this need not be done since b is a parameter in the measurement (imaging) 
model (Equation 7.35 with 7.34); via the Jacobian matrix, this parameter is iterated 
simultaneously for all horizontal measurement stripes Li together, which makes it 
more stable and precise. Real lane width b is obtained together with the curvature 
parameters. 
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7.4.3 Resulting Measurement Model 

The spread-out dynamic clothoid model for the skeleton line of the lane can be 
written from Equations 7.24 – 7.27 in the time domain as 

10 1 1 1 1 1;   (3 / ) ( ); ;
hhm hm hm h hm h CC C V C V L C C    C n (7.36)

or in matrix form 
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0 3 / 3 / 0
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h h h h

h
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0
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(a)   

Equation 7.35 can be written with Equations 7.32 – 7.34 [two positions for lane 
markings (left and right) with two edges each (dark-to-bright and bright-to-dark) in 
each search stripe at zBi, yield the look-ahead distance Li, see Figure 7.14]:  

,

2
2

0 1
2 6l r

b
V i i

Bi y V VK hm hm

i

y L L
y f k C C

L
. (7.37)

This measurement equation clearly indicates the dependency of edge features on 
the variables and parameters involved: Lane width b and lateral position yv can best 
be measured in the near range (when Li is small); measurement of the heading an-
gles is not affected by range (see Figure 7.6). Curvature parameters can best be 
measured at large ranges (higher up in the image at smaller row indices zBi). Since 
all variables for a given range Li enter Equation 7.37 linearly, the coefficients ac-
companying the variables are the elements in the corresponding columns of the 
Jacobian matrix. (The rows of the Jacobian correspond to each feature measured.)  

Since all expressions in Equation 7.37 except the sign of the b/2 term are the 
same for the left- (yBil) and the right-hand boundary lines (yBir), their difference di-
rectly yields the lane (road) width bi

( ) /(
r li i Bi Bi yb L y y f k )

)

. (7.38)

The center of the lane in the image is at yBLCi = (yBil + yBir)/2. The difference be-
tween the y coordinate of the vanishing point yBP and yBLCi is a measure of the lat-
eral offset yV. Analogous to Equation 7.35, one can write 

( ( ) ) /(Vi i BP BLCi yy L y y f k . (7.39)

The dynamic model for the variables yV and V (describing vehicle state relative 
to the road) may be selected as fourth order, as in Section 7.2, or as fifth order 
(Equation 3.37) depending on the application. With small perturbations in pitch 
from roughness of the ground onto the vehicle, look-ahead distance Li is directly 
linked to the vertical image coordinate zBi (Equation 7.19); with K representing the 
pitch angle between the optical axis of the camera and a horizontal line, this equa-
tion in generalized form is valid here: 

( tan ) ( tan ).Bi z K i K i K Kz f k H L L H (7.40) 

The gaze angle KV of a camera as well as the camera pitch angle KV relative to 
the vehicle can usually be measured with sufficient accuracy directly in the vehi-
cle. The case that vehicle pitch also changes dynamically will be treated in Section 
9.3. For driving on (smooth) rural dirt roads, the concept of this section is also 
valid.
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Figure 7.16 shows such a 
case. Only feature extraction has 
to be adjusted: Since the road 
boundaries are not crisp, large 
masks with several zeros at the 
center in the feature extractor 
CRONOS are advantageous in 
the near range; the mask shown 
in Figure 5.10b [(nd, n0, nd) = 7, 
3, 7] yielded good performance 
(see also Figure 5.11, center 
top). With the method UBM, it 
is advisable to work on higher 
pyramid levels or with larger 
sizes for mask elements (values 
m and n). To avoid large dis-
turbances in the far range, no edges but only the approximate centers of image re-
gions signifying “road” by their brightness are determined there (in Figure 7.16; 
other characteristics may be searched for otherwise). Search stripes may be se-
lected orthogonal to the expected road direction (windows 7 to 10). The yB and z

Figure 7.16. Recognition of the skeleton line of 
a dirt road by edges in near range (with large 
masks) and by the center of brighter regions in 
ranges further away for improved robustness. 
Road width is determined only in the near range.

B B

coordinates of the road center point in the stripe determine the curvature offset and 
the range of the center on the skeleton line. 

7.4.4 Experimental Results 

In this section, early results (1986) in robust road recognition with multiple redun-
dant feature extraction in eight windows are shown. In these windows, displayed in 
Figure 7.17, one microprocessor Intel 8086 each extracted several edge candidates 
for the lane boundaries (see figure). 
On the left-hand side of the lane, the 
tar filling in the gaps between the 
plates of concrete that form the road 
surface, gave a crisp edge; however, 
disturbances from cracks and dirt on 
the road were encountered. On the 
right-hand side, the road boundary 
changed from elevated curbstones to 
a flat transition on grass expanding 
onto the road.  

Features accepted for representing 
the road boundary had to satisfy con-
tinuity conditions in curvature (head-
ing change over arc length) and 
colinearity. Deviations from ex-
pected positions according to spatio-
temporal prediction also play a role: 

Figure 7.17. Multiple oriented edge extrac-
tion in eight windows with first-generation, 
real-time image processing system BVV2 
[Mysliwetz 1990]
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Features with offsets larger than 3  from the expected value, were discarded alto-
gether; the standard deviation  is obtained from the error covariance matrix of the 
estimation process. This conservative approach stabilizes interpretation; however, 
one has to take caution that unexpected real changes can be handled. Especially in 
the beginning of the estimation process, expectations can be quite uncertain or 
even dead wrong, depending on the initially generated hypothesis. In these cases it 
is good to have additional potential interpretations of the feature arrangement 
available to start alternative hypotheses. At the time of the experiments described 
here, just one hypothesis could be started at a time due to missing computing 
power; today (four orders of magnitude in processing power per microprocessor 
later!), several likely hypotheses can be started in parallel. 

In the experiments performed on a campus road, the radius of curvature of about 
140 m was soon recognized. This (low-speed) road was not designed as a clothoid; 
the estimated C1hm parameter even changed sign (dotted curve in Figure 7.18a 
around the 80 m mark). The heading angle of the vehicle relative to the road tan-
gent stayed below 1° (Figure 7.18b) and the maximum lateral offset yV was always 
less than 25 cm (Figure 5.18c). The steering angle (Figure 5.18d) corresponds di-
rectly to road curvature with a bit of a lead due to the look-ahead range and feed-
forward control. 

Figure 7.18. Test results in autonomous driving on unmarked campus–road: Transition 
from straight to radius of curvature  140 m. (a) Curvature parameters, (b) vehicle 
heading relative to the road (<~ 0.9°), (c) lateral offset (< 25 cm), (d) steering angle 
(time integral of control input). Speed was ~ 30 km/h.
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8  Initialization in Dynamic Scene Understanding 

Two very different situations have to be distinguished for initialization in road 
scenes: (1) The vehicle is being driven by a human operator when the visual per-
ception mode is switched on, and (2) the vehicle is at rest somewhere near the road 
and has to find the road on its own. In the latter, much more difficult case, it has 
sufficient time to apply more involved methods of static scene recognition. This 
latter case will just be touched upon here; it is wide open for future developments. 

It is claimed here that 3-D road recognition while driving along a road is easier 
than with a static camera if some knowledge about the motion behavior of the ve-
hicle carrying the camera is given. In the present case, it is assumed that the 
egovehicle is an ordinary car with front wheel steering, driving on ordinary roads. 
Taking the known locomotion measured by odometer or speedometer into account, 
integration of measurements over time from a single, passive, monocular, 2-D im-
aging sensor allows motion stereointerpretation in a straightforward and computa-
tionally very efficient way. 

With orientation toward general road networks, the types of scenes investigated 
are the human-built infrastructure “roads” which is standardized to some extent but 
is otherwise quasi-natural with respect to environmental conditions such as lighting 
including shadows, such as weather, and possible objects on the road; here, we 
confine ourselves just to road recognition. The bootstrap problem discussed here is 
the most difficult part and is far from being solved at present for the general case 
(all possible lighting and weather conditions). At the very first start of the vision 
process, alleviation for the task, of course, is the fact that during this self-
orientation phase no real-time control activity has to be done. Several approaches 
may be tried in sequence; during development phases, there is an operator check-
ing the results of recognition trials independently. Solution times may lie in the 
several-second range instead of tens of milliseconds. 

8.1 Introduction to Visual Integration for Road Recognition 

Some aspects of this topic have already been mentioned in previous chapters. Here, 
the focus will be on the overall interpretation aspects of roads and how to get 
started. For dynamic scene understanding based on edge and stripe features, the 
spatial distribution of recognizable features has to be combined with translational 
and rotational motion prediction and with the laws of central projection for map-
ping spatial features into the image plane. The recursive visual measurement proc-
ess fits the best possible parameters and spatial state time histories to the data 
measured.
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These estimates satisfy the motion model in the sense of least-squares errors 
taking the specified (assumed) noise characteristics into account. Once started, di-
rect nonlinear, perspective inversion is bypassed by prediction-error feedback. To 
get started, however, either an initial perspective inversion has to be done or an in-
tuitive jump to sufficiently good starting values has to be performed somehow, 
from which the system will converge to a stable interpretation condition. On stan-
dard roads in normal driving situations, the latter procedure often works well. 

For hypothesis generation, corresponding object databases containing both mo-
tion characteristics and all aspects geared to visual feature recognition are key ele-
ments of this approach. Tapping into these databases triggered by the set of fea-
tures actually measured is necessary for deriving sufficiently good initial values for 
the state variables and other parameters involved to get started. This is the task of 
hypothesis generation to be discussed here. 

When applying these methods to complex scenes, simple rigid implementation 
will not be sufficient. Some features may have become occluded by another object 
moving into the space between the camera and the object observed. In these cases, 
the interpretation process must come up with proper hypotheses and adjustments in 
the control parameters for the interpretation system so that feature matching and in-
terpretation continues to correspond to the actual process happening in the scene 
observed. In the case of occlusion by other objects/subjects, an information ex-
change with higher interpretation levels (for situation assessment) has to be organ-
ized over time (see Chapter 13). 

The task of object recognition can be achieved neither fully bottom-up nor fully 
top-down exclusively, in general, but requires joint efforts from both directions to 
be efficient and reliable. In Section 5.5, some of the bottom-up aspects have al-
ready been touched upon. In this section, purely visual integration aspects will be 
discussed, especially the richness in representation obtained by exploiting the first-
order derivative matrix of the connection between state variables in 3-D space and 
features in the image (the Jacobian matrix; see Sections 2.1.2 and 2.4.2). This will 
be done here for the example of recognizing roads with lanes. Since motion control 
affects conditions for visual observation and is part of autonomous system design 
in closed-loop form, the motion control inputs are assumed to be measured and 
available to the interpretation system. All effects of active motion control on visual 
appearance of the scene are predicted as expectations and taken into account before 
data interpretation.

8.2 Road Recognition and Hypothesis Generation 

The presence of objects has to be hypothesized from feature aggregations that may 
have been collected in a systematic search covering extended regions of the image. 
For roads, the coexistence of left- and right-hand side boundaries in a narrow range 
of meaningful distances (say, 2 to 15 m, depending on the type of road) and with 
low curvatures are the guidelines for a systematic search. From the known eleva-
tion of the camera above the ground, the angle of the (possibly curved) “pencil tip” 
in the image representing the lane or road can be determined as a function of lane 
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or road width. Initially, only internal hypotheses are formed by the specialist algo-
rithm for road recognition and are compared over a few interpretation cycles taking 
the conventionally measured egomotion into account (distance traveled and steer-
ing angle achieved); the tracking mode is switched on, but results are published to 
the rest of the system only after a somewhat stable interpretation has been found. 
The degree of confidence in visual interpretation is also communicated to inform 
the other perception and decision routines (agents). 

8.2.1 Starting from Zero Curvature for Near Range 

Figure 7.14 showed some results with a search region of six horizontal stripes. Re-
alistic lane widths are known to be in the range of 2 to 4.5 m. Note that in stripes 3 
and 4, no edge features have been found due to broken lines as lane markings (in-
dicating that lane changes are allowed). To determine road direction nearby robus-
tly, approximations of tangents to the lane borderlines are derived from features in 
well separated stripes (1, 2, and 5 here). The least-squares fit on each side (dashed 
lines) yields the location of the vanishing point (designated Pi here). If the camera 
is looking in the direction of the longitudinal axis of the vehicle ( KV = 0), the off-
set of Pi from the vertical centerline in the image represents directly the scaled 
heading angle of the vehicle (Figure 7.6). Similarly, if a horizonline is clearly visi-
ble, the offset of Pi from the horizon is a measure of the pitch angle of the camera 

K. Assuming that K is 0 (negligibly small), Equation 7.40 and its derivative with 
respect to range Li can be written 

2( ) / ;       / /Bi i z K i Bi i z K iz L f k H L dz dL f k H L . (8.1)

Similarly, for zero curvature, the lateral image coordinate as a function of range 
Li and its derivative become from Equation 7.37, 
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Dividing the derivative in Equation 8.2 by that in Equation 8.1 yields the ex-
pressions for the image of the straight left (+b) and right ( b) boundary lines;  
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/ ( / 2 ) ( / ) /

;

.

Bl B V y z K

Br B V y z K

dy dz b y k k H

dy dz b y k k H
(8.3)

Both slopes in the image are constant and independent of the yaw angles  (see 
Figure 7.6). Since z is defined positive downward, the right-hand boundary–
coordinate increases with decreasing range as long as the vehicle offset is smaller 
than half the lane width; at the vanishing point Li = , the vertical coordinate zBi is 
zero for K = 0. The vehicle is at the center of the lane when the left and right 
boundary lines are mirror images relative to the vertical line through the vanishing 
point. 

Assuming constant road (lane) width on a planar surface and knowing the cam-
era elevation above the ground, perspective inversion for the ranges Li can be done 
in a straightforward manner from Equation 8.1 (left); 

/i z kL f k H zBi . (8.4)
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Equation 8.2 immediately yields the lumped yaw angle  for Li  as 

V VK= ( ) /B i yy L f k . (8.5)

These linear approximations of road boundaries usually yield sufficiently accu-
rate values of the unknown state variables (yV and V) as well as the parameter lane 
width b for starting the recursive estimation process; it can then be extended to fur-
ther distances by adding further search stripes at smaller values zBi (higher up in the 
image). The recursive estimation process by itself has a certain range of conver-
gence to the proper solution, so that a rough approximate initialization is sufficient, 
mostly. The curvature parameters may all be set to zero initially for the recursive 
estimation process when look-ahead distances are small. A numerical example will 
be shown at the end of the next section. 

8.2.2 Road Curvature from Look-ahead Regions Further Away 

Depending on the type of road, the boundaries to be found may be smooth (e.g.,
lane markings) or jagged [e.g., grass on the shoulder (Figure 7.16) or dirt on the 
roadside]. Since road size in the image decreases with range, various properly sized 
edge masks (templates) are well suited for recognizing these different boundary 
types reliably with the method CRONOS (see Section 5.2). Since in the near range 
on roads, some a priori knowledge is given, usually, the feature extraction methods 
can be parameterized reasonably well. When more distant regions are observed, 
working with multiple scales and possibly orientations is recommended; a versatile 
recognition system should have these at its disposal. Using different mask sizes 
and/or sub–sampling of pixels as an inverse function of distance (row position in 
the vertical direction of the image) may be a good compromise with respect to effi-
ciency if pixel noise is low. When applying direction-sensitive edge extractors like 
UBM (see Section 5.3), starting from the second or third pyramid level at the bot-
tom of the image is advisable. 

Once an edge element has been found, it is advisable for efficient search to con-
tinue along the same boundary in adjacent regions under colinearity assumptions; 
this reduces search intervals for mask orientations and search lengths. Since lanes 
and (two-lane) roads are between 2 and 7 m wide and do have parallel boundaries, 
in general, this gestalt knowledge may be exploited to find the adjacent lane mark-
ing or road boundary in the image; mask parameters and search regions have to be 
adjusted correspondingly, taking perspective mapping into account. Looking al-
most parallel to the road surface, the road is mapped into the image as a triangular 
shape, whose tip may bend smoothly to the left (Figure 7.16) or right (Figure 7.17) 
depending on its curvature.  

As a first step, a straight road is interpreted into the image from the results of 
edge finding in several stripes nearby, as discussed in the previous section; in Fig-
ure 7.14 the dashed lines with the intersection point Pi result. From the average of 
the first two pairs of lane markings, lane width and the center of the lane yLC are 
determined. The line between this center point and Pi (shown solid) is the reference 
line for determining the curvature offset yc at any point along the road. Further 
lane markings are searched in stripes higher up in the image at increasingly further 
distances. Since Equation 7.37 indicates that curvature can best be determined 
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from look-ahead regions far away, this process is continued as long as lane mark-
ings are highly visible. During this process, search parameters may be adapted to 
the results found in the previous stripe. Let us assume that this search is stopped at 
the far look-ahead distance Lf.

Now the center point of the lane at Lf is determined from the two positions of 
the lane markings yBrf and yBlf. The difference of these values yields the lane width 
in the image bBf at Lf (Equation 7.38). The point where the centerline of this search 
stripe hits the centerline of the virtual straight road is the reference for determining 
the offset due to road curvature yc(Lf) (see distance marked in Figure 7.14). As-
suming that the contribution of C1hm is negligible against that of C0hm, from Equa-
tion 7.24, yc(Lf) = C0hm·Lf

2/2. With Equation 7.37 and the effects of yV and 
taken care of by the line of reference, the curvature parameter can be estimated 
from 

2
0hm( )Cf CBf f y fy y L f k C L 2

as
2

0hm 2 2Cf f CBf f yC y L y L f k .

(8.6)

On minor roads with good contrast in intensity (as in Figure 7.16), the center of 
the road far away may be determined better by region-based methods like UBM. 

8.2.3 Simple Numerical Example of Initialization 

Since initialization in Figure 7.16 is much more involved due to hilly terrain and 
varying road width, this will be discussed in later chapters. The relatively easy ini-
tialization procedure for a highway scene while driving is discussed with the help 
of Figure 7.14. The following parameters are typical for the test vehicle VaMoRs 
and one of its cameras around 1990: Focal length f  8 mm; scaling factors for the 
imaging sensor: kz  50 pixels/mm and ky  40 pixels/mm; elevation of camera 
above the ground HK = 1.9 m. The origin of the yB, zB BB image coordinates is selected 
here at the center of the image.  

By averaging the results from stripes 1 and 2 for noise reduction, the lane width 
measured in the image is obtained as 280 pixels; its center lies at yLC = 4 pixels 
and zLC = 65 pixels (average of measured values). The vanishing point Pi, found by 
intersecting the two virtual boundary lines through the lane markings nearby and in 
stripe 5 (for higher robustness), has the image coordinates yBP = 11 and zBP = 88
pixels. With Equation 8.5, this yields a yaw angle of  2° and with Equation 7.40 
for Lf , a pitch angle of K 12°. The latter value specifies with Equation 
7.40 that the optical axis (zB = 0) looks at a look-ahead range LB oa (distance to the 
point mapped into the image center) of  

/ tan 1.9 / 0.22 8.6 moa K KL H . (8.7)
For the far look-ahead range Lf at the measured vertical coordinate zBf = 55

pixel, the same equation yields with F = zBf/(f·kz) = 0.1375
(1 tan ) ( tan ) 22.3 mf K K KL H F F . (8.8)

With this distance now the curvature parameter can be determined from Equa-
tion 8.6. To do this, the center of the lane at distance Lf has to be determined. From 
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the measured values yBrf = 80 and yBlf = 34 pixels the center of the lane is found at 
yBLCf = 57 pixels; Equations 7.38 and 8.8 yield an estimated lane width of bf = 3.2 
m. The intersection point at Lf with the reference line for the center of the virtual 
straight road is found at yBISP = 8 pixel. The difference yCBf = yBLCf  – yBISP = 49 
pixels according to Equation 8.6, corresponds directly to the curvature parameter 
C0hm yielding

1
0hm CBf f y2 ( ) 0.0137 mC y L f k , (8.9)

or a radius of curvature of R  73 m. The heading change of the road over the look-
ahead distance is (Lf) C0hm· Lf = 17.5°. Approximating the cosine for an angle 
of this magnitude by 1 yields an error of almost 5%. This indicates that to deter-
mine lane or road width at greater distances, the row direction is a poor approxima-
tion. Distances in the row direction are enlarged by a factor of ~ 1/cos [ (Lf)]. 

Since the results of (crude) perspective inversion are the starting point for recur-
sive estimation by prediction-error feedback, high precision is not important and 
simplifications leading to errors in the few percent range are tolerable; this allows 
rather simple equations and generous assumptions for inversion of perspective pro-
jection. Table 8.1 shows the collected results from such an initialization based on 
Figure 7.14. 

Table 8.1. Numerical values for initialization of the recursive estimation process derived 
from Figure 7.14, respectively, assumed or actually measured 

Name of variable Symbol (dimension) Numerical value Equation 

Gaze angle in yaw  (degrees) 2 8.5 
Gaze angle in pitch  (degrees) 12 7.40 
Look-ahead range (max) Lf (meter) 22.3 8.8 
Lane width b  (meter) 3.35 7.38 
Lateral offset from lane center yV (meter) 0.17 7.39 
Road curvature parameter C0hm  (meter 1) 0.0137  1/ 73 8.9 
Slip angle  (degrees) unknown, set to 0  
 C1hm  (meter 2) unknown, set to 0  

 C1h  (meter 2) unknown, set to 0  
Steering angle  actually measured  
Vehicle speed V (m/s) actually measured  

Figure 8.1 shows a demanding initialization process with the vehicle VaMoRs at 
rest but in almost normal driving conditions on a campus road of UniBwM near 
Munich without special lane markings [Mysliwetz 1990]. On the right-hand side, 
there are curbstones with several edge features, and the left lane limit is a very nar-
row, but very visible tar-filled gap between the plates of concrete forming the lane 
surface.  The shadow boundaries of the trees are much more pronounced in inten-
sity difference than the road boundary; however, the hypothesis that the shadow of 
the tree is a lane can be discarded immediately because of the wrong dimensions in 
lateral extent and the jumps in the heading direction.

Without the gestalt idea of a smoothly curved continuous road, mapped by per-
spective projection, recognition would have been impossible. Finding and checking 
single lines, which have to be interpreted later on as lane or road boundaries in a 
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separate step, is much more difficult than introducing essential shape parameters of 
the object lane or road from the beginning at the interpretation level for single edge 
features. 

Figure 8.1. Initialization of road recognition; example of a successful instantiation of a 
road model with edge elements yielding smoothly curved or straight boundary lines and 
regions in between with perturbed homogeneous intensity distributions. Small local de-
viations from average intensity are tolerated (dark or bright patches). The long white 
lines in the right image represent the lane boundaries for the road model accepted as 
valid. 

For verification of the hypothesis “road,” a region-based intensity or texture 
analysis in the hypothesized road area should be run. For humans, the evenly ar-
ranged objects (trees and bushes) along the road and knowledge about shadows 
from a deep-standing sun may provide the best support for a road hypothesis. In 
the long run, machine vision should be able to exploit this knowledge as well. 

8.3 Selection of Tuning Parameters for Recursive 
Estimation 

Beside the initial values for the state variables and the parameters involved, the 
values describing the statistical properties of the dynamic process observed and of 
the measurement process installed for the purpose of this observation also have to 
be initialized by some suitable starting values. The recursive estimation procedure 
of the extended Kalman filter (EKF) relies on the first two moments of the stochas-
tic process assumed to be Gaussian for improving the estimated state after each 
measurement input in an optimal way. Thus, both the initial values of the error co-
variance matrix P0 and the entries in the covariance matrices Q for system pertur-
bations as well as R for measurement perturbations have to be specified. These data 
describe the knowledge one has about uncertainties of the process of perception. 

In Chapter 6, Section 6.4.4.1, it was shown in a simple scalar example that 
choosing the relative magnitude of the elements of R and Q determines whether the 
update for the best estimate can trust the actual state x and its development over 
time (relatively small values for the variance x

2) more than the measurements y
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(smaller values for the variance of the measurements y
2). Because of the complex-

ity of interdependence between all factors involved in somewhat more complex 
systems, this so called “filter tuning” is considered more an art than a science. Vi-
sion from a moving platform in natural environments is very complex, and quite 
some experience is needed to achieve good behavior under changing conditions. 

8.3.1 Elements of the Measurement Covariance Matrix R

The steering angle  is the only conventionally measured variable beside image 
evaluation; in the latter measurement process, lateral positions of inclined edges 
are measured in image rows. All these measurements are considered unrelated so 
that only the diagonal terms are nonzero. The measurement resolution of the digi-
tized steering angle for the test vehicle  VaMoRs was 0.24° or 0.0042 rad. Choos-
ing about one-quarter of this value as standard deviation (  = 0.001 rad), or the 
variance as 2 = 10 6, showed good convergence properties in estimation.  

Static edge extraction to subpixel accuracy in images with smooth edges has 
standard deviations of considerably less than 1 pixel. However, when the vehicle 
drives on slightly uneven ground, minor body motion in both pitch and roll occurs 
around the static reference value. Due to active road following based on noisy data 
in lateral offset and heading angle, the yaw angle also shows changes not modeled, 
since loop closure has a total lumped delay time of several tenths of a second. To 
allow a good balance between taking previous smoothed measurements into ac-
count and getting sufficiently good input on changing environmental conditions, an 
average pixel variance of yBi

2 = 5 pixel2 in the relatively short look-ahead range of 
up to about 25 m showed good results, corresponding to a standard deviation of 
2.24 pixels. According to Table 7.1 (columns 2 and 3 for L  20 m) and assuming 
the slope of the boundaries in the image to be close to ±45° (tan  1), this corre-
sponds to pitch fluctuations of about one-quarter of 1°; this seems quite reasonable. 

It maybe surprising that body motion is considered measurement noise; how-
ever, there are good reasons for doing this. First, pitching motion has not been con-
sidered at all up to now and does not affect motion in lateral degrees of freedom; it 
comes into play only through the optical measurement process. Second, even 
though the optical signal path is not directly affected, the noise in the sensor pose 
relative to the ground is what matters. But this motion is not purely noise, since ei-
gen-motion of the vehicle in pitch exists that shows typical oscillations with re-
spect to frequency and damping. This will be treated in Section 9.3. 

8.3.2 Elements of the System State Covariance Matrix Q

Here again it is generally assumed that the state variations are uncoupled and thus 
only the diagonal elements are nonzero. The values found to yield good results for 
the van VaMoRs by iterative experimental filter tuning according to [Maybeck 1979; 
Mysliwetz 1990] are (for the corresponding state vector see Equation 9.17) 
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7 5 7 4

9 11 10 9 10

Diag(10 ,10 ,10 ,10 ,

                         10 ,10 ,10 ,10 ,10 ).

Q
(8.10)

These values have been determined for the favorable observation conditions of 
cameras relatively high above the ground in a van (HK = 1.8 m). For the sedan 
VaMP with HK = 1.3 m (see Table 7.1) but much smoother driving behavior, the 
variance of the heading angle has been 2 to 3 · 10 6 (instead of 10 7), while the 
variance for the lateral offset yV was twice as high (~ 2·10 4) in normal driving; it 
went up by another factor of almost 2 during lane changes [Behringer 1996]. Work-
ing with Q as a constant diagonal matrix with average values for the individual 
variances usually suffices. One should always keep in mind that all these models 
are approximations (more or less valid) and that the processes are certainly not per-
fectly Gaussian and decoupled. The essential fact is that convergence occurs to 
reasonable values for the process to be controlled in common sense judgment of 
practical engineering; whether this is optimal or not is secondary. If problems oc-
cur, it is necessary to go back and check the validity of all models involved. 

8.3.3 Initial Values of the Error Covariance Matrix P0

In contrast to the covariance matrices Q and R which represent long-term statistical 
behavior of the processes involved, the initial error covariance matrix P0 deter-
mines the transient behavior after starting recursion. The less certain the initially 
guessed values for the state variables, the larger the corresponding entries on the 
diagonal of P0 should be. On the other hand, when relatively direct measurements 
of some states are not available but reasonable initial values can be estimated by 
engineering judgment, the corresponding entries in P0 should be small (or even 
zero) so that these components start being changed by the estimation process only 
after a few iterations. 

One practically proven set of initial values for road estimation with VaMoRs is 

0

rel V 0hm 1hm 1h 0vm 1vm

P  = Diag(0.1,    0,    0.1,    0.1,    0.1,     0,     0,      0.1,     0),

corresp. to             y C C C C C .                      
(8.11)

This means that the initial values estimated by the user (zeros) for the slip angle 
 and the C1 parameters in all curvature terms are trusted more than those derived 

from the first measurements. Within the first iterations all values will be affected 
by the transition matrix A and the covariance matrices Q and R (according to the 
basic relations given in Equations 6.12, 6.16, and 6.17 or the corresponding ex-
pressions in sequential filtering).  

From Figure 7.9, it can be seen, that during the initial acceleration phase (chang-
ing V in upper graph) horizontal curvature estimation is rather poor; only after 
about 1 km distance traveled are the horizontal curvature parameters estimated in a 
reasonable range (R  1 km according to [RAS-L-1 1984]). This is partly due to us-
ing only 2 windows on one side, relatively close together like shown in Figure 7.7. 
The detailed analysis of this nonstationary estimation process is rather involved 
and not discussed here. It is one example of the fact that clean academic conditions 
are hardly found in steadily changing natural environments. However, the idealized 
methods (properly handled) may, nonetheless, be sufficient for achieving useful re-
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sults, partly thanks to steady feedback control in a closed-loop action-perception 
cycle, which prohibits short-term divergence. 

8.4 First Recursive Trials and Monitoring of Convergence 

Depending on the quality of the initial hypothesis, short-term divergence may oc-
cur in complex scenes; once a somewhat stable interpretation has been achieved, 
the process is likely to continue smoothly. In order not to disturb the rest of the 
overall system, the perception process for a certain object class should look at the 
convergence behavior internally before the new hypothesis is made public. For ex-

ample, in Figure 8.2, the long shadow 
from a tree in winter may be inter-
preted as a road boundary in one hy-
pothesis. 

Starting with the vehicle at rest and 
assuming that the vehicle is oriented 
approximately in the road direction 
near the center of the lane, knowledge 
about usual lane widths leads to the 
hypothesis marked by white line seg-
ments. When nothing can be assumed 
about the subject’s position, other road 
hypotheses cannot be excluded com-
pletely, e.g., one road side following 
the shadow of the tree in front of the 
vehicle. The road then could be as well 
on the left-hand as on the right-hand 
side of the shadow from the tree; for 
the resulting feature positions expected 

from this hypothesis, new measurement tasks have to be ordered. Features found or 
not found then have to be judged in conjunction with the hypothesis. 

Figure 8.2. Ambiguous situation for gen-
erating a good road hypothesis without 
additional measurement data and higher 
level reasoning or other input 

Starting initialization under these conditions while the vehicle is being driven by 
a human, a few most likely hypotheses should be set up in parallel and started in-
ternally (without giving results to the rest of the system or to the operator). Assum-
ing that the human driver guides the vehicle correctly, the system can prune away 
the road models not corresponding to the path driven by observing the convergence 
process of the other (parallel) hypotheses; while driving, all features from station-
ary, vertically extended objects in the environment of the road will move in a pre-
dictable way corresponding to ego speed. Those hypothesized objects, having large 
prediction errors, a high percentage of rejected features, or that show divergence, 
will be eliminated. This can be considered as some kind of learning in the actual 
situation.

In the long run, road recognition systems do not have to recognize just the road 
surface, possibly with lanes, but a much larger diversity of objects forming the in-
frastructure of different types of roads. During the search for initial scene recogni-
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tion, all objects of potential interest for vehicle guidance should be detected and 
correctly perceived. In Section 8.5, the road elements to be initialized in more ad-
vanced vision systems will be discussed; here we look first at some steps for test-
ing hypotheses instantiated. 

8.4.1 Jacobian Elements and Hypothesis Checking 

The Jacobian matrix contains all essential first-order information, how feature po-
sitions in an image (or derived quantities thereof) depend on the states or parame-
ters of the object descriptions involved. Analyzing the magnitude of these entries 
yields valuable information on the mapping and interpretation process, which may 
be exploited to control and adapt the process of hypothesis improvement. 

8.4.1.1 Task Adjustment and Feature Selection for Observability 

The basic underlying equation links the m vector dy of measurements (and thus the 
prediction errors) to the n vector of optimal increments for the state variables and 
parameters dx to be iterated:  

dy C dx (8.13)

If one column (index c) of the C matrix is zero (or its entries are very small in 
magnitude), this means that all measured features do not (or hardly) depend on the 
variable corresponding to index c (see Figure 8.3); therefore one should not try to 
determine an update for this component dxc from the actual measurements. 

In the case shown, features 1, 3, 6, and m = 8 depend very little on state component 
xc (fourth column) and the other ones not at all; if prediction error dy3 is large, this is 
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of prediction (m × n) to be found 
errors Jacobian matrix C for state components 
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Figure 8.3. Example of a degenerate Jacobian matrix with respect to measurement 
values yr, y6 and state component xc (each of the absolute values of ri and ci is be-
low a specific threshold, see text; || means magnitude of the corresponding value) 
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reflected in changes of dxc and especially in the state component (c + 1), here 5, since 
this influences y3 by a larger factor. However, if prediction error dy6 is large, the only 
way of changing it within the feature set selected is by adjusting xc; since the partial 
derivative J  is small, large changes in x6c c will achieve some effect in error reduction. 
This often has detrimental effects on overall convergence. Very often, it is better to 
look for other features with larger values of their Jacobian elements, at least in column 
c, to substitute them for y6.

However, since we are dealing with dynamic systems for which dynamic links 
between the state variables may be known (integral relationships and cross-feeds), the 
system may be observable even though entire columns of C are zero. To check 
observability of all n components of a dynamic system, a different test has to be 
performed. For systems with single eigenvalues (the case of multiple eigenvalues is 
more involved), observability according to Kalman may be checked by using the 
matrix of right eigenvectors V (defined by A·V = V· , where  is the diagonal matrix 
of eigenvalues of the transition matrix A of the dynamic system). By performing the 
linear similarity transformation 

'x V x (8.14)
 the linearized measurement equation becomes 

 . ' '         with       'dy C V dx C dx C C V (8.15)
If all elements of a column in the C’ matrix are small or zero, this means that all 

features positions measured do not depend on this characteristic combination of state 
variables or parameters. Therefore, no meaningful innovation update can be done for 
this component of the eigenmotions. Maybe, due to other conditions in the future, 
some new features will occur which may allow also to have an innovation update for 
this component.  

The case of almost vanishing columns or rows of the matrix C is shown in Figure 
8.3 for row indices r and 6 and for column index c. Here, the i,j mean numerically 
small values in magnitude compared to the noise level in the system. If all entries in a 
matrix row are small or zero, this means that the position in the image of the 
corresponding feature does not depend on any of the state variables or parameters of 
the object represented by the C matrix, at least under the current conditions. Therefore, 
the feature may be discarded altogether without affecting the update results. This 
reduces the workload for the numerical computation and may help in stabilizing the 
inversion process buried in the recursion algorithm. Due to noise, a prediction error is 
likely to occur which will then be interpreted as a large change in the state vector 
because of the smallness of the C elements; this will be avoided by removing this 
measurement value altogether, if the row vector in C has only very small entries. 

The judgment of smallness, of course, has to be made with reference to the 
dimension of the corresponding state variable. An angle in radians determining a 
feature position at the end of a long lever (say several meters) has to be weighted 
correspondingly differently compared to another variable whose the dimension has 
been chosen in centimeter (for whatsoever reason). So-called “balancing” by proper 
weighting factors for each variable may bring the numerical values into the same 
numerical range required for meaningful selection of thresholds for the jl to be 
considered effectively zero.  

To obtain good results, the thresholds of the C element values should be chosen 
generously. This is good advice if it can be expected that with time the aspect 
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conditions will become more favorable for determining the corresponding variable 
and if the prediction model is already sufficiently good for handling the observation 
task meanwhile. In summary, checking the conditioning of the Jacobian matrix and 
adapting the observation process before things go wrong, is a better way to go than 
waiting until interpretation has already gone wrong.   

8.4.1.2 Feature Selection for Optimal Estimation Results 

If computing power available is limited, however, and the number of features “s”

measurable is large, the question arises which features to choose for tracking to get 
best state estimation results. Say, the processor capability allows m features to be ex-
tracted, with m < s. This problem has been addressed in [Wuensche 1986, 1987]; the fol-
lowing is a condensed version of this solution. Since feature position does not depend 
on the speed components of the state vector, this vector is reduced xR (all correspond-
ing expressions will be designated by the index R).

To have all state variables in the same numerical range (e.g., angles in radians 
and distances in meters), they will be balanced by a properly chosen diagonal scal-
ing matrix S. The equation of the Gauss-Markov estimator for the properly scaled 
reduced state vector (of dimension nR) is 

1 1 1ˆ ˆ  {( ) ( ) } ( ) ( *)T T T

R NR R R Rx S x S C S R C S C S R y y , (8.16)

where CR is the Jacobian matrix, with the zero-columns for speed components re-
moved; R is the diagonal measurement covariance matrix, and S is the scaling ma-
trix for balancing the state variables. With the shorthand notation 

1/2
N RC R C S (8.17),

T Cthe performance index J = | C  | is chosen with the recursive formulation N N

 | |T

i ii
J C C , (8.18)

where Ci is a 2 × nR matrix from CN corresponding to feature i with two positional 
components each in the image plane:  

1 2 1
1 3 2 1 2 1 4

2 3

 | | | |  | | | | .T

T

A A
J A A A A A A A

A A
(8.19)

A1 is diagonal and A4 is symmetrical. This expression may be evaluated with 16 
multiplications, 2 divisions, and 9 (m  1) + 7 additions. For initialization, a com-
plete search with (s over m) possible feature combinations is performed. Later on, 
in the real-time phase, a suboptimal but efficient procedure is to find for each fea-
ture tracked another one out of those not tracked that gives the largest increase in J.
Since one cycle is lost by the replacement, which leads to an overall deterioration, 
the better feature is accepted only if it yields a new performance measure sensibly 
larger than the old one: 

,new oldJ J
(8.20)

.with                                         = 1+
The best suited value of  is of course problem dependent. Figure 8.4 shows an 

experimental result from a different application area: Satellite docking emulated 
with an air-cushion vehicle in the laboratory. Three corner features of a known 
polyhedral object being docked to are to be selected such that the performance in-



240      8  Initialization in Dynamic Scene Understanding 

dex for recognizing the relative egostate is maximized. The maneuver consists of 
an initial approach from the right-hand side relative to the plane containing the 
docking device (first 40 seconds), an intermediate circumnavigation phase to the 
left with view fixation by rotating around the vertical axis, and a final phase of 
homing in till mechanical docking by a rod is achieved [Wuensche 1986]. At point 2 
(~ 57 s) a self-occlusion of the side to be docked to starts disappearing on the left-
hand side of the body, leading to small spacing between features in the image and 
possibly to confusion; therefore, these features should no longer be tracked (lower 
left corner starts being discarded). Only at point 4a are the outermost left features 
well separable again.  In region 5, the features on the right-hand side of the body 
are very close to each other, leading again to poor measurement results (confusion 
in feature correlation). The performance index improves considerably when at 
around 100 s both upper outer corners of the body become very discernible.  

Figure 8.4. Selection of optimal feature combinations of an autonomous air-cushion ve-
hicle with the sense of vision: Approach (first 40 seconds), circumnavigation of the 
polyhedral object with view fixation, and homing in for docking (last 20 seconds) 
[Wuensche 1986]

time in seconds

In road traffic, similar but – due to rounded corners and unknown dimensions of 
cars – more complicated situations occur for changing the aspect conditions of an-
other vehicle. Of course, looking straight from behind, the length of the vehicle 
body cannot be determined; looking straight from the side, body width is non-
observable. For aspect conditions in between, the size of the body diagonal can be 
estimated rather well, while width and length separately are rather unstable due to 
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poor visibility of features on the rounded edges and corners of the body inside the 
outer contour [Schmid 1995]. This means that both shape parameters to be estimated 
and promising features for recognition and tracking have to be selected in depend-
ence on the aspect conditions. 

8.4.2 Monitoring Residues 

A very powerful tool for hypothesis checking in the 4-D approach consists of 
watching and judging residues of predicted features. If no features corresponding 
to predicted ones can be found, apparently the hypothesis is no good. Since it is 
normal that a certain percentage of predicted features cannot be found, the number 
of features tried should be two to three times the minimum number required for 
complete state estimation. More features make the measurement and interpretation 
process more robust, in general.  

If the percentage of features not found (or found with too large prediction er-
rors) rises above a certain threshold value (e.g., 30%), the hypothesis should be ad-
justed or dropped. The big advantage of an early jump to an object hypothesis is 
the fact that now there are many more features available for testing the correctness. 
Early starts with several (the most likely) different hypotheses, usually, will lead to 
earlier success in finding a fitting one than by trying to accumulate confidence 
through elaborate feature combinations (danger of combinatorial explosion). 

8.5 Road Elements To Be Initialized 

In the long run, road recognition systems do not have to recognize just the road 
surface, possibly with lanes, but a much larger diversity of objects forming the in-
frastructure of different types of roads (see Table 8.2 below). 

Lane markings do not just define the lanes for driving. Information about ma-
neuvering allowed or forbidden is also given by the type of marking: Solid mark-
ings indicate that this line is not to be crossed by vehicles in normal situations; in 
case of a failure, these lines may be crossed, e.g., for parking the vehicle on the 
road shoulder. Dashed markings allow lane changes in both directions. A solid and 
a dashed line beside each other indicate that crossing this marking is allowed only 
from the dashed side while forbidden from the solid side. Two solid lines beside 
each other should never be crossed. In some countries, these lines may be painted 
in yellow color regularly while in others yellow colors are spared for construction 
sites.

Within lanes, arrows may be painted on the surface indicating the allowed driv-
ing directions for vehicles in the lane [Baghdassarian et al. 1994]. Other more com-
plex markings on roads can be found when the number of lanes changes, either 
upward or downward; typical examples are exits or entries on high-speed roads or 
turnoffs to the opposite direction of driving (left in right-hand traffic and vice
versa).
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Vertical poles at regular spacing along the road (25 or 50 m), sometimes with 
reflecting glass inserts, are supposed to mark the road when the surface is covered 
with snow, dirt, or leaves in the fall. The reflecting glass may have different colors 
(e.g., in Austria) or shapes (in Germany) to allow easier discrimination of left and 
right road boundaries further away. Availability of this background knowledge in 
vision systems makes road recognition easier. 

Guide rails along the road also help affirming a road hypothesis. They have nice 
features, usually, with elongated horizontal edges and homogeneous areas (bands 
of similar color or texture) in between. Since they stand up about a half meter 
above the road surface and at a certain distance to the side, they are separated from 
the road surface by irregular texture from vegetation, usually. At sharper bends in 
the road, especially at the end of a straight high-speed section, often red and white 
arrow heads are painted onto their surface, signaling the driver to slow down. 
When no guide rails are there, special signs at the usual location of guide rails with 
arrows in the direction of the upcoming curve, or triangular traffic signs with bent 
arrows in elevated positions usual for traffic signs may be found for alerting the 
driver. Machine vision allows autonomous vehicles to take advantage of all this in-
formation, put up initially for the human driver, without additional cost. 

Table 8.2. Objects of road infrastructure to be recognized on or in the vicinity of a road 

Name of object 
(class)

Location rela-
tive to road 

Characteristic shape 
(2-D, 3-D

Colors

Road markings On the surface Lines (0.1 to 0.5 m wide; solid, 
dashed - single or in pairs, rec-

tangles, arrows  

Chite, yellow 

Vertical poles Beside road Round, triangular cylinders 
(spacing every 25 or 50 m) 

Black, white or-
ange

Traffic regula-
tion signs 

Beside or 
above

Round, triangular, square, rec-
tangular, octagonal 

White, red and 
black, blue 

 Arrows  On guide 
rails, posts 

Solid arrows, diagonal and 
cross-diagonal stripes 

White and red, 
black

Traffic lights Beside or 
above

Round, rectangles 
(with bars and arrows) 

Red, yellow, 
green

Signs for 
navigation

Beside or 
above

Large rectangular White, blue, green 

Signs for city 
limits 

Beside Large rectangular (some 
with black diagonal bar) 

Yellow, black, 
white

Signs for con-
struction sites 

On, beside or 
above

Round, triangular, rectangular 
with diagonal stripes 

Yellow, black, red 

Guide rails Above and 
beside road  

Curved steel bands Metal, white and 
red

Reflecting nails On surface Shallow rounded pyramid Yellow, red 
Tar patches On surface Any  Black 
Turnoff lane At either side Widening lane with arrow White, yellow 
Road fork Splitting road Y-shape Different shades 

or textures 

Traffic sign recognition has been studied for a long time by several groups, e.g.,
[Estable et al. 1994; Priese et al. 1995; Ritter 1997]. The special challenge is, on one 
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hand, separating these traffic signs from other postings, and on the other, recogniz-
ing the signs under partial occlusion (from branches in summer and snow in win-
ter). Recognition of traffic and navigational signs will not be followed here since it 
can be decoupled from road recognition proper. What cannot be decoupled from 
normal road recognition is detecting “reflecting nails” in the road surface and rec-
ognizing that certain patches in the road surface with different visual appearance 
are nonetheless smooth surfaces, and it does no harm driving over them. Stereovi-
sion or other range sensing devices will have advantages in these cases. 

On the contrary, driving on poorly kept roads requires recognizing potholes and 
avoiding them. This is one of the most difficult tasks similar to driving cross-
country. On unmarked roads of low order with almost no restrictions on road cur-
vature and surface quality, visual road (track) recognition of autonomous vehicles 
has barely been touched. Mastering this challenge will be required for serious mili-
tary and agricultural applications. 

8.6 Exploiting the Idea of Gestalt 

Studies of the nature of human perception support the conclusion that perception is 
not just to reflect the world in a simple manner. Perceived size is not the same as 
physical size, perceived brightness is not the same as physical intensity, perceived 
velocity is not physical velocity, and so on for many other perceptual attributes. 
Moreover, the perception of composite stimuli often elicits interpretations which 
are not present when the components are perceived separately. Or in other words, 
“The whole is different from the sum of its parts”. The gestalt laws deal with this 
aspect in greater detail. Some remarks on history: 

Ernst Mach (1838–1916) introduced the concepts of space forms and time

forms.  We see a square as a square, whether it is large or small, red or blue, in out-
line or as textured region. This is space form. Likewise, we hear a melody as rec-
ognizable, even if we alter the key in such a way that none of the notes are the 
same. Motion processes are recognized by just looking at dots on the joints of ar-
ticulated bodies, everything else being dark [Johansson 1973].

Christian von Ehrenfels (1859–1932) is the actual originator of the term gestalt

as the gestalt psychologists were to use it. In 1890, he wrote a book On Gestalt 
Qualities. One of his students was Max Wertheimer to whom Gestalt Psychology

is largely attributed. 
Wolfgang Köhler (1887–1967) received his PhD in 1908 from the University of 

Berlin. He then became an assistant at the Psychological Institute in Frankfurt, 
where he met and worked with Max Wertheimer. In 1922, he became the chair and 
director of the psychology lab at the University of Berlin, where he stayed until 
1935. During that time, in 1929, he wrote Gestalt Psychology. The original obser-
vation was Wertheimer’s, when he noted that we perceive motion where there is 
nothing more than a rapid sequence of individual sensory events. This is what he 
saw in a toy stroboscope he bought by chance at a train station and what he saw in 
his laboratory when he experimented with lights flashing in rapid succession (like 
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fancy neon signs in advertising that seem to move). The effect is called the phi
phenomenon, and it is actually the basic principle of motion pictures!  

If we see what is not there, what is it that we are seeing? One could call it an il-
lusion, but it is not a hallucination. Wertheimer explained that we are seeing an ef-
fect of the whole event, not contained in the sum of the parts. We see a coursing 
string of lights, even though only one light lights up at a time, because the whole 
event contains relationships among the individual lights that we experience as well. 
This is exploited in modern traffic at construction sites to vividly convey the (un-
expected) trajectory to be driven. 

In addition, say the gestalt psychologists, we are built to experience the struc-
tured whole as well as the individual sensations. And not only do we have the abil-
ity to do so, we have a strong tendency to do so. We even add structure to events 
which do not have gestalt structural qualities.  

In perception, there are many organizing principles called gestalt laws. The 
most general version is called the law of Praegnanz. It is supposed to suggest being 
pregnant with meaning. This law says that we are innately driven to experience 
things in as good a gestalt as possible. “Good” can mean many things here, such as 
regular, orderly, simplicity, symmetry, and so on, which then refer to specific ge-
stalt laws.

 For example, a set of dots outlining the shape of an object is likely to be per-
ceived as the object, not as a set of dots. We tend to complete the figure, make it 
the way it ‘should’ be, and finish it in the context of the domain perceived. Typical 
in road scenes is the recognition of triangular or circular traffic signs even though 
parts of them are obscured by leaves from trees or by snow sticking to them. 

Gestalt psychology made important contributions to the study of visual percep-
tion and problem solving. The approach of gestalt psychology has been extended to 
research in areas such as thinking, memory, and the nature of aesthetics. The Ge-
stalt approach emphasizes that we perceive objects as well-organized patterns 
rather than an aggregation of separate parts. According to this approach, when we 
open our eyes, we do not see fractional particles in disorder. Instead, we notice lar-
ger areas with defined shapes and patterns. The "whole" that we see is something 
that is more structured and cohesive than a group of separate particles. That is to 
say, humans tend to make an early jump to object hypotheses when they see parts 
fitting that hypothesis. 

In visual perception, a simple notion would be that to perceive is only to mirror 
the objects in the world such that the physical properties of these objects are re-
flected in the mind. But is this really the case? Do we “measure” the scene we 
watch? The following examples show that perception is different from this simple 
notion and that it is more constructive. The nature of perception fits more with the 
notion to provide a useful description of objects in the outside world instead of be-
ing an accurate mirror image of the physical world. This description has to repre-
sent features that are relevant to our behavior.

The focal point of gestalt theory is the idea of "grouping", or how humans tend 
to interpret a visual field or problem in a certain way. The main factors that deter-
mine grouping are  

proximity - how elements tend to be grouped together depending on their spatial 
closeness;  
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similarity - items that are similar in some way tend to be grouped together;  
closure - items are grouped together if they tend to complete a shape or pattern;  
simplicity - organization into figures according to symmetry, regularity, and 
smoothness.  

In psychology, these factors are called the laws of grouping in the context of 
perception. Gestalt grouping laws do not seem to act independently. Instead, they 
appear to influence each other, so that the final perception is a combination of the 
entire gestalt grouping laws acting together. Gestalt theory applies to all aspects of 
human learning, although it applies most directly to perception and problem-
solving. 

8.6.1 The Extended Gestalt Idea for Dynamic Machine Vision  

Not only is spatial appearance of importance but also temporal gestalt (patterns 
over time, oscillations, optical flow): Objects are perceived within an environment 
according to all of their elements taken together as a global construct. This gestalt 
or “whole form” approach has tried to isolate principles of perception: seemingly 
innate mental laws that determine the way in which objects are perceived.  

This capability of humans, in general, has been exploited in designing roads and 
their infrastructure for humans steering vehicles. 

Road curvature is recognized from smooth bending of the “pencil tip”, also over 
time, as when a road appears in video sequences taken by a camera in a vehicle 
guided along the road. The steering angle needed to stay at the center of the lane 
(road) is directly proportional to curvature; steering rate is thus linked to speed 
driven (see Equations 3.10/3.11). However, continuously seeing the road is not 
necessary for perceiving a smoothly curved road. When snow covers both road and 
shoulders and there is no vertical surface profile perpendicular to the road 
(everything is entirely flat so that there are no surface cues for recognizing the 
road), humans are, nonetheless, able to perceive a smoothly curved road from poles 
regularly spaced along the side of the road. Introduced standards of spacing are 25 
m (on state roads) or every 50 m (on freeways designed for higher speeds). While 
driving continuously at constant speed, each pole generates a smoothly curved tra-
jectory in the image; the totality of impressions from all poles seen thus induces in 
the human observer the percept of the smoothly curved road. Technical systems 
can duplicate this capability by application of sampled data theory in connection 
with a proper road model, which is standard state of the art.  

Similarly, guide rails or trees along the road can serve the same purpose. Guide 
rails usually are elevated above the ground (~ 0.5 m) and allow recognizing curve 
initiation at long distances, especially when marked with arrowheads (usually 
black or red and white); while driving in a curve, the arrowheads give a nice (opti-
cal) feature flow field which the unstructured continuous guide rail is not able to 
provide.  

In Gestalt psychology, the mechanism behind these types of percepts is labeled 
Principle of Totality. This is to say that conscious experience must be considered 
globally (by taking into account all the physical and mental aspects of the 
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perceiving individual simultaneously) because the nature of the mind demands that 
each component be considered as part of a system of dynamic relationships in a 
task context. This is sometimes called the Phenomenon; in experimental analysis, 
in relation to the Totality Principle, any psychological research should take 
phenomena as a starting point and not be solely focused on sensory qualities.  

In terms of the 4-D approach to dynamic machine vision, this means that early 
jumps to higher level hypotheses for perception may be enlightening, shedding 
new light (richer empirical background knowledge) for solving the vision task 
based on impoverished (by perspective mapping) image data. 

8.6.1.1 Spatial Components: Shape Characteristics 

The semantics of perception are components not directly derived from bottom-up 
signal processing; they originate from internal top-down association of relational 
structures with derived image structures. Most reliable structures are least varying 
based on a wealth of experience. It is claimed that 3-D space in connection with 
central projection has to offer many advantages over 2-D image space with respect 
to least variations (idealized as “invariance”) in the real world. This is the reason 
why in the 4-D approach all internal representations are done in 3-D space directly 
(beside continuous temporal embedding to be discussed later). From a collection of 
features in the image plane, an immediate jump is made to an object hypothesis in 
3-D space for a physical object observed under certain spatial aspect conditions 
with the imaging process governed by straight light ray propagation. This may in-
clude mirroring.  

Note that in this approach, the (invariant) 3-D shape always has to be associated 
with the actual aspect conditions to arrive at its visual appearance; because of the 
inertia of objects, these objects tend to move smoothly. Knowing 3-D shape and 
motion continuity eliminates so called catastrophic events when in 2-D projection 
entire faces appear or disappear from frame to frame. 

From the task context under scrutiny, usually, there follows a strong reduction 
in meaningful hypotheses for objects under certain aspect conditions from a given 
collection of features observed. In order not to be too abstract, the example of 
scene interpretation in road traffic will be discussed. Even here, it makes a large 
difference whether one looks at and talks about freeway traffic, cross-country traf-
fic or an urban scene with many different traffic participants likely to appear. As 
usual in the interpretation of real world dynamic scenes, two different modes of 
operation can be distinguished: (1) The initial orientation phase, where the system 
has to recognize the situation it is in (discussed here) and (2) the continuous track-
ing and control phase, where the system can exploit knowledge on temporal proc-
esses for single objects to constrain the range of interpretations by prediction-error 
feedback (4-D part proper to be discussed later). 

Certain Gestalt laws have been formulated by psychologists since humans can-
not but perceive groups of features in a preferred way: The law of proximity states 
that objects near each other tend to be seen as a unit. A useful example in road 
marking is the following: Parallel, tightly spaced double lines, one solid and the 
other broken, are a single perceptual unit indicating that crossing this line is al-
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lowed only from the side of the broken line and not from the other. Two solid lines 
mean that crossing is never allowed, not even in critical situations. 

The law of closure says that, if something is missing in an otherwise complete 
figure, we will tend to add it.  A circle or a rectangle, for example, with small parts 
of their edges missing, will still be seen as a circle or a rectangle, maybe described 
by the words “drawn with interrupted lines”; if these lines are interrupted regularly, 
a specification such as “dashed” or “dash-dotted” is immediately understood in a 
conversation between individuals if they have the geometric concept of circle or 
rectangle at their disposal.  For the outer rec-
tangle in Figure 8.5, the gap at the lower left 
corner will be “closed” (maybe with a foot-
note like “one corner open”.  

The law of similarity says that we will 
tend to group similar items together, to see 
them as forming a gestalt, within a larger 
form. An example in road traffic may be rec-
ognizing wheels and vehicle bodies. Recog-
nizing the separate subparts may be ambigu-
ous. When they are assembled in standard 
form, tapping knowledge about form and 
function can help finding the correct hypotheses more easily. An idealized example 
is given in Figure 8.6. Covering up the rest of the figure except the upper left part 
(a), the graph could be read as the digit zero or the letter ‘o’ written in a special 
form for usage in posters. If the additional hint is given that the figure shows a 3-D 
body, most of us (with a multitude of wheeled vehicles around in everyday life) 
would tend to see an axially symmetrical ring (tube for a wheel?) under oblique 
viewing conditions; whether it is seen from the left or from the right side cannot be 
decided from the simple graphic display.  

Figure 8.5. The law of closure in 
Gestalt psychology for completing 
basic shapes (under perturbations?) 

(d)(c)(a)

(b) (e)

Part (b) shows two such objects side by side; they are perceived as separate 
units. Only when in part (c) a very simple box-like objects is added, covering most 

Figure 8.6. Percepts in road traffic: (a) An elliptically shaped, ring-like figure (could be 
an axially symmetrical tube for tires under an oblique angle, seen either from the left or 
the right). (b) A pair of shapes like (a) (see text); (c) adding a simple vehicle body ob-
scuring most of the three wheels, the arrangement of (a) and (b) turns into the percept of 
a wheeled vehicle clearly seen from the rear left side (or the front right side!). (d) and 
(e), adding minor details to (a) resolves ambiguity by spatial interpretation: d) is a twin-
wheel seen from the rear left while (e) is viewed from the rear right. [There is more 
background knowledge available affirming the interpretations in (c) to (e), see text.] 
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of the three objects arranged as in parts a) and b), the percept immediately is that of 
a cart seen from above, the left and the rear. The visible parts of the formerly sepa-
rate three objects now fit the two hypotheses of a vehicle with four wheels, seen ei-
ther (1) from the rear left or (2) from the front right; one wheel is self-occluded. In 
case (1) it is the front right wheel, while in case (2) it is the rear right one. There is 
no doubt that the wheels are both seen from the same side; this is due to the inter-
pretation derived from the rectangular box. In parts d) and e) of the figure, the ob-
ject from (a) has been supplemented with a differently looking surface representing 
the contact area of the wheel to the ground. From this additional cue it is apparent 
that the “tires” in (d) are seen from the rear left, while the one in (e) is seen from 
the rear right (or vice versa, depending on the direction of travelling that is needed 
for disambiguation). The twin-tires in (d) immediately induce the percept of a truck 
since cars do not have this arrangement of wheels, in general.  

The object on the upper surface of the vehicle body is also hypothesized as a 
wheel in the perception process because it fits reasonably to the other wheels (size 
and appearance). If not mounted on an axle, the pose shown is the most stable one 
for isolated wheels. As a spare part, it also fits the functional aspect of standard us-
age. Quite contrary, the ellipses seen on the rear (front) side of the vehicle will not 
be perceived as a wheel by humans, normally; at best, it is painted there for what-
ever reason. Note that except size, color, and pose it is identical to the leftmost 
wheel of the vehicle seen only partially (the contact area of the tire to the ground is 
not shown in both cases); nonetheless, the human percept is unambiguous. It is this 
rich background of knowledge on form and function of objects that allows intelli-
gent systems easy visual perception. 

Next, there is the law of symmetry. We tend to perceive objects as symmetrical 
in 3-D space even though they appear asymmetrical in perspective projection. 
Other vehicles tend to be seen as symmetrical since we are biased by previous ex-
perience; only when seen straight from the back or the front are they close to sym-
metrical, usually. Traffic signs of any shape (rectangular, circular, and triangular) 
are perceived as symmetrical under any aspect conditions; knowledge about per-
spective distortion forces us to infer the aspect 
conditions from the distortions actually seen. 

The law of good continuation states that objects 
arranged in either a straight line or a smooth curve 
tend to be seen as a unit. In Figure 8.7, we distin-
guish two lines, one from A to B and another from 
C to D, even though this graphic could represent 
another set of lines, one from A to D and the other 
from C to B. Nevertheless, we are more likely to 
identify line A to B, which has better continuation 
than the line from A to D, which has an obvious 
discontinuity in direction at the corner. If the con-
text in which this arrangement appeared would 
have been objects with corners of similar appear-
ance, continuity over time could invoke the other 
interpretation as more likely. Bias from context is 
known to have considerable influence. 

A

B

C

D

Figure 8.7. The law of good

continuation tends to favor 
‘two lines crossing’ as per-
cept (A-B crossing C-D) and 
not two corners touching 
each other (AD touches BC) 
or (AC touches BD) 
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The idea behind these examples, and much of the gestalt explanation of things, 
is that the world of our experiencing is meaningfully organized, to one degree or 
another; we receive a better payoff taking these (assumed) facts into account. 

The gestalt effect refers to the form–forming capability of our senses, 
particularly with respect to the visual recognition of figures and whole forms 
instead of just a collection of simple lines and curves. Key properties of gestalt 
systems are emergence, reification, multistability, and invariance. 

Emergence: Some parts are seen only after the 
whole has been hypothesized. Reification is the 
constructive or generative aspect of perception, by 
which the experienced percept contains more 
explicit spatial information than the sensory 
stimulus on which it is based. For instance, based on 
the fact that straight lines can be fit between the 
centers of three black circles, the human observer 
will see a (“Kaniza”) triangle in Figure 8.8, although 
no triangle has actually been drawn. 

We have noticed our vehicle perception system in 
a highway scene overlooking two vehicles driving 
side by side in front at almost constant speed, but 
claiming a vehicle (for several cycles) in the space 
between the vehicles; only after several cycles has 
this misinterpretation been resolved by the system 
through newly hypothesized vehicles at the correct location without intervention of 
an operator.  

Figure 8.8. The percept of 
a white triangle, based on 
an obscuration hypothesis 
for three separate dark cir-
cular disks in triangular ar-
rangement

Multi-stability (or Multi-stable perception) is the tendency of ambiguous 
perceptual experiences to pop back and forth unstably between two or more 
alternative interpretations. This is seen for example in the well-known Necker cube

shown in Figure 8.9. It is even claimed that one cannot suppress this alternation by 
conscious attention [Pöppel et al. 1991]; this 
indicates that hypothesis generation is not fully 
dependent on one’s will.  

This phenomenon of multiple interpretations 
may not only happen in pictorial (snapshot) image 
interpretation as shown, but also in image se-
quences with moving light dots. As psychologists 
have shown, individuals tend to interpret some of 
these sequences differently, depending on the 
context discussed previously or on the personal 
background of experience. A difficult problem 
arises in interpreting a snapshot from an action by 
just one single frame; the actual pose may occur 
in several different action patterns. It is again 
likely to find the correct interpretation only by re-

ferring to the context which may be inferred from some other components of the 
image or which has to be known from a different source; this problem is often en-

Figure 8.9. The Necker cube 
(wire frame) showing two 
stable 3-D interpretations: Ei-
ther from top right above or 
from left below the cube.
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countered in interpreting pieces of art. Sometimes this type of ambiguity is intro-
duced purposely to stimulate discussion.  

Invariance is the property of perception whereby simple geometric objects are 
recognized independently of rotation, translation, and scale, as well as several other 
variations such as elastic deformations, different lighting, and different component 
features. For example, all wheels are immediately recognized as having the same 
basic shape. They are recognized despite perspective and elastic deformations as 
well as partial occlusion (see Figure 8.4). 

Emergence, reification, multistability, and invariance are not separable modules 
to be modeled individually, but they are different aspects of a single unified 
dynamic mechanism. These examples show that image interpretation often needs 
embedding in a temporal and situational framework to yield unique results. For 
machine vision, the 4-D approach is capable of providing this background in a 
natural way. 

8.6.1.2 Temporal Components, Process Characteristics 

The law of common fate states that when objects or groups of features move in the 
same direction, we tend to see them as a unit. This is the most common reason for 
hypothesizing other vehicles or moving subjects in traffic. Biological subjects us-
ing legs for locomotion have swinging leg (and possibly arm) movements super-
imposed on body motion. The location of joints and their motion is characteristic 
of the type of living being. Humans moving their arms, possibly with objects in 
their hands, can be part of organized traffic signaling in unusual traffic situations. 

Depth separation for traffic signs located in front of background texture has al-
ready been mentioned. Vehicles oscillating with decreasing amplitude after a per-
turbation in pitch or bank angle generate typical percepts of temporal gestalt: Os-
cillation frequency and damping ratio.  

Blinking lights, when one-sided, signal the intention for lane change or turnoff 
of a vehicle, or when both-sided, signal “danger”; blinking lights can only be rec-
ognized after a few cycles as “blinking.” These are percepts of relevance for deci-
sion–making in traffic. Another use of blinking lights, but now sequentially of 
many properly spaced ones on a curved line, can be found at construction sites; the 
consecutive flashing of the next light in the row induces in the observer the percept 
of an object moving on the curve. This vividly tells the driver the type of steering 
he has to do (curvature  steering angle) to follow the trajectory indicated. 

The phenomenon of multiple possibilities for interpretation may not only hap-
pen in pictorial (snapshot) image interpretation but also in image sequences with 
moving light dots. As psychologists have shown, individuals tend to interpret some 
of these sequences differently, depending on the context discussed previously or on 
the personal background of experience [Johannson 1973]. These examples show that 
image interpretation often needs embedding in a temporal and situational frame-
work to yield unique results. 

A ball bouncing on the road with children playing at the side allows deriving 
certain expectations which will require attention focusing for the vision system 
(ball and/or children). The trajectory of the ball, when up in the air, is expected to 
be close to a sequence of parabolic arcs with decreasing energy due to friction and 
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with points of reflection at approximately the same angle relative to the surface 
normal each time it hits the ground or another surface. Since humans have been 
playing with the ball, usually, it can be expected that someone may run after the 
ball or that another may come from a different direction to catch the ball. 

A bicyclist in right-hand traffic lifting his left arm (or his right arm in left-hand 
traffic) can be expected to cross the lane driven to turn off to the side of the arm 
lifted. The temporal sequence of arm lifting and lane crossing can be considered a 
temporal gestalt, which in common language we call a maneuver.

If the process observed involves a subject capable of (intelligent) motion control 
aimed at some goal, similar predictions for motion processes may be possible by 
recognizing stereotypical control sequences, as for lane change maneuvers in road 
vehicle guidance. This gestalt idea extended into the temporal domain for typical 
motion processes again allows us to concentrate limited computing power onto im-
age regions and to confine parameter variations of the feature extraction methods 
to ranges likely to yield most of the information necessary for efficient process 
tracking and control. Seen from this point of view, the knowledge of real-world 
spatiotemporal processes represented in dynamic models is a powerful means for 
reducing the possible danger of combinatorial explosion in feature aggregation 
compared to ignoring these temporal constraints.  

Audio signals of certain temporal shapes may indicate an ambulance or a fire 
brigade vehicle approaching. 

8.6.2 Traffic Circle as an Example of Gestalt Perception  

Nowadays, a spreading example in traffic of spatiotemporal gestalt perception is 
the “roundabout” (traffic circle, in some countries exploited to the extreme as a 
circular area with a central dot marked by color). It consists of an extended, very 
often partially obscured circular area distorted by perspective projection. Several 
roads are linked to the outer lane of the circle, in some regions yielding a star-like 
appearance when seen in a bird’s-eye view, due to the density of connections. 
Vehicles in the circle usually have the right-of-way; their direction signaling by 
blinking eases the decision of entering vehicles whether or not to proceed. Viewing 
patterns and the capability of developing proper expectations for the behavior of 
other vehicles (maybe not according to the valid rules) are important for handling 
this complex traffic situation. 

Here an aphorism attributed to the painter Salvador Dali may be most valid: 

“To see is to think”.

8.7 Default Procedure for Objects of Unknown Classes 

When none of the established object or subject classes is able to provide a suffi-
ciently good model for a detected object since too many predicted features have 
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not been found, residues are too large, or no convergence occurred, the following 
approach for learning more about the new object is advisable: 

1. Reduce the object to the center of gravity of jointly moving features and a sim-
ple shape encasing all these features. 

2. The envelope for the shape may be composed of a few simple shapes connected 
together if the area in the initial convex hull not containing features is too large 
(e.g., choose a long cylinder of small diameter on a larger rectangular body, 
etc.).

3. Assume a standard Newtonian model for motion (see Section 2.2.5.3, translation 
separate from rotation); shrinking or expansion of the feature set may allow 
depth (range) perception.  

4. A rotational model is meaningful only if collections of features can be recog-
nized moving relative to each other on top of translation. Appearance and disap-
pearance of certain features on different sides give an indication of the direction 
of rotation of the body carrying the features. 

5. Store statistics on motion behavior and other parameters observed in a list of 
“observed but unknown” objects (extended data logging in a DOB). 

This may be the starting point for learning about hitherto unknown objects or subjects. 
Recognizing this type of object/subject at a later time and continuing collection of 
information is the next step toward intelligence. In the long run, expanding the 
knowledge base by posing meaningful questions to humans about this object/subject, 
maybe together with a replay of the corresponding video sequences stored, may lead 
to real machine intelligence. This, however, seems to be off in the far future right now. 



9  Recursive Estimation of Road Parameters and 
Ego State while Cruising 

The goal of real-time vision for road vehicles is to understand the environment 
with as little time delay as possible including all relevant processes that are hap-
pening there. For vehicles with large extensions in space (roughly 2 × 2 × 5 m for a 
van, ~ 1.8 × 1.5 × 4.5 m for an average car, and much larger dimensions for a 
truck), there are different points of reference for certain subtasks. Cameras and 
their projection centers should be elevated as high up as possible above the ground 
for best imaging conditions of the surface they are driving on. There has to be a 
coordinate system associated with visual mapping with its origin at the projection 
center of the camera. On the other hand, motion perception and control are most 
easily described for the center of gravity (cg); therefore, the relevant coordinate 
system has its origin at the cg. In a closed-loop application like autonomous vehi-
cle guidance by vision, these different reference systems have to be described in a 
coherent way and set into relation. 

The very general approach presented in Chapter 2 via homogeneous coordinates 
will be used in later sections for more complex vision systems. Here, to demon-
strate the early beginnings, the model according to Figure 9.1 is used.  
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zBR

imaging plane B

l = 0road boundary left

road boundary right yc

ygR
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L

vehicle  center of gravity

VR

KV
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yV

b / 2

b / 2

road center

yR

yBR

c.g.

e

Figure 9.1. More detailed process model than Figure 7.5 for visual road vehicle guid-
ance. Top: Bird’s-eye view with variables and parameters for lateral guidance; bottom: 
Vertical mapping conditions for vision and center of gravity
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Table 9.1. Collection of results for recursive estimation of road parameters from Chapter 7: 
Dynamic models (to be turned into discrete form for sampled data videointerpretation), 
measurement model, and relations for determining initial values for starting recursive esti-
mation.

Simple model for lateral dynamics of a road vehicle [Section 7.1.2, Equation 7.4] 
(bicycle model, planar, no pitch and bank angle changes, linear system): 

12
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12 ltf
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Spread-out clothoid model [Section 7.1.4]: 
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Measurement model for lane (simple road) recognition [Section 7.1.4.3]: 
Edge features (left and right) as a function of (road or lane) width b,  
lateral offset yV, camera heading  = V + KV, C0hm and C1hm.

,

3
2

0 1
2 6l r

b
V i i

Bi y V VK hm hm

i

y L L
y f k C C

L
, (7.37) 

tan tanBi z K i K i Kz f k H L L H K . (7.40) 

From initialization procedure [Section 8.2]: 
Camera gaze direction relative to vanishing point for road nearby  
(tangents to borderlines intersecting at Li = ):

V VK= ( ) /B iy L f ky . (8.5) 

For Li =  [vanishing point P(yBP , zBP)] 

tan / ,        or      arctan( / ).K BP z K BP zz f k z f k   (7.18) 

Look-ahead ranges: 

1 tan  /( ) /( ) tani K K Bi z Bi z KL H z f k z f k . (8.8) 

Lane (road) width: . (7.38) ( ) /(
r li i Bi Bi yb L y y f k )

Lateral offset yV from lane center: ( ) /( )V i BP BLCi yy L y y f k . (7.39) 

Road curvature parameter:
22 / 2 /( )ohm Cf f CBf f yC y L y L f k . (8.9) 

They were shown sufficient for VaMoRs in the late 1980s. The differential geome-
try model for road representation of Section 7.4.3 now allows interpretation of the 
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spatial continuity conditions for the road as temporal continuity constraints in the 
form of difference equations for the estimation process while the vehicle moves 
along the road.  

By this choice, the task of recursive estimation of road parameters and relative 
egostate can be transformed into a conventional online estimation task with two 
cooperating dynamic submodels. A simple set of equations for planar, undisturbed 
motion has been given in Chapter 7. In Chapter 8, the initialization problem has 
been discussed. The results for all elements needed for starting recursive estimation 
are collected in Table 9.1.  

Numerical values for the example in Figure 7.14 extracted from image data have 
been given in Table 8.1. The steering angle  and vehicle speed V are taken from 
conventional measurements assumed to be correct. The slip angle  cannot be de-
termined from single image interpretation and is initialized with zero. An alterna-
tive would be to resort to the very simple dynamic model of third order in Figure 
7.3a and determine the idealized value for infinite tire stiffness, as indicated in the 
lower feed-forward loop of the system: 

2 = [1/2- (2 ) ] .ltfV a k (9.1) 

The estimation process with all these models is the subject of the next section. 

9.1 Planar Roads with Minor Perturbations in Pitch 

When the ground is planar and the vehicle hardly pitches up during acceleration or 
pitches down during braking (deceleration), there is no need to explicitly consider 
the pitching motion of the vehicle (damped second-order oscillations in the vertical 
plane) since the measurement process is affected only a little. However, in the real 
world, there almost always are pitch effects on various timescales involved. Accel-
eration and decelerations, usually, do affect the pitch angle time history, but also 
the consumption of fuel leads to (very slow) pitch angle changes. Loading condi-
tions, of course, also have an effect on pitch angle as well as uneven surfaces or a 
flat tire. So, there is no way around taking the pitch degree of freedom into account 
for precise practical applications. 

However, the basic properties of vision as a perception process based on coop-
erating spatiotemporal models can be shown for a simple example most easily: 
(almost) unperturbed planar environments. The influence of adding other effects 
incrementally can be understood much more readily once the basic understanding 
of recursive estimation for vision has been developed. 

9.1.1 Discrete Models 

The dynamic models described in previous sections and summarized in Table 9.1 
(page 254) have been given in the form of differential equations describing con-
straints for the further evolution of state variables. They represent in a very effi-
cient way general knowledge about the world as an evolving process that we want 



256      9  Recursive Estimation of Road Parameters and Ego State while Cruising 

to use to understand the actual environment observed under noisy conditions and 
for decision-making in vehicle guidance.  
First, the dynamic model has to be adapted to sampled data measurement by trans-
forming it into a state transition matrix A and the control input matrix B (see Equa-
tion 3.7) for the specific cycle time used in imaging (40 ms for CCIR and 33 1/3 
for NTSC). Since speed V enters the elemental expressions at several places, the 
elements of the transition and control input matrices have to be computed anew 
every cycle. To reduce computing time, the terms have been evaluated analytically 
via Laplace transform (see Appendix B.1) and can be computed efficiently at run-
time [Mysliwetz 1990].

The measurement model is given by Equations 7.20 and 7.37: 

tan tanBi z K i K i Kz f k H L L H K , (9.2) 

,

2
2

0 1
2 6l r

b
V i i

Bi y V VK hm hm

i

y L L
y f k C C

L
, (9.3) 

with K as angle of the optical axis relative to the horizontal. None of the lateral 
state variables enters the first equation. However, if there are changes in K due to 
vehicle pitch, with image row zBi evaluated kept constant, the look-ahead distance 
Li will change. Since Li enters the imaging model for lateral state variables (lower 
equation), these lateral measurement values yBi will be affected by changes in pitch 
angle, especially the lateral offset and the curvature parameters. The same is true 
for the road parameter ‘lane or road width b’ at certain look-ahead ranges Li (Equa-
tion 7.38):  

( ) /( )
r li i Bi Bi yb L y y f k . (9.4) 

Since b depends on the difference of two measurements in the same row, it 
scales linearly with look-ahead range Li and all other sensitivities cancel out. Note 
however, that according to Table 7.1, the effects of changes in the look-ahead 
range due to pitch are small in the near range and large further away. 

Introducing b as an additional state variable (constant parameter with db/dt = 0) 
the state vector to be estimated by visual observation can be written 

V 0hm 1hm 1h  ( , , , , ,  ,  ,  )Tx y C C C b . (9.5) 

Note that these variables are those we humans consider the most compact set to 
describ a given simple situation in a road scene. Derivation of control terms for 
guiding the vehicle efficiently on the road also uses exactly these variables; they 
constitute the set of variables that by multiplication with the feedback gain matrix 
yields optimal control for linear systems. There simply is no more efficient cycle 
for perception and action in closed-loop form. 

9.1.2 Elements of the Jacobian Matrix 

These elements are the most important parameters from which the 4-D approach to 
dynamic vision gains its superiority over other methods in computational vision. 
The prediction component integrates temporal aspects through continuity condi-
tions of the physical process into 3-D spatial interpretation, including sudden 
changes in one’s own control behavior. The first-order relationship between states 
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and parameters included as augmented states of the model, on one hand, and fea-
ture positions in the image, on the other, contains rich information for scene under-
standing according to the model instantiated; this relationship is represented by the 
elements of the Jacobian matrix (partial derivatives). Note that depth is part of the 
measurement model through the look-ahead ranges Li which are geared to image 
rows by Equation 9.2 for given pitch angle and camera elevation.  

Thus, measuring in image stripes around certain rows directly yields road pa-
rameters in coordinates of 3-D space. Since the vehicle moves through this space 
and knows about the shift in location from measurements of odometry and steering 
angle, motion stereointerpretation results as a byproduct. 

The ith row of the Jacobian matrix C (valid for the ith measurement value yBi)
then has the elements  

2

*

1 1
/ | 0 | 0 | 1 | | | | 0 |

2 6 2
i i

i Bi x y

i i

L L
c y x f k                

L L
, (9.6) 

where +1/(2Li) is valid for edges on the right-hand and –1/(2Li) for those on the 
left-hand border of the lane or road. The zeros indicate that the measurements do 
not depend on the steering and the slip angle as well as on the driving term C1 for 
curvature changes. Lateral offset yV (fourth component of the state vector) and lane 
or road width b (last component) go with 1/(range Li) indicating that measurements 

nearby are best suited for their update; curvature parameters go with range (C1

even with range squared) telling us that measurements far away are best suited for 
iteration of these terms. 

With no perturbations in pitch assumed, the Jacobian elements regarding zBi are 
all zero. (The small perturbations in pitch actually occurring are reflected into the 
noise term of the measurement process by increasing the variance for measuring 
lateral positions of edges.) 

9.1.3 Data Fusion by Recursive Estimation 

The matrix R (see Section 8.3.1) is assumed to be diagonal; this means that the in-
dividual measurements are considered independent, which of course is not exactly 
true but has turned out sufficiently good for real-time vision:  

B1 B2 B3 B8

2 2 2 2 2
y y y yDiag( ) Diag( , , , ,......., )iR r . (9.7) 

Standard deviations (and variances) for different measurement processes have 
been discussed briefly in Section 8.3.1. The type of measurement does not show up 
in Equation 9.7; here, only the first component is a conventionally measured quan-
tity; all others come from image processing with complex computations for inter-
pretation. What finally matters in trusting these measurements in EKF processing 
is just their standard deviation. (For highly dynamic processes, the delay time in-
curred in processing may also play a role; this will be discussed later when inertial 
and visual data have to be fused for large perturbations from a rough surface; angu-
lar motion then leads to motion blur in vision.) 

For high-quality lane markings and stabilized gaze in pitch, much smaller values 
are more reasonable than the value of standard deviation  = 2.24 pixels selected 
here for tolerating small pitch angle variations not modeled. This is acceptable only 
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for these short look-ahead ranges on smooth roads; for the influence of larger pitch 
angle perturbations, see Section 9.3. 

If conventional measurements can yield precise data with little noise for some 
state variables, these variables should not be determined from vision; a typical ex-
ample is measurement of one’s own speed (e.g., by optical flow) when odometry 
and solid ground contact are available. Visual interpretation typically has a few 
tenths of a second delay time, while conventional measurements are close to in-
stantaneous.  

9.1.4 Experimental Results 

The stabilizing and smoothing effects of recursive estimation including feature se-
lection in the case of rather noisy and ambivalent measurements, as in the lower 
right window of Figure 7.17 marked as a white square, can be shown by looking at 
some details of the time history of the feature data and of the estimated states in 
Figure 9.2.  

Figure 9.2. From noise corrupted 
measurements of edge feature po-
sitions (dots, top graph (a) via 
pre-selection through expecta-
tions from the process model 
[dots in graph (b) = solid curve in 
(a)] to symbolic representations 
through high-level percepts: (c) 
road curvature at cg location of 
vehicle C0hm and smoothed (aver-
aged) derivative term C1hm (mul-
tiplied by a factor of 10 for better 
visibility). (d) Lateral offset yV of 
vehicle from lane center; lane = 
right half part of road surface (no 
lane markings except a tar-filled 
gap between plates of concrete 
forming the road surface). Note 
that errors were less than 25 cm.  
(e) Heading angle V of vehicle 
relative to road tangent direction 
(| V| < 1°). The bottom graph (f) 
shows the control input generated 
in the closed-loop action–
perception cycle: a turn to the 
right with a turn radius R of about 
160 m (= 1/C0hm) and a steering 
angle between ~1 and 1.7°, start-
ing at ~ 40 m distance traveled. 
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The measured pixel positions of edge candidates vary by ~ 16 (in extreme cases 
up to almost 30) pixels (dotted curve in top part). Up to four edge candidates per 
window are considered; only the one fitting the predicted location best is selected 
and fed into the recursive estimation process if it is within the expected range of 
tolerance (~ 3 ) given by the innovation variance according to the denominator in 
the second of Equations 6.37.  

The solid line in the top curve of Figure 9.2 represents the input into the recur-
sive estimation process [repeated as dotted line in (b)-part of the figure]. The solid 
line there shows the result of the smoothing process in the extended Kalman filter; 
this curve has some resemblance to the lateral offset time history yV in Figure 7.18, 
right (repeated here as Figure 9.2c–f for direct comparison with the original data). 
The dynamic model underlying the estimation process and the characteristics of the 
car by Ackermann–steering allow a least-squares error interpretation that distrib-
utes the measurement variations into combinations of road curvature changes (c), 
yaw angles relative to the road over time (e), and the lateral offset (d), based also 
on the steering rate output [= control time history (f)] in this closed-loop percep-
tion–action cycle. The finite nonzero value of the steering angle in the right-hand 
part of the bottom Figure 9.2f confirms that a curve is being driven. 

It would be very hard to derive this insight from temporal reasoning in the 
quasi-static approaches initially favored by the AI community in the 1980s. In the 
next two sections, this approach will be extended to driving on roads in hilly ter-
rain, exploiting the full 4-D capabilities, and to driving on uneven ground with 
stronger perturbations in pitch. 

9.2 Hilly Terrain, 3-D Road Recognition 

The basic appearance of vertically curved 
straight roads in images differs from flat 
ones in that both boundary lines at con-
stant road width lie either below (for 
downward curvature) or above (for up-
ward curvature) the typical triangle for 
planar roads (see Figure 9.3).  

From Figure 9.4, it can be seen that 
upward vertical curvature shortens the 
look-ahead range for the same image line 
and camera angle from L0 down to Lcv,
depending on the elevation of the curved 
ground above the tangent plane at the location of the vehicle (flat ground).  

Figure 9.3. Basic appearance of roads 
with vertical curvature: Left: Curved 
downward (negative); right: curved 
upward (positive curvature) 

Similar to the initial model for horizontal curvature, assuming constant vertical 
curvature C0v , driven by a noise term on its derivative C1v as a model, has turned 
out to allow sufficiently good road perception, usually: 

0 1

0 1 1

,

/ ,         / ( ).
v v v

v v v cv

C C C l

dC dl C dC dl n l
(9.8) 
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Figure 9.4. Definition of terms for vertical curvature analysis (vertical cut seen from 
right-hand side). Note that positive pitch angle  and positive curvature Cv are upward, 
but positive z is downward. 

9.2.1 Superposition of Differential Geometry Models 

The success in handling vertical curvature independent of the horizontal is due to 
the fact that both are dependent on arc length in this differential geometry descrip-
tion. Vertical curvature always takes place in a plane orthogonal to the horizontal 
one. Thus, the vertical plane valid in Equation 9.8 is not constant but changing 
with the tangent to the curve projected into the horizontal plane. Arc length is 
measured on the spatial curve. However, because of the small slope angles on 
normal roads, the cosine is approximated by 1, and arc length becomes thus identi-
cal to the horizontal one. Lateral inclination of the road surface is neglected here, 
so that this model will not be sufficient for driving in mountainous areas with (usu-
ally inclined) switchback curves (also called ‘hair pine’ curves). Road surface tor-
sion with small inclination angles has been included in some trials, but the im-
provements turned out to be hardly worth the effort. 

A new phenomenon occurs for strong downward curvature (see Figure 9.5) of 
the road. The actual look-ahead range is now larger than the corresponding planar 
one L0. At the point where the road surface becomes tangential to the vision ray (at 
Lcv in the figure), self-occlusion starts for all regions of the road further away. Note 
that this look-ahead range for self-occlusion is not well defined because of the tan-
gency condition; small changes in surface inclination may lead to large changes in 
look-ahead distance. For this reason, the model will not be applied to image re-
gions close to the cusp which is usually very visible as a horizontal edge (e.g., Fig-
ure 9.3).  

image plane

cg
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9.2.2 Vertical Mapping Geometry 

According to Figure 9.4, vertical mapping geometry is determined mainly by the 
camera elevation HK above the local tangential plane, the radius of curvature Rv = 
1/C0v and the pitch angle K. The longitudinal axis of the vehicle is assumed to be 
always tangential to the road at the vehicle cg, which means that high-frequency 
pitch disturbances are neglected. This has proven realistic for stationary driving 
states on ‘standard,’ i.e., smoothly curved and well-kept roads.  

The additional terms used in the vertical mapping geometry are collected in the 
following list: 

kz camera scaling factor, vertical (pixels/mm) 
HK  elevation of the camera above the tangential plane at cg (m)  

K camera pitch angle relative to vehicle pitch axis (rad)  
zB vertical image coordinate (pixels) B

L0  look-ahead distance for planar case (m) 
Lcv  look-ahead distance with vertical curvature (m) 
Hcv  elevation change due to vertical curvature (m) 
C0v average vertical curvature of road (1/m) 
C1v average vertical curvature rate of road (1/m2).

To each scan line at row zBi in the image, there corresponds a pitch angle relative to 
the local tangential plane of

arctan[ /( )]
Biz K Biz f kz

6.

.

z

K

. (9.9) 

From this angle, the planar look-ahead distance determined by zBi is obtained as

0 / tan( ).
Bii K zL H (9.10) 

Analogous to Equation 7.3, the elevation change due to the vertical curvature 
terms at the distance Lcv + d relative to the vehicle cg (see Figure 9.4) is  

2 3
0 1( ) / 2 ( ) /cv v cv v cvH C L d C L d (9.11) 

From Figure 9.4, the following relationship can be read immediately: 
tan( )

Bicv K cv zH H L . (9.12) 

Combining this with Equation 9.11 yields the following third-order polynomial for 
determining the look-ahead distance Lcv with vertical curvature included: 

3 2
3 2 1 0 0,cv cv cva L a L a L a

where 

3 1 1 0 1

2 3
2 0 1 0 0 1

/ 6; ( / 2) tan( );

( ) / 2; / 2 / 6)

Biv v v

v v v v

a C                        a d C d C

a C d C       a d C d C H

(9.13) 

 This equation is solved numerically via Newton iteration with the nominal cur-
vature parameters of the last cycle; taking the solution of the previous iteration or 
the planar solution according to Equation 9.10 as a starting value, the iteration 
typically converges in two or three steps, which means only small computational 
expense. Neglecting the a3 term in Equation 9.13 or the influence of C1v on the 
look-ahead range entirely would lead to a second-order equation that is easily solv-
able analytically. Disregarding the C1v term altogether resulted in errors in the 
look-ahead range when entering a segment with a change in vertical curvature and 
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led to wrong predictions in road width. The lateral tracking behavior of the feature 
extraction windows with respect to changes in road width resulting from vertical 
curvature could be improved considerably by explicitly taking the C1v term into ac-
count (see below). (There is, of course, an analytical solution available for a third-
order equation; however, the iteration is more efficient computationally since there 
is little change over time from k to k + 1. In addition, this avoids the need for se-
lecting one out of three solutions of the third-order equation). 

Beyond a certain combination of look-ahead distance and negative (downward) 
vertical curvature, it may happen that the road image is self-occluded. Proceeding 
from near to far, this means that the image row zBi chosen for evaluation should no 
longer decrease with range (lie above the previous nearer one) but start increasing 

again; there is no ex-
tractable road boundary 
element above the tan-
gent line to the cusp of 
the road (shown by the 
xK vector in Figure 9.5). 
The curvature for the 
limiting case, in which 
the ray through zBi is 
tangential to the road 
surface at that distance 
(and beyond which self-
occlusion occurs), can 

be determined approximately by the second-order polynomial which results from 
neglecting the C1v influence as mentioned above. In addition, neglecting the d·C0v

terms, the approximate solution for Lcv becomes 

xK

xV

xg

Lcv

L0

HK

0
2

0

tan( )
1 1 2

tan ( )
Bi

Bi

z K v
cv

v z

H C
L

C
. (9.14) 

The limiting tangent for maximal negative curvature is reached when the radi-
cand becomes zero, yielding  

2
0 ,lim ( ) tan ( ) /(2 ).

i Biv B z KC z H (9.15) 

Because of the neglected terms, a small “safety margin” C may be added. If 
the actually estimated vertical curvature C0v is smaller than the limiting case corre-
sponding to Equation 9.15 (including the safety margin of, say, C = 0.0005), no 
look-ahead distance will be computed, and the corresponding features will be 
eliminated from the measurement vector. 

9.2.3 The Overall 3-D Perception Model for Roads  

The dynamic models for vehicle motion (Equation 7.4) and for horizontal curva-
ture perception (Equations 7.36 and 7.37) remain unchanged except that in the lat-
ter the look-ahead distance Lcv is now determined from Equation 9.13 which in-
cludes the effects of the best estimates of vertical curvature parameters. 

Figure 9.5. Negative vertical curvature analysis including 
cusp at Lcv with self-occlusion; magnitude of Lcv is ill de-
fined due to the tangency condition of the mapping ray 
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With dCv/dt = dCv/dl·dl/dt and Equation 9.8, the following additional dynamic 
model for the development of vertical curvature over time is obtained, which is 
completely separate from the other two: 

0 0

11 1

00
.

0 0
v v

c vv v

C CVd

nC Cdt
 (9.16) 

There are now four state variables for the vehicle, three for the horizontal, and 
two for the vertical curvature parameters, in total nine without the road width, 
which is assumed to be constant here, for simplicity. Allowing arbitrary changes of 
road width and vertical curvature may lead to observability problems to be dis-
cussed later. The state vector for 3-D road observation is 

3 0 1 1 0 1( , , , | , , | , )
t D

T

rel V hm hm h v vx y C C C C C , (9.17) 

which together with Equations 7.4 and 7.34 (see top of table 9.1 or Equation B.1 in 
Appendix B) yields the overall dynamic model with a 9 × 9 matrix F
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0 0 0 0 0 0 0 0

0 0 0 0 0 3 / 3 / 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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,
(9.18) 

(a)

the input vector g, and the noise vector n(t); 

1 1

g ( ,0,0,0,| 0,0,0,| 0,0)

n ( ) [0,0,0,0,  0,0, ( ), | 0, ( )].

T

T

c h c v

k

t n t
(b) 

This analogue dynamic model, 
,

, 3 , 3t D t D

has to be transformed into a discrete model with the proper sampling period T ac-
cording to the video standard used (see Equation B.4). All coefficients of the A ma-
trix given there remain the same; dropping road width b again, two rows and col-
umns have to be added now with zero entries in the first seven places of rows and 
columns, since vertical curvature does not affect the other state components. The 
2×2 matrix in the lower right corner has a ‘1’ on the main diagonal, a ‘0’ in the 
lower left corner, and the coefficient a

x ( ) x ( ) g ( ) n( ) (9.18) 

89 is just a89 = VT.

9.2.4 Experimental Results 

The spatiotemporal perception process based on two superimposed differential ge-
ometry models for 3-D roads has been tested in two steps: First, in a simulation 
loop where the correct results are precisely known, and second, on real roads with 
the test vehicle VaMoRs. These tests were so successful that vertical curvature es-
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timation in the meantime has become a standard component for all road vehicles. 
Especially for longer look-ahead ranges, it has proven very beneficial with respect 
to robustness of perception. 

9.2.4.1 Simulation Results for 3-D Roads 

Figures 9.6 and 9.7 show results from a hardware-in-the-loop simulation with 
video-projected computer-generated imagery interpreted with the advanced first-

generation real-time vision system 
BVV2 of UniBwM [Graefe 1984]. This 
setup has the advantage over field 
tests that the solution is known to high 
accuracy beforehand. Figure 9.6 is a 
perspective display of the tested road 
segment with both horizontal and ver-
tical curvature. Figure 9.7 shows the 
corresponding curvatures recovered 
by the estimation process described 
(solid) as compared with those used 
for image generation (dashed).

Rh = 1/C0h

Rv = 1/C0v

xg

zg yg

Figure 9.7 (top) displays the good correspondence between the horizontal curva-
ture components (C0hm , as input: dashed, and as recovered: solid line); the dashed 
polygon for simulation contains four clothoid elements and two circular arcs with a 
radius of 200 m (C0h = ± 1/200 = ± 0.005). Even though the C1hm curve is relatively 

smooth and differs 
strongly from the series of 
step functions as deriva-
tives of the dashed polygon 
(not shown), C0h and C0hm

as integrals are close to-
gether. 

Under cooperative con-
ditions in the simulation 
loop, vertical radii of cur-
vature of ~ 1000 m have 
been recognized reliably 
with a look-ahead range of 
~ 20 m. The relatively 
strong deviation at 360 m 
in Figure 9.7 bottom is due 
to a pole close to the road 
(with very high contrast), 
which has been mistaken 
as part of the road bound-
ary. The system recovered 
from this misinterpretation 
all on its own when the 

(b)

Figure 9.7. Simulation results comparing input model 
(dashed) with curvatures recovered from real-time vi-
sion (solid lines). Top: horizontal curvature parameters; 
bottom: Vertical curvature. 

Figure 9.6. Simulated spatial road segment 
with 3-D horizontal and vertical curvature 
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pole was approached; the local fit with high vertical curvature became increasingly 
contradictory to new measurement data of road boundary candidates in the far 
look-ahead range. The parameter C0v then converged back to the value known to be 
correct. Since this approach is often questioned as to whether it yields good results 
under stronger perturbations and noise conditions, a few remarks on this point 
seem in order. It is readily understood that the interpretation is most reliable when 
it is concerned with regions close to the vehicle for several reasons:  
1. The resolution in the image is very high; therefore, there are many pixels per 

unit area in the real world from which to extract information; this allows achiev-
ing relatively high estimation accuracies for lane (road) width and lateral posi-
tion of the camera on the road. 

2. The elevation above the road surface is well known, and the vehicle is assumed 
to remain in contact with the road surface due to Earth gravity; because of sur-
face roughness or acceleration/deceleration, there may be a pitching motion, 
whose influence on feature position in the image is, again, smallest nearby. 
Therefore, predictions through the dynamic model are trusted most in those re-
gions of the image corresponding to a region spatially close to the camera in the 
real world; measured features at positions outside the estimated 3  range from 
the predicted value are discarded (  is the standard deviation determinable from 
the covariance matrix, which in turn is a by-product of recursive estimation). 

3. Features actually close to the vehicle have been observed over some period of 
time while the vehicle moved through its look-ahead range; this range has been 
increased with experience and time up to 40 to 70 m. For a speed of 30 m/s (108 
km/h), this corresponds to about 2 s or 50 frames traveling time (at 40 ms inter-
pretation cycle time). If there are some problems with data interpretation in the 
far range, the vehicle will have slowed down, yielding more time (number of 
frames) for analysis when the trouble area is approached. 

4. The gestalt idea of a low curvature road under perspective projection, and the 
ego- motion (under normal driving conditions, no skidding) in combination with 
the dynamic model for the vehicle including control input yield strong expecta-
tions that allow selection of those feature combinations that best fit the generic 
road (lane) model, even if their correlation value from oriented edge templates is 
only locally but not globally maximal in the confined search space. In situations 
like that shown in Figure 8.2, this is more the rule than the exception. 

In the general case of varying road width, an essential gestalt parameter is left open 
and has to be determined in addition to the other ones from the same measure-
ments; in this case, the discriminative power of the method is much reduced. It is 
easy to imagine that any image from road boundaries of a hilly road can also be 
generated by a flat road of varying width (at least in theory and for one snapshot). 
Taking temporal invariance of road shape into account and making reasonable as-
sumptions about road width variations, this problem also is resolvable, usually, at 
least for the region nearby, when it has been under observation for some time (i.e.,
due to further extended look-ahead ranges). Due to limitations in image resolution 
at a far look-ahead distance and in computing power available, this problem had 
not been tackled initially; it will be discussed in connection with pitch perturba-
tions in Section 9.3. 
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Note that the only low-level image operations used are correlations with local 
edge templates of various orientations (covering the full circle at discrete values. 
e.g., every 11°). Therefore, there is no problem of prespecifying other feature op-
erators. Those to be applied are selected by the higher system levels depending on 
the context. To exploit continuity conditions of real-world roads, sequences of fea-
ture candidates to be measured in the image are defined from near to far (bottom 
up in the image plane), taking conditions for adjacency and neighboring orientation 
into account. 

9.2.4.2 Real-world Experiments 

Figure 9.8 shows a narrow, sealed rural road with a cusp in a light curve to the left 
followed by an extended positively curved section that has been interpreted while 
driving on it with VaMoRs (bottom part). For vertical curvature estimation, road 
width is assumed to be constant. Ill-defined or irregular road boundaries as well as 
vehicle oscillations in pitch affect the estimation quality correspondingly.  

C0V m 1

0    Distance 100     meters 200

(b)(a)

0.002
0.0

0.002
0.004

Figure 9.8. Differential geometry parameter estimation for 3-D rural road while driving on 
it with VaMoRs in the late 1980s: Top left: Superimposed horizontal and vertical curvature 
derived from recursive estimation. Top right: Estimated vertical curvature C0v (1/m) over 
run length in meters. Bottom (a): View from position A marked in top left-hand subfigure; 
(b) view from position B (bottom of the dip, after [Mysliwetz 1990]). 

These effects are considered the main causes for the fluctuations in the estimates 
of the vertical curvature in the top right part. To improve these results in the 
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framework of the 4-D approach geared to dynamic models of physical objects for 
the representation of knowledge about the world it is felt that the pitching motion 
of the vehicle has to be taken into account. There are several ways of doing this: 
1. The viewing direction of the camera may be stabilized by inertial angular rate 

feedback. This well-known method has the advantage of reducing motion blur. 
There are, however, drift problems if there is no position feedback. Therefore, 
the feedback of easily discriminated visual features yields nice complementary 
signals for object fixation. 

2. The motion in pitch of the egovehicle is internally represented by another dy-
namic model of second order around the pitch axis. Tracking horizontal features 
far away (like the horizon) vertically allows estimating pitch rate and angular 
position of the vehicle recursively by prediction-error feedback. Again, knowl-
edge about the dynamics in the pitch degree of freedom of the massive inertial 
body is exploited for measurement interpretation. Picking features near the lon-
gitudinal axis of the body at large ranges, so that the heave component (in the z-
direction) is hardly affected, decouples this motion component from other ones. 

3. Purely visual fixation (image registration from frame to frame) may be imple-
mented. This approach has been developed by Franke (1992). 

The first two have been investigated by members of our group; they will be dis-
cussed in the next section. The third one has been studied elsewhere, e.g., [Bergen 
1990, Pele, Rom 1990].

Tests to recognize vertical curvatures of unsealed roads with jagged boundaries 
of grass spreading onto the road failed with only intensity edges as features and 
with small look-ahead ranges. This was one of the reasons to proceed toward multi 
focal camera sets and area-based features. 

Conclusion: The 4-D approach to real-time 3-D visual scene understanding allows 
spatial interpretation of both horizontally and vertically curved roads while driving. 
By exploiting recursive estimation techniques that have been well developed in the 
engineering sciences, this can be achieved at a high evaluation rate of 25 Hz with a 
rather small set of conventional microprocessors. If road width is completely un-
constrained, ill-conditioned situations may occur. In the standard case of parallel 
road boundaries, even low curvatures may be recovered reliably with modest look-
ahead ranges. 
Adding temporal continuity to the spatial invariance of object shapes allows reduc-
ing image processing requirements by orders of magnitude. Taking physical ob-
jects as units for representing knowledge about the world results in a spatiotempo-
ral internal representation of situations in which the object state is continuously 
servoadapted according to the visual input, taking perspective projection and mo-
tion constraints into account for the changing aspect conditions. The object road is 
recognized and tracked reliably by exploiting the gestalt idea of feature grouping. 
Critical tests have to be performed to avoid “seeing what you want to see.” This 
problem is far from being solved; much more computing power is needed to handle 
more complex situations with several objects in the scene that introduce fast chang-
ing occlusions over time. 
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9.3 Perturbations in Pitch and Changing Lane Widths 

As mentioned in previous sections several times, knowledge of the actual camera 
pitch angle K(t) can improve the robustness of state estimation. The question in 
image interpretation is: What are well-suited cues for pitch angle estimation? For 
the special case of a completely flat road in a wide plane, a simple cue is the verti-
cal position of the horizon in the image zhor (in pixel units; see Sections 7.3.4 and 
9.2.2). Knowing the vertical calibration factor kz and the focal length f, one can 
calculate the camera pitch angle K according to Equation 7.18. The pitch angle K

is defined positive upward (Figure 9.4). 
In most real situations, however, the horizon is rarely visible. Frequently, there 

are obstacles occluding the horizon like forests, buildings, or mountains, and often 
the road is inclined, making it impossible to identify the horizon line. The only cue 
in the image that is always visible while driving is the road itself. Edges of dashed 
lane markings are good indicators for a pitch movement, if the speed of the vehicle 
is known. But unfortunately, a road sometimes has sections where both lane mark-
ers are solid lines. In this case, only then the mapped lane width bi at a certain ver-
tical scan line z is a measure for the pitch angle K, if the lane width b is known. 

9.3.1 Mapping of Lane Width and Pitch Angle 

In Figure 9.4, the relevant geometric variables for mapping a road into a camera 
with pitch angle K are illustrated. Since the magnitude of the pitch angle usually is 
less than 15°, the following approximations can be made: 

K K Ksin ;         cos 1. (9.19) 

As discussed in Section 9.2.2, the camera pitch angle K determines the look-
ahead distance Li on a flat road, when a fixed vertical scan line zi is considered; 
with Equation 9.19, the approximate relation is: 

z i K
i K

i z K

k f z
L H

z k f
. (9.20) 

This yields the following mapping of lane width blane (assumed constant) into 
the image lane width bi

.y lane i
i K

K z

k fb z
b

H k f
 (9.21) 

If only measurements in one image row per frame are taken, the influence of 
variations in pitch angle and of changing road width cannot be distinguished by 
measuring the mapped lane width. But, if more than one measurement bi is ob-
tained from measuring in different image rows zi, the effects can be separated al-
ready in a single static image, as can be seen from Figure 9.9 (left). 

The relations are valid only for a flat road without any vertical curvature. Both 
pitch and elevation (heave) do change the road image nearby; the elevation effect 
vanishes with look-ahead range, while the pitch effect is independent of range. In 
the presence of vertical road curvature, the look-ahead distance Li has to be modi-
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fied according to the clothoid 
model, as discussed in Section 9.2. 
Figure 9.3 had shown that curva-
ture effects leave the image of the 
road nearby unchanged; deviations 
show up only at larger look-ahead 
distances.

Usually, the camera is not 
mounted at the center of gravity of 
the vehicle (cg), but at some point 
shifted from the cg by a vector x; in vehicles with both cg and camera laterally in 
the vertical center plane of the vehicle, only the longitudinal shift d and elevation 

h are nonzero. The axis of vehicle pitch movements goes through the cg. There-
fore, a body pitch angle yields not only the same shift for the camera pitch angle, 
but also a new height (elevation) above the ground HK. This vertical shift is only a 
few centimeters and will be neglected here. 

Figure 9.9. Effects of camera pitch angle 
(left) and elevation above ground (right) on 
the image of a straight road in a plane 

From Figure 9.9, it can be seen that the vertical coordinate zhor of the vanishing 
point depends only on the camera pitch angle K (Figure 9.9, left), and not on cam-
era elevation or lane width (right). Accordingly, the pitch angle K can be com-
puted directly from the image row with zBi = 0 (optical axis) and the location of the 
vanishing point. Once the pitch angle is known, the width of the lane blane can be 
computed by Equation 9.21. This approach can be applied to a single image, which 
makes it suitable for initialization (see Chapter 8). 

In curves, the road appears to widen when looking at a constant image line (zBi-
coordinate). This effect is reduced when the camera pan angle K is turned in the 
direction of the curve. The widening effect without camera pan adjustment depends 
on the heading (azimuth) angle (l) of the road. The real lane width is smaller than 
the measured one in a single image line approximately by a factor cos( ). Assum-
ing that the road follows a clothoid model, the heading angle  of the road as the 
first integral of the curvature function is given by Equation 7.2. The effect of  is 
reduced by the camera pan angle K (see Figure 9.10). Thus, the entire set of meas-
urement equations for lane width estimation is (for each window pair and row zi)

[ cos( )i y i Ky b k f L ] . (9.22) 

Imaging plane

Figure 9.10. Mapping with active control gaze of road width for a curved road  

K

Road heading

Direction of 

imaging plane

Cross section

Difference between road and camera heading ( – K)
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9.3.2 Ambiguity of Road Width in 3-D Interpretation 

Problems in interpreting an image occur when the image shows a lane or road with 
width changing over a section of run 
length. Figure 9.11 illustrates this problem 
for an ideally simple case with two pa-
rameter sets for the road in front of or be-
hind the (unrealistically harsh) transition 
at line Lch.

Horizon line       V = vanishing point

This isolated (single) image is completely 
ambiguous: First it can be interpreted as a 
road of constant width with a downward 
slope in the near range (going downhill, 
since V’ lies below the vanishing point V 
on the horizon) switching to a flat horizon-
tal road at line Lch; second, it fits an inter-
pretation as a road in the horizontal plane, 
of which the near part has linearly de-
creasing width with change rate b1 accord-
ing to the model (b1 < 0) 

0 1b b b l . (9.23) 

Of course, an infinite number of interpretations with different combinations of 
values for slope  and change rate of width (b1) is possible. 

These ambiguities cannot be resolved from one single image. However, the in-
terpretation of sequences of images allows separating these effects. This can most 
easily be achieved if dynamic models are used for the estimation of these mapping 
effects. Consider hypothesis A in Figure 9.12 top right, solid lines (two inclined 
planes meeting at distance Lch). If the road width is assumed constant as b , for a 
given elevation HK of the camera above the ground, the road width in the near 
range is given by the vanishing point V’ and the slopes of the left and right bound-
ary lines. 

Figure 9.11. Ambiguous road image 
if slope and road width are open pa-
rameters; a change in slope at line Lch

has the same effect as a change in the 
parameter linear change rate b1 of 
road width (in each single image)  

Line of

slope change
Lch

Or: change of 
road width

change-

rate
b1

V’

Figure 9.12. Two specific interpretations of the image in Figure 9.11: Hypothesis A: 
Constant lane width b and jump in slope angle  at L2 = Lch (top right). Hypothesis B: 
Flat ground and linearly decreasing road width for l < L2: Parameter b1 = (b(L2)
b(L1))/(L2 L1) [dashed road boundary bottom right]
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Line of
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However, the elevation of the camera above the plane of the far road depends 
linearly on the distance to the line of discontinuity according to the slope angle be-
tween the two planes; when line Lch is approached, the borderlines of the far road 
have to widen toward the dash-dotted lines indicated in Figure 9.12, left. Right on 
line Lch, the vehicle will experience a step input in pitch angle (smoothed by the 
axle distance), shifting the vanishing point from V’ to V. Thus, the distance be-
tween V’ and V corresponds to the slope angle  of the near plane if the far plane is 
horizontal. So the conclusion has to be the following.  

The discontinuity in slope angles of the borderlines in the image of a road of 
constant width can stem only from an inclined near plane if the borderlines in the 
near range stay constant while the angle between the borderlines in the far range 
increases during the approach to Lch. These lines move toward those formed by the 
two rays from the vanishing point V through the points of intersection of the bor-
derlines in the near range with the image boundaries. This optical flow component 
thus tells us something about the shape of the vertical terrain. In the 4-D approach, 
this shows up in the elements of the Jacobian matrix and allows hypothesis testing 
while driving. 

Hypothesis B, assuming one single plane for both road sections, yields constant 
borderlines in the far range (beyond Lch) and shrinking lane widths at a constant 
look-ahead range Li while driving (lower right, solid lines in Figure 9.12). Here, 
the (lateral) optical flow of the borderlines occurs in the near range (shrinking to-
ward the prolongation of the far-range boundary lines; see look-ahead distance L1);
again, this hypothesis is reflected in the values of the Jacobian matrix elements for 
given look-ahead ranges. These partial derivatives are the basis for monocular mo-
tion stereo in the 4-D approach. 

The feedback of prediction errors in feature position from both the near and the 
far range thus allows adapting the hypotheses simultaneously. Since the effects are 
rather small and in real situations the geometry is much more involved with un-
known radii of curvature (both horizontal and vertical in the worst case), stable 
convergence can hardly be expected for all combinations. Luckily, with change 
rate constraints for curvature on standard high-speed roads, sufficiently correct 
shape recognition can be expected in most of these standard cases, even with pitch 
angle perturbations. Pitch perturbation shows up as a vertical shift of the constant 
road shape in the image. 

9.3.3 Dynamics of Pitch Movements: Damped Oscillations 

The suspension system of a vehicle in pitch can be approximated by the model of a 
one-dimensional damped harmonic oscillator, which is excited by perturbations 
(rough road or accelerations, decelerations). The differential equation for an oscil-
lating pitch angle v of the vehicle is 

,2
01/ ( )v v v n t (9.24) 

with  = relaxation time, 0 = characteristic frequency, and n(t) = perturbation 
(noise term). The parameters  and 0 can be derived from vehicle mass, its inertial 
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momentum around the y-axis, the axle distance, and suspension characteristics. 
The solution of the homogeneous part of the differential equation is: 

0

2 2

    ( ) exp( /(2 )) sin( ),

with    1/(4 )       (  > ½).

v vt t t
 (9.25) 

9.3.3.1 Offset-free Motion in Pitch 

Equation 9.24 is transformed into the standard form of a linear, second-order sys-

tem by introducing the additional state component vq . The transition to 

time-discrete form with cycle time T yields a set of two difference equations as 

motion constraints for the state vector x [ , ]
v

T

v q

1n

. This dynamic model repre-

sents knowledge about the pitching characteristics of the vehicle; in discrete form, 
it can be written as 

, 1 1 1 1 1x ( ) x b gk k k k k k kT u . (9.26) 

This model describes the unperturbed vehicle pitch angle v as an oscillation 
around zero. The control input u may come from acceleration or deceleration and 
acts on the pitching motion through the gain vector b, while noise (e.g., from rough 
ground) acts through the coefficient vector g; both may depend on speed V actually 
driven. 

The transition matrix  for the discrete second-order model in pitch with sam-
pling time T can be obtained by standard methods from Equation 9.24 as 
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,22

1
( ) exp( ) (cos sin ),

2 2
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( ) ,

1
( ) exp( ) (cos sin ).

2 2

T
T T

T
T T

T

T
T T

T

T

(9.27) 

Control input effects are not considered here; usually, an acceleration yields 
some pitch up response while downward pitching is typical of deceleration. The 
latter may be strong and amount to several degrees, depending on the softness of 
the suspension system. With vanishing control input, the pitch angle goes back to 
zero.

9.3.3.2 Constant or Slowly Varying Pitch Offset 

For cameras mounted directly on the vehicle body, the camera pitch angle K is the 
same as the vehicle pitch angle v described above, if the optical axis of the camera 
is aligned with the body axis. But mostly, the camera is mounted with a fixed pitch 
angle offset offs toward the ground. Therefore, the dynamic vehicle pitch angle v

can be written as 



9.3 Perturbations in Pitch and Changing Lane Widths      273 

.v K offs (9.28) 

Usually, this offset is constant and can be measured by calibration procedures 
in a well-defined environment. But it may happen that due to mechanical perturba-
tions the offset is shifted during operation. In this case, an incorrectly assumed off-
set value yields erroneous results for the estimated state variables q  and v. To 
achieve self-correction, the pitch offset from the horizontal reference is introduced 
as a new state variable and is also estimated in each cycle. The complete state vec-
tor for the pitch angle system then can be written as 

x [ , ,T ]K offsq . (9.29) 

If the vehicle pitch angle is not known, this formulation allows an even more 
versatile interpretation. Due to fuel consumption, the pitch angle of the vehicle 
may change slowly by a small amount. Similarly, shifting loads from front to rear 
or vice versa in the vehicle may also change the static equilibrium pitch angle. To 
separate the slowly varying (long-term) pitch offset from the dynamic pitching mo-
tion (usually in the range of about 1 Hz eigenfrequency), it is necessary to choose 
the process noise Q offs of this variable small compared to the process noise of K.
This method of estimating the camera pitch offset provides a further step toward a 
fully autonomous, self-gauging system. The system transition matrix  now has 
five more elements referring to the additional state variable offs:

,13 ,11 ,23 ,21

,31 ,32 ,33

( ) 1           ;      ( )

( ) ( ) 0   ;      ( ) 1.

T T

T T T

k

a n

(9.30) 

The full discrete model for motion in pitch with Equation 9.27 then has the form 

1,11 ,12 ,11

,21 ,22 ,21 2

1

1 0

0 0 1 0
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. (9.31) 

 The longitudinal acceleration/deceleration ax acts as excitation mainly on q  , 
but in the sampled data structure, due to integration over cycle time T, there is also 
a small effect on the pitch angle itself. The systems dynamics approach quite natu-
rally yields a better approximation here than quasi-steady AI approaches. The off-
set angle is driven by an appropriately chosen discrete noise term noffs(k).

9.3.4 Dynamic Model for Changes in Lane Width 

Usually, a road consists of long sections with constant lane width according to 
standard road design rules [RAS-L-1 1984]. Between these sections, there is a short 
section where the lane width changes from the initial to the final value. In this tran-
sition section, the dynamics of lane width can be modeled under the assumption of 
piecewise constant linear change along the run length l according to Equation 9.23, 
where b0 denotes the lane width at the point of observation (current position of the 
vehicle) and b1 the lane width change rate (db/dl).

A problem arises at the point of transition between sections of different values 
of b1, where a jump in b1 occurs. To obtain a robust model, the unsteady transitions 
between segments of b1 should be approximated by steady functions. Moreover, 
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the precise location where the lane width begins to change cannot be determined 
exactly from a single image. A possible way of approximation along the path simi-
lar to that for road curvature may be chosen (Section 7.4). For each moment, the 
real road curvature is approximated by a clothoid that yields the same lateral offset 
relative to the current vehicle position. 

This dynamic approach, when applied to lane width, leads to a straight line ap-
proximation for the lane markings at each moment. In sections of changing lane 
width, the lane markings are approximated by straight lines on each side of the lane 
that produce the same widening or tapering effect as the real lines. Furthermore, it 
must be assumed that within the local look-ahead distance L of the camera, only 
one change in lane width change rate b1 occurs. With be as the lane width at the end 
of the look-ahead distance L, this assumption leads to 

0 1e mb b L b m

l

m

, (9.32) 

where bom is the approximate lane width at the current vehicle location and b1m = 
dbom/dl the approximate linear change rate of the lane width within the look-ahead 
distance. Also, bom can be expressed as 

 , 0 0 1
0

il

m mb b b d (9.33) 

li denotes the distance covered after the b1-change began to appear within L; b0

is the lane width just before that moment. Thus, the lane width at the end of the 
look-ahead distance can be expressed as 

 . 0 1 1
0

il

e mb b b dl b L (9.34) 

On the other hand, the lane width at the end of L is given by the real lines for 
lane marking. Admitting one change of b0 within L results in 

0 11 12e ib b b L b l , (9.35) 

where b11, b12 are the change rates in lane width before and after the step jump, re-
spectively. Combining Equations 9.34 and 9.35 yields 

11 12 1 1
0

il

i mb L b l b dl b Lm . (9.36) 

Differentiating by dli and replacing d1i by V·dt leads to 

1
2 1 .m

m

db V V
b b

dt L L
(9.37) 

As stipulated above, b1m = db0m /dt. By replacing dl by V·dt this yields 

0 1/ .m mdb dt v b (9.38) 

Thus, the complete system of differential equations is 

0 1

1 12 1 .

m m

m m

b Vb

V V
b b b

L L

(9.39) 

The complete state vector using averaged values b0m, b1m can be written as  

0 1 12[ , , ]T

b m mx b b b . (9.40) 

The state variable b12 is not deterministic, as the change of lane width along the 
path is not predictable without prior knowledge of the overall road course. For the 

purpose of Kalman filtering, is assumed to have Gaussian noise characteristics 12b
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.12 ( )bb n t (9.41) 

Equations 9.39 and 9.41 constitute the third-order analogue model for observing 
lane width changes over time while driving at speed V.  For the discrete formula-
tion, the transition matrix B (T) has to be determined; it is the solution of the sys-

tem of homogenous differential equations for time step T. The result is as follows: 
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(9.42) 

The discrete dynamic model for lane or road width observation, which is com-
pletely separate from the other variables, finally is 
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. (9.43) 

9.3.5 Measurement Model Including Pitch Angle and Width Changes 

The dependence of look-ahead range L on pitch angle K (Equation 9.20) and the 
dependence of both curvature and lane (or road) width on look-ahead range L has 
to be captured in the measurement model if these variables have to be estimated. 
Therefore, Equations 9.22 and 9.23 have to be combined with Equation 9.20, fi-
nally yielding the mapping equation 

0
1 ( 1)

cos( )
y i i K

i K

K z z

k f b z z
y b

H k f k f
. (9.44) 

The elements of rows of the Jacobian matrix C corresponding to this measure-
ment equation for several image rows zi are obtained as partial derivatives with re-
spect to all state variables or parameters to be iterated. With the computing power 
available today, these terms are most easily obtained by numerical differencing of 
results with slightly perturbed variables and division by the perturbation applied. 
To obtain the width of the lane (or road) in the row direction from the video image, 
the horizontal positions yi of the right and left lane markings (boundary lines) in 
each row are subtracted from each other. 

9.4 Experimental Results 

Validation of the approach has been achieved in two steps: First, the quality of es-
timation was checked by simulations. Second, experimental results with real test 
vehicles in the real world have been performed and some are discussed here. 
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9.4.1 Simulations with Ground Truth Available 

In simulations, ground truth is known from simulation input; by varying noise pa-
rameters, some experience can be gained on convergence behavior and favorable 
parameter selection. 

9.4.1.1 Validation of Pitch Estimation 

Estimation of the pitch angle state vector has been validated by a simple test with 
simulated measurements based on damped oscillations: 

Damped negative sine wave, initial amplitude of K0 = 1°; 
undamped natural frequency of 1 Hz, that is,  0 = 2  = 6.28 rad/s; 
relaxation time  = 1 s (damping coefficient of  = 1/(2 ) = 0.5 s 1);
pitch offset offs = 5°.

(9.45) 

Random noise has been added to the simulated measurement values. The initial 
state vector for the estimation process has been chosen as zero in all components. 
The starting value for lane width was the same as the simulated one: 3.75 m and 
constant. In Figure 9.13, the estimated pitch angle (crosses) is compared to the 
simulated one (solid line). In addition, at each time frame, the vertical position of 
the vanishing point (‘horizon’) has been computed from the intersection of the bor-
derlines; for comparison, the pitch angle was extracted according to Equation 7.39. 
From the faint dotted graph in Figure 9.13, it can be seen clearly that this pitch an-
gle is much more noise-corrupted than the pitch angle estimated by EKF.  

The variance vector Q of the process has been set such that the estimated actual 
pitch angle K follows the real pitch movement quickly. On the other hand, pitch 

Figure 9.13. Estimation of pitch angle in simulation: Damped pitch oscillation (1 Hz, 
1°) and offset ( 5°). Convergence from offs = 0 occurred in ~ 4 s. 
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offset estimation from the wrong initial value converges much more slowly toward 
the real offset. This is based on the assumption that the offset, usually, is a slowly 
variable quantity or a constant after the camera has been mounted in a fixed pose 
(angle and position). However, a mechanical shock may also have perturbed the in-
tended viewing direction. Therefore, a compromise has to be found between a suf-
ficiently quick reaction of the filter and robustness to measurement noise. Of 
course, the filter can be tuned such that sudden jumps in offs can also be estimated, 
but then there will be a conflict with respect to which part of the measured discrep-
ancy should be assigned to which variable. Separating low- and high-frequency 
components is the most stable way to go: stepwise changes in pitch offset angle 
(when somebody inadvertently hits the camera mount) will be discovered in due 
time since the new orientation remains fixed again and will show up according to 
the time constant chosen for the low-frequency part of the estimation process. 

Figure 9.14 shows the pitch rate of the test run for motion estimation from a 
simulated damped oscillation with superimposed noise. The difference between the 
incorrectly assumed pitch offset (0°) and the real one ( 5°, see Figure 9.13) to-
gether with the increase in negative magnitude from prediction over one cycle time 
of 80 ms in the example (negative sine wave) first gives rise to positive pitch rates 
(crosses in Figure 9.14) according to the internal model with large positive predic-
tion errors in this variable. It can be seen that only after the estimated pitch offset 
approaches its real value (Figure 9.13, at ~ 1.5 s) the estimated pitch rate q (crosses 
in 9.14) comes closer to the simulated value (to the right of the dash-dotted line). 

During the initial transient phase of the filter, the estimated pitch rate should not 
be used for control pur-
poses. General good ad-
vice with respect to the 
measured pitch rate is to 
use inertial angular rate 
sensors which are inex-
pensive and yield good 
(high-frequency) results 
with almost no delay time; 
results from visual inter-
pretation, usually, have 
much larger time delays (2 
to 4 video cycles) in addi-
tion to the uncertainty 
from object hypotheses 
chosen. On the other hand, 
inertial data tend to drift 
slowly over time; this can 
be easily counteracted by 
joint visual/inertial inter-
pretation.

Figure 9.14. Damped pitch oscillation and initial tran-
sients from visual perception: it takes about 1½ seconds 
(about 20 recursive estimation cycles of 80 ms) until 
the perceived motion corresponds closely to the simu-
lated one (initial pitch rate estimated excluding offset 
angle  +10°/s) 

0 1 1.5 2     time/s 3

Estimated (+++) and simulated 

(solid curve) body pitch rate q in

radians per second 
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Figure 9.15. Simulation test for road width estimation: 
Imperfect software for lane width simulation generated 
small peaks and jumps (solid curve), which have not been 
removed on purpose to see the response of the estimation 
process (dotted curve). Nice smoothing and some over-
shoot occurred. 

9.4.1.2 Validation of Lane Width Estimation 

The dynamic system for 
lane width estimation 
has also been validated 
by simulation; Figure 
9.15 shows an example 
of an arbitrarily changed 
lane width from 4 m in 
both directions ( 5 % 
short perturbation and 
+11 % step input) with 
some disturbances added 
(solid line). Lag effects 
and dynamic overshoot 
are apparent (dotted line)
in acceptable limits; the 
high-frequency perturba-
tions are completely 
smoothed out. The abso-
lute error of the esti-
mated width (after tran-
sient decay) is only a 
few centimeters. 

run length in meters

b in

meters

9.4.2 Evaluation of Video Scenes 

The video scenes were taken from a CCD camera mounted behind the front win-
dow of test vehicle VaMP (sedan Mercedes 500 SEL). The data recorded on a 
VCR were played into the transputer image processing system in the laboratory for 
evaluation in real time. 

9.4.2.1 Results from Test Track  

Lane width on high-speed road section: Some video scenes were taken on the 
test track of UniBwM, the taxiway of the former airport Neubiberg, which is a 
straight concrete road 2 km long with standard boundary and lane markings for a 
German Autobahn; it includes sections with narrowing lane width. Figure 9.16 
shows the results of simultaneous estimation of pitch angle and lane width at the 
end of the test track, where the lane width changes first from 3.75 m to 3.5 m (at 
around 9 seconds on the timescale) and down to 3.2 m (at 23 seconds). The error of 
lane width estimation is less than 5 %. The estimated (negative) pitch angle shows 
a slight increase as the lane becomes smaller. This is due to deceleration with the 
vehicle slightly pitching down because the lane actually ends there. Figure 3.20 
visualizes the forces and moments acting that lead to the downward pitch in a 
brake maneuver; the induced damped small oscillations can be recognized in the 



9.4 Experimental Results      279 

estimated

Lane width as ordered for 
painting
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Smooth curve: Estimated pitch offset;

jagged curve: estimated high-frequency 
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Figure 9.16. Estimation results for lane width and pitch angle components: The pitch 
angle is split into a dynamic part (of approximately 1.4 Hz eigenfrequency) and a 
‘quasi-static offset’ part 

graph. Measuring deceleration directly by inertial sensors and feedback would im-
prove visual perception. 

Horizontal curvature on test course: Taking perturbations in pitch angle into ac-
count, good estimation results for curvature over arc length can be obtained. Figure 
9.17 shows, on the left side, the test course designed for developing and testing 
autonomous vehicles on the former airport Neubiberg. In the upper part, two circu-
lar arcs are directly adjoined to straight sections; this is the way road networks 
were built for horse carts. In the lower part, transient clothoid arcs as introduced 
for high-speed roads are implemented (dotted polygons). Here, curves are driven 
with constant steering rate. 

It can be seen that abrupt steps in designed curvature (top right) lead to oscilla-
tions. This is due to the fact that the vehicle cannot perform jumps in steering an-
gle, and that the harsh reaction in steering rate leads also to oscillations in roll and 
yaw of the autonomously controlled vehicle. The time delay in the visual control 
loop – from image taking to front wheel turn based on this information – was about 
a half second; this is similar to normal human performance. This closed-loop per-
ception-and-action cycle leads to almost undamped oscillations of small amplitude 
in the two curves; the average radii of curvature are slightly smaller than the design 
values of 50 and 40 m (curvatures are slightly higher). 

The trajectories perceived as really driven are the solid curves; it can be seen 
that these curves are closer to clothoids in the transition phases than to the ideal-
ized straight line to circular-arc junctions (step input for curvature). Due to the 
look-ahead range, curve steering is started ahead of the step input on the trajectory. 
Driving on the clothoid arcs (lower right), deviations between designed and actual 
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trajectories are smaller. There is a strange kink in the first down-going arc between 
R3 and R4 (dashed ellipse). To check its validity, this part has been analyzed espe-
cially carefully by driving in both directions. The kink turned out to be stable in in-
terpretation. Talking with the people who realized the lane markings, the following 
background was discovered: This clothoid arc had been painted starting from both 
sides. When the people approached each other, they noticed the discrepancy and 
realized a smooth transition by a short almost circular arc. This is exactly what the 
automatic vision system interpreted without knowing the background; it concluded 
that the radius is ~ 100 m (Ch = 0.01). 

R1 R2

R3

R4

R5

Test track
Neubiberg

(~ planar)
run length in meter

estimated

curvature

designed

curvature

designed

curvature

estimated

curvature

Ch / m-1

0.025

0.02

0

0.028

0.02

0.01

0

-0.01

-0.02

-0.025

Ch / m-1

Figure 9.17. Test track for autonomous driving at UniBwM Neubiberg, designed with 
different radii of curvature Ri, which are connected with and without clothoids (left: 
bird’s-eye view). The right-hand part shows the design parameters (dotted) and the re-
covered curvatures from vision with test vehicle VaMoRs. 

9.4.2.2 Results from Rides on Public Roads  

Inclusion of pitch angle estimation has led to an improvement in the robustness of 
the autonomous overall system, especially for driving at higher speeds with in-
creased look-ahead ranges. Monocular distance estimation to other vehicles ahead 
showed best performance increases due to more stable look-ahead range assign-
ment (see Table 7.1).  
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Figure 9.18 shows the results of pitch angle estimation from a ride on Autobahn 
A8 (Munich – Salzburg near the intersection Munich-South). Velocity was V = 120 
km/h, focal length used was f = 24 mm, and the farthest look-ahead range was Lmax

= 70 m. Pitch angle perturbations are in the range of ± 0.2°, and pitch rates are less 
than 1.5 °/s (top curve with large peaks). According to column 8 in Table 7.1, row 
2, a pitch angle change of 0.2° corresponds to a shift of 8 pixels for the test data 
with VaMP. At a look-ahead range of 60 m (row 5), the correction in look-ahead 
range for this pitch angle is 8 pixels · 1.2 m/pixel = 9.6 m, a change of 16%.  

Pitch rate q in °/s

Run length in meters on Autobahn

Figure 9.18. Pitch angle estimation (| |  0.2°) during a smooth Autobahn ride at V = 
120 km/h and look-ahead ranges up to 70 m; offs of camera estimated from local hori-
zontal as lower graph 

These numbers make immediately clear that even a small motion in pitch plays 
a role for large look-ahead ranges. As can be seen from Equation 9.44, the pitch 
angle enters into many elements of the Jacobian matrix and thus has an effect in in-
terpreting the measured image features and their contribution to state updates. Be-
cause of the low sensitivity for nearby regions, the effects on interpreting images of 
wide-angle cameras are small; considering these effects as noise and adjusting the 
Q elements correspondingly has worked well (Chapter 7). 

However, to interpret tele–images correctly, the pitch effects on the look-ahead 
range should be included in any case where even minor perturbations from surface 
roughness are present; a fraction of a degree in pitch cannot be neglected if precise 
results are looked for. Figure 9.19 shows a result which at first glance looks sur-
prising. Displayed are results for lateral state estimation, especially the heading an-
gle of the vehicle relative to the road, in real time from stored video sequences with 
(solid line) and without (dotted line) taking pitch effects into account for interpreta-
tion. The video data base thus was absolutely identical. During this test on the 
Autobahn, the pitch angle varied in the range | |  0.5° depending on the road sur-
face state.

If both lane markings are well visible, the effects of pitch changes cancel out; 
this is the case up to a run length of about 600 m. However, if lane markings are 
poorly detectable on one side and very visible on the other side, changes in pitch 
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angle have the edge features glide along the well visible borderline also in a lateral 
direction not counteracted by the features on the other side. This is partially inter-
preted as yaw motion. From 600 to 1200 m in Figure 9.19, this leads to differences 
in yaw angles estimated at more than 1°. During this stretch, some edge feature 
measurements on one side of the lane were not successful, so that more emphasis 
was put on the data from the well visible lane marking. Vehicle pitch due to per-
turbations not modeled was interpreted partially as measured yaw angle. 

Figure 9.19. The effects of pitch motion modeled (solid line) or neglected (dotted line

for  = constant) on other variables not directly involved in this degree of freedom; 
here: yaw angle estimation when quality of lane markings on each side differs (see text, 
after [Behringer 1996]) 

yaw angle

v /°

run length in meter Run length in meters

Toward the end (run length > 1200 m), the vehicle decelerated and started a lane 
change to the left (yaw angle  down to about 3°).

9.4.2.3 Estimation of Lane Width 

State road with T-junction on left-hand side: The pitch angle can be estimated 
correctly based on lane width only when the real lane width is known. On German 
‘Autobahnen’ for a long time, the standard lane width was defined as b = 3.75 m. 
On older sections and in mountainous regions, it may be less. The assumption of a 
wrong and constant lane width leads to errors in pitch angle estimation, since the 
measured residues effect an innovation of the pitch angle even though this pitch 
angle adaptation cannot make prediction-errors vanish. In any case, changes of 
lane width on normal sections of freeways are relatively small, usually. Strong 
variations in lane width occur on construction sites. 

Since changes in lane width on standard roads are much more pronounced on 
state roads or minor highways, one such case has been taken as a test. Large 
changes in road width are sometimes accepted for state roads with low traffic den-
sity when a side road connects to the state road by a T-junction; vehicles turning 
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off onto the side road move to the side of the connection and slow down, while 
through traffic may continue to the right at normal or slightly reduced speed. In 
Figure 9.20, widening of the lane over ~ 100 m (220 to 320, top curve) is about 40 
% (1.5 m on top of ~ 3.3 m), built up over a distance of about 60 m. Both inte-
grated terms b1 and b0 are estimated as smooth curves; the smoothing effect of the 
artificially introduced variable b1 is clearly visible. The closed-loop action-
perception cycle yields an evolving symbolic representation hard to achieve with 
quasi-static AI approaches. 

200 250 300 350

Noise term

10 · b1

b0

/m

b1 Distance traveled in meters

Figure 9.20. Lane widening at a left-turn road junction (in right-hand traffic) on a state 
road (top). Two snapshots at different distances from the T-junction: Left: further away; 
right: closer to junction seen at left. Bottom: Estimated parameters of lane width model. 

With lane width estimation active but pitch estimation inactive, prediction errors 
relative to edge positions for constant pitch angle are interpreted as changes in lane 
width. With both models active, the same edge features drive both models simulta-
neously. With pitch estimation inactive, two types of errors occur: (1) lane width 
estimated is erroneous if pitch angle changes occur, and (2) actually occurring 
changes in look-ahead distances are not recognized. To study these effects, test 
data from the same run on a stretch of Autobahn have been analyzed with lane 
width estimation active twice, once with pitch estimation inactive and once with 
pitch estimation active.  

Effects of pitching motion on estimation of lane width: Figure 9.21 shows re-
sults from [Behringer 1996] nicely indicating the improvement in stability when mo-
tion in pitch is estimated simultaneously with lane width; the small change in lane 
width occurs at around a run length of 150 m. If pitch estimation is not active but 
pitching motion occurs, the changes in road width in a certain image row due to ac-
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tually occurring pitching motion are interpreted as changes in width. Estimation of 
lane width on a 1 km stretch of Autobahn with (solid curve) and without (dotted

curve) simultaneous pitch angle estimation is shown.Through the corresponding 
Jacobian elements and the updates in the feedback gain for the prediction errors in 
width, these changes due to pitching motion are interpreted as changes in real road 
width. Misinterpretations of up to ~ 40 cm (10 % of lane width) occur around the 
real value of 3.75 m. 

Without pitch angle estimation, lane width varies with a standard deviation of ~ 0.1 
to 0.3 m, depending on the smoothness of the road surface; with simultaneous pitch 
angle estimation, this value is reduced to 0.05 m (5 cm) and less. By adapting ele-
ments of the covariance matrix Q correspondingly, estimation quality is improved 
further.  

9.4.2.4 Estimation of Small Vertical Curvatures

Surprising results have been achieved with respect to motion stereointerpretation of 
the height profile of a stretch of Autobahn close to UniBwM, north of the Auto-
bahn intersection Munich South. Figure 9.22 shows five snapshots of the scene and 
the vertical curvature profile recovered. The upper left image shows an underpass 
under a bridge; the increasing slope behind the bridge is clearly visible from this 
image. The center image in the top row was taken shortly before passing the 
bridge, whose shadow is seen in the near range. The remaining three images show 
the vehicle going uphill (top right), in front of the cusp (lower left), and back to 
level driving behind the underpass (lower center). At the lower right, the vertical 
curvature profile recovered while traveling this stretch over a distance of a half 
kilometer is shown. Note that the unit for curvature is 100 km! The peak value of 

b in
meters

3.75

Run length in meters

Figure 9.21. Estimation of lane width on a 1-km stretch of Autobahn with (solid curve)
and without (dotted curve) simultaneous pitch angle estimation 
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curvature of 7.2·10 5 [1/m] corresponds to a radius of curvature of about 14 km. 
This means that for 100 m driven the slope change is ~ 0.4°. 

7  ·10 
- 5

5

3

1

-1

C0v / m
-1

100 300       500
runlength / m

Figure 9.22. Precise estimation of vertical curvature with simultaneous pitch estimation 
on underpass of a bridge across Autobahn A8 (Munich – Salzburg) north of Autobahn 
crossing Munich-south: Top left: Bridge and bottom of underpass can be recognized; top 
center: vehicles shortly before underpass, shadow of bridge is highly visible. Top right 
and bottom left: Cusp after underpass is approached; bottom center: leaving the under-
pass area. Bottom right: Estimated vertical curvature over distance driven: The peak 
value corresponds to ~ a half degree change in slope over 100 m. 

Of course, this information has been collected over a distance driven of several 
hundred meters; this shows that motion stereo with the 4-D approach in this case 
cannot be beaten by any kind of multiocular stereo. Note, however, that the stereo 
base length (a somewhat strange term in this connection) is measured by the 
odometer with rather high precision. Without the smoothing effects of the EKF 
(double integration over distance driven) this would not be achievable. 

The search windows for edge detection are marked in black as parallelepipeds in 
the snapshots. When lane markings are found, their lateral positions are marked 
with dark-to-bright and bright-to-dark transitions by three black lines looking like a 
compressed letter capital H. If no line is found, a black dot marks the predicted po-
sition for the center of the line. When these missing edges occur regularly, the lane 
marking is recognized as a broken line (allowing lane changes). 

9.4.2.5 Long-distance Test Run 

Till the mid-1990s most of the test runs served one or a few specific purposes to 
demonstrate that these tasks could be done by machine vision in the future. Road 
types investigated were freeways (German Autobahn and French Autoroute), state 
roads of all types, and minor roads with and without surface sealing as well as with 
and without lane markings. Since 1992, first VaMoRs and since 1994 also VaMP 
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continuously did many test runs in public traffic. Both the road with lane markings 
(if present) and other vehicles of relevance had to be detected and tracked; the lat-
ter will be discussed in Chapter 11. 

After all basic challenges of autonomous driving had been investigated to some 
degree for single specific tasks, the next step planned was designing a vision based 
system in which all the separate capabilities were integrated into a unified ap-
proach. To improve the solidity of the database on which the design was to be 
founded, a long-distance test run with careful monitoring of failures, and the rea-
sons for failures, had been planned. Earlier in 1995, CMU had performed a similar 
a test run from the East to the West Coast of the United States; however, only lat-
eral guidance was done autonomously, while a human driver actuated the longitu-
dinal controls. The human was in charge of adjusting speed to curvature and keep-
ing a proper distance from vehicles in front. Our goal was to see how poor or well 
our system would do in fully autonomously performing a normal task of long-
distance driving on high-speed roads, mainly (but not exclusively) on Autobahnen.  

This also required using the speed ranges typical on German freeways which go 
up to and beyond 200 km/h. Figure 9.23 shows a section of about 38 minutes of 
this trip to a European project meeting in Denmark in November 1995 according to 
[Behringer 1996; Maurer 2000]. The safety driver, always sitting in the driver’s seat, 

or the operator of the computer and vision system selected and prescribed a desired 
speed according to regulations by traffic signs or according to their personal inter-
pretation of the situation. The stepwise function in the figure shows this input. De-
viations to lower speeds occurred when there were slower vehicles in front and 
lane changes were not possible. It can be seen that three times the vehicle had to 
decelerate down to about 60 km/h. At around 7 minutes, the safety driver decided 
to take over control (see gap in lower part of the figure), while at around 17 min-

 speed measured 

travel speed set,  km/h

Figure 9.23. Speed profile of a section of the long-distance trip (over time in minutes) 



9.4 Experimental Results      287 

utes the vehicle performed this maneuver fully autonomously (apparently to the 
satisfaction of the safety driver). The third event at around 25 minutes again had 
the safety driver intervene. Top speed driven at around 18 minutes was 180 km/h 
(50 m/s or 2 m per video cycle of 25 Hz). Two things have to be noted here: (1) 
With a look-ahead range of about 80 m, the perception system can observe each 
specific section of lane markings up to 36 times before losing sight nearby (Lmin ~ 
6 m), and (2) stopping distance at 0.8 g (-8 m/s2) deceleration is ~ 150 m (without 
delay time in reaction); this means that these higher speeds could be driven autono-
mously only with the human safety driver assuring that the highway was free of 
vehicles and obstacles for at least ~ 200 m.  

Figure 9.24 gives some statistical data on accuracy and reliability during this 
trip. Part (a) (left) shows distances driven autonomously without interruption (on a 
logarithmic scale in kilometers); the longest of these phases was about 160 km. 
Almost all of the short sequences (  5 km) were either due to construction sites 
(lowest of three rows top left), or could be handled by an automatic reset (top row); 
only one required a manual reset (at ~ 0.7 km).  

This figure clearly shows that robustness in perception has to be increased sig-
nificantly over this level, which has been achieved with black-and-white images 
from which only edges had been extracted as features. Region–based features in 
gray scale and color images as well as textured areas with precisely determinable 
corners would improve robustness considerably. The computing power in micro-

Figure 9.24. Some statistical data of the long-distance test drive with VaMP (Mercedes 
500 SEL) from Munich to Odense, Denmark, in November 1995. Total distance driven 
autonomously was 1678 km (~ 95 % of system in operation). 
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Figure 9.25. Typical lateral offsets for manual human 
steering control over distance driven  

processors is available nowadays to tackle this performance improvement. The fig-
ure also indicates that an autonomous system should be able to recognize and han-
dle construction sites with colored and nonstandard lane markings (or even without 
any) if the system is to be of practical use. 

Performance in lane keeping is sufficient for most cases; the bulk of lateral off-
sets are in the range ± 0.2 m (Figure 9.24b, lower right). Taking into account that 
normal lane width on a standard Autobahn (3.75 m) is almost twice as large as ve-
hicle width, lateral guidance is more than adequate; with humans driving, devia-
tions tend to be less strictly observed every now and then. At construction sites, 
however, lane widths of down to 2 m may be encountered; for these situations, the 
flat tails of the histogram indicate insufficient performance. Usually, in these cases, 
the speed limit is set as low as 60 km/h; there should be a special routine available 
for handling these conditions, which is definitely in range with the methods devel-
oped. 

Figure 9.25 shows for comparison a typical lateral deviation curve over run 
length while a human was driving on a normal stretch of state road [Behringer 1996].
Plus/minus 40 cm lateral 
deviation is not uncom-
mon in relaxed driving; 
autonomous lateral guid-
ance by machine vision 
compares favorably with 
these results. 

The last two figures in 
this section show results 
from sections of high-
speed state roads driven autonomously in Denmark on this trip. Lane width varies 
more frequently than on the Autobahn; widths from 2.7 to 3.5 m have been ob-
served over a distance of about 3 km (Figure 9.26). The variance in width estima-
tion is around 5 cm on sections with constant width. 

Distance in kilometers

Figure 9.26. Varying width of a state road can be distinguished from the variance of 
width estimation by spatial frequency; standard variation of lane width estimation is 
about 5 cm 

lane width 

b in meters

Distance in kilometers

The left part of Figure 9.27 gives horizontal curvatures estimated for the same 
stretch of road as the previous figure. Radii of curvature vary from about 1 km to 
250 m. Straight sections with curvature oscillating around zero follow sections 
with larger (constant?) curvature values that are typically perceived as oscillating 
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(as in Figure 9.17 on our test track). The system interprets the transitions as clot-
hoid arcs with linear curvature change. It may well be that the road was pieced to-
gether from circular arcs and straight sections with step-like transitions in curva-
ture; the perception process with the clothoid model may insist on seeing clothoids 
due to the effect of low-pass filtering with smoothing over the look-ahead range 
(compare upper part of Figure 9.17). 

k

Figure 9.27. Perceived horizontal curvature profile on two sections of a high-speed state 
road in Denmark while driving autonomously: Radius of curvature comes down to a 
minimum of ~ 250 m (at km 6.4). Most radii are between 300 and 1000 m (R = 1/ c0).

The results in accuracy of road following are as good as if a human were driving 
(deviations of 20 to 40 cm, see Figure 9.28). The fact that lateral offsets occur to 
the ‘inner’ side of the curve (compare curvature in Figure 9.27 left with lateral off-
set in Figure 9.28 for same run length) may be an indication that the underlying 
road model used here for perception may be wrong (no clothoids); curves seem to 

be ‘cut,’ as is usual for finite steering rates on roads pieced together from arcs with 
stepwise changes in curvature. This is the price one has to pay for the stabilizing 
effect of filtering over space (range) and time simultaneously. Roads with real 
clothoid elements yield better results in precise road following. 

km 

Figure 9.28. Lateral offset on state road driven autonomously; compare to manual driv-
ing results in Figure 9.25 and curvature perceived in 9.27. 

[As a historic remark, it may be of interest that in the time period of horse carts, 
roads used to be made from exactly these two elements. When high-speed cars 
driven with a finite steering rate came along, these systematic ‘cuts’ of turns by the 
trajectories actually driven have been noticed by civil engineers who – as a pro-
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gressive step in road engineering – introduced the clothoid model (linear curvature 
change over arc length).] 

9.5 High-precision Visual Perception 

With the capability of perceiving both horizontal and vertical curvatures of roads 
and lanes together with their widths and the ego- state including pitch angle, it is 
important to exploit precision achievable to the utmost to obtain good results. Sub-
pixel accuracy in edge feature localization on the search path has been used as 
standard for a long time (see Section 5.2.2). However, with good models for vehi-
cle pitching and yawing, systematic changes extended edge features in image se-
quences can be perceived more precisely by exploiting knowledge represented in 
the elements of Jacobian matrices. This is no longer just visual feature extraction as 
treated in Section 5.2.2 but involves higher level knowledge linked to state vari-
ables and shape parameters of objects for handling the aperture problem of edge 
features; therefore, it is treated here in a special section. 

9.5.1 Edge Feature Extraction to Subpixel Accuracy for Tracking 

In real-time tracking involving moving objects, predictions are made for efficient 
adjustment of internal representations of the motion process with both models for 
shape and for motion of objects or subjects. These predictions are made to subpixel 
accuracy; edge locations can also be determined easily to subpixel accuracy by the 
methods described in Chapter 5. However, on one hand, these methods are geared 
to full pixel size; in CRONOS, the center of the search path always lies at the cen-
ter of a pixel (0.5 in pixel units). On the other hand, there is the aperture problem 
on an edge. The edge position in the search path can be located to sub-pixel accu-
racy, but in general, the feature extraction mask will slide along a body-fixed edge 
in an unknown manner. Without reference to an overall shape and motion model, 
there is no solution to this problem. The 4-D approach discussed in Chapter 6 pro-
vides this information as an integral part of the method. The core of the solution is 
the linear approximation of feature positions in the image relative to state changes 
of 3-D objects with visual features on their surfaces in the real world. This rela-
tionship is given by concatenated HCTs represented in a scene tree (see Section 
2.1.1.6) and by the Jacobian matrices for each object–sensor pair. 

For precise handling of subpixel accuracy in combination with the aperture 
problem on edges, one first has to note that perspective mapping of a point on an 
edge does not yield the complete measurement model. Due to the odd mask sizes 
of 2n + 1 pixels normal to the search direction in the method CRONOS, mask loca-
tions for edge extraction are always centered at 0.5 pixel. (For efficiency reasons, 
that is, changing of only a single index, search directions are either horizontal or 
vertical in most real-time methods). This means that the row or column for feature 
search is given by the integer part of the pixel address computed (designated as 
‘entier(y or z)’ here). Precise predictions of feature locations according to some 
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model have to be projected onto this search line. In Figures 9.29 and 9.30, the two 
predicted points, P*1N (upper left) and P*2N (lower right), define the predicted edge 
line drawn solid.

Depending on the search direction chosen for feature extraction (horizontal h, 
Figure 9.29 or vertical v, Figure 9.30), the nominal edge positions (index N) taking 
the measurement process into account are m1hN and m2hN (9.29) respectively m1vN

and m2vN (9.30, textured circles on solid line). 
 The slope of the predicted edge is 

2 1 2 1( ) /( )N N N N Na z z y y . (9.46) 

For horizontal search directions, the vertical differences z1hN, z2hN to the cen-
ter of the pixel ziN defining the search path are 

Figure 9.29. Application-specific handling of aperture problem in connection with edge 
feature extractor in rows (like UBM1; nominal search path location at center of pixel): 
Basic grid corresponds to 1 pixel. Both predictions of feature locations and measure-
ments are performed to subpixel accuracy; Jacobian elements are used for problem spe-
cific interpretation (see text). Horizontal search direction: Offsets in vertical direction 
are transformed into horizontal shifts exploiting the slopes of both the predicted and the 
measured edges; slopes are determined from results in two neighboring horizontal 
search paths. 
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.

1hN 1N 1N

2hN 2N 2N

( ) 0.5,

(z ) 0.5;

z z entier z

z z entier
(9.47) 

 in conjunction with the slope aN they yield the predicted edge positions on the 
search paths as the predicted measurement values 

/ ,    1,  2ihN iN ihN Nm y z a i (9.48) 

In Figure 9.29 (upper left), it is seen that the feature location of the predicted 
edge on the search path (defined by the integer part of the predicted pixel) actually 
is in the neighboring pixel. Note that this procedure eliminates the z-component of 
the image feature from further consideration in horizontal search and replaces it by 
a corrective y-term for the edge measured. For vertical search directions, the oppo-
site is true. 

For vertical search directions, the horizontal differences to the center of the 
pixel defining the search path ( y1vN, y2vN) are

ivN iN iN = ( ) + 0.5 ;y y entier y (9.49) 

together with the slope aN, this yields the predicted edge positions on the search 

path as the predicted measurement values to subpixel accuracy: 

ivN iN ivN N =  ,     = 1, 2.m z y a i (9.50) 

For point 1 this yields the predicted position m1vN in the previous vertical pixel 
(above), while in the case of point 2 the value m2vN lies below the nominal pixel 
(lower right of Figure 9.30). Again this procedure eliminates the y-component of 
the image feature from further considerations in a vertical search and replaces it by 
a corrective z term for the edge measured. 

9.5.2 Handling the Aperture Problem in Edge Perception 

Applying horizontal search for precise edge feature localization yields the meas-
urement points m1hm for point 1 and m2hm for point 2 (dots filled in black in Figure 
9.29). Taking knowledge about the 4-D model and the aperture effect into account, 
the sum of the squared prediction errors shall be minimized by changing the un-
known state variable xS. However, the sliding effect of the feature extraction masks 
along the edges has to be given credit. To do this, the linear approximation of per-
spective projection by the Jacobian matrix is exploited. This requires that devia-
tions from the real situation are not too large.  

The Jacobian matrix (abbreviated here as J), as given in Section 2.1.2, approxi-
mates the effects of perspective mapping. It has 2·m rows for m features (y and z
components) and n columns for n unknown state variables xS ,  = 1, ... n. Each 
image point has two variables y and z for describing the feature position. Let us 
adopt the convention that all odd indices of the 2·m rows (iy = 2·i – 1, i = 1 to m) of 
J refer to the y-component (horizontal) of the feature position, and all following 
even indices (iz = 2·i) refer to the corresponding z-component (vertical). All these 
couples of rows multiplied by a change vector for the n state variables to be ad-
justed, xS ,  = 1, ... n yield the changes y and z of the image points due to xS:

( ,  ) .T

i S iJ x y z (9.51) 
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Let us consider adjusted image points (yiA, ziA) after recursive estimation for lo-
cations 1 and 2 which have been generated by the vector products  

1 1 1 1 1 1

2 2 2 2 2 2

;          ;  

;        .

A N y S A N z S

A N y S A N z S

y y J x z z J x

y y J x z z J x
 (9.52) 

These two points yield a new edge direction aA for the yet unknown adjustments 
xS . However, this slope is measured on the same search paths given by the inte-

ger values of the search row (or column) through measurement values mihm (or 
mivm). The precise location of the image point for a minimum of the sum of the 
squared prediction errors depends on the xS ,  = 1, ... n, to be found, and it has 
thus to be kept adaptable.  

Analogous to Equation 9.46, one can write for the new slope, taking Equation 
9.52 into account, 

2 1 2 12 1

2 1 2 1 2 1

21

21

- ( - )-

- - ( - )

1 /
                .

1 /

N N z z SA A
A

A A N N y y S

z N S
N

y N S

z z J J xz z
a

y y y y J J x

J z x
a

J y x

(9.53) 

For | i| << 1, the following linear approximation is valid for the ratio: 
.(1 ) /(1 ) (1 ) (1 ) 1 11 2 1 2 1 2 1 2 1 2

Applying this to Equation 9.53 yields a linear approximation in xS :

2121
mod

mod 21 21

1 h.o.t. ,

with / / .

yz
A N S N N S

N N

z N y N

JJ
a a x a a C x

z y

  C J z J y

(9.54) 

Horizontal and vertical search paths will be discussed in separate subsections. 

9.5.2.1 Horizontal Search Paths 

The slope of the edge given by Equation 9.46 can also be expressed by the pre-
dicted measurement values m1hN and m2hN on the nominal search paths 1 and 2 
(dash–dotted lines in Figure 9.29 at a distance zNN = entier(z2N) - entier(z1N)  from 
each other); this yields the solid line passing through all four points P*1N, P*2N,
m1hN and m2hN. The new term for the predicted slope then is 

2 1( )N NN hN hN NN hNa z m m z m . (9.55) 

Similarly one obtains for the measured slope am from the two measured feature 
locations on the same search paths  

2 1( ) .m NN hm hm NN ha z m m z m m (9.56) 

Dividing Equation 9.56 by Equation 9.55 and multiplying the ratio by aN yields 

2 1 2 1         ( ) ( ).
m N N hm

N hN hN hm hm

a a m m

a m m m m
(9.57) 

Setting this equal to Equation 9.54 yields the relation 

2 1
mod .hN hN

m A N N N S

m

m m
a a a a a C x

mh
(9.58) 
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Dividing by aN and bringing the resulting 1 in the form 2 1( )hm hm mm m m onto 

the left side yields after sorting terms, 

2 1 2 1
mod .hN hN hm hm

S

hm

m m m m
C x

m
(9.59) 

With the prediction errors yipe on the nominal search paths 

ipe ihm ihNy m m , (9.60) 

Equation 9.59 can be written 

1 2 mod( - ) / .pe pe hm Sy y m C x (9.61) 

This is the iteration equation for a state update taking the aperture problem and 
knowledge about the object motion into account. The position of the feature in the 
image corresponding to this innovated state would be (n × n vector product of the 
corresponding row in the Jacobian matrix and the change in the state vector): 

; .i iy S i iz Sy J x      z J x (9.62) 

Note, however, that this image point is not needed (except for checking progress 
in convergence) since the next feature to be extracted depends on the predicted 
state resulting from the updated state ‘now’ and on single step extrapolation in 
time. This modified measurement model solves the aperture problem for edge fea-
tures in horizontal search. This result can be interpreted in view of Figure 9.29: 
The term on the left-hand side in Equation 9.61 is the difference in the predicted 
and the measured position along the (forced) nominal horizontal search paths 1 and 
2 at the center of the pixel. If both prediction errors are equal, the slope does not 
change and there is no aperture problem; the Jacobian elements in the y-direction at 
the z-position can be taken directly for computing xS ( yi). If the edge is close to 
vertical ( mm  0), Equation 9.61 will blow up; however, in this case, yN  is also 
close to zero, and the aperture problem disappears since the search path is orthogo-
nal to the edge. These two cases have to be checked in the code for special treat-
ment by the standard procedure without taking aperture effects into account. The 
term on the right-hand side is the modified Jacobian matrix (Equation 9.54). The 
terms in the denominator of this equation indicate that for almost vertical edges in 
horizontal search and for almost horizontal edges in vertical search, this formula-
tion should be avoided; this is no disadvantage, however, since in these cases the 
aperture problem is of no concern. 

9.5.2.2 Vertical Search Paths 

The predicted image points P*1N and P*2N in Figure 9.30 define both the expected 
slope of the edge and the position of the search paths (vertical dash-dotted lines); 
the distance of the search paths from each other is yNN = entier(y2N) - entier(y1N),
four pixels in the case shown. The intersections of the straight line through points 
P*1N and P*2N with the search paths define the predicted measurement values (m1vN 

and m2vN); in the case given, with the predicted image points in the upper right 

corner of the pixel labeled with index (1, upper left in the figure) and the lower 

left corner of the pixel labeled (2, lower right in the figure), m1vN lies in the previ-
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ous pixel of the search direction, and m2vN in the following pixel of the correspond-
ing search path (top-down search).  

The exact position is given by Equation 9.50. The predicted slope of the edge aN

(see Equation 9.46) can thus also be written 

2 1( ) / / .N vN vN NN N NNa m m y m y (9.63) 

The edge locations actually found on the search paths are the points m1vm and

m2vm; the prediction errors on the nominal search paths thus are 

1 1 1pe vm vz m m N

and
(9.64) 

Figure 9.30. Application-specific handling of the aperture problem in connection with 
edge feature extractor in columns: Both predictions of feature locations and measure-
ments are performed to subpixel accuracy; Jacobian elements are used for problem spe-
cific interpretation (see text). Vertical search direction: Offsets in horizontal direction 
are transformed into vertical shifts exploiting the slopes of both the predicted and the 
measured edges; slopes are determined from results in two neighboring horizontal 
search paths. 
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2 2 2 .pe vm vNz m m

The difference in the measured z-location on the search paths is 

2 1vm vm vmm m m ; (9.65) 

in conjunction with yNN this yields the slope of the measured edge (dashed line in 
Figure 9.30) as 

/ .m vm Na m y N (9.66) 

Dividing Equation 9.66 by Equation 9.63 and multiplying the ratio by aN yields 

2 1 2 1       ( ) ( ).
m N vm N

N vm vm vN vN

a a m m

a m m m m
(9.67)

Setting this equal to Equation 9.54 yields the relation (similar to Equation 9.58) 

2 1
mod1hm hm

S

vm

m m
C x

m
. (9.68)

Replacing the 1 by Equation 9.65 divided by mm and observing Equation 9.64, 
the equation for vertical search analogous to Equation 9.61 (horizontal) is 

1 2 mod( - ) /pe pe vm Sz z m C x . (9.69)

T compute the exact position of the projected, updated point in the image, Equa-
tion 9.62 is equally valid. With respect to singularities, the comments made for the 
horizontal case are valid with proper substitution of terms. 

Figure 9.31 shows the basic idea 
underlying the modified iteration 
process. The state update is com-
puted from the prediction errors on 
the fixed search paths for two points 
on a straight edge (Equations 9.61 
for horizontal and Equation 9.69 for 
vertical search). The corresponding 
position of the updated (innovated) 
feature point PiA on the edge in the 
image is given by Equation 9.62. 
Again, computing the position of 
this pointy in the image is not 
needed for the recursive estimation 
process; only if a check of iteration 
results by visual inspection is 
wanted, should the point be deter-
mined and inserted into the overlay 
of the original video image for 
monitoring. 

Figure 9.31. Subpixel edge iteration taking 
the aperture effects of edge feature extraction 
with method CRONOS locally into account 
according to a 3-D shape model of the object 
with points 1 and 2 on straight edges
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10  Perception of Crossroads 

For navigation in networks of roads, the capability of recognizing different types of 
crossroads and road forks as well as the capability of negotiating them in the direc-
tion desired is a key element. On unidirectional highways with multiple parallel 
lanes, selecting the proper lane – supported by navigation signs – is the key to find 
the connection to crossroads. On roads of lower order with the same-level connec-
tions between the crossing roads, new performance elements are necessary contain-
ing components of both perception and motion control. 

10.1  General Introduction 

Making a turn onto a crossroad on the side of standard driving (to the right in con-
tinental Europe and the Americas, to the left in the United Kingdom, etc.) is the 
easier of the two possibilities; crossing oncoming traffic lanes, usually, requires 
checking the traffic situation in these lanes too, which on high-speed roads means 
perception up to a large distance. The 
maneuvering capability developed for 
turnoffs is currently confined to the case 
where there is no interference with any 
other vehicles or obstacles, either on 
one’s own or on the crossroad. This field 
has been pioneered by K. Müller; the 
reader interested in more details is re-
ferred to this dissertation [Müller 1996].

Figure 10.1. General geometry of an in-
tersection: The precise location along 
the road driven, the width, and the inter-
section angle of the crossroad as well as 
the radii of curvature at the corners are 
not known in general; these parameters 
have to be determined by vision during 
approach. 

It is assumed here that the higher lev-
els of mission control in the overall sys-
tem have been able to determine from 
odometry (or GPS) and map reading that 
the next upcoming crossroad (with cer-
tain visual features) will be the one to 
turn onto; the precise location, width 
and relative orientation, however, are 
unknown (see Figure 10.1).  

These have to be determined while 
approaching the crossroad; therefore, 
speed will be reduced to make more 
processing time available per distance 
traveled and for slowing down to the 
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speed allowed for curve driving without exceeding lateral acceleration limits (usu-
ally  2 m/s2).

10.1.1 Geometry of Crossings and Types of Vision Systems Required 

To estimate the distance to the intersection of two characteristic lines of crossing 
roads precisely, both the point of intersection and a sufficiently long part of the 
crossroad for recognizing its width and direction relative to the subject’s road have 
to be viewed simultaneously. As a line characteristic of the road driven, the right or 
left boundary line is selected; at crossings, there may be no visible boundary line, 
so a “virtual” one has to be interpolated by a smooth curve connecting those before 
and after the intersection. Two points and two tangents allow deriving the parame-
ters of a clothoid in the image (see Section 5.2.2.3); however, the real-world road 
parameters should be available from road-running (see below). As a line character-
istic of the crossroad, the centerline of the lane intended to be turned onto is cho-
sen, yielding the intersection points Ore for turning to the right and Oli for turning 
to the left (Figure 10.1). 

The angle of intersection is measured relative to a right-angle intersection as the 
standard case; it is dubbed re on the right and li on the left side. For simplicity, 
the crossroad is modeled as a straight section in the region viewed. The road driven 
is characterized by its curvature parameters (known from methods of Chapter 9) 
and the road width (here designated as 2·b); the desired driving state in the sub-
ject’s lane is tangential at the center (b/2) with speed V. This leads to the space to 
be crossed on the subject’s road of b/2 for turnoffs to the right and 3b/2 for those 
to the left. The actual offset y (and ) at the location of the cg is assumed to be 
known as well from the separate estimation process running for the road driven. 

It has to be kept in mind that at larger look-ahead distances (of, say, 100, 60, 
and 20 m), a crossroad of limited width (say, 7 m) appears as a small, almost hori-
zontal stripe in the image. Even intersection angles of re up to ± 50° lead to devia-
tions from the image horizontal of < 10°, usually. A brief computation like that un-
derlying Figure 5.4 yields the number of pixels on the crossroad (vertically) as a 
function of camera elevation H above the ground and focal length f (or, equiva-
lently, resolution = number of pixel per degree). Table 10.1 shows results for the 
test vehicles VaMoRs and VaMP based on Table 7.1; evaluating only video fields, 
the number of rows available is about 240. 

Table 10.1. Number of pixels vertically covering a crossroad of width 7 m at different look-
ahead distances on planar ground for two focal lengths f (typical for video fields evaluated 
with ~ 240 rows) and two camera elevations above the ground 

Vehicle  VaMoRs (H = 1.8 m) VaMP (H = 1.3 m) 
Resolution in pixel/degree (f) 8  30  8  30  

Look-ahead distance / m       Number of pixels on crossroad of 7 m width (vert.) 
100 0.6 2.2 0.4 1.6 
60 2.9 11 1.2 4.4 
20 14 54 10 39 
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The number of pixels on the crossroad in the table increases by about a factor of 
2 for evaluation of full video frames. Results for slightly different mapping condi-
tions are shown in Figure 10.2 as a continuous function of range. 

It can be seen that for the 
conditions of Table 10.1 at 100 
m distance the crossroad covers 
just one and a half pixel for the 
car VaMP and about two for 
the van in the teleimage; in a 
noisy image from standard fo-
cal length (40° horizontal field 
of view) the crossroad is 
mapped onto a half pixel and 
cannot be detected. At 60 m 
distance, this lens yields ~1 
pixel on the crossroad for the 
car and ~3 for the van. In the 
tele-image, with 4.4 pixels on 
the crossroad for the car VaMP, 
it may just become robustly 
distinguishable, while 11 pixels 
in the van allow easy recogni-
tion and tracking. At 20 m dis-
tance, the standard lens allows 
a similar appearance in the im-
age (10, respectively, 14 pixels on the crossroad). However, at this distance, the 
teleimage covers just 3.7 m laterally on the ground, and a camera with standard 
lens mounted with its optical axis parallel to the longitudinal axis of the body will 
have a lateral range of about 12 m into the crossroad. 

Figure 10.2. Coverage of horizontal distance by a 
single pixel as a function of look-ahead distance 
for a video image with improved mapping pa-
rameters compared to Table 10.1: f = 2200 pixel 
(= 25 mm), H = 2 m, and the camera looking 2° 
downward in pitch [Müller 1996] 

Look-ahead range in meters

Depth resolution

in meters / pixel

Vertical (z-)
position in

image

These few numbers should make clear that a single camera or a pair of one stan-
dard and one telecamera mounted directly onto the body of the vehicle will not be 
sufficient for tight maneuvering at a road crossing. When approaching the crossing, 
the cameras have to be turned in the direction of the crossroad so that a sufficiently
large part of it can be seen, allowing precise determination of its relative direction 
and width. The resulting “vehicle eye” will be discussed in Chapter 12. 

10.1.2 Phases of Crossroad Perception and Turnoff 

These considerations had led to active gaze control for a bifocal camera system for 
road vehicles from the beginning of these activities at UniBwM [Mysliwetz, Dick-
manns 1986; Mysliwetz 1990; Schiehlen 1995]. Beside “looking into the curve” on 
curved roads and “fixation of obstacles on the road” while driving, developing the 
“general capability of perceiving crossroads and turning off onto them” was the 
major application area in the early 1990s.  

K. Müller arrived at the following sequence of activities for this purpose; it was 
intended to be so flexible that most situations could be handled by minor adapta-
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tions. Seven phases can be distinguished; the first four are predominated by per-
ception while the last three are strongly intertwined activities of perception, gaze 
control, and vehicle control. 

The first phase is prepare for crossroad perception according to the mission 

plan, which is a slight turn of gaze direction toward the side of the expected cross-
road. In the second phase, visual search for candidate features is performed with 
the favorite methods for feature extraction bottom-up. After sets of promising fea-
tures have been found in a few consecutive images, the third phase is hypothesis 

generation, in which tracking the crossroad is initiated; now the speed for turning 
off is set which, usually, means slowing down so that a lateral acceleration of ay,max

is not exceeded. In the fourth phase of increasing precision in perception of pa-

rameters while approaching, more complex gaze control strategies are started and 
proper adjustment of methods and tuning parameters is performed. 

With the intersection parameters determined, (coarse) planning the behavioral 
modes and corresponding parameters is performed, yielding the distance from the 
crossing when to start the sequence of maneuver elements for turning off. The fifth 
phase then is Start of motion control (steering for turnoff maneuver) with continu-

ing (separate) gaze control and perception; this part is rather involved, and timing 
has to be carefully tuned for the feed-forward components used. Well into this 
complex maneuver (60 to 70 %), the sixth phase is started by switching to the 
crossroad as a (new) reference system; feedback is superimposed both for gaze and 
for vehicle control to counteract unpredictable errors and perturbations encoun-
tered. The final phase of the turnoff maneuver is the transition to roadrunning on 

Vehicle 

heading

Sum of camera and 

vehicle heading

Camera heading

Steering angle

Figure 10.3. Camera heading relative to vehicle, steering angle, and absolute vehicle 
heading during a turnoff maneuver with VaMoRs [Müller, Baten 1995] 
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the new road element: Finish feed-forward components and store results observed 
during the turnoff maneuver for future evaluation. 

Figure 10.3 shows a typical maneuver from real-world test results by displaying 
time histories of the camera heading angle, the vehicle heading, and steering angle 
as well as the summed angle of camera and vehicle heading. The maneuver lasts 
for 27 seconds (s); the last 16 include both gaze and lateral motion control. It starts 
with a fast shift of camera yaw angle (~ 8° at t = 0). Over the next 16 s, this angle 
continues to increase, initially fully controlled by feed-forward terms. When the 
steering angle starts turning the vehicle (noticeable at ~13 s), the sum of both an-
gles determines the gaze direction in absolute space; at about 17 s, this sum reaches 
the orientation angle of the crossroad, and gaze has to be turned back at the rate of 
vehicle turn (17 to 27 s). Visual fixation of the lane center at a larger look-ahead 
range achieves this automatically; the vehicle turns underneath the crossroad-
oriented cameras. 

Before discussing these phases in detail, a survey of the hardware base (Section 
10.1.3) and the theoretical background is given (Section 10.2). 

10.1.3 Hardware Bases and Real-world Effects 

Since on one hand the experimental vehicle VaMoRs was very busy in the 
EUREKA project Prometheus in the early 1990s, being used by other groups, and 
since, on the other hand, it is essential to have fully repeatable conditions available 
for testing complex maneuvers and their elements, initial development of curve 

steering (CS), as it was called, was done in a vision laboratory.  

Hardware-In-the-Loop (HIL) simulation: This at that time unique installation 
for the development of autonomous vehicles with the sense of vision, derived from 
“hardware-in-the-loop” (HIL) testing for guided missiles with infrared sensors. 
Real vision hardware and gaze control was to be part of this advanced simulation 
intended to allow easy transfer of integrated hardware to test vehicles afterward 
(shaded area in lower center and right corner of Figure 10.4). It shows the HIL-
simulation system developed and used for autonomous visual curve steering at 
UniBwM. Before this application, it had been in use for about a decade for devel-
oping the capability of visual autonomous landing approaches of unmanned air ve-
hicles.

A simulation computer (top right) determines the coordinate time histories of all 
moving components of the dynamic scene under the differential equation con-
straints valid for them. The angular orientation of the subject vehicle is transferred 
to the DBS controller (center left) which translates this information via a three-axis 
angular motion simulator (DBS, hydraulic/electric, lower center left) into real 
physical angles of a platform onto which the vehicle eye is mounted. On top of the 
orientation angles computed for the subject vehicle, stochastic perturbations may 
be superimposed representing the effects of roughness of the road surface. 

The coordinates describing position and orientation in the environment are sent 
to a real-time system for computer-generated images (CGI, center top) which gen-
erates the sequences of images at video rate to be projected onto a curved screen in 
front of the cameras (left). Machine vision with the original cluster of Transputers
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now closes the loop by sending the control inputs derived both to gaze control 
(center bottom, real feedback) and for control of the subject vehicle to the simula-
tion computer via a special subsystem (center right). 

Computer
Generated

Images

Simulation

computer

controller
projection
screen

Two-axis gaze
platform

came-

ras

environ-

ment Three-axis angular

motion simulator (DBS)

parallel
interface

gaze
control

original hardware to be 
installed in test vehicle

Figure 10.4. Hardware-in-the-loop simulation facility of UniBwM for the development 
of dynamic vision in autonomous vehicles: The shaded area (lower right) shows the 
original hardware intended for the test vehicle in a later development stage. The ‘vehicle 
eye’ with active gaze control and all computer systems for visual perception are tested 
with realistic time delays, disturbances, and nonlinearities. The visual environment (left) 
is generated by the simulation computer with CGI and projection. 

A lot of the detailed developments of the CS-module have been done with this 
simulation loop, very similar to training pilots in simulation loops with visual dis-
plays of the dynamically changing environment. Nonlinear control limits of the 
real vehicle like limited steering rate and minimum turn radius possible can easily 
be imposed. Also the effects of time delays in measurement, interpretation, and 
control (up to several hundred ms) can easily be varied and studied. Surface rough-
ness effects (uneven surface) can be simulated effectively by proper control of the 
mechanical unit DBS (capable of realizing fast disturbances with corner frequen-
cies of up to 10 Hz). 

There may be some artifacts from image generation and projection which have 
to be taken special care of; this was not too difficult. In summary, this simulation 
loop has saved quite a bit of development time and cost during the transition from 
pure computer simulation of everything to real autonomous driving. 

Test vehicle VaMoRs: When the basic challenges of autonomous visual guidance 
of road vehicles were solved in the early 1990s, driving in public traffic on high-
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speed roads was emphasized in the second half of the “Prometheus” project; for 
this purpose, together with our partner Daimler-Benz AG, two S-class cars were 
equipped with new Transputer-based vision systems (vehicles VaMP and 
ViTA_2). The European development of the communication-oriented processors 
(“trans-” instead of com-puter) with easy scalability in larger networks allowed a 
big step forward, independent of the massively parallel computer architectures 
studied elsewhere. 

For this reason, also the second-generation vision system for the older vehicle 
VaMoRs was to be based on transputers; this vehicle now had the assignment of 
continuing pioneering steps in vision in the framework of driving on networks of 
minor roads with and without lane markings and on unsealed surfaces or dirt roads. 

Figure 10.5. Test vehicle VaMoRs (center) with gaze-controlled camera set (upper left 
corner, exploded view of center top behind windshield, follow white arrow). The lower 
part of the collage is a block diagram of equipment carried onboard in the mid 1990s for 
the turnoff experiments on the closed-down airport serving as a test track for autono-
mous driving. 
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Tight maneuvering naturally comes into play on these types of roads. Here, it has 
to be kept in mind that the vehicle now generates different tracks for each wheel 
(refer to Section 3.4.2.2). The outer front wheel shows the largest radius of curva-
ture while the inner rear wheel has the smallest. Both should not leave the intended 
lane (danger from curbstones during a left or right turn depending on left- or right-
hand traffic!).  

The precise shape of the tracks depends on the axle distance and the width of the 
wheel base as well as on the steering angle input and the speed driven. Figure 10.5 
shows the test vehicle VaMoRs with its gaze controlled camera system (vehicle 
eye) as an exploded view (top left) and a coarse block diagram of the equipment 
onboard as the collage below (compare to Figure 10.4).  

The upper camera has a telelens with focal length of f = 25 mm; of the two stan-
dard cameras below, just one with f = 7.5 mm has been used in these experiments. 
Gaze control can be very fast; 20° shifts can be performed in a fraction of a second. 
Camera stabilization in pitch is achieved by feedback from an inertial rate sensor 
on the gaze platform [Schiehlen 1995]. The steering rate of the vehicle is limited to 

-dotmax = 15°/s around the pivot axle by power available; the minimal turn radius 
of the vehicle is Rmin  6 m. Time delays of different magnitude occur in most data 
paths. Conventional measurements (odometry, inertial data) are so fast that they 
can be considered instantaneous without making sensible errors, usually. Video has 
40 ms cycle time, and since these data are shifted through the system after specific 
processing steps at this rhythm, three to five video cycles may elapse until final in-
terpretation is available for control decision. Control output via a sequence of spe-
cial processors in VaMoRs requires a few tenths of a second; these time delays 
cannot be neglected for precise steering. 

10.2 Theoretical Background 

Before the integrated performance of the maneuver can be discussed, performance 
elements for motion control of the vehicle (Section 10.2.1), for gaze control (Sec-
tion 10.2.2), and for recursive estimation (Section 10.2.3) have to be discussed. Ba-
sic material has been covered in Chapters 2 – 6; here, specific items of interest for 
curve steering are detailed. 

10.2.1 Motion Control and Trajectories 

To gain basic insight into dynamic curve steering, some simplifications like driving 
at constant speed V and with piecewise constant steering rates -dot = A are ap-
plied throughout, here. For passenger comfort, maximal lateral acceleration of ay-

max = 2 m/s2 is set as an upper limit; the basic relation ay = V2/R then fixes the 
maximal speed V allowed as a function of radius R. With the minimum turn radius 
Rmin fixed by vehicle design, the maximal speed for this tight turn is given by 
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max max min;     yielding   ( )yV R a V R . (10.1) 

 For VaMoRs with the minimal turn radius of 6 m mentioned, this leads to 

Vmax(Rmin) 12 3.46  m/s , corresponding to  12.5 km/h. The inverse relation 

fixes the minimal radius of turn R2
max/ yR V a min allowed as a function of speed 

V driven. The distinction between cg and wheel position will be discussed below; 
at these tight turns, outer front wheel, cg position, and inner rear wheel have quite 
different radii. Table 10.2 shows a few speeds of interest for tight curve steering 
based on cg coordinates. At the minimal turn radius of VaMoRs, the speed maxi-
mally allowed (~ 3.5 m/s) for aymax = 2 m/s2 results in a steady turn rate of 33°/s 
(from simple relations for a body concentrated at the cg); slower speeds are never 
required to satisfy the lateral acceleration limit. 

Table 10.2. Minimal turn radius allowed at speed V in order not to exceed the lateral accel-
eration limit aymax = 2 m/s2 in tight curve steering (from simple kinematic relations); corre-
sponding turn (yaw) rates. Last but one row gives the time needed at the steering rate of 
15°/s to achieve the turn radius in row 3; the distance traveled can be seen in the last row. 

Speed V (m/s)     1.5      2.5       3.5        5.0       7.5 
  “    (km/h)     5.4      9.0     12.6      18.0     27.0 

Rmin (aymax = 2)    (1.125)     (3.125)       6.125      12.5     28.0 
    1.333      0.8       0.57        0.4       0.27 yaw rate (rad/s) 

d /dt     (°/s)   76.0    46.0     33.0       23.0     15.0 
tclothoid at Amax (time      in  seconds)       2.0        1.04       0.49 
Length (m) (arc length  of  clothoid)       7.0        5.2       3.67 

Higher turn rates can never be achieved for this aymax. Increasing speed has the 
minimal turn radius growing drastically (third row, last two columns); this results 
in Rmin = 35 m for V = 30 km/h. With a limit of the steering rate of |A| = 15°/s, the 
time needed for achieving the turn radius allowed ( max = 30 °) is given in the sec-
ond row from the bottom. The corresponding distance traveled on the clothoid arc 
is shown in the last row.  

These results have been achieved with the simple dynamic model discussed in 
Chapter 3 for the cg. In tight turns of larger vehicles, however, local conditions 
change considerably for different parts of the vehicle. The turn radius usually 
quoted is the one of the outer wheel track when driving a tight circle. For example, 
the van VaMoRs has an axle distance of a = 3.5 m, a track width of bTr ~ 1.8 m, 
and the minimal radius of turn is around 6 m, measured for the outer front wheel. 
From Figure 3.10, it can immediately be seen that if the turn radius of the outer 
front wheel is fixed as Rfout = 6 m, the turn radius of the inner rear wheel is 

2 2( )ri fout TrR R a b ,  (10.2) 

which – with the numbers just given – yields Rri = 3.07 m, almost half the value of 
Rmin. With the center of gravity at the center between the axles, the turn radius of 
the cg is half the sum of both, about 4.5 m for VaMoRs. Since, for a constant turn 
rate, circumferential speed goes with R from the turn center, centrifugal accelera-
tion (V2/R) increases linearly with R; this is to say that the outer front wheel (about 
30% further away than the cg) experiences a centrifugal acceleration correspond-
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ingly higher, while that of the inner rear wheel is as much lower. Limiting lateral 
acceleration at the cg thus leads to lower speed bounds; Rcg  4.5 m thus requires 
Vmax lowering Vmax to 4.5 2 = 3 m/s. The turn rate goes up to 2/3 rad/s ~ 38°/s, 
which has the outer front wheel experience 2.67 m/s2 and the inner rear wheel only 
1.33 m/s2 centrifugal acceleration.  

The inner rear wheel, of course, is not allowed to leave the road and hit the 
curbstones; therefore, its track is critical in curve steering. From these considera-
tions, for lateral accelerations limited to less than ~1/4 g (~ 2.5 m/s2), the speed 
range up to about V = 5 m/s (18 km/h) is of most practical interest in tight curve 
steering.

10.2.1.1 Influence of Speed V Driven 

As seen in the previous section, turn rates -dot of up to 2/3 rad/s around the cg 
occur which means there are opposing lateral velocity components at the front and 
rear axles. For cg location at lh from the rear and lv from the front axle, lh + lv = a,
(see Figure 3.23) the magnitudes are  

rearax h frontax v;     ly l y . (10.3) 

These components, superimposed on the shifted velocity vector V with slip an-
gle  at the cg, yield the actual velocity components Vf and Vr at the wheels, which 
– through angle of attack and tire stiffness – condition the forces between the 
ground and the tires. The point on the vehicle moving in direction of the longitudi-
nal axis is P; it is the one closest to the pivot point M and is located at distance lp in 
front of the rear axle. At this point, the following balance holds 

sin ( )h pV l l . (10.4) 

Assuming that the cg is at lh = lv = a/2 and  remains small so that sin , in 
connection with the dynamic model of Section 3.4.5.2, this results in the relation 

2 /p ltfl V T V k (10.5) 

for the location of point P in front of the rear axle. The outer point of the body on 
the line PM is the one coming closest to the vertical line above the curbstone in 
tight curves.

For the van VaMoRs the characteristic numbers needed are (Section 3.4.5.2) 

m = 4000 kg; Iz = 9000 kg m2 (yielding ); T2 2[ /( / 2)] 0.735zB zi i a  = V/60 and T

= V/81.7, with V in m/s. At speeds up to V = 5 m/s, the two time constants will be < 
0.1 seconds (eigenvalues on the negative real axis in the Laplace-transform domain 
with magnitude > 12). This means that within 0.3 seconds (the typical human time 
delay in visual perception), the stationary value is approached to better than 3%. 
For this reason, the dynamic equations for yaw rate  and slip angle  in Chapter 

3.38 can be well approximated by algebraic ones: 
( / ) ;V a (10.6) 

(1/ 2 / )T V a . (10.7) 

Since these equations contain speed, different trajectories will result for constant 
maximal steering rate A.
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10.2.1.2 Maneuver Elements 

These are supposed to consist of piecewise constant arcs at constant speed with 
steering rate -dot = ± A, respectively, zero for turnoff. Starting from driving 
straight ahead ( 0 = 0) or on a circular arc ( 0  0), the steering angle will increase 
or decrease linearly with time  

0 A t . (10.8) 

Inserting this into Equation 10.6 and integrating the resulting differential equa-
tion with respect to time yields 

2
0( ) / ( / 2),

( ) (1/ 2 / ) .

t V a t A t

t T V a A t
(10.9) 

Since the slip angle  is defined as the angle between the trajectory of the cg 
(tangent) and the heading of the vehicle body, for the clothoid arc defined by Equa-
tion 10.9 (with A and V = const.), the trajectory heading  of the cg can now be 
written for curve initiation ( 0 = 0) with Equations 10.7 and 10.9: 

2 1
( )

2 2

   [ ( 2 )].
2

VTVA
t A

a a

VA a
t t T

a V

t

(10.10) 

With V T  /a = V2/(60·3.5) < 0.119 for 
VaMoRs and V < 5 m/s, the second term 
in the last bracket is always smaller than 
the first one; this means that vehicle 
heading lags the trajectory heading dur-
ing curve steering. The slip angle is posi-
tive here (turn right), as can be seen from 
Figure 10.6.  

1/R = C = (tan ) / a

R

Rri

Rf

Vcg

Rfout

a
cg

bTr

max

•

Momentaneous

turn center

Rri = (Rfout
2 – (a – lp)² – bTr)

lp

aThe minimum turn radius occurs for 
maximum steering angle max. Dividing 

max by the maximally possible steering 
rate Amax yields the minimal maneuver 
time to the tightest turning. For example, 
the data for VaMoRs: Amax = 15°/s and 

max = 30° yield the time to the tightest 
turn TRmin = 2 seconds irrespective of the 

Figure 10.6. Curve initiation at constant speed V with constant steering rate A till max

(minimum turn radius). The critical parts are the outer front wheel (max. radius Rfout)
and the inner rear wheel (min. radius Rri). At slow speeds for tight curving, the slip an-
gle  is positive, and trajectory heading  is larger than vehicle body heading . All 
wheels run at different speeds because of the different radii. Note that the vehicle does 
not turn around a center on the extended rear axle (as assumed from simple considera-
tions, usually). 
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speed driven. This is to say that tighter turns are possible at lower speeds; however, 
in the limiting case of V = 0, the steered wheels will be turned on the spot and no 
distance is covered so that no turn of the vehicle occurs. If the vehicle starts driving 
with max, the tightest possible turn is obtained: A circular arc with Rmin as turn ra-
dius (higher order dynamic effects are neglected).  

Note from Equation 10.5 and Figure 10.7 that for very small speeds, the actual 
center for translation and rotation on a circle lies on the extended rear axle. Equa-
tion 10.7 indicates that the speed vector at the cg is not aligned with the body axis 
but occurs at an angle proportional to the steering angle. 

Driving a curve with Vcg = 3.5 m/s means that a distance of Vcg · TRmin (= 7 m in 
the example) is traveled until the minimal turn radius is reached. This situation is 
sketched in Figure 10.6. Equation 10.6 then yields the turn rate -dot = 30°/s and 
Equation 10.9 the yaw angle  = 30° and the slip angle  = 13.25°. The heading 
angle Rmin of the trajectory thus is 43.25°, almost half a right-angle turn. Since the 
second part of a 90°-curve-steering maneuver can be viewed as mirrored at /2
(45°), the vehicle would have to drive on a circle with minimal turn radius and 
constant slip angle for an angle 

circle Rmin = 2 ( /4 - )

or a time span           circle circle / t
(10.11) 

before the inverse control input has to be started. In the example,  = 3.5° and  = 
0.117 s, during which the vehicle travels about 0.41 m along the circular arc. 

The lateral offset of the cg from the initial straight line driven is obtained from 
the differential equation for y (last row of Equation 3.38): 

sin(  + )y V ,      

which with Equation 10.10 can be written as 

2 2
1 2sin ( 2 ) sin( [ ])

2

VA a
y V t T t V k t k t

a V
.

(10.12) 

The approximation sin  – 3/6 yields (at /4 the error is < 1%) 
3 3 6 5 2 4 3 3

1 2 2 2

2 3 6 5 2 4 3 3
1 2 1 2 2 2

[ 3 3 ]

/ [ ] { / 6 / 2 / 2 / 6},

k t k t k t k t

y V k t k t k t k t k t k t
(10.13) 

which can be integrated analytically to give (for V and A = const.) 
7 6 5 4 3 2

2 2 3
1 1 2 2 2 2( ) .

42 12 10 24 3 2

t t t t t t
y t V k k k k k k (10.14) 

For the example of VaMoRs with V = 3.5 m/s and A = 15°/s, that is, k1 = 0.131 
rad/s2 and k2 = 0.883 s, the lateral offset when reaching Rmin is yfin = 1.95 m (at t = 
TRmin = 2 s); here,  A ( -dot) is set back to zero. The distance traveled along the arc 
is TRmin ·V = 7 m, of course. At other speeds below 3.5 m/s, A and TRmin remain the 
same; for speeds above 3.5 m/s, TRmin is reduced (see Table 10.2). Table 10.3 
shows some results for curve initiation, for the central circular arc to be inserted, 
and for the total maneuver time at various constant (slow) speeds. It can be seen 
that the shortest maneuver time is achieved when the lateral acceleration limit is 
exploited (last row), but then the space needed is largest.  
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Table 10.3. Tight 90° curves at various speeds and maximal steering rate till Rmin (test vehi-
cle VaMoRs): Rows 2 to 9: Values when reaching Rmin; row 8: Circular arc to be driven with 
Rmin; row 9: Time on circular arc; row 10: Total time for 90° turn 

1 V in m/s 0.5 1 1.5 2.5 3 3.5
2 -dot in °/s 4.29 8.57 12.9 21.4 25.7 30
3 k1 in rad/s2 0.0187 0.374 0.561 0.095 0.112 0.131
4 k2 in 1/s 6.98 3.47 2.28 1.32 1.067 0.883
5  in ° 4.29 8.57 12.9 21.4 25.7 30
6  in ° 15.0 14.9 14.7 14.1 13.7 13.25
7  =  + 19.25 23.5 27.6 35.5 39.4 43.25
8 circle 51.5 43 34.8 19 11.2 3.5
9 tcircle 12 5.0 2.7 0.89 0.44 0.117
10 T90° in s 16 9 6.7 4.89 4.44 4.12

The other extreme is driving at very 
slow speed so that distance traveled during 
steering is minimal. The theoretical limit is 
turning the wheel while the vehicle stands 
still; but of course then the vehicle has to 
be accelerated to move at all. It should 
then stop again when the body axis has 
reached the direction of the crossroad. 
Here, the steering angle has to be turned 
back to zero, and roadrunning in the cross-
road can start with these new conditions. 
Figure 10.7 shows this limit case. 

Note that the velocity vector turns di-
rectly with the steering angle; this implies 
that the cg moves on the circular arc from 
angle  to (90 + CR + )°. This is due to 
the fact that the axle distance is a large 
percentage of the minimal turn radius. In 
the real world, accelerating and decelerat-
ing the vehicle with maximal steering an-
gle will lead to different force distributions 
at the tires and much more complex behav-
ior including shifts of the actual pivot 
point for circular motion. However, Figure 10.7 may give us an idea of what is 
really going to happen in this case. From Table 10.3, it can be seen that making the 
turn at speed V = 2.5 to 3 m/s (about 10 km/h) does not require too much time for 
tight turns at constant speed. The same is true for space needed (not shown in ta-
ble), so that this speed range is a good compromise for driving tight curves. 

A different approach when space is tight in the crossroad but not in the road 
driven is first to make a partial turn with lateral offset to the opposite direction of 
the crossroad and then turn into the crossroad with proper spacing; Figure 10.8 
gives a sketch of the maneuver.  

Müller (1996) has studied this case extensively; it will not be covered here. 

Figure 10.7. Theoretical limit for 
tightest turn possible: (1) Turn steer-
ing angle to maximum at standstill; 
(2) Drive circular arc until the direc-
tion of the crossroad is reached (here 
90°); stop again. (3) Turn steering 
angle back to zero and start road run-
ning. Note that changing the steering 
angle  at slow speed immediately 
turns the velocity vector; therefore, 
the circular arc driven starts at  and 
has to be driven till (90 + )°  

Vcg a
cg

bTr

max

a

•max

•
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10.2.1.3 Behavioral Capabilities Required 

The maneuver elements discussed in the previous section are special cases of feed-
forward control which have to be complemented by feedback components when-
ever perturbations have some influence. The essential point of feed-forward control 
is the correct trigger point for initiation. Accuracy for entering the crossroad should 
be in the decimeter range. The example quoted from VaMoRs indicates that for a 
speed of V = 3.5 m/s, the actual pivot point for turning lies about 2 decimeters in 
front of the rear axle. This, as well as the delay time from control decision to actual 
movement of the actuator (over 200 ms corresponding to a 7-decimeter distance 
traveled at that speed), have to be taken into account in triggering the steering rate. 

During the maneuver elements, the actual trajectories have to be observed and 
compared to the intended ones; if deviations are too large, either corrective feed-
back components have to be superimposed, or a new feed-forward control law has 
to be selected. If, for some reason, a dangerous situation occurs, e.g., the vehicle 
starts leaving the intended lane, it should be stopped. (VaMoRs experienced this 
case when there was a failure in the power supply for the steering motor, reducing 
maximum steering rate achievable to ~ 50% of the nominal value.) As corrective 
feedback in standard cases, the usual one with pole assignment and gain scheduling 
as a function of speed [Zapp 1988; Brüdigam 1994] is sufficient for curve steering 
also [Müller 1996].

Toward the end of the turnoff maneuver, when the vehicle eye is locked stably 
onto the crossroad and when the lateral displacement of the vehicle from the center 
of the lane is not too large, corrective (additive) control output should be superim-
posed in any case to drive the deviations to zero. For the final part of the maneuver, 
the feed-forward control input may be dropped altogether.  

AT

Steering angle

Distance l

Figure 10.8. Curving into a tight crossroad with initial steering in opposite direction; 
the circular arc with minimum radius starts at point E 
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10.2.2 Gaze Control for Efficient Perception 

As mentioned in Section 10.1.2, there are at least four phases in gaze control for 
crossroad detection and turnoff in the scheme developed; they are discussed in de-
tail here. 

10.2.2.1 Attention-controlled Search for Crossroads Detection 

In phase 1, additional windows for detection of the crossroad are positioned to that 
side of the road to be turned to, and feature search will be started at a trigger point 
given from navigation. Both edge- and area-based features are sought; the latter are 
more robust under the aspect conditions initially given. With little computing 
power available, edge features and adjacent average gray values are efficiently ex-
tracted with ternary masks (templates) as shown in Figure 5.5, since edge direction 
can be rather well predicted. The mask parameters have to be intelligently con-
trolled by the interpretation process; they may vary with time of year and day and 
with the distance of interpretation (range). 

With the computing power usually available nowadays, full sets of area-based 
features should not be omitted since they tend to be more robust and easier to in-
terpret. Crossroads may have different gray values or texture; methods like UBM 
(Section 5.3) have also been developed with this task in mind. To get a larger part 
of the crossroad into the image, gaze direction is biased to the side of the turnoff by 
a few degrees, and search 
in vertical (column) stripes 
is started.

In the case that a candi-
date for a crossroad is de-
tected by a series of consis-
tent feature sets over time, 
transition to phase 2 starts. 
Figure 10.9 shows this 
situation when the distance 
to the intersection of the 
center line of the crossroad 
with the boundary line of 
the road driven (lCR) as 
well as the intersection an-
gle CR are known ap-
proximately. If CR is corrupted by noise, starting with an intersection angle of 90° 
is sufficient for fast convergence while approaching the intersection, usually. 

10.2.2.2 Phase 2: Fixation Point Pv on Circular Arc 

In this phase, the viewing direction starts turning into the crossroad while ap-
proaching it at an approximately right angle. Speed V determines the yaw rate for 

Figure 10.9. After detection of crossroad candidate 
connect the straight lines assumed to be driven on both 
roads (lanes) by a circular arc; find point Pv where gaze 
direction intersects this arc. Distance to Pv is fixed, 
which for a given speed V determines the yaw rate for 
gaze control. 

lCR

CR

Gaze direction

cg
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gaze control if point Pv moves on the circular arc given (constant radius rPl) [Muel-
ler 1996]:

2 cos /( (sin cos cot ) -K F v FK FK FV l . (10.15) 

Figure 10.10 visualizes the idea for computing the feed-forward yaw rate for gaze 
control approaching the junction. 

dl

l1

10.2.2.3 Phase 3: View Fixation on Centerline of the Crossroad 

Phase 3 of gaze control for turningoff into a crossroad starts where the circular arc 
and the following straight section in the crossroad meet. At this point, the fixation 
point starts moving at a proper speed VPv to avoid excessive gaze turn rates. The re-
sulting feed-forward gaze turn rate for phase 3 then becomes 

3

K

/ sin( ) / cos( + )

            (1+ l / cos ) .
K v K Pv v F CR

v K F

V l V l

l

K
(10.16) 

Figure 10.11 shows the ge-
ometry; point Pv moves inde-
pendently at speed VPv that has to 
be selected in a certain range for 
an appropriate turn rate of the 
gaze direction. The increasing 
yaw angles steadily improve the 
aspect conditions for precisely 
determining the two unknown 
parameters width and angle of in-
tersection of the crossroad that 
determine the turnoff trajectory.  

CR

VPv· dt =……From the side constraint that 
look-ahead distance lv should not 
grow during this phase, an upper 
limit for the speed VPv can be 
given; 

cg

Figure 10.11. Gaze control in phase 3 for pre-
cisely determining angle CR and width b of 
the crossroad at an intersection. 

Figure 10.10. Determining yaw rate of gaze direction in phase 2 from fixation of point Pv

at constant distance from the turning camera but moving on a circular arc connecting the 
straight center lines of the roads crossing. 
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,max

sincos( )

sin( + ) sin( + )
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F CR K F CR K

l
V V . (10.17) 

Point Pv moves with constant speed VPv < VPv,max on the crossroad until a prede-
fined distance xfix from the origin (O) is reached; it then fixates this point until the 
look-ahead distance is shortened to a predefined minimal value lvmin. This limit is 
given by a certain image row under the condition of nominal pitch angle and planar 
ground using perspective projection by a pinhole model; it thus depends on the fo-
cal length of the camera used. 

10.2.2.4 Phase 4: Evaluate Constant Image Row into the Crossroad  

For this look-ahead distance lvmin = const, a yaw rate for gaze control is performed 
leading to normal roadrunning on the crossroad. The essential component now is 
counteracting the vehicle turn rate [Müller 1996] (see second term): 
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v F CR K
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l
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(10.18) 

The vehicle turns underneath the cameras which are not yet locked onto the 
crossroad by visual feedback (next phase) but receive a feed-forward signal corre-
sponding to this situation from theory. In Figure 10.3 this corresponds to t > about 
17 s.

10.2.2.5 Superimposed Feedback Control 

While traveling into the crossroad, the feed-forward component of phase 4 fades 
out and a feedback component from centering the gaze on the lane center at lvmin

takes over; this also takes care of perturbations and the effects of imprecise percep-
tion and modeling accumulated up to now. Since the viewing direction is fixed into 
the crossroad, toward the end, it hardly turns relative to the spine of this road; how-
ever, the vehicle turns underneath the camera.  

Here, only the basic considerations for gaze control have been discussed. Feed-
forward control for pitch and feedback components in yaw also in phases 2 to 4 
have been studied for making gaze behavior more robust; details may be found in 
[Müller 1996, Section 5.4].

10.2.3 Models for Recursive Estimation 

Two sets of data have to be determined while approaching the crossroad: (1) the 
shape parameters of the crossing and the crossroad and (2) the vehicle position 
relative to the crossroad. 
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.

10.2.3.1 Shape Parameters of Crossing  

The parameters, crossing angle (deviation from 90°) CR and lane width in the 
crossroad, selected as 2·bCS here (see Figure 10.12 below), have to be determined 
from visual observation. The radius rCS of the borderline (curbstones) connecting 
the two roads in the curve is assumed to be standard and known. The distance to 
the crossroad lCS has to be estimated precisely to find the right trigger point for the 
initiation of the steering angle feed-forward maneuver. All parameters of, and the 
relative egostate to the road actually driven are assumed to be known from applica-
tion of the methods discussed in Chapter 9. 

System model: Figure 10.1 has shown the basic geometry of a general crossing in-
cluding the rounded corners assumed to be circular arcs of radius r. The coordinate 
x points in the driving direction, y to the right, and z downward (in the direction of 
gravity, international standard from air vehicle analysis). Initially, when the yaw 
angle for gaze relative to the road driven is small, its cosine is assumed to be 1, and 
measurement of features on the crossroad only in the vertical direction of the im-
ages is sufficient. These features in the real world as well as the intersection point 
of the two roads then move only in the x-direction. Therefore, for each of the two 
intersection parameters, a second-order dynamic model driven by noise is used 
here; for sampled data, this is written as 

1 1

1
x x q ( )

0 1 1
k

k k k k k

k

xT T
q t

x
(10.19) 

T is the cycle time of sampling (for CCIR-video = 40 ms), and q1(tk) is the dis-
crete noise term driving estimation. 

The distance lCR to the intersection is affected directly by longitudinal control 
inputs to the vehicle (throttle and brakes); accelerations and decelerations should 
thus be included in the model, increasing the order of the system by one (to three). 
Because of the strong dependence on the point of operation and on parameters, 
there is no simply computable relationship between actuator input and effective ac-
celeration/deceleration. Therefore, “colored noise” has been chosen as a model, de-
scribed in the following equation by the term – :

0 1 0 0

( ) 0 0 1 0 .

0 0

CR

CR

lCR

l

x t l

ql

l k

(10.20) 

 represents the reciprocal correlation time constant of colored noise; based on 
experimental results for VaMoRs, the value  = 1/2 s 1 has been adopted. Assum-
ing that accelerations/decelerations are constant over one cycle, the following dis-
crete model results: 

1313

1 23 23

33 33

1

0 1 ( )

0 0
k k

T

x x q t , (10.21) 
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with for colored noise; for 

white noise, these terms are 

2
13 23 33( 1 ) / ; (1 ) / ;T TT e e e T

bT q

2
13 23 33/ 2;         ;        1.T T

In tests, it has been found advantageous not to estimate the shape parameters 
and distance separately, but in a single seventh-order system; the symmetry of the 
crossroad boundaries measured by edge features tends to stabilize the estimation 
process:
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(10.22) 

The last vector (noise term) allows determining the covariance matrix Q of the 
system. The variance of the noise signal is 

2 2 2E{( ) } E{( ) }    for   0
i i i i i

q q q q . (10.23) 

Assuming that the noise processes ql, qb, and q1  are uncorrelated, the covari-
ance matrix needed for recursive estimation is given by Equation 10.24.  

The standard deviations l, b, and  have been determined by experiments 
with the real vehicle; the values finally adopted for VaMoRs were l = 0.5, b =
0.05 and = 0.02. 
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Measurement model: Velocity measured conventionally is used for the vision 
process since it determines the shift in vehicle position from frame to frame with 
little uncertainty. The vertical edge feature position in the image is measured; the 
one-dimensional measurement result thus is the coordinate zB. The vector of meas-
urement data therefore is 

B

0 1 2y ( , , , ,....., ,....., )T

B B B Bi BmV z z z z z . (10.25) 

The predicted image coordinates follow from forward perspective projection 
based on the actual best estimates of the state components and parameters. The par-
tial derivatives with respect to the unknown variables yield the elements of the 
Jacobian matrix C (see Section 2.1.2): 
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y / xC . (10.26) 
The detailed derivation is given in Section 5.3 of [Müller 1996]; here only the re-

sult is quoted. The variable dir has been introduced for the direction of turn-off:  
       dir = + 1  for turns to the right  

  dir =  1  for turns to the left ;  
(10.27) 

the meaning of the other variables can be seen from Figure 10.12. The reference 
point for perceiving the inter-
section and handling the 
turnoff is the point 0 at which 
the right borderline of the 
(curved) road driven and the 
centerline of the crossroad 
(assumed straight) intersect. 
The orthogonal line in point 0 
and the centerline of the 
crossroad define the relative 
heading angle CR of the in-
tersection (relative to 90°). 

Figure 10.12. Visual measurement model for cross-
road parameters during the approach to the crossing: 
Definition of terms used for the analysis 

optical 
axis

cg

CR

lCR

lCR

ixLinie = -1

ixLinie = +1

Since for vertical search 
paths in the image, the hori-
zontal coordinate yB is fixed, 
the aspect angle of a feature 
in the real world is given by 
the angle 

B

Pi

tan /Pi Biy f ky . (10.28) 

In addition, an index for characterizing the road or lane border of the crossroad 
is needed. The “line index” ixLinie is defined as follows: 

1 right border of right lane of crossroad

1 left border of right lane of crossroad  .

3 left border of left neighboring lane     
Linieix (10.29) 

With the approximation that lCR is equal to the straight-line distance from the 
camera (index K) to the origin of the intersection coordinates (see Figure 10.12), 
the following relations hold: 

cos( ) t ,
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Pi CK Pi K
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y l y y n b
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(10.30) 

with nspur = number of lanes to be crossed on the subject’s road when turning off. 
Setting cos c  1 allows resolving these equations for the look-ahead range lvi:

cos sin
.

cos( - ) [ /( )] sin( - )
CR CR Linie CS K CR

vi

CK CR Bi y CK CR

l ix b dir y
l

y f k
  (10.31) 

Each Jacobian element gives the sensitivity of a measurement value with respect 
to a state variable. Since the vertical coordinate in the image depends solely on the 
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look-ahead range lvi directly, the elements of the Jacobian matrix are determined by 
applying the chain rule, 

/ ( / ) ( / ).B j B vi vi jz x z l l x (10.32) 

The first multiplicand can be determined from Section 9.2.2; the second one is 
obtained with 

1
1 { ( ) [ /( )] sin( )}CK CR Bi y CK CRk cos y f k (10.33) 
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(10.34) 

With Equation 10.32, the C-matrix then has a repetitive shape for the measure-
ment data derived from images, starting in row 2; only the proper indices for the 
features have to be selected. The full Jacobian matrix is given in Equation 10.35. 
The number of image features may vary from frame to frame due to changing envi-
ronmental and aspect conditions; the length of the matrix is adjusted corresponding 
to the number of features accepted.  
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0 0 0 0
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. (10.35) 

Statistical properties of measurement data: They may be derived from theoreti-
cal considerations or from actual statistical data. Resolution of speed measurement 
is about 0.23 m/s; maximal deviation thus is half that value: 0.115 m/s. Using this 
value as the standard deviation is pessimistic; however, there are some other ef-
fects not modeled (original measurement data are wheel angles, slip between tires 
and ground, etc.). The choice made showed good convergence behavior and has 
been kept unchanged. 

Edge feature extraction while the vehicle was standing still showed an average 
deviation of about 0.6 pixels. While driving, perturbations from uneven ground, 
from motion blur, and from minor inaccuracies in gaze control including time lags 
increase this value. Since fields have been used in image evaluation (every second 
row only), the standard deviation of 2 pixels was adopted. 

Assuming that all these measurement disturbances are uncorrelated, the follow-
ing diagonal measurement covariance matrix for recursive estimation results 
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2 2 2Diag( , , .... , ....)
B BV z zR . (10.36) 

The relations described are valid for features on the straight section of the cross-
road; if the radius of the rounded corner is found, more complex relations have to 
be taken into account. 

Feature correlation between real world and images: Image interpretation in 
general has to solve the big challenge of how features in image space correspond to 
features in the real world. This difficulty arises especially when distances have to 
be recovered from perspective mapping (see Figure 5.4 and Section 7.3.4). There-
fore, in [Müller 1996] appreciable care was taken in selecting features for the object 
of interest in real space.  

Each extracted edge feature is evaluated according to several criteria. From im-
age “windows” tracking the same road boundary, an extended straight line is fit to 
the edge elements yielding the minimal sum of errors squared. This line is accepted 
only if several other side constraints hold. It is then used for positioning of meas-
urement windows and prediction of expected feature locations in the windows for 
the next cycle. Evaluation criteria are prediction errors in edge element location, 
the magnitude of the correlation maximum in CRONOS, and average gray value 
on one side of the edge. For proper scaling of the maximal magnitude of the corre-
lation results in all windows, korrmax as well as maximal and minimal intensities of 
all edge elements found in the image are determined. For each predicted edge ele-
ment of the crossroad boundaries, a “window of acceptance” is defined (dubbed 
“basis”) in which the features found have to lie to be accepted. The size of this 
window changes with the number of rows covered by the image of the crossroad 
(function of range). There is a maximal value basismax that has an essential influ-
ence on feature selection. 

In preliminary tests, it has turned out to be favorable to prefer such edges that lie 
below the predicted value, i.e., which are closer in real space. This results in an 
oblique triangle as a weighting function, whose top value lies at the predicted edge 
position (see Figure 10.13). 

Figure 10.13. Scheme for weighting features as a function of prediction errors 

Predicted positions of crossroad boundaries

Basis =
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The weight in window i for a prediction error thus is 
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Here, basispos designates the baseline of the triangle in positive zB-direction 
(downward) and basis

B

neg in the negative zBB direction. The contribution of the mask 
response korri and the average intensity Ii on one side of the CRONOS-mask to the 
overall evaluation is done in the following way: Subtraction of the minimal value 
of average intensity increases the dynamic range of the intensity signal in non-
dimensional form: (Ii Imin)/(Imax Imin). The total weight werti is formed as the  
weighted sum of these three components: 

mi
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0                                                                      for   0.
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I Ikorr
k wert k k wert

korr I Iwert
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(10.38) 

The factors kdz, kkorr, and kgrau have been chosen as functions of the average dis-
tance between the boundaries of the crossroad in the image: 

Bdz (see Figure 10.14). 

The following considerations have led to the type of function for the factors ki:
Seen from a large distance, the lines of the crossroad boundaries are very close to-
gether in the image. The most important condition to be satisfied for grouping edge 
features is their proximity to the predicted coherent value according to the model 
(kdz > kkorr and kgrau). The model thus supports itself; it remains almost rigid.  

Approaching the crossroad, the distance between the boundaries of the cross-
road in the image starts growing. The increasingly easier separation of the two 
boundary lines alleviates grouping features to the two lines by emphasizing conti-
nuity conditions in the image; this means putting more trust in the image data rela-
tive to the model (increasing kkorr). In this way, the model parameters are adjusted 
to the actual situation encountered.  

kkorr

kgrau

kdz

Beside the correlation results, the av-
erage intensity in one-half of the 
CRONOS mask is a good indicator when 
the distance to the crossing is small and 
several pixels fall on bright lines for lane 
or boundary marking. A small distance 
means a large value of 

0

1

Bdz ; in Figure 

10.14 this intensity criterion kgrau is used 
only when 

Bdz > basismax. Values of ba-

sismax in the range of 20 to 30 pixels are 
satisfactory. Beyond this point, the 
boundary lines are treated completely 
separately.

basismax
dzB

Figure 10.14. Parameters of weighting 
scheme for edge selection as function 
of width of crossroad dzB in the image 
(increases with approach to the cross-
ing)The edge features of all windows with 

the highest evaluation results around the 
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predicted boundary lines are taken for a new least-squares line fit, which in turn 
serves for making new predictions for localization of the image regions to be 
evaluated in the next cycle. The fitted lines have to satisfy the following constraints 
to be accepted: 
1. Due to temporal continuity, the parameters of the line have to be close to the 

previous ones. 
2. The distance between both boundaries of the crossroad is allowed to grow only 

during approach. 
3. The slopes of both boundary lines in the image are approximately equal; the 

more distant line has to be less inclined relative to the horizontal than the closer 
one. 

With decreasing distance to the crossroad, bifocal vision shows its merits. In addi-
tion to the teleimage, wide-angle images have the following advantages: 

Because of the reduced resolution motion blur is also reduced, and the images 
are more easily interpreted for lateral position control in the near range. 
Because of the wider field of view, the crossroad remains visible as a single ob-
ject down to a very short distance with proper gaze control. 

Therefore, as soon as only one boundary in the teleimage can be tracked, image 
evaluation in the wide-angle image is started. Now the new challenge is how to 
merge feature interpretation from images of both focal lengths. Since the internal 
representation is in (real-world) 3-D space and time, the interpretation process need 
not be changed. With few adaptations, the methods discussed above are applied to 
both data streams. The only changes are the different parameters for forward per-
spective projection of the predicted feature positions and the resulting changes in 
the Jacobian matrix for the wide-angle camera (a second measurement model); 
there is a specific Jacobian matrix for each object–sensor pair. 

The selection algorithm picks the best suited candidates for innovation of the 
parameters of the crossroad model. This automatically leads to the fade out of fea-
tures from the telecamera; when this occurs, further evaluation of tele images is 
discarded for feedback control. Features in the far range are continued because of 
their special value for curvature estimation in roadrunning. 

10.2.3.2 Vehicle Position Relative to Crossroad  

During the first part of the approach to an intersection, the vehicle is automatically 
visually guided relative to the road driven. At a proper distance for initiation of the 
vehicle turn maneuver, the feed-forward control time history is started, and the ve-
hicle starts turning; a trajectory depending on environmental factors will result. 
The crossroad continues to be tracked by proper gaze control. 

When the new side of the road or the lane to be driven into can be recognized in 
the wide-angle image, it makes sense immediately to check the trajectory achieved 
relative to these goal data. During the turn into the crossroad, its boundary lines 
tend to move away from the horizontal and become more and more diagonal or 
even closer to vertical (depending on the width of the crossroad). This means that 
in the edge extractor CRONOS, there has to be a switch from vertical to horizontal 
search paths (performed automatically) for optimal results. Feature interpretation 
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(especially the precise one discussed in Section 9.5) has to adapt to this procedure. 
The state of the vehicle relative to the new road has to be available to correct errors 
accumulated during the maneuver by feedback to steering control. For this pur-
pose, a system model for lateral vehicle guidance has to be chosen. 

System model: Since speed is small, the third-order model may be used. Slightly 
better results have been achieved when the slip angle also has been estimated; the 
resulting fourth-order system model has been given in Figure 7.3b and Equation 
7.4 for small trajectory heading angles  (cos  1 is sufficient for roadrunning 
with  measured relative to the road). When turning off onto a crossroad, of course, 
larger angles  have to be considered. In the equation for lateral offsets yV, now the 
term V·cos  occurs twice (instead of just V).

After transition to the discrete form for digital processing (cycle time T) with the 
state vector xq

T = [yq , q , q , q ] (here in reverse order of the components com-
pared to Equation 7.4 and with index q for the turnoff maneuver, see Equation 
10.40), the dynamic model directly applicable for recursive estimation is, with the 
following abbreviations entering the transition matrix k and the vector bk multi-
plying the discrete control input  
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Since the transition matrix  is time variable (V, ), it is newly computed each 
time. Prediction of the state is not done with the linearized model but numerically 
with the full nonlinear model. The covariance matrix Q has been assumed to be di-
agonal; the following numerical values have been found empirically for VaMoRs: 
qyy = (0.2m)2, q  = (2.0°)2, q  = (0.5°)2, and q  = (0.2°)2.

Initialization for this recursive estimation process is done with results from rela-
tive ego-state estimation on the road driven and from the estimation process de-
scribed in Section 10.2.3.1 for the intersection parameters: 
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(10.40) 
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Figure 10.15. Measurement model for relative egostate with active gaze control for 
curve steering: Beside visual data from lane (road) boundaries, the gaze direction an-
gles relative to the vehicle body ( K , K), the steer angle , the inertial yaw rate from a 
gyro F , and vehicle speed V are available from conventional measurements. 

Measurement model: Variables measured are the steering angle F (mechanical 
sensor), the yaw rate of the vehicle V-dot (inertial sensor), vehicle speed V (as a 

parameter in the system model, derived from measured rotational angles of the left 
front wheel of VaMoRs), and the feature coordinates in the images.  

Depending on the search direction used, the image coordinates are either yB or 
z

B

BB. With kB as a generalized image coordinate, the measurement vector B y has the 
following transposed form  

F F 0[ , , , ,T ]B Bi Bmy k k k

CSb

. (10.41) 

From Figure 10.15, the geometric relations in the measurement model for turn-
ing off onto a crossroad (in a bird’s-eye view) can be recognized:  

qK qK qcos sin sin .i vi K q Liniey l l y ix (10.42) 

Perspective transformation with a pinhole model (Equations 2.4 and 7.20) yields 
tan

;          .
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Bi i Bi K vi K
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y y z H l

f k l f k l H
(10.43) 

For planar ground, a search in a given image row zBiBB  fixes the look-ahead range 
lvi. The measurement value then is the column coordinate 
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The elements of the Jacobian matrix are 
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For measurements in a vertical search path yBiBB  (columns), the index in the col-
umn zBiBB  is the measurement result. Its dependence on the look-ahead range lvi has 
been given in Equation 10.31. For application of the chain rule, the partial deriva-
tives of lvi with respect to the variables of this estimation process here have to be 
determined: With 

1
2

2 2
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(10.46) 

In summary, the following Jacobian matrix results (repetitive in the image part) 
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The measurement covariance matrix R is assumed to be diagonal:  

.2 2 2 2[ , , , , ]
F F B Bk kR diag (10.48) 

From practical experience with the test vehicle VaMoRs, the following standard 
deviations showed good convergence behavior 

2 pixels.
F F Bk= 0.05°;   = 0.125°/s;     

The elements of the Jacobian matrix may also be determined by numerical dif-
ferencing. Feature selection is done according to the same scheme as discussed 
above. From a straight-line fit to the selected edge candidates, the predictions for 
window placement and for computing the prediction errors in the next cycle are 
done.

10.3 System Integration and Realization 

The components discussed up to now have to be integrated into an overall (distrib-
uted) system, since implementation requires several processors, e.g., for gaze con-
trol, for reading conventional measurement data, for frame grabbing from parallel 
video streams, for feature extraction, for recursive estimation (several parallel 
processes), for combining these results for decision-making, and finally for imple-
menting the control schemes or signals computed through actuators. 

For data communication between these processors, various delay times occur; 
some may be small and negligible, others may lump together to yield a few tenths 
of a second in total, as in visual interpretation. To structure this communication 
process, all actually valid best estimates are collected – stamped with the time of 
origination – in the dynamic data base (DDB [or DOB in more recent publications, 
an acronym from dynamic object database]). A fast routing network realizes com-
munication between all processors. 
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10.3.1 System Structure 

Figure 10.16 shows the (sub-) system for curve steering (CS) as part of the overall 
system for autonomous perception and vehicle guidance. It interfaces with visual 
data input on the one side (bottom) and with other processes and for visual percep-
tion (road tracking RT), for symbolic information exchange (dynamic data base), 
for vehicle control (VC), and for gaze control by a two-axis platform (PL) on the 
other side (shown at the top). The latter path is shown symbolically in duplicate 
form by the dotted double-arrow at the center bottom. 

The central part of the figure is a coarse block diagram showing the information 
flow with the spatiotemporal knowledge base at the center. It is used for hypothesis 
generation and -checking, for recursive estimation as well as for state prediction, 
used for forward perspective projection (“imagination”) and for intelligent control 
of attention; feature extraction also profits from these predictions.  

Features may be selected from images of both the tele- and the wide-angle cam-
era depending on the situation, as previously discussed. Watching delay times and 
compensating for them by more than one prediction step, if necessary, is required 
for some critical paths. Trigger points for initiation of feed-forward control in 
steering are but one class of examples. 

Figure 10.16. System integration for 
curve steering (CS): The textured area 
contains all modules specific for this task. 
Image data from a tele- and a wide-angle 
camera on a gaze control platform PL 
(bottom of figure) can be directed to spe-
cific processors for (edge) feature extrac-
tion. These features feed the visual recog-
nition process based on recursive 
estimation and prediction (computation of 
expectations in 4D, center). These results 
are used internally for control of gaze and 
attention (top left), and communicated to 
other processes via the dynamic database 
(DDB, second from top). Through the 
same channel, the module CS receives re-
sults from other measurement and percep-
tion processes (e.g., from RT for road 
tracking during the approach to the inter-
section). The resulting internal “imagina-
tion” of the scene as “understood” is dis-
played on a video monitor for control by 
the user. Gaze and vehicle control (VC) 
are implemented by special subsystems 
with minimal delay times. 
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10.3.2 Modes of Operation 

The CS module realizes three capabilities: (1) Detection of a crossroad, (2) estima-
tion of crossroad parameters, and (3) perception of egostate relative to the cross-

road. These capabilities may be used for the 
following behavioral modes: 

Figure 10.17. U-Turn maneuvers re-
quiring capabilities for turning off; 
the maneuvers A to D require turning 
into a crossroad in reverse gear,  
while maneuvers E and F just require 
backing up in a straight line. [Back-
ing up has not been realized with our 
vehicles because of lacking equip-
ment.] 

The mode “ZWEIG-AB” (“turnoff”) uses 
all three capabilities in consecution; this 
maneuver ends when the vehicle drives in 
the direction of the crossroad with small 
errors in relative heading (for example 
| | < 6°  0.1 rad) and a small lateral 
offset (| y| < 0.5 m). 
The mode “FIND-ABZW” (“find-
crossroad”) serves for detecting a cross-
road as a landmark. With the distance to 
the intersection, the navigational program 
can verify the exact position on a map (for 
example, when GPS data are poor). Here 
only the first two capabilities are used. 
The remaining two modes “WENDE-G-
EIN” and “WENDE-G-AUS” may be 
used for U-turns at a crossroad. In Figure 
10.17 six different realizable maneuvers 
are sketched. 

10.4 Experimental Results 

Initially, this capability of turning off has been developed as a stand-alone capabil-
ity, first in (HIL) simulation then with the test vehicle VaMoRs in a dissertation 
[Mueller 1996], based on the second-generation (“Transputer”) hardware. Because 
of the modularity planned from the beginning, it could be transferred to the third-
generation “EMS vision” system with only minor changes and adaptations [Lütze-
ler, Dickmanns 2000; Pellkofer, Dickmanns 2000; Siedersberger 2000].

Here, only some results with the second-generation system will be discussed; 
results with the integrated third-generation system EMS vision will be deferred to 
Chapter 14. 
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Figure 10.18. Series of snapshots from a curve-
steering maneuver to the right on test track Neubiberg 
(see text) 

10.4.1 Turnoff to the Right 

Figure 10.18 gives an impression of the complexity of the turnoff maneuver with 
active gaze control for bifocal vision. The upper part shows the distant approach 
with the telecamera trying to pick up features of the crossroad [after “mission con-
trol (navigation)” has indicated that a crossroad to the right will show up shortly). 
The second to fourth snapshot (b to d, marked in the central column), which are 
several frames apart, show how gaze is increasingly turned into the direction of the 
crossroad after concatenation of edge features to extended line elements has been 
achieved for several lines. For easier monitoring, the lengths of the markings su-
perimposed on the image are proportional to measured gradient intensity. 

The upper four images stem from a camera with a telelens during the initial ap-
proach. Top left: Search in window (white rectangle) for horizontal edge features in 
the direction of the expected crossroad. Top right: The fixation point starts moving 
into the crossroad. Second left: Three white lane markings are tracked at a preset 
distance. Second right: With better separation of lines given, only the markings of 
the lane to be turned into are continued. The lower four images are from the wide-
angle camera, whose images start being evaluated in parallel; the vehicle is now 
close to the intersection, 
looking to the right and 
has started turning off. 
The dark bar is a column 
of the vehicle structure 
separating the front- from 
the side windshield). Third

row left: Three lane mark-
ings are found in vertical 
search regions at different 
distances. Right and bot-
tom left: Only the future 
lane to be driven is con-
tinued; bottom right: Ve-
hicle has turned in the di-
rection of the new road 
(the bar has disappeared), 
feature search has been 
switched to horizontal, 
and the system performs 
the transition to standard 
roadrunning [slight errors 
in yaw angle and lane 
width can be recognized 
from the prediction errors 
(white dots left)]. 

The building in the 
background allows the 
human observer to estab-
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lish temporal continuity when proceeding to the wide-angle snapshots in the lower 
part of the figure. The vehicle looks “over the shoulder” to the right. In the lower 
part of the figure, the borderlines have become close to vertical, and the feature 
search with CRONOS is done in rows. Due to a small lateral offset from the center 
of the lane in the crossroad, the predicted points for the lane markings show a 
slight error (white dots at center of dark lines and vice versa). Especially in the 
transition phase, the 4-D model-based approach shows its strengths. 

Figure 10.19 shows the time histories of the corresponding estimated crossroad 
parameters and vehicle states. 

lCR [m]

CR°

V [km/h]

steer angle°

lateral offset

in decimeter (dm)

slip angle°

yaw angle°

sum of yaw angles

vehicle + platform
yaw

angle°

vehicleplatform

yaw angle°

steer angle°

Figure 10.19. Parameter and state esti-
mation for turning off to the right with 
VaMoRs (Figure 10.18): Top left: Cross-
road parameters and speed driven; top 
right: Time history of vehicle lateral off-
set and yaw angle relative to crossroad. 
Left: State and control variables are 
given in vehicle coordinates relative to 
initial state.  

Speed V is still decreasing during the approach (top left, lower curve); the turn is 
performed at V  2.3 m/s. The yaw angle of the gaze platform is turned to 20° 
when the crossroad is picked up (at t = 0 in lower left figure); it then increases up 
to 80° at around 12 seconds. This is when the estimation process of vehicle state 
relative to the crossroad starts (upper right subfigure). The vehicle is still 8 m (= 80 
decimeters) away from the center of the right lane of the crossroad, and vehicle 
heading relative to the crossroad (yaw angle) is  80°. It can be nicely seen that the 
slip angle  is about half the steering angle ; they all tend toward zero at the end 
of the maneuver at about 23 seconds. The lower left figure shows that the sum of 
vehicle and platform yaw angle accumulates to 90° finally; between 13 and 20 sec-
onds, the yaw rates of vehicle (dashed curve) and platform (dotted) have about the 
same magnitude but opposite sign. This means that gaze is fixated to the crossroad, 
and the vehicle turns underneath the platform.  

At the end of parameter estimation for the crossroad (top left) the best estimate 
for half the lane width bCS is  1.75 m (correct: 1.88 m) and for the heading angle 

CR is  -2.6° (correct: +0.9°). Since lateral feedback is added toward the end of 
the maneuver, this is of no concern.  
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10.4.2 Turn-off to the Left 

Figure 10.20 shows how the general procedure developed for the maneuver “turn 
off” works for a turn across lanes for oncoming traffic onto a crossroad at an angle 
of about 115° (negative yaw angle is defined as left). There is much more space 
for turning to the left rather than to the right (in right-hand traffic), therefore, the 
maximal platform yaw angle is only about 50° (lower right sub-figure, from ~ 6 to 
14 s), despite the larger total turn angle. The initial hypothesis developed for a gaze 
angle of ~ 30° at a distance lCR of 17 m was an intersection angle of ~ 98° (top
left, lowest solid curve) and a half-lane width of bCS  1.2 m (dash-dotted curve).

During the approach to an estimated 12 m, the initial crossroad parameters 
change only slightly: CR decreases from 8 to 11°, and bCS increases to ~1.4 m. 
However, gaze direction is turned steadily to over 40°. Under these aspect condi-
tions with increasingly more features becoming visible further into the crossroad, 
at around 4.5 to 5 s the sharp turn angle is recognized (top left subfigure), and in a 

steer angle°
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yaw angle°
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sum of yaw angles
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(planar)

Part of mobile robots 
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Sharp turn to the Sharp turn to the 

left from A to Dleft from A to D

D

Figure 10.20. Turnoff to the left onto a road branching at an angle deviating considera-
bly from 90° (lowest curve, top left, and bird’s-eye view in subfigure bottom left); the 
best estimate shows some overshoot at around 7 s. At about 4.3 s, when the platform an-
gle is about 40° (lower right), the higher turnoff angle is discovered (lowest curve, top 
left), and the estimated width of the crossroad jumps to over 2 m; at 5 s, control output is 
started (dash-dotted line, lower right subfigure). Total turn angle is about 115°; around 
20 s, an overshoot in lateral displacement in the new lane of about a half meter occurs 
(top right, solid curve). Since the new lane is far more than 3 m wide (2bCS), this looks 
quite normal to a human observer. 
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transient mode, estimated lane width, intersection angle, and distance to the inter-
section point of the two lanes show transient dynamics (note speed changes also!).  

At around 9 s (that is 4 s into the steering rate feed-forward maneuver), the ve-
hicle has turned around 15°, and the estimation process relative to the crossroad 
as a new reference is started based on wide-angle image data (top right subfigure). 
At around 24 s, all variables tend toward zero again, which is the nominal state for 
roadrunning in the new reference frame. 

In more general terms, this maneuver should be labeled “Turning off with cross-
ing the lanes of oncoming traffic”. To do this at a crossing without traffic regula-
tion, it is necessary that the oncoming traffic is evaluated up to greater distances. 
This has not been possible by vision up to now; only the basic perception and con-
trol steps for handling the geometric part of the turnoff maneuver have been dis-
cussed here. 

10.5 Outlook 

It has been shown that the mission element “turn off at the next crossroad (right or 
left)” is rather involved; it requires activity sequences both in viewing direction 
and in feature-extraction control as well as in control outputs for vehicle steering. 
These activities have to be coordinated relative to each other, including some feed-
back loops for fixing the viewing direction; all these activities may be symbolized 
on a higher level of representation by the symbol “make turn (right/left).” 

Table 10.4 shows a summary in coarse granularity for the maneuver “Turn-off 
to the left.” The bulk of the work for implementation lies in making the system ro-
bust to perturbations in component performance, including varying delay times and 
nonlinearities not modeled. This maneuver element has been ported to the third-
generation vision and autonomous guidance system in which the general capability 
network for both visual perception and locomotion control has been implemented 
[Lützeler 2002, Pellkofer 2003, Maurer 2000, Gregor 2002, Siedersberger 2004].

A similar local maneuver element (behavioral capability) has to be available for 
handling road forks (see Figure 5.3). 
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Table 10.4. Perceptual and behavioral capabilities to be activated with proper timing after 
the command from central decision (CD): “Look for crossroad to the left and turn onto it” 
(no other traffic to be observed). 

Perception Monitoring Gaze Control Vehicle Control 

1. Edge- and area-based 
features of crossroad
(CR); start in teleim-
age:

1a) directly adjacent to 
left road boundary; 

1b) some distance into 
CR-direction for pre-
cisely determining 

Time of com-
mand,
saccades, inser-
tion of  
accepted hy-
pothesis
in DOB; con-
vergence pa-
rameters, vari-
ances  
over time for 
lCR, CR, bCS

Saccade to lateral 
position for CR 
detection; 
after hypothesis 
acceptance: Fix-
ate point on cir-
cular arc, then on 
CR at growing 
distance.

Lane keeping 
(roadrunning)
till lCR reaches trig-

ger point for initia-
tion of steering an-
gle feed-forward 
control program at 
proper speed; start 
curve steering at 
constant steering 
rate.

distance to CR cen-
ter- line: lCR

angle CR and 
width of CR: 2·bCS

2a) Continue perceiving 
CR in teleimage; es-
timate distance and 
angle to CR boundary 
on right-hand side, 
width of CR. 

Store curve ini-
tiation event, 
maneuver time 
history;  
compute  
x  xexp
(from knowl-
edge base for the 
maneuver)

Compensate for 
effect of vehicle 
motion:
a) inertial angular 

rate
b) position 

change x, y;
(feed-forward 
phases),

c) fixate on CR at 
lvi

At max, for transi-

tion to constant 
steering angle till 
start of negative 
steering rate. At 60 
to 70 % of maneu-
ver time, start su-
perposition of feed-
back from right-
hand CR boundary . 

2b) Track left boundary 
of road driven (in 
wide-angle image), 
own relative position 
in road. 

3. Set up new road 
model for (former) 
CR:

3a) In near range fit of 
straight-line model 
from wide-angle cam-
eras; determine range 
of validity from near 
to far. 

3b) Clothoid model of 
arbitrary curvature 
later on. 

CR parameters, 
relative own po-
sition, road seg-
ment limit; sta-
tistical data on 
recursive esti-
mation process. 

Stop motion 
compensation for 
gaze control 
when angular 
yaw rate of vehi-
cle falls below 
threshold value; 
resume fixation 
strategy for road-
running

Finish feed-forward 
maneuver; switch 
to standard control 
for roadrunning 
with new parame-
ters of (former) CR: 
Select: driving 
speed and lateral 
position desired in 
road.



11  Perception of Obstacles and Vehicles 

Parallel to road recognition, obstacles on the road have to be detected sufficiently 
early for proper reaction. The general problem of object recognition has found 
broad attention in computer (machine) vision literature (see, e.g.,
http://iris.usc.edu/Vision-Notes/bibliography/contents.html); this whole subject is 
so diverse and has such a volume that a systematic review cannot be given here.  

In the present context, the main emphasis in object recognition is on detecting 
and tracking stationary and moving objects of rather narrow classes from a moving 
platform. This type of dynamic vision has very different side constraints from so-
called “pictorial” vision where the image is constant (one static “snapshot”), and 
there are no time constraints with respect to image processing and interpretation. In 
our case, in addition to the usually rather slow changes in aspect conditions due to 
translation, there are also relatively fast changes due to rotational motion compo-
nents. In automotive applications, uneven ground excites the pitch (tilt) and roll 
(bank) degrees of freedom with eigendynamics in the 1-Hz range. Angular rates up 
to a few degrees per video cycle time are not unusual.  

11.1  Introduction to Detecting and Tracking Obstacles 

Under automotive conditions, short evaluation cycle times are mandatory since 
from the time of image taking in the sensor till control output taking this informa-
tion into account, no more than about one-third of a second should have passed, if 
human-like performance is to be achieved. On the other hand, these interpretations 
in a distributed processor system will take several cycles for feature extraction and 
object evaluation, broadcasting of results, and computation as well as implementa-
tion of control output. Therefore, the basic image interpretation cycle should not 
take more than about 100 ms. This very much reduces the number of operations al-
lowable for object detection, tracking, and relative state estimation as a function of 
the limited computing power available. 

With the less powerful microprocessor systems of the early 1990s, this has led 
to a pipeline concept with special processors devoted to frame-grabbing, edge fea-
ture extraction, hypothesis generation/state estimation, and coordination; the proc-
essors of the mid-1990s allowed some of these stages to run on the same processor. 
Because of the superlinear expansion of search space required with an increase in 
cycle time due to uncertainties in prediction from possible model errors and to un-
known control inputs for observed vehicles or unknown perturbations, it pays off 
to keep cycle time small. In the European video standard, preferably 40 ms (video 
frame time) have been chosen. Only when this goal has been met already, addi-
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tional computing power becoming available should be used to increase the com-
plexity of image evaluation. 

Experience in real road traffic has shown that crude but fast methods allow rec-
ognizing the most essential aspects of motion of other traffic participants. There 
are special classes of cases left for which it is necessary to resort to other methods 
to achieve full robust coverage of all situations possible; these have to rely on re-
gion-based features like color and texture in addition. The processing power to do 
this in the desired time frame is becoming available now.  

Nevertheless, it is advantageous to keep the crude but fast methods in the loop 
and to be able to complement them with area-based methods whenever this is re-
quired. In the context of multifocal saccadic vision, the crude methods will use 
low-resolution data in set the stage for high-resolution image interpretation with 
sufficiently good initial hypotheses. This coarse-to-fine staging is done both in im-
age data evaluation and in modeling: The most simple shape model used for an-
other object is the encasing box which for aspect conditions along one of the axes 
of symmetry reduces to a rectangle (see Figure 2.13a/2.14). This, for example, is 
the standard model for any type of car, truck, or bus in the same lane nearby where 
no road curvature effects yield an oblique view of the object. 

11.1.1  What Kinds of Objects Are Obstacles for Road Vehicles? 

Before proceeding to the methods for visual obstacle detection, the question posed 
in the heading should be answered. Wheels are the essential means for locomotion 
of ground vehicles. Depending on the type of vehicle, wheel diameter may vary 
from about 20 cm (as on go-carts) to over 2 m (special vehicles used in mining). 

The most common diameters on cars and 
trucks are between 0.5 and 1 m. Figure 11.1 
shows an obstacle of height HObst. The cir-
cles represent wheels when the edge of the 
rectangular obstacle (e.g., a curbstone) is 
touched. With the tire taking about one-
third of the wheel radius D/2, obstacles of a 
height HObst corresponding to D/H > 6 may 
be run over at slow speed so that tire soft-
ness and wheel dynamics can work without 
doing any harm to the vehicle. At higher 
speeds, a maximal obstacle height to D/H > 
12 or even higher may be required to avoid 
other dynamic effects. 

However, an “obstacle” is not just a question only of size. A hard, sharp object 
in or on an otherwise smooth surface may puncture the tire and must thus be 
avoided, at least within the tracks of the tires. All obstacles above the surface on 
which the vehicle drives are classified as “positive” obstacles, but there are also 
“negative” obstacles. These are holes in the planar surface into which the wheel 
may (partially) fall. Figure 11.2 shows the width of a ditch or pothole relative to 
the wheel diameter; in this case, W > D/2 may be a serious obstacle, especially at 

Figure 11.1. Wheel diameter D rela-
tive to obstacle height HObst

HObst

23

6

4

8

10 = D / HObst
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low speeds. At higher speeds, the in-
ertia of the wheel will keep it from 
falling into the hole if this is not too 
large; otherwise there is support of 
the ground again underneath the tire 
before the wheel travels a significant 
distance in the vertical direction. 
Holes or ditches of width larger than 
about 60 % of tire diameter and cor-
respondingly deep should be avoided 
anyway.

11.1.2  At Which Range Do Obstacles Have To Be Detected? 

There are two basic ways of dealing with obstacles: (1) Bypassing them, if there is 
sufficient free space and (2) stopping in front of them or keeping a safe distance if 
the obstacles are moving. In the first case, lateral acceleration should stay within 
bounds and safety margins have to be observed on both sides of its own body. The 
second case, usually, is the more critical one at higher speeds since the kinetic en-
ergy (~ m·V2) has to be dissipated and the friction coefficient to the ground may be 
low. Table 11.1 gives some characteristic numbers for typical speeds driven (a) in 
urban areas (15 to 50 km/h), (b) on cross-country highways (80 to 130 km/h), and 
(c) for high-speed freeways. [Note that for most premium cars top speed is elec-
tronically limited to 250 km/h; at this speed on a freeway with 1 km radius of cur-
vature, lateral acceleration ay,250/1 will be close to 0.5 g! To stop in front of an ob-
stacle with a constant deceleration of 0.6 g, the obstacle has to be detected at a 
range of ~ 440 m; initially at this high speed in a curve with C = 0.001 m 1, the to-
tal horizontal acceleration will be 0.78 g (vector sum: 0.52 + 0.62 = 0.782).]  

Table 11.1. Braking distances with a half second reaction time and three deceleration levels 
of 3 , 6, and 9 m/s2

Even for driving at 180 km/h (50 m/s or 2 m per video frame), the detection 
range has to be about 165 m for harsh deceleration (0.9 g) and about 235 m for 
medium-harsh deceleration (0.6 g); with pleasant braking at 0.3 g, the look-ahead 

Speed 
km/h

0.5 s 
Lreact.

Lbr  with 
ax = 0.3 g

Lbrake

in m 
Lbr  with 

ax = 0.6 g
Lbrake

in m 
Lbr  with 

ax = 0.9 g
Lbrake

in m 

15 2.1 2.9 5 1.5 3.6 1 3.1
30 4.2 11.6 15.8 5.8 10 3.9 8.1

50 6.9 32.2 39.1 16.1 23 10.7 17.6
80 11.1 82.3 93.4 41.2 52.3 27.4 38.5

100 13.9 128.6 142.5 64.3 78.2 42.9 56.8
130 18 217.3 235.3 108.7 126.7 72.4 90.4
180 25 416.7 442.7 208.3 233.3 138.9 163.9
250 34.7 803.8 838.5 401.9 436.6 268 302.6

/ 3

WOn D / 2

D

Figure 11.2. Wheel diameter D relative to 
width W of a negative obstacle 
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range necessary goes up to ~ 450 m. For countries with maximum speed limits 
around 120 to 130 km/h, look-ahead ranges of 100 to 200 m are sufficient for nor-
mal braking conditions (dry ground, not too harsh).  

A completely different situation is given for negative obstacles. From Figure 
5.4, it can be seen that a camera elevation above the ground of H = 1.3 m (typical 
for a car) at a distance of L = 20 ·H = 26 m (sixth column) leads to coverage of a 
hole in the ground of size H in the gaze direction by just 1.9 pixels. This means 
that the distance of one typical wheel diameter ( H/2 = 65 cm) is covered by just 
one pixel; of course, under these conditions, no negative obstacle detrimental to the 
vehicle can be discovered reliably. Requiring this range of 65 cm to be covered 
with a minimum of four pixels for detection leads to an L/H-ratio of 10 (fifth col-
umn, Figure 5.4); this means that the ditch or the pothole can be discovered at 
about 13 m distance. To stop in front of it, Table 11.1 indicates that the maximal 
speed allowed is around 30 km/h.  

Taking local nonplanarity effects or partial coverage with grass in off-road driv-
ing into account (and recalling that half the wheel diameter may be the critical di-
mension to watch for; see Figure 11.2), speeds in these situations should not be 
above 20 km/h. This is pretty much in agreement with human cross-country driv-
ing behavior. When the friction coefficient must be expected to be very low (slip-
pery surface), speed has to be reduced correspondingly. 

11.1.3  How Can Obstacles Be Detected? 

The basic assumption in vehicle guidance is that there is a smooth surface in front 
of the vehicle for driving on. Smoothness again is a question of scale. The major 
yardsticks for vehicles are their wheel diameter and their axle distance on a local 
scale and riding comfort (spectrum of accelerations) for high-speed driving. The 
former criteria are of special interest for off-road driving and are not of interest 
here. Also, negative obstacles will not be discussed (the interested reader is re-
ferred to [Siedersberger et al. 2001; Pellkofer et al. 2003] for ditch avoidance). 

For the rest of the chapter, it is assumed that the radii of vertical curvature RCv

of the surface to be driven on are at least one order of magnitude larger than the 
axle distance of the vehicles (typically RCv > 25 m). Under these conditions, the 
perception methods discussed in Section 9.2 yield sufficiently good internal repre-
sentations of the regular surface for driving; larger local deviations from this sur-
face are defined as obstacles. The mapping conditions for cameras in cars have the 
favorable property that features on the inner side of the silhouette of obstacles 
hardly (or only slowly) change their appearance, while on the adjacent outer side, 
features from the background move by and change appearance continuously, in 
general. For stationary objects, due to egomotion, texture in the background is cov-
ered and uncovered steadily, so that looking at temporal continuity helps detecting 
the obstacle; this may be one of the benefits of “optical flow”. For moving objects, 
several features on the surface of the object move in conjunction. Again, local 
temporal changes or smooth feature motion give hints on objects standing out of 
the surface on which the subject vehicle drives. On the other hand, if there are in-



11.1  Introduction to Detecting and Tracking Obstacles      335

homogeneous patches in the road surface, lacking feature flow at the outer side of 
their boundaries is an indication that there is no 3-D object causing the appearance. 

Stereovision with two or more cameras exploits the same phenomenon, but due 
to the stereo baseline, the different mapping conditions appear at one time. In the 
near range, this is known to work well in most humans; but people missing the ca-
pability of stereo vision are hardly hampered in road vehicle guidance. This is an 
indication in favor of the fact that motion stereo is a powerful tool. In stereovision 
using horopter techniques with image warping, those features above the ground 
appear at two locations coding the distance between camera and object [Mandel-
baum et al. 1998].

 In laser range finding and radar ranging, electromagnetic pulses are sent out 
and reflected from surfaces with certain properties. Travel time (or signal phase) 
codes the distance to the reflecting surface. While radar has relatively poor angular 
resolution, laser ranging is superior from this point of view. Obstacles sticking out 
of the road surface will show a shorter range than the regular surface. Above the 
horizon, there will be no signals from the regular surface but only those of obsta-
cles. Mostly up to now, laser range finding is done in “slices” originating from a 
rotating mirror that shifts the laser beam over time in different directions. In mod-
ern imaging laser range finding devices, beside the “distance image” also an “in-
tensity image” for the reflecting points can be evaluated giving even richer infor-
mation for perception of obstacles. Various devices with fixed multiple laser beams 
(up to 160 × 120 image points) are on the market. 

However, if laser range finding (LRF) is compared to vision, the angular resolu-
tion is still at least one order of magnitude less than in video imaging, but there is 
no direct indication of depth in a single video image. This fact and the enormous 
amount of video data in a standard video stream have led the application-oriented 
community to prefer LRF over vision. Some references are [Rasmussen 2002; Bos-
telman et al. 2005; PMDTech 2006]. There are recently developed systems on the 
market that cover the full circular environment of 360° in 64 layers with 4000 
measurement points ten times a second. This yields a data rate of 2.56 million data 
points per second and a beam separation of 0.09° or 1.6 mrad in the horizontal di-
rection; in practical terms, this means that at a distance of 63 m two consecutive 
beams are 10 cm apart in the circumferential direction. In contrast, the resolution 
of telecameras range to values of ~ 0.2 mrad/pixel; the field of view covered is of 
course much lower. The question, which way to go for technical perception sys-
tems in road traffic (LRF or video or a combination of both), is wide open today. 

On the other hand, humans have no difficulty understanding the 3-D scene from 
2-D image sequences (over time). There are many temporal aspects that allow this 
understanding despite the fact that direct depth information has been lost in each 
single video image. In front of this background, in this book, all devices using di-
rect depth measurements are left aside and interpretation concentrates on spatio-
temporal aspects for visual dynamic scene understanding in the road traffic do-
main. Groups of visual features and their evolution (motion and changes) over time 
in conjunction with background knowledge on perspective mapping of moving 3-D 
objects are the medium for fully understanding what is happening in “the world”. 
Because of the effects of pinhole mapping, several cameras with different focal 
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lengths are needed to obtain a set of images with sufficient resolution in the near, 
medium, and far ranges.  

Before we proceed to this aspect in Chapter 12, the basic methods for detecting 
and tracking of stationary and moving objects are treated first. Honoring the initial 
developments in the late 1980s and early 1990s with very little computing power 
onboard, the historical developments will be discussed as points of entry before the 
methods now possible are treated. This evolution uncovers the background of the 
system architecture adopted. 

11.2  Detecting and Tracking Stationary Obstacles 

Depending on the distance viewed, the mask size for feature extraction has to be 
adapted correspondingly; to detect stationary objects with the characteristic dimen-
sions of a human standing upright and still, a mask size in CRONOS of one-half to 
one-tenth of the lane width (of ~ 2 to 4 m in the real world) at the distance L ob-
served seems to be reasonable. In road traffic, objects are usually predominantly 
convex and close to rectangular in shape (encasing boxes); gravity determines the 
preferred directions horizontally and vertically. Therefore, for obstacle detection, 
two sets of edge operators are run above the road region in the image: detectors for 
vertical edges at different elevations are swept horizontally, and extractors for hori-
zontal edges are swept vertically over the candidate region. A candidate for an ob-
ject is detected by a collection of horizontal or vertical edges with similar average 
intensities between them.  

For an object, observed from a moving vehicle, to be stationary, the features 
from the region where the object touches the ground have to move from one frame 
to the next according to the egomotion of the vehicle carrying the camera. Since 
translational motion of the vehicle can be measured easily and reliably by conven-
tional means, no attempt is made to determine egomotion from image evaluation.  

11.2.1  Odometry as an Essential Component of Dynamic Vision 

The translational part of egomotion can be determined rather well from two me-
chanically implemented measurements at the wheels (or for simplicity at just one 
wheel) of the vehicle. Pulses from dents on a wheel for measuring angular dis-
placements directly linked to one of the front wheels deliver information on dis-
tance traveled; the steer angle, also measured mechanically, gives the direction of 
motion. From the known geometry of the vehicle and camera suspension, transla-
tional motion of the camera can be determined rather precisely. The shift in camera 
position is the basis for motion stereointerpretation over time.  

Assuming no rotational motion in pitch and roll of the vehicle (nominally), the 
known angular orientation of the cameras relative to the vehicle body (also me-
chanically measured) allows predicting the shift of features in the next image. 
Small perturbations in pitch and bank angle will average out over time. The pre-
dicted feature locations are checked against measurements in the image sequence. 
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In connection with the Jacobian elements, the resulting residues yield information 
for systematically improving the estimates of distance and angular orientation of 
the subject vehicle relative to the obstacle.  

Assuming that the object has a vertical extension above the ground, this body 
also will have features on its surface. For a given estimated range, the relative posi-
tions of these local features on the body, geared to the body shape of the obstacle, 
can be predicted in the image; prediction-errors from these locations allow adapt-
ing the shape hypothesis for the obstacle and its range. 

11.2.2  Attention Focusing on Sets of Features 

For stationary obstacles, the first region to be checked is the location where the ob-
ject touches the ground. The object is stationary only when there is no inhomoge-
neous feature flow on the object and in a region directly outside its boundaries at 
the ground. (Of course, this disregards obstacles hanging down from above, like 
branches of trees or some part from a bridge; these rare cases are not treated here.) 

To find the overall dimension of an obstacle, a vertical search directly above the 
region where the obstacle touches the ground in the image is performed looking for 
homogeneous regions or characteristic sets of edge or corner features. If some 
likely upper boundary of the object (its height HO in the image) can be detected, 
the next step is to search in an orthogonal direction (horizontally) for the lateral 
boundaries of the object at different elevations (maybe 25, 50, and 75% HO). This 
allows a first rough hypothesis on object shape normal to the optical axis. For the 
features determining this shape, the expected shift due to egomotion can also be 
computed. Prediction-errors after the next measurement either confirm the hy-
pothesis or give hints how to modify the assumptions underlying the hypothesis in 
order to improve scene understanding. 

For simple shapes like beams or poles of any shape in cross section, the result-
ing representation will be a cylindrical body of certain width (diameter d) and 
height (HO) appearing as a rectangle in the image, sufficiently characterized by 
these two numbers. While these two numbers in the image will change over time, 
in general, the corresponding values in the real world will stay constant, at least if 
the cross section is axially symmetrical. If it is rectangular or elliptical, the diame-
ter d will depend also on the angular aspect conditions. This is to say that if the 
shape of the cross section is unknown, its change in the image is not a direct indi-
cation of range changes. The position changes of features on the object near the 
ground are better indicators of range. For simplicity, the obstacle discussed here is 
assumed to be a rectangular plate standing upright normal to the road direction (see 
Figure 11.3). The detection and recognition procedure is valid for many different 
types of objects standing upright. 

11.2.3  Monocular Range Estimation (Motion Stereo) 

Even though the obstacle is stationary, a dynamic model is needed for egomotion; 
this motion leads to changing aspect conditions of the obstacle; it is the base for 
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motion stereointerpretation over time. Especially the constant elevation of the 
camera above the ground and the fact that the obstacle is sitting on the ground are 
the basis for range detection; the pitch angle for tracking the features where the ob-
stacle touches the ground changes in a systematic way during approach. 

11.2.3.1  Geometry (Measurement) Model 

In Figure 11.3, the nomenclature used is given. Besides the object dimensions, the 
left and right road boundaries at the position of the lower end of the obstacle are 
also determined (yBRl, yBRr); their difference yBR = (yBRr yBRl) yields the width of 
the road bR at the look-ahead range ro.
From Equation 9.9 and 9.10, there follows  

/ tan{ arctan[ /( )]}

and for 0 : / .
o K K BOu z

K o K z BOu

r h z f k

        r h f k z
(11.1) 

In Figure 11.3 (bottom) the camera looks horizontally ( K = 0) from an elevation 
hK above the ground (the image plane is mirrored at the projection center); for 
small azimuthal angles  to all features, the road width then is approximately 

( ) /( )
y

b r y y f k

)

R o BRr BRl

A first guess on obstacle width then is 

. (11.2) 

( ) /(O o BOr BOl yb r y y f k . (11.3) 

Figure 11.3. Nomenclature adopted for detection and recognition of a stationary obsta-
cle on the road: Left: Perspective camera view on obstacle with rectangular cross section 
(BOB, HOB).  Top right: Top down (“bird’s-eye”) view with the obstacle as a flat vertical 
plane, width BO. Lower right: View from right-hand side, height HO.
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Without perspective inversion already performed in the two equations above, 
this immediately yields the obstacle size in units of road width bO/ bR.

Half the sum of both feature pairs yields the road center and the horizontal posi-
tion of the obstacle center in the image 

( ) / 2; (BRS BRl BRr BOS BOl BOry y y      y y y ) / 2

)

t

. (11.4) 

yBOS directly determines the azimuthal angle KO of the obstacle relative to the 
camera. The difference yBOR = (yBOS yBRS) yields the initial estimate for the posi-
tion of the obstacle relative to the road center: 

( ) /(OR o BOS BRS yy r y y f k . (11.5) 

This information is needed for deciding on the reaction of the vehicle for obsta-
cle avoidance: whether it can pass at the left or the right side, or whether it has to 
stop. Note that lateral position on the road (or in a lane) cannot be derived from 
simple LRF if road and shoulders are planar, since the road (lane) boundaries re-
main unknown in LRF. In the approach using dynamic vision, in addition to lateral 
position, the range and range rate can be determined from prediction-error feed-
back exploiting the dynamic model over time and only a sequence of monocular 
intensity images. 

The bottom part of Figure 11.3 shows perspective mapping of horizontal edge 
feature positions found in vertical search [side view (b)]. Only the backplane of the 
object, which is assumed to have a shape close to a parallelepiped (rectangular 
box), is depicted. Assuming a planar road surface and small angles (as above: cos 
1, sine  argument), all mapping conditions are simple and need not be detailed 
here. Half the sum yields the vertical center cgv of the obstacle. The tilt angle be-
tween cgv and the horizontal gaze direction of the camera is KO; the difference of 
feature positions between top and bottom yields obstacle height. 

The elements of the Jacobian matrix needed for recursive estimation are easily 
obtained from these relations. 

11.2.3.2  The Dynamic Model for Relative State Estimation 

Of prime interest are the range r and the range rate  to the obstacle; range is the 
integral of the latter. The lateral motion of the object relative to the road v

r

OR is zero 
for a stationary object. Since iteration of the position is necessary, in general, the 
model is driven by a stochastic disturbance variable si. This yields the dynamic 
model (V = speed along the road: index O = object (here VO = 0); index R = road) 

,

.
O r O VO

OR OR OR yOR

r V V s ,                V = s

y v ,                       v = s
(11.6) 

In addition, to determine the obstacle size and the viewing direction relative to 
its center, the following four state variables are added (index K = camera): 

,

,

O HO O BO

KO KO KO KO

H s ,                B = s

= s ,               = s
(11.7) 

where again the si are assumed to be unknown Gaussian random noise terms. In 
shorthand vector notation, these equations are written in the form 

x( ) f [x( ),  u( ),  s( )],t t t (11.8) 
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with the state variables 

.x ( , , , , , , , ), [ 0] (11.9) T

o O KO KO O O OR OR O ORr V B H y v     V  and v

After transformation into the discrete state transition form for the cycle time T
used in image processing, standard methods for state estimation, as discussed in 
Chapter 6, are applied. Note that nothing special has to be done to achieve motion 
stereointerpretation; it is an integral part of the approach. 

11.2.3.3  The Estimation Process 

Figure 11.3 top shows the window arrangement set up for determining the relative 
state of an obstacle. Initially, to detect a relatively large, uniformly gray obstacle, a 
horizontal search for close-to-vertical edge features is done in the region above the 
road known from the road tracker running separately; some edge features with 
similar average intensity values on one side can then be grouped with the center ly-
ing at column positions yBOl and yBOr. Their position is shown in the figure by the 
textured area indicating similar average gray values [Dickmanns, Christians 1991].

Simultaneously, in a rectangular window above the road and around a nominal 
look-ahead distance for safe stopping, a vertical search for horizontal edge features 
is performed with the same strategy yielding the row positions zBOo and zBOu.
Again, the textured areas show similar average image intensity. The centers of 
these two groups of features (yBOS and zBOS) are supposed to mark the center of an 
obstacle. After this initial hypothesis has been set up, further search for feature col-
lections belonging to the same hypothesized object is done in crosswise orthogonal 
search paths centered on yBOS and zBOS, as indicated in the figure; after each meas-
urement update in the row direction, the search in the column direction is shifted 
according to yBOS and vice versa, thus keeping attention focused on the obstacle. 

At the same time, the position of the road boundary is determined in the row 
given by the lower horizontal edge feature of the hypothesized obstacle zBOu. This 
information is essential: (1) for scaling obstacle size (yBOr yBOl) in terms of road 
size (yBRr  yBRl) (see Equations 11.2 and 11.3) and (2) for initially determining 
range to the object when the vertical curvature of the road is known (usually as-
sumed to be zero, that is, the road is planar). The initial guess for distance r to the 
obstacle is obtained by inverting the mapping model for a pinhole camera and per-
spective projection with the data for zBOu (see bottom Subfigure 11.3 and Equation 
11.1). Similarly, the initial values for the lateral position of the obstacle on the road 
yOR, obstacle width BO, and height HO are obtained, all scaled by road width BR,
for which a best estimate exists from the parallel tracking process for the road 
(Chapter 9 and Figure 11.4 right). The bearing angles to the center of the obstacle 
( BO in azimuth and BO in elevation) are given by the offset of this center from the 
image center (optical axis). Note that these variables contain redundant information 
if the state of the subject vehicle relative to the road (yV, V and V) is estimated 
separately (as done in Chapter 9). Of course, the variables BO and BO contain all 
the perturbation effects of the road on the vehicle carrying the cameras. Measuring 
the position of the obstacle relative to the local road (yOR) thus is more stable than 
relying on bearing information relative to the suject vehicle on roads with a 
nonsmooth (noisy) surface. 
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Figure 11.4. First-generation system architecture for dynamic vision in road scenes of 
the late 1980s [Dickmanns, Christians 1991]; the parallel processors for edge feature ex-
traction (PPi) were 16-bit Intel 8086 microprocessors capable of extracting just a few 
edge features per observation cycle of 80 ms 

The estimation cycle on processor GPP2, initially in VaMoRs a microprocessor 
Intel 80386®, ran at 25 Hz (40 ms) while feature extraction and crosswise tracking, 
as mentioned, ran at full video rate (50 H on Intel 8086®) for better performance 
under high-frequency perturbations in pitch. This was a clear indication of the fact 
that high-frequency image evaluation may be more important than image under-
standing at the same rate; the temporal models are able to bridge the gap if the 
quality of the features found is sufficiently good. The initial transient in image in-
terpretation took 10 to 20 cycles until a constant error level had been achieved. 

In a prediction step, the expected position of features for the next measurement 
is computed by applying forward perspective projection to the object as “imag-
ined” by the interpretation process. Only those feature positions delivered by the 
PPs that are sufficiently close to these values (within the 3  range) have been ac-
cepted as candidates; others are rejected as outliers. This contributed considerably 
to stabilizing the interpretation in noisy natural environments. 

11.2.3.4  Modular Processing Structure  

In Figure 11.4, the modular processing structure resulting naturally in the 4D-
approach, oriented toward physical objects, is emphasized. There are four process-
ing layers and two object-oriented groups of processors shown: The pixel-level 
(bottom), where 2-D spatial data structures (intensity images and subimages) have 
to be handled. Then, at the PP level, edge elements and adjacent intensity features 
are extracted with respect to the 2D-position and orientation; any relation to 3-D 
space or time is still missing. Only in the third layer, implementing object interpre-
tations on the GPP, spatial and temporal constraints are introduced for associating 
objects with groupings of features and their relative change over time. In our case, 
objects are the road (with the egovehicle) and the obstacle on the road; it is easily 
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seen how this approach can be extended to multiple objects by adding more groups 
of processors. 

It may be favorable for the initialization phase to insert an additional 2-D object 
layer (for feature aggregations) between layers 2 and 3, as given here [Graefe 1989].
All layers have grown in conjunction with more computing power and experience 
gained over the years to deal with more complex tasks and situations (see Chapters 
13 and 14). The growth rate in performance of general purpose microprocessors 
(GPP) of about one order of magnitude every 4 to 5 years has allowed quick devel-
opment of powerful real-time systems; though the distribution of architectural ele-
ments on processor hardware has changed quite a bit over time, the general struc-
ture shown in Figure 11.4 has remained surprisingly stable. 

11.2.4 Experimental Results 

The three-stage process of obstacle detection, hypothesis generation (recognition), 
and relative spatial state estimation has been tested with VaMoRs on an unmarked 
two-lane campus road at speeds up to 40 km/h with an obstacle of about 0.5 m2

cross section (a dark trash can  0.5 m wide and  1 m high). The detection range 
was expected to be about 30 to 40 m. The vehicle had to stop autonomously about 
15 m in front of the obstacle. In the example shown, driving speed was about 4 m/s 
(15 km/h). As Figure 11.5 shows, range estimation started at r = 33 m (upper right 
graph) derived from the bottom feature of the obstacle under the assumption of a 
flat surface (known camera elevation above the ground). The transient in relative 
speed estimation to the negative value of vehicle speed (-4) took about 1 second 
(lower right in Figure 11.5) with two oscillations before stabilizing at the correct 
value. In the first ten to fifteen video cycles, i.e.,  0.3 seconds from detection dur-
ing hypothesis generation and -testing (activation of the obstacle-processor group) 
the results in spatial interpretation are noise-corrupted and not useful for decision–
making. Allowing about 1 second for stabilization of the interpretation process 
seems reasonable (similar to human performance). 

During the test sequence shown, the range decreased from 33 to 16 m, and the 
speed diminishing toward the end due to braking. Note that vehicle speed for pre-
diction was available from conventional mechanical measurements; the speed 
shown in the lower right part is the visually estimated speed based on image data. 
The result is rather noisy; this has led to the decision that relative speed was set at 
the negative speed of the vehicle (measured by the tachometer) in future tests.  

Obstacle height was estimated as very stable (110 cm). The pitch angle in-
creased in magnitude during the approach since the elevation of the camera above 
the ground (  2 m) was higher than the object center. Apparently, a slight curve 
was steered since the azimuth angle KO shows a dip (around 3 seconds). With 
these experiments, the 4-D approach to real-time machine vision was shown to be 
well suited for monocular depth estimation. Since image sequence evaluation is 
done with time explicitly represented in the model underlying the recognition 
process, motion stereo is an inherent property of the approach, including odometry. 
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Accuracy in the percent range has been demonstrated; it becomes better the 
closer the obstacle is approached, a desirable property in obstacle avoidance. The 
approach based on edge features is computationally very economical and has led to 
a processor architecture oriented toward physical objects in a modular way. This 
has allowed refraining from additional direct measurements of distance by laser 
range finders or radar, even for moving obstacles. 

Figure 11.5 Historic first experiment on monocular depth perception and collision 
avoidance using ‘dynamic vision’ (4-D approach) with test vehicle VaMoRs: A trash 
can of approximate size 0.5 × 1 m was placed about 35 m in front of the vehicle. Track-
ing the upper and lower as well as the left and right edge of the can (left part of figure), 
the vehicle continuously estimated the distance to the obstacle (top right) as well as the 
horizontal and the vertical bearing angles to the center of the object (center right). Bot-
tom right shows the speed profile driven autonomously; the vehicle stopped 16 m from 
the obstacle after 8 seconds. 

11.3  Detecting and Tracking Moving Obstacles on Roads 

Since it is not known, in general, where new objects will appear, all relevant image 
regions have to be covered by the search for relevant features. In some application 
domains such as highway traffic, a new object can enter the image only from well-
defined regions: Overtaking vehicles will at first appear in the leftmost corner of 
the image above the road (in right-hand traffic). Vehicles being approached from 
the back will at first be seen in the teleimage far ahead. Depending on the lane they 
drive in, the feature flow goes either to one side (vehicle in a neighboring lane) or a 
looming effect appears, indicating that there may be a collision if no proper action 
is taken. For hypothesis generation, this information allows starting with proper 
aspect conditions for tracking; these aspect conditions have a strong influence on 
feature distribution. The aspect graphs are part of generic object shape representa-
tion (maybe even specialized for multiple scales to be used at different distances). 

Figure 11.6 shows six of the eight clearly separable standard aspect conditions 
for cars with a typical set of features for each case. The resulting feature distribu-
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tions will, of course, depend on the type of vehicle (van, bus, truck, recreation ve-
hicle, etc.), usually recognizable by their size and the kind of features exposed in 
certain relations to each other. For cars, very often the upper part of the body with 
glass and shiny surfaces is not well suited for tracking since trees and buildings in 
the environment of the road are mirrored by the (usually two-dimensionally 
curved) surface yielding very noisy feature distributions. 

Coarse to fine modeling, increasing task relevant details

Aspect Shape

conditions Coarse Medium Simple lines, patches

D    e    t    a    i    l    e    d    ( f    i    n    e )

For this reason, concentration only on the lower part of the body has been more 
stable for visual perception of cars (upper limit of about 1 m above the ground); 
this is shown in column two of Figure 11.4. However, for big trucks and tanker ve-
hicles, the situation is exactly the opposite. The lower part is rather complex due to 
irregular structural elements, while the upper part is rather simple, usually, like rec-
tangular boxes or cylinders, often with a homogeneous appearance.  

So the first step after feature detection and maybe some feature aggregation for 
elongated line elements should always be to look for the set of features moving in 
conjunction; this gives an indication of the size of the object and of the vehicle 
class it may belong to. Three to five images of a sequence are sufficient to arrive at 
a stable decision, usually. The second step then is to stabilize the interpretation as a 
member of a certain vehicle class by tapping more and more knowledge from the 
internal knowledge base and proving its validity in the actual case. Tracking cer-
tain groups of features may already give a good indication of the relative motion of 
the object without it being fully “re-cognized”. Partial occlusion by other vehicles 
or due to a curved road surface (both horizontally and vertically) will complicate 

Figure 11.6. Cars modeled on different scales for various aspect conditions: Coarse: 
Encasing box, with rounded corners omitted; medium: Only lower part of body with 
some simple details; fine: Reasonably good silhouette, groups of very visible features 
from subparts, => close to real rendering. 
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the general case. Therefore, it is always recommended to take into account the best 
estimates for the road state and for the relative state of other vehicles. 

The last three columns in Figure 11.6 will be of interest for the more advanced 
vision systems of the future exploiting the full potential of the sense of vision with 
high resolution when sufficient computing power will be available.  

It is the big advantage of vision over radar and laser range finding that vision al-
lows recognizing the traffic situation with good resolution and up to greater ranges 
if multifocal vision with active gaze control is used. This is not yet the general state 
of the art since the data rates to be handled are rather high (many gigabytes/second) 
and their interpretation requires sophisticated software. 

 In the case of expectation-based, multi focal, saccadic vision (EMS vision) it 
has been demonstrated that from a functional point of view, visual perception as in 
humans is possible; until the human performance level is achieved, however, quite 
a bit of development has still to be done. We will come back to this point in the fi-
nal outlook. 

Due to this situation, industry has decided to pick radar for obstacle detection in 
systems already on the market for traffic applications; LRF has also been studied 
intensively and is being prepared for market introduction in the near future. Radar-
based systems for driver assistance in cruise control have been available for a few 
years by now. Complementing them by vision for road and lane recognition as well 
as for reduction of false alarms has been investigated for about the same time. 
These combined systems will not be looked at here; the basic goal of this section is 
to develop and demonstrate the potential of vertebrate-type vision for use in the 
long run. It exploits exactly the same features as human vision does, and should 
thus be sufficient for safe driving. Multisensor adaptive cruise control will be dis-
cussed in Section 14.6.3. 

11.3.1  Feature Sets for Visual Vehicle Detection 

Many different approaches have been tried for solving this problem since the late 
1980s. Regensburger (1993) presents a good survey on the task “visual obstacle 
recognition in road traffic”. In [Carlson, Eklundh 1990], an object detection method 
using prediction and motion parallax is investigated. In [Kuehnle 1991], the use of 
symmetries of contours, gray levels and horizontal lines for obstacle detection and 
tracking is discussed. [Zielke et al. 1993] investigates a similar approach. Other ap-
proaches are the evaluation of optical flow fields [Enkelmann 1990] and model-
based techniques like the one described below [Koller et al. 1993]. Solder and 
Graefe (1990) find road vehicles by extracting the left, right and lower object 
boundary using controlled correlation. An up-to-date survey on the topic may be 
found in [Masaki 1992++] or in the vision bibliography [http://iris.usc.edu/Vision-
Notes/bibliography/contents.html]. Some more recent papers are [Graefe, Efenberger 
1996; Kalinke et al. 1998; Fleischer et al. 2002; Labayarde et al.2002; Broggi et al. 2004]. 

The main goal of the 4-D approach to dynamic machine vision from the begin-
ning has been to take advantage of the full spatiotemporal framework for internal 
representation and to do as little reasoning as possible in the image plane and be-
tween frames. Instead, temporal continuity in physical space according to some 
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model for the motion of objects is being exploited in conjunction with spatial shape 
rigidity in this “analysis-by-synthesis” approach.  

Since high image evaluation rate had proven more beneficial in this approach 
than using a wide variety of features, only edge features with adjacent average in-
tensity values in mask regions were used when computing power was very low 
(see Section 5.2). With increasing computing power, homogeneously shaded blobs, 
corner features, and in the long run, color and texture are being added. In any case, 
perturbations both from the motion process and from measurements as well as 
from data interpretation tend to change rapidly over time so that a single image in a 
sequence should not be given too much weight; instead, filtering likely (maybe not 
very precise) results at a high rate using motion models with low eigenfrequencies 
has proven to be a good way to go. So, concentration on feature extraction was on 
fast available ones with selection of those used guided by expectations and statisti-
cal data of the recursive estimation process running.  

For this reason, image evaluation rates of less than about ten per second were 
not considered acceptable from the beginning in the early 1980s; the number of 
processors in the system and workload sharing had to be adjusted such that the 
high evaluation rate was achievable. This was in sharp contrast to the approaches 
to machine vision studied by most other groups around the globe at that time. Ac-
cumulated delay times could be handled by exploiting the spatiotemporal models 
for compensation by prediction. These short cycle times, of course, left no great 
choice of features to be used. On the contrary, even simple edge detection could 
not be used all over the image but had to be concentrated (attention controlled!) in 
those regions where objects of interest for the task at hand could be expected.  

Once the road has been known from the specific perception loop for it, “obsta-
cles” could be only those objects in a certain volume above the road region, strictly 
speaking only those within and somewhat to the side of the width of the wheel 
tracks.

11.3.1.1  Edge Features and Adjacent Average Gray Values 

Edge features are robust to changes in lighting conditions; maybe this is the reason 
why their extraction is widespread in biological vision systems (striate cortex). 
Edge features on their own have three parameters for specifying them completely: 
position, orientation, and the value of the extreme intensity gradient. By associat-
ing the average intensity on one side of the edge as a fourth parameter with each 
edge, average intensities on both sides are known since the gradient is the differ-
ence between both sides; this allows coarse area-based information to be included 
in the feature.  

Mori and Charkari (1993) have shown that the shadow underneath a vehicle is a 
significant pattern for detecting vehicles; it usually is the darkest region in the en-
vironment. Combining this feature with knowledge of 3-D geometric models and 
4-D dynamic scene understanding leads to a robust method for obstacle detection 
and tracking. [Thomanek et al. 1994; Thomanek 1996] developed the first vision sys-
tem capable of tracking a half dozen vehicles on highways in each hemisphere with 
bifocal vision based on these facts in closed-loop autonomous driving. This ap-
proach will be taken as a starting point for discussing more modern approaches ex-
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ploiting the increase in 
computing power by at 
least two orders of mag-
nitude (factor > 100) 
since.

Figure 11.7 shows a 
highway scene from a 
wide-angle camera with 
one car ahead in the sub-
ject’s lane. A search for 
horizontal edge features 
is performed in vertical 
search stripes with 
KRONOS masks of size 
5 × 7 as indicated on the 
right-hand side (see Sec-
tion 5.2). Due to missing computer performance in the early 1990s, the search 
stripes did not cover the whole image below the horizon; evaluation cycle time was 
80 ms (every second video field with the same index). Stripe width and spacing as 
well as mask parameters had to be adjusted according to the detection range de-
sired. For improved resolution, there was a second camera with a telelens on the 
gaze controlled platform (see Figure 1.3) with a viewing range about three times as 
far (and a correspondingly narrower field of view) compared to the wide-angle 
camera. This allowed using exactly the same feature extraction algorithms for ve-
hicles nearby and further away (see Figure 11.22 further below). 

Find lower edge of a vehicle: About 30 search stripes of 100 pixels length have 
been analyzed by shifting the correlation mask top-down to find close-to-horizontal 
edge features at extreme correlation values. Potential candidates for the dark area 
underneath the vehicle have to satisfy the criteria: 

The value of the mask response (correlation magnitude) at the edge has to be 
above a threshold value (corrmin,uv).
The average gray value of the trailing mask region (upper part) has to be below 
a threshold value (darkmin,uv).

The first bullet requires a pronounced dark-to-bright transition, and the second one 
eliminates areas that are too bright to stem from the shaded region underneath the 
vehicle; adapting these threshold values to the situation actually given is the chal-
lenge for good performance. For tanker vehicles and low standing sun, the ap-
proach very likely does not work. In this case, the big volume above the wheels 
may require area-based features for robust recognition (homogeneously shaded, for 
example). 

Generate horizontal contours: Edge elements satisfying certain gestalt conditions 
are aggregated applying a known algorithm for chaining. The following steps are 
performed, starting from the left window and ending with the right one: 
1. For each edge element, search the nearest one in the neighboring stripe and store 

the corresponding index if the distance to it is below a threshold value. 

Search
direction

nd = 3

n0 = 1

md = 7

nw = 5

Mask

Figure 11.7. Detection of vehicle candidates by search of 
horizontal edges in vertical search stripes below the hori-
on: Mask parameters selected such that several stripes 

cover a small vehicle [Thomanek 1996]
z
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2. Tag each edge element with the number count of previous corresponding ele-
ments (e.g., six, if the contour contains six edge elements up to this point).  

Read starting point Ps(ys, zs) and end point Pe(ye, ze) of each extracted contour and 
check the slope, whose magnitude |(ze – zs)/(ye – ys)| must be below a threshold for 
being accepted (close to horizontal, see Figure 11.8). 

If lines grow too long, they very likely stem from the shadow of a bridge or 
from other buildings in the vicinity; they may be tracked as the hypothesis for a 
new stationary object (shadow or discontinuity in surface appearance), but elimi-
nating them altogether will do no harm to tracking moving vehicles with speed al-
ready recognized. Within a few cycles, these elongated lines will have moved out 
of the actual image. With knowledge of 3-D geometry (projection equations link 
row number to range), the extracted contours are examined to see whether they al-
low association with 
certain object classes: 
Side constraints con-
cerning width must be 
satisfied; likely height 
is thereby hypothesized.  

Contours starting 
from inhomogeneous 
areas inside the objects 
(i.e., bumper bar or rear 
window) are discarded; 
they lie above the lower 
shadow region (see Fig-
ure 11.9). 

Determine lateral boundaries: Depending on the lateral position relative to the 
lane driven in, the vertical object boundaries are extracted additionally. This is 
done with an edge detector which exploits the fact that the difference in brightness 
on the object and from the background is not constant and can even change sign; in 

1.   Chaining of 
geometrically next
element

end

point

2.   Numbering of edge   
elements (each branch)

3. Elimination of shorter branch, 
determine start and end point

start

point

Figure 11.8. Contour generation from edge elements observing gestalt ideas of nearness 
and colinearity; below an upper limit for total contour length, only the longer one is kept 

Figure 11.9. Extracted horizontal edge elements: The rec-
tangular group of features is an indication of a vehicle can-
didate; the lower elements (aggregated shadow region un-
der the car) allow estimation of the range to the vehicle
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Figure 11.10, the wheels and fender 
are darker than the light gray of the 
road while the white body is brighter 
than the road. 

For this purpose, the gradient of 
brightness is calculated at each posi-
tion in each image row, and its abso-
lute values are summed up over the 
lines of interest. The calculated dis-
tribution of correlation values has 
significantly large maxima at the ob-
ject boundaries (lower part of fig-
ure). The maxima of the accumu-
lated values yield the width of the 
obstacle in the image; knowing 
range and mapping parameters, ob-
stacle size in the real world is initial-
ized for recursive estimation and up-
dated until it is stable. With clearly 
visible extremes as in the lower part 
of Figure 11.10 the object width of 
the real vehicle is fixed, and changes 
in the image are from now on used 
to support range estimation. 

For vehicles driving in their own 
lanes, the left and right object boundary must be present to accept the extracted 
horizontal contour as representing an object. In neighboring lanes, it suffices to 
find a vertical boundary on the side of the vehicle adjacent to their own lane to 
prove the hypothesis of an object in connection with the lower contour. This means 
that in the left lane, a vertical line to the right of the lower contour has to be found, 
while in the right lane, one to the left has to be found for acceptance of the hy-
pothesis of a vehicle. This allows recognition of partially occluded objects, too. 
The algorithm was able to detect and track up to five objects in parallel with four 
INMOS Transputer® 222 (16 bit) for feature extraction and one T805 (32 bit) for 
recursive estimation at a cycle time of 80 ms. 

Figure 11.10. Determination of lateral 
boundaries of a vehicle by accumulation of 
correlation values at each position in each 
single row of the lower part of the body with 
a KRONOS-mask (nw = 1; nd  = large). The 
maxima of the accumulated values yield the 
width of the obstacle in the image.  

Histo-

gram

of

corre-

lation

max-

ima

from

single

rows

Pixel position

Applying these methods is a powerful tool for extracting vehicle boundaries in 
monochrome images also for modern high-performance microprocessors. Adding 
more features, however, can make the system more versatile with respect to type of 
vehicle and more robust under strong perturbations in lighting conditions. 

11.3.1.2  Homogeneous Intensity Blobs 

Region-based methods, extracting homogeneously shaded or textured areas are of 
importance especially for robust recognition of large vehicles. Color recognition 
very much alleviates object separation in complex scenes with many objects of dif-
ferent colors. But just regions of homogeneous intensity shading alleviate object 
separation considerably (especially in connection with other features).  
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In Figure 11.11 the homogeneously shaded areas of the road yield the back-
ground for detecting vehi-
cles with different inten-
sity blobs above a dark 
region on the ground, 
stemming from vehicle 
shade underneath the 
body. Though resolution 
is poor (32 pixels per mel 
and 128 per mask) and 
some artifacts normal to 
the search direction can 
be seen, relatively good 
hypotheses for objects are 
derivable from this coarse 
scale. Five vehicle candi-
dates can be recognized, 
three of which are par-
tially occluded. The car 
ahead in the same lane 

and the bus in the right neighboring lane are clearly visible. The truck further 
ahead in the subject’s lane can clearly be recognized by its dark upper body. For 
the two cars in the left neighboring lane, resolution is too poor to recognize details; 
however, from the shape of the road area, the presence of two cars can be hypothe-
sized. Low resolution allows higher evaluation frequency for limited computing 
power. 

Figure 11.11. Highway scene with many vehicles, ana-
lyzed with UBM method (see Section 5.3.2.4) in vertical 
stripes with coarse resolution (22.42C) and aggregation 
of homogeneous intensity blobs (see text).  

Performing the search 
on the coarse scale for 
homogeneously shaded 
regions in both vertical 
and horizontal stripes 
yields sharp edges in the 
search direction; thus, 
close to vertical blob 
boundaries should be 
taken from horizontal 
search results while close 
to horizontal boundaries 
should be taken from ver-
tical search results.  

Reconstructed image:

Coarse (4x4)

Fine

Coarse resolution

Figure 11.12. Highway scene similar to Figure 11.11 
with more vehicles analyzed with UBM method in hori-
zontal stripes; the outer regions are treated with coarse 
resolution (11.44R), while the central region (within the 
white box) covering a larger look-ahead range above the 
road, is analyzed on a fine scale (11.11R) (reconstructed 
images, see text) 

Figure 11.12 shows re-
sults from a row search 
with different parameters 
(11.44R) for another im-
age out of the same se-
quence (see bus in right 
neighboring lane and the 
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dark truck in the subject’s lane). Here, however, the central part of the image, into 
which objects further away on the road are mapped, is analyzed at fine resolution 
giving full details (11.11R). This yields many more details and homogeneous in-
tensity blobs; the reconstructed image shown can hardly be distinguished from the 
original image. A total of eight vehicle candidates can be recognized, six of which 
are partially occluded. It can be easily understood from this image that large vehi-
cles like trucks and buses should be hypothesized from the presence of larger ho-
mogeneous areas well above an elevation of one wheel diameter from the ground. 
For humans, it is immediately clear that in neighboring lanes, vehicles are recog-
nized by three wheels if no occlusion is present; the far outer front wheel will be 
self-occluded by the vehicle body. All wheels will be only partially visible. This 
fact has led to the development of parameterized wheel detectors based on features 
defined by regional intensity elements [Hofmann 2004].

Figure 11.13 shows the basic idea and the derivation of templates that can be 
adapted to wheel diameter (including range) and aspect angle in pan (small tilt an-
gles are neglected because they enter with a cosine effect (  1)); since the car body 
occludes a large part of the wheels, the lower part of the dark tire contrasting the 
road to its sides is especially emphasized. For orthogonal and oblique views of the 
near side of the vehicle, usually, the inner part of the wheel contrasts to the tire 
around it; ellipticity is continuously adapted according to the best estimate for the 
relative yaw (pan) angle.  

Figure 11.13. Derivation of templates for wheel recognition from coarse shape repre-
sentations (octagon): (a) Basic geometric parameters: width, outer and inner visible ra-
dius of tire; (b) oblique view transforms circle into ellipses as a function of aspect angle; 
(c) shape approximation for templates, radii, and aspect angle are parameters; (d) tem-
plate masks for typically visible parts of wheels [seen from left, right,  orthogonal, far 
side (underneath body)]. Intelligently controlled 2-D search is done based on the exist-
ing hypothesis for a vehicle body (after [Hofmann 2004]). 

The wheels on the near side appear in pairs, usually, separated by the axle dis-
tance in the longitudinal direction which lets the front wheel appear higher up in 
the image due to camera elevation above the wheel axle. There is good default 
knowledge available on the geometric parameters involved so that initialization 
poses no challenge. Again, being overly accurate in a single image does not make 
sense, since averaging over time will lead to a stable (maybe a little bit noisier) re-
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sult with the noise doing no harm. To support estimation of the aspect conditions, 
taking into account other characteristic subobjects like light groups in relation to 
the license plate as regional features will help. 

11.3.1.3  Corner Features 

This class of features is especially helpful before a good interpretation of the scene 
or an object has been achieved. If corner localization can be achieved precisely and 
consistently from frame to frame, it allows determining feature flow in both image 
dimensions and is thus optimally suited for tracking without image understanding. 
However, the challenge is that checking consistency requires some kind of under-
standing of the feature arrangement. Recognition of complex motion patterns of ar-
ticulated bodies is very much alleviated using these features. For this reason, their 
extraction has received quite a bit of attention in the literature (see Section 5.3.3). 
Even special hardware has been developed for this purpose.  

With the computing power nowadays available in general-purpose micro-
processors, corner detection can be afforded as a standard component in image 
analysis. The unified blob-edge-corner method (UBM) treated in Section 5.3 first 
separates candidate regions for corners in a very simple way from those for homo-
geneously shaded regions and edges. Only a very small percentage of usual road 
images qualify as corner candidates depending on the planarity threshold specified 
(see Figures 5.23 and 5.26); this allows efficient corner detection in real time to-
gether with blobs and edges. The combination then alleviates detection of joint fea-
ture flow and object candidates: Jointly moving blobs, edges, and corners in the 
image plane are the best indicators of a moving object.  

11.3.2  Hypothesis Generation and Initialization 

The center of gravity of a jointly moving group of features tells us something about 
the translational motion of the object normal to the optical axis; expanding or 
shrinking similar feature distributions contains information on radial motion. 
Changing relative positions of features other than expansion or shrinking carries 
information on rotational motion of the object. The crucial point is the jump from 
2-D feature distributions observed over a short amount of time to an object hy-
pothesis in 3-D space and time. 

11.3.2.1  Influence of Domain and Actual Situation 

If one had to start from scratch without any knowledge about the domain of the ac-
tual task, the problem would be hardly solvable. Even within a known domain (like 
“road traffic”) the challenge is still large since there are so many types of roads, 
lighting-, and weather conditions; the vehicle may be stationary or moving on a 
smooth or on a rough surface. 

It is assumed here that the human operator has checked the lighting and weather 
conditions and has found them acceptable for autonomous perception and opera-
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tion. When observation of other vehicles is started, it is also assumed that road rec-
ognition has been initiated successfully and is working properly; this provides the 
system (via DOB, see Chapters 4 and 13) with the number and widths of lanes ac-
tually available. With GPS and digital maps onboard and working, the type of road 
being driven is known: unidirectional or two-way traffic, motorway or general 
cross-country/urban road.  

The type of road determines the classes of obstacles that might be expected with 
certain likelihood; the levels of likelihood may be taken into account in hypothesis 
generation. Pedestrians are less likely on high-speed than on urban roads. Speed 
actually being driven and traffic density also have an influence on this choice; for 
example, in a traffic jam on a freeway with very low average speed, pedestrians are 
more likely than in normal freeway traffic.  

11.3.2.2  Three Components Required for Instantiation 

In the 4-D approach, there are always three components necessary for starting per-
ception based on recursive estimation: (1) the generic object type (class and sub-
class with reasonable parameter settings), (2) the aspect conditions (initial values 
for state components, and (3) the dynamic model as knowledge (or side constraint) 
of evolution over time; for subjects, this includes knowledge of (stereotypical) mo-
tion capabilities and their temporal sequence. This latter component means an indi-
vidual capability for animation based on onsets of maneuvers visually observed; 
this component will be needed mainly in tracking (see Section 11.3.3). However, a 
passing car cutting into the vehicle’s lane immediately ahead will be perceived 
much faster and more robustly if this motion behavior (normally not allowed) is 
available also during the initialization phase, which takes about one half to one 
second, usually.  

Instantiation of a generic object (3-D shape): The first step always is to establish 
good range estimation to the object. If stereovision or direct range measurements 
are available, this information should be taken from these sources. For monocular 
vision, this step is done with the row index zBu of the lowest features that belong 
most likely to the object. Then, the first part of the following procedure is, as it is 
for static obstacles, to obtain initial values of range and bearing.  

With range information and the known camera parameters, the object in the im-
age can be scaled for comparison with models in the knowledge base of 3-D ob-
jects. Homogeneously shaded regions with edges and corners moving in conjunc-
tion give an indication of the vehicle type. For example, in Figure 11.11, the car 
upfront, the truck ahead of it (obscured in the lower part), and the bus upfront to 
the right are easily classified correctly; the two cars in the lane to the left allow 
only uncertain classification due to occlusion of large parts of them. Humans may 
feel certain in classifying the car upfront left, since they interpret the intensity 
blobs vertically located at the top and the center of the hypothesized car: The 
somewhat brighter rectangle at the top may originate from the light of the sky re-
flected from the curved roof of the car. The bright rectangular patch between two 
more quadratic ones a little bit darker halfway from the roof to the ground is inter-
preted as a license plate between light groups at each rear side of the car.  
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Figure 11.12 (taken a few frames apart from Figure 11.11) shows in the inner 
high-resolution part that this interpretation is correct. It also can be seen by the 
three bright blobs reasonably distributed over the rear surface that the car immedi-
ately ahead is now braking (in color vision, these blobs would be bright red). The 
two cars in the neighboring lane beside the dark truck are also braking. (Note the 
different locations and partial obscuration of the braking lights on the three cars 
depending on make and traffic situation). Confining image interpretation for obsta-
cle detection to the region marked by the white rectangle (as done in the early 
days) would make vehicle classification much more difficult. Therefore, both pe-
ripheral low-resolution and foveal high-resolution images in conjunction allow ef-
ficient and sufficiently precise image interpretation. 

Aspect conditions: The vertical aspect angle is determined by the range and eleva-
tion of the camera in the subject vehicle above the ground. It will differ for cars, 
vans, and trucks/buses. Therefore, only the aspect angle in yaw has to be derived 
from image evaluation. In normal traffic situations with vehicles driving in the di-
rection of the lanes, lane recognition yields the essential input for initializing the 
aspect angle in yaw.  

On straight roads, lane width and range to the vehicle determine the yaw aspect 
angle. It is large for vehicles nearby and decreases with distance. Therefore, in the 
right neighboring lane, only the left-hand and the rear side can be seen; in the left 
neighboring lane, it is the right-hand and rear side. Tires of vehicles on the left 
have their dark contact area to the ground on the left side of the elliptically mapped 
vertical wheel surface (and vice versa for the other side; see Figure 11.13d). As-
pects conditions and 3-D shape are closely linked together, of course, since both in 
conjunction determine the feature distribution in the image after perspective pro-
jection, which is the only source available for dynamic scene understanding. 

Dynamic model: The third essential component for starting recursive estimation is 
the process model for motion which implements continuity conditions and knowl-
edge about the evolution of motion over time. This temporal component was the 
one that allowed achieving superior performance in image sequence interpretation 
and autonomous driving. As mentioned before, there are two big advantages in 
temporal embedding:  
1. Known state variables in a motion process decouple future evolution from the 

past (by definition); so there is no need to store previous images if all objects of 
relevance are represented by an individual dynamic process model. Future evo-
lution depends only on (a) the actual state, (b) the control output applied, and (c) 
on external perturbations. Items (b) and (c) principally are the unknowns while 
best estimates for (a) are derived by visual observation exploiting a knowledge 
base of vehicle classes (see Chapter 3).  

2. Disturbance statistics can be compiled for both process and measurement noise; 
knowing these characteristics allows setting up a temporal filter process that 
(under certain constraints) yields optimal estimates for open parameters and for 
the state variables in the generic process model.  

3. These components together are the means by which “the outside world is trans-
duced into an internal representation in the computer”. (The corresponding 
question often asked in biological systems is, how does the world get into your 
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head?) Quite a bit of background knowledge has to be available for this purpose 
in the computer process analyzing the data stream and recognizing “the world”; 
features extracted from the image sequence activate the application of proper 
parts of this knowledge. In this closed-loop process resulting in control output 
for a real vehicle (carrying the sensors), feedback of prediction-errors shows the 
validity of the models used and allows adaptation for improved performance. 
The dynamic models used in the early days in [Thomanek 1996] were the follow-

ing (separate, decoupled models for longitudinal and lateral translation, no rota-
tional dynamics): 

Simplified longitudinal dynamics: The goal was to estimate the range and range 
rate sufficiently well for automatic transition into and for convoy driving. Since the 
control and perturbation inputs to the vehicle observed are unknown, a third-order 
model with colored noise for acceleration as given in Equations 2.34 and 2.35 has 
been chosen and proven to be sufficient [Bar-Shalom, Fortmann 1988]. The noise 
term n(t) is fed into a first-order system  with time constant Tc = 1/ . The discrete 
model then is (here = A)

k+1 k k k
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The discrete noise term nk is assumed to be a white, bias-free stochastic process 
with normal distribution and expectation zero; its variance is  

2 2[ ] .k qE n s (11.11) 

After [Loffeld 1990] q should be chosen as the maximally expected acceleration 
of the process observed. 

Simplified lateral dynamics: Since the lateral positions of the vehicles observed 
have only very minor effects on the subject’s control behavior, a standard second-
order dynamical model with the state variables, lateral position yo relative to the 
subject’s (its own) lane center and lateral speed vyo are sufficient. The discrete 
model then is 

o o

v,k
yo yok+1 k

1 0
.

0 1 1

y yT
n

v v
(11.12) 

Again, the discrete noise term nv,k is assumed to be a white, bias-free stochastic 
process with normal distribution, expectation equal to zero, and variance qy

2.

11.3.2.3  Initial State Variables for Starting Recursive Estimation 

Figure 11.14 visualizes the transformation of the feature set marking the lower 
bound of a potential vehicle into estimated positions for the vehicles in Cartesian 
coordinates. In the left part of the figure, dark-to-bright edges of the dark area un-
derneath the vehicle in a top-down search are shown. For the near range, assuming 
a flat surface is sufficient, usually. The tangents to the local lane markings are ex-
trapolated to a common vanishing point of the near range if the road is 
curved.Since convergence behavior is good, usually, special care is not necessary 
in the general case. From the right part of the figure, the bearing angles i to the 
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vehicle candidates can easily be determined. Initialization and feature selection for 
tracking have to take the different aspect conditions in the three lanes into account.  

Image Spatial interpretation

� 3

� 2

The aspect graph in Figure 11.15 shows the distribution of characteristic fea-
tures as seen from the rear left (vehicle in front in neighboring lane to the right). 
The features detected, for which correspondence can be established most easily at 
low computational cost, are the dark area underneath the vehicle and edge features 
at the vehicle corners, front left and rear right (marked by bold letters in the fig-
ure). The configuration of rear groups of lights and license plate (dotted rectangle) 
and the characteristic set of wheel parts are the features detectable and most easily 
recognizable with additional area-based methods. 

Figure 11.14. Transformation of image row, in which the lower edge of the dark 
region underneath the vehicle appears, and of lateral position into Cartesian coordi-
nates, based on camera elevation above the ground assumed to be flat 

Getting good estimates for the velocity components needed for each second-
order dynamic model is much harder. Again, trusting in good convergence behav-
ior leads to the easy solution, in which all velocity components are initialized with 
zeros. Faster convergence may be achieved if an approximate estimation of the 
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Figure 11.15. Aspect conditions determine feature sets to be extracted for tracking. On 
the same road in normal traffic, road curvature, distance, and the lane position relative to 
the subject’s own lane are the most essential parameters; traffic moving in the same or in 
the opposite direction exhibits rear/front parts of vehicles. On crossroads, views from the 
side predominate. The situation shown is typical for passing a vehicle in right-hand traffic. 
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speed components can be achieved in the initial observation period of a few cycles; 
this is especially true if the corresponding elements of measurement covariance are 
set large and system covariance is set low (high confidence in the correctness of 
the model).  

11.3.2.4  Measurement Model and Jacobian Elements 

There are two essentially independent motion processes in the models given: “Lon-
gitudinal” (xo, Vo) and “lateral” states (yo, vyo) of the vehicle observed. Pitching mo-
tion of the vehicle has not yet been taken into account. However, if the sensors 
(cameras) have no degree of freedom for counteracting vehicle motion in pitch, 
this motion will affect visual measurement results appreciably (see Section 7.3.4). 
Depending on acceleration and deceleration, pitch angles of several degrees (  0.05 
mrad) are not uncommon; at 70 m distance, this value corresponds to a height 
change in the real world of  3.5 m for a point in the same row of the image. 

Rough ground may easily introduce pitch vibrations with amplitudes around 
0.25º (  0.005 mrad); at the same distance of 70 m, this corresponds to a 35 cm 
height change or changes in look-ahead distances on flat ground in the range of 10 
to 20 m (around 25 %). At shorter look-ahead distances, this sensitivity is much re-
duced; for example, at 20 m, the same vibration amplitude of 0.25° leads to look-
ahead changes of only about 1.3 m (6.5 %) for the test vehicle VaMP with camera 
elevation HK = 1.3 m above the ground; larger elevations reduce this sensitivity. 

Of course, this sensitivity enters range estimation directly according to Figure 
11.14. A sensitivity analysis of Equation 7.19 (with distance  instead of Lf) shows 
that range changes ( / ) as a function of pitch angle , and ( / zB) as a function 
of image row z

B

BB  go essentially with the square of the range:  

( / ) [ /( )]2 2

K K z BH + H f k z . (11.13) 

This emphasizes analytically the numbers quoted above for the test vehicle 
VaMP. Therefore, for large look-ahead ranges, one should not rely on average val-
ues for the pitch angle. If no gaze stabilization in pitch is available, it is recom-
mended to measure lane width at the position of the lower dark-to-bright feature 
(Equation 11.2) and to evaluate an estimate for range assuming that lane width is 
the same as determined nearby at distance Ln and to compute the initial value xo us-
ing the pinhole camera model. 

The measurement model for the width of the vehicle is given by Equation 11.3; 
for each single vertical edge feature, the elements of the Jacobian matrix are 

2
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y y

o o o o

f ky y
f k

y y x x

y y y
f k f
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(11.14) 

 It can be seen that changes in lateral feature position in the image depend on 
changes of state variables in the real world by 
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(11.15) 

 The second equation indicates that changes in range, xo, can be approximately 
neglected for predicting lateral feature position since yo and xo << xo, and range is 
not updated from the prediction-error yBo (no direct cross-coupling between lon-
gitudinal and lateral model necessary). However, since lateral position yo in the 
first equation is updated by inverting the Jacobian element ( yBo/ yo), small predic-
tion-errors yBo in the feature position in the image will lead to large increments 

yo. Note that this sensitivity results from taking the camera coordinates only as 
reference (xo). Determining yoL relative to the local road or lane has range xo cancel 
out, and the lateral position of the vehicle in its lane can be estimated as much less 
noise-corrupted.  

11.3.2.5  Statistical Parameters for Recursive Estimation 

The covariance matrices Q of the system models are required as knowledge about 
the process observed to achieve good convergence in recursive estimation. The co-
variance matrix of the longitudinal model has been given as Equation 2.38. For the 
lateral model, one similarly obtains 

2

2 .
1y qy

T T
Q

T
(11.16) 

Optimal values for q
2 have been determined in numerous tests with the real ve-

hicle in closed-loop performance driving autonomously. Stable driving with good 
passenger comfort has been achieved for values q

2  0.1 (m/s2) 2. A detailed dis-
cussion of this filter design may be found in [Thomanek 1996].

The statistical parameters for image evaluation determine the measurement co-
variance matrix R. Errors in row and column evaluation are assumed to be uncorre-
lated. Since lateral speed is not measured directly but only reconstructed from the 
model, the matrix R can be reduced to a scalar r with 

2 2
rr (11.17) 

as the variance of the feature extraction process. For the test vehicle VaMP with 
transputers performing feature localization to full pixel resolution (no subpixel in-
terpolation) and with only 80 ms cycle time, best estimation results were achieved 
with r

2 = 2 pixel2 [Thomanek 1996].

11.3.2.6  Falsification Strategies for Hypothesis Pruning 

Computing power available in the early 1990s allowed putting up just one object 
hypothesis for each set of features found as a candidate. The increase in computa-
tional resources by two to three orders of magnitude in the meantime (and even 
more in the future) allows putting up several likely object hypotheses in parallel. 
This reduces delay time until stable interpretation and a corresponding internal rep-
resentation has been achieved.  
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The early jump to full spatiotemporal object hypotheses in connection with 
more detailed models for object classes has the advantage that it taps into the 
knowledge bases with characteristic image features and motion models without 
running the risk of combinatorial feature explosion as in a pure bottom-up ap-
proach putting much emphasis on generating “the most likely single hypothesis”. 
Each hypothesis allows predicting new characteristic features which can then be 
tested in the next image taking into account temporal changes already predictable. 
Those hypotheses with a high rate and good quality of feature matches are pre-
ferred over the others, which will be deleted only after a few cycles. Of course, it is 
possible that two (or even more) hypotheses continue to exist in parallel. Increas-
ingly more features considered in parallel will eventually allow a final decision; 
otherwise, the object will be published in the DOB with certain parameters recog-
nized but others still open. 

An example is a trailer observed from the rear driving at low speed; whether the 
vehicle towing is a truck capable of driving at speeds up to say 80 km/h or an agri-
cultural tractor with a maximal speed of say 40 km/h cannot be decided until an 
oblique view in a tighter curve or performing a lane change is possible; the length 
of the total vehicle is also unknown. This information is essential for planning a 
passing maneuver in the future. The oblique view uncovers a host of new features 
which easily allow answering the open questions. Moving laterally in one’s own 
lane is a maneuver often used for uncovering new features of vehicles ahead or for 
discovering the reason for unexpectedly slow moving traffic.  

Once the tracking process is running for an object instantiated, the bottom-up 
detection process will rediscover its features independent of possible predictions. 
Therefore, the main task is to establish correspondence between features predicted 
and those newly extracted. A Mahalanobis distance with the matrix  for proper 
weighting of the contribution of different features of a contour is one way to go. 

Let the predicted contour of a vehicle be c*, the measured one c. Its position in 
the image depends on (at least) three physical parameters: distance x, lateral posi-
tion y and vehicle width B. From the best estimates for these parameters, c* is 
computed for the predicted states at the time of next measurement taking. The pre-
diction-errors c – c* are taken to evaluate the set of features of a contour minimiz-
ing the distance 

1( *) ( *Td c c )c c . (11.18) 

From the features satisfying threshold values for (c – c*), those minimizing d 
are selected as the corresponding ones. Proper entries for  have to be found in a 
heuristic manner by experiments. 

It is the combination of robust simple feature extraction and high-level spatio-
temporal models with frequent bottom-up and top-down traversal of the representation 
hierarchy that provides the basis for efficient dynamic vision. In this context, time and 

motion in conjunction with knowledge about spatiotemporal processes constitute an 

efficient hypothesis pruning device.
If both shape and motion state have to be determined simultaneously [Schick 1992]

an interference problem may occur trading shape variations versus aspect conditions; 
these problems have just been tackled and it is too early to make general statements on 
favorable ways to proceed. But again, observing both spatial rigidity and (dynamic) 
time constraints yields the best prospects for solving this difficult task efficiently. 
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11.3.2.7  Handling Occlusions 

The most promising way to understand the actual traffic situation is to start with 
road recognition nearby and track lane markings or road boundaries from near to 
far. Since parts of these “objects” may be occluded by other vehicles or self-
occluded by curvatures of the road (both horizontally and vertically), obstacles and 
geometric features on the side of the road have to be recognized in parallel for 
proper understanding of “the scene”. The different types of occlusions require dif-
ferent procedures as proper behavior. A good general indicator for occlusion is 
changing texture to one side of an edge and constant texture on the other side [Gib-
son 1979]; to detect this, high-resolution images are required, in general. This item 
will be an important step for developing machine vision in the future with more 
computing power available. 

In curved and hilly terrain, driving safely until new viewing conditions allow 
larger visual ranges is the only way to go. In flat terrain with horizontally curved 
roads, there are situations where low vegetation obscures the direct view of the 
road, but other vehicles can be recognized by their upper parts; their trajectory over 
time marks the road. For example, if driving behind a slow vehicle, behind an on-
coming curve to the left, a vehicle in opposite traffic direction has been observed 
over a straight stretch, and no indication of further vehicles is in sight, the vehicle 
intending to pass should verify the empty oncoming lane at the corner and start 
passing right away if the lane is free over a sufficiently long distance. (Note that 
knowledge about one’s own acceleration capabilities as a function of speed and 
visual perception capabilities for long ranges have to be available to decide this 
maneuver.) In all cases of partial occlusion it is important to know characteristic 
subparts and their relative arrangement to hypothesize the right object from the 
limited feature set. Humans are very good in this respect, usually; the capability of 
reliably recognizing a whole object from only parts of it visible is one important 
ingredient of intelligence. Branches of trees or sticking snow partially occluding 
traffic signs hardly hamper correct recognition of them. The presence of a car is 
correctly assumed if only a small part of it and of one wheel are visible in the right 
setting. Driving side by side in neighboring lanes, a proper continuous temporal 
change of the gap between the front wheel (only partially visible) and fender of the 
car passing will indicate an upcoming sideways motion of the car, probably need-
ing special attention for a while. Knowing the causal chain of events allows rea-
sonable predictions and may save time for proper reactions.  

The capability of drawing the right conclusions from a limited set of informa-
tion visually accessible probably is one of the essential points separating good 
drivers from normal or poor ones. This may be one of the areas in the long run 
where really intelligent assistance systems for car driving will be beneficial for 
overall traffic; early counteraction can prevent accidents and damage. (Our present 
technical vision systems are far from the level of perception and understanding re-
quired for this purpose; in addition, difficult legal challenges have to be solved be-
fore application is feasible.) 
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11.3.3 Recursive Estimation of Open Parameters and Relative State 

The basic method has been discussed in Chapter 6 and applied to road recognition 
while driving in Chapters 7 to 10. In these applications, the scene observed was 
static, but appeared to be dynamic due to relative egomotion, for which the state 
has been estimated by prediction-error feedback. The new, additional challenge 
here is to detect and track other objects moving to a large extent (but not com-
pletely) independent of egomotion of the vehicle carrying the cameras. For safe 
driving in road traffic, at least half a dozen nearest vehicles in each hemisphere of 
the environment have to be tracked, with visual range depending on the speed 
driven. For each vehicle (or “subject”), a recursive estimation process has to be in-
stantiated for tracking. This means that about a dozen of these have to run in paral-
lel (level 2 of Figure 5.1). 

Each of these recursive estimation processes requires the integration of visual 
perception. The individual subtasks of feature extraction, feature selection, and 
grouping as well as hypothesis generation have been discussed separately up to 
here. The integration to spatiotemporal percepts has to be achieved in this step 
now. In the 4-D approach, this is done in one demanding large step by directly 
jumping to internal representations of 3-D objects moving in 3-D space over time. 
Since these objects observed in traffic are themselves capable of perception and 
motion control (and are thus “subjects” as introduced in Chapters 2 and 3), the 
relevant parts of their internal decision processes leading to actual behavior also 
have to be recognized. This 
corresponds to an animation 
process for several subjects in 

parallel, based on observed 
motion of their bodies. The 
lower part of Figure 11.16 
symbolizes the individual steps 
for establishing a perceived 
subject in the internal represen-
tation exploiting features and 
feature flow over time (upper 
part). The percept comes into 
existence by fusing image data 
measured with generic models 
from object classes stored in a 
background knowledge base; 
using prediction-error feed-
back, this is a temporally ex-
tended process with adaptation 
of open parameters and of state 
variables in the generic models 
describing the geometric rela-
tions in the scene.  

Figure 11.16 Integration of visual perception for a 
single object: In the upper part the coarsely 
grained block diagram shows conventional feature 
extraction, feature selection, and grouping as well 
as hypothesis generation. The lower part imple-
ments the 4-D approach to dynamic vision, in 
which background knowledge about 3-D shape 
and motion is exploited for animating the spatio-
temporal scene observed in the interpretation 
process.
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11.3.3.1  Which Parameters/States Can Be Observed? 

Visual information comes from a rather limited set of aspect conditions over a rela-
tively short period of time. Based on these poor conditions for recognition, either a 
large knowledge base about the subject class has to be available or uncertainty 
about the “object” perceived will be large. After hypothesizing an object/subject 
under certain aspect conditions, the features available from image evaluation may 
be complemented by additional features which should be visible if the hypothesis 
holds. From all possible aspect conditions in road scenes, the dark area underneath 
the vehicle and a left as well as a right vertical boundary on the lower part of the 
body should always be visible; whether these vertical edges are detectable depends 
on the image intensity difference between vehicle body and background. In gen-
eral, this contrast may be too small to be noticed at most over a limited amount of 
time, due to changing background when the vehicle is moving. This is the reason 
why these features (written bold in Figure 11.15) have been selected as a starting 
point for object detection. 

When another vehicle is seen from straight behind (SB), the vertical edges seen 
are those from the left and right sides of the body; its length is not observable from 
this aspect condition and is thus not allowed to be one of the parameters to be iter-
ated. When the vehicle is seen straight from the side (SR or SL), its width is unob-
servable but its length can be estimated (see Figure 11.6). Viewing the vehicle un-
der a sufficiently oblique angle, both length and width should be determinable; 
however, the requirement is that the “inner” corner in the image of the vehicle is 
very recognizable. This has not turned out to be the case frequently, and oscilla-
tions in the separately estimated values for length L and width B resulted [Schmid 
1995]. Much more stable results have been achieved when the length of the diago-
nal (D = (L2 + B2)1/2) has been chosen as a parameter for these aspect conditions; if 
B has been determined before from viewing conditions straight behind, the length 
parameter can be separated assuming a rectangular shape and constant width. For 
rounded car bodies, the real length will be a little longer than the result obtained 
from the diagonal. 

The yaw angle of a vehicle observed relative to the road is hard to determine 
precisely. The best approach may be to detect the wheels and their individual dis-
tances to the lane marking; dividing the difference by the axle distance yields the 
(tangent of the) yaw angle. Of the state variables, only the position components can 
be determined directly from image evaluation; the speed components have to be 
reconstructed from the underlying dynamic models. 

It makes a difference in lateral state estimation whether the correct model with 
Ackermann steering is used or whether independent second-order motion models 
in both translational degrees of freedom and in yaw are implemented (independent 
Newtonian motion components). In the latter case, the vehicle can drift sidewise 
and rotate even when it is at rest in the longitudinal direction. With the Ackermann 
model, these motion components are linked through the steering angle, which can 
thus be reconstructed from temporal image sequences (see Section 14.6.1) [Schick 
1992]. If phases of standing still with perturbations on the vehicle body are encoun-
tered (as in stop-and-go traffic), the more specific Ackermann model is recom-
mended. 
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As mentioned before, motion of other vehicles can be described relative to the 
subjet vehicle or relative to the local road. The latter formulation is less dependent 
on perturbations of the vehicle body and thus is preferable.  

11.3.3.2  Internal Representations 

Each object hypothesis is numbered consecutively and stored with time of installa-
tion marking the observation period in local memory first for checking the stability 
of the hypothesis; all parameters and valid state variables actually are stored in 
specific slots. These are the same as available for publication to the system after 
the hypothesis has become more stable within a few evaluation cycles; in addition, 
information on the initial convergence/divergence process is stored such as: per-
centage of predicted features actually found, time history of convergence criteria 
including variance, etc. When certain criteria are met, the hypothesis is published 
to the overall system in the dynamic database (DDB, renamed later in dynamic ob-
ject database, DOB); all valid parameters and state variables are stored in specific 
slots. Special state variables may be designated for entry into a ring buffer of size 
nRB; this allows access to the nRB latest values of the variable for recognizing time 
histories. The higher interpretation levels of advanced systems may be able to rec-
ognize the onset of maneuvers looking at the time history of characteristic vari-
ables.

Other subsystems can specify information on objects they want to receive at the 
earliest date possible; these lists are formed by the DOB manager and sent to the 
receiver cyclically. (To avoid time delays too large for stable reaction, some pre-
ferred clients receive the information wanted directly from the observation special-
ist in parallel.)  

11.3.3.3  Controlling and Monitoring the Estimation Process 

Each estimation process is monitored steadily through several goodness criteria. 
The first is the count of predicted features for which no corresponding measured 
feature could be established. Usually, obtaining a few times (factor of 2 to 4) the 
amount of features minimally required for good observation is tried. If less than a 
certain percentage (say, 70%) of these features has no corresponding feature meas-
ured, the measurement data are rejected altogether and estimation proceeds with 
pure prediction according to the dynamic model. Confidence in the estimation re-
sults is decreased; Figure 11.17 
shows a time history of the confi-
dence measure from [Thomanek
1996]. After initialization, confi-
dence level VE is low for several 
cycles until convergence data allow 
lifting it to full confidence VV; if 
not sufficiently many correspond-
ing features can be found, confi-
dence is decreased to level VP. If 
this occurs in several consecutive 

Figure 11.17. Time history of confidence 
measure in object tracking: VV full confi-
dence, VP confidence from prediction only; 
VE confidence for initialization. 

Time
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cycles, confidence is completely lost and goes to zero (termination of tracking). 
Monitoring is done continuously for all tracking processes running. Figure 

11.18 shows a schematic diagram implemented in the transputer system of the mid-
1990s. The vision system has two blocks: One for the front hemisphere with two 
cameras using different focal lengths (lower left in figure with paths 1 and 2, the 
latter not shown in detail) and one for the rear hemisphere (lower right, paths 3 and 
4, only the latter is detailed). Objects are sorted and analyzed from near to far for 
handling occlusions in a natural way. For each image stream, a local object ad-
ministration is in place. This is the unit communicating estimation results to the 
rest of the system, especially to the global object administration process (center 
top). Feature occlusion in the teleimage by objects tracked in the wide-angle im-
ages has to be resolved by this agent. It also has to check the consistency of the in-
dividual results; for example, very often the vehicle ahead in the subject’s lane is 
the same in the tele- and the wide-angle image. In a more advanced system, this 
fact should be detected automatically, and a single estimation process for this vehi-
cle should be fed with features from the two image streams; lacking time has not 
allowed realizing this in the “Prometheus” project. 

Figure 11.18. Structure and data flow of second-generation dynamic vision system for 
ground vehicle perception realized with 14 transputers (see Figure 11.19) in test vehicles 
VaMP and VITA_2 [Thomanek 1996] 
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All processes work with models from the background data base for generic ob-
ject classes (top left in Figure 11.18) and feed results into the DOB (top right).  

This detailed visualization of the obstacle recognition subsystem has to be ab-
stracted on a higher level to show its embedding in the overall automatic visual 
control system developed and demonstrated in the Prometheus-project; beside ob-

stacle recognition, other vision components for road recognition [Behringer 1996],
for 3-D shape during motion [Schick 1992], for moving humans [Kinzel 1995], and 
for signal lights [Tsinas 1997] were developed. This was the visual perception part 
of the system that formed the base for the other components for viewing direction 

control [Schiehlen 1995], for situation assessment [Hock 1994], for behavior decision
[Maurer 2000], and for vehicle control [Brüdigam 1994].

Figure 11.19 shows the overall system, largely based on transputers, in coarse 
resolution; this was the system architecture of the second-generation vision sys-
tems of UniBwM. Here, we just discuss the subsystem for visual perception with 
the cameras shown in the upper left, and the road and obstacle perception system 
shown in the lower right corners. The upper right part for system integra-
tion/locomotion control will be treated in Chapters 13 and 14.  

Figure 11.19. Overall system architecture of second-generation vision system based 
on transputers (about 60 in total) in VaMP: Road with lane markings and up to 12 ve-
hicles, 6 each in front and rear hemisphere, could be tracked at 12.5 Hz (80 ms cycle 
time) with four cameras on two yaw platforms (top left). Blinking lights on vehicles 
tracked could be detected with the subsystem in the lower left of the figure.

11.3.4 Experimental Results 

From a system architecture point of view, the dynamic database (DDB) was intro-
duced as a flexible link and distributor allowing data input from many different de-
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vices. These data were routed to all other subsystems; any type of processor or ex-
ternal computer could communicate with it. 

Images used were 320 × 240 pixels from every fourth field (every second frame, 
only odd or even fields); for intensity images coded with 1 byte/pixel, this yields a 
video data input rate into the computer system of about 1MB/s for each video 
stream. A total of 4 MB/s had to be handled on the two video buses for four cam-
eras shown in the bottom of the figure. The fields of view of these cameras looking 
to the front and rear hemispheres can be seen for the front hemisphere in Figure 
11.20; the ratio of focal lengths of the 
cameras was about 3.2 which seemed 
optimal for observing the first two rows 
of vehicles in front. The system was de-
signed for perceiving the environment 
in three neighboring lanes on high-
speed roads with unidirectional traffic.  

A more detailed view of the vision 
part of the system with the video busses 
at the bottom, realized exclusively on 
about four dozen transputers, can be 
seen in Figure 11.21. In addition to the 
intensity images, one color image 
stream from one of the front cameras 
could be sent via a separate third bus to 
the unit for signal light analysis of the 
vehicle directly ahead (lower left corner in Figure 11.19 [Tsinas 1997]).

wide angle

cameradead zone

dead zone

Figure 11.20. Bifocal vision of test vehi-
cle VaMP for high-speed driving and 
larger look-ahead ranges (see Figure 1.3 
for a picture of the ‘vehicle eye’ with 
two finger cameras on a single axis plat-
form for gaze control in yaw) 

The arrangement of subsystems is slightly different in Figures 11.19 and 11.21. 
The latter shows more organizational details of the distributed transputer system of 
three different types (T2, T4, T8); the central role of the communication link (CL) 
developed as a separate unit [von Holt 1994] is emphasized here. Object detection
and tracking (ODT) has been realized with 14 transputers: Two T4 (VPU) for data 
input from the two video buses, for data distribution into the four parallel paths 
analyzing one image stream each and for graphic output of results as overlay in the 
images (lower right); eight T2 (16-bit processors) performed edge feature extrac-
tion with the software package KRONOS written in the transputer programming 
language “Occam” (see Section 5.2 and [Thomanek, DDickmanns 1992]). Four T8 
served as “object processors” (OP) on which recursive estimation for each object 
tracked and the administrative functions for multiple objects were realized. 

The data flow rate from ODT and RDT into the DDB compared to the video rate 
is reduced by about two to three orders of magnitude (factor of ~ 300); in absolute 
terms it is in the range 10 to 20 KB/s for ten vehicles tracked. With roughly 1 KB/s 
data rate per vehicle tracked at 12.5 Hz, time histories of a few state variables can 
easily be stored over tens of seconds for maneuver recognition at higher system 
levels. (This function was not performed with the transputer system in the mid-
1990s.) 
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Figure 11.21. Realization of second-generation vision system with distributed tran-
sputers of various types: 16-bit processors (designated by squares) were used for fea-
ture extraction and communication; 32-bit processors (rectangles) were used for num-
ber crunching. Each transputer has four direct communication links for data exchange, 
making it well suited for this type of distributed system. 

Local object administration had to detect inconsistencies caused by two proc-
esses working on different images but tracking the same vehicle. It also had to 
handle communication with other modules for exchanging relevant data. In addi-
tion, as long as a situation assessment module was not in operation on a higher 
level, it determined the relevant object for “vehicle control” to react to.  

11.3.4.1  Distance Keeping (Convoy Driving) 

Figure 11.22 shows a situation with the test vehicle VaMP driving in the center 
lane of a three-lane Autobahn; the vision system has recognized three vehicles in 
each image (wide-angle at left, teleimage on the right). However, the vehicle in the 
lane driven is the same in both images, while in the neighboring lanes, the vehicles 
picked are different ones. Of course, in the general case, some vehicles in the 
neighboring lanes may also be picked in both the wide angle and the teleimage; 
these are the cases in which local supervision has to intervene and to direct the re-
cursive estimation loops properly. In the situation shown (left image), if the subject 
vehicle passes the truck seen to the right nearby, but the black car in front remains 
visible in the teleimage (say by a slight curve to the left), the case mentioned would 
occur. The analysis process of the teleimage would have to be directed to track the 
white truck (partially occluded here) in front of the black car; this car in turn would 
have to be tracked in the wide-angle image. 
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Figure 11.22. Five objects tracked in front hemisphere; in the own lane only the vehi-
cle directly ahead can be seen (by both cameras). In neighboring lanes, the tele camera 
sees the second vehicle in front. 

It can be seen that the vehicles in front occlude a large part of the road bounda-
ries and of lane markings further away. It does not make sense that the road recog-
nition process tries to find relevant features in the image regions covered by other 
vehicles; therefore, these regions are communicated from ODT to RDT and are ex-
cluded in RDT from feature search. 

Range estimation by monocular vision has encountered quite a number of skep-
tical remarks from colleagues since direct range information is completely lost in 
perspective mapping. However, humans with only one eye functional have no dif-
ficulty in driving a road vehicle correctly and safely. 

To quantify precisely the accuracy achievable with monocular technical vision 
after the 4-D approach, comparisons with results from laser range finders (LRF) in 
real traffic have been performed. An operator pointing a single beam LRF steadily 
onto a vehicle also tracked by the vision system was the simplest valid method for 
obtaining relevant data. 

Figure 11.23 shows a comparison between range estimation results with vision 
(ODT as discussed above) and with a single-beam laser range finder pointed at the 
object of relevance. It is seen that, except for a short period after the sign change of 
relative speed (lower part), the agreement in range estimation is quite good (error 
around 2% for ranges of 30 to 40 m). For ranges up to about 80 m, the error in-
creased to about 3%. The lower part in the figure shows that in the initial transient 
phase, reconstruction (observation) of relative speed exhibits some large deviations 
from reference values measured by a LRF. Speed from a LRF is a derived variable 
also, but it is obtained at a higher rate and smoothed by filtering; it is certainly 
more accurate than vision. The right subfigure for reconstructed relative speed 
(range rate) shows strong deviations during the initial transient phase, starting with 
the initial guess “0”, till about 2 seconds after hypothesis generation. 

The heavy kinks at the beginning are due to changing feature correspondences 
over time until estimation of vehicle width has stabilized. After the transients have 
settled, visual estimation of relative speed is close to the LRF-based one. These re-
sults are certainly good enough for guiding vehicles only by machine vision; due to 
increasing angles for decreasing range between features separated on the body sur-
face by a constant distance, accuracy of monocular vision becomes better when it 
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Figure 11.23. Comparison of results in range estimation between a single-beam, accu-
rately pointed laser range finder and dynamic monocular vision after the 4-D approach 
in a real driving situation on a highway 

is most needed (before a possible touch or crash). The results shown were achieved 
in 1994 with the transputer system described. 

Migration to new computer hardware: In 1995, replacing transputers within the 
ODT block by PowerPC processors (Motorola 601) with more than ten times the 
processing power per unit, evaluation frequency could be doubled (25 Hz) and the 
number of processors needed was reduced by a factor of 6. With this system, the 
long distance trip to the city of Odense, Denmark, mentioned in Section 9.4.2.5, 
was performed in the same year. 

Computing power per general-purpose microprocessor kept increasing at a fast 
pace in these years. Since high-performance networks for fast data exchange be-
tween these processors also became available and the more powerful transputers 
did not materialize, the third-generation vision system was started in 1997 on the 
basis of “commercial-off-the-shelf “ (COTS) hardware, Intel Pentium®. One rack-
mounted PC system sufficed for doing the entire road recognition; a second was 
used for bifocal obstacle recognition. Taking all pixels digitized in only odd or 
even fields (25 Hz) allowed increasing the resolution to about 770 pixels per row 
with 40 ms cycle time; vertical resolution was unchanged. 

Object detection and tracking with COTS-PC systems: Figure 11.24 shows 
tracking of two cars in a high-resolution image with edge extraction in intelligently 
controlled search windows based on predictions from spatiotemporal models run-
ning at 40 ms cycle time (25 Hz).  

The higher tracking frequency in connection with high image resolution allowed 
robust tracking performance at moderate cost. For the same performance level, the 
COTS system has been purchased for ~ 20% of the cost of a custom-designed sys-
tem used before.  
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Figure 11.24. Object tracking with a COTS-PC system at the turn of the century. The 
software system applied for intelligently controlled edge extraction was CRONOS. 

At about the same time, the first systems for Automatic Cruise Control (ACC) 
came on the market based on radar for distance measurement. The radar principle 
allows good measurement results for range (and range rate by smoothed differenc-
ing), but poor lateral localization and relatively many false alarms; road and lanes 
cannot be recognized by radar, in general. So it was quite natural that a combina-
tion of radar and vision has been investigated to improve results [Hofmann et al.
2003].

Figure 11.25 shows a snapshot of a scene on the Autobahn where the subject 
vehicle is laterally controlled by a human driver in the third lane (leftmost); only 
longitudinal control is done fully automatically based on the fused evaluation re-
sults of radar and vision. Radar is used for hypothesis generation and range estima-
tion; vision checks all of these hypotheses for objects (vehicles) and eliminates 
those that cannot be substantiated by corresponding sets of visual features. For 
those confirmed, their precise lateral extension of the lower part and their positions 
relative to the lanes are estimated. The reference vehicle for distance keeping is 
marked by a red rectangle (at the left in the wide-angle image, left part of figure, at 
the center in the teleimage, right part of figure).  

Other vehicles recognized are marked by a light blue rectangle (center of left 
image). Lane markings recognized are also painted into the image as overlays. The 

Wide-angle
image

Teleimage

Figure 11.25. Bifocal lane and object tracking with a COTS-PC system after object can-
didates have been detected by radar, including false alarms which have to be rejected 
based on (comparatively high-resolution) vision [Hofmann 2004] 
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bright (yellow) line at the center of the image displays the vertical curvature esti-
mated by vision; the outer parts mark the reference “zero”, and the central part 
moves up and down for upward or downward curvature. At the moment shown, a 
slight negative vertical curvature (downward) has been estimated. This vertical 
curvature component is necessary for obtaining consistent range results by vision 
and radar; recall that look-ahead range depends strongly on vertical curvature (see 
Section 9.2).  

Figure 11.26. Schematic visualization 
of advantages in hybrid radar and vi-
sion sensing: Improved accuracy be-
side reduction in false alarm rate 

Error ellipse radar
Error ellipse 

vision

Combined
error ellipse

When the driver changes lane, the vi-
sion system automatically switches to the 
new lane and picks it as reference. Figure 
11.26 schematically sketches the advan-
tage in accuracy of joint radar and vision 
evaluation. This development is being 
continued in industry towards products for 
the automotive market in the near future.  

Road scene recognition with region-

based methods added: The computing power of PCs is sufficient nowadays for 
analyzing entire road scenes including lane and vehicle recognition in real time. In 
Section 5.3, the corresponding methods developed by Hofmann at UniBwM and 
the author have been described. Merged results for adjacent edge elements have 
been given in Figure 5.44. Merging shaded regions across search stripes yields 
homogeneous 2-D blobs. Figure 11.27 shows a typical scene with the sets of blobs 
and edges extracted with the Hofmann operator.  

Figure 11.27. Example of joint detection of edges (left) and homogeneous regions 
(right) in vertical search with ‘Hofmann operator’. The vertical centers of homogeneous 
regions are marked with different colors [Hofmann 2004].

Corners becoming available with the UBM-method (Section 5.3.3) at little addi-
tional cost allow making object tracking with the unified feature set much more ro-
bust than achievable up to now in real-time vision. 

Vehicles under oblique viewing conditions: Vehicles in neighboring lanes or fur-
ther away on curved roads may appear as rather complex arrangements of simple 
features, if all types of road vehicles such as trucks, tractors with trailers, tanker, or 
recreation vehicles beside cars are taken into account. The most characteristic set 
of subobjects or groups of features for all of these vehicles are the pairs of wheels 
they need for stable driving (except the rare tricycles hardly seen in normal traffic). 
Recognizing these wheels under partially occluded conditions therefore is essential 
for telling vehicles apart from other objects (obstacles like boxes) on the road. 
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For this purpose, [Hofmann 2004] has developed a special wheel detection algo-
rithm described in Section 11.3.1.2, (see Figure 11.13). Figure 11.28 shows results 
of its application in a highway scene. Since several pixels are lost for template-
based evaluation at the horizontal image boundaries, wheels in these regions are 
not detected. 

Figure 11.28. Confirming vehicle recognition under oblique viewing conditions 
based on characteristic wheel patterns. Area-based feature correlation in a 2-D 
search helps finding wheels by characteristic bright-dark patterns. 

Even in image sequences with relatively poor resolution, the results look prom-
ising; uncertainties in the wide-angle image may be resolved by directing the tele-
camera toward this region. 

11.3.4.2   Lane Change and Passing 

Figure 11.29 shows a situation after passing. (The poor quality is to a large part 
due to the state of technology available for miniaturized cameras and to the side 
constraints on image evaluation in the test vehicle one and a half decade ago.) In-
formation about vehicles in neighboring lanes is essential when running up to a 

Figure 11.29. Rear-looking view of bifocal camera set (VaMP 1994) while changing 
back into the old lane after passing. It has to be checked whether the vehicle passed has 
accelerated in the meantime and whether the range gained is safe for this maneuver. 
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slower vehicle in front and when one does not want to make a transition to convoy 
driving at this slow speed. After passing another vehicle, a similar situation exists 
for changing back to the right lane (in right-hand traffic). In these cases, not only 
other vehicles to the side or ahead in the neighboring lane have to be detected, but 
also vehicles behind (approaching or having been passed).  

The methods applied for evaluation of image sequences from the rear cameras 
are very similar to those from the front for the simple features used. When groups 
of light or the license plate are to be detected, specific generic shape models should 
be used; the aspect conditions (see Figure 11.15) for hypothesis generation and 
wheel patterns have to be adapted correspondingly, of course. 

To detect vehicles efficiently in 
the neighboring lane nearby, Rieder
(2000) has studied several ap-
proaches. One of the more promising 
ones is shown in Figures 11.30 and 
11.31. The areas to be monitored are 
defined in 3-D space relative to the 
subject’s body such that without an-
other vehicle only lane surface can be 
seen (Figure 11.30); this lane surface 
is assumed to be approximately ho-
mogeneous, usually. The threshold 
for homogeneity has to be chosen 
correspondingly. Outside the lane, 
the background will be noisy and im-
age content would change at high fre-
quency, in general. The idea is that vehicles with their dark tires and body bright-
ness will differ from the average gray values of the road surface most of the time. 
This discrepancy is an indication of their presence. 

Figure 11.30. Definition of regions for de-
tecting passing vehicles: In the road direc-
tion, extended vertical rectangles of prede-
fined height are positioned (virtually) side 
by side in the near range along the 
neighboring lane just above the ground 

The height of the rectangles defined determines lateral resolution in position for 
the feature detected; however, it should allow sufficiently many pixels within the 
rectangle for reliable results. The features checked over time are the sums of pixel 
values in the columns of each rectangle sampled. This compromise has to be found 
depending on the specific task. In all of the rectangular regions (distorted in the 
image by perspective projection), the sum of local pixel intensity is formed. If 
these values are approximately constant, this means that the subject vehicle passes 
through a region with a homogeneous surface in the neighboring lane. If these val-
ues change over an extended region with consistent motion to the right, a vehicle 
can be assumed to pass through this region. In Figure 11.31, these columns are 
marked by dashed dark lines.  

The number of columns selected for evaluation (ten here) determines total com-
puting load and spatial resolution for detection (lower part). For a homogeneously 
looking lane, these individual sums are nearly constant (shown brighter, to the 
right). This detection procedure is not claimed to be especially accurate; it is meant 
for quick and efficient detection of candidates. Changing gaze direction toward this 
region will allow more precise vehicle recognition with the methods discussed pre-
viously, especially wheel detection, which will allow precise observation of the 
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lateral motion of the vehicle relative to its lane. This situation is one of the few 
where stereointerpretation of binocular images is a big advantage if no range find-
ers (radar or laser) are available. 

11.3.4.3   Stop-and-Go Traffic 

Stop-and-go-behavior is a basic maneuvering capability when driving behind a 
single vehicle in front. The first fully vision-based demonstrations of this capability 
were done in 1991 in the framework of an intermediate demo for the project Pro-
metheus in Turino, Italy, on a separate test track. Performing this maneuver safely 
in an urban environment with a multitude of different moving subjects (cars, vans, 
trucks, bicycles, humans, and animals of all kinds) is a different challenge not yet 
solved. The U.S.-Defense Advanced Research Project Agency (DARPA) has set a 
price of $ 2 million for the autonomous vehicle capable of driving a 60-mile dis-
tance in an urban environment in the least amount of time (below 6 hours as addi-
tional constraint); this shall include reacting to other vehicles, also in stop-and-go
traffic. The final test of this “Urban Grand Challenge” with a maximal allowed 
speed of 20 mph is planned for the 3rd of November 2007 in a mock-up town in the 
United States. 

Car manufacturers and suppliers to the automotive industry have been consider-
ing the extension of adaptive cruise control (ACC) to stop-and-go-driving for some 

No change in vertical 

sum of pixel values

Significant change in

sum of pixel values

Figure 11.31. A vehicle moving through the columns in the image most likely will pro-
duce changing values of the sums; these columns are marked as dashed dark lines. Their 
vertical extension symbolized distance at the lane boundary. To determine range to a 
changing feature, its horizontal distance from the lane marking has to be taken into ac-
count.
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time. Most of these activities are based on two different types of radar (long- and 
short range, different frequencies) and on various types of laser range finders 
(LRF). Multiple planes in LRF with both scanning and multiple beam designs are 
under consideration. Typical angular resolutions for modern LRF designs go down 
to about 0.1° (  2 mrad). This means that at 50 m distance, the resolution is about 
10 cm, a reasonable value for slow speeds driven. If interference problems with ac-
tive sensing can be excluded, these modern LRF sensors just being developed and 
tested may be sufficient to solve the problem of obstacle recognition. 

However, human vision and multifocal, active technical vision can easily ex-
ploit ten times this resolution with systems available today. It will be interesting to 
observe, which type of technical vision system will win the race for industrial im-
plementation in the long run. In the past and still now, computing power and 
knowledge bases needed for reliable visual perception of complex scenes have 
been marginal. 

11.3.5 Outlook on Object Recognition 

With several orders of magnitude in computing power per processor becoming 
available in the next one or two decades (las in the past according to “Moore’s 
law”), the prospects are bright for high-resolution vision as developed by verte-
brates. Multifocal eyes and special “glasses”, under favorable atmospheric condi-
tions, will allow passive viewing ranges up to several kilometers. High optical 
resolution in connection with “passive” perception of colors and textures will allow 
understanding of complex scenes much more easily than with devices relying on 
reflected electromagnetic radiation sent out and reflected at far distances. 

Generations of researchers and students will compile and structure the knowl-
edge base needed for passive vision based on spatiotemporal models of motion 
processes in the world. Probably other physical properties of light like direction of 
polarization or other spectral ranges may become available to technical vision sys-
tems as for some animal species. This would favor passive vision in the sense of no 
active emission of rays by the sensor. Active gaze control is considered a “must” 
for certain (if not most) application areas; Near (NI) or far infrared radiation are 
such fields of practical importance for night vision and night driving.  

In the approach developed, bifocal vision has become the standard for low to 
medium speeds; differences in focal length from three to about ten have been in-
vestigated. It seems that trifocal vision with focal lengths separated by a factor of 3 
to 5 is a good way to go for fast driving on highways. If an object has been de-
tected in a wide-angle image and is too small for reliable recognition, attention fo-
cusing by turning the camera with a larger focal length onto the object will yield 
the improved resolution required. Special knowledge based algorithms (rules and 
inference schemes) are required for recognizing the type of object discovered. 
These object recognition specialists may work at lower cycle times and analyze 
shape details while relative motion estimation may continue to be done in parallel 
at high frequency with low spatial resolution exploiting the “encasing box” model. 
This corresponds to two separate paths to the solution of the “where” problem and 
of the “what” problem. 
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Systematic simultaneous interpretation of image sequences on different pyra-
mid levels of images has not been achieved in our group up to now, though data 
processing for correlation uses this approach successfully, e.g., [Burt 1981; Mandel-
baum et al. 1998]. This approach may be promising for robust blob- and corner 
tracking and for spatiotemporal interpretation in complex scenes. 

For object detection in the wide-angle camera, characteristic features of mini-
mum size are required. Ten to twenty pixels on an object seem to be a good com-
promise between efficiency and accuracy to start with. Control of gaze and atten-
tion can then turn the high-resolution camera to this region yielding one to two 
orders of magnitude more pixels on this object depending on the ratio of focal 
lengths in use. This is especially important for objects with large relative speed 
such as vehicles in opposite traffic direction on bidirectional high-speed roads. 

Another point needing special attention is discovery of perturbations: Sudden 
disappearance of features predicted to be very visible, usually, is an indication of 
occlusion by another object. If this occurs for several neighboring features at the 
same time, this is a good hint to start looking for another object which has newly 
appeared at a shorter range. It has to be moving in the opposite direction relative to 
the side where the features started disappearing. If just one feature has not been 
measured once, this may be due to noise effects. If measurements fail to be suc-
cessful at one location over several cycles, there may be some systematic discrep-
ancy between model and reality and, therefore, this region has to be scrutinized by 
allocating more attention to it (more and different feature extractors for discovering 
the reason). This will be done with a new estimation process (new object hypothe-
sis) so that tracking and state estimation of the known object is not hampered. First 
results of systematic investigations for situations with occlusions were obtained in 
the late 1980s by M. Schmid and are documented in [Schmid 1992]. This area needs 
further attention for the general case. 
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In the previous chapters, it has been shown that vision systems have to satisfy cer-
tain lower bounds on requirements to cover all aspects of interest for safe driving if 
they shall come close to human visual capabilities on all types of roadways in a 
complex network of roads, existing in civilized countries. 

 Based on experience in equipping seven autonomous road vehicles with dy-
namic machine vision systems, an arrangement of miniature TV cameras on a 
pointing platform was proposed in the mid-1990s which will satisfy all major re-
quirements for driving on all types of roads. It has been dubbed multifocal, active, 

reflex-like reacting vehicle eye (MarvEye). It encompasses the following proper-
ties:
1. large binocular horizontal field of view (e.g.,  110°),  
2. bifocal or multifocal design for region analysis with different resolution in par-

allel,
3. ability of view fixation on moving objects while the platform base also is mov-

ing; this includes high-frequency, inertial stabilization (f > 200 Hz),  
4. saccadic control of region of interest with stabilization of spatial perception in 

the interpretation algorithms;  
5. capability of binocular (trinocular) stereovision in near range (stereo base simi-

lar to the human one, which is 6 – 7 cm);  
6. large potential field of view in horizontal range (e.g., 200° with sufficient reso-

lution) such that the two eyes for the front and the rear hemisphere can cover the 
full azimuth range (360°); stereovision to the side with a large stereo base be-
comes an option (longitudinal distance between the “vehicle eye” looking for-
ward and backward, both panned by ~ 90° to the same side).  

7. high dynamic performance (e.g., a saccade of  20° in a tenth of a second). 

In cars, the typical dimension of this “vehicle eye” should not be larger than about 
10 cm; two of these units are proposed for road vehicles, one looking forward, lo-
cated in front of the inner rearview mirror (similar to Figure 1.3), the other one 
backward; they shall feed a 4-D perception system capable of assessing the situa-
tion around the vehicle by attention control up to several hundred meters in range. 

This specification is based on experience from over 5000 km of fully autono-
mous driving of both partners (Daimler-Benz and UniBwM) in normal traffic on 
German and French freeways as well as state and country roads since 1992. A hu-
man safety pilot – attentively watching and registering vehicle behavior but other-
wise passive – was always in the driver’s seat, and at least one of the developing 
engineers (Ph.D. students with experience) checked the interpretations of the vision 
system on computer displays. 
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Based on this rich experience in combination with results from aeronautical ap-
plications (onboard autonomous visual landing approaches till touch down with the 
same underlying 4-D approach), the design of MarVEye resulted. This chapter first 
discusses the requirements underlying the solution proposed; then the basic design 
is presented and sensible design parameters are discussed. Finally, steps towards 
first realizations are reviewed. Most experimental results are given in Chapter 14. 

12.1  Structural Decomposition of the Vision Task

The performance level of the human eye has to be the reference, since most of the 
competing vision systems in road vehicle guidance will be human ones. The design 
of cars and other vehicles is oriented toward pleasing human users, but also ex-
ploiting their capabilities, for example, look-ahead range, reaction times, and fast 
dynamic scene understanding.  

12.1.1  Hardware Base 

The first design decision may answer the following: Is the human eye with its char-
acteristics also a good guide line for designing technical imaging sensors, or are the 
material substrates and the data processing techniques so different that completely 
new ways for solving the vision task should be sought? The human eye contains 
about 120 million light-sensitive elements, but two orders of magnitude fewer fi-
bers run from one eye to the brain, separated for the left and the right halves of the 
field of view. The sensitive elements are not homogeneously distributed in the eye; 
the fovea is much more densely packed with sensor elements than the rest of the 
retina. The fibers running via “lateral geniculate” (an older cerebral structure) to 
the neo-cortex in the back of the head obtain their signals from “receptive fields” 
of different types and sizes depending on their location in the retina; so preprocess-
ing for feature extraction is already performed in retinal layers [Handbook of Physi-
ology: Darian-Smith 1984].

Technical imaging sensors with some of the properties observed in biological 
vision have been tried [Debusschere et al. 1990; Koch 1995], but have not gained 
ground. Homogeneous matrix arrangements over a very wide range of sizes are 
state of the art in microelectronic technology; the video standard for a long time 
has been about 640 × 480  307 000 pixels; with 1 byte/pixel resolution and 25 Hz 
frame rate, this results in a data rate of  7.7 MB/s. (Old analogue technology 
could be digitized to about 770 × 510 pixels, corresponding to a data rate of about 
10MB/s.) Future high-definition TV intends to move up to 1920 × 1200 pixels with 
more than 8-bit intensity coding and a 75 Hz image rate; data rates in the giga-
bit/second-range will be possible. In the beginning of real-time machine vision 
(mid-1980s) there was much discussion whether there should be preprocessing 
steps near the imaging sensors as in biological vision systems; “massively parallel 
processors” with hundreds of thousands of simple computing elements have been 
proposed (DARPA: “On Strategic Computing” [Klass 1985; Roland, Shiman 2002].
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With the fast advancement of general-purpose microprocessors (clock rates mov-
ing from MHz to GHz) and communication bandwidths (from MB/s to hundreds of 
MB/s) the need for mimicking carbon-based data processing structures (as in biol-
ogy) disappeared for silicon-based technical systems.  

With the advent of high-bandwidth communication networks between multiple 
general-purpose processors in the 1990s, high-performance, real-time vision sys-
tems became possible without special developments for vision except frame grab-
bers. The move to digital cameras simplified this step considerably. To develop 
methods and software for real-time vision, relatively inexpensive systems are suf-
ficient. The lower end video cameras cost a few dollars nowadays, but reasonably 
good cameras for automotive applications with increased dynamic intensity range 
have also come down in price and do have advantages over the cheap devices. For 
later applications with much more emphasis on reliability in harsh environments, 
special “vision hardware” on different levels may be advantageous. 

12.1.2  Functional Structure 

Contrary to the hardware base, the functional processing steps selected in biologi-
cal evolution have shown big advantages: (1) Gaze control with small units having 
low inertia is superior to turning the whole body. (2) Peripheral-foveal differentia-
tion allows reducing maximal data rates by orders of magnitude without sacrificing 
much of the basic transducer-based perception capabilities if time delays due to 
saccadic gaze control are small. (Eigenfrequencies of eyes are at least one order of 
magnitude higher than those for control of body movements.) (3) Inertial gaze sta-
bilization by negative feedback of angular rates, independent of image evaluation, 
reduces motion blur and extends the usability of vision from quasi-static applica-
tions for observation to really dynamic performance during perturbed egomotion. 
(4) The construction of internal representations of 3-D space over time based on 
previous experience (models of motion processes for object classes) triggered by 
visual features and their flow over time allows stabilizing perception of “the 
world” despite the very complex data input resulting from saccadic gaze control: 
Several frames may be completely noninterpretable during saccades.  

Note that controllable focal length on one camera is not equivalent to two or 
more cameras with different focal lengths: In the latter case, the images with dif-
ferent resolution are available in parallel at the same time, so that interpretation can 
rely on features observed simultaneously on different levels of resolution. On the 
contrary, changing focal length with a single camera takes time, during which the 
gaze direction in dynamic vision may have changed. For easy recognition of the 
same groups of features in images with different resolution, a focal length ratio of 
three to four experimentally yields the best results; for larger factors, the effort of 
searching in a high-resolution image becomes excessive.  

The basic functional structure developed for dynamic real-time vision has been 
shown in Figure 5.1. On level 1 (bottom), there are feature extraction algorithms 
working fully bottom-up without any reference to spatiotemporal models. Features 
may be associated over time (for feature flow) or between cameras (for stereointer-
pretation).  
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On level 2, single objects are hypothesized and tracked by prediction-error feed-
back; there are parallel data paths for different objects at different ranges, looked at 
with cameras and lenses of different focal lengths. But the same object may also be 
observed by two cameras with different focal lengths. Staging focal lengths by a 
factor of exactly 4 allows easy transformation of image data by pyramid methods. 
On all of these levels, physical objects are tracked “here and now”; the results on 
the object level (with data volume reduced by several orders of magnitude com-
pared to image pixels and features) are stored in the DOB. Using ring buffers for 
several variables of special interest, their recent time history can be stored for 
analysis on the third level which does not need access to image data any longer, but 
looks at objects on larger spatial and temporal scales for recognition of maneuvers 
and possibly cues for hypothesizing intentions of subjects. Knowledge about a sub-
ject’s behavioral capabilities and mission performance need be available only here.  

The physical state of the subject body and the environmental conditions are also 
monitored here on the third level. Together they provide the background for judg-
ing the quality and trustworthiness of sensor data and interpretations on the lower 
levels. Therefore, the lower levels may receive inputs for adapting parameters or 
for controlling gaze and attention. (In the long run, maybe this is the starting point 
for developing some kind of self-awareness or even consciousness.) 

12.2  Vision under Conditions of Perturbations 

It is not sufficient to design a vision system for clean conditions and later on take 
care of steps for dealing with perturbations. In vision, the perturbation levels toler-
able have to be taken into account in designing the basic structure of the vision sys-
tem from the beginning. One essential point is that due to the large data rates and 
the hierarchical processing steps, the interpretation result for complex scenes be-
comes available only after a few hundred milliseconds delay time. For high-
frequency perturbations, this means that reasonable visual feedback for counterac-
tion is nearly impossible.  

12.2.1  Delay Time and High-frequency Perturbation 

For a time delay of 300 ms (typical of inattentive humans), the resulting phase shift 
for an oscillatory 2-Hz motion (typical for arms, legs)  is more than 200°; that 
means that in a simple feedback loop, there is a sign change in the signal (cos 
(180°) = 1). Only through compensation from higher levels with corresponding 
methods is this type of motion controllable. In closed-loop technical vision systems 
onboard a vehicle with several consecutive processing stages, 3 to  10 video cy-
cles (of 40 or 33 ms duration) may elapse until the control output derived from vis-
ual features hits the physical device effecting the command. This is especially true 
if a perturbation induces motion blur in some images.  
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This is the reason that direct angular rate feedback in pitch and yaw from sen-
sors on the same platform as the cameras is used to command the opposite rate for 
the corresponding platform component. Reductions of perturbation amplitudes by 
more than a factor of 10 have been achieved with a 2 ms cycle time for this inner 
loop (500 Hz). Figure 12.1 shows the block diagram containing this loop: Rota-
tional rates around the y- and z-axes of the gaze platform (center left) are directly 
fed back to the corresponding torque motors of the platform at a rate of 500 Hz if 
no external commands from active gaze control are received. The other data paths 
for determining the inertial egostate of the vehicle body in connection with vision 
will be discussed below. The direct inertial feedback loop of the platform guaran-
tees that the signals from the cameras are freed from motion blur due to perturba-
tions. Without this inertial stabilization loop, visual perception capability would be 
deteriorated or even lost on rough ground. 

If gaze commands are received from the vision system, of course, counteraction 
by the stabilization loop has to be suppressed. There have to be specific modes 
available for different types of gaze commands (smooth pursuit of saccades); this 
will not be treated here. The beneficial effect of gaze stabilization for a braking 
maneuver with 3° of perturbation amplitude (min to max) in vehicle pitch angle is 

Figure 12.1. Block diagram for joint visual/inertial data collection (stabilized gaze, cen-
ter left) and interpretation; the high-frequency component of a rotational ego-state is de-
termined from integration of angular rates (upper center), while long-term stability is de-
rived from visual information (with time delay, see lower center) from objects further 
away (e.g., the horizon). Gravity direction and ground slope are derived from x- and y-
accelerations together with speed measured conventionally.
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shown in Figure 12.2. The corresponding reduction in amplitude on the stabilized 
platform experienced by the cameras is more than a factor of 10. The strong devia-
tion of the platform base from level, which is identical with vehicle body motion 
and can be seen as the lower curve, is hardly reflected in the motion of the camera 
sitting on the platform head (upper, almost constant curve).

Figure 12.2. Gaze stabilization in pitch by negative feedback of angular rate for test 
vehicle VaMoRs (4-ton van) during a braking maneuver 

The most essential state components of the body to be determined by integration 
of angular rate signals with almost no delay time are the angular orientations of the 
vehicle. For this purpose, the signals from the inertial rate sensors mounted on the 
vehicle body are integrated, shown in the upper left of Figure 12.1; the higher fre-
quency components yield especially good estimates of the angular pose of the 
body. Due to low-frequency drift errors of inertial signals, longer term stability in 
orientation has to be derived from visual interpretation of (low-pass-filtered) fea-
tures of objects further away; in this data path, the time delay of vision does no 
harm. [It is interesting to note that some physiologists claim that sea-sickness of 
humans (nausea) occurs when the data from both paths are strongly contradicting.]  

Joint inertial/visual interpretation also allows disambiguating relative motion 
when only parts of the subject body and a second moving object are in the fields of 
view; there have to be accelerations above a certain threshold to be reliable, how-
ever.

12.2.2  Visual Complexity and the Idea of Gestalt 

When objects in the scene have to be recognized in environments with strong vis-
ual perturbations like driving through an alley with many shadow boundaries from 
branches and twigs, picking “the right” features for detection and tracking is essen-
tial. On large objects such as trucks, coarse-scale features averaging away the fine 
details may serve the purpose of tracking better than fine-grained ones. On cars 
with polished surfaces, disregarding the upper part and mildly inclined surface ele-
ments of the body altogether may be the best way to go; sometimes single high-
lights or bright spots are good for tracking over some period of time with given as-

Time in seconds

Pitch angle
in degrees

Platform base

(= Vehicle body)

Cameras
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pect conditions. When the aspect or the lighting conditions change drastically, 
other combinations of features may be well suited for tracking. 

This is to say that image evaluation should be quickly adaptable to situations, 
both with respect to single features extracted and to the knowledge base establish-
ing correspondence between groups of features in the images and the internal rep-
resentation of 3-D objects moving over time through an environment affecting the 
lighting conditions. This challenge has hardly been tackled in the past but has to be 
solved in the future to obtain reliable technical vision systems approaching the per-
formance level of trained humans. The scale of visual features has to be expanded 
considerably including color and texture as well as transparency; partial mirroring 
mixed with transparency will pose demanding challenges. 

12.3  Visual Range and Resolution Required for Road 
Traffic Applications 

The human eyes have a simultaneous field of view of more than 180°, with coarse 
resolution toward the periphery and very high resolution in the foveal central part 
of about 1 to 2° aperture; in this region, the grating resolution is about 40 to 60 arc-
seconds or about 2.5 mrad. The latter metric is a nice measure for practical applica-
tions since it can be interpreted as the length dimension normal to the optical axis 
per pixel at 1000 times its distance (width in meters at 1 km, in decimeters at 100 
m, or in millimeters at 1 m, depending on the problem at hand). Without going into 
details about the capability of subpixel resolution with sets of properly arranged 
sensor elements and corresponding data processing, let us take 1 mrad as the hu-
man reference value for comparisons. 

Both of the human eye and head can be turned rapidly to direct the foveal region 
of the eye onto the object of interest (attention control). Despite the fast and fre-
quent viewing direction changes (saccades) which allocate the valuable high-
resolution region of the eye to several objects of interest in a time slicing multiplex 
procedure, the world perceived looks stable in a large viewing range. This biologi-
cal system evolved over millennia under real-world environmental conditions: the 
technical counterpart to be developed has to face these standards. 

It is assumed that the functional design of the biological system is a good start-
ing point for a technical system, too: however, technical realizations have to start 
from a hardware base (silicon) quite different from biological wetware. Therefore, 
with the excellent experience from the conventional engineering approach to dy-
namic machine vision, our development of a technical eye continued on the well 
proven base underlying conventional video sensor arrays and dynamic systems 
theory of the engineering community. 

The seven properties mentioned in the introduction to this chapter are detailed 
here to precise specifications. 
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12.3.1  Large Simultaneous Field of View

There are several situations when this is important. First, when starting from stop, 
any object or subject within or moving into the area directly ahead of the vehicle 
should be detectable; this is also a requirement for stop-and-go traffic or for very 
slow motion in urban areas. A horizontal slice of a complete hemisphere should be 
covered with gaze changes in azimuth (yaw) of about ± 35°. Second, when looking 
tangentially to the road (straight ahead) at high speeds, passing vehicles should be 
detected sufficiently early for prompt reaction when they start moving into the sub-
ject lane directly in front. Third, when a lane change or a turnoff is intended, simul-
taneous observation and tracking of objects straight ahead and about 90° to the side 
are advantageous; with nominal gaze at 45° and a field of view (f.o.v.) > 100°, this 
is achievable.  

In the nearby range, a resolution of about 5 mm per pixel at 2.5 m or 2 cm at 10 
m distance is sufficient for recognizing and tracking larger subobjects on vehicles 
or persons (about 2 mrad/pixel); however, this does not allow reading license 
plates at 10 m range. With 640 pixels per row, a single standard camera can cover 
about a 70° horizontal f.o.v. at this resolution (  55° vertically). Mounting two of 
these (wide-angle) cameras on a platform with optical axes in the same plane but 
turned in yaw to each side by obl ~ 20° (oblique views), a total f.o.v. for both 
cameras of 110° results; the difference between half the f.o.v. of a single camera 
and the yaw angle obl provides an angular region of central overlap (± 15° in the 
example). Separating the two cameras laterally generates a base for binocular ste-
reo evaluation (Section 12.3.4).  

The resolution of these cameras is so low that pitch perturbations of about 3° 
(accelerations/decelerations) shift features by about 5% of the image vertically. 
This means that these cameras need not be vertically stabilized and do not induce 
excessively large search ranges; this reduces platform design considerably. The 
numerical values given are just examples; they may be adapted to the focal lengths 
available for the cameras used. Smaller yaw angles obl yield a larger stereo f.o.v. 
and lower distortions from lens design in the central region. 

12.3.2 Multifocal Design 

The region of interest does not grow with range beyond a certain limit value; for 
example, in road traffic with lane widths of 2.5 to 4 m, a region of simultaneous in-
terest larger than about 30 to 40 m brings no advantage if good gaze control is 
available. With 640 pixels per row in standard cameras, this means that a resolu-
tion of 4 to 6 cm per pixel can be achieved in this region with proper focal lengths. 
Considering objects of 10 to 15 cm characteristic length as serious obstacles to be 
avoided, this resolution is just sufficient for detection under favorable conditions (2 
to 3 pixel on this object with sufficient contrast). But what is the range that has to 
be covered? Table 11.1 contains braking distances as a function of speed driven for 
three values of deceleration. 
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About a 240-m look-ahead range should be available for stopping in front of an 
obstacle from V = 180 km/h (50 m/s) with an average deceleration of 0.6 Earth 
gravity (g) or from 130 km/h (36 m/s) with an average deceleration of 0.3 g. To be 
on the safe side, a 250 to 300 m look-ahead range is assumed desirable for high-
speed driving. For the region of interest mentioned above, this requires a f.o.v. of 5 
to 7° or about 0.2 mrad resolution per pixel. This is one order of magnitude higher 
than that for the near range. With the side constraint mentioned for easy feature 
correspondence in images of different resolution (ratio of focal lengths no larger 
than 4), this means that a trifocal camera arrangement should be chosen. Figure 
12.3 visualizes the geometric relations. 

If lane markings of 12 cm width shall be recognizable at 200 m distance, this 
requires about 2.5 pixel on the line, corresponding to an angular resolution of 0.25 
mrad per pixel. For landmark recognition at far distances, this resolution is also de-
sirable. For maximal speeds not exceeding 120 km/h, a bifocal camera system may 
be sufficient. 

12.3.3  View Fixation 

Once gaze control is available in a vision system, it may be used for purposes other 
than the design goal. Designed initially for increasing the potential f.o.v. or for 
counteracting perturbations on the vehicle (inertial stabilization), it can in addition 
be used for gaze fixation onto moving objects to reduce motion blur and to keep 
one object centered in an image sequence. This is achieved by negative visual 
feedback of the deviation of the center of characteristic features from the center of 
the image; horizontal and vertical feature search may be done every second image 
if computing resources are low. Commanding the next orthogonal search around 
the column or row containing the last directional center position has shown good 
tracking properties, even without an object model installed. A second-order track-
ing model in the image plane may improve performance for smooth motion. 

However, if harsh directional changes occur in the motion pattern of the object, 
this approach may deteriorate the level of perturbation tolerable. For example, a 
ball or another object being reflected at a surface may be lost if delay times for vis-
ual interpretation are large and/or filter tuning is set to too strong low-pass filter-
ing. Decreasing cycle time may help considerably: In conventional video with two 
consecutive fields (half frames), using the fields separately but doubling interpreta-
tion frequency from 25 to 50 Hz has brought about a surprising increase in tracking 

Figure 12.3. Fields of view and viewing ranges for observing a lateral range of 30 m 
normal to the road

60° ~17.5°

5.7°30 m

30 m 100 m0 300 m
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performance when preparing the grasping experiment in orbit onboard the Space 
Shuttle Columbia [Fagerer et al. 1994].

View fixation need not always be done in both image dimensions; for motion 
along a surface as in ground traffic, just fixation in yaw may be sufficient for im-
proved tracking. It has to be taken into account, however, that reducing motion blur 
by tracking one object may deteriorate observability for another object. This is the 
case, for example, when driving through a gap between two stationary obstacles 
(trees or posts of a gate). Fixation of the object on one side doubles motion blur on 
the other side; the solution is reducing speed and alternating gaze fixation to each 
side for a few cycles.  

12.3.4  Saccadic Control 

This alternating attention control with periods of smooth pursuit and fast gaze 
changes at high angular rates is called “saccadic” vision. During the periods of fast 
gaze changes, the entire images of all cameras are blurred; therefore, a logic bit is 
set indicating the periods when image evaluation does not make sense. These gaps 
in receiving new image data are bridged by extrapolation based on the spatiotem-
poral models for the motion processes observed. In this way, the 4-D approach 
quite naturally lends itself to algorithmic stabilization of space perception, despite 
the fast changing images on the sensor chip. Building internal representations in 3-
D space and time allows easy fusion of inertial and other conventional data such as 
odometry and gaze angles relative to the vehicle body, measured mechanically. 

After a saccadic gaze change, the vision process has to be restarted with initial 
values derived from the spatiotemporal models installed and from the steps in gaze 
angles. Since gaze changes, usually, take 1 to 3 video cycles, uncertainty has in-
creased and is reflected in the corresponding parameters of the recursive estimation 
process. If the goal of the saccade was to bring a certain region of the outside 
world into the f.o.v. of a camera with a different focal length (e.g., a telecamera), 
the measurement model and computation of the Jacobian elements have to be ex-
changed correspondingly. Since the region of special interest also remains in the 
f.o.v. of the wide-angle camera, tracking may be continued here, too, for redun-
dancy until high-resolution interpretation has become stable. 

According to the literature, human eyes can achieve turn rates up to several 
hundred degrees per second; up to five saccades per second have been observed. 
For technical systems in road traffic applications, maximum turn rates of a few 
hundred degrees per second and about two saccades per second may be sufficient. 
A thorough study of controller design for these types of systems has been done in 
[Schiehlen 1995]. The interested reader is referred to this dissertation for all details 
in theoretical and practical results including delay time observers. Figure 12.4 
shows test results in saccadic gaze control based on this work; note the minimal 
overshoot at the goal position. A gaze change of 40° is finished within 350 ms (in-
cluding 67 ms delay time from command till motion onset). Special controller de-
sign minimizes transient time and overshoot. 
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Figure 12.4. Saccadic gaze control in tilt (pitch) for the inner axis of a two-axis 
platform in the test vehicle VaMoRs (see Figure 14.16)

12.3.5 Stereovision 

At medium distances when the surface can be seen where the vehicle or object 
touches the ground, spatial interpretation may be achieved relatively easily by tak-
ing into account background knowledge about the scene and integration over time; 
in the very near range behind another vehicle, where the region in which the vehi-
cle touches the ground is obscured by the subject’s own motor hood, monocular 
range estimation is impossible. Critical situations in traffic may occur when a pass-
ing vehicle cuts into the observer’s lane right in front; in the test vehicle VaMP, the 
ground ahead was visible at a range larger than about 6 m (long motor hood, cam-
era behind center top of windshield). 

Range estimation from a single, well-recognizable set of features is desirable in 
this case. A stereo base like the human one (of about 6 to 7 cm) seems sufficient; 
the camera arrangement as shown in Figure 1.4 (one to each side of the tele-
camera(s) satisfies this requirement; multiocular stereo with improved performance 
may be achievable also by exploiting the tele-images for stereointerpretation. Us-
ing a stereo camera pair with non-parallel optical axes increases the computing 
load somewhat but poses no essential difficulties; epipolar lines have to be adjusted 
for efficient evaluation [Rieder 1996].

By its principle, stereovision deteriorates with range (inverse quadratic); so bin-
ocular stereo for the near range and intelligent scene interpretation for larger ranges 
are nicely complementary. Figure 12.6 shows images from a trinocular camera set 
(see Figure 14.16); the stereo viewing ranges, which might be used for understand-
ing vertical structure on unpaved hilly roads without markings, are shown by 
dashed white lines. The stereo base was selected as 30 cm here. Slight misalign-
ments of multiple cameras are typical; their effects have to be compensated by 
careful calibration which is of special importance in stereointerpretation. The tele-
camera allows detecting a crossroad from the left, here, which cannot be discov-
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ered in the wide-angle images; trinocular stereo is not possible with the pitch angle 
of the telecamera given here. 

Trinocular

stereo range

Binocular stereo range

Tele-
camera

Wide-angle
left

Wide-angle
right

Figure 12.5. Sample images from MarVEye in VaMoRs with three cameras: Two wide-
angle cameras with relatively little central overlap for binocular stereo evaluation (bot-
tom); image from mild telecamera (top). Trinocular stereointerpretation is possible in 
the region marked by the white rectangle with solid horizontal and dashed vertical lines. 

12.3.6 Total Range of Fields of View 

Large potential f.o.v. in azimuth are needed in traffic; for low-resolution imaging, 
about 200° are a must at a T-junction or a road crossing without a traffic light or 
round-about. If the crossroad is of higher order and allows high-speed driving, the 
potential f.o.v. for high-resolution imaging should also be about 200° for checking 
oncoming traffic at larger ranges from both sides. Precise landmark recognition 
over time, under partial obscuration from objects being passed in the near vicinity, 
will also benefit from large potential f.o.v. However, the simultaneous f.o.v. with 
high resolution need not be large, since objects to be viewed with this resolution 
are far away, usually; if the bandwidth of gaze control is sufficiently high, the 
high-resolution viewing capability can always be turned to the object of interest be-
fore the object comes near, and thus good reactions are required.  

The critical variable for gaze control, obstacle detection, and behavior decision 
is the “reaction time available” Trea for dealing with the newly detected object. The 
critical variable is the radial speed component when the components normal to it 
are small; in this case, the object is moving almost on a direct collision path. If the 
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object were a point and its environment would show no features, motion would be 
visually undetectable. It is the features off the optical line of sight that indicate 
range rate. An extended body, whose boundary features move away from each 
other with their center remaining constant, thus indicates decreasing range on a 
collision trajectory (“looming” effect). Shrinking feature distributions indicate in-
creasing range (moving away). If the feature flow on the entire circumference is 
not radial and outward but all features have a flow component to one side of the 
line of sight, the object will pass the camera on this side. With looming feature 
sets, the momentary time to collision (TTC) is (with r = range and the dot on top 
for the time derivative) 

/TTC r r . (12.1) 
Assuming a pinhole camera model and constant object width B, this value can 

be determined by measuring the object width in the image (bB1 and bB2) at two 
times t1 and t2, t = t2 – t1 apart. A simple derivation (see Figure 2.4) with deriva-
tives approximated by differences and bBi = measured object width in the image at 
time ti yields 

2 1 1/ /(B B BTTC r r 2 )t b b b . (12.2) 

The astonishing result is that this physically very meaningful term can be ob-
tained without knowing either object size or actual range. Biological vision sys-
tems (have discovered and) use this phenomenon extensively (e.g., gannets stretch-
ing their wings at a proper time before hitting the water surface in a steep dash to 
catch fish). 

To achieve accurate results with technical systems, the resolution of the camera 
has to be very high. If the objects approaching may come from any direction in the 
front hemisphere (like at road junctions or forks), this high resolution should be 
available in all directions. If one wants to cover a total viewing cone of 200° by 
30° with telecameras having a simultaneous f.o.v. of about 5 to 7° horizontally, 
each with a side ratio of 4:3 (see Section 12.3.2), the total number of cameras re-
quired would be 150 to 200 on the vehicle periphery. Of course, this does not make 
sense.

Putting a single telecamera on a pan and tilt platform, the only requirement for 
achieving the same high resolution (with minor time delays, usually) is to allow a 
±97° gaze change from straight ahead in the vehicle. To keep the inertial momen-
tum of the platform small, tilt (pitch) changes can be effected by a mirror which is 
rotated around the horizontal axis in front of the telelens.  

The other additional (mechanical) requirement is, of course, that the simultane-
ous f.o.v. can be directed to the region of actual interest in a time frame leaving 
sufficient time for proper behavior of the vehicle; as in humans, a fraction of a sec-
ond for completing saccades is a reasonable compromise between mechanical and 
perceptual requirements. Figure 12.6 shows two of the first realizations of the 
“MarVEye”-idea for the two test vehicles. 

 To the left is an arrangement with three cameras for the van VaMoRs; its 
maximal speed does not require very large look-ahead ranges. The stereo base is 
rather large (~ 30 cm); a color camera with medium telelens sits at the center. To 
the right is the pan platform for VaMP with the camera set according to Figure 1.4. 
Since a sedan Mercedes 500 SEL is a comfortable vehicle with smooth riding 
qualities, gaze control in pitch has initially been left off for simplicity. 
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Figure 12.6. Two of the first ‘MarVEye’ realizations: Left: Two-axis platform for 
VaMoRs with three cameras and a relatively large stereo baseline (for images see Figure 
12.4); right: Single axis (pan/yaw) platform with four cameras and three different focal 
lengths for VaMP. 

12.3.7 High Dynamic Performance 

With TTC as described in the previous section (Equations 12.1 and 12.2) and with 
knowledge about actual reaction times of subsystems for visual perception, for be-
havior decision, as well as for control derivation and implementation, a rather pre-
cise specification for saccadic vision in technical systems can be given. 

Assuming one second for stabilizing perceptual interpretation, another two for 
situation assessment and behavior decision as well as a few seconds as an addi-
tional safety margin, a time horizon of 5 to 10 seconds, as assumed standard for 
human behavior in ground traffic, also seems reasonable for these technical sys-
tems. (In the human driver population, there is a wide variety of reaction times to 
be observed, depending on alertness and attention.)  

Standing still at a T-junction and checking whether it is safe to move onto the 
road, oncoming vehicles with a speed of 108 km/h (30 m/s) have to be detected at 
about 150 to 300 m distance to satisfy the specifications; for speeds around 20 m/s 
(70 km/h), this range is reduced to 100 to 200 m. This is one of the reasons that in 
areas with road junctions, maximal speed allowed on the through -road is reduced. 

Relative to these times for reaction, times for gaze control of at most a larger 
fraction of a second do not deteriorate performance of the overall perception sys-
tem. Under these conditions, saving over two orders of magnitude in the data flow 
rate by selecting saccadic vision instead of arrays of (maybe inexpensive) cameras 
mounted (peripherally) on the vehicle body is a very economical and safe choice. 

Figure 12.4 showed some test results in performing saccades with one of the 
technical eyes studied for road vehicle applications. Due to the relatively old tech-
nology used and heavy load on the platform (see Figure 14.16), reaction times can 
be considered as upper limits for systems based on modern technology; in any 
case, they are more than sufficient for normal road vehicle guidance. When stop-
ping at T-junctions, time for gaze orientation plays no critical role; horizontal turns 
from 90° on one side to 90° on the opposite site are necessary for checking traffic 
on the road encountered. With proper design, this can easily be done in less than a 
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second. (The example platform given had a gaze range of ± 70° in azimuth; optical 
distortions by the windscreen of the vehicle have to be checked for larger angles.) 

12.4 MarVEye as One of Many Possible Solutions

From the requirements discussed above, the following design parameters for the 
“multifocal active, reflex-like reacting vehicle eye” (MarVEye) have been derived. 
The principal goals of this arrangement of three to four cameras are sketched in 
Figure 12.7 (compare Figure 1.4). Two divergently looking wide-angle cameras 
should have their optical axes in one plane for stereo evaluation; the angle  be-
tween these axes is a design parameter determining the simultaneous field of view 
( total) and the overlapping region for binocular stereo ( ster). Note that the condi-
tions for stereo interpretation at the boundaries of the images worsen with the aper-
ture angle of the wide-angle cameras (increasingly higher order correction terms 
are necessary for good results). 

When trinocular stereo is intended for using the image of the mild telecamera in 
addition, it makes sense to specify the angle of central overlap of the wide-angle 
cameras ( ster) the same as the horizontal f.o.v. of this camera tm (center of figure). 
If the second pyramid level of the mild teleimage shall have the same resolution as 
the wide angle images, the teleimage should be one fourth of the wide-angle image 
in size. 

The actual choice of parameters should depend on the special case at hand and 
on the parameters of the dominating task to be performed (maximum speed, ma-
neuvering in tight space, etc.). Experience with the test vehicles VaMoRs (all cam-
eras on a two-axis platform, Figure 12.6 left) and VaMP (yaw platform only, Fig-
ure 12.6 right) has shown that vertical gaze stabilization for reducing the search 
range in feature extraction is not necessary for wide-angle images; however, it is of 
advantage also for cars with smooth riding qualities if larger focal lengths are re-

Wide-angle
mono left

Wide-angle

mono right

strong tele
mild teleHorizon

Road

Figure 12.7. Sketch of fields of view of each camera and of the total simultaneous 
field of view (in azimuth and depth) of the arrangement ‘MarVEye’; all cameras 
may have the same pixel count, but three of them have different focal lengths
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quired for high-speed driving. Therefore, the design shown in Figure 12.8 has 
resulted:

Wide-angle cameras

with divergent optical
axes on yaw platform

Telecamera mounted in

axial direction of yaw
gaze control platform

Only the image of the tele-camera is stabilized by a mirror with a horizontal axis 
of rotation; the laws of optical reflection result in cutting the amplitude of mirror 
angles required in half for the same stabilization effect. Mounting the telecamera 
with its main axis vertical minimizes its inertia acting around the yaw axis. Since 
the mirror has very little inertia, a small motor suffices for turning it, allowing 
high-bandwidth control with low power consumption. Once the basic design pa-
rameters have been validated, more compact designs with smaller stereo base will 
be attempted. 

Using mirrors also for gaze control in pan is known from pointing devices in 
weapon systems. The disadvantage associated with these types of double reflec-
tions is the rotation of the image around the optical axis. For human interpretation, 
this is unacceptable and has to be corrected by expensive devices; computers could 
be programmed to master this challenge. It will be interesting to see whether these 
systems can gain ground in technical vision systems.  

12.5  Experimental Result in Saccadic Sign Recognition 

Figure 12.9 shows the geometry of an experiment with test the vehicle VaMoRs for 
saccadic bifocal detection, tracking, and recognition of a traffic sign while passing 
at a speed of 50 km/h. The tele-camera tracks the road at a larger look-ahead dis-
tance; it does not have the task of detecting the traffic sign in this experiment. The 
sign is to be detected and initially tracked by the standard near range camera (focal 
length f = 8 mm) with the camera platform continuing to track the road far ahead 
with the telelens; the road is assumed to be straight, here.  

While approaching the traffic sign, its projected image travels to the side in the 
wide-angle image due to the increasing bearing angle given as (t) = arctan (d/s) 

Stereo baselineRotated mirror

reflecting the lens of the vertically mounted

tele-camera (fix on platform head)
with high-bandwidth pitch angle

control for gaze direction

Figure 12.8. Experimental gaze control platform designed as a compromise between 
different mechanical and optical mapping requirements for a large horizontal viewing 
range in azimuth (pan). Gaze stabilization and control in tilt (pitch) is done only by a 
mirror in front of the telelens. This yields a relatively simple and compact design.
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Figure 12.9. Geometry for experi-
mental validation of saccadic bifocal 
sign recognition while passing (Hs is 
normal to plane of road)

(see Figure 12.9). In the experiment, d
was 6 m and the vehicle moved with con-
stant speed V = 50 km/h (~ 14 m/s). The 
corresponding graphs showing the nomi-
nal aspect conditions of the traffic sign 
are given in Figure 12.10; it shows the 
bearing angle to the sign in degrees (left), 
the pixel position of the center of the sign 
(right), the distance between camera and 
sign in meters (top), and time till passing 
the sign in seconds (bottom). 

The boundary marking of the triangle 
in red is 8 cm wide; it is mapped onto two 
pixels at a distance of about 28 m (1.95 s 
before passing). The triangle is searched 
for in phase 1 (see arrow) and detected at 
time 1.6 s before passing (first vertical 
bar), at an angle of ~ 15°. During phase 2, 
it is tracked in five frames 40 ms apart to 
learn its trajectory in the image (curve 1 
in Figure 12.11, left).  

This figure shows measurement results deviating from the nominal trajectory 
expected. After the fifth frame, a saccade is commanded to about 20°; this angle is 
reached in two video cycles of 40 ms (Figure 12.11, left side).  

Now the traffic sign has to be found again and tracked, designated as phase 3. 
After about a half second from first tracking (start of phase 2) the sign of 0.9 m 
edge length is picked up in an almost centered position (curve 1 at lower center of 
Figure 12.11). It is now mapped in the teleimage also, where it covers more than 
130 pixels. This is sufficient for detailed analysis. The image is stored and sent to a 
specialist process for interpretation.

(t)
s =

s0 - V· t

d Hs

Traffic   sign

V

Cameras

Vehicle

Figure 12.10. Nominal evolution of state variables (distance, bearing) and image values 
(lateral position) for the approach of a traffic sign and gaze control with saccades 
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phases of saccade preparation

2 = camera angle in degrees 
at point in time of imaging

1 = position of sign in image

time in seconds

Figure 12.11. Position of traffic sign in standard image (curves 1) and gaze direction in 
yaw of camera platform for detecting, tracking, and high-resolution imaging of the sign

A saccade for returning to the standard viewing direction is commanded which 
is started a half second after the first saccade (branch 2 in Figure 12.10, right); 
about 0.6 s after initiating the first saccade, gaze direction is back to the initial 
conditions. This shows that the design requirements for the eye have been met. 

The video film documenting this experiment nicely shows the quickness of the 
gaze maneuver with object acquisition, stable mapping during fixation, and com-
plete motion blur during the saccades.  



13  Integrated Knowledge Representations for 
Dynamic Vision 

In the previous chapters, the individual components for visual perception of com-
plex scenes in the context of performing some mission elements have been pre-
sented. In this chapter, the intention is to bring together all these components to 
achieve goal-directed and effective mission performance. This requires decomposi-
tion of the overall mission into a sequence of mission elements which can be per-
formed satisfactorily exploiting the perceptual and behavioral capabilities of the 
subject’s “body and mind”. 

Body clearly means sensor and actuator hardware attached to the structural 
frame being moved as a whole (the physical body). But what does mind mean? Is it 
allowed to talk about “mind” in the context of a technical system? It is claimed 
here that when a technical system has a certain degree of complexity with the fol-
lowing components in place, this diction is justified: 
1. Measurement devices provide data about the resulting motion after control in-

puts to individual actuators; this motion will have certain “behavioral” charac-
teristics linked to the control time history u(t).

2. A system for perception and temporal extrapolation is in place which allows 
correct judgment whether or not a goal state is approached and whether or not 
performance is safe. 

3. A storage device is available that stores the actual percepts and results and can 
make them available later on for comparison with results from other trials with 
different parameters. 

4. To evaluate and compare results, payoff functions (quality criteria, cost func-
tions) have to be available to find out the more favorable control inputs in spe-
cific situations. Environmental conditions like lighting (for visual perception) 
and weather (for wheel-ground contact) can affect appropriate behavior deci-
sions significantly.

5. Knowledge about situational aspects that have to be taken into account for plan-
ning successful actions realizes the feedback of previous experience to actual 
decision-making. 

6. Knowledge about behavioral capabilities and limitations both with respect to 
perception and to locomotion has to be available to handle the challenge given. 

7. Capabilities similar to those of the subject vehicle are assumed to be available to 
other vehicles observed; this is an “animation capability” that brings deeper un-
derstanding into a scene with several objects/subjects observed. 

A useful mind is assumed to exist when, based on the sensor data input, an internal 
representation of the situation given is built up that leads to decision-making to 
handle the actual real-world task successfully in a dynamically changing scene. 
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Just decision-making and control output without reference to “reality” would be 
called “idiotic” in common sense terminology. 

 In this context, it is easily understood why closed-loop perception–action cycles 
(pac) in the real world with all its dirty perturbation effects are so important. All 
the “mental” input that is necessary to make successful or even good decisions in 
connection with a given set of measurement data is termed “knowledge”, either de-
rived from previous experience or transferred from other subjects. 

In Figure 13.1, the different components are shown and the main routes through 
which they cooperate are indicated by arrows. Only the lower bar represents the 
physical body; everything above this level is “mind”, running of course on com-
puter hardware as part of the body, but coming into existence only when the 
closed-loop pac is functioning properly. [Note that this system can function with-
out sensory input from the real world if, instead, stored data are fed into the corre-
sponding data paths. Control output to the real world has to be cut; its usual effects 
have to be computed and correspondingly substituted (as “real-world feedback”) 
by temporal extrapolations using the dynamic models available. In analogy to bio-
logical systems, this could be called “dreaming”. Physical realization in neuronal 
networks is, of course, completely different from that in electronic computers.] 

The figure tries to visualize the interaction between measurement data and 
background knowledge. Measurement data stream upward from the body, proc-
essed on level 1 (number in dark circles at the left side). Background knowledge is 
lumped together in the dark area labeled 0 at the top of the figure. Three blocks of 
components are shown on this level: (1) Generic classes of objects and subjects 
(left), (2) environmental conditions (center), and (3) behavioral capabilities for 
both visual perception and locomotion (right).  

In the left part of the figure, data and results flow upward; on the evaluation and 
decision level 4, the flow goes to the right and then downward on the right-hand 
side of the figure. Basic image feature extraction (level 1) is number crunching 
without feedback of specific knowledge or temporal coherence on a larger scale. 

When it comes to object/subject hypotheses on the recursive estimation level for 
single units (level 2), quite a bit of knowledge is needed with respect to 3-D shape, 
appearance under certain aspect conditions, continuity in motion and – for subjects 
– control modes as well as typical behaviors. The basic framework has been given 
in Chapters 2 and 3; the next section summarizes items under the system integra-
tion aspect.  

The fusion task for perception is to combine measurement data with back-

ground knowledge such that the situation of the system in the actual envi-
ronment (i.e., the real world) relevant to the task at hand is closely repre-
sented in the “dynamic knowledge base” (level 3) as support for decision– 
making.  

Recall that an open number of objects/subjects can be treated individually in 
parallel on level 2; the results for all units observed are collected in the DOB (left 
part on level 3 in the figure). Parallel to (high-frequency) tracking of individual ob-
jects/subjects, “actual environmental conditions” (AEC) have to be monitored 
(center on levels 2 and 3).  
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Background knowledge

Figure 13.1. Integration of knowledge components in the 4-D approach to dynamic 
vision: Background knowledge on object and subject classes, on potential environ-
mental conditions, and on behavioral capabilities (top row) is combined with meas-
urement data from vision (lower left) and conventional sensors (lower right) to yield 
the base for intelligent decisions and control output for gaze and locomotion. All ac-
tual states of objects/subjects tracked (DOB), of environmental conditions (AEC), and 
of the subject’s activities are stored in the dynamic knowledge base (DKB). 
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Since these conditions change only slowly, in general, their evaluation fre-
quency may be one to two orders of magnitude slower (once every 1 to 5 seconds). 
Note that this is not true for lighting conditions when driving into or out of a tun-
nel; therefore, these objects influencing perception and action have to be recog-
nized in a way similar to that for other objects, for example, obstacles. But for 
weather conditions, it may be sufficient to evaluate these within the rest of the cy-
cle time not needed for performing the main task of the processors. This field of 
recognizing environmental conditions has not received sufficient attention in the 
past, but will have to for future more advanced assistance or autonomous systems. 

For behavior decision in the mission context, the overall task is assumed to be 
decomposed into one global nonlinear part with nominal conditions and a superim-
posed linear part dealing with small perturbations only under local aspects. The ba-
sic scheme has been discussed in connection with Figure 3.7. The off-line part of 
nonlinear mission planning (upper right corner of level 5 in Figure 13.1, performed 
with special optimization methods) results in a nominal plan of sequential mission 
elements that can be handled by exploiting behavioral capabilities of the subject 
vehicle. Note that mission elements are defined in this way! This means that be-
havioral capabilities available determine mission elements, not the other way 
around, starting from abstract, arbitrarily defined mission elements. For local mis-
sion performance, only the actual mission element and maybe the next one need to 
be taken into account; therefore, these become part of the “dynamic knowledge 
base” (DKB, level 3 in Figure 13.1, center right). Actual mission performance will 
be discussed in Section 13.4. 

The complex global nonlinear mission plan is assumed to be unaffected by mi-
nor adjustments to local perturbations (like obstacle avoidance or minor detours); if 
these perturbations become sufficiently large, strategic replanning of the mission 
may be advisable, however. These decisions run on level 4 in Figure 13.1. Local 
(“tactical”) decisions for gaze control are grouped together in the unit BDGA (be-
havior decision for gaze and attention); those tactical decisions for locomotion are 
lumped into BDL (behavior decision for locomotion). 

Sometimes, there may be conflicting requirements between these units. In this 
case and when global replanning is necessary, the central decision unit (CD) takes 
over which otherwise just monitors all activities and progress in realization of the 
plan (right part on level 4). These units are just for decision-making, not for im-
plementing control output (upper level in Figure 3.17). Of course, they have to 
know not only which behavioral capabilities are available “in principle”, but which 
are available actually “here and now”. If there are minor malfunctions due to fail-
ure of a component which has not necessitated ending the mission, the actually re-
alizable capabilities (maneuvers) have to be posted in the DKB (right part on level 
3 in Figure 13.1).  

Implementation of control output is done on level 2, right, with control engi-
neering methods taking conventional measurements directly into account (minimi-
zation of delay times). This level monitors the correct functioning of all compo-
nents and communicates deviations to the decision level. Representation of 
behavioral capabilities on levels 2 to 4 for mission performance is discussed in 
Section 13.3. The decisions on these levels are based on both perceptual results 
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(left part on level 4) and background knowledge (arrows from top on the right of 
Figure 13.1) as well as the actual task to be performed (center level 3). 

To judge the situation, it is not sufficient just to look at the actual states of ob-
jects and subjects right “now”. More extended temporal maneuvers and their spa-
tial effects on a larger scale have to be taken into account. Looking at time histories 
of state variables may help recognize the onset of new maneuvers (such as a lane 
change or turnoff); early recognition of these intentions of other subjects helps de-
veloping a safer style of “defensive driving”. The representational base for recog-
nizing these situations and maneuvers is the “scene tree” (Section 13.2) allowing 
fast “imagination” of the evolution of situations in conjunction with spatiotemporal 
models for motion. Actual decision-making on this basis will be discussed in Sec-
tion 13.5. 

Data logging and monitoring of behavior are touched upon in Section 13.6; in 
the long run, this may become the base for more extended learning in several areas. 

13.1  Generic Object/Subject Classes 

As mentioned in Chapters 2 and 3, humans tend to affix knowledge about the 
world to object and subject classes. Class properties such as gross shape and hav-
ing wheels on axles to roll on are common to all members; the lower part of the car 
body looks like a rectangular box with rounded edges and corners, in general. The 
individual members may differ in size, in shape details, in color, etc. With respect 
to behavioral capabilities, maximal acceleration at different speed levels and top 
speed are characteristic. All in all, except for top speed of vehicle classes, varia-
tions in performance are so small that one general motion model is sufficient for all 
vehicles in normal traffic. Therefore, most characteristic for judgment of behav-
ioral capabilities of vehicles with four or more wheels are size and shape, since 
they determine the vehicle class. The number of wheels, especially two, three, or 
more is characteristic for lateral control behavior; bicycles may have large bank 
angles in normal driving conditions. 

Here, only simple objects and ground vehicles with four and more wheels are 
considered as simple subjects. Figure 13.2 summarizes the concept of the way the 
representation of these vehicles is used in the 4-D approach to dynamic vision. The 
lowest three rows are associated with 3-D shape and how it may appear in images. 
This description may become rather involved when shape details are taken into ac-
count. Simple discrimination between trucks, on the one hand, and cars/vans/buses, 
on the other, keeps shape complexity needed for basic understanding rather low: 
They all have wheels touching the ground; trucks have large ones, in general. 
Trucks can best be recognized and tracked by following features on the (large) up-
per parts of their bodies [Schmid 1992]. Cars yield more stable recognition when 
only their (box-like) lower part is tracked [Thomanek 1996]. A rectangular box has 
only three parameters: length, width, and height, the latter of which is hardly of 
importance for proper reactions to cars in traffic. A more refined generic model for 
cars has been given in Figure 2.15. 
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Reduction of the number of vehicle parameters makes vehicle tracking possible 
with relatively little computing effort. More detailed shape models, starting from 
the box description but taking groups of lights, license plate, and missing body 
regions for mounting wheels into account, can be handled with minor additional ef-
fort once the basic aspect conditions have been determined correctly. Default val-
ues for usual body size and relative positions of subobjects are part of the knowl-
edge base (lowest row in Figure 13.2).  

The appearance of body features as a function of (coarsely granular) aspect con-
ditions is the next important knowledge item (second row from bottom). In Figure 
11.15, one set of features has been shown for one of the eight aspect classes (rear 
left). For stabilizing image sequence interpretation, it should be respected, which 
ones of the features can be iterated meaningfully and which ones cannot. For ex-
ample, looking straight from behind it does not make sense to try to iterate the 
length parameter; looking straight from the side, width estimation should be sus-
pended. The interesting result in [Schmid 1993] was that under oblique viewing con-
ditions, under which both length and width should be observable theoretically, es-
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timating the length of the diagonal was much more stable than estimating both of 
its components; this is partly due to the rounded corners of vehicles and to the dif-
ficulty of precisely measuring the position of the vertical inner edge of the vehicle 
in the image. 

The motion capabilities of objects/subjects (their dynamic models) – in their ba-
sic form – are given by differential equation constraints (in analogue time). De-
pending on the cycle time used for visual estimation, the transition and control in-
put matrices result for sampled data (digital control). The basic frequency in the 
system is the field frequency: 50 Hz (20 ms cycle time) for CCIR and 60 Hz (16 
2/3 ms) for the American NTSC standard. The factor of 2 for entire frames (40 ms 
resp., 33 1/3 ms) yields the cycle time mostly used in the past. However, in some 
present and in future digital cameras, cycle time may be more freely selectable; the 
transition matrices actually used have to be adjusted correspondingly (fifth row 
from bottom in Figure 13.2).  

Motion state and shape parameters are determined simultaneously by prediction-
error feedback of visual features. The actual best estimates for both are stored in 
the DOB and marked by solid black letters in the figure (left side). For objects and 
subjects of special interest, the time history of important variables (last mT entries) 
may be stored in a frame buffer. This time history is used on level 4 in Figure 13.1 
for recognition of trajectories of objects and possibly intentions of subjects. For 
situation assessment, there has to be a knowledge component telling the potential 
value or danger of the situation observed for mission performance (third row from 
top in Figure 13.2). For decision-making, another knowledge component has to 
know which behavioral capabilities to use in this situation and when to trigger 
them with which set of parameters [Maurer 2000; Siedersberger 2004].  

Having observed another subject over some period of time, the individual (same 
identity tag) may be given special properties like preferring short distances in con-
voy driving (aggressive style of driving), or reacting rather late (being lazy or inat-
tentive); these properties may be added in special slots for this individual (top left 
of figure) and are available as input for later decision–making. All of these results 
written in bold letters have to be taken into account as higher level percepts for de-
cision-making (vertical center, right in Figure 13.2). 

13.2  The Scene Tree

For relating spatial distances between objects and subjects (including the egovehi-
cle) to visual measurements in the images, homogeneous coordinates have been 
chosen such as those used as standards in computer graphics for forward projec-
tion; there, all objects and their coordinates are given. In vision, the tricky chal-
lenge is that the unknowns of the task are the entries into the transformation matri-
ces; due to the sine and cosine relations for rotation and due to perspective 
projection, the feature positions in the image depend on the entries in a nonlinear 
way. For this reason, the transformation relations have to be iterated, as discussed 
in Chapters 2 and 6, leading to the Jacobian matrices as key elements for knowl-
edge representation in this recursive approach. 



402      13  Integrated Knowledge Representations for Dynamic Vision 

A simple scene tree for representing the concatenated transformations has been 
given in Section 2.1.1.6 and Figure 2.7. The general scheme for proceeding with 
the vision task, once the scene tree has been defined, has been developed by D. 
Dickmanns (1997) and was given in Figure 2.10. Figure 13.3 gives a scene tree for 
the task of stop-and-go driving in a traffic jam based on EMS vision with three 
cameras on a yaw platform (see Chapter 12). The root node of the scene tree is the 
subject vehicle (top); the rest of the objects involved are lumped into three groups:  

(1) At the left is the yaw platform with three cameras feeding three framegrab-
bers, which transport the images into computer storage. These images are the 
source of any derived information. The yaw platform is mounted behind the front 
windshield a certain distance away from the cg, around which rotations are de-
fined. The platform base moves rigidly with the vehicle; the platform head is free 
to rotate around its vertical axis (one degree of freedom). The cameras are mounted 
at different locations on the head, away from the axis of rotation and with different 
orientations; this is represented in Figure 13.3 by the three edges linking platform, 
head, and cameras Ki. [For the telecamera, there may be an additional transforma-
tion necessary if the view to the outside world is gaze stabilized by a mirror (see 
Figure 12.7).]  

Figure 13.3. Scene tree for visual Stop and Go with EMS-vision on a yaw platform
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(2) On the right-hand side in Figure 13.3, the road from the actual cg position 
(0) to the look-ahead range is represented. The geodetic representation to the right 
is not needed if no reference is made to these coordinates (either through maps or 
GPS signals); in this case, the aspects of road infrastructure given by the eight 
small nodes below may be shifted to the node at left. The parameters of the road 
observed in the look-ahead range are shown in the rectangular box: horizontal and 
vertical curvatures, number of lanes nla and lane widths bla.

(3) Other vehicles (center stripe in Figure 13.3) may be represented in two 
ways: Their positions may either be linked (a) directly to the subject vehicle (ego-
centric with azimuth (bearing), range, and range rate to each vehicle), or (b) to the 
local road or lane at its present position. The former approach is represented in the 
vertical column marked; it has the disadvantage that perturbations on one’s own 
body directly affect the estimation process if no gaze stabilization is active; in the 
latter approach, for which the dotted double-arrows show the correspondence, only 
local information from the vicinity of the other vehicle is used, and egomotion is 
canceled out beforehand (see Figure 11.4, left). It is therefore more stable, espe-
cially at larger ranges. To avoid collision in the very near range, approach (a) has 
the advantage of immediate usability of the data [Thomanek et al. 1994].

13.3  Total Network of Behavioral Capabilities 

Networks for representing special capabilities have been discussed in various sec-
tions of the book: Section 3.3 has dealt with perceptual capabilities, and Figure 3.6 
showed the capability network for gaze control as one subtask. In Section 3.4, ca-
pabilities for locomotion have been considered for the special case of a ground ve-
hicle; Table 3.3 showed a typical set of frequently needed “skills” in mission per-
formance based on control engineering methods. A capability network for 
locomotion of a road vehicle has been shown as Figure 3.28. In this chapter, the 
goal is to fit these components together to achieve an overall system capable of 
goal-oriented action in the framework of a complex mission to be performed. 

The entire Chapter 5 has been devoted to the capability of extracting visual fea-
tures from image sequences, even though only a very small fraction of methods 
known has been treated; the selection has been made with respect to another basic 
perceptual capability treated in Chapter 6: Given a temporal sequence of groups of 
features, find a 4-D interpretation for a motion process in the real world (3-D ob-
jects moving in 3-D space over time) that has generated the feature set, taking the 
mapping process (lighting and aspect conditions as well as a pinhole camera 
model) into account. This “animation process” based on a temporal sequence of 
sets of visual features, maybe, is the most advanced “mental” capability of a tech-
nical system yet. Stored background knowledge on generic object/subject classes 
allows the association of mental representations of moving objects in the real world 
with the feature sets arriving from the cameras. Open parameters to be adapted for 
matching the measurement data allow the specification of individual members of 
the object/subject class. In this way, doing this n-fold in parallel for n ob-
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jects/subjects of interest, the outside scene is reconstructed as an “imagined dy-
namically changing world” in the interpretation process. 

Each interpretation is checked and adapted (stabilized or discarded) by predic-
tion-error feedback exploiting first-order derivative matrices (so called “Jacobians” 
of the optical mapping process). Gaps in measurement data can be bridged by pure 
prediction over some cycles if the models installed (hypothesized) are adequate. In 
part, the visually determined interpretations can be supported by conventional 
measurements such as odometry or inertial sensing. The cross-feed of data and per-
cepts allows, for example, monocular motion stereointerpretation while driving. 
Separating high-frequency and low-frequency signal contents helps achieve a sta-
ble and fast overall interpretation of dynamic scenes with each separate loop re-
maining unstable: On the one hand, due to motion blur in images and relatively 
large delay times in image understanding, vision cannot handle harsh perturbations 
on the body carrying the cameras; on the other hand, integrating inertial signals 
without optical (low-frequency) feedback will suffer from drift problems. Only the 
combined use of properly selected data can stabilize the overall percept. 

The next essential capability for autonomous systems is to gain deeper under-
standing of the scene and the motion processes observed to arrive at “reasonable” 
or even optimal behavior decisions with respect to control output. Recall that con-
trol output is the only way the system can influence the future development of the 
scenario. However, it is not just the actual (isolated) control output that matters, but 
the sequence in which it is embedded, known to lead to desired changes or favor-
able trajectories. Therefore, there have to be representations of typical maneuvers 
that allow the realization of transitions from a given initial state to a desired (new 
intermediate or) final state. In other parts of the mission, as in roadrunning, it is not 
a desired transition that has to be achieved but a desired reference state has to be 
kept, such as “driving at a set speed in the center of the lane”, whatever the curva-
ture of the road. There may even be an additional side constraint like: “If road cur-
vature becomes too large so that – at the speed set – a limit value for allowed lat-
eral acceleration (aymax) would be exceeded, reduce speed correspondingly as long 
as necessary”.  

All these behavioral capabilities (driving skills) are coded in the conventional 
procedural way of control engineering. Some examples have been discussed in 
Section 3.4.3; Table 3.3 indicates which of these skills are realized by feed-forward 
(left column) or feedback control (right column). Figure 3.17 has shown the dual 
scheme for representation: On the top level for decision-making and triggering, 
rather abstract representations suffice. The detailed procedural methods and deci-
sions depending on vehicle state actually measured conventionally reside on the 
lower level of the figure; they are usually implemented on different processor hard-
ware close to the actuators to achieve minimal time delays. 

The task of decision level 4 in Figure 13.1 then is to monitor whether mission 
performance is proceeding as planned and to trigger the transition between mission 
elements that can be performed with the same set of capabilities activated. The de-
tailed organization of which component is in charge of which decision depends on 
the actual realization of the components and on their performance characteristics. 
In the structure shown, the list of mission elements determines the regular proce-
dure for mission performance. However, since safety aspects predominate over 
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mission performance, the central decision unit (CD) has to monitor these aspects 
and eventually has to make the decision to abandon the planned mission sequence 
to improve safety aspects; this may even result in stopping the mission and calling 
for inspection by an operator. 

13.4  Task To Be Performed, Mission Decomposition

The knowledge needed for mission performance depends on the task domain and 
on the environmental conditions most likely to be encountered. The satisfaction of 
these requirements has to be taken care of by the human operator today; learning 
may be an important component for the future. Assuming that the capabilities 
available meet the requirements of the mission, the question then is, “How is the 
mission plan generated taking both sides (overall mission requirements and special 
behavioral capabilities) into account?” 

First, it is analyzed for all consecutive parts of the mission, whose perceptual 
and behavioral capabilities have to be available to perform the mission safely. The 
side constraints regarding both perception and locomotion have to be checked; 
both lighting and weather conditions play a certain role. For example, the same 
route to be taken may be acceptable during daytime and when the surface is dry. 
Driving autonomously during nighttime when there are puddles of water on the 
road reflecting lights from different urban sources or from oncoming vehicles is 
not possible with today’s technology. The result of this step is a first list of mission 
elements with all individual capabilities needed, disregarding how they are organ-
ized in the system.  

As an example, let us look at a mission starting at a parking lot in a courtyard 
which has an exit onto a minor urban road with two-way traffic (mission element 
ME1). After a certain distance traveled on this road (ME2), a major urban road 
(three lanes) has to be entered to the right (ME3). From this road, a left turn has to 
be made at a traffic light with a separate turn-off lane (ME5) onto a feeder road for 
a unidirectional highway. Mission element ME4 contains the challenge to cross 
two lanes to the left to enter the turnoff lane in front of the traffic light (three lane 
change maneuvers). Turning off to the left when the traffic light turns green is 
ME6. Merging into highway traffic after a phase of roadrunning is ME7. Driving 
on this highway (ME8), at the next intersection with another highway, the lane 
leading to the desired driving direction is one of the center ones (neither the left 
nor the right one). The correct information, which one to take, has to be read from 
bridges with large navigation signs posted right above the lanes (ME9); this im-
plies that on unidirectional highways, navigation is performed by proper lane selec-
tion and change into it. On the new highway, merging traffic from the right has to 
be observed (ME10); changing lane is one option for keeping traffic flowing (ma-
neuver “lane change” again). Since most behavioral capabilities necessary for per-
forming extended missions have been encountered up to here, let us end the exam-
ple at this state of “roadrunning”. 

As a second step, merging of the original mission elements into larger ones, 
with some basic and some extra activities added if required, reduces the number of 



406      13  Integrated Knowledge Representations for Dynamic Vision 

elements; for example, ME1 to ME6 may be lumped together under the label “driv-
ing in urban areas”; this part of the mission requires not just one maneuver capabil-
ity but a bunch of similar ones and seems thus reasonable. In the context of these 
larger mission elements all coherent short activities for making a state transition 
will be called “maneuvers”. Stop-and-go driving in heavy traffic is part of these ex-
tended mission elements. Maneuvers like turning onto a road from a private site, 
turning onto a crossroad, performing lane changes and in between: “roadrunning 
with convoy driving” are activated as they come, and need not (frequently cannot) 
be planned beforehand. 

Highway driving between connection points may also be lumped together as one 
of the larger mission elements. At connection points (intersections), attention 
needed is much higher than just for roadrunning, usually; therefore, these points 
mark boundaries of larger mission elements. Figure 13.4 shows a graphical sketch 

of the decomposition of 
an overall mission 
(planned for 2.5 hours = 
150 minutes) into mission 
elements (upper part, ver-
tical bars mark the 
boundaries). On the next 
scale of resolution (15 
minutes = 900 seconds 
shown here, say, for driv-
ing on a three-lane road as 
mentioned above), the be-
haviors running are the 
same; however, when the 
traffic situation yields an 
opportunity for lane 
change, this maneuver 
lasting about 9 seconds 
shall be performed. Note, 
that in this case (other 
than shown in the figure), 
it is not a fixed time for 
triggering the maneuver, 
but a favorable opportu-
nity, which developed by 
chance, was used.  
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0 to 1 allows, for each time, a quick survey, how much of the unit has been per-
formed and what the actual state is (percentage accomplished) in the mission ele-
ment or maneuver. This may be of interest for behavior decision, for example, 
when some failure in the system was discovered and reported during this maneu-
ver, say, a lane change. The reaction has to be different, when the maneuver was 
just started, from the case when it was just before being finished or right at the cen-
ter.

The upper two scales are of more interest for the navigation and mission per-
formance level; the lower two are of special interest for the implementation level 
when the dynamic state of the vehicle depends on the time into the maneuver. In 
this case, energy off the equilibrium state may be stored in the body or the suspen-
sion system (including tires) which may couple with new control inputs and thus 
limit the types of safe reactions applicable; the infamous “moose test” for avoiding 
an obstacle suddenly appearing on the road by driving two maneuvers similar to 
fast lane changes right after each other in opposite directions is most critical in one 
of the later phases of the maneuver. Therefore, knowing the exact phase of the ma-
neuver can be important for the lower implementation levels; keeping track of the 
maneuver, as shown on the lowest scale in Figure 13.4, helps avoid these situa-
tions.

The introduction of semantic terms for maneuvers in connection with corre-
sponding knowledge representation of dynamic effects and of control activities to 
be avoided in certain phases (represented by rules) allows handling rather complex 
situations with this approach. Much of this development is still open for future ac-
tivities.

13.5  Situations and Adequate Behavior Decision

The term situation is used here to designate the collection of all aspects that are 
important for making good behavior decisions. So it encompasses (1) The state of 
egomotion, absolute and relative to the road (lane), road parameters like actual 
curvatures of the road, and lane width (this is state of the art); (2) the surface state 
of the road, especially the friction coefficient at all wheels (only rough estimates 
are possible here); (3) other objects/vehicles of relevance in the environment: (a) 
Relative motion state to vehicle directly ahead in the same lane; this vehicle is the 
reference for convoy driving. Observation of blinking lights for turnoff and of 
stoplights when braking is required for safe and defensive driving; (b) vehicles 
nearby in neighboring lanes and their state of driving (roadrunning, relative speed, 
starting a lane change, etc.) should be tracked. Depending on the type of road 
(freeway, state road cross country, urban road or minor rural road), other traffic 
participants such as humans on bicycles, pedestrians, or a large variety of animals 
have to be detected and tracked; (c) to gain reaction time and deeper understanding 
of the evolving situation, vehicles in front of those tracked under (a) and (b) should 
be observed; (d) stationary obstacles on the road have to be detected early; look-
ahead ranges necessary depend on speed driven (see Table 11.1); (4) extraordinary 
weather situations like heavy rain or snowfall, thunderstorms with hail, or dense 
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fog have to be recognized; (5) lighting conditions have to be monitored to judge 
how much visual perceptions can be trusted; (6) the subject’s intentions or goals 
are important for assessing a situation, since different emphasis on certain aspects 
of the payoff function may shift behavior decision. For example, if transport time 
is of importance and each second gained is valuable (thereby accepting a somewhat 
higher risk level), the decision will be different from a leisurely mission where risk 
minimization may be of highest importance. 

Situation assessment, therefore, is a complex mixture of evaluations on different 
temporal scales. General environmental conditions will change most slowly, in 
general; they will enter short-time decision processes as quasi-static parameters 
without causing any harm due to some time delay (e.g., weather conditions, in gen-
eral). Maximal road curvatures and their onsets, on the other hand, require reaction 
time and thus limit maximal speed allowed. Because of the difficulty for humans in 
recognizing these situations sufficiently early, warning signs have been introduced, 
for example, in hilly terrain with large values of curvature ahead. Similar warnings 
are given ahead of transition points from long stretches of straight road into a tight 
curve, or when smoke or dust is to be expected due to activities on the side of the 
road (industrial installations), etc. These signs are posted such that at least several 
seconds up to minutes are available for adjusting driving behavior. 

The shortest reaction times in traffic stem from other vehicles in one’s own and 
neighboring lanes nearby. For this reason, these vehicles have to be watched with 
high attention all the time. In convoy driving, special rules are recommended for 
keeping distance from the vehicle in front depending on the speed driven: “half the 
tachometer reading” is an example in the “metric world”. It means that the distance 
to be kept (measured in meters) should be at least half the speed value shown on 
the tachometer (in km/h). Substituting these numbers in the same dimensions [me-
ter m and seconds s] and dividing the distance recommended by the speed driven, 
the result will be TRG = 1.8 s, a constant “reaction time gap” independent of speed.  

When we let our test vehicles drive autonomously according to this rule in Ger-
man public traffic, the result was that other vehicles driven by humans passed the 
vehicle and “closed the gap” which of course had the test vehicle decelerate to ad-
just its behavior to the new vehicle in front. In denser traffic, this leads to an unac-
ceptable situation. So the result was to reduce TRG to the value which had only a 
few “aggressive” drivers still performing the gap-closing maneuver; the values 
yielding acceptable results (depending on the mood of the safety driver) were 
around TRG = 0.8 to 1.2 s. Note that a value of 0.9 (half that recommended!) still 
means a distance to the vehicle in front of 25 m at a speed 100 km/h! This shows 
that in the realization developed, simple parameters can be used in connection with 
measured relative state variables to achieve rather complex-looking behavior in a 
simple way (in connection with underlying feedback loops from conventional con-
trol engineering): Only the parameter TRG has to be specified on the upper (AI-
oriented) level (4 in Figure 13.1); the implementation is done on level 2 (lower 
right).

Figure 3.17 has shown an example of how this cooperation is realized in ex-
tended state charts; a few “AI states” for longitudinal control are shown on the up-
per level. Semantic terms designate special “behavioral elements” realized on the 
lower level either by parameterized feed-forward time histories or feedback loops. 
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Possible transitions from one of these states to another are designated by arrows. 
These transitions are constrained by rules in which complex terms such as “reac-
tion time gap” or “relative speed” and “distance in the same lane”, etc., may enter. 
(References are given in the figure.) 

The collection of all these capabilities for vehicle control yields the capability 
network for locomotion (Figure 3.28). It shows which complex maneuvers or driv-
ing states depend on which underlying “skills”, and how these skills are linked to 
the actuators (lowest layer). The challenge in this concept is proper activation both 
with respect to temporal triggering (taking specific delay times into account) and 
with respect to selecting optimal parameters (on which system level?). Once the 
basic characteristics have been understood and parameters correspondingly 
adapted, the system is very flexible for modifications, which opens up an avenue 
for learning.  

Explicitly specifying the interdependencies in the code of the overall system al-
lows checking the actual availability of components before they are activated. This 
has proven valuable for failure detection before things go wrong. 

13.6  Performance Criteria and Monitoring of Actual 
Behavior

Proper operation of complex systems depends on correct functioning of the com-
ponents involved on many different levels. Since these systems never will function 
flawlessly over longer periods of time, failures should be detected before the com-
ponent is activated or before its output is being used after a mode change. If a com-
ponent is in use and the failure occurs while running, the failure should be noticed 
as early as possible. If measures for safe behavior can be taken immediately on the 
lower levels, this should be initiated while the higher levels are informed about the 
new situation with respect to hardware or processes available.  

Correct functioning of basic hardware can be indicated by “valid”-bits (status); 
all essential hardware components should have these outputs for checking system 
readiness. Polling these bits is standard practice. More hidden failures, for exam-
ple, in signal output from sensors, can often be detected by redundant sensing and 
cross-checking signals. In inertial sensing, this is common practice, for example, 
by adding a single sensor, mounted skewed to the orthogonal axes of the three 
other ones; this allows immediate checking of all three components by this single 
additional measurement.  

If diverse sensors, such as inertial sensors and vision (cameras) are being used, 
cross-checks become possible by more involved computations. For example, inte-
grating inertial signals (accelerations, turn rates) yields pose components; these 
pose angles and positional shifts are (relatively directly) measurable from features 
known to be stationary in the outside world (such as the horizon line or edges of 
buildings). These types of consistency checks should be used as much as afford-
able to prevent critical situations from developing.  

Other inputs for system monitoring are statistical data from different processing 
paths. For example, if it is known that for devices functioning normally, the stan-
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dard deviation of an output variable does not exceed a certain limit, sudden viola-
tions of this limit indicate that something strange has happened. It has to be 
checked then, whether environmental conditions have changed suddenly or 
whether a component failure is about to develop. In recursive estimation for dy-
namic vision, standard deviations for all state variables estimated are part of the 
regular computation. This information should be looked at for monitoring proper 
functioning of this perception loop. [In connection with feature extraction (Chap-
ters 5 and 8), the use of this information for feature rejection has been mentioned.] 

When the vehicle performs maneuvers in locomotion, there correspond certain 
characteristic time histories of state variables to each feed-forward control time 
history as input. For example, performing a turnoff onto a crossroad, triggering a 
steer rate time history at a certain distance away from the new centerline at a given 
forward speed of the vehicle should bring the vehicle tangential to the new road di-
rection in the right lane. If this worked well many times, and suddenly in the next 
trial the maneuver has to be stopped for safety reasons before the vehicle runs off 
the road, some failure must have occurred. VaMoRs experienced this situation; 
analysis of the system turned out that the motor actuating the steering column had 
lost a larger part of its power (failure in an electronic circuit). The remaining power 
was sufficient for roadrunning toward the crossroad (nothing unusual could be ob-
served), but insufficient for achieving the normal turn rate during curve steering. 
This critical self-monitoring of behaviors (comparison to expected trajectories) 
should be part of an intelligent system. Of course, this could have been detected by 
watching the time history of the steer angle on the lower level; however, this has 
not been done online. So this failure was detected by (in this case human) vision 
seeing the vehicle moving toward the edge of the road at a certain angle. In future 
systems, this performance monitoring should also be done by the autonomous ve-
hicle itself. 

Other performance criteria for ground vehicles of importance for behavior deci-
sion and mission performance are the following (not exhaustive): 
1. Standard deviations in roadrunning: Figure 9.24b gave a histogram of lateral 

offsets of the test vehicle VaMP driving on the Autobahn (lane width of 3.75 m 
usually) over a very long distance. It can be seen that a maximal deviation of 0.6 
m occurred which is secure for a vehicle having a width of less than 2 m. How-
ever, at construction sites, reduced lane widths on the leftmost lane may go 
down to 2.2 or even 2 m; so, with the parameter settings given, the vehicle could 
not use these lanes. Whether there is a different system tuning (perception and 
control) guaranteeing the small deviations maximally allowed under the circum-
stances given there (a well-marked lane) has not been tried. 

2. Total travel time: If this has to be minimal for some reason, always the maxi-
mally possible safe speed has to be selected; fuel consumption is of no concern 
in this case. 

3. Minimal fuel consumption for the mission: If this point of view is of dominant 
importance, quite a different behavior from point 2 results. The dependence of 
momentary fuel flow on the speed and gear selected determines the evolution of 
the mission. Actual fuel flow measured and low-pass filtered is available in 
most vehicles today. However, it is not the absolute value of temporal flow  
which is of interest, but – since a given distance has to be traveled during the 
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mission – the ratio of actual fuel flow (m-dot) divided by present vehicle speed 
V (m-spec = m-dot/V) has to be minimal. In modern cars, this value is displayed 
to the human driver. A problem for low-speed driving or halting is the division 
by speed (close to or equal to zero!). When the percentage of time spent in this 
state is small, these effects may be neglected; in inner city traffic with jams, 
they play a certain role (if the engine is kept running) and overall fuel consump-
tion is hard to predict as a function of route selection. 

4. More practical than the theoretical extremes mentioned above is a weighted mix 
as a payoff function:  = K1·(total time) + K2·(fuel used). The verbal description 
is: “Drive with relatively low fuel consumption but also look at the time 
needed”. When a larger gain in time can be achieved at the expense of a little 
more fuel, choose this driving style. This means that as input data for optimiza-
tion not just the value m-spec is sufficient, but also its sensitivity to speed 
changes and throttle setting. Due to finite gear ratios and specific engine charac-
teristics, these values are hard to determine; simple rules for selecting speed and 
throttle settings yield practically satisfying solutions. 

5. Safety first: In the extreme, this may lead to overly cautious driving. When 
safety margins are selected too generously for the subject’s style of driving in 
the nominal case, the reactions of less patient drivers may lead to less safe traf-
fic in the real world, also for the cautious driver. (One example mentioned is the 
safety distance in convoys inducing other vehicles to pass, maybe in a daring 
maneuver.) 

13.7  Visualization of Hardware/Software Integration 

Because of the complexity of autonomous mobile robots with the sense of vision, 
the local distribution and functional cooperation of the parts can be visualized dif-
ferently depending on the aspect angle preferred. Figures 1.6, 5.1, 6.1, 6.2, 11.19, 
11.21 and 13.1 are examples of different stages of development of UniBwM vision 
systems.  

Figure 13.5 gives an unconventional survey on the third-generation vision sys-
tem and the turnoff example as one special mission element (right-hand side). The 
scene representation (broad column, center right) changes depending on the envi-
ronment encountered and the mission element being performed. On the left side of 
the figure, the computers in the system and the main processes running on them are 
listed and linked by arrows indicating which processes run on which processor and 
which sensor hardware is connected to which processor. The object classes treated 
by the processes are also indicated by arrows into the scene tree.  

The figure is not intended to give a complete introduction to or an overview of 
the system at one glance; it rather intends to visualize the central importance of the 
scene tree and how the rest of the closed-loop perception–action cycles are grouped 
around it. The Jacobian matrices as core devices for recursive estimation in dy-
namic vision are first-order relationships between couples of nodes in the scene 
tree: Image features on the one side (delivered in raw pixel form by the cameras Ci

and the framegrabbers FG, lower center), and object states or parameters on the 
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other side such as ele-
ments of the road net-
work (shown as ellipses) 
or other vehicles (dotted 
circles, relative to near 
road elements). These 
objects can be created or 
deleted in the scene tree 
as corresponding fea-
tures are detected or lost. 

While driving, the 
variables in the homoge-
neous coordinate trans-
formations HCT (edges 
between nodes) change 
continuously; they are 
constrained, however, by 
the dynamic models rep-
resenting knowledge 
about motion processes 
not usually taken advan-
tage of in “computa-
tional vision”. Since 
these transformations are 
in 3-D space with spatial 
object models carrying 
visual features, a full 
spatio-temporal recon-
struction takes place in 
model fitting, thereby 
avoiding the loss of the 

depth information critical in snapshot-interpretation with motion understanding as 
a second (separate) step derived from sequential images. 
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Figure 13.5. Visualization of hardware/software con-
nectivity in EMS-vision for driving on networks of 
roadways 

In our approach, the motion models, with prediction-error feedback for under-
standing, are used directly for reconstructing an “animated spatiotemporal world” 
in the form of symbolic descriptions based on background knowledge shown in 
Figure 13.1, top. However, for arriving at “imagined scenes” the conventional 
computer graphics approach developed in the last quarter of the last century is suf-
ficient; no image evaluation is needed if objects and transformations in the HCT 
are “dreamed-up”. In accordance with what some psychologists claim for humans, 
one might say that – also for EMS vision – 

vision is (feedback-) controlled hallucination. 



14  Mission Performance, Experimental Results 

The goal of all previous chapters has been to lay the foundations for mission per-
formance by autonomous vehicles. Some preliminary results, which have helped 
find the solution presented, have been mentioned in previous sections. After all 
structural elements of the system developed have been introduced, now their joint 
use for performing mission elements and entire missions autonomously will be dis-
cussed. 

Before this is done, some words about the term “autonomous” seem in order. It 
originally does not mean just “no human onboard” or “without actual (including 
remote) human intervention”. The linguistic meaning of “auto” is that the system 
does not have to rely on any external input during mission performance but has all 
resources needed onboard. Looked at from this (purist) point of view, a system 
that, for example, has to rely on steady input of GPS data during the mission can-
not be called autonomous. At most, it is autonomous in the sense of unmanned ve-
hicles driving along a local electric field generated by wires buried in the ground 
(“cable guided”); the only difference for a dense map of GPS waypoints is that bur-
ied wires give continuous analogue input to sensors onboard the vehicle, while 
GPS provides sampled data representations (mesh points of a polygon) into which 
a smooth curve for determining control output has to be interpreted by digital proc-
essing onboard. If the external GPS system fails, “autonomy” is lost, which is in 
contrast to the definition of the term.  

Using GPS very sparsely, similar to infrequent landmark navigation with con-
ventional technology would change the picture, since large fractions of the mission 
have to be driven really autonomously. In commonsense language, “autonomous” 
would mean that the system is able to generate all the information on its own that 
conventionally is provided by the human driver. This includes finding the precise 
path to drive and checking for obstacles of any kind (including negative ones such 
as ditches or large potholes) as well as finding detours for avoiding collisions. If 
the path to be driven and marked by many GPS waypoints is even prepared to 
guarantee the lack of obstacles of certain kinds, mission performance can hardly be 
termed autonomous. This would only be a relatively easy to achieve step in the di-
rection of full autonomy. 

On the other hand, if GPS signals could be guaranteed to be available like 
sunlight, the situation would change. The big challenge then would be to have the 
actual state of the environment correctly available for planning the positioning of 
the waypoints for the mission in an optimal (or at least sufficiently good) way.  

This part of off line mission analysis for decomposition of a global mission into 
a sequence of mission elements, stored in a list for execution one after the other, is 
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not discussed here; it is assumed to have been done correctly, satisfying the behav-
ioral capabilities of the vehicle. 

14.1  Situational Aspects for Subtasks  

To perform a mission autonomously, several classes of subtasks should be distin-
guished. The initialization for starting an autonomous mission is different from 
continuously performing the mission after the start. In both subareas again, differ-
ent situations and classes of other subtasks have to be distinguished. Once in opera-
tion, the subtasks are grouped into classes geared to certain subsystems for percep-
tion, situation assessment, behavior decision, and implementation of behaviors 
including fast first reactions to failures in the performance of components.  

14.1.1  Initialization 

For initialization, the major difference is whether the vehicle is at rest (fully 
autonomous start) or whether it has been operated till now by a human driver who 
has kept it in a reasonable driving state; this is the standard starting condition for 
an assistance system. 

14.1.1.1  Starting from Normal Driving State 

The manufacturer of an assistance system for normal driving will require that the 
vehicle is in a safe driving state, achieved by the human driver, when the system is 
switched on. Those assistance systems that are meant to help prevent or reduce the 
severity of accidents in dangerous situations are included (like the “Electronic Sta-
bility Program”, ESP or similar acronym); they only become “active in control out-
put” in a dangerous state but have been observing vehicle motion and checking the 
situation before.  

A normal driving state alleviates the initialization process since positions of es-
sential features with approximately known parameters can be found in relatively 
small search regions. However, some uncertainty will always be there so that it is 
advisable to collect as much information as possible from conventional sensors 
first: Speed from a tachometer (or derived from an odometer) is a “must”; in con-
nection with accelerometer readings in the horizontal plane (ax, ay, vehicle body 
oriented), after a short time, both the orientation of the vehicle body relative to the 
gravity vector (surface slope) and vehicle accelerations (longitudinal and lateral) 
can be perceived. Angular rate sensors inform the system about the smoothness of 
the ground and, in connection with the steering angle, about the curvature of the 
trajectory actually driven. The variance of the vertical acceleration component also 
contains information on surface smoothness (vertical vibrations).  

While this evaluation of conventional sensor signals is done, image processing 
should collect general information on lighting and weather conditions to find 
proper threshold values to be used in feature extraction algorithms. Then, initializa-
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tion of the vision system for road detection and recognition, as discussed in Chap-
ter 8, should be done. 

14.1.1.2  Fully Autonomous Start from Rest 

For a really autonomous vehicle, it is also important first to collect all information 
it can get from conventional sensors before higher level vision is tried; it is even 
more important here that the imaging sensors should first be used for collecting in-
formation on general environmental conditions. 

Background information from conventional sensors: With little computational 
effort, a large amount of important information for visual perception can be ob-
tained from the following sensors:  
1. Odometer/tachometer: Is the vehicle stationary or moving? If moving, at what 

speed and with which steering angle (turn rate)?  
2. Inclinometer, accelerometers in the horizontal plane: What is the inclination of 

the vertical axis of the vehicle relative to the gravity vector? If the vehicle is at 
rest, the sensor readings determine the inclination of the surface on which the 
vehicle stands. If the vehicle is moving, observation of acceleration in the longi-
tudinal direction and of the speed history over time also allows determining sur-
face slope. 

3. A thermometer (outside) tells us about the state in which water on the surface or 
as precipitation will appear likely. 

4. Inertial sensors for translation and rotation give an indication of surface rough-
ness (vibration levels). 

Background information from imaging sensors: Before visual perception of ob-
jects is started, here too, the general visual situation with respect to lighting and 
weather conditions should be checked. If the vehicle is at rest, the surface state of 
the environment (smoothness, vegetation, etc.) should be checked. Precise percep-
tion cannot be expected with state-of-the-art sensors and algorithms; quite a bit of 
effort has to go into this field to achieve close-to-human performance. For exam-
ple, smooth ground with tall grass or other vegetation moving due to wind, which 
would allow crossing the region with no danger to the vehicle, cannot be judged 
correctly today neither by laser range finders (LRF) nor by vision. While LRF 
show a solid obstacle or a surface at the elevation of the tips of the grass, vision 
could have sufficient resolution for recognizing single plants, but computing power 
and algorithms are still missing for the spatiotemporal recognition process required 
for correct perception. 

To recognize drivability of the terrain on which the vehicle is standing, the tan-
gential plane defined by the vehicle body at rest, but at the elevation of the lower 
parts of the wheels, should be determined first. Modeling the vertical deviations 
from a horizontal plane (surface structure) is just about to be developed, both with 
LRF and with stereovision; robust real-time performance has yet to be achieved. 

Recognizing the state of illumination can be done by looking at average image 
intensities and the distributions of contrast. Recognizing weather conditions is 
much harder for the general case; fog recognition has been looked at but is not 
solved for the general case. Diminishing contrasts in the image for areas further 
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away are the key feature to look at. Recognizing different kinds of rain and snow-
fall still has to be achieved, but should be in range in the near future. 

The hardest challenge both for human drivers and for autonomous systems is the 
question whether or not the ground is conditioned (sufficiently hard) to support the 
vehicle. This problem will remain to be decided by a human operator walking into 
these regions and checking by using his legs and corresponding pressure tests on 
the surface. Observing other vehicles driving through these regions is the other 
way to go (but may take longer). 

Once the decision for a certain behavior in locomotion has been taken, the 
methods for prediction-error feedback are activated and the continuous perception-
and-action loop is entered (see Chapter 8). 

14.1.2  Classes of Capabilities 

For efficient mission performance, there has to be a close interaction between the 
three classes of capabilities: Situation assessment, behavior decision for gaze and 
attention (BDGA), and behavior decision for locomotion (BDL). One might reason 
that because of the tight interactions these three should be performed in one single 
process. However, both BDGA and BDL have to rely on situation assessment for 
selecting objects and subjects of high relevance for the task to be performed. On 
one hand, BDGA has to concentrate on short-term aspects for collecting the right 
information on these objects and subjects most efficiently and precisely, based on 
image features. On the other hand, BDL has to understand the semantics of the 
situation to arrive at good decisions in the maneuver or mission context; this re-
quires looking at larger scales in both space and time.  

So the situation is the common part, but BDGA has to ensure its correct percep-
tion by providing rich selections of image features to the visual tracking processes 
with the least delay time, while BDL (or alternatively BDAs in the assistance 
mode) gives the essential input for defining and judging the situation in the mission 
context and then decides which of the locomotion capabilities (or of the assistance 
functions) is best suited for handling the actual situation and for achieving the goal 
of the mission most efficiently and safely. To stay in the performance range of hu-
mans, a few tenths of a second delay time are acceptable here. 

This interplay is schematically shown in Figure 14.1: All evaluation processes 
(shown as rectangles) have access to the situational aspects derived previously and 
to the state time histories of visual perception (stored in the DOB by the individual 
tracking processes). The arrows E symbolize this basis for actual evaluation of 
changes in the situation. The arrows A indicate that new aspects of general rele-
vance are added to the common description of the situation (including deletion of 
old aspects no longer relevant). Certain special results will be kept local to avoid 
communication overload.  

Each tracking process and the object detection system can request a certain gaze 
direction for achieving their actual tasks; in addition, an intended maneuver such as 
a  turnoff has to be taken into account by BDGA. If contradicting requests are re-
ceived and cannot be reconciled by saccadic time-slicing of attention, the “central 
decision” unit (CD, center top) in charge of overall mission performance has to be 
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invoked and has to come up with a specific maneuver, if necessary; for example, 
slowing down or shifting the lateral offset parameter from the center of the lane for 
“roadrunning” by feedback control may solve the problem. These are the cases 
where control of gaze and locomotion are no longer independent of each other. 

14.1.2.1  Visual Perception Capabilities 

Basic aspects have been discussed in Section 3.3.2.3 (see Figure 3.6). It is essential 
that an autonomous system has a knowledge base telling it when to use which ca-
pability with which parameters in given situations. For example, when tight ma-
neuvering is performed, it makes sense to link gaze direction to the steering angle 
selected for forward driving (see Figure 14.2). The correct gaze angle to be com-
manded is not the intended steering angle but the one actually reached because this 
is the angle to which changes of the body direction actually correspond in normal 
driving (no slip). Therefore, the command signal for gaze control in yaw should be 

Human person as

system operator          active driver

Figure 14.1. Organizational structure of interactions between special processes for 
situation assessment: “Behavior decision for gaze and attention” (BDGA, center bottom) 
and one of the two alternative processes “Behavior decision for locomotion” (BDL, left, 
for the autonomous driving mode) or “Behavior decision for driver assistance” (BDAs 
right, if used as an assistance system). (Note that only one of the two can be active at a 
time.) In case of conflict between BDGA and BDL, “central decision” (CD, center top) 
may be invoked for coordination and possibly adaptation of the mission plan or other 
behavioral parameters.
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proportional to the steering angle ac-
tually measured (and maybe smoothed 
by a low-pass filter). Figure 14.2 
shows two viewing regions of atten-
tion (RoA) by different shades which 
correspond to the fields of view of two 
cameras with different focal lengths 
(here a factor of 2 apart) [Pellkofer 
2003]. So, intelligent gaze behavior 
may be simply realized by internal 
cross-feed of measurement data. 

Triggering these behaviors is done 
by rules checking the preconditions 
for activation. Once in operation, the 
decision level is no longer involved in 
determining the actual control outputs. 

Other rules depending on situation parameters are then checked for finishing this 
type of behavior and for switching to a new one; transitions to feed-forward ma-
neuvers or to other feedback modes are possible (such as tracking a certain object 
in the DOB). 

Other modes in gaze control for driving cross-country and avoiding ditches 
(negative obstacles) are shown in Figure 14.3. For interpreting the size of the ditch, 
the perception system has to look alternatively to the right and the left border of the 
ditch (P1 and P2), while internally the encasing box for the entire ditch has to be 
determined, covering the region P0 containing all of the ditch (last row of the ta-

Figure 14.2. Linking gaze direction to 
steering angle for maneuvering 
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Figure 14.3. Regions of attention (RoA) for saccadic gaze control approaching a ditch 
of size larger than the field of view 
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ble). A complete internal representation of the ditch is constructed even though it is 
never seen as a whole at the same time; the changes in gaze direction together with 
the positions of features in the images are jointly used for reconstruction of the 3-D 
geometry [Pellkofer 2002, Pellkofer et al. 2003]. 

When a decision for behavior has been achieved, the vision system will continue 
with one of three possible modes: (a) fixation of the right corner (keeping the entire 
ditch “in mind”) for evasion to the right (first row of table), (b) fixation of the left 
corner (keeping the entire ditch “in mind”) for evasion to the left (second row of 
table), or with (c) looking straight ahead when stopping in front of the ditch (third 
row of table). Different feedback strategies of specific image features help realize 
the modes. 

A third example, perceiving a crossroad and turning onto it has been discussed 
in Chapter 10; in Section 14.6.3, the same maneuver will be discussed, now inte-
grated in the capability concept of saccadic vision. 

14.1.2.2  Situation Assessment Capabilities 

The discussion has not really been settled within our team whether it is advanta-
geous to have situation assessment as a separate process beside BDGA for gaze 
and BDL for locomotion control. There are many aspects of situations specific to 
perception and others specific to locomotion, so these processes will do large parts 
of the overall situation assessment work on their own, especially when these tasks 
are developed by different persons. Maybe experience is not yet sufficiently large 
to find a stable structure of task distribution; in the long run, combining experience 
from the different domains in a unified approach seems advantageous (at least from 
an abstract architectural point of view). As shown in Figure 14.1 (center), represen-
tation of the results of situation assessment, the situation aspects, should be acces-
sible to all processes involved in decision-making on a higher level.  

For today’s assistance systems, this part is rather small, usually; most effort 
goes into finding solutions satisfying the user from an ergonomic point of view. 
Realizations are mostly procedural statements. Only with an advanced sense of vi-
sion in the future will behavior decision for assistance (BDAs) become more de-
manding.  

14.1.2.3  Locomotion Capabilities 

This topic has been treated to some extent in Section 3.4 (see Figure 3.28 for the 
corresponding capability network summarizing results). Here, the overall task is 
broken down into two layers: A representational (abstract) one for decision–
making in the strategic task or mission context on one hand, and a procedural one 
for efficient implementation with minimal time delays taking most recent meas-
urement values into account, on the other. Figure 3.17 shows just one example of 
behavior decision for longitudinal control; it contains the conditions for transitions 
possible between the different modes on the upper level. These are coded in rules 
with decisions depending on parameters evaluated in situation assessment.  

Table 3.3 shows a typical collection of behavioral capabilities of road vehicles 
and their way of realization by either feed-forward or feedback control. Section 
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14.6.4 will discuss the joint use of different capabilities for deciding on and per-
forming lane change maneuvers in normal highway traffic. 

The detailed codes for realization will not be discussed here. Quite a bit of effort 
is expended in this field by car manufacturers or suppliers for developing systems 
to come on the market soon. The next section gives a short survey of the general 
concept. 

14.2  Applying Decision Rules Based on Behavioral 
Capabilities 

A behavioral capability results from matching general algorithms for the field con-
sidered with specific hardware of a vehicle (or vehicle class) through adaptation of 
parameters and specification of the range of applicability. There are sets of rules 
specific to each of the three classes of capabilities mentioned in the previous sec-
tion plus the set for central decision (CD).  

CD is the first unit addressed when a new mission is to be performed (“Task as-
signment”, arrow ‘I-1’ in Figure 14.4, center top). It first initiates off line “Mission 

Figure 14.4. Coarse block diagram of the system architecture for performing entire mis-
sions: Arrows ‘I-1’ to ‘I-4’ point out mission initialization before the recursive loops are 
started. The inner light-gray loop represents expectation-based, multifocal, saccadic 
(EMS) vision, while the outer dark loop represents conventional automotive control with 
a separated decision level shown above the horizontal bar for “dynamic knowledge rep-
resentation” (DKR). 
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planning” (‘I-2’) to analyze the mission and to come up with one or several alterna-
tive mission plans taking the nominal capabilities of the system into account (arrow 
‘I-3’, upper right). For each plan consisting of: (1) a list of mission elements, (2) a 
list of performance criteria with expected values, and (3) a list of the subsystems 
needed, CD evaluates which plan is best suited for the subsystems actually avail-
able. This “valid mission plan” is stored as a guideline for actually performing and 
monitoring the mission (arrows ‘I-4’, top left) [Hock 1994; Gregor 2002]. The list of 
mission elements of this validated plan is then consecutively activated by copying 
one piece after the other into “dynamic knowledge representation” [(DKR, center 
of the horizontal bar shown in Figure 14.4 separating the decision level (top) from 
the procedural evaluation level (lower part; see also Figure 13.5 right)]. The per-
ceptual capabilities actually needed are initiated via BDGA; each path knows its 
own initiation procedures and will try to represent stable interpretations in the 
DOB. Now, “situation assessment” (SA) can start its evaluation taking the re-
quirements of the first mission element into account (top left corner).  

The evaluation results are first used for checking the perception mode by 
BDGA, and second for starting locomotion activities through BDL (initiate physi-
cal mission performance) by triggering behavioral skills for locomotion on the 
lower (procedural) level (bottom right corner of Figure 14.4). The progress of mis-
sion performance is monitored on several levels. If situations occur that do not al-
low planned mission progress, as, for example, in roadrunning on a multilane 
highway with a slower vehicle in the same lane ahead, BDL has to come up with a 
decision whether a transition into convoy driving or a lane change maneuver with 
passing should be performed. Before the latter decision can be made, perception to 
the rear and to the side and corresponding evaluations of “situation assessment” 
have to ensure that this maneuver is possible safely; this evaluation will take some 
time. If the gap to the vehicle in front closes too rapidly, a safety mode on the 
lower level for vehicle control may start a transition to convoy driving in the same 
lane.

This example shows that the coordination of decisions in the different modes 
and on the time line have to be done carefully; this is by no means an easy task and 
has taken quite a bit of effort in developing this approach for practical applications 
with the test vehicles in standard traffic scenes. Once the parameter ranges for safe 
operation are known, it is very flexible, and it is easy to make improvements by 
new modular units for perception and control. 

14.3  Decision Levels and Competencies, Coordination 
Challenges

As mentioned in Section 14.1.2 and shown in Figure 14.1, there are several deci-
sion levels emphasizing different aspects of the overall task. The mission and the 
actual state of the vehicle as well as of the environment including other ob-
jects/subjects define the situation for the system. BDGA has to ensure that percep-
tion of this situation is performed as well as possible and is sufficient for the task. 
If the situation deteriorates, it has to warn CD and BDL to adapt to the new envi-
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ronmental conditions. If the perturbations are sufficiently severe, CD has to adapt 
parameter settings or may even have to start “mission replanning” to adapt the fu-
ture list of mission elements to the new conditions. 

To a certain extent, the procedural implementation levels can react directly to 
perturbations noticed. It is an engineering standard to keep the system in a safe or 
agreeable operational state by adapting gain factors in feedback control, for exam-
ple. The challenge is to keep all system components informed about the actual per-
formance level; therefore, the “explicit representation of capabilities” has to be up-
dated each time a capability running has been adapted for whatever reason.

For example, if it has been noted that during the last braking action, the effec-
tive friction coefficient was lower than expected (due to wet soil or slush or what-
ever), the updated friction coefficient should be used for planning and for realizing 
the next braking maneuver. Engineers will tend to keep the details of these deci-
sions on the procedural level with direct access to the most recent measurement 
data (minimal delay time); they expect the decision level to trigger transitions or 
new behaviors sufficiently early so that implementation can be performed opti-
mally, directly based on the latest data; conventional measurement data may be 
available at a higher rate than video evaluations (the maximum update rate for the 
higher system levels). [In our test vehicles, inertial data come at 100 Hz with al-
most no delay time, while video yields new results at 25 Hz (every 40 ms) with at 
least an 80 to 120 ms time delay.]  

For this reason, in critical situations, both the fast lower level and the more in-
telligent higher levels will contribute to safety: First reactions with the goal to in-
crease safety margins are immediately performed on the lower level, and the rest of 
the system is informed about facts leading to this decision and to the adaptations 
made. A more thorough analysis and assessment of the new situation is then per-
formed on the higher level which then may trigger new behavioral modes or even 
abandon the mission. This is an area where much development work remains to be 
done for systems more complex than those up to now. 

Some aspects of this integration task have been performed for several mission 
elements and a small mission as a final demo of the development project; this will 
be described in the remaining sections. 

14.4  Control Flow in Object-oriented Programming 

The first two generations of vision systems realized and experimentally tested have 
been programmed in procedural languages (FORTRAN, Occam, and C). The dif-
ferent subtasks have been treated as self-contained units, and the main goal of the 
tests has been to demonstrate the fitness of the approach to handle the well-defined 
task domains. In the mid-1990s with the final demo of the “Prometheus” project 
and the long distance drive from Munich to Odense, Denmark, (see Section 
9.4.2.5) successfully performed, it was felt that the next-generation system should 
be designed as an integrated entity right from the beginning. As a programming 
style, object-oriented coding in C++ has been selected for practical reasons of 
availability and trained personnel. A strong tendency toward the language Ada for 
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more reliable code for the complex system to be expected did not find majority ap-
proval of the group. 

Figure 14.4 has shown the basic structure of the system designed and the gen-
eral flow of activities in the perception–action cycle. Multiple feedback loops real-
ized in the system have been given in Figure 6.1; all of this implements the “4-D” 
approach to dynamic vision, the basic idea of which has been graphically summa-
rized in Figure 6.2. A more detailed explication of what has to be organized and 
what is going on in the overall system can be seen from Figure 14.5 concentrating 
on visual perception. 

Mental framework level:
Goals, values, evaluation methods, simulations

mission planning, maps, databases, learning

Situation level:

Dynamic scene tree

Figure 14.5. Visualization of parallel activities in dynamic vision according to the 4-D ap-
proach on four distinct levels: “Feature level” for bottom-up feature extraction and top-
down “imagination”; “Object (subject) level” for recognition and extrapolation in time as 
well as computation in 3-D space; “Situation level” for fusing individual results on ob-
jects/subjects in the context of the mission to be performed and goals to be achieved; 
“Mental framework level” providing the knowledge background for the other levels. 

I m a g e s

ca   me  ras

Gaze

platform

other
objects
subjects

Homogeneous

Coordinate

Transforms

Ego
subject

(Domains, tasks)
Mission performance Task fulfillment

Situation assessment (global, low frequency),

Mission monitoring, transition between mission elements

Maneuver performance

Situation assessment (local),

Behavior decision

Perception

Vehicle control

Behavioral capabilities

Feed-forward
feedback control

Subject / Dynamics

Object level State estimation

State prediction

Shapes
Aspect conditions
Visual features

Hypothesis generation

Feature level
Feature flow (image sequences)

Multiple parallel images

Single images: Feature aggregation   

(lines, junctions, corners)

extraction           Regions (intensities, colors, shadings);

[1-D cuts]

of single

features               

Texture

Edges (software package CRONOS)

{3-D points}



424      14  Mission Performance, Experimental Results 

This figure is a somewhat unconventional arrangement of terms, arrows for ac-
tivity and information flow as well as some elements for knowledge representation 
like the dynamic scene tree on the right, which is the core element for scene under-
standing [D.Dickmanns 1997]. The homogeneous coordinate transformations 
(HCTs) represented by the edges of the graph link image features to internally rep-
resented 3-D objects moving over time according to some motion constraints (in-
cluding the effects of control activity). The recursive estimation process with pre-
diction-error feedback iterates the entries in the HCTs such that the sum of 
prediction errors squared is minimized. When egomotion (conventionally meas-
ured) is involved, this approach realizes motion stereointerpretation in a natural 
way. Unknown shape parameters can be iterated for each object observed by prop-
erly incrementing the number of state variables. 

The tree as a whole – besides representing the individual object-to-feature map-
ping – thus also codes the geometric and shape aspects of the entire situation. Note 
that since motion constraints for mechanical systems are of second order, the ve-
locity components of the objects observed may also be reconstructed. By determin-
ing the sensitivity (first-order derivative or “Jacobian”) matrix between features 
measured and changes in object states, perspective inversion can be bypassed in 
this approach by a least-squares fit. All these aspects have been discussed in previ-
ous chapters down to implementation details; here, they are just recalled to show 
the interplay among the different components. 

Bottom-up detection of single features is the starting point for vision (bottom of 
Figure 14.5). Combinations of features in a single image, from several images 
taken in parallel or from image sequences, allow coming up with object hypotheses 
represented directly in 3-D space and time. Looking at convergence properties and 
error statistics for each of the n parallel processes that track a single object, each al-
lows perceiving “objects and their motion in 3-D space” (shaded area in center of 
the figure with object nodes at the end of branches of the scene tree). For each of 
these objects, the DOB contains the variables of the HCTs that link the object node 
with the features in the images (= nodes at bottom right). These variables together 
with the code for computing HCT and for generating 3-D shape from a few pa-
rameters allow “imagination”, the process of generating virtual images from ab-
stract mathematical representations (as in computer graphics). In connection with 
the models for dynamic motion, the evolution of scenes with several ob-
jects/subjects can be predicted, which is the process of forming expectations. Time 
histories of expectations generate representations of maneuvers needed for deeper 
understanding of motion processes. These temporally more extended elements of 

knowledge representation on a timescale different from “state reconstruction here 

and now” have been missing in many approaches in the past. 
Keeping track of the evolution of trajectories of other objects/subjects stored al-

lows recognizing their direction of motion; if parts of stereotypical maneuvers can 
be identified, such as the onset of a lane change or preparation for a turnoff ma-
neuver, this is considered recognition of an intention of the other subject, and pre-
dictions of this maneuver allow computing expectations for deeper understanding 
of what is happening in the environment. This is part of situation assessment, pre-
ceding behavior decision and control output. The results of situation assessment 
can be stored in the DOB and logged for later (off-line) evaluation. 
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This part of the system (at the top of Figure 14.5) needs further expansion in the 
direction of learning, now that the actually needed parts for basic mission perform-
ance seem to be in place. Off line analysis of logged maneuvers and mission ele-
ments performed should allow adaptation and improvement of quality criteria and 
of developing adjustments in the subject’s behavior (parameter selection and tim-
ing) taking time delays observed and other perturbations into account. 

Figure 14.6 shows yet another visualization of the same scheme emphasizing 
the modularity developed with the network of capabilities, realized in object-
oriented coding (see also Figures 3.6 and 3.28). In the top row, central decision or-
ders a mission plan to be generated (top left) which is returned as a list of sequen-
tial mission elements. CD now activates the complex behavioral capabilities 
needed to perform the first mission element. Three of them are shown: “Follow 
road/lane”, “Turnoff onto cross road”, and “Follow sequence of (GPS) waypoints”. 
Depending on the task of the first mission element, the proper mode is selected, 
probably with some priority parameters for the implementation level. The arrows 
emanating from each complex behavioral capability indicate which basic stereo-
typical capabilities (shown on the broad arrow between BDGA and BDL) have to 
be available to start the complex behavior. Their availability is checked each time 
before intended activation, so that actual malfunctions are detected and availability 
of this behavior is modified (adjusted) or even negated.  

“Follow road/lane” thus needs “optimization of viewing behavior” (OVB) for 
gaze control, “road detection and tracking” (RDT) for road recognition, and 
“Road/lane running” (RLR) for vehicle guidance (dark solid arrows from top left 
of shaded area). “Turnoff onto crossroad” would need, beside the ones mentioned 
before, also “Crossroad detection and tracking” (CRDT). For “Following a se-
quence of waypoints” a second visual perception capability for “3-D surface rec-
ognition” (3-DS) is needed to avoid falling into ditches or other negative obstacles. 
(Results will be discussed briefly in Section 14.6.6.) A special capability for “Ob-
stacle detection and tracking” (ODT) is shown necessary for going cross-country 
(fallen trees or sufficiently big rocks, etc.). As a new capability for locomotion (ve-
hicle control), “Waypoint navigation” (WPN) is shown. 

All these stereotypical capabilities have to rely more or less on “basic skills” 
(lower row of circles shown). This is again indicated by arrows (not exhaustive). 
Their availability is checked before the stereotypical capabilities can signal their 
availability to the next higher level. This is part of the safety concept introduced 
for the third-generation EMS vision system. The local “behavior decision” units 
BDGA and BDL (see darkened rectangles left and right) work with the rules for 
mode transition between behaviors. They also monitor the progress of behavior ini-
tiated and have to recognize irregularities from failures or perturbations. (This is 
another area needing more attention in future more reliable systems for practical 
applications of this new technology.) 

The interested reader may find more details in [Maurer 2000, Gregor et al. 2002, 
Pellkofer et al. 2001, 2003; Pellkofer 2003; Siedersberger 2004]. The introduction and 
implementation of networks of capabilities is a rather late development, whose full 
potential has by far not yet been exploited. We will come back to this point in the 
Outlook at the end of the book. 
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14.5  Hardware Realization of Third-generation EMS Vision 

Since progress in hardware development for computing and communication is still 
huge, not much space will be devoted to this point here; the latest hardware used 
was from the end of last century and is outdated by now. Figure 14.7 gives a sum-
mary of the system built from up to four Dual-Pentium® processors with clock 
rates of less than 1 GHz [Rieder 2000]. Synchronization and data exchange have 
been performed using an off-the-shelf communication network (Scalable Coherent 
Interface: SCI®) together with Fast Ethernet® (for initialization). Dynamic knowl-
edge representation (DKR) via scene tree makes the latest estimated states of all 
processes available to all units (DOB as part of it, see Figure 14.4) via SCI (top 
row in Figure 14.7).  

Three of the four Dual-Pentium PCs were devoted to image feature extraction 
and visual perception (PC 1 to 3, top left); the fourth one, dubbed “Behavior PC” 
had two subsystems connected to it as interfaces to measurement and actuator 
hardware. The “gaze subsystem” for gaze control (GC) receives data from me-
chanical angle and inertial angular rate measurements of the gaze platform at high 
frequencies; it commands the actual output to the torque actuators in pan and tilt, 
which can work at update rates up to 500 Hz (2 ms cycle time for smooth pursuit).  

The “vehicle subsystem” for vehicle control (VC, lower right in Figure 14.7) re-
ceives all conventional measurement data from the sensors on the vehicle at least at 

Figure 14.6. Control flow for realizing behaviors according to the approach developed 
with networks of capabilities for visual perception and motion control in object-oriented 
programming (see text for explanation) [Gregor et al. 2002, Pellkofer 2003, Siedersber-
ger 2004]
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Figure 14.7. Realization of EMS vision on a cluster of four dual-processor PCs plus two 
subsystems as interfaces to hardware for gaze and vehicle control [Rieder 2000] (see text)

video rate. It also forms the interface to the actuators of the vehicle for steering, 
throttle position, and braking. The process VC, running on the Behavior PC, im-
plements the basic behavioral skills. The decision processes CD, BDGA, and BDL 
perform situation assessment based on the data in the DOB, the conventional 
measurement data, and on data from the Global Positioning System (GPS) arriving 
once a second for navigation (see corresponding blocks displayed at right in Figure 
14.7). MP stands for mission planning (running off–line, usually), and HMI real-
izes the “human–machine interface” through which the operator can communicate 
with the system. An embedded demon process (EPC) allows programming and 
controlling the overall system via fast Ethernet from one external resource. 

14.6  Experimental Results of Mission Performance 

Before we start discussing results achieved with the third-generation vision system, 
an early test made with hardware-in-the-loop simulation for preparing these ad-
vanced perception processes will be discussed. 

14.6.1 Observing a Maneuver of Another Car 

The challenge is not just to get a best estimate for the actual state of another vehi-
cle observed, but to find out how much deeper understanding of motion and control 
processes can be gained by the 4-D approach to dynamic vision. To keep things 
simple in this first step, the camera observing the other vehicle was stationary with 
an elevation of 3 m above the ground; it followed the center of the projected mov-
ing vehicle without errors (ideal fixation, see Figure 2.17). Vehicle motion and 
projected shape, according to a shape model as given in Figure 2.15, were simu-
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lated on a separate computer, and feature positions were superimposed with noise. 
The vehicle started straight ahead from rest at the position labeled 0 in Figure 2.17 
with an acceleration of 2 m/s² until a speed of 5 m/s (18 km/h) was reached (dotted

gray pulse at the extreme left in Figure 14.8); this maneuver lasted 2.5 s, which at 
an estimation rate of 20 times per second yields 50 steps (dimension of the hori-
zontal coordinate in the figure). The solid curves shown in the left graph give the 
speed and acceleration of the vehicle reconstructed from feature data taking not 
only the translational degrees of freedom but also the rotational ones as variables to 
be observed (not shown here). As shown at the top of Figure 2.17, due to changing 
aspect conditions, some features disappear and others newly appear during this ac-
celeration period. It can be clearly seen that there is a time lag of several cycles un-
til the start of the motion is perceived. Acceleration is reconstructed rather noisy, 
but “perceived” speed increases almost linearly, although with constant time delay 
compared to motion generation (this would be the diagonal line from (0, 0) to (50, 
5). The instantaneous drop in simulated acceleration at coordinate 50 is, of course, 

also perceived only with a corresponding time delay; keep in mind that in percep-
tual reconstruction from vision data, speed is derived from position changes and 
acceleration from speed changes (buried in the recursive estimation process)! 

7.5

5.0
C0

The vehicle then drives the oval track at constant speed V = 5 m/s [0.25 m/(time 
step)] and with two double pulses in steering rate (lateral control) as shown by the 
dotted gray polygon in the right-hand part of the figure. The first pulse extends 
over 40 time steps (50 to 90, = 2 s) with a magnitude of curvature change rate per 
arc length of dC/dl = + /20; it will ideally turn vehicle orientation from 0 to 90° 
(neglecting the difference between trajectory and vehicle heading changes, see 
Figure 10.6). The maximal curvature at this point is Cmax = 0.25·40· /20 = /10
m 1 (corresponding to a turn radius of a little more than 3 m). The second part of 
the double pulse then immediately starts decreasing curvature back to zero 
(achieved at time point 130, see Figure 2.17). There it is seen that during this turn 
the aspect conditions of the vehicle have changed completely; it was visible from 

Figure 14.8. Maneuver recognition on an oval track (see Figure 2.17) in HIL-simulation 
with a real camera in front of a monitor. The image displayed was computer generated 
with the optical axis from a fixed location 3 m above the ground always fixated on the 
cg of the car displayed in the center of the image (ideal tracking; see text). 
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the right side initially, right from the front at point 100, and for the new straight 
section (130 to 157), it is seen from the left. When looking at the vehicle from the 
front (around 105) or from the rear (around 190), it can be seen from the left sub-
figure of 14.8 that longitudinal motion is poorly conditioned for tracking; only the 
change in size and vertical position of the cg in the image contain information de-
pending on range. Correspondingly, estimated values of speed and longitudinal ac-
celeration show large perturbations resulting from noise in measured feature posi-
tions in these phases. Reconstruction of the curvature of the trajectory driven is not 
too bad, though. The dashed triangular shapes in gray are the integrals of the dot-
ted input curve, i.e., they represent the “ideal” curvature at the reference location of 
the vehicle; the solid lines representing the estimated curvatures from recursive es-
timation are not too far off in both turns; the second turn runs from time point 157 
to 237. Keeping the relation between curvature and steering angle in mind (see 
Figure 10.6, lower equation), a constant steering rate of the vehicle can easily be 
concluded, at least for the second turn which started with all initial transients set-
tled.

These results from around 1990 showed rather early that the 4-D approach had 
its merits both in estimating actual states and in recognizing maneuver elements at 
the same time but on different timescales.  

14.6.2  Mode Transitions Including Harsh Braking  

The maneuver tested here is one that is not, usually, part of a regular mission plan, 
but may occur every now and then during mission performance on high-speed 
roads. The test vehicle VaMP had received a request to cruise at a set speed of 140 
km/h; driving at 40 km/h when registration started (second graph from top), the se-
lected driving mode was “acceleration” (V1, top graph left, Figure 14.9). Due to 
increasing speed and air drag, the acceleration level decreased with time from 
about 2 to less than 1 m/s² (second graph from bottom). Shortly after 20 s, a vehi-
cle had been detected in the same lane at about 130 m ahead (center graph). Its 
speed seemed to be rather low and, of course, unreliable due to the usual transients 
in state estimation after detection.  

The system reacted with a rather harsh initial braking impulse at around 23 s 
(lower two graphs). It was initiated by a mode change on the situation assessment 
level (top curve), which resulted from brake pressure in the feed-forward compo-
nent (dash-dotted in lower graph). The actual pressure buildup shows the usual lag. 
The resulting deceleration of the vehicle went up to a magnitude of - 8 m/s² (sec-
ond from bottom), reducing speed to about 80 km/h (second from top). 

Due to the resulting pitching motion from braking, speed estimation for the ve-
hicle in front showed a strong transient with overshoot (second from top, lower 
curve). The commanded pressure in the brake system went down to zero for a short 
time. However, with the transient motion of the subject vehicle vanishing, the dif-
ference in the subject’s speed and the speed of the vehicle ahead was perceived, 
and the system decided to regulate this (relatively small) difference by feedback 
control which also had to realize the intended distance for convoy driving [Bruedi-
gam 1994; Maurer 2000; Siedersberger 2004]. The bottom graph shows the brake pres-
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sure as a control output thus determined, and the graph above it shows the com-
manded (dash-dotted) and the realized deceleration (around  0.2 g). 

During this smooth driving phase (mode V4, top graph), the estimated speed of 
the vehicle ahead becomes stable (lower curve, second graph from top); this speed 
determines the distance to be kept from the vehicle in front for convoy driving.The 
transition into this mode V3 (top) occurs at about 33 s. Note that the remaining er-
ror in distance for convoy driving is eliminated in this new mode. At around 37 s, 
the stationary new driving state is reached with braking activities vanishing (accel-
eration zero for t > 37 s, second graph from bottom). 

Figure 14.9. Braking maneuvers of test vehicle VaMP (Mercedes 500 SEL) in two 
phases for smooth transition from v  120 km/h to convoy driving at V  35 km/h and 
about 20 m longitudinal distance with three mode changes (top): (1) from acceleration 
to harsh braking at time 23 s (second graph from bottom and from top showing decel-
eration and speed), (2) from harsh to moderate braking at around 24 s, and (3) to con-
voy driving at about 33 s. The control variable is brake pressure (bottom graph); the 
controlled state is the distance to the vehicle in front (center graph) [Maurer 2000]. 
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14.6.3 Multisensor Adaptive Cruise Control  

This function is not for fully autonomous driving but for extending and improving 
an assistance system for distance keeping in convoy driving. These types of sys-
tems are on the market under various names for certain premium cars (class name 
“ACC”). They, usually, rely on radar as the distance sensor. The human driver has 
to control the vehicle in the lateral degrees of freedom all the time; as an extension 
to conventional automatic “cruise control” (CC) at constant speed on a free stretch 
of road, these systems allow braking at soft levels for distance keeping from a ve-
hicle in front.  

Though this capability has been demonstrated with the vision system of 
UniBwM in the framework of the Prometheus project in 1991 (on separate test 
track, demo in Torino) and since 1993 (in public traffic) already, industry had de-
cided to base the system for market introduction on radar measurements. This ap-
proach has  all-weather capability, it requires less computing power onboard, and 
less software development for interpretation. At that time, a single, specially de-
veloped vision system for realizing this function reliably would have cost about as 
much as a premium car. Therefore, the disadvantages of radar: low resolution, 
small field of view, relatively many false alarms, and problems with multipath 
propagation, had been accepted initially. To people believing in vision systems, it 
has always been only a question of time until vision would be added to these sys-
tems for more reliable performance. Above all, radar is not capable of recognizing 
the road, in general. Figure 14.10 shows a concept studied with industry in the late 
1990s. Figure 11.26 had schematically shown the advantage of object tracking by a 
joint radar and vision system. The role of the vision part has already been dis-
cussed in Section 11.3.4.1. Here, a survey of the overall system and of system inte-
gration will be given. Radar was installed underneath the front license plate (center 

Figure 14.10. Hybrid adaptive cruise control with radar (center bottom) and bifocal vi-
sion (top left): System survey with hardware components and condensed scene tree 
(center, multiple cameras, framegrabbers, and other vehicles) 
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bottom of Figure 14.10); its range of operation was 2 to 130 m, its viewing angle ± 
4°. The position and orientation relative to the car body was represented in the 
scene tree by three translations and three rotations [six degrees of freedom (DOF)] 
as for all other objects of relevance (cameras, other vehicles, and the road; see cen-
ter of Figure 14.10). The two cameras used (top left) had fields of view of 5.5° and 
22°; their position was in front of the rearview mirror behind the top center of the 
windshield. Figure 11.25 shows a typical pair of images analyzed by the 4-D ap-
proach.  

Vehicle detection was performed by radar; in all regions of special interest, vi-
sion looked for features indicative of vehicle candidates. At the same time, lanes 
were tracked, and both horizontal and vertical curvatures of the road were deter-
mined. It turned out that for larger ranges covered by radar, recognition of even 
small vertical curvatures was important for good tracking results. It has been dem-
onstrated that vision was able to eliminate all candidates based on false alarms 
from radar and that lateral positions relative to the lanes could be determined pre-
cisely. The system automatically switched the reference lane when the driver 
crossed the lane boundary during lane change. It marked the lower part of the ref-
erence vehicle for distance keeping by a red rectangle and of other vehicles tracked 
by blue ones.  

Lane markings recognized were marked by short line elements according to the 
horizontal curvature model estimated. Vertical curvature was displayed by three 
yellow bars, the outer two of which showed the perceived horizon, and the center 
one indicating the actual vertical surface position above or below the planar value. 
Snapshots (such as Figure 11.25) and figures are hardly able to give a vivid im-
pression of the results achieved. Video films of tests during daylight and night 
driving are available for demonstration [Siedersberger 2003; Hofmann 2004].

14.6.4 Lane Changes with Preceding Checks 

This maneuver is a standard one for driving on multilane high-speed roads. The 
nominal control time history for applying the skill “lane change” has been dis-
cussed in Section 3.4.5.2. Figure 3.27 shows the effect of maneuver time on the 
evolving trajectory in simulation. An actual lane change with test vehicle VaMP is 
shown in Figure 14.11 with standard feed-forward and superimposed feedback 
control for a nominal maneuver time of 8 s. The top left graph allows recognizing 
the nominal lane change maneuver without a phase of driving straight ahead at the 
center. Feedback control has been kept running all the time; at the start of the ma-
neuver, the reference for feedback control was modified by adding the values ac-
cording to the nominal trajectory of the (feed-forward) maneuver to the position of 
the lane center (which is usually the reference).  

It can be seen that the additive corrective commands deform the rectangular 
pulse-shape considerably (top left). The yaw errors at the beginning and at the end 
of the maneuver (lower left in Figure 14.11) lead to especially larger increments. 
The lateral offsets (lower right) from the nominal trajectory never exceed about 25 
cm, which is considered good performance for a lane width of 3.75 m and a vehicle 
width of less than 2 m. 
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Before such a maneuver can be initiated, it has to be checked by perception that 
the neighboring lane to be changed to is free in the rear, to the side, and in front. 
This is part of situation assessment when a lane change is intended. Vehicles with 
higher speed VR coming from behind will close the gap dR in the time span Tg = 
dR/ VR. If this time is larger than the maneuver time for lane change (possibly plus 
some safety margin), the maneuver is safe from the rear. Checking whether there is 
another vehicle to the side in the intended lane is a more involved challenge: Either 
there are special sensors for this purpose, such as laser range finders or special ra-
dar, or gaze direction (of the front and the rear cameras) can be changed suffi-
ciently to check the lane briefly by a quick saccade, if required. Another possibility 
is to keep track of all vehicles leaving the rear field of view and to check whether 
all these vehicles have reappeared in the front field of view. However, this yields 
100% correct results only for a single neighboring lane in the direction of the in-
tended change; otherwise, a vehicle might have changed from the second neighbor-
ing lane to the immediate one in the meantime. This approach for situation assess-
ment, minimizing sensor hardware needed, has been successfully tested when 
driving in the center lane of a three-lane highway in the final demonstration of the 
Prometheus project on Autoroute 1 (Paris) in 1994 in public traffic [Kujawski 1995].

During the long-distance test drive Munich–Odense in 1995, more than 400 lane 
changes were performed autonomously after the safety driver triggered the maneu-
ver. Figure 14.12 shows the statistics of a period of about half an hour, displayed 

Figure 14.11. Real lane change maneuver with test vehicle VaMP: The actual control 
output (top left) was the result of both a feed-forward component according to the nomi-
nal maneuver and a feedback component trying to drive the difference between actual 
and nominal trajectory to zero. These differences are displayed in the bottom part: Left 
the yaw angle and right the lateral offset from the center of the reference lane.

Commanded
value

Comman-

ded

value

Measured

value

Measured
value

Measured

value

Actual control output: steering rate Steering angle in °
4

3

2

1

0

-1

-2

-3

-4

Switch reference

to new lane

0

2

0

-2

-4

-6

-8

-10

2

1.5

1

0.5

0

-.5

-1

-1.5

-2

50 55 60 65 70 50 55 60 65

Time in seconds Time in seconds 

50 55 60 65 50 55 60 65
Time in seconds Time in seconds 

y
a

w
 a

n
g

le
 i

n
 °

la
te

ra
l 
o

ff
s

e
t 

in
 m

Comman-

ded

value

Maneuver time
feedback + feed-forward

feedback
only



434      14  Mission Performance, Experimental Results 

by the data logged for lateral 
offsets from the lane center. 
Lane changes are easily rec-
ognized as peaks of magni-
tude of about half the lane 
width, since after reaching 
this boundary, the reference 
lane is switched, and the sum 
of the positive and negative 
peak always yields the actual 
lane width in the region of 
the maneuver. As can be 
counted directly, 16 lane 
changes were made within 
about half an hour; those ap-
pearing as close pairs repre-
sent passing slower vehicles 
and immediately returning to 
the old lane.  

14.6.5 Turning Off on Network of Minor Unsealed Roads 

Based on the results of [Mueller 1995] discussed in Chapter 10, the capability of 
turning off in the new concept of capability networks has been developed by Luet-
zeler (2002), Gregor (2002), Pellkofer (2003), and Siedersberger (2004). It has 
been demonstrated with the test vehicle VaMoRs in various environments. The ex-
ample discussed here is from a proving ground in the southern part of Germany. 
The roads are all unsealed and have a gravel surface. Edge detection has been done 
with CRONOS-software. Figure 14.13 shows three snapshots from the telecamera 
several frames apart containing a saccade.  

Since the turnoff is intended to the left, the crossroad on the left-hand side (left 
image) and at the crossing (right image) are viewed alternately by saccadic vision. 
Search regions for edge feature extraction are marked by horizontal and vertical 
line elements. They cannot be seen in the center image indicating that feature ex-

Figure 14.12. Statistic of lane changes performed on 
the long-distance trip to Odense in November 1995 
with test vehicle VaMP. Within about half an hour, 
16 lane changes have been performed autonomously 
after triggering by the safety driver; the reference 
lane center is switched when the vehicle cg crosses 
the lane (offset of half the actual lane width) 
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Figure 14.13. Tele-images during saccadic vision while approaching a crossroad; the 
center image during a saccade is not evaluated (missing indicated search paths)
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traction is suppressed during saccadic motion. [In this case, the saccade was per-
formed rather slowly and lighting conditions were excellent so that almost no mo-
tion blur occurred in the image (small shutter times), and feature extraction could 
well have been done.] The white curve at the left side of the road indicates that the 
internal model fits reality well. 

The sequence of saccades performed during the approach to the crossing can be 
seen from the sequence of graphs in Figure 14.14 (a) and (b): The saccades are 
started at time  91 s; at this time, the crossroad hypothesis has been inserted in the 
scene tree by mission control expecting it from coarse navigation data (object ID 
for the crossroad was 2358, subfigure (e). At that time, it had not yet been visually 
detected. Gaze control computed visibility ranges for the crossroad [see graphs (g) 
and (h)], in addition to those for the road driven [graphs (i) and (j), lower right]. 
Since these visibility ranges do not overlap, saccades were started. 

Eleven saccades are made within 20s (till time 111). The “saccade bit” (b) sig-
nals to the rest of the system that all processes should not use images when it is 
“1”; so they continue their operation based only on predictions with the dynamic 
models and the last best estimates of the state variables. Which objects receive at-
tention can be seen from graph [(e) bottom left]: Initially, it is only the road driven; 
the wide-angle cameras look in the near (local, object ID = 2355) and the tele-
camera in the far range (distant, ID number 2356). When the object crossroad is in-
serted into the scene tree (ID number 2358) with unknown parameters width and 
angle (but with default values to be iterated), determination of their precise values 
and of the distance to the intersection is the goal of performing saccades.  

At around t = 103 s, the distance to the crossroad starts being published in the 
DOB [graph (f), top right]. During the period of performing saccades (91 – 111), 
the decision process for gaze control BDGA continuously determines “best view-
ing ranges” (VR) for all objects of interest [graphs (g) to (j), lower right in Figure 
14.14]. Figure 14.14 (g) and (h) indicate, under which pan (platform yaw) angles 
the crossroad can be seen [(g) for optimal, (h) for still acceptable mapping]. Graph 
(i) shows the allowable range for gaze direction so that the road being driven can 
be seen in the far look-ahead range (+2° to 4°), while (j) does the same for the 
wide-angle cameras (± 40°). During he approach to the intersection the amplitude 
of the saccades increases from 10 to 60° [Figure 14.14 (a), (g), (h)].  

For decision-making in the gaze control process, a quality criterion “information 
gain” has been defined in [Pellkofer 2003]; the total information gain by a visual 
mode takes into account the number of objects observed, the individual informa-
tion gain through each object, and the need of attention for each object. The proce-
dure is too involved to be discussed in detail here; the interested reader is referred 
to the original work well worth reading (in German, however). The evolution of 
this criterion “information input” is shown in graphs (c) and (d). Gaze object 0 
(road nearby) contributes a value of 0.5 (60 to 90 s) in roadrunning, while gaze ob-
ject 1 (distant road) contributes only about 0.09 [Figure 14.14 (d)]. When an inter-
section for turning off is to be detected, the information input of the tele-camera 
jumps by about a factor of 4, while that of the wide-angle cameras (road nearby) is 
reduced by ~ 20% (at t = 91 s). When the crossroad is approached closely, the road 
driven loses significance for larger look-ahead distances and gaze direction for 
crossroad tracking becomes turned so much that the amplitudes of saccades would 
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have to be very large. At the same time, fewer boundary sections of the road driven 
in front of the crossing will be visible (because of approaching the crossing) so that 
the information input for the turnoff maneuver comes predominantly from the 
crossroad and from the wide-angle cameras in the near range (gaze object 0). At 
around 113 s, therefore, the scene tree is rearranged, and the former crossroad with 
ID 2358 becomes two objects for gaze control and attention: ID 2360 is the new 
local road in the near range, and ID 2361 stands for the distant road perceived by 
the telecamera, Figure 14.14 (e). This re-arrangement takes some time (graphs 
lower right), and the best viewing ranges to the former crossroad (now the refer-
ence road) make a jump according to the intersection angle. While the vehicle turns 
into the crossroad, the small field of view of the telecamera forces gaze direction to 
be close to the new road direction; correspondingly, the pan angle of the cameras 
relative to the vehicle decreases while staying almost constant relative to the new 
reference road, i.e., the vehicle turns underneath the platform head [Figure 14.14 
(i) and (a)]. On the new road, the information input from the near range is com-
puted as 0.8 [Figure 14.14 (c)] and that from the distant road as 0.4 [Figure 14.14 
(d)]. Since the best visibility ranges for the new reference road overlap [Figure 
14.14 (i) and (j)], no saccades have to be performed any longer. 

Note that these gaze maneuvers are not programmed as a fixed sequence of pro-
cedures, but that parameters in the knowledge base for behavioral capabilities as 
well as the actual state variables and road parameters perceived determine how the 
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driven (see text)
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maneuver will evolve. The actual performance with test vehicle VaMoRs can be 
seen from the corresponding video film. 

14.6.6 On- and Off-road Demonstration with Complex  
Mission Elements 

While the former sections have shown single, though complex behavioral capabili-
ties to be used as maneuvers or mission elements, in this section, finally, a short 
mission for demonstration is discussed that requires some of these capabilities. The 
mission includes some other capabilities in addition, too complex to be detailed 
here in the framework of driv-
ing on networks of roads. The 
mission was the final demon-
stration in front of an interna-
tional audience in 2001 for the 
projects in which expectation-
based, multifocal, saccadic 
(EMS) vision has been devel-
oped over 5 years with a half 
dozen PhD students involved. 

Figure 14.15 shows the mis-
sion schedule to be performed 
on the taxiways and adjacent 
grass surfaces of the former air-
port Neubiberg, on which 
UniBwM is located. The start is 
from rest with the vehicle casu-
ally parked by a human on a 
single-track road with no lane 
markings. This means that no 
special care has been taken in 
positioning and aligning the vehicle on the road. Part of this road is visible in Fig-
ure 14.16 (right, vertical center). The inserted picture has been taken from the posi-
tion of the ditch in Figure 14.15 (top right); the lower gray stripe in Figure 14.16 is 
from the road between labels 8 and 9.  

Figure 14.15. Schedule of the mission to be per-
formed in the final demonstration of the project, 
in which the third-generation visual perception 
system according to the 4-D approach, EMS vi-
sion, has been implemented (see text)

In phase 1 (see digit with dot at lower right), the vehicle had to approach the in-
tersection in the standard roadrunning mode. On purpose, no digital model of the 
environment has been stored in the system; the mission was to be performed rely-
ing on information such as given to a human driver. At a certain distance in front 
of the intersection (specified by an imprecise GPS waypoint), the mission plan or-
dered taking the next turnoff to the left. The vehicle then had to follow this road 
across the T-junction (2); the widening of the road after some distance should not 
interfere with driving behavior. At point 3, a section of cross-country driving, 
guided by widely spaced GPS waypoints was initiated. The final leg of this route 
(5) would intersect with a road (not specified by a GPS waypoint!). This road had 
to be recognized by vision and had to be turned onto to the left through a (drivable) 
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shallow ditch to its side. This per-
turbed maneuver turned out to be 
a big challenge for the vehicle.  

In the following mission ele-
ment, the vehicle had to follow 
this road through the tightening 
section (near 2) and across the 
two junctions (one on the left and 
one on the right). At point 9, the 
vehicle had to turnoff to the left 
onto another grass surface on 
which again a waypoint-guided 
mission part had to be demon-
strated. However, on the nominal 
path, there was a steep deep ditch 
as a negative obstacle, which the 
vehicle was not able to traverse. 
This ditch had to be detected and 
bypassed in a proper manner, and 
the vehicle was to return onto the 
intended path given by the GPS 
waypoints of the original plan 
(10). 

Figure 14.16. VaMoRs ready for mission dem-
onstration 2001. The vehicle and road sections 1 
and 8 (Figure 14.15) can be seen in the inserted 
picture. Above this picture, the gaze control 
platform is seen with five cameras mounted; 
there was a special pair of parallel stereo cam-
eras in the top row for using hard- and software 
of Sarnoff Corporation in a joint project 
‘Autonav’ between Germany and the USA.

Except for bypassing the ditch, the mission was successfully demonstrated in 
2001; the ditch was detected and the vehicle stopped correctly in front of it. In 
2003, a shortened demo was performed with mission elements (1, 8, 9, and 10) and 
a sharp right turn from 1 to 8. In the meantime, the volume of the special processor 
system (Pyramid Vision Technology) for full frame-rate and real-time stereo per-
ception had shrunk from a volume of about 30 liters in 2001 to a plug-in board for 
a standard PC (board size about 160 × 100 mm). Early ditch detection was 
achieved, even with taller grass in front of the ditch partially obscuring the small 
image region of the ditch, by combining the 4-D approach with stereovision. 
Photometric obstacle detection with our vision system turned out to be advanta-
geous for early detection; keep in mind that even a ditch 1 m wide covers a very 
small image region from larger distances for the aspect conditions given (relatively 
low elevation above the ground). When closing in, stereovision delivered the most 
valuable information. The video “Mission performance” fully covers this abbrevi-
ated mission with saccadic perception of the ditch (Figure 14.3) and avoiding it 
around the right-hand corner, which is view-fixated during the initial part of the 
maneuver [Pellkofer 2003; Siedersberger 2004, Hofmann 2004]. Later on, while return-
ing onto the trajectory given by given by GPS waypoints, the gaze direction is con-
trolled according to Figure 14.2. 



15  Conclusions and Outlook 

Developing the sense of vision for (semi-) autonomous systems is considered an 
animation process driven by the analysis of image sequences. This is of special im-
portance for systems capable of locomotion which have to deal with the real world, 
including animals, humans, and other subjects. These subjects are defined as capa-
ble of some kind of perception, decision–making, and performing some actions. 
Starting from bottom-up feature extraction, tapping knowledge bases in which ge-
neric knowledge about ‘the world’ is available leads to the ‘mental’ construction of 
an internal spatiotemporal (4-D) representation of a framework that is intended to 
duplicate the essential aspects of the world sensed. 

This internal (re-)construction is then projected into images with the parameters 
that the perception and hypothesis generation system have come up with. A model 
of perspective projection underlies this “imagination” process. With the initial in-
ternal model of the world installed, a large part of future visual perception relies on 
feedback of prediction errors for adapting model parameters so that discrepancies 
between prediction and image analysis are reduced, at best to zero. Especially in 
this case, but also for small prediction-errors the process observed is supposed to 
be understood.  

Bottom-up feature analysis is continued in image regions not covered by the 
tracking processes with prediction-error feedback. There may be a variable number 
N of these tracking processes running in parallel. The best estimates for the relative 
(3-D) state and open parameters of the objects/subjects hypothesized for the point 
in time “now” are written into a “dynamic object database” (DOB) updated at the 
video rate (the short-term memory of the system). These object descriptions in 
physical terms require several orders of magnitude less data than the images from 
which they have been derived. Since the state variables have been defined in the 
sense of the natural sciences/engineering so that they fully decouple the future evo-
lution of the system from past time history, no image data need be stored for un-
derstanding temporal processes. The knowledge elements in the background data-
base contain the temporal aspects from the beginning through dynamic models 
(differential equation constraints for temporal evolution).  

These models make a distinction between state and control variables. State vari-
ables cannot change at one time, they have to evolve over time, and thus they are 
the elements for continuity. This temporal continuity alleviates image sequence 
understanding as compared to the differencing approach, after having analyzed 
consecutive single images bottom-up first, favored initially in computer science 
and AI.

Control variables, on the contrary, are those components in a dynamic system 
that can be changed at any time; they allow influencing the future development of 
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the system. (However, there may be other system parameters that can be adjusted 
under special conditions: For example, at rest, engine or suspension system pa-
rameters may be tuned; but they are not control variables steadily available for sys-
tem control.) The control variables thus defined are the central hub for intelligence.
The claim is that all “mental” activities are geared to the challenge of finding the 

right control decisions. This is not confined to the actual time or a small temporal 
window around it. With the knowledge base playing such an important role in (es-
pecially visual) perception, expanding and improving the knowledge base should 
be a side aspect for any control decision. In the extreme, this can be condensed into 
the formulation that intelligence is the mental framework developed for arriving at 
the best control decisions in any situation. 

Putting control time histories as novel units into the center of natural and techni-
cal (not “artificial”) intelligence also allows easy access to events in and maneu-
vers on an extended timescale. Maneuvers are characterized by specific control 
time histories leading to finite state transitions. Knowledge about them allows de-
coupling behavior decision from control implementation without losing the advan-
tages possible at both ends. Minimal delay time and direct feedback control based 
on special sensor data are essential for good control actuation. On the other hand, 
knowledge about larger entities in space and time (like maneuvers) are essential for 
good decision-making taking environmental conditions, including possible actions 
from several subjects, into account. Since these maneuvers have a typical timescale 
of seconds to minutes, the time delays of several tenths of a second for grasping 
and understanding complex situations are tolerable on this level. So, the approach 
developed allows a synthesis between the conceptual worlds of “Cybernetics” 
[Wiener 1948] and “Artificial Intelligence” of the last quarter of last century. 

Figure 15.1 shows the two fields in a caricaturized form as separate entities. 
Systems dynamics at the bottom is con-
centrated on control input to actuators, 
either feed-forward control time histories 
from previous experience or feedback 
with direct coupling of control to meas-
ured values; there is a large gap to the ar-

tificial intelligence world on top. In the 
top part of the figure, arrows have been 
omitted for immediate reuse in the next 
figure; filling these in mentally should 
pose no problem to the reader. The es-
sential part of the gap stems from ne-
glecting temporal processes grasped by 
differential equations (or transition ma-
trices as their equivalent in discrete 
time). This had the fundamental differ-
ence between control and state variables 
in the real world be mediated away by 
computer states, where the difference is 
absent. Strictly speaking, it is hidden in 
the control effect matrix (if in use). 

Figure 15.1. Caricature of the separate 
worlds of system dynamics (bottom) 
and Artificial Intelligence (top)
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Figure 15.2 is intended to show that much of the techniques developed in the 
two separate fields can be used in the unified approach; some may even need no or 
very little change. However, an interface in common terminology has to be devel-
oped. In the activities described in this book, some of the methods needed for the 
synthesis of the two fields mentioned have been developed, and their usability has 
been demonstrated for autonomous guidance of ground vehicles. However, very 
much remains to be done in the future; fortunately, the constraints encountered in 
our work due to limited computing power and communication bandwidth are about 
to vanish, so that prospects for this technology look bright. 

Figure 15.2. The internal 4-D representation of ‘the world’ (central blob) provides links 
between the ‘systems dynamics’ and the AI approach to intelligence in a natural way. 
The fact that all ‘measurement values’ derived from vision have no direct physical links 
to the objects observed (no wires, only light rays) enforces the creation of an ‘internal 
world’.
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Taking into account that about 50 million ground vehicles are built every year 
and that more than 1 million human individuals are killed by ground vehicles every 
year worldwide, it seems mandatory that these vehicles be provided with a sense of 
vision allowing them to contribute to reducing the latter number. The ideal goal of 
zero death-toll seems unreachable (at least in the near future) and is unrealistic for 
open-minded individuals; however, this should not be taken as an excuse for not 
developing what can be achieved with these new types of vehicles with a sense of 
vision, on any sensor basis what-ever. 

Providing these vehicles with real capabilities for perceiving and understanding 
motion processes of several objects and subjects in parallel and under perturbed 
conditions will put them in a better position to achieve the goal of a minimal acci-
dent rate. This includes recognition of intentions through observation of onsets of 
maneuvering, such as sudden lane changes without signaling by blinking. In this 
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case, a continuous buildup of lateral speed in direction of one’s own lane is the 
critical observation. To achieve this “animation capability”, the knowledge base 
has to include “maneuvers” with stereotypical trajectories and time histories. On 
the other hand, the system also has to understand what typical standard perturba-
tions due to disturbances are, reacting to it with feedback control. This allows first, 
making distinctions in visual observations and second, noticing environmental 
conditions by their effects on other objects/subjects. 

Developing all these necessary capabilities is a wide field of activities with 
work for generations to come. The recent evolution of the capability network in our 
approach [Siedersberger 2004; Pellkofer 2003] may constitute a starting point for more 
general developments. Figure 15.3 shows a proposal as an outlook; the part real-
ized is a small fraction on the lower levels confined to ground vehicles. Especially 
the higher levels with proper coupling down to the engineering levels of automo-
tive technology (or other specific fields) need much more attention. 
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Figure 15.3. Differentiation of capability levels (vertical at left side) and categories of 
capabilities (horizontal at top): Planning happens at the higher levels only in internal 
representations. In all other categories, both hardware available (lowest level) and ways 
of using it by the individual play an important role. The uppermost levels of social inter-
action and learning need more attention in the future. 
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Appendix A 
Contributions to Ontology for Ground Vehicles 

A.1 General Environmental Conditions 

A.1.1. Distribution of ground on Earth to drive on (global map) 
 Continents and Islands on the globe 

  Geodetic reference system, databases 
  Specially prepared roadways: road maps 
  Cross-country driving, types of ground 
  Geometric description (3-D) 
  Support qualities for tires and tracks 
  Ferries linking continents and islands 
 National Traffic Rules and Regulations 

 Global navigation system availability 

A.1.2. Lighting conditions as a function of time 
Natural lighting by sun (and moon) 
 Sun angle relative to the ground for a given location and time 
 Moon angle relative to the ground for a given location and time 
Headlights of vehicles 
Lights for signaling intentions/special conditions 
Urban lighting conditions 
Special lights at construction sites (incl. flashs) 
Blinking blue lights 

A.1.3 Weather conditions 
Temperatures (Effects on friction of tires) 
Winds 
Bright sunshine/Fully overcast/Partially cloudy 
Rain/Hail/Snow
Fog (visibility ranges) 
Combinations of items above 
Road surface conditions (weather dependent) 
Dry/Wet/Slush/Snow (thin, heavy, deep tracks) /Ice 
Leaf cover (dry – wet)/Dirt cover (partial – full) 

A.2 Roadways

A.2.1.Freeways, Motorways, Autobahnen etc. 
Defining parameters, lane markings 
Limited access parameters 
Behavioral rules for specific vehicle types 
Traffic and navigation signs 
Special environmental conditions 

A.2.2. Highways (State-), high-speed roads 
Defining parameters, lane markings (like above) 
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A.2.3. Ordinary state roads (two-way traffic) (like above) 
A.2.4. Unmarked country roads (sealed) 
A.2.5. Unsealed roads 
A.2.6. Tracks 
A.2.7. Infrastructure along roadways 

Line markers on the ground, Parking strip, Arrows,  
Pedestrian crossings 
Road shoulder, Guide rails 
Regular poles (reflecting, ~1 m high) and markers for snow conditions 

A.3 Vehicles  
(as objects without driver/autonomous system; wheeled vehicles, vehicles 
with tracks, mixed wheels and tracks) 

A.3.1. Wheeled vehicles 
Bicycle: Motorbike, Scooter; 
Bicycle without a motor: Different sizes for grown-ups and children 
Tricycle

Multiple (even) number of wheels

 Cars, Vans/microbuses, Pickups/Sports utility vehicles, Trucks, 
 Buses, Recreation vehicles, Tractors, Trailers 

A.3.2. Vehicles with tracks
A.3.3. Vehicles with mixed tracks and wheels 

A.4 Form, Appearance, and Function of Vehicles 
 (shown here for cars as one example; similar for all classes of vehicles) 

A.4.1. Geometric size and 3-D shape (generic with parameters) 
A.4.2. Subpart hierarchy

Lower body, Wheels, Upper body part, Windshields (front and rear) 
Doors (side and rear), Motor hood, Lighting groups (front and rear) 
Outside mirrors 

A.4.3. Variability over time, shape boundaries (aspect conditions) 
A.4.4. Photometric appearance (function of aspect and lighting 
 conditions) 

Edges and shading, Color, Texture 
A.4.5. Functionality (performance with human or autonomous driver) 

Factors determining size and shape 
Performance parameters (as in test reports of automotive journals; en-

gine power, power train)
Controls available [throttle, brakes, steering (e.g., “Ackermann”)] 
Tank size and maximum range 
Range of capabilities for standard locomotion: 
 Acceleration from standstill 
 Moving into lane with flowing traffic 
 Lane keeping (accuracy) 
 Observing traffic regulations (max. speed, passing interdiction) 
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 Distance keeping from vehicle ahead  
 (standard, average values, fluctuations) 
 Lane changing [range of maneuver times as f(speed)] 
 Overtaking behavior [safety margins as f(speed)] 
 Braking behavior (moderate, reasonably early onset) 
 Proper setting of turn lights before start of maneuver 
 Turning off onto crossroad 
 Entering and leaving a circle 
 Handling of road forks 
 Observing right of way at intersections 
 Negotiating “hair-pin” curves (switchbacks) 
 Proper reaction to static obstacle detected in your lane 
 Proper reaction to animals detected on or near the driveway 
 Emergency stops 
 Parking alongside the road 
 Parking in bay 
 U-turns 
Safety features (ABS, ESP …) 
Self-check capabilities 
 Tire pressure 
 Engine performance (a few easy standard tests like “gas pulses”) 
Brake performance 

A.4.6. Visually observable behaviors of others  
 (driven by a human or autonomously) 

Standard behavioral modes (like list of capabilities above) 
Unusual behavioral modes

Reckless entrance into your lane from parking position or neighbor-
ing lane at much lower speed 

Oscillations over entire lane width (even passing lane markings) 
Unusually slow speeds with no noticeable external reason 
Disregarding traffic regulations [max. speed (average amount), pass-

ing interdiction, traffic lights] 
Very short distance to vehicle ahead 
Hectic lane change behavior, high acceleration levels (very short 

maneuver times, large vehicle pitch and bank angles, “slalom” 
driving) 

Overtaking behavior (daring, frequent attempts, questionable safety 
margins, cutting into your lane at short distance) 

Braking behavior (sudden and harsh?) 
Start of lateral maneuvers before or without proper setting of turn 

lights.
Speed not adapted to actual environmental conditions (uncertainties 

and likely fluctuations taken into account) 
Disregarding right of way at intersections. 
Pedestrians disregarding standard traffic regulations 
Bicyclists disregarding standard traffic regulations 
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Recognizing unusual behavior of other traffic participants due to un-
expected or sudden malfunctions (perturbations).  

Reaction to animals on the driveway (f(type of animal)) 
Other vehicles slipping due to local environmental conditions (like 

ice)
A.4.7. Perceptual capabilities 
A.4.8 .Planning and decision making capabilities 

A.5 Form, Appearance, and Function of Humans 
(Similar structure as above for cars plus modes of locomotion) 

A.6 Form, Appearance, and Likely Behavior of Animals
(relevant in road traffic: Four-legged, birds, snakes)

A.7 General Terms for Acting “Subjects” in Traffic 
Subjects: Contrary to “objects” (proper), having passive bodies and no capability 

of self-controlled acting, “subjects” are defined as objects with the capability 
of sensing and self-decided control actuation. Between sensing and control ac-
tuation, there may be rather simple or quite complicated data processing avail-
able taking stored data up to large knowledge bases into account. From a vehi-
cle guidance point of view, both human drivers and autonomous perception 
and control systems are subsumed under this term. It designates a superclass 
encompassing all living beings and corresponding technical systems (e.g., ro-
bots) as members.  

These systems can be characterized by their type of equipment and per-
formance levels achieved in different categories. Table 3.1 shows an example 
for road vehicles. 

The capabilities in the shaded last three rows are barely available in today’s 
experimental intelligent road vehicles. Most of the terms are used for humans 
in common language. The terms “behavior” and “learning” should be defined 
more precisely since they are used with different meanings in different profes-
sional areas (e.g., in biology, psychology, artificial intelligence, engineering). 

Behavior (as proposed here) is an all-encompassing class term subsuming any 
kind and type of ‘action over time’ by subjects. 

Action means using any kind of control variable available to the subject, leading to 
changes in the state variables of the problem domain. 

State variables are the set of variables allowing decoupling future developments 
of a dynamic system from the past (all the history of the system with respect to 
body motion is stored in the present state); state variables cannot be changed at 
one moment. (Note two things: (1) This is quite the opposite of the definition 
of “state” in computer science; (2) accelerations are in general not (direct) 
state variables in this systems-dynamics sense since changes in control vari-
ables will affect them directly.)  

Control variables are the leverage points for influencing the future development 
of dynamic systems. In general, there are two components of control activation 
involved in intelligent systems. If a payoff function is to be optimized by a 
“maneuver”, previous experience will have shown that certain control time 
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histories perform better than others. It is essential knowledge for good or even 
optimal control of dynamic systems, to know in which situations to perform 
what type of maneuver with which set of parameters; usually, the maneuver is 
defined by certain time histories of (coordinated) control input. The unper-
turbed trajectory corresponding to this nominal feed-forward control is also 
known, either stored or computed in parallel by numerical integration of the 
dynamic model exploiting the given initial conditions and the nominal control 
input. If perturbations occur, another important knowledge component is 
knowing how to link additional control inputs to the deviations from the nomi-
nal (optimal) trajectory to counteract the perturbations effectively. This has led 
to the classes of feed-forward and feedback control in systems dynamics and 
control engineering:  
Feed-forward control components Uff are derived from a deeper understanding 

of the process controlled and the maneuver to be performed. They are part 
of the knowledge base of autonomous dynamic systems (derived from 
systems engineering and optimal control theory). They are stored in ge-
neric form for classes of ‘maneuvers’. Actual application is triggered from 
an instance for behavior decision and implemented by an embedded proc-
essor close to the actuator, taking the parameters recommended and the 
actual initial and desired final conditions (states) into account. 

Feedback control components ufb link actual (additional) control output to sys-
tem state or (easily measurable) output variables to force the trajectory 
toward the desired one despite perturbations or poor models underlying 
step 1. The technical field of ‘control engineering’ has developed a host of 
methods also for automotive applications. For linear (linearized) systems, 
linking the control output to the entire set of state variables allows speci-
fying the “eigenmodes” ‘at will’ (in the range of validity of the linear 
models). In output feedback, adding components proportional to the de-
rivative (D) and/or integral (I) of the signal allows improving speed of re-
sponse (PD) and long-term accuracy (PI, PID). 

Combined feed-forward and feedback control: For counteracting at least small 
perturbations during maneuvers, an additional feedback control compo-
nent ufb may be superimposed on the feed-forward one (Uff) yielding a ro-
bust implementation of maneuvers.  

Longitudinal control: In relatively simple, but very often sufficiently precise 
models of vehicle dynamics, a set of state variables affected by throttle and 
(homogeneous) braking actions with all wheels forms an (almost) isolated sub-
system. It consists of the translational degrees of freedom in the vertical plane 
containing the plane of symmetry of the vehicle and the rotational motion in 
pitch, normal to this plane. The effects of gravity on sloping surfaces and the 
resulting performance limits are included. 

Lateral control: Lateral translation (y direction), rotations around the vertical (z)
and the longitudinal (x) axes form the lateral degrees of freedom, controlled 
essentially by the steer angle. Lateral motion of larger amplitude does have an 
influence also on longitudinal forces and pitching moment. 

Maneuvers are stereotypical control output time histories (feed-forward control) 
known to transform (in the nominal case) the initial system state x(t0) into a fi-
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nal one x(tf) in a given time (range) with boundary conditions (limits) on state 
variables observed. Certain ranges of perturbations during the maneuver can 
be counteracted by superimposed feedback control. 

Maneuvers may be triggered by higher level decisions for implementing 
strategic ‘mission elements’ (e.g., turning off onto a crossroad) or in the con-
text of a behavioral mission element running, due to the actual situation en-
countered (e.g., lane change for passing slower traffic or an evasive maneuver 
with respect to a static obstacle during ‘roadrunning’).  

Table 3.3 gives a collection of road vehicle behavioral capabilities realized by 

feed-forward (left column) and feedback control (right column). 

Mission elements are those parts of an entire mission that can be performed with 
the same subset of behavioral capabilities and parameters. Note that mission 
elements are defined by sets of compatible behavioral capabilities of the sub-
ject actually performing the mission. 

Situation is the collection of environmental and all other facts that have an influ-
ence on making proper (if possible ‘optimal’) behavior decisions in the mis-
sion context. This also includes the state within a maneuver being performed 
(percentage of total maneuver performed, actual dynamic loads, etc.) and all 
safety aspects. 

General comment:  

Dimension: There are only four dimensions in our (mesoscale) physical world: 
Three space components and time. Rotational rates and velocities are compo-
nents of the physical state, due to the nature of mechanical motion described 
by second-order differential equations (Newton’s law). These velocity compo-
nents are additional degrees of freedom (d.o.f.), but not dimensions as claimed 
in some recent publications. Recursive estimation with physically meaningful 
models delivers these variables together with the pose variables. 

Dimensions from discretization: In search problems it is a habit to call the possi-
ble states of a variable the dimension of the search space; this has nothing to 
do with physical dimensions. 



Appendix B 
Lateral Dynamics 

B.1  Transition Matrix for Fourth-Order Lateral Dynamics 

The linear process model for lateral road vehicle guidance derived in Chapters 3 
and 7 (see Table 9.1) can be written as a seventh order system in analogue form 
[Mysliwetz 1990]:

( ) ' '( )x t Fx g u v t         (Equation 3.6 with one control variable) (B.1)
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With T as cycle time for sampling (video frequency), the Laplace transform for the 
transition matrix is (see, e.g., [Kailath 1980]):

1 1( ) {( )A T L sI F . (B.2)

For the discrete input gain vector g, one obtains from F and g’ 
T

0
( ) 'g A g d . (B.3)

The noise term also has to be adjusted properly in correspondence with T. The re-
sulting difference equation is B.4. The matrix A and the input gain vector g have 
the entries given below (note that g has many more entries than g’; this is due to 
the buildup of state components from constant control input over one cycle!): 
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With the following abbreviations: 
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The entries in the input gain vector are 
2
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The rows in matrix A are given by the first index; this corresponds to the sequen-
tial innovation scheme in square root filtering using row vectors of A. Note that out 
of the 49 elements of A, 26 are zero (53%); explicit use of this structure can help 
making vector multiplication very economical: for rows 1 and 7 (first and last), the 
result has the same value as the multiplicand. For row index 2, multiplication of 
elements can stop at this row index 2, while for indices 5 and 6, starting multiplica-
tion at these indices is sufficient. Efficiently coded, many multiplications may be 
saved in this inner loop that is always running. Since several multiplications with 
these vectors occur in recursive computation of the expected error covariance (step 
7.2 in Table 6.1), being efficient here really pays off in real-time vision. 

B.2 Transfer Functions and Time Responses to an Idealized Doublet 
in Fifth-order Lateral Dynamics 

From Equations 3.38 and 3.45, the analytical solution for the state vector in the 
‘Laplace s-realm’ is obtained. The former equation yields for the ‘system matrix’ 

0 0 0

/( ) 1/ 0 0 0

.1/(2 ) 1 1/ 0 0

0 1 0

0 0

s

V aT s T

sI T s T

s

V V s

0

0

(B.5)

By multiplication of Equation 3.45 from the left by (sI ) 1 , there follows 
-1 -1x ( ) ( )  b ( )  (  -  ) x (0)La Las sI u s sI . (B.6)
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The first term defines the five transfer functions of a control input u(s) while the 
second term gives the response to initial values in the state variables. All these ex-
pressions have a common denominator, the characteristic polynomial D(s) of the 
determinant det (sI – )

3( 1/ )( 1/ )D s s T s T . (B.7)

The numerator polynomials of the transfer functions are obtained by the deter-
minants in which the column corresponding to the state variable of interest has 
been replaced by the coefficient vector b for control input. This yields the numera-
tor terms for the heading angle  and the lateral position y

2

[ /( )] ( 1/ )

/(2 ) [ / 2 /( )].y

N V a T s s T

N Va T s s T V a T
(B.8)

With the doublet input of Equation 3.44, uidd(s) = A·s, the resulting state vari-
ables yaw angle (s) and the lateral acceleration in the y direction s² · y(s) are in 
the Laplace-domain  

3

( ) [ / ]  

          [ /(  )]  (  1/ ) /[ (  1/ )( 1/ )]

          /(  ) /[  (  1/ )]

          /(  ) [1/ 1/(  1/ )].

s N D A s

A s V a T s s T s s T s T

A V a T s s T

A V a T s s T

(B.9)

2 3

3 2

( ) ( ) /

          / [ / 2 /( )] /

         /(2 ) [1( ) /( 1/ ) (   1/ ) /( 1/ )],

                     with        2 /[ ( / 1)].

y ya s s y s N A s D

A V T s s s T V a T D

Va T s B s T B T s T

B V a T T

T

t

(B.10)

The expression 1/s in Equation B.9 corresponds in the time domain to a unit step 
function, and the second term in Equation B.9: c/(s +1/Ti) to: c · exp[  (t/Ti)]. This 
yields with Equation 3.36 after back-transformation into the time domain 

.2
doublet( )   /( ) [1 exp(  / )]ltf zBt A k a i t (B.11)

1(s) in Equation B.10 corresponds to a ‘Dirac impulse’ (0) at time 0 with an in-
tegral value of 1 (a step function in the integrated variable, the lateral velocity 

 experiences a jump from 0 to 1 at t = 0). Introducing this and the rela-

tions given in Equation 3.37 into Equation B.10 yields for the time functions  

y yv a d
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/ / /

2

2
/ /

2

0.5
( ) 0.5 (0)

(1 )

         (0) 1 ,
2 (1 ) 2
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t T t Tltf ltf

ltf
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kV
a t A k e e e

a i V

VA k A kA
k e e

a i V

)

2 2
modwhere  /(1-  ).zB zBT T i i

(B.12)
(a)

(b)

The value 2 2
mod / /(1zB zBT T i i is 2.77 for VaMoRs and 5.67 for VaMP. Figure 

B.1 shows the principal time histories of the exponential functions in scaled form 
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for VaMoRs. The yaw angle goes from zero to [A·kltf /(a·izB²)] with time constant 
T . According to Equation 3.37, T  increases linearly with speed. 

0                            1                            2 3
T /T t*/ T for aymax T mod / T = izB²/(1- izB²)

t / T

1.0

0.8

0.6

0.4

0.2

0.0

(0) 

exp(- t / T )

{1 - exp(- t / T mod)}

2.77 for VaMoRs

(t) / (A kltf / (a izB²)) = 1 - exp(- t/ T )

ay(t) ~ product of dashed exponentials

Figure B.1. Scaled dynamic response in yaw angle (dash-dotted) and lateral accelera-
tion (solid curve) to doublet input in steering rate (see Equations B.11/B.12); the time 
axis is scaled by T



Appendix C 
Recursive Least-squares Line Fit 

Through a set of measurement points (ym1 … ymN),
equidistantly spaced on the abscissa (x1 = 0.5, 1.5 
…. N 0.5), a straight line shall be fit recursively 
with interpolated measurement points (y1 … yN), if 
the standard deviation remains below a threshold 
value maxth and the new measurement point to be 
added is within a 3  band around the existing fit. 
The resulting set of smoothed measurement data 
will be called a segment or a 1-D blob. The result 
shall be represented by the average value yc in the 
segment, with the origin at the segment center xc,
and the (linear) slope ‘a’ around this center (see 
Figure C.1). A deviation from the usual terminology 
occurs because image evaluation with symmetric 
masks has its origin right between pixel boundaries; 
the reference pixel for mask evaluation has been se-
lected at position (0.5, 0.5) of the mask (see Figure 
5.19). 

This definition leads to the fact that xc is either an integer or lies exactly at the 
center between two integers (i  0.5). Due to the integer values for the pixels and 
because a new segment is always started with the reference coordinate jref for x0 = 
0, the center of N values is located at 

, / 2c abs ref ref cx j N j x . (C.1)

C.1  Basic Approach 

Since two measurement points can always be connected by a straight line, interpo-
lation starts at the third point into a new segment. The general form of the interpo-
lating straight line with xc as the center of all xi is 

with .
i c i

i i c

            y y a x    

   x x x
. (C.2)

yc is always taken at the center of the data set, and ‘a’ is the slope of the line. This 
yields for the residues ei = yi – ymi (see Figure C.1) the set of equations: 

1 1

2 2

3 3

( )

( )

( )

c c

c c

c c

e y x x a y

e y x x a y

e y x x a y

1

2

3

,

,

.

m

m

m

(C.3)

For easy generalization, this is written in matrix form with the two unknown vari-
ables: average value yc of the interpolating straight line and slope a. The measure-
ment vector ym has length N, with the original running index i linearly increasing 

Figure C.1. Nomenclature 
used with integer basic 
scale for pixels; origin of 
centered scale at N/2

xc3 = 1.5

-1 0 1

©

1 2 3 

i – x c3 0
(shifted origin)

y3

x

y

jref Lseg=1 2 3

pixel

x = 0 0.5 1.5 2.5

pixel

number

ym3
yc = y2

y1

ym1

ym2
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from 1 to N; measurement values of the pixels then are located at x-position [(pixel 
index i)  0.5]; the initial value for N is 3 (Figure C.1). The running index for the 
shifted scale with xc = 0 then goes from N/2 to + N/2. With the model of Equa-
tion C.2, the errors are 

11

.1

1

c

c

i c m mN N

N c

x x

y
e x x y A p y

a

x x

(C.3a) 

The sum J of the squared errors can now be written 

2

1

( ) ( )
n

T T

i m

i

mJ e e e A p y A p y . (C.4)

The same procedure as in Section 5.3.2.1, setting the derivative dJ/dp = 0, leads to 
the optimal parameters pextr for minimal J:

1( )c T T

extr m

LS

y
p A A A

a
y . (C.5)

With xi = i  0.5 from 0.5 to N  0.5, and with Equation C.3a the product ATA can 
be written 

12

21 22

1 0.5

..
1 .. 1 .. 1

0.51
0.5 .. 0.5 .. 0.5

. .

1 0.5

.

c

T

c

c c c

c

x

        

i xA A
x i x N x

N x

N a
         

a a

(C.6)

By always choosing the center of gravity of the abscissa values xc as reference and 
by shifting the indices correspondingly (see lower part of Figures C.1 and C.2), 
there follows 

 . 21 12
1

( 0.5 ) 0
N

c

i

a a i x (C.7)

For each positive index in the shifted coordinates (lower part of figures), there is a 
corresponding negative one, yielding Equation C.7. This means that ATA is zero off 
the main diagonal. For a22 in Equation C.6 one obtains  

2 2 2
22

1 1

( 0.5 ) ( 2 0.25 )
N N

c c c

i i

a i x i i x x xc i .    (C.8) 

Introducing the well-known relations 

1

( 1) / 2
N

i

i N N  , (C.9)
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2

1

( 1)(2 1) /
N

i

i N N N 6

2.

, (C.10)

the following result for a22 is obtained with xc = N/2 after several steps
2

22 ( 1) /1a N N (C.11)

With Equations C.7 and C.11 the inverse of ATA (Equation C.6) becomes 

.1

22

1/ 0
( )

0 1/
T

N
A A

a
(C.12)

To obtain the optimal parameters for a least squares fit according to Equation C.6, 
the factor ATym has yet to be determined: 

1

1 1
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,
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Siym Sym x Sym

    Sym y          Siym i y

(C.13)

(a)

Inserting this, the relation xc = N/2, and Equation C.11 into C.5, the following op-
timal parameters yc and a are finally obtained: 

22

1/ 0
1

0 1/
2

c

LS

Sym
y N
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(C.14)

or
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.1 6 2
/

2 1 1

c
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Sym N         Sym N
y

  = N S
Siym Sym aa

N N N N

iym Sym
(C.14)

(a)

yc is nothing but the average value of all measurements ymi; to obtain the opti-
mal slope a, the product i·ymi has to be summed, too (Equation C.13a). It is seen 

0      x =1 0 1 2 3 4 5

xc4 = 2 xc5 = 2.5

©

N = 5

-2.5 -1.5 -0.5 0.5 1.5 2.5

i – xc5 0 (shifted origin)

©
N = 4

-2 -1 0 1 2

2 3 4

i – xc4 0 (shifted origin)

measured pixel values

x =

Figure C.2. Centered coordinates for even and odd numbers of equidistant grid points; 
this choice reduces the numerical workload
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that for this least-squares fit with a cg-centered coordinate system (y(0) = yc),
where this origin moves in steps by 0.5 with N increasing by 1, just four numbers 
have to be stored: The number of data points N, the averaged sum of all measured 
values yc = Sym/N, the averaged sum of all products (i·ymi): Siym/N, and, of course, 
the reference for i =1 where the data set started; this yields the optimal parameters: 
‘yc = average value at the segment center’ and ‘a = slope’ for the best interpolat-
ing straight line by just a few mathematical operations independent of segment 
length n.

C.2  Extension of Segment by One Data Point 

Let the existing segment have length N; the averaged sums Sym/N and Siym/N

(Equation C.13) have been stored. If one new measurement value arrives, its ex-
pected magnitude according to the existing model can be computed. The number of 
measurements increases by 1, and the new segment center xce shifts to 

1; / 2 0.5.e ce e cN N     x N x (C.15)

The predicted measurement value according to the linear model is 
 . ( 1 ) (mpr c c cpr e cey y a N x y a N x )

3

(C.16)

Since the new origin xce is shifted to the right by 0.5, the expected average value 
ycpr will be shifted by a/2, yielding the rightmost part of Equation C.16. The new 
measurement value ymNe will be accepted as extension of the segment only if  

| |mNe mpry y  ,

or ( ) 92 2

mNe mpry y ,
(C.17) 

with 2 as variance of all previous measurements; otherwise, the segment is con-
cluded with the original value for N.

If the segment is extended, the new parameters for best fit are, according to 
Equation C.14a 
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y
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6 1
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e e
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N N N N
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Siym N
   y

N x N N

(C.18) 

The terms in rounded brackets are the stored (original) values, while the terms 
in squared brackets are the new values for Ne = N+1 to be stored. The definition of 
the variance is 

2

1

1
( ) : /

1

N

N i

i

Var e e J N
N

  (with Equation C.4). (C.19) 

Inserting the result C.14a for p in J, and exploiting the relations C.1 and C.6 to 

C.13, one obtains, with as shorthand notation, 2

1
2

NT

m m mii
y y y Sy m
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2
( ) ,  ,  ,  ,  .

1
N

Sy m
Var e f Siym N a x y

N
c c (C.19a) 

To be able to compute the variance recursively, the sum of the squared meas-
urement values Sy2m (divided by N 1) also has to be stored as an entry into Equa-
tion C.19a. The recursive update from N to N+1 is given below (on the right side) 

2
2

1

22 1 2
     or       .

N
e m

mi

i e e e

Sy m ySy m N Sy m
y

N N N N N N

Ne
(C.20) 

This shows that the new stored value (in square brackets) results from the old 
one (in rounded brackets) weighted by the factor N/Ne and the squared new meas-
urement value weighted by 1/Ne. Since the rather complex expressions for the vari-
ance are not used in the real-time algorithm, they are not discussed in detail here 
(see next section). 

C.3  Stripe Segmentation with Linear Homogeneity Model 

Instead of comparing the magnitude of the prediction error with the 3 -value of the 
existing fit, as a criterion for acceptance of the next measurement point, the less 
computer-intensive criterion in the lower part of Equation C.17 is used: 

2 2

N( ) 9 9 ( ( ) | )
mpr mNe N

y y Var e ,

or even 

.2( ) variance limit (VarLim)
mpr mNe

y y

(C.21) 

VarLim is a fixed threshold parameter of the method; for typical intensity values of 
video signals (8 to 10 bit, 256 to 1k levels) and the sensitivity of the human eye (~ 
60 levels), threshold values 4  VarLim  225 seem reasonable. With Equation 
C.21, acceptance can be decided without computing the new fit and the new vari-
ance. The influence of the new measurement point on the parameters for optimal fit 
is neglected.  

The second method is to compute all new parameters including the new vari-
ance and to compare the residue  

( )Ne cNe Ne e ce mNee y a N x y (C.22) 

squared of the new measurement point Ne with the newly determined variance 
2 2

Ne9 9 ( ( ) | )Ne Ne Var ee . (C.23) 

When the new value is accepted, store all updated values: 

; ; ;

0.5; ; ( ) | ( ) | .

e e
e

e e

c ce c c e N Ne

Sym Siym Sy2mSym Siym Sy2m
N N                

N N N N N N

y = y ;      x x        a = a        Var e Var e

;e

e (C.24) 

Now the next value can be tested with the same procedure. 
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C.4  Dropping Initial Data Point 

This segment reduction at the start may sometimes have beneficial effects on the 
quality of the linear fit. After several data points have been interpolated by a 
straight line, the variance of the whole set may be reduced by dropping the first 
point or a few initial points from the segment. An indication for this situation is 
given when the first residue on the left side is larger than the standard deviation of 
the segment. To check this, the interpolated value at location i = 1 has to be com-
puted with the parameter set (ycN and aN) after N data points 

1 (1 ) 1N cN N cN me y a x y . (C.25) 

For computational efficiency again the variance is taken as a base for decision: If  
2

1( ) ( ) |N Ne Var e , (C.26) 

dropping the first data point will decrease the variance of the remaining data set. 
The even simpler check with a fixed threshold  

2
1( )Ne VarLim

2

.
N

j

1

(C.26a)  

has proven well suited for efficient real-time computation. 
With the stored values of Equation C.24 and always working with locally cen-

tered representations, the reduction at the left is directly analogous to the extension 
at the right-hand side. The problematic point is the sum Siym of the products (local 
index times measurement value) (Equation C.13a and C.18). The new starting 
point of the segment will become (xref + 1), but the length Nred of the segment will 
be reduced by 1, while the position of its center is reduced by 0.5 for symmetry; i
in Siym has to be decremented 

2 1 2
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j i j
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(C.27) 

By noting that 
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,  (C.28) 

adding 0 = (ym1 ym1) to the lower Equation C.27 immediately yields 
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(C.29) 

This leads to the recursive procedure that is to be executed as long as the initial 
residue squared is larger than the threshold ‘variance limit’: 
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;

6 2
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a y

N N N
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(C.30) 
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The maximum number k of points to be dropped will not be large, in general, 
since otherwise the segment would have been ended during normal extension. 

After reducing the segment length at the side of low indices i, increasing the 
segment at the other end should be tried again. Figure 5.32 has been interpolated 
without dropping terms at the left side of the segment, from which the line fit was 
started. The first longer segment from ~ row = 90 to 115 (upper left center in the 
figure, designated as ‘blob 1’) could profit from dropping the leftmost data point 
since a steeper negative value for ared can fit several following data points better. 
(dotted line, Figure C.3 shows a blown up 
view of blob 1 of Figure 5.32. The solid line 
is the least-squares line fit resulting without a 
check of the residue of the ‘first’ data point 
after each update; interpolation is stopped at 
the solid black dots (lower right) because the 
variance exceeds the threshold set.  

Dropping the ‘first’ data point (top left) al-
lows a much better fit to the remaining points; 
it even allows an extension of the segment to 
larger values Lseg (two more data points) The 
dotted line in Figure C.3 shows an improved 
fit with reduced total variance.  

Figure 5.35 shows several cases of this 
type of blob data fit, with the method de-
scribed here, for a number of columns of a video field. In the top left subfigure, the 
white lines mark the cross sections selected. Some correspondences between object 
regions in the scene and blob parameters are given. The task of hypothesis genera-
tion in vision is to come up with most reasonable object hypotheses given a collec-
tion of features (blobs, edges and corners); homogeneous areas with center of grav-
ity, shape as well as shading parameters are a big step forward compared to just 
edge features with adjacent average gray values available in real-time evaluation 
about fifteen years ago. 

pixel number

in
te

n
s
it
y

Figure C.3. Large threshold val-
ues for starting a line fit (upper 
left corner) may lead to subopti-
mal results (see text)

Figure C.4 (next page) shows the flowchart of the segmentation algorithm in-
cluding size adaptation at both ends for an optimal fit of shaded stripe segments. 
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Initialization of function ’ SingleLSBlobFit’

(jref + iseg < IEND) & (SegFin¬=1

Return

Blob result in 

BlobFeatArray
iseg == 1?

iseg == 2?

no

no

no

no

no

yes

yes

yes

yes

yes

yes

Initialize segment

variables; 

increment iseg

Increment 

segment variables

(connecting line)

Compute all actual variables

(eact
2 < VarLim) & ((jref + iseg) ¬ = NA)

Accept extension at right-hand

side (update valid variables)

Remove leftmost data point

adjust variables; nredl = nredl +1

Finish segment: Lseg = iseg;

SegFin = 1;

initialize segment:

jref = jref + Lseg; iseg = 1;

nredl = 0; Lseg = 0;

(e1
2 > VarLim) & (iseg > 4)

no
iseg Lseg,min

Lseg = iseg

iseg = iseg + 1

same segment, reference shifted; region is considered as textured

Figure C.4. Flowchart of segmentation method for linearly shaded regions including 
boundary adaptation at both ends (Matlab®-terminology) 
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Index

acceleration, 76, 93, 95 
aperture problem, 290 ff 
articulated motion, 108 ff 
aspect conditions, 48 ff, 344, 351, 356 
attention 337, 391 
azimuth, 377, 391 
bank angle, 83 
behavioral capabilities, 87, 106, 403, 

417, 420, 425, 442 
bicycle model, 97 
bifocal, 12, 366, 370 
binocular, 377 
blobs, linearly shaded, 161 ff, 165, 453  
box shape, 24, 47 
braking, 94, 333, 429 
capabilities, 60, 62, 71, 416 
capability network, 70, 106 
circularity, 168, 170 
clothoid model, 206, 219 
concatenation, 30, 35 ff 
confidence, 363 
control flow, 422, 425 
control variable, 59, 73 ff, 100 ff, 446 
convoy driving, 367, 369, 430 
coordinate systems, 23, 33 
corner features, 167 ff 
covariance matrix Q, 53, 195, 234, 358 
covariance matrix R, 195, 234 
CRONOS, 131 ff, 346 
crossroad perception, 131, (Chap.10) 

297 ff, 314, 434 
curvature of an edge, 139 
curvature of a trajectory, 77 
data fusion, 257 
deceleration, 94, 430 
decision-making, 62, 89, 107, 417 
degree of freedom (dof), 448 
delay time, 380 
doublet, 81, 100 
dual representation, 88 
dynamic model, 73, 97, 191 
edges: orientation-selective, 132, 246 
      orientation-sensitive, 150, 158  

eigenfrequency, 21, 271, 276 
eigenvalue (time constant), 99 
EMS vision, 3, 124, 402, 465 (IV’00) 
error covariance matrix, 193, 235 
extended presence, 17  
extended pulse, 82 
features (Chap.5) 123 ff 
feature correlation, 318 
feature selection, optimal, 239 
feedback control, 86, 185, 447 
feed-forward control, 78, 84, 87, 447 
field of view (f.o.v.), 66, 128, 384, 388 
fixation, 50, 385 
foveal–peripheral, 12, 167 
gaze control, 68, 311 
gaze stabilization, 382 
geodetic coordinates, 25, 28, 402 
gestalt idea, 243 
grouping of features, 178 
heading angle, 207 
‘here and now’, 8, 17 
high-frequency, 380 
high-resolution, 385 
hilly terrain, 259 
homogeneous coordinates, 25 
hypothesis generation, 228, 352 
imagination, 412, 424 
inertial sensing, 67, 381 
information in image, 126 
intelligence, 15 
Jacobian elements, 36 ff, 192, 237, 292 
Jacobian matrix, 35, 57, 237, 256, 323 
Kalman filter, 195 
knowledge representation, 72, 395 ff 
 also throughout Chapters 2, 3, 5, 6, 

and 8 
lane change, 82, 85, 102, 372, 432 
lane keeping, 87, 99 
lane width, 273, 282 ff 
laser range finder, 369 
lateral acceleration, 78 
lateral road vehicle guidance, 96 
least-squares, 153, 453 
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linearization, 73 
long-distance test, 285 ff 
look-ahead range, 12, 130, 217, 261, 

333,  383 ff 
low-frequency pitch changes, 272 
maneuver, 77 ff, 102, 307, 427, 447 
masks for feature extraction: 
 CRONOS (ternary), 132, 136, 143 
 UBM (two half-stripes), 144–151 
mission, 111, 405, 413 ff, 437 
mission elements, 121, 406, 448 
monitoring, 363, 409 
monocular range estimation, 337, 342, 

352 ff 
motion representation, 49, 52, 73, 208, 

254, 339, 449 
multifocal, 12, 65, 384, 388, 391 
multiple interpretation scales, 8, 41, 46, 

350
multisensor, 381, 415 
negative obstacles, 233, 438 
nonholonomic, 65 
nonhomogeneous, 75 
nonplanar (intensity distribution), 153 ff 
 weak nonplanarity, 154, 161 
obstacles, 332 ff 
ontology for ground vehicles 443 
parameter, 73, 314, 362 
pay off function, 411 
peripheral, 12, 167 
perspective mapping, 27 ff 
photometric properties, 176 ff 
pitch angle (tilt -), 28, 33, 94, 268 
pitch perturbations, 255, 268 ff 
prediction-error, 190, 192 ff 
PROMETHEUS, 205 
radar, 370, 431 
reaction time gap, 408 
recursive estimation, 191 
region-based, 151 
road curvature, 104, 206 ff, 230, 258 
road fork, 129 
roadrunning, 87, 99, 106 
root node, 34 

saccadic gaze control, 386, 392 ff 
scene tree, 31, 34, 402 
sequential innovation, 198 
shape representation, 45 ff 
situation, 11, 61, 107, 118, 407, 414, 

419
slip angle, 97, 103, 208 
slope effects, 92 
spatiotemporal, 8, 54, 184, 203 ff 
square root filter, 199 
state estimation, Chapter 6, 340 
state variables, 51, 59, 73 
step response, 93, 95 
stereointerpretation, 391 
stereovision, 66, 387 
stop-and-go, 374 
structural matrix 167 
subject, 7, 59 Chapter 3, 62, 446 
subpixel accuracy, 137, 158 
system integration, 190, 340, 361 ff, 

367, 391, 421, 427, 441 
telecamera, 12, 390 
teleimage, 13, 391 
time delay, 380 
time representation, 39 
time to collision, 389 
traceN, 169 
transition matrix, 75, 192 
trifocal, 12, 391 
turnoff (Chap.10), 326, 343, 434 ff  
types of vision systems 1, 12, 65 
unified blob-edge-corner method 

(UBM),  143 ff 
UDUT factorization, 200 
U-turn, 325 
vehicle recognition, Chapter 11, 331 ff, 

372
vertical curvature, 91, 259 ff, 266, 285 
visual features 123 ff 
wheel template, 351 
width estimation, 270 
yaw angle (pan-), 25, 67/68, 327 
4-D approach, 8, 15, 17, 184 ff, 205 
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