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Preface

During and after World War 11, the principle of feedback control became well un-
derstood in biological systems and was applied in many technical disciplines to re-
lieve humans from boring workloads in systems control. N. Wiener considered it
universally applicable as a basis for building intelligent systems and called the new
discipline “Cybernetics” (the science of systems control) [Wiener 1948]. Following
many early successes, these arguments soon were oversold by enthusiastic follow-
ers; at that time, many people realized that high-level decision—-making could
hardly be achieved only on this basis. As a consequence, with the advent of suffi-
cient digital computing power, computer scientists turned to quasi-steady descrip-
tions of abstract knowledge and created the field of “Aurtificial Intelligence” (Al)
[McCarthy 1955; Selfridge 1959; Miller et al. 1960; Newell, Simon 1963; Fikes, Nilsson
1971]. With respect to achievements promised and what could be realized, a similar
situation developed in the last quarter of the 20th century.

In the context of Al also, the problem of computer vision has been tackled (see,
e.g., [Selfridge, Neisser 1960; Rosenfeld, Kak 1976; Marr 1982]. The main paradigm ini-
tially was to recover a 3-D object shape and orientation from single images (snap-
shots) or from a few viewpoints. On the contrary, in aerial or satellite remote sens-
ing, another application of image evaluation, the task was to classify areas on the
ground and to detect special objects. For these purposes, snapshot images, taken
under carefully controlled conditions, sufficed. “Computer vision” was a proper
name for these activities since humans took care of accommodating all side con-
straints to be observed by the vehicle carrying the cameras.

When technical vision was first applied to vehicle guidance [Nilsson 1969], sepa-
rate viewing and motion phases with static image evaluation (lasting for minutes
on remote stationary computers in the laboratory) had been adopted initially. Even
stereo effects with a single camera moving laterally on the vehicle between two
shots from the same vehicle position were investigated [Moravec 1983]. In the early
1980s, digital microprocessors became sufficiently small and powerful, so that on-
board image evaluation in near real time became possible. DARPA started its pro-
gram “On strategic computing” in which vision architectures and image sequence
interpretation for ground vehicle guidance were to be developed (‘Autonomous
Land Vehicle’ ALV) [Roland, Shiman 2002]. These activities were also subsumed
under the title “computer vision”, and this term became generally accepted for a
broad spectrum of applications. This makes sense, as long as dynamic aspects do
not play an important role in sensor signal interpretation.

For autonomous vehicles moving under unconstrained natural conditions at
higher speeds on nonflat ground or in turbulent air, it is no longer the computer
which *“sees” on its own. The entire body motion due to control actuation and to
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perturbations from the environment has to be analyzed based on information com-
ing from many different types of sensors. Fast reactions to perturbations have to be
derived from inertial measurements of accelerations and the onset of rotational
rates, since vision has a rather long delay time (a few tenths of a second) until the
enormous amounts of data in the image stream have been digested and interpreted
sufficiently well. This is a well-proven concept in biological systems also operating
under similar conditions, such as the vestibular apparatus of vertebrates with many
cross-connections to ocular control.

This object-oriented sensor fusion task, quite naturally, introduces the notion of
an extended presence since data from different times (and from different sensors)
have to be interpreted in conjunction, taking additional delay times for control ap-
plication into account. Under these conditions, it does no longer make sense to talk
about “computer vision”. It is the overall vehicle with an integrated sensor and
control system, which achieves a new level of performance and becomes able “to
see”, also during dynamic maneuvering. The computer is the hardware substrate
used for data and knowledge processing.

In this book, an introduction is given to an integrated approach to dynamic vis-
ual perception in which all these aspects are taken into account right from the be-
ginning. It is based on two decades of experience of the author and his team at
UniBw Munich with several autonomous vehicles on the ground (both indoors and
especially outdoors) and in the air. The book deviates from usual texts on computer
vision in that an integration of methods from “control engineering/systems dynam-
ics” and “artificial intelligence” is given. Outstanding real-world performance has
been demonstrated over two decades. Some samples may be found in the accom-
panying DVD. Publications on the methods developed have been distributed over
many contributions to conferences and journals as well as in Ph.D. dissertations
(marked “Diss.” in the references). This book is the first survey touching all as-
pects in sufficient detail for understanding the reasons for successes achieved with
real-world systems.

With gratitude, | acknowledge the contributions of the Ph.D. students S. Baten,
R. Behringer, C. Bridigam, S. Furst, R. Gregor, C. Hock, U. Hofmann, W. Kinzel,
M. Lutzeler, M. Maurer, H.-G. Meissner, N. Mueller, B. Mysliwetz, M. Pellkofer,
A. Rieder, J. Schick, K.-H. Siedersberger, J. Schiehlen, M. Schmid, F. Thomanek,
V. von Holt, S. Werner, H.-J. Wiinsche, and A. Zapp as well as those of my col-
league V. Graefe and his Ph.D. students. When there were no fitting multi-
microprocessor systems on the market in the 1980s, they realized the window-
oriented concept developed for dynamic vision, and together we have been able to
compete with “Strategic Computing”. | thank my son Dirk for generalizing and
porting the solution for efficient edge feature extraction in “Occam” to “Transput-
ers” in the 1990s, and for his essential contributions to the general framework of
the third-generation system EMS vision. The general support of our work in “con-
trol theory and application” by K.-D. Otto over three decades is appreciated as well
as the infrastructure provided at the institute ISF by Madeleine Gabler.

Ernst D. Dickmanns
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1 Introduction

The field of “vision” is so diverse and there are so many different approaches to
the widespread realms of application that it seems reasonable first to inspect it and
to specify the area to which the book intends to contribute. Many approaches to
machine vision have started with the paradigm that easy things should be tackled
first, like single snapshot image interpretation in unlimited time; an extension to
more complex applications may later on build on the experience gained. Our ap-
proach on the contrary was to separate the field of dynamic vision from its (quasi-)
static counterpart right from the beginning and to derive adequate methods for this
specific domain. To prepare the ground for success, sufficiently capable methods
and knowledge representations have to be introduced from the beginning.

1.1 Different Types of Vision Tasks and Systems

Figure 1.1 shows juxtapositions of several vision tasks occurring in everyday life.
For humans, snapshot interpretation seems easy, in general, when the domain is
well known in which the image has been taken. We tend to imagine the temporal
context and the time when the image has been shot. From motion smear and un-
usual poses, the embedding of the snapshot in a well-known maneuver is con-
cluded. So in general, even single images require background knowledge on mo-
tion processes in space for more in-depth understanding; this is often overlooked in
machine or computer vision. The approach discussed in this book (bold italic let-
ters in Figure 1.1) takes motion processes in “3-D space and time” as basic knowl-
edge required for understanding image sequences in an approach similar to our
own way of image interpretation. This yields a natural framework for using lan-
guage and terms in the common sense.

Another big difference in methods and approaches required stems from the fact
that the camera yielding the video stream is either stationary or moving itself. If
moving, linear or/and rotational motion also may require special treatment. Sur-
veillance is done, usually, from a stationary position while the camera may pan (ro-
tation around a vertical axis, often also called yaw) and tilt (rotation around the
horizontal axis, also called pitch) to increase its total field of view. In this case,
motion is introduced purposely and is well controlled, so that it can be taken into
account during image evaluation. If egomotion is to be controlled based on vision,
the body carrying the camera(s) may be subject to strong perturbations, which can-
not be predicted, in general.
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Pictorial vision ~  ----—--- Motion vision
(single image interpretation)

Surveillance ---—--- Motion control
detection, inspection
(prey) (predator)

[hybrid systems]

Monocular ~ ------- Bin- (multi-) ocular stereo
motion stereo

Passive @ --—---- Active: fixation type
inertially stabilized,
attention focused

2-D shape ~  ------ Spatial interpretation
Off-line  ------- Real-time
Monochrome —  ------- Color vision
Intensity ~ ---—--- Range

Figure 1.1. Types of vision systems and vision tasks

In cases with large rotational rates, motion blur may prevent image evaluation at
all; also, due to the delay time introduced by handling and interpreting the large
data rates in vision, stable control of the vehicle may no longer be possible.

Biological systems have developed close cooperation between inertial and opti-
cal sensor data evaluation for handling this case; this will be discussed to some de-
tail and applied to technical vision systems in several chapters of the book. Also
from biologists stems the differentiation of vision systems into “prey” and “preda-
tor” systems. The former strive to cover a large simultaneous field of view for de-
tecting predators sufficiently early and approaching from any direction possible.
Predators move to find prey, and during the final approach as well as in pursuit
they have to estimate their position and speed relative to the dynamically moving
prey quite accurate to succeed in a catch. Stereovision and high resolution in the
direction of motion provides advantages, and nature succeeded in developing this
combination in the vertebrate eye.

Once active gaze control is available, feedback of rotational rates measured by
inertial sensors allows compensating for rotational disturbances on the own body
just by moving the eyes (reducing motion blur), thereby improving their range of
applicability. Fast moving targets may be tracked in smooth pursuit, also reducing
motion blur for this special object of interest; the deterioration of recognition and
tracking of other objects of less interest are accepted.
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Since images are only in two dimensions, the 2-D framework looks most natural
for image interpretation. This may be true for almost planar objects viewed ap-
proximately normal to their plane of appearance, like a landscape in a bird’s-eye
view. On the other hand, when a planar surface is viewed with the optical axis al-
most parallel to it from an elevation slightly above the ground, the situation is quite
different. In this case, each line in the image corresponds to a different distance on
the ground, and the same 3-D object on the surface looks quite different in size ac-
cording to where it appears in the image. This is the reason why homogeneously
distributed image processing by vector machines, for example, does have a hard
time in showing its efficiency; locally adapted methods in image regions seem
much more promising in this case and have proven their superiority. Interpreting
image sequences in 3-D space with corresponding knowledge bases right from the
beginning allows easy adaptation to range differences for single objects. Of course,
the analysis of situations encompassing several objects at various distances now
has to be done on a separate level, building on the results of all previous steps. This
has been one of the driving factors in designing the architecture for the Third-
generation “expectation-based, multi-focal saccadic” (EMS) vision system de-
scribed in this book. This corresponds to recent findings in well-developed biologi-
cal systems where for image processing and action planning based on the results of
visual perception, different areas light up in magnetic resonance images [Talati,
Hirsch 2005].

Understanding motion processes of 3-D objects in 3-D space while the body
carrying the cameras also moves in 3-D space, seems to be one of the most difficult
tasks in real-time vision. Without the help of inertial sensing for separating egomo-
tion from relative motion, this can hardly be done successfully, at least in dynamic
situations.

Direct range measurement by special sensors such as radar or laser range finders
(LRF) would alleviate the vision task. Because of their relative simplicity and low
demand of computing power, these systems have found relatively widespread ap-
plication in the automotive field. However, with respect to resolution and flexibil-
ity of data exploitation as well as hardware cost and installation volume required,
they have much less potential than passive cameras in the long run with computing
power available in abundance. For this reason, these systems are not included in
this book.

1.2 Why Perception and Action?

For technical systems which are intended to find their way on their own in an ever
changing world, it is impossible to foresee every possible event and to program all
required capabilities for appropriate reactions into its software from the beginning.
To be flexible in dealing with situations actually encountered, the system should
have perceptual and behavioral capabilities which it may expand on its own in re-
sponse to new requirements. This means that the system should be capable of judg-
ing the value of control outputs in response to measured data; however, since out-
puts of control affect state variables over a certain amount of time, ensuing time
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histories have to be observed and a temporally deeper understanding has to be de-
veloped. This is exactly what is captured in the “dynamic models” of systems the-
ory (and what biological systems may store in neuronal delay lines).

Also, through these time histories, the ground is prepared for more compact
“frequency domain” (integral) representations. In the large volume of literature on
linear systems theory, time constants T as the inverse of eigenvalues of first-order
system components, as well as frequency, damping ratio, and relative phase as
characteristic properties of second-order components are well known terms for de-
scribing temporal characteristics of processes, e.g., [Kailath 1980]. In the physio-
logical literature, the term “temporal Gestalt” may even be found [Ruhnau 1994a, b],
indicating that temporal shape may be as important and characteristic as the well
known spatial shape.

Usually, control is considered an output resulting from data analysis to achieve
some goal. In a closed-loop system, where one of its goals is to adapt to new situa-
tions and to act autonomously, control outputs may be interpreted as questions
asked with respect to real-world behavior. Dynamic reactions are now interpreted
to better understand the behavior of a body in various states and under various en-
vironmental conditions. This opens up a new avenue for signal interpretation: be-
side its use for state control, it is now also interpreted for system identification and
modeling, that is, learning about its temporal behavioral characteristics.

In an intelligent autonomous system, this capability of adaptation to new situa-
tions has to be available to reduce dependence on maintenance and adaptation by
human intervention. While this is not yet state of the art in present systems, with
the computing power becoming available in the future, it clearly is within range.
The methods required have been developed in the fields of system identification
and adaptive control.

The sense of vision should yield sufficient information about the near and far-
ther environment to decide when state control is not so important and when more
emphasis may be put on system identification by using special control inputs for
this purpose. This approach also will play a role when it comes to defining the no-
tion of a “self” for the autonomous vehicle.

1.3 Why Perception and Not Just Vision?

Vision does not allow making a well-founded decision on absolute inertial motion
when another object is moving close to the ego-vehicle and no background can be
seen in the field of view (known to be stationary). Inertial sensors like accelerome-
ters and angular rate sensors, on the contrary, yield the corresponding signals for
the body they are mounted on; they do this practically without any delay time and
at high signal rates (up to the kHz range).

Vision needs time for the integration of light intensity in the sensor elements (33
1/3, respectively, 40 ms corresponding to the United States or European standard),
for frame grabbing and communication of the (huge amount of) image data, as well
as for feature extraction, hypothesis generation, and state estimation. Usually, three
to five video cycles, that are 100 to 200 ms, will have passed until a control output
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derived from vision will hit the real world. For precise control of highly dynamic
systems, this time delay has to be taken into account.

Since perturbations should be counteracted as soon as possible, and since visu-
ally measurable results of perturbations are the second integral of accelerations
with corresponding delay times, it is advisable to have inertial sensors in the sys-
tem for early pickup of perturbations. Because long-term stabilization may be
achieved using vision, it is not necessary to resort to expensive inertial sensors; on
the contrary, when jointly used with vision, inexpensive inertial sensors with good
properties for the medium- to high-frequency part are sufficient as demonstrated by
the vestibular systems in vertebrates.

Accelerometers are able to measure rather directly the effects of most control
outputs; this alleviates system identification and finding the control outputs for re-
flex-like counteraction of perturbations. Cross-correlation of inertial signals with
visually determined signals allows temporally deeper understanding of what in the
natural sciences is called “time integrals” of input functions.

For all these reasons, the joint use of visual and inertial signals is considered
mandatory for achieving efficient autonomously mobile platforms. Similarly, if
special velocity components can be measured easily by conventional devices, it
does not make sense to try to recover these from vision in a “purist” approach.
These conventional signals may alleviate perception of the environment considera-
bly since the corresponding sensors are mounted onto the body in a fixed way,
while in vision the measured feature values have to be assigned to some object in
the environment according to just visual evidence. There is no constantly estab-
lished link for each measurement value in vision as is the case for conventional
Sensors.

1.4 What are Appropriate Interpretation Spaces?

Images are two-dimensional arrays of data; the usual array size today is from about
64 x 64 for special “vision” chips to about 770 x 580 for video cameras (special
larger sizes are available but only at much higher cost, e.g., for space or military
applications). A digitized video data stream is a fast sequence of these images with
data rates up to ~ 11 MB/s for black and white and up to three times this amount
for color.

Frequently, only fields of 320 x 240 pixels (either only the odd or the even lines
with corresponding reduction of the resolution within the lines) are being evaluated
because of computing power missing. This results in a data stream per camera of
about 2 MBY/s. Even at this reduced data rate, the processing power of a single mi-
croprocessor available today is not yet sufficient for interpreting several video sig-
nals in parallel in real time. High-definition TV signals of the future may have up
to 1080 lines and 1920 pixels in each line at frame rates of up to 75 Hz; this corre-
sponds to data rates of more than 155 MB/s. Machine vision with this type of reso-
lution is way out in the future.

Maybe, uniform processing of entire images is not desirable at all, since differ-
ent objects will be seen in different parts of the images, requiring specific image
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processing algorithms for efficient evaluation, usually. Very often, lines of discon-

tinuity are encountered in images, which should be treated with special methods

differing essentially from those used in homogeneous parts. Object- and situation-
dependent methods and parameters should be used, controlled from higher evalua-
tion levels.

The question thus is, whether any basic feature extraction should be applied uni-
formly over the entire image region. In biological vision systems, this seems to be
the case, for example, in the striate cortex (V1) of vertebrates where oriented edge
elements are detected with the help of corresponding receptive fields. However,
vertebrate vision has nonhomogeneous resolution over the entire field of view. Fo-
veal vision with high resolution at the center of the retina is surrounded by recep-
tive fields of increasing spread and a lower density of receptors per unit of area in
the radial direction.

Vision of highly developed biological systems seems to ask three questions,
each of which is treated by a specific subsystem:

1. Is there something of special interest in a wide field of view?

2. What is it precisely, that attracted interest in question one? Can the individual
object be characterized and classified using background knowledge? What is its
relative state “here and now”?

3. What is the situation around me and how does it affect optimal decisions in be-
havior for achieving my goals? For this purpose, a relevant collection of objects
should be recognized and tracked, and the likely future behavior should be pre-
dicted.

To initialize the vision process at the beginning and to detect new objects later on,
it is certainly an advantage to have a bottom-up detection component available all
over the wide field of view. Maybe, just a few algorithms based on coarse resolu-
tion for detecting interesting groups of features will be sufficient to achieve this
goal. The question is, how much computing effort should be devoted to this bot-
tom-up component compared to more elaborate, model based top-down compo-
nents for objects already detected and being tracked. Usually, single objects cover
only a small area in an image of coarse resolution.

To answer question 2 above, biological vision systems direct the foveal area of
high resolution by so-called saccades, which are very fast gaze direction changes
with angular rates up to several hundred degrees per second, to the group of fea-
tures arousing most interest. Humans are able to perform up to five saccades per
second with intermediate phases of smooth pursuit (tracking) of these features, in-
dicating a very dynamic mode of perception (time-sliced parallel processing).
Tracking can be achieved much more efficiently with algorithms controlled by
prediction according to some model. Satisfactory solutions may be possible only in
special task domains for which experience is available from previous encounters.

Since prediction is a very powerful tool in a world with continuous processes,
the question arises: What is the proper framework for formulating the continuity
conditions? Is the image plane readily available as plane of reference? However, it
is known that the depth dimension in perspective mapping has been lost com-
pletely: All points on a ray have been mapped into a single point in the image
plane, irrespective of their distance, which has been lost. Would it be better to for-
mulate all continuity conditions in 3-D physical space and time? The correspond-
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ing models are available from the natural sciences since Newton and Leibnitz have
found that differential equations are the proper tools for representing these continu-
ity conditions in generic form; over the last decades, simulation technology has
provided the methods for dealing with these representations on digital computers.

In communication technology and in the field of pattern recognition, video
processing in the image plane may be the best way to go since no understanding of
the content of the scene is required. However, for orienting oneself in the real
world through image sequence analysis, early transition to the physical interpreta-
tion space is considered highly advantageous because it is in this space that occlu-
sions become easily understandable and motion continuity persists. Also, it is in
this space that inertial signals have to be interpreted and that integrals of accelera-
tions yield 3-D velocity components; integrals of these velocities yield the corre-
sponding positions and angular orientations for the rotational degrees of freedom.
Therefore, for visual dynamic scene understanding, images are considered inter-
mediate carriers of data containing information about the spatiotemporal environ-
ment. To recover this information most efficiently, all internal modeling in the in-
terpretation process is done in 3-D space and time, and the transition to this
representation should take place as early as possible. Knowledge for achieving this
goal is specific to single objects and the generic classes to which they belong.
Therefore, to answer question 2 above, specialist processes geared to classes of ob-
jects and individuals of these classes observed in the image sequence should be de-
signed for direct interpretation in 3-D space and time.

Only these spatiotemporal representations then allow answering question 3 by
looking at these data of all relevant objects in the near environment for a more ex-
tended period of time. To be able to understand motion processes of objects more
deeply in our everyday environment, a distinction has to be made between classes
of objects. Those obeying simple laws of motion from physics are the ones most
easily handled (e.g., by some version of Newton’s law). Light objects, easily
moved by stochastically appearing (even light) winds become difficult to grasp be-
cause of the variable properties of wind fields and gusts.

Another large class of objects — with many different subclasses — is formed by
those able to sense properties of their environment and to initiate movements on
their own, based on a combination of the data sensed and background knowledge
internally stored. These special objects will be called subjects; all animals includ-
ing humans belong to this (super-) class as well as autonomous agents created by
technical means (like robots or autonomous vehicles). The corresponding sub-
classes are formed by combinations of perceptual and behavioral capabilities and,
of course, their shapes. Beside their shapes, individuals of subclasses may be rec-
ognized also by stereotypical motion patterns (like a hopping kangaroo or a wind-
ing snake).

Road vehicles (independent of control by a human driver or a technical subsys-
tem) exhibit typical behaviors depending on the situation encountered. For exam-
ple, they follow lanes and do convoy driving, perform lane changes, pass other ve-
hicles, turn off onto a crossroad or slow down for parking. All of the maneuvers
mentioned are well known to human drivers, and they recognize the intention of
performing one of those by its typical onset of motion over a short period of time.
For example, a car leaving the center of its lane and moving consistently toward
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the neighboring lane is assumed to initiate a lane change. If this occurs within the
safety margin in front, egomotion should be adjusted to this (improper) behavior of
other traffic participants. This shows that recognition of the intention of other sub-
jects is important for a defensive style of driving. This cannot be recognized with-
out knowledge of temporally extended maneuvers and without observing behav-
ioral patterns of subjects in the environment. Question 3 above, thus, is not
answered by interpreting image patterns directly but by observing symbolic repre-
sentations resulting as answers to question 2 for a number of individual ob-
jects/subjects over an extended period of time.

Simultaneous interpretation of image sequences on multiple scales in 3-D space
and time is the way to satisfy all requirements for safe and goal-oriented behavior.

1.4.1 Differential Models for Perception “Here and Now”

Experience has shown that the simultaneous use of differential and integral models
on different scales yields the most efficient way of data fusion and joint data inter-
pretation. Figure 1.2 shows in a systematic fashion the interpretation scheme de-
veloped. Each of the axes is subdivided into four scale ranges. In the upper left
corner the point “here and now” is shown as the point where all interaction with
the real world takes place. The second scale range encompasses the local (as op-
posed to global) environment which allows introducing new differential concepts
compared to the pointwise state. Local embedding, with characteristic properties

Range Temporally Local time
intime — Time local differential integrals Extended local |- Global
Yin space point environment basic cycle time time integrals  |...... time integrals
Temporal change Single step
Point ‘Here and now' at point ‘here' | transition matrix
in space local (avoided because | derived from | @ - | | e
measurements | of noise amplifi - | notion of (local)
~... cation) ‘objects’ (row 3)I
Spatially Differential "~,. Transition of ;
local geometry: AN feature - Feature
differential edge angles, e, parameters | history | | @ -
environment positions . e, i
curvatures ~.. .
4................%. . Short range Sparse
Local Object state, Motion State transition, predictions, predictions,
space feature- _ J _ constraints: y ll changed aspect g— - — « — - — - — P> Object state
integrals distribution, diff.egs. conditions Object state history
—> shape <« ‘dyn. model' § ‘Central hub’ history
Maneuver &|- - - T'lead', single!step "N\ Multiple step
space local information prediction of prediction of
of objects situation for efficient situation situation; | | @ -
controllers (usually not monitoring
done) of maneuvers _
y N
Mission Actual itori ™ issi
Monitoring, A Mission
space global | ) “temporal Gestalt" performance,
of objects situation monitoring

Figure 1.2. Multiple interpretation scales in space and time for dynamic perception.
Vertical axis: 3-D space; horizontal axis: time
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such as spatial or temporal change rates, spatial gradients, or directions of extreme
values such as intensity gradients are typical examples.

These differentials have shown to be powerful concepts for representing knowl-
edge about physical properties of classes of objects. Differential equations repre-
sent the natural mathematical element for coding knowledge about motion proc-
esses in the real world. With the advent of the Kalman filter [Kalman 1960], they
have become the key element for obtaining the best state estimate of the variables
describing the system, based on recursive methods implementing a least-squares
model fit. Real-time visual perception of moving objects is hardly possible without
this very efficient approach.

1.4.2 Local Integrals as Central Elements for Perception

Note that the precise definition of what is local depends on the problem domain in-
vestigated and may vary in a wide range. The third column and row in Figure 1.2
are devoted to “local integrals”; this term again is rather fuzzy and will be defined
more precisely in the task context. On the timescale, it means the transition from
analog (continuous, differential) to digital (sampled, discrete) representations. In
the spatial domain, typical local integrals are rigid bodies, which may move as a
unit without changing their 3-D shape.

These elements are defined such that the intersection in field (3, 3) in Figure 1.2
becomes the central hub for data interpretation and data fusion: it contains the in-
dividual objects as units to which humans attach most of their knowledge about the
real world. Abstraction of properties has lead to generic classes which allow sub-
suming a large variety of single cases into one generic concept, thereby leading to
representational efficiency.

1.4.2.1 Where is the Information in an Image?

It is well known that information in an image is contained in local intensity
changes: A uniformly gray image has only a few bits of information, namely, (1)
the gray value and (2) uniform distribution of this value over the entire image. The
image may be completely described by three bytes, even though the amount of data
may be about 400 000 bytes in a TV frame or even 4 MB (2k x 2k pixels). If there
are certain areas of uniform gray values, the boundary lines of these areas plus the
internal gray values contain all the information in the image. This object in the im-
age plane may be described with much less data than the pixel values it encom-
passes.

In a more general form, image areas defined by a set of properties (shape, texture,
color, joint motion, etc.) may be considered image objects, which originated from
3-D objects by perspective mapping. Due to the numerous aspect conditions, which
such an object may adopt relative to the camera, its potential appearances in the
image plane are very diverse. Their representation will require orders of magnitude
more data for an exhaustive description than its representation in 3-D space plus
the laws of perspective mapping, which are the same for all objects. Therefore, an
object is defined by its 3-D shape, which may be considered a local spatial integral
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of its differential geometry description in curvature terms. Depending on the task at
hand, both the differential and the integral representation, or a combination of both
may be used for visual recognition. As will be shown for the example of road vehi-
cle guidance, the parallel use of these models in different parts of the overall rec-
ognition process and control system may be most efficient.

1.4.2.2 To Which Units Do Humans Affix Knowledge?

Objects and object classes play an important role in human language and in learn-
ing to understand “the world”. This is true for their appearance at one time, and
also for their motion behavior over time.

On the temporal axis, the combined use of differential and integral models may
allow us to refrain from computing optical flow or displacement vector fields,
which are very compute-intensive and susceptible to noise. Because of the huge
amount of data in a single image, this is not considered the best way to go, since an
early transition to the notion of physical objects or subjects with continuity condi-
tions in 3-D space and time has several advantages: (1) it helps cut the amount of
data required for adequate description, and (2) it yields the proper framework for
applying knowledge derived from previous encounters (dynamic models, stereo-
typical control maneuvers, etc.). For this reason, the second column in Figure 1.2 is
avoided intentionally in the 4-D approach. This step is replaced by the well-known
observer techniques in systems dynamics (Kalman filter and derivatives, Luenber-
ger observers). These recursive methods reconstruct the time derivatives of state
variables by prediction error feedback and knowledge about the dynamic behavior
of the object and (for the Kalman filter) of the statistical properties of the system
(dubbed “plant” in systems dynamics) and of the measurement processes. The
stereotypical behavioral capabilities of subjects in different situations form an im-
portant part of the knowledge base.

Two distinctly different types of “local temporal integrals” are used widely:
Single step integrals for video sampling and multiple step (local) integrals for ma-
neuver understanding. Through the imaging process, the analog motion process in
the real world is made discrete along the time axis. By forming the (approximate,
since linearized) integrals, the time span of the analog video cycle time (33 1/3 ms
in the United States and 40 ms in Europe, respectively, half these values for the
fields) is bridged by discrete transition matrices from kT to (k + 1)T, k = running
index.

Even though the intensity values of each pixel are integrals over the full range
or part of this period, they are interpreted as the actually sampled intensity value at
the time of camera readout. Since all basic interpretations of the situation rest on
these data, control output is computed newly only after this period; thus, it is con-
stant over the basic cycle time. This allows the analytical computation of the corre-
sponding state transitions, which are evaluated numerically for each cycle in the
recursive estimation process (Chapter 6); these are used for state prediction and in-
telligent control of image feature extraction.
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1.4.3 Global Integrals for Situation Assessment

More complex situations encompassing many objects or missions consisting of se-
quences of mission elements are represented in the lower right corner of Figure
1.2. Again, how to best choose the subdivisions and the absolute scales on the time
axis or in space depends very much on the problem area under study. This will be
completely different for a task in manufacturing of micro-systems compared to one
in space flight. The basic principle of subdividing the overall task, however, may
be according to the same scheme given in Figure 1.2, even though the technical
elements used may be completely different.

On a much larger timescale, the effect of entire feed-forward control time histo-
ries may be predicted which have the goal of achieving some special state changes
or transitions. For example, lane change of a road vehicle on a freeway, which may
take 2 to 10 seconds in total, may be described as a well-structured sequence of
control outputs resulting in a certain trajectory of the vehicle. At the end of the ma-
neuver, the vehicle should be in the neighboring lane with the same state variables
otherwise (velocity, lateral position in the lane, heading). The symbol “lane
change”, thus, stands for a relatively complex maneuver element which may be
triggered from the higher levels on demand by just using this symbol (maybe to-
gether with some parameters specifying the maneuver time and, thereby, the
maximal lateral acceleration to be encountered). Details are discussed in Section
3.4.

These “maneuver elements”, defined properly, allow us to decompose complex
maneuvers into stereotypical elements which may be pieced together according to
the actual needs; large sections of these missions may be performed by exploiting
feedback control, such as lane following and distance keeping for road vehicles.
Thereby, scales of distances for entire missions depend on the process to be con-
trolled; these will be completely different for “autonomously guided vehicles”
(AGVs) on the factory floor (hundreds of meters) compared to road vehicles (tens
of km) or even aircraft (hundreds or thousands of km).

The design of the vision system should be selected depending on the task at
hand (see next section).

1.5 What Type of Vision System Is Most Adequate?

For motion control, due to inertia of a body, the actual velocity vector determines
where to look to avoid collisions with other objects. Since lateral control may be
applied to some extent and since other objects and subjects may have a velocity
vector of their own, the viewing range should be sufficiently large for detecting all
possible collision courses with other objects. Therefore, the simultaneous field of
view is most critical nearby.

On the other hand, if driving at high speed is required, the look-ahead range
should be sufficiently large for reliably detecting objects at distances which allow
safe braking. At a speed of 30 m/s (108 km/h or about 65 mph), the distance for
braking [with a deceleration level of 0.4 Earth gravity g (9.81 m/s?, that is a, ~ — 4
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m/s?) and with 0.5 seconds reaction time] is 15 + 113 = 128 m. For half the magni-
tude in deceleration (— 2 m/s’, e.g., under unfavorable road conditions) the braking
distance would be 240 m.

Reliable distance estimation for road vehicles occurs under mapping conditions
with at least about 20 pixels on the width of the vehicle (typically of about 2 m in
dimension). The total field of view of a single camera at a distance of 130 m,
where this condition is satisfied, will be about 76 m (for ~ 760 pixel per line). This
corresponds to an aperture angle of ~ 34°. This is certainly not enough to cover an
adequate field of view in the near range. Therefore, at least a bifocal camera ar-
rangement is required with two different focal lengths (see Figure 1.3).

f=75mm f=24mm g

Wide Tele

angle i

At distance Ls ~ 20 m (~ 60 m),
the resolution is 5 cm/pixel

Figure 1.3. Bifocal arrangement of miniature TVV—cameras on a pan platform in front of
the rear view mirror of test vehicles VaMP and VITA 2, Prometheus, 1994. Left: Fields
of view and ranges (schematically), right: System realized in VaMP

For a rather flexible high performance “technical eye” a trifocal camera ar-
rangement as shown in Figure 1.4 is recommended. The two wide-angle CCD-
cameras with focal length of 4 to 6 mm and with divergent optical axes do have a
central range of overlapping image areas, which allows stereo—interpretation
nearby. In total, a field of view of about 100 to 130 degrees can be covered; this al-
lows surveying about one-third of the entire panorama.

The mild telecamera with three to four times the focal length of the wide-angle
one should be a three—chip color camera for more precise object recognition. Its
field of view is contained in the stereo field of view of the wide-angle cameras
such that trinocular stereointerpretation becomes possible [Rieder 1996].

f=4.8mm  Wide field

; ofview/" f=16 mm f=50 mm
- ho45° .
single- 2+ k Three-chip color camera
chip o A——m—"
color G o —— Y
T i K High-sensitivity
cameras N/ L., Y Divergent trinocular stereo biw—camera
% >100°
L 505 =~30m L 505 =100 m L 505 ~300m

Figure 1.4. Trifocal camera arrangement with wide field of view
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To detect objects in special areas of interest far away, a camera with a third fo-
cal length (again with a factor of 3 to 4 relative to the mild telelens), and the field
of view within that of the mild telecamera should be added (see Figure 1.4). This
camera may be chosen to be especially light-sensitive; black-and-white images
may be sufficient to limit the data rate. The focal length ratio of 4 does have the
advantage that the coarser image represents the same scene at a resolution corre-
sponding to the second pyramidal stage of the finer one.

This type of sensor combination is ideally suited for active viewing direction
control: the coarse resolution, large simultaneous field of view allows discovering
objects of possible interest in a wide area, and a viewing direction change will
bring this object into the center of the images with higher resolution. Compared to
a camera arrangement with maximal resolution in the same entire field of view, the
solution shown has only 2 to 4 % the data rate. It achieves this in exchange for the
need of fast viewing direction control and at the expense of delay times required to
perform these gaze changes. Figure 1.5 gives an impression of the fields of view of
this trifocal camera arrangement.

Figure 1.5. Fields of view of trifocal camera arrangement. Bottom: Two divergent wide
angle cameras; top left: mild tele camera, top right: strong tele-camera. Dashed white
lines show enlarged sections

The lower two wide-angle images have a central region of overlap marked by
vertical white lines. To the left, the full road junction is imaged with one car com-
ing out of the crossroad and another one just turning into the crossroad; the rear of
this vehicle and the vehicle directly in front can be seen in the upper left image of
the mild telecamera. This even allows trinocular stereo interpretation. The region
marked in white in this mild teleimage is shown in the upper right as a full image
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of the strong telecamera. Here, letters on the license plate can be read, and it can be
seen from the clearly visible second rearview mirror on the left-hand side that there
is a second car immediately in front of the car ahead. The number of pixels per
area on the same object in this image is one hundred times that of the wide-angle
images.

For inertial stabilization of the viewing direction when riding over a nonsmooth
surface or for aircraft flying in a turbulent air, an active camera suspension is
needed anyway. The simultaneous use of almost delay-free inertial measurements
(time derivatives such as angular rates and linear accelerations) and of images,
whose interpretation introduces several tenths of a second delay time, requires ex-
tended representations along the time axis. There is no single time for which it is
possible to make consistent sense of all data available. Only the notion of an “ex-
tended presence” allows arriving at an efficient invariant interpretation (in 4-D!).
For this reason, the multifocal, saccadic vision system is considered to be the pref-
erable solution for autonomous vehicles in general.

1.6 Influence of the Material Substrate on System Design:
Technical vs. Biological Systems

Biological vision systems have evolved over millions of generations with the selec-
tion of the fittest for the ecological environment encountered. The basic neural
substrate developed (carbon-based) may be characterized by a few numbers. The
electrochemical units do have switching times in the millisecond (ms) range; the
traveling speed of signals is in the 10 to 100 m/s range. Cross-connections between
units exist in abundance (1000 to 10 000 per neuron). A single brain consists of up
to 10™ of these units. The main processing step is summation of the weighted input
signals which contain up to now unknown (multiple?) feedback loops [Handbook of
Physiology 1984, 1987].

These systems need long learning times and adapt to new situations only slowly.
In contrast, technical substrates for sensors and microprocessors (silicon-based)
have switching times in the nanosecond range (a factor of 10° compared to biologi-
cal systems). They are easily programmable and have various computational
modes between which they can switch almost instantaneously; however, the direct
cross-connections to other units are limited in number (one to six, usually) but may
have very high bandwidth (in the hundreds of MB/s range).

While a biological eye is a very complex unit containing several types and sizes
of sensors and computing elements, technical imaging sensors are rather simple up
to now and mostly homogeneous over the entire array area. However, from televi-
sion and computer graphics, it is well known that humans can interpret the images
thus generated without problems in a natural way if certain standards are main-
tained.

In developing dynamic machine vision, two groups of thinking have formed:
One tries to mimic biological vision systems on the silicon substrate available, and
the other continues to build on the engineering platform developed in systems— and
computer science.
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A few years ago, many systems were investigated with single processors de-
voted to single pixels (Connection Machine [Hillis 1985, 1992], Content-
Addressable Associative Parallel Processors (CAAPP) [Scudder, Weems 1990] and
others). The trend now clearly is toward more coarsely granulated parallel architec-
tures. Since a single microprocessor on the market at the turn of the century is ca-
pable of performing about 10° instructions per second, this means in excess of
2000 instructions per pixel of a 770 x 525 pixel image. Of course, this should not
be confused with information processing operations. For the year 2010, general-
purpose PC processors are expected to have a performance level of about 10™ in-
structions per second.

On the other hand, the communication bandwidths of single channels will be so
high, that several image matrices may be transferred at a sufficiently high rate to
allow smooth recognition and control of motion processes. (One should refrain
from video norms, presently dominating the discussion, once imaging sensors with
digital output are in wide use.) Therefore, there is no need for more elaborate data
processing on the imaging chip except for ensuring sufficiently high intensity dy-
namics. Technical systems do not have the bandwidth problems, which may have
forced biological systems to do extensive data preprocessing near the retina (from
120 million light sensitive elements in the retina to 1.2 million nerves leading to
the lateral geniculate nucleus in humans).

Interesting studies have been made at several research institutions which tried to
exploit analog data processing on silicon chips [Koch 1995]; future comparisons of
results will have to show whether the space needed on the chip for this purpose can
be justified by the advantages claimed.

The mainstream development today is driven by commercial TV for the sensors
and by personal computers and games for the processors. With an expected in-
crease in computing power of one order of magnitude every 4 to 5 years over the
next decade, real-time machine vision will be ready for a wide range of applica-
tions using conventional engineering methods as represented by the 4-D approach.

A few (maybe a dozen) of these processors will be sufficient for solving even
rather complex tasks like ground and air vehicle guidance; dual processors on a
single chip are just entering the market. It is the goal of this monograph to make
the basic methods needed available to a wide public for efficient information ex-
traction from huge data streams.

1.7 What Is Intelligence? A Practical (Ecological)
Definition

The sensors of complex autonomous biological or technical systems yield an enor-
mous data rate containing information about both the state of the vehicle body rela-
tive to the environment and about other objects or subjects in the environment. It is
the task of an intelligent information extraction (data interpretation) system to
quickly get rid of as many data as possible, however simultaneously, to retain all of
the essential information for the task to be solved. Essential information is geared
to task domains; however, complex systems like animals and autonomous vehicles
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do not have just one single task to perform. Depending on their circumstances,
quite different tasks may predominate.
Systems will be labeled intelligent if they are able to:

e recognize situations readily that require certain behavioral capabilities and

e trigger this behavior early and correctly, so that the overall effort to deal with
the situation is lower than for direct reaction to some combination of values
measured but occurring later (tactical — strategic differentiation).

This “insight” into processes in the real world is indicative of an internal temporal
model for this process in the interpretation system. It is interesting to note that the
word “intelligent” is derived from the Latin stem “inter-legere”: To read in be-
tween the lines. This means to understand what is not explicitly written down but
what can be inferred from the text, given sufficient background knowledge and the
capability of associative thinking. Therefore, intelligence understood in this sense
requires background knowledge about the processes to be perceived and the capa-
bility to recognize similar or slightly different situations in order to be able to ex-
tend the knowledge base for correct use.

Since the same intelligent system will have to deal with many different situa-
tions, those individuals will be superior which can extract information from actual
experience not just for the case at hand but also for proper use in other situations.
This type of “knowledge transfer” is characteristic of truly intelligent systems.
From this point of view, intelligence is not the capability of handling some abstract
symbols in isolation but to have symbolic representations available that allow ade-
quate or favorable decisions for action in different situations which have to be rec-
ognized early and reliably.

These actions may be feedback control laws with very fast implementations
gearing control output directly to measured quantities (reflex-like behavior), or
stereotypical feed-forward control time histories invoked after some event, known
to achieve the result desired (rule-based instantiation). To deal robustly with per-
turbations common in the real world, expectations of state variable time histories
corresponding to some feed-forward control output may be determined. Differ-
ences between expected and observed states are used in a superimposed feedback
loop to modify the total control output so that the expected states are achieved at
least approximately despite unpredictable disturbances.

Monitoring these control components and the resulting state variable time histo-
ries, the triggering “knowledge-level” does have all the information available for
checking the internal models on which it based its predictions and its decisions. In
a distributed processing system, this knowledge level need not be involved in any
of the fast control implementation and state estimation loops. If there are system-
atic prediction errors, these may be used to modify the models. Therefore, predic-
tion error minimization may be used not just for state estimation according to some
model but also for adapting the model itself, thereby learning to better understand
behavioral characteristics of a body or the perturbation environment in the actual
situation. Both of these may be used in the future to advantage. The knowledge
thus stored is condensed information about the (material) world including the body
of the vehicle carrying the sensors and data processing equipment (its “own” body,
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one might say); if it can be invoked in corresponding situations in the future, it will
help to better control one’s behavior in similar cases (see Chapter 3).

Details of internal ISparste
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Figure 1.6. Symbolic representation of the interactions between the ‘mental-" and the ‘real
world’ (point ‘here and now’) in closed-loop form

Intelligence, thus, is defined as allowing deep understanding of processes and
the way the “own” body may take advantage of this. Since proper reactions depend
on the situation encountered, recognizing situations early and correctly and know-
ing what to do in these cases (decision-making) is at the core of intelligence. In the
sense of steady learning, all resulting actions are monitored and exploited to im-
prove the internal representations for better use in the future. Figure 1.6 shows a
symbolic representation of the overall interaction between the (individual) “mental
world” as data manipulation activity in a prediction-error feedback loop. It spans
part of the time axis (horizontal line) and the “real world” represented by the spa-
tial point “here” (where the sensors are). The spatial point “here”, with its local en-
vironment, and the temporal point “now”, where the interaction of the subject with
the real world takes place, is the only 4-D point for the autonomous system to
make real-world experience. All interactions with the world take place “here and
now” (see central box). The rest of the world, its extensions in space and time, are
individual constructs in the “mental world” to “make sense” of the sensor data
stream and its invariance properties observed individually, and as a social endeavor
between agents capable of proper information exchange.

The widely varying interpretations of similar events in different human cultures
are an indication of the wide variety of relatively stable interpretation systems pos-
sible. Biological systems had to start from scratch; social groups were content with
interpretations, which allowed them to adjust their lives correspondingly. Inconsis-
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tencies were accepted, in general, if satisfying explanations could be found. Pro-
gress toward more consistent overall models of “the world” was slow and took mil-
lennia for humankind.

The natural sciences as a specific endeavor of individuals in different cultural
communities looking for a consistent description of “the world” and trying to avoid
biases imposed by their specific cultures have come up with a set of “world mod-
els”, which yield very good predictions. Especially over the last three centuries af-
ter the discovery of differential calculus by Leibnitz and Newton and most promi-
nently over the last five decades after electronic computers became available for
solving the resulting sets of equations in their most general form, these prediction
capabilities soared.

In front of this background, it seems reasonable to equip complex technical sys-
tems with a similarly advanced sensor suite as humans have, with an interpretation
background on the latest state of development in the natural sciences and in engi-
neering. It should encompass a (for all practical purposes) correct description of
the phenomena directly observable with its sensor systems. This includes the light-
ing conditions through sun and moon, the weather conditions as encountered over
time and over different locations on the globe, and basic physical effects dominat-
ing locomotion such as Earth—gravity, dry and fluid friction, as well as sources for
power and information. With respect to the latter ones, technical systems do have
the advantage of being able to directly measure their position on the globe through
the “Global Positioning System” (GPS). This is a late achievement of human tech-
nology only less than two decades of age, which is based on a collection of human-
made Earth satellites revolving in properly selected orbits.

With this information and with digital maps of the continents, technical
autonomous systems will have global navigation capabilities far exceeding those of
biological systems. Adding all-weather capable imaging sensors in the millimeter
wave range will make these systems truly global with respect to space and time in
the future.

1.8 Structuring of Material Covered

Chapters 1 to 4 give a general introduction to dynamic vision and provide the basic
knowledge representation schemes underlying the approach developed. Active sub-
jects with capabilities for perception and control of behaviors are at the core of this
unconventional approach.

Chapter 2 will deal with methods for describing models of objects and processes
in the real world. Homogeneous coordinates as the basic tool for representing 3-D
space and perspective mapping will be discussed first. Perspective mapping and its
inversion are discussed next. Then, spatiotemporal embedding for circumnaviga-
tion of the inversion problems is treated. Dynamic models and integration of in-
formation over time are discussed as a general tool for representing the evolution
of processes observed. A distinction between objects and subjects is made for
forming (super-) classes. The former (treated in Chapter 2) are stationary, or obey
relatively simple motion laws, in general. Subjects (treated in Chapter 3) have the
capability of sensing information about the environment and of initiating motion
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on their own by associating data from sensors with background knowledge stored
internally.

Chapter 4 displays several different kinds of knowledge components useful for
mission performance and for behavioral decisions in the context of a complex
world with many different objects and subjects. This is way beyond actual visual
interpretation and takes more extended scales in space and time into account, for
which the foundation has been laid in Chapters 2 and 3. Chapter 4 is an outlook
into future developments.

Chapters 5 and 6 encompass procedural knowledge enabling real-time visual in-
terpretation and scene understanding. Chapter 5 deals with extraction methods for
visual features as the basic operations in image sequence processing; especially the
bottom-up mode of robust feature detection is treated here. Separate sections deal
with efficient feature extraction for oriented edges (an “orientation-selective”
method) and a new orientation-sensitive method which exploits local gradient in-
formation for a collection of features: “2-D nonplanarity” of a 2-D intensity func-
tion approximating local shading properties in the image is introduced as a new
feature separating homogeneous regions with approximately planar shading from
nonplanar intensity regions. Via the planar shading model, beside homogeneous
regions with linear 2-D shading, oriented edges are detected including their precise
direction from the gradient components [Hofmann 2004].

Intensity corners can be found only in nonplanar regions; since the planarity
check is very efficient computationally and since nonplanar image regions (with
residues > 3% in typical road scenes) are found in < 5% of all mask locations,
computer—intensive corner detection can be confined to these promising regions. In
addition, most of the basic image data needed have already been determined and
are used in multiple ways.

This bottom-up image feature extraction approach is complemented in Chapter
6 by specification of algorithms using predicted features, in which knowledge
about object classes and object motion is exploited for recognizing and intelligent
tracking of objects and subjects over time. These recursive estimation schemes
from the field of systems dynamics and their extension to perspective mapping as
measurement processes constitute the core of Chapter 6. They are based on dy-
namic models for object motion and provide the link between image features and
object description in 3-D space and time; at the same time, they are the major
means for data fusion. This chapter builds on the foundations laid in the previous
ones. Recursive estimation is done for n single objects in parallel, each one with
specific parameter sets depending on the object class and the aspect conditions. All
these results are collected in the dynamic object data base (DOB).

Chapters 7 to 14 encompass system integration for recognition of roads, lanes,
other vehicles, and corresponding experimental results. Chapter 7 as a historic re-
view shows the early beginnings. In Chapter 8, the special challenge of initializa-
tion in dynamic road scene understanding is discussed, whereas Chapter 9 gives a
detailed description of various application aspects for recursive road parameter and
ego-state estimation while cruising. Chapter 10 is devoted to the perception of
crossroads and to performing autonomous turnoffs with active vision. Detection
and tracking of other vehicles is treated in Chapter 11.
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Based on experience gained in these areas, Chapter 12 discusses sensor re-
quirements for advanced vision systems in automotive applications and shows an
early result of saccadic perception of a traffic sign while passing. Chapters 13 and
14 give an outlook on the concept of such an expectation-based, multifocal, sac-
cadic (EMS) vision system and discuss some experimental results. Chapter 13 pre-
sents the concept for a dynamic knowledge representation (DKR) serving as an iso-
lation layer between the lower levels of the system, working mainly with methods
from systems dynamics/engineering, and higher ones leaning mainly on “artificial
intelligence” methods. The DOB as one part of DKR is the main memory for all
objects and subjects detected and tracked in the environment. Recent time histories
of state variables may be stored as well; they alleviate selecting the most relevant
objects/subjects to be observed more closely for safe mission performance. Chapter
14 deals with a few aspects of “real-world” situation assessment and behavior—
decisions based on these data. Some experimental results with this system are
given: Mode transition from unrestricted roadrunning to convoy driving, multi—
sensor adaptive cruise control by radar and vision, autonomous visual lane
changes, and turnoffs onto crossroads as well as onto grass-covered surfaces; de-
tecting and avoiding negative obstacles such as ditches is one task solved in cross-
country driving in a joint project with U.S. partners.

Chapter 15 gives some conclusions on the overall approach and an outlook on
chances for future developments.



2 Basic Relations: Image Sequences —
“the World”

Vision is a process in which temporally changing intensity and color values in the
image plane have to be interpreted as processes in the real world that happen in 3-
D space over time. Each image of today’s TV cameras contains about half a mil-
lion pixels. Twenty five (or thirty) of these images are taken per second. This high
image frame rate has been chosen to induce the impression of steady and continu-
ous motion in human observers. If each image were completely different from the
others, as in a slide show with snapshots from scenes taken far apart in time and
space, and were displayed at normal video rate as a film, nobody would understand
what is being shown. The continuous development of action that makes films un-
derstandable is missing.

This should make clear that it is not the content of each single image, which
constitutes the information conveyed to the observer, but the relatively slow devel-
opment of motion and of action over time. The common unit of 1 second defines
the temporal resolution most adequate for human understanding. Thus, relatively
slow moving objects and slow acting subjects are the essential carriers of informa-
tion in this framework. A bullet flying through the scene can be perceived only by
the effect it has on other objects or subjects. Therefore, the capability of visual per-
ception is based on the ability to generate internal representations of temporal proc-
esses in 3-D space and time with objects and subjects (synthesis), which are sup-
ported by feature flows from image sequences (analysis). This is an animation
process with generically known elements; both parameters defining the actual 3-D
shape and the time history of the state variables of objects observed have to be de-
termined from vision.

In this “analysis by synthesis” procedure chosen in the 4-D approach to dynamic
vision, the internal representations in the interpretation process have four inde-
pendent variables: three orthogonal space components (3-D space) and time. For
common tasks in our natural (mesoscale, that is not too small and not too large)
environment, these variables are known to be sufficiently representative in the
classical nonrelativistic sense.

As mentioned in the introduction, fast image sequences contain quite a bit of re-
dundancy, since only small changes occur from one frame to the next, in general;
massive bodies show continuity in their motion. The characteristic frequencies of
human and most animal motion are less than a few oscillations per second (Hz), so
that at video rate, at least a dozen image frames are taken per oscillation period.
According to sampled data theory, this allows good recognition of the dynamic pa-
rameters in frequency space (time constants, eigenfrequencies, and damping). So,
the task of visual dynamic scene understanding can be described as follows:
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Looking at 2-D data arrays generated by several hundred thousands of sen-
sor elements, come up with a distribution of objects in the real world and of
their relative motion. The sensor elements are arranged in a uniform array
on the chip, usually. Onboard vehicles, it cannot be assumed that the sensor
orientation is known beforehand or even stationary. However, inertial sen-
sors for linear acceleration components and rotational rates are available for
sensing ego-motion.

It is immediately clear that knowledge about object classes and the way their
visible features are mapped into the image plane is of great importance for image
sequence understanding. These objects may be grouped in classes with similar
functionality and/or appearance. The body of the vehicle carrying the sensors and
providing the means for locomotion is, of course, of utmost importance. The
lengthy description of the previous sentence will be abbreviated by the term: the
“own” body. To understand its motion directly and independently of vision, signals
from other sensors such as odometers, inertial angular rate sensors and linear ac-
celerometers as well as GPS (from the “Global Positioning System” providing geo-
graphic coordinates) are widely used.

Image data points carry no direct information on the distance at which their light
sources, which have stimulated the sensor signal are in the real world; the third di-
mension (range) is completely lost in a single image (except maybe for intensity at-
tenuation over longer distances). In addition, since perturbations may invalidate the
information content of a single pixel almost completely, useful image features con-
sist of signals from groups of sensor elements where local perturbations tend to be
leveled out. In biological systems, these are the receptive fields; in technical sys-
tems, these are evaluation masks of various sizes. This now allows a more precise
statement of the vision task:

By looking at the responses of feature extraction algorithms, try to find ob-
jects and subjects in the real world and their relative state to the own body.
When knowledge about motion characteristics or typical behaviors is avail-
able, exploit this in order to achieve better results and deeper understanding
by filtering the measurement data over time.

For simple massive objects (e.g., a stone, our sun and moon) and man-made ve-
hicles, good “dynamic models” describing motion constraints are known very of-
ten. To describe relative or absolute motion of objects precisely, suitable reference
coordinate systems have to be introduced. According to the wide scale of space ac-
cessible by vision, certain scales of representation are advantageous:

— Sensor elements have dimensions in the micrometer range (um).
— Humans operate directly in the meter (m) range: reaching space, single step

(body size).

— For projectiles and fast vehicles, the range of immediate reactions extends to
several hundred meters or kilometers (km).

— Missions may span several hundred to thousands of kilometers, even one-third
to one-half around the globe in direct flight.
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— Space flight and lighting from our sun and moon extend up to 150 million km as

a characteristic range (radius of Earth orbit).

— Visible stars are far beyond these distances (not of interest here).

Is it possible to find one single type of representation covering the entire range?
This is certainly not achievable by methods using grids of different scales as often
done in “artificial intelligence”- approaches. Rather, the approach developed in
computer graphics with normalized shape descriptions and overall scaling factors
is the prime candidate. Homogeneous coordinates as introduced by [Roberts 1965,
Blinn 1977] also allow, besides scaling, incorporating the perspective mapping
process in the same framework. This yields a unified approach for computer vision
and computer graphics; however, in computer vision, many of the variables enter-
ing the homogeneous transformation matrices are the unknowns of the problem. A
direct application of the methods from computer graphics is thus impossible, since
the inversion of perspective projection is a strongly nonlinear problem with the
need to recover one space component completely lost in mapping (range).

Introducing strong constraints to the temporal evolution of (3-D) spatial trajec-
tories, however, allows recovering part of the information lost by exploiting first-
order derivatives. This is the big advantage of spatiotemporal models and recursive
least-squares estimation over direct perspective inversion (computational vision).
The Jacobian matrix of this approach to be discussed throughout the text plays a vi-
tal role in the 4-D approach to image sequence understanding.

Before this can be fully appreciated, the chain of coordinate transformations
from an object-centered feature distribution for each object in 3-D space to the
storage of the 2-D image in computer memory has to be understood.

2.1 Three-dimensional (3-D) Space and Time

Each point in space may be specified fully by giving three coordinates in a well-
defined frame of reference. This reference frame may be a “Cartesian” system with
three orthonormal directions (Figure 2.1a), a spherical (polar) system with one (ra-
dial) distance and two angles (Figure 2.1b), or a cylindrical system as a mixture of
both, with two orthonormal axes and one angle (Figure 2.1c).

The basic plane of reference is usually chosen to yield the most simple descrip-
tion of the problem: In orbital mechanics, the plane of revolution is selected for
reference. To describe the shape of objects, planes of symmetry are preferred; for
example, Figure 2.2 shows a rectangular box with length L, width B and height H.
The total center of gravity S; is
given by the intersection of two Z @
space diagonals. It may be con-
sidered the box encasing a road
vehicle; then, typically, L is
largest and its direction deter-
mines the standard direction of
travel. Therefore, the centerline  Figure 2.1. Basic coordinate systems (CS): (a)
of the lower surface is selected  Cartesian CS, (b) spherical CS, (c) cylindrical CS
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as the x-direction of a body-fixed coordinate system (X, Vs, Z») With its origin 0, at
the projection Sy, of S; onto the ground plane.

To describe motion in an all-dominating field of gravity, the plane of reference
may contain both the gravity and the velocity vector with the origin at the center of
gravity of the moving object. The “horizontal” plane normal to the gravity vector
also has some advantages, especially for vehicle dynamics since no gravity com-
ponent affects motion in it.

If a rigid object moves in 3-D space, it is most convenient to describe the shape
of the object in an object-oriented frame of reference with its origin at the center

(possibly even the center of gravity) or some other

Blel 2 Ll2, convenient, easily definable point (probably at its
— surface). In Figure 2.2, the shape of the rectangular
H" ) e b . box is defined by the lengths of its sides L, B, and H.
y/ ‘-szobxb The origin is selected at the center of the ground
3 vz, plane S,. If the position and orientation of this box

A

has to be described relative to another object, the
frame of reference given in the figure has to be re-
lated to the independently defined one of the other
object by three translations and three rotations, in
general.

To describe the object (box) shape in the new frame of reference, a coordinate
transformation for all significant points defining the shape has to be performed. For
the rectangular box, these are its eight corner points located at + L/2 and + B/2 for
z,= 0 and —H. The straight edges of the box remain linear connections between
these points. [The selection of the coordinate axes has been performed according to
the international standard for aero-space vehicles. X is in the standard direction of
motion, x and z are in the plane of vehicle symmetry, and y completes a right-
handed set of coordinates. The origin at the lower outside of the body alleviates
measurements and is especially suited for ground vehicles, where the encasing box
touches the ground due to gravity, in the normal case. Measuring altitude (eleva-
tion) positively upward requires a sign change from the positive z-direction (direc-
tion of the gravity vector in normal level flight). For this reason, some national
standards for ground vehicles rotate the coordinate system by 180° around the x-
axis (z upward and y to the left).]

In general, the coordinate transformations between two systems in 3-D space
have three translational and three rotational components. In the 1970s, when these
types of operations became commonplace in computer graphics, together with per-
spective mapping as the final stage of visualization for human observers, so-called
“homogeneous coordinates” were introduced [Roberts 1965, Blinn 1977]. They al-
low the representation of all transformations required by transformation matrices of
size 4 by 4 with different entries. Special microprocessors have been developed in
the 1970s allowing us to handle these operations efficiently. Extended concatena-
tions of several sequential transformations turn out to be products of these matri-
ces; to achieve real-time performance for realistic simulations with visual feedback
and human operators in the loop, these operations have shaped computer graphics
hardware design (computer generated images, CGI [Foley et al. 1990]).

Figure 2.2. Object-orien-
ted coordinate system for
a rectangular box
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2.1.1 Homogeneous Coordinate Transformations in 3-D Space

Instead of the Cartesian vector rc = (X, Y, z), the homogeneous vector

h o= (p-X Py, p-zp) (2.1)
is used with p as a scaling parameter. The specification of a point in one coordinate
system can be “transformed” into a description in a second coordinate system by
three translations along the axes and three rotations around reference axes, some of
which may not belong to any of the two (initial and final) coordinate systems.

2.1.1.1 Translations

This allows writing translations along all three axes by the amount Ar = (4x, 4y,
Az) in the form of a matrix - vector multiplication with the homogeneous transfor-
mation matrix (HTM) for translation:

1 0 0 Ax

r_010Ayr
1o o1 Az|” (2.2)
000 1

The three translation components shift the reference point for the rotated origi-
nal coordinate system.

2.1.1.2 Rotations

Rotations around all axes may be described with the shorthand notation ¢ =
cos(angle) and s = sin(angle) by the corresponding HTMs:

1 0 0O c 0 -s 0 c s 00

100 ¢c s 0O, |01 0 O, |-scO00O
*10 =s ¢ 0" Y |s 0 ¢c 0 *|0o 010/ 2.3)

0 0 01 00 0 1 0 0 01

The position of the 1 on the main diagonal indicates the axis around which the
rotation takes place.

The sequence of the rotations is of importance in 3-D space because the final re-
sult depends on it. Because of the dominant importance of gravity on Earth, the
usual nomenclature for Euler angles (internationally standardized in mechanical
engineering disciplines) requires the first rotation be around the gravity vector, de-
fined as “heading angle” y (or pan angle for cameras). This reference system is
dubbed the “geodetic coordinate system”; the x- and y-axes then are in the horizon-
tal plane. The x-direction of this coordinate system (CS) may be selected as the
main direction of motion or as the reference direction on a global scale (e.g., mag-
netic North). The magnitude of rotation v is selected such that the x-axis of the ro-
tated system comes to lie vertically underneath the x-axis of the new CS [e.g., the
body-fixed x-axis of the vehicle (xo in Figure 2.3, upper right corner)]. As the sec-
ond rotation, the turn angle of the vehicle’s x-axis perpendicular to the horizontal
plane has proven to be convenient. It is called “pitch angle” 6 for vehicles (or tilt
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angle for cameras); the rota-
tion takes place around an in-
termediate y-axis, called node
axis ky. This already yields the
new Xx-direction Xo, around
which the final rotation takes
place: The roll- or bank angle
¢ indicates the angle around
this axis between the plane of
symmetry of the vehicle and
the vertical plane. All of these
angles are shown twice in the
figure for easier identification

Figure 2.3. Transformation of a coordinate system of the individual axis of rota-
tion.

2.1.1.3 Scaling

Due to Equation 2.1 scaling can be achieved simply by setting the last element in
the HTM [lower right element p (4, 4)] different from 1. All components are then
interpreted as scaled by the same factor p. This scaling is conveniently exploited by
application to perspective mapping.

2.1.1.4 Perspective Mapping

Figure 2.4 shows some properties of perspective projection by a pinhole model. All
points on a ray through the projection center P, are mapped into a single point in
the image plane at a distance f (the focal length) behind the plane x, = 0. For ex-
ample, the points Qy, Q,, and Q3 are all mapped into the single point Q;. This is to
say that the 3-D depth to the point in the real world mapped is lost in the image.
This is the major challenge for monocular vision. Therefore, the rectangle in the
image plane Re; may correspond both to the two rectangles Re; and Re, and to the
trapezoids Trap; and Trap, at
different ranges and with dif-
ferent orientations in the real
world. Any four-sided poly-
gon in space (also nonplanar
ones) with the corner points
on the four rays through the
corners given will show up as
the same (planar, rectangular)
shape in the image.

X 'Y

»
__..Almage
lane
mirrored)
X,

To get rid of the sign projection
changes in the image plane center
incurred by the projection
center P, (pinhole), the posi-  Figure 2.4. Perspective projection by a pinhole

tion of this plane is mirrored ~ camera model
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at x, = 0 (as shown). This allows us to easily write down the mathematical relation-
ship of perspective mapping when the x,-axis is selected perpendicularly to the im-
age plane and the origin is at the pin hole (projection center):
y, I f =y /X
z, 1T =12z1x,

yi =yl (x-Q/7f)
z, =z /(x-@Q/T)).

This perspective projection equation may be included in
the HTM-scheme by the projection matrix P (P, for pixel
coordinates). It has to be applied as the last matrix multipli- Yy Yy
cation and yields (for each point-vector xr in the real world) , L proj
the “homogeneous” feature vector “e”. The image coordi- N
nates yi and zi of a feature point are then obtained from the
“homogeneous” feature vector e by dividing the second and
third component resulting from Equation 2.4a by the fourth
one (see Figure 2.5 for the coordinates):

(2.4)

or

Figure 2.5. Image
coordinates

0 000 0 0 0 0
p| 0 L OO, JO Kk 00 (243

0 o010 P00 0k O

1/f 00 0 1f 0 0 0

The image coordinates yi and zi of a feature point are then obtained from the
“homogeneous” feature vector e by dividing the second and third component result-
ing from Equation 2.4a by the fourth one (see Figure 2.5 for the coordinates):

y, = (second component e, )/(fourth component e, )

z, = (third component e, )/(fourth component e, ). (2.5)

The left matrix in Equation 2.4a leaves the y-component (within each image
line) and the z-component (for each image line) as metric pixel coordinates.

The x-component has lost its meaning during projection and is used for scaling
as indicated by Equation 2.4 and the last row of Equation 2.4a. If coordinates are to
be given in pixel values in the image plane, the “1”s on the diagonal are replaced
by ky (element 2, 2) and k, (element 3, 3) representing the number of pixels per unit
length (Equation 2.4a right). Typical pixel sizes at present are 5 to 20 micrometer
(approximately square), or ky, k, ~ 200 to 50 pixels per mm length.

After a shift of the origin from the center to the upper left corner (see Figure
2.5) this y-z sequence (now dubbed u-v) is convenient for the way pixels are digi-
tized line by line by frame grabbers from the video signal. (For real-world applica-
tions, it has to be taken into account that frame-grabbing may introduce offsets in
y- and z-directions, which lead to additive terms in the corresponding fourth col-
umn.)
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2.1.1.5 Transformation of a Planar Road Scene into an Image

The set of HCTs needed for linking a simple road scene with corresponding fea-
tures in an image is shown in Figure 2.6. The road is assumed to be planar, level
and straight. The camera is somewhere above the road at an elevation H, (usually

Bl, rod of Ien‘gth L - L
: horizontal line of sight ;

Figure 2.6. Coordinate systems for transforming a simple road scene into an image

known in vision tasks) and at a lateral offset yg. (usually unknown) from the road
centerline. The width B of the road is assumed to be constant in the look-ahead
range; the marked centerline of the road partitions it into two equal parts. Some
distance down the road there is a rod of length L as an obstacle to be detected. To
simplify the task, it is assumed to be a one-dimensional object, easily describable
in an object centered coordinate system to extend from x, = —-L/2 to +L/2. (The
real-world object does have a cross section of some extension and shape that war-
rants treating it as an obstacle not to be driven over.) Relative to the road the rod
does have a lateral position y.r Of its center point C from the centerline of the road
and an orientation , between the object-fixed x-axis X, and the tangent direction
of the road Xgro. Figure 2.6 shows the situation with the following CS:

1. X, object-oriented and body-fixed in rod-direction (only one component).

2. Geodetic CS of the object (rod); geodetic CSs are defined with their X-Y-plane
in the horizontal plane and their origin at the center of gravity of the object. The
orientation of the x-axis in the horizontal plane is left open for a convenient
choice in connection with the actual task. In this case, there is only one road di-
rection, and therefore, Xqg, is selected as the reference for object orientation.
There is only one rotation-angle v, between the two CS 1 and 2 because gravity
keeps the rod on the road surface (X, - Y plane). The corresponding HTM is Ry,
[with a 1 in (3, 3) for rotation around the z-axis].

3. The road-centered geodetic CS (indexed “gR”) at the longitudinal location of
the camera has its origin at Ogc, and Xy is directed along the road. Between the
CS 2 and 3 there are (in the special case given here) the two translations x, and
Yor- The corresponding HTM is Tg, With entries X, and yqr in the last column of
the first two rows.

4. The geodetic CS is at the projection center of the camera (not shown in Figure
2.6 for clarity); between the CS 3 and 4 there are again (in the special case given
here) the two translations y,. and Hc . The latter one is negative since zg is posi-
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tive downward. The corresponding HTM is Tgc With entries yy and H; in the last

column of the second and third rows.

5. The camera-oriented CS (indexed “c”): The gaze direction of the camera is as-
sumed to be fixed on the center of the road at the look-ahead distance of the ob-
ject center. The elevation H, of the camera above the ground and its lateral off-
set yqc yield the camera pan (yaw) and tilt (pitch) angles y. and ®.. The camera
CS is obtained from CS 4 by two rotations: First, rotating around the Zy -axis
(vertical line through camera projection center, not directly shown but indicated
by the vector H, in the opposite direction) by the amount v, yields the horizon-
tal direction of sight. The corresponding HCT-matrix is R,c. Now the X-Z-plane
cuts the axis Xgr at distance xq,. Within this X-Z-plane now the intermediate x-
axis has to be rotated until it also cuts the axis Xgr at distance X, (pitch angle -
®.) and becomes X.. The corresponding HTM is Re. [with a 1 in position (2, 2)
for rotation around the intermediate y-axis].

6. The image CS into which the scene is now mapped by perspective projection.

7. The CS for the image matrix of pixel points in computer memory. During data
acquisition and transfer, shifts may occur: By misalignments of a frame grabber,
unintentional shifts of the image center may occur. Intentionally, the origin of
the image CS may be shifted to the upper left corner of the image (see coordi-
nates u, v in Figure 2.5).

Since all these transformations can be applied to only one point at a time, ob-
jects consisting of sequences of straight lines (so-called “polygons™) have to be de-
scribed by the ensemble of their corner points. This will be treated in Section 2.2.
Note here that each object described in a certain CS has to be given by the ensem-
ble of its corner points. For example, the rod is given by the two endpoints E and T
on the X, -axis at —L/2 and +L/2. The straight road is given by its left and right
boundary lines Bl and Br, and by the centerline Cly in the road-CS. All three lines
are realized by a straight line connection between two end points with indices 1
(left side of Figure 2.6) and 2 (right); all end points of lines defining the road lie at
z = 0. The points on the left-hand side of the road are at y = —B/2, and those on the
right-hand side are at + B/2. The centerline Clg isaty = 0.

Let us consider the transformation of the endpoint T of the rod into the image
taken by the camera according to Figure 2.6. In the 3-D homogeneous object CS of
the rod, this point has the coordinate description x,' = ( L/2, 0, 0, 1). After transi-
tion to the geodetic CS Xy, , the state vector according to point 2 in the list above
changes to

Xgo = Ry/o “ X (26)
To describe the point T in the road-oriented CS, the second HTM Tg, for trans-
lation from C to Og. according to point 3 above has to be applied:
XgR = TRo : Ry/o “ %o (27)
For the transition to the geodetic CS of the camera, multiplication by the HTM
Tre With entries y,c and H, has to be performed according to point 4 above:
ch = TRc 'TRo ! Ry/o X (28)
The two translations may be combined into a single matrix containing in the up-
per three rows of the fourth column the sum of the elements in the corresponding
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rows of the HTMs in Equation 2.8. It has not been done here because the direction
of the local road tangents would not be the same for a curved road. Therefore, be-
fore performing the second translation to the origin of the camera CS, a rotation
around the vertical axis by the difference y in local road direction would have to be
inserted (yielding another rotation matrix R, ¢, between Tg. and Tgo.

Now the two rotation-angles . and @ for the optical axis of the camera have to
be applied. Since . according to the definition has to be applied first, R, has to
stand to the right because this matrix will be encountered first when the column-
vector X, is multiplied from the right. This finally yields the state vector for the
point T in camera coordinates:

Xeo = Ryc Roc - Tre *TRro  Ryo - Xo- (2.9

Applying perspective projection (Equation (2.4) to this 3-D-point X, Yields the
“homogeneous” feature data for the image coordinates e according to Equation 2.5;
note that the five HTMs contain the unknown variables of the vision task written
below each matrix:

e=| Pp “Rye - R://c Toe Tro Ry/o]'xo =T

unknowns: 0, v, Vg (oo Yor ) Wo !

The explicitly written down (transposed) form (e)" = (ey, e, es, €4) then yields

the image coordinates
Yi =€ leg; 7 =e3 /ey (211)

The expression in square brackets is the same for any point to be transformed
from object- into camera- coordinates. Therefore, in computer graphics, where all
elements entering the HTMs are known beforehand, the so-called concatenated
transformation matrix Ty is computed as the product of all single HTMs once for
each object and aspect condition. A single matrix-vector multiplication Ty - X, then
yields the position in homogeneous feature coordinates for the image of a point on
the object at X, in object-centered coordinates. Equation 2.11 finally gives the im-
age coordinates.

Note that these coordinates are real numbers, which means that the positions of
the points mapped into the image are known to subpixel accuracy. If measurements
of image features (Chapter 5) can be done to subpixel accuracy, too, the methods
applied in recursive estimation (see Chapter 6) yield improved results by not
rounding off feature coordinates to integer numbers (as is often done in a naive ap-
proach).

X

ot " o*

(2.10)

2.1.1.6 General Concatenations of HCTs; the Scene Tree

While the use of these transformation matrices in computer graphics is common-
place as a flexible tool for adaptation to new or modified tasks, in machine vision,
until very recently, they have been exploited only during the formulation phase of
the problem. Then, to be numerically more efficient on general-purpose processors,
the resulting expressions of the matrix product T, have been hand-coded, initially.
With the processing power available now, more easily adaptable codes become
preferable; this is achieved by keeping each HTMs separate until numerical evalua-
tion because in each matrix variables to be iterated may appear.
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The challenge in machine vision as opposed to computer graphics is that some
of the transformation parameters entering the matrices are not known beforehand
but are the unknowns of the vision process, which have to be determined from im-
age sequence analysis. Therefore, in each transformation, its sensitivity to small
parameter changes has to be determined to compute the corresponding overall
“Jacobian” matrices (JM, the first-order approximation for the nonlinear functional
relationship describing the mapping of features on objects in the real world to those
measured in the images). This rather compute-intensive operation and an efficient
implementation will be discussed in Section 2.1.2.

The tendency toward separation of application-oriented aspects from those
geared to the general methods of dynamic vision required a major change from the
initial approach with respect to handling homogeneous coordinates. Concatenation
is shifted to the evaluation of the scene model at runtime; then, both the nominal
total HTM and the partial-derivative matrices for all unknown parameters and state
variables are computed in conjunction (maybe numerically). This allows efficient
use of intermediate results and makes the setup of new problems much easier for
the user. The corresponding representation scheme for all objects and CSs in a so-
called “scene tree” has been developed by D. Dickmanns (1997) and will be dis-
cussed in the following paragraphs.

Figure 2.7 without the shaded areas gives an example of a scene tree for describ-
ing the geometrical relations among several objects of relevance for the vision task
shown in Figure 2.6 a single

(3 (known) translations], QVehide body camera on a straight road. The
2rowtons ¥ O | , 7% [ vanat nodes and edges in the shaded
"y translations, ! )
Camera ~" \,| 3rotations areas on the right-hand side
Fy—— /(1\ (General case) and on top will be needed for
, A N
2 rotations ¥, ©, &\Qroa dnearhy ~ the more general case of a
range camera onboard a vehicle
bearing \| Curvature .
(@) || e——. moving on a curved road. In
biect Cro CralLn) the straight road scene, the
O_o.!eﬁ . Road atob-  “object” represents the rod on
;) ‘Je°“°°a“°” the road at some look-ahead
1 translation yg, || Curvature distance x.; its lateral position
1 rotation ¥, \| parameters
Ceo CralLp) on the road can be recovered
storage i O in the image from the road
. anisnin -
location hoint Road boundaries nearby and from

for straight road O far away

the vanishing point at the hori-

Figure 2.7. Scene tree for representing spatial rela- zon (see Figure 2.8).The figure

tionships between objects seen and their image in  SNOWSs the resulting image, into
perspective projection which some labels for later

image interpretation have been
inserted.

For a horizontal straight road with parallel lines, the vanishing point, at which
all parallel lines intersect, lies on the horizon line. Its distance components to the
image center yield the direction of the optical axis: —y. to the direction of the road
and —; to the horizon line. The center of gravity (cg) of the rod has the averaged
coordinates of the end points E and T in 3-D space.



32 2 Basic Relations: Image Sequences — “the World”

The location of this point relative to the road centerline gives the lateral offset
Yor at the look-ahead distance X, . The yaw angle v, of the rod relative to the road
can be determined by computing the difference in the positions of the end points E
and T; however, the distortions from perspective mapping have to be taken into ac-
count. All these interpretations are handled automatically by the 4-D approach to

Center linc«— VVanishing dynamic vision (see Chapter 6).

| Harizon._._._ om0} TF poing | Since the camera looks from
//77 above almost tangentially to the

Look-ahead  Bl, =%/ i “Br, -0 plane containing the road, the dis-
#range (SRR °l| tance in the real world increases

with decreasing row index. If a

""'"c"él}_%'{é'r' certain geometric resolution for
C . . . .

1 4 / verical|  €ach pixel is required, there is a

Sufficient / ‘B limit to the look-ahead range us-

e road width able (shown on the left-hand side

resolution Road in Ei 28
“cr:1eenter ;Lateral camera InFgure 2. ) . . .
/ / position at x = 0 For example, if each pixel is

not allowed to cover more than 5
cm normal to the optical axis, the
look-ahead range Lqgs (in meters)
or simply Ls (in cm) is thus de-
fined. This makes sense in road-scene analysis since lane markings, usually, are 10
to 50 cm wide and at least two pixels normal to a line are required for robust rec-
ognition under perturbations with edge feature extractors (Chapter 5).

Looking at sequences of images like these, the camera motion and the relative
state of all objects of relevance for performing a driving mission have to be recog-
nized sufficiently well and early with minimal time delay. The approach given in
this book has proven to solve this problem reliably. Before the overall solution for
precise and robust recognition can be discussed, all components needed have to be
introduced first. Starting in Chapter 7, they will be applied together; the perform-
ance and complexity level will be open-ended for future growth.

Back to the scene tree: In Figure 2.7 each node represents an object in the real
world (including virtual ones such as the CS at certain locations). The edges repre-
sent HCTSs, i.e., encodings of geometric relations. In combination with knowledge
about the effects of these transformations, this allows a very compact description
of all objects of relevance in the visual scene. Only the components of spatial state
vectors and a few parameters of generic models for the objects are needed to repre-
sent the scene. The rest of the knowledge is coded in the object classes from which
the objects hypothesized are generated.

The edges (a) and (b) at the center of Figure 2.7 (from the camera, respectively,
from the “object” to the “road at the object location”) are two alternative ways to
determine where the object is. Edge (a) represents the case, where the bearing an-
gles to some features of the road and to the object are interpreted separately; the
road features need not necessarily be exactly at the location of the object. From
these results, the location of the road and the lateral position of the object on the
road can be derived indirectly in a second step. The difference in bearing angle to
the road center at the range of the object yields the lateral position relative to the

Figure 2.8. Image resulting from the scene
given in Figure 2.6 after perspective mapping
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road. In the case of edge (b), first only the range and bearing to the object are de-
termined. Then at the position of the object, the features of the road are searched
and measured, yielding directly the explicit lateral position of the object relative to
the road. This latter procedure has yielded more stable results in recursive estima-
tion under perturbations in vehicle pitch and yaw angles (see Chapter 6).

The sequence of edges in Figure 2.7 specifies the individual transformation
steps; each node represents a coordinate system (frequently attached to a physical
body) and each edge represents HCTS, generally implying several HTMs. The un-
known parameters entering the HCTs are displayed in the boxes attached to the
edge. At the bottom of each branch, the relevant object is represented in an object-
centered coordinate system; this will be discussed in Section 2.2. A set of cameras
(instead of a single one) may be included in the set of nodes making their handling
schematic and rather easy. This will be discussed in connection with EMS vision
later.

The additional nodes and edges in the shaded areas show how easily more de-
tailed models may be introduced in the interpretation process. Figure 2.9 gives a
sketch of the type of road scene represented by the full scene tree of Figure 2.7.

1
Gaze platform : Movable part of gaze control |
Camera coordindte system_Platform in pan & tilt |

Exploded view
of location of

base of the

gaze plat -
form 7
4
Own
vehicle cg R e
T <O Yre 7. Vlookahead
H RO dist L
VZ istance L,
R y(ij RL-"Change AY;
cé)nater Ve, in road heading
at vehicle cg

Figure 2.9. Coordinate systems for a general scene with own vehicle (index b) and one
other vehicle (index o) on a curved road

Now, the position of the own vehicle relative to the road has to be determined. In
the general case, these are three translational and three rotational components. Ne-
glecting movements in bank angle (they average around 0) and in heave (vertical
translation) and taking the longitudinal position as the moving origin of the vehicle
CS, the same components as in the previous case have to be determined.

However, now the camera is located somewhere in the vehicle. The three trans-
lational components are usually fixed and do not change; the two rotational com-
ponents from gaze control can be measured conventionally on the platform and are
assumed known, error-free. So, there is no new unknown variable for active gaze
control; however, the transformations corresponding to the known variables from
mounting the platform on the vehicle have to be applied.
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For the more general case of a curved road (shaded area to the right in Figure
2.7), the road models to be discussed in later sections have to be applied. They in-
troduce several more unknowns into the vision process. However, using differen-
tial-geometry models minimizes the number of these terms; for planar roads, two
sets of additional CSs allow large look-ahead ranges even with up to two inflection
points of the road (changes of the sign of curvature; Figure 2.9 has just one).

General scheme of the scene tree: The example of a scene tree given above can
be generalized for perspective mapping of many objects in the real world into im-
ages by several cameras. For practical reasons, one CS will be selected as the main
reference; in vehicle guidance, this may be the geodetic CS linked to the center of
gravity of the vehicle (or some easily definable one with similar advantages). This
is called the “root node” and is drawn as the topmost node in standard notation.
The letter T shall designate all transformations for uniformity (both translations
and rotations). The standard way of describing these transformations is from the
leaves (bottom) to the root node. Therefore, when forming the total chain of trans-
formations Ty, from features on objects in the real world into features in an image,
denoted by K in Figure 2.10, the inverse transformation matrices Ty;"* have to be
used from the root to the leaves (left-hand
Root node side). A total transformation Ty, exists for
each object-sensor pair, of which the ob-
ject can be visually observed from the
sensor. Once the scene tree has been de-
fined for m cameras and n objects, the
........ evaluation of the (at most n - m) total

c[ transformation matrices is independent of
i the special task and can be coded as part
\' T of the general method [D. Dickmanns
N 1997].
K; Objects O 5 Since objects may appear and disap-
Image in3-dimens. | =i pagr during a mission, the perception sys-
coordinates real world

tem has to have the capability of autono-
Figure 2.10. General scheme for object ~ MOusly inserting and deleting object
mapping in the scene graph branches in the scene tree. This object
hypothesis generation and deletion capa-

bility is a crucial part of intelligent visual

perception. Detailed discussions of various task domains will be given in later sec-
tions after the elements necessary for a flexible overall system have been intro-
duced. Let the computation of Ty, be called the “traverse” of the scene graph. The
recursive estimation method presented in Chapter 6 requires that this traverse is
done not just once for each object-sensor pair but (q + 1) times, if there are q un-
known state variables and parameters entering the HTMSs in Ty This model-based
approach yields a first-order approximation (so-called “Jacobian matrices” or in
short “Jacobians” of perspective mapping) describing the relationship between all
model parameters and state components in the mentally represented world on the
one hand, and feature positions in the images, on the other hand. Note that for 3-D
models, there is also spatial information available in the Jacobians, allowing depth
perception even with monocular vision (motion stereo). Because of this heavy
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workload in computation, efficient evaluation of all these traverses is very impor-
tant. This is the subject of the next section.

Again, all of this is independent of the special application, once the scene tree
for the set of problems has been defined.

2.1.2 Jacobian Matrices for Concatenations of HTMs

To be flexible in coding and to reduce setup time for new task domains, the ele-
ments of Jacobian matrices may be determined by numerical differencing instead
of fully analytical derivations; this is rather computer-intensive. An analytical deri-
vation based on the factored matrices may be most computer-efficient. Figure 2.11
shows in the top row the total HTM for the homogeneous feature vector e of the
example Equation 2.10 from road vehicle guidance with scene perception through
an active camera. The two translations T have two and one unknown components
here (maximally six are possible in total); all three rotation-angles have to be de-
termined from vision as well. So there are six unknowns in the problem, for which
the entries in the Jacobian matrix have to be computed.

To obtain these elements, nominal value and the systematically perturbed values
due to changes in each unknown state variable or parameter dx; have to be com-
puted for each feature point, just one at a time to obtain partial derivatives. If there
are n state variables and q parameters to be iterated during recursive estimation, (n
+ g + 1) total transformations have to be computed for each feature point. To be ef-
ficient, the nominal values should be exploited as much as possible also for com-
puting the n + g perturbed values. This procedure for the unknown state compo-
nents is sketched in the sequel; adaptable parameters will be discussed in Section
2.2 and Chapter 6.

2.1.2.1 Partial Derivatives of Homogeneous Transformation Matrices

The overall transformation matrix for each feature point xg on the object (the rod
in our case) in 3-D space was given by Equation 2.10:
€= [ Pp ' Rec . ch 'TRc 'TRo : R\uo]'xo = Ttot -X

unknowns: 0., v, Vg (oo Yor ) Vo !

To describe the state of the rod relative to the camera, first its state relative to
the road CS has to be specified by (y, , X0, Yor). Then the state of the camera rela-
tive to the road is given by [y , (the known elevation Hc), y. , ©¢]. Under the as-
sumption of a planar straight road, the geometric arrangement of the objects “cam-
era” and “rod” is fully described by specifying these “state components”. The
unknown state vector Xs of this problem with six components thus is

Xs = (Wor Xeo + Yor: Yo » We + 0c)- (212)
These components have to be iterated during the vision process so that the un-

derlying models yield a good fit to the visual features observed. In Equation 2.10
each R represents a single rotational and each T up to three translational compo-

o*

(2.10)
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nents, the unknowns of which are written below them. The total HTM including
perspective mapping, designated by T, is written
Ttot =P Rec : R\yc 'TRc 'TRo : Rwo' (213)
The partial derivative of T, with respect to any component of the state vector xs
(Equation 2.12) is characterized by the fact that each component enters just one of
the HTMs and not the other ones. Applying the chain rule for derivatives of prod-
ucts such as oTy0(x) yields zeros for all the other matrices, so that the overall deriva-
tive matrix, for example, with respect to y,. (abbreviated here for simplicity by just
X) entering the central HTM Tg. is given by
OT 10(X) =Ty =Rye "Ry "0Tre /9(X);Tro "Ry
=Ry - ch - T “Tro - Rwo'
Two cases have to be distinguished for the general partial derivatives of the
HTMs containing the variables to be iterated: Translations and rotations.
Translations: These components are represented by the first three values in col-
umn 4 of HTMs. In addition to the nominal value for the transformation matrix Ty

as given in Equation 2.2, also the partial derivative matrices for the unknown vari-
ables are computed in parallel. The full set of these matrices is given by

(2.14)

Rex

oo 000l e
Ar,
h= e =T T O = =T
0 0 1 Ar a(Ar) |0 0 0 0 @
000 1 0000
0000 0000 (2.15)
oy _[00 0 1] . Ty |00 00
a(ar) |0 0 0 of " “o(ar) (00 0 1| "7 (b
0000 0000

Rotations: According to Equation 2.3 the nominal HTMs for rotation (around the
X-, ¥- and z- axis respectively) are repeated below: s stands for the sine and c¢ for
the cosine of the corresponding angle of rotation, say a.

10 00 c 0 -s0 c s00
R/ ¢ SO 01 00 _-sc00f 23)
10 -=s ¢ 0|"Y |s 0 c¢c O/ ]0 010 :
0 0 01 00 0 1 0 001
The partial derivatives of the transformation matrices oR/do., may be obtained from
d(sina)/da=cosa = c; d(cosa)/da=-sina =-s. (2.16)
This leads to the derivative matrices for rotation
0 0 0 O -s 0 —c O -s ¢ 00
R = 0 -s ¢ 0Of _ 0 0 0 0|, _|—c -s 00 (2_17)
“10 ¢ -s 0 ¥ c 0 -s 0 |0 00
00 00 000 0 0 0 00

It is seen that exactly the same entries s and c as in the nominal case are re-
quired, but at different locations and some with different signs. The constant values
1 have disappeared, of course.
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2.1.2.2 Concatenations and Efficient Computation Schemes

The overall transformation matrix for each point (see Equation 2.10) together with
the concatenated derivative matrices for computing the Jacobian matrices are
shown in Figure 2.11. It can be seen that many multiplications of matrices are the

€N = E Roc Ry Tre Tro Ryc, Xrk = Tt Xgx
~
Nominal case (index N): T,= Mg
= - >~
Tt =P \Rec R\uc TRc TRo R\VC:XFk
Partial derivatives: YoM, V,
sae (96, /0y, =P Ry Ry Tre Tro Riyo Xm = €p,
Per- Vl p=1..6
tur- , /—H
ba- 9 €y 1o Xeo = P Rec R\yc TRC T Rox R\yc Xk 2
tion s
9e/0Yr =P Ry Rye Tre Troy Rye Xg 3
eff -
ects < V2
on 9 € 1o ygc =P Rec R\uc Tch TRo ch Xrk 4
. V, M,
homo - -~ A ~
gene- |de /dy, =P Ry, R ve Tre Tro Ryc Xex 5
ous’ M
Va2
feature L~ ~
vector Ka e /00, =P Ry \ch Tre  Tro Ryc, Xpx 6
Y
M3

Figure 2.11. Scheme of matrix multiplication for efficient computation of concatenated
homogeneous coordinate transformations (top) and elements of the Jacobian matrices

same for the nominal case and for the concatenated derivative matrices. Since the
elements of the overall derivative matrix (Equation 2.14) are sparsely filled (Equa-
tion 2.15 and 2.17), let us first have a look at their matrix products for efficient
coding.

The derivatives of the translation matrices all have a single “1” in the upper
three rows of the last columns, the positions depend on the variable for partial deri-
vation; the rest of the elements are zero, allowing efficient computation of the
products. If such a matrix is multiplied from the right by another matrix, the multi-
plication just copies the last row of this matrix into the corresponding row of the
product matrix where the 1 is in the derivative matrix (row 1 for x, 2 for y, and 3
for z). If such a matrix is multiplied to the left by another matrix, the multiplication
just copies the ith column of this matrix into the last column of the product matrix.
The index i designates the row, in which the 1 is in the derivative matrix (row 1 for
X, 2 for 'y, and 3 for z). Note that the zeros in the first three columns lead to the ef-
fect that in all further matrix multiplications to the left, these three columns remain
zero and need not be computed any longer. The significant column of the matrix
product is the last one, filled in each row by the inner product of the row-vector
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with the last column of the old (intermediate) product matrix. This analytical in-
sight can save 75% of the computational steps for all matrices to the left if column
vectors are used and matrix multiplication starts from the right-hand side.

The derivative matrices for rotational variables have four nonzero elements.
These trigonometric functions have already been evaluated for the nominal case.
The nonzero elements appear in such a pattern that working with sets of row- or
column-vectors for matrices cuts in half the number of multiplications necessary
for the elements of the product matrix.

As a final step toward image coordinates, the leftmost matrix P for perspective
projection has to be applied. Note that this matrix product and the following scal-
ing operations with element e4 (Equation 2.11) yield two feature positions y and z
in the image for each real-world feature. Thus, two Jacobian elements are also ob-
tained for each image feature.

To get from the partial derivative of the total homogeneous transformation ma-
trix Ty, to the correspondingly varied feature position in the image, this matrix has
to be multiplied from the right-hand side by the 3-D feature vector xr« for the fea-
ture point (see Figure 2.11). This yields n vectors epy, , p = 1 to n (6 in our case),
each of which has four components. This is shown in the lower part of Figure 2.11.
Multiplying these expressions by a finite variation in the state component 6xs,, re-
sults in the corresponding changes in the homogeneous feature vector:

de, = ep,OXs,. (2.18)

The virtually displaced “homogeneous” feature position vector e (index p)
around the nominal point (designated by index N) is computed from the “homoge-
neous” feature vectors ey for the nominal case and de, from Equation 2.18.

€pp2 = Enz T €pp2 -5x3p; €pp3 = BNz T €0y 5x3p; 2.19)
€ppa = Eng T €pps " OXs,-
Now the perturbed image feature positions after Equation 2.5 are
ypp = eppz /epp4 ; pr = epp3 /ePP4' (2'20)

Inserting the proper expressions from Equation 2.19 yields, with e, /e, =y,
Yoo = (C €op2 '5Xsp) (ens + €opa '5Xsp) (2.21)
= Yon [L+€p,2 - OXs, /€1 [L+65, - 0%, 1€, ] '

Since the components of ey contain unknown variations 8x,, a linear relation-
ship between these unknowns and small variations in feature positions are sought.
If ey, /ey, <<1, the ratio in Equation 2.21 can be approximated by

ypp = ypN '(1+er2 /eNZ '5Xsp)'(1_eop4 /eN4 '5Xsp)
= Yon [1+ (Epp2 / €z —€ppal€rs) - OXs, () (2.22)
- (erz 'er4)/(eN2 'eN4) '5X52p]-
Neglecting the last term with éixzsp as being at least one order of magnitude

smaller than the linear term with xs,, a linear relationship between changes in y
due to dxs, has been found

5ypp =Yop ~Yon T YN (erz /ey, —€ppa leys) '5Xsp . (2.23)
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The element of the Jacobian matrix linked to the horizontal (y;) feature at point

Xex in the real world and to the unknown state variable xs, now becomes
Jiy =Y /aXSp =3Y,, /5X5p =Y '(erz ley, —€pps ley,). (2.24)

The corresponding relation for the vertical feature position in the image is ob-

tained in a similar way as
‘]kpz =0z, /8X3p = 5pr /5X3p =7y '(era /eNS —€pp4 /eN4)' (2.25)

This approach is a very flexible scheme for obtaining the entries into the Jaco-
bian matrix efficiently. Adaptations to changing scene trees, due to new objects
appearing with knew unknown states to be determined visually, can thus be made
in an easy way.

The general approach discussed leaves two variants open to be selected for the
actual case at hand:

1. Very few feature points for an object: In this case, it may be more economic
with respect to computational load to multiply the sequence of transformations
in Figure 2.11 from the left by the homogeneous 3-D feature point xg (four
components). This always requires only four inner vector products (= 25% of a ma-
trix product). So, in total, for 6 matrix vector products, 24 inner products are
needed; for the 7 expressions in Figure 2.11, a total of 168 such products result.

2. Many feature points on an object: Multiplying (concatenating) the elemental
transformation matrices for the seven expressions in Figure 2.11 from right to
left, in a naive approach requires at most 16 - 5 - 7 = 560 inner vector products.
For each feature point in the real world on a single object, 7-4 = 28 inner vector
products have to be added to obtain the e-vector and its six partial derivatives.
Asking for the number of features m on an object for which this approach is
more economic as the one above, the relation m - 168 = 560 + m - 28 has to be
solved for m as the break-even point, yielding m = 560/140 = 4.

So for more than four features on a single object, in our case with six unknowns
in five transformation matrices plus perspective projection, the concatenation of
transformation matrices first, and the multiplication with the coordinates of the fea-
ture points xr afterward, is more computer-efficient.

Considering the fact that the derivative matrices are sparsely filled, as discussed
above, and that many matrix products can be reused, frequently more than once,
concatenation, performed as standard method in computer graphics, also becomes
of interest in computer vision. However, as Figure 2.11 shows, much larger mem-
ory space has to be allotted for the iteration of transformation variables (the partial
derivative matrices and their products). Note that to the left of derivative matrices
of translations, also just a vector results for all further products, as in method 1
above. Taking advantage of all these points, method 2 is usually more efficient for
more that two to three feature points on an object.

2.1.3 Time Representation
Time is considered an independent variable, monotonically increasing at a constant

rate (as a good approximation to experience in the spatiotemporal domain of inter-
est here). The temporal resolution required of measurement and control processes



40 2 Basic Relations: Image Sequences — “the World”

depends on the application area; with humans as the main partner in dealing with
the real world, their characteristic timescale will also predominate for the technical
systems under investigation here.

Due to the fact that humans need at least 30 ms between two signals sensed, to
be able to tell their correct sequence (independent of the sensory modality: tactile,
auditory, or visual) [Poppel et al. 1991; Poppel, Schill 1995], this time-window of 30
ms is considered the “window of simultaneity”. It is the basic temporal unit within
which all signals are treated as simultaneous [Ruhnau 1994a, b]. This fact has also
been the decisive factor in fixing the video frame rate. (More precisely, the subdi-
vision into fields of interleaved odd and even lines and the reduced field rate by a
factor of 2 was introduced to cheat human perception because of missing techno-
logical performance levels at the time of definition in the 1930s). This was done to
achieve the impression of smooth analog motion for the observer, even though the
fields are discrete and do represent jumps. When looking at field sequences of
video signals from a static scene, taken at a large angular rate of the camera in the
direction of image lines, a noticeable shift between frames can be observed. For
precise interpretation and early detection of an onset of motion, therefore, the al-
ternating fields at twice the frame rate (frequency of 50, respectively, 60 Hz)
should be analyzed.

Since today’s machine vision very often relies on the old standard video equip-
ment, the basic cycle time for full images is adopted for dynamic machine vision
and for control output. The sampling periods are 16 2/3 ms in the US (33 1/3 ms
for full images or for each odd or even field) and 20 ms (40 ms) in Europe. The de-
cision is justified by the fact that the corner frequency of human extremities for
control actuation is about 2 Hz (arms and legs). In sampled control theory, a dozen
samplings per period are considered sufficient to achieve analogue-like overall be-
havior. Therefore, constant control outputs over one video period are acceptable
from this point of view. Note that the transition to fully digital image sensors in the
near future will allow more freedom in the choice of frame rates.

Processes in the real world are described most compactly by relating temporal
change rates of state variables to the values of the state variables, to the control
variables involved, and to additional perturbations, which can hardly be modeled;
these relations are called differential equations.

They can be transformed into difference equations according to sampled data
theory with constant control output over the sampling period by numerical (or ana-
Iytical) integration; perturbations will show up as added accumulated values with
similar statistical properties, as in the analog case. The standard forms for (lin-
earized) state transitions over a time period T are the state transition matrix A(T)
and the control effect matrix B(T). A(T) multiplied by the old state vector yields the
homogeneous part of the new state vector; B(T) describes the effect of constant
unit control inputs onto the new state; multiplying B(T) with the actual control out-
put and adding this to the homogeneous part yields the new state.

Using this knowledge about motion processes of 3-D objects in 3-D space for
image sequence interpretation is the core of the 4-D approach to dynamic vision
developed by [Dickmanns, Wuensche 1987, 1999]. Combining temporal prediction
with the first-order derivative matrix of perspective projection (the “Jacobian ma-
trix” of spatial vision discussed in previous sections) allows bypassing perspective
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inversion. Since each row of the Jacobian matrix contains the first-order sensitivity
elements of the relation, how the feature measured depends on each state variable,
spatial interpretation may become (at least partially) possible even with monocular
vision, if either the object or the observer is moving. This will be discussed further
down. Temporal embedding thus alleviates image interpretation despite the higher
data rates. Temporal continuity conditions and attention control can counteract
these higher data rates.

In addition, the eigenvalues of the transition matrix A represent characteristic
time scales of the process. These and the frequency content of control inputs and of
perturbations determine the temporal characteristics of the motion process.

In the framework of mission performance, other timescales may have special
importance. The time needed for stabilizing image sequence interpretation is cru-
cial for arriving at meaningful decisions based on this perception process. About a
half second to one second are typical values for generating object hypotheses and
having the transients settle down from poor initialization. Taking limited rates of
change of state variables into account, preview (and thus prediction) times of sev-
eral seconds seem to be reasonable in many cases. Total missions may last for sev-
eral hours.

With respect to flawless functioning and maintenance of the vehicle’s body,
special timescales have to be observed, which an autonomous system should be
aware of. All these aspects will be briefly discussed in the next section together
with similar multiple scale problems in the spatial domain. To be flexible, an
autonomous visual perception system should be capable of easy adjustment to
temporal and spatial scales according to the task at hand.

2.1.4 Multiple Scales

The range of scales in the temporal and spatial domains needed to understand pro-
cesses in the real world is very large. They are defined by typical sensor and mis-
sion dimensions as well as by the environmental conditions affecting both the sen-
sors and the mission to be performed.

2.1.4.1 Multiple Space Scales

In the spatial domain, the size of the light sensitive elements in the sensor array
may be considered the lower limit of immediate interest here. Typically, 5 to 20
micrometer (um) is common today. Alternatively, as an underlying characteristic
dimension, the typical width of the electronic circuitry may be chosen. This is
about 0.1 to 2 um, and this dimension characterizes the state of the art of micro-
processors. Taking the 1-meter (m) scale as the standard, since this is the order of
magnitude of typical body dimension of interest, the lower bound for spatial scales
then is 107" m.

As the upper limit, the distance of the main light source on Earth, the orbital ra-
dius of the planet Earth circling the Sun (about 150 million km, that is 1.5 -10* m),
may be chosen with all other stars at infinity. The scale range of practical interest
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thus is about 18 orders of magnitude. However, the different scales are not of equal
and simultaneous interest.

Looking at the mapping conditions for perspective imaging, the 10 m range
has immediate importance as the basic grid size of the sensor. For remote sensing
of the environment, when the characteristic speed is in the order of magnitude of
tens of m/s, several hundred meters may be considered a reasonable viewing range
yielding about 3 to 10 seconds reaction time until the vehicle may reach the loca-
tion inspected. If objects with a characteristic dimension of about 5 cm = 0.05 m
should just fill a single pixel in the image when seen at the maximum distance of,
say 200 m, the focal length f required is f /107 = 200/0.05 or f = 0.04 m or 40 mm.
If one would like to have a 1 cm wide line mapped onto 2 pixel at 10 m distance
(e.g., to be able to read the letters on a license plate), the focal length needed is f =
20 mm. To recognize lane markings 12 cm wide at 6m distance with 6 pixels on
this width, a focal length of 3 mm would be sufficient. This shows that for practical
purposes, focal lengths in the millimeter to decimeter range are adequate. This also
happens to be the physical dimension of modern CCD-TV cameras.

Because the wheel diameters of typical vehicles are of the order of magnitude of
about 1 m, objects become serious obstacles if their height exceeds about 0.1 m.
Therefore, the 0.1 to 100 m range (typical look-ahead distance) is the most impor-
tant and most frequently used one for ground vehicles. Entire missions, usually,
measure 1 to 100 km in range. For air vehicles, several thousand km are typical
travel distances since the Earth radius is about 6 371 km.

It may be interesting to note that the basic scale “1 m” was defined initially as
107" of one quarter of the circumference around the globe via both poles about 2
centuries ago.

Inverse use of multiple space scales in vision: In a visual scene, the same object
may be a few meters or a few hundred meters away; the system should be able to
recognize the object as the same unit independent of the distance viewed. To
achieve this more easily, multiple focal lengths for a set of cameras will help since
a larger focal length directly counteracts the downscaling of the image size due to
increased range. This is the main reason for using multifocal camera arrangements
in EMS vision. With a spacing of focal lengths by a factor of 4 (corresponding to
the second pyramid stage each time), a numerical range of 16 may be bridged with
three cameras.

In practical applications, a new object is most likely picked up in the wide field
of view having least resolution. As few as four pixels (2 x 2) may be sufficient for
detecting a new object reliably without being able to classify it. Performing a sac-
cade to bring the object into the field of view of a camera with higher resolution,
would result in suddenly having many pixels available, additionally. In a bifocal
system with a focal length ratio of 4, the resolution would increase to 8 x 8 (64
pixels); in a trifocal system it would even go up to 32 x 32 (i.e., 1K pixels) on the
same area in the real world. Now the object may be analyzed on these scales in
parallel. The coarse space scale may be sufficient for tracking the object with high
temporal resolution up to video rate. On the high-resolution space scale, the object
may then be analyzed with respect to its detailed shape, possibly on a lower time-
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scale if computing power is limited. This approach has proven to be efficient and
robust.

Even with this approach, to cover a range of possible object distances of two to
three orders of magnitude, the size of objects in the images still varies over more
than one order of magnitude; this fact has to be dealt with. Pyramid techniques
[Burt et al. 1981] and multiple scales of feature extraction operators are used to
achieve this. This requires that the same object be represented on different scales
(with different spatial resolution and corresponding shape descriptors). Homoge-
neous coordinates allow representing different scales by just one parameter, the
scaling factor. In the 4 x 4 transformation matrices, it enters at position (4, 4).

2.1.4.2 Multiple Timescales

On the time axis, the lower limit of resolution is considered the cycle time of elec-
tronic devices such as sensors and processors; it is presently in the 1078 to 107%°
second (s) range. Typical process elements in digital computing such as message
overheads for communication with other processing elements last of the order of
magnitude of 0.1 to 1 ms; this also is a typical range of cycle times for conven-
tional sensing as with inertial sensors.

The video cycle times mentioned above are the next characteristic timescale.
Human reaction times are characterized by and may well be the reason for the
1-second basic timescale. Therefore, the 0.1 to 10 s scale ranges are the most im-
portant and most frequently used. “Maneuvers” as typical time histories of control
outputs for achieving desired transitions from one regime of steady behavior to an-
other last up to several minutes. Quasi-steady behaviors such as road-running on a
highway or flying across an ocean may last several hours. Beyond this, the astro-
nomically based scales of days and years predominate. One day means one revolu-
tion with respect to the sun around the Earth’s axis; it has subdivisions into 24
hours of 60 minutes of 60 seconds each that is 86 400 seconds in total. One “year”
means one revolution of Earth around the Sun and includes about 365 days. The
corresponding lighting and climatic conditions (seasonal effects) affect the opera-
tion of vehicles in natural and man-made environments to a large degree.

The lifetimes of typical man-made objects are the order of 10 years (vehicles,
sensors); human life expectancy is 5 to 10 decades. Objects encountered in the en-
vironment may be hundreds (trees, buildings, etc.) or many thousands of years of
age (geological formations). Therefore, also in the temporal domain the range of
scales of interest spans from 107 to about 10 seconds or 19 orders of magnitude.
Autonomous systems to be developed should have the capability of handling this
range of scales as educated humans are able to do. In a single practical application,
the actual range of interest is much lower, usually.

2.2 Objects

Beside background knowledge of the environmental conditions at some point or
region on the globe and the variations over the seasons, most of our knowledge
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about “the world” is affixed to object and subject classes. Of course, the ones of
most importance are those one has to deal with most frequently in everyday life.
Therefore, developing the sense of vision for road or air vehicles requires knowl-
edge about objects and subjects encountered in these contexts most frequently; but
also critical events which may put the achievement of mission goals at risk have to
be known, even when their appearance is rather rare.

2.2.1 Generic 4-D Object Classes

The efficiency of the 4-D approach to dynamic vision is achieved by associating
background knowledge about classes of objects and their behavioral capabilities
with measurement data input. This knowledge is available in generic form, that is,
structural information typical for object classes is fixed while specific parameters
in the models have to be adapted to the special case at hand. Motion descriptions
for the center of gravity (the translational trajectory of the cg in space) forming the
so-called “where”-problem, are separated from shape descriptions, called the
“what”-problem. Typically, summing and averaging of feature positions is needed
to solve the “where”-problem while differencing of feature positions contributes to
solving the “what”-problem. In the approach chosen, the “where”-problem con-
sists of finding the translational transformation parameters in the homogeneous
transformations involved. The “what”-problem consists of finding an appropriate
generic shape model and the best fitting shape and photometric parameters for this
model after perspective projection (possibly including rotational degrees of free-
dom to account for the effects of aspect conditions).

As in computer graphics, all shape description is done in object-centered coor-
dinates in 3-D, if possible, to take full advantage of a decoupled motion description
relative to other objects.

2.2.2 Stationary Objects, Buildings

In road traffic, the road network and vegetation as well as buildings near the road
are the stationary objects of most interest; roads will be discussed in Chapters 7 to
10. Highly visible large structures may be used as landmarks for orientation. The
methods for shape representation are the same as for mobile objects; they do not
need a motion description, however. These techniques are well known from com-
puter graphics and are not treated here.

2.2.3 Mobile Objects in General

In this introductory chapter, only the basic ideas for object representation in the 4-
D approach will be discussed. Detailed treatment of several object classes is done
in connection with the application domain (Chapter 14). As far as possible, the
methods used are taken from computer graphics to tap the large experience accu-
mulated in that area. The major difference is that in computer vision, the actual
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model both with respect to shape and to motion is not given but has to be inferred
from the visual appearance in the image sequence. This makes the use of complex
shape models with a large number of tesselated surface elements (e.g., triangles)
obsolete; instead, simple encasing shapes like rectangular boxes, cylinders, poly-
hedra, or convex hulls are preferred. Deviations from these idealized shapes such
as rounded edges or corners are summarized in fuzzy symbolic statements (like
“rounded”) and are taken into account by avoiding measurement of features in
these regions.

2.2.4 Shape and Feature Description

With respect to shape, objects and subjects are treated in the same fashion. Only
rigid objects and objects consisting of several rigid parts linked by joints are
treated here; for elastic and plastic modeling see, e.g., [Metaxas, Terzepoulos 1993].
Since objects may be seen at different distances, the appearance in the image may
vary considerably in size. At large distances, the 3-D shape of the object, usually,
is of no importance to the observer, and the cross section seen contains most of the
information for tracking. However, this cross section may depend on the angular
aspect conditions; therefore, both coarse-to-fine and aspect-dependent modeling of
shape is necessary for efficient dynamic vision. This will be discussed for simple
rods and for the task of perceiving road vehicles as they appear in normal road traf-
fic.

2.2.4.1 Rods

An idealized rod (like a geometric line) is an object with an extension in just one
direction; the cross section is small compared to its length, ideally zero. To exist in
the real 3-D world, there has to be matter in the second and third dimensions. The
simplest shapes for the cross section in these dimensions are circles (yielding a thin
cylinder for a constant radius along the main axis) and rectangles, with the square
as a special case. Arbitrary cross sections and arbitrary changes along the main axis
yield generalized cylinders, discussed in [Nevatia, Binford 1977] as a flexible generic
3-D-shape (sections of branches or twigs from trees may be modeled this way). In
many parts of the world, these “sticks” are used for marking the road in winter
when snow may eliminate the ordinary painted markings. With constant
cross—sections as circles and triangles, they are often encountered in road traffic
also: Poles carrying traffic signs (at about 2 m elevation above the ground) very of-
ten have circular cross sections. Special poles with cross sections as rounded trian-
gles (often with reflecting glass inserts of different shapes and colors near the top
at about 1 m) are in use for alleviating driving at night and under foggy conditions.
Figure 2.12 shows some shapes of rods as used in road traffic. No matter what the
shape, the rod will appear in an image as a line with intensity edges, in general.
Depending on the shape of the cross section, different shading patterns may occur.
Moving around a pole with cross section (b) or (c) at constant distance R, the width
of the line will change; in case (c), the diagonals will yield maximum line width
when looked at orthogonally.
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Under certain lighting conditions, due to different reflection angles, the two
sides potentially visible may appear at different intensity values; this allows recog-
nizing the inner edge. However, this is not a stable feature for object recognition in
the general case.

The length of the rod can be L Rod length L R
recognized only in the image di- : Genteg ol gravly fe
rectly when the angle between the (a>O <y\ © Enlarged
optical axis and the main axis of eross-sections

the rod is known. In the special
case where both axes are aligned,
only the cross section as shown in
(@) to (c) can be seen and rod
length is not at all observable. When a rod is thrown by a human, usually, it has
both translational and rotational velocity components. The rotation occurs around
the center of gravity (marked in Figure 2.12), and rod length in the image will os-
cillate depending on the plane of rotation. In the special case where the plane of ro-
tation contains the optical axis, just a growing and shrinking line appears. In all
other cases, the tips of the rod describe an ellipse in the image plane (with different
excentricities depending on the aspect conditions on the plane of rotation).

Figure 2.12. Rods with special applications in
road traffic

2.2.4.2 Coarse-to-fine 2-D Shape Models

Seen from behind or from the front at a large distance, any road vehicle may be
adequately described by its encasing rectangle. This is convenient since this shape
has just two parameters, width B and height H. Precise absolute values of these pa-
rameters are of no importance at large distances; the proper scale may be inferred
from other objects seen such as the road or lane width at that distance. Trucks (or
buses) and cars can easily be distinguished. Experience in real-world traffic scenes
tells us that even the upper boundary and thus the height of the object may be omit-
ted without loss of functionality. Reflections in this spatially curved region of the
car body together with varying environmental conditions may make reliable track-
ing of the upper boundary of the body very difficult. Thus, a simple U-shape of
unit height (corresponding to about 1 m turned out to be practically viable) seems
to be sufficient until 1 to 2 dozen pixels on a line cover the object in the image.
Depending on the focal length used, this corresponds to different absolute dis-
tances.

Figure 2.13a shows this very simple shape model from straight ahead or exactly
from the rear (no internal details). If

the object in the image is large (4 (b) (©
enough so that details may be distin- ¢+ i i
guished reliably by feature extrac- [ | 1

tion, a polygonal shape approxima-

tion of the contour as shown in  Figure 2.13. Coarse-to-fine shape model of
Figure 2.13b or even with internal  acarin rear view: (a) encasing rectangle of
details (Figure 2.13c) may be chosen.  width B (U-shape); (b) polygonal silhou-
In the latter case, area-based features ette; (c) silhouette with internal structure
such as the license plate, the dark
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tires, or the groups of signal lights (usually in orange or reddish color) may allow
more robust recognition and tracking.

2.2.4.3 Coarse-to-fine 3-D Shape Models

If multifocal vision allows tracking the silhouette of the entire object (e.g., a vehi-
cle) and of certain parts, a detailed measurement of tangent directions and curves
may allow determining the curved contour. Modeling with Ferguson curves [Shirai
1987], “snakes” [Blake 1992], or linear curvature models easily derived from tangent
directions at two points relative to the chord direction between those points [Dick-
manns 1985] allows efficient piecewise representation. For vehicle guidance tasks,
however, this will not add new functionality.

If the view onto the other car is from an oblique direction, the depth dimension
(length of the vehicle) comes into play. Even with viewing conditions slightly off
the axis of symmetry of the vehicle observed, the width of the car in the image will
start increasing rapidly because of the larger length L of the body and due to the
sine-effect in mapping.

Usually, it is very hard to determine the lateral aspect angle, body width B and
length L simultaneously from visual measure-

ments. Therefore, switching to the body diago- | DiagonalD.- =
nal D as a shape representation parameter has L L./"r"/ ,f('f
proven to be much more robust and reliable in //./"J_J'_ _‘/: _
real-world scenes [Schmid 1993]. Figure 2.14 i A4S
shows the generic description for all types of // /L.;-:'é/z Liz
rectangular boxes. For real objects with H /2 7 Y
rounded shapes such as road vehicles, the en- - L2

casing rectangle often is a sufficiently precise

description for many purposes. More detailed ~ Figure 2.14. Object-centered re-
shape descriptions with sub—objects (such as ~ Presentation of a generic box
wheels, bumper, light groups, and license  With dimension L, B, H; origin in
plate) and their appearance in the image due to  S&Nter of ground plane

specific aspect conditions will be discussed in

connection with applications.

3-D models with different degrees of detail: Just for tracking and relative state
estimation of cars, taking one of the vertical edges of the lower body and the lower
bound of the object into account has proven sufficient in many cases [Thomanek
1992, 1994, 1996]. This, of course, is domain specific knowledge, which has to be
introduced when specifying the features for measurement in the shape model. In
general, modeling of highly measurable features for object recognition has to de-
pend on aspect conditions.

Similar to the 2-D rear silhouette, different models may also be used for 3-D
shape. Figure 2.13a corresponds directly to Figure 2.14 when seen from behind.
The encasing box is a coarse generic model for objects with mainly perpendicular
surfaces. If these surfaces can be easily distinguished in the image and their separa-
tion line may be measured precisely, good estimates of the overall body dimen-
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sions can be obtained for oblique aspect conditions even from relatively small im-
age sizes. The top part of a truck and trailer frequently satisfies these conditions.

Polyhedral 3-D shape models with 12 independent shape parameters (see Figure
2.15 for four orthonormal projections as frequently used in engineering) have been
investigated for road vehicle recognition [Schick 1992]. By specializing these pa-
rameters within certain ranges, different types of road vehicles such as cars, trucks,
buses, vans, pickups, coupes, and sedans may be approximated sufficiently well for
recognition [Schick, Dickmanns 1991; Schick 1992; Schmid 1993]. With these models,
edge measurements should be confined to vehicle regions with small curvatures,
avoiding the idealized sharp 3-D edges and corners of the generic model.

Aspect graphs for simplifying models and visibility of features: In Figure 2.15,
the top-down the side view and the frontal and rear views of the polygonal model
are given. It is seen that the same 3-D object may look completely different in
these special cases of aspect conditions. Depending on them, some features may be
visible or not. In the more general case with oblique viewing directions, combined
features from the views shown may be visible. All aspect conditions that allow see-
ing the same set of features (reliably) are collected into one class. For a rectangular
box on a plane and the camera at a fixed elevation above the ground, there are
eight such aspect classes (see Figures 2.15 and 2.16): Straight from the front, from
each side, from the rear, and an additional four from oblique views. Each can con-
tain features from two neighboring groups.

Figure 2.15. More detailed (idealized) generic shape model for road vehicles of type
“car” [Schick 1992]

Due to this fact, a single 3-D model for unique (forward perspective) shape rep-
resentation has to be accompanied by a set of classes of aspect conditions, each
class containing the same set of highly visible features. These allow us to infer the
presence of an object corresponding to this model from a collection of features in
the image (inverse 3-D shape recognition including rough aspect conditions, or — in
short — “hypothesis generation in 3-D”).
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This difficult task has to be solved in the initialization phase. Within each class
of aspect conditions hypothesized, in addition, good initial estimates of the relevant
state variables and parameters for recursive iteration have to be inferred from the
relative distribution of features. Figure 2.16 shows the features for a typical car; for
each vehicle class shown at the top, the lower part has special content.
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Figure 2.16. Vehicle types, aspect conditions, and feature distributions for recognition
and classification of vehicles in road scenes

In Figure 2.17, a sequence of appearances of a car is shown driving in simula-
tion on an oval course. The car is tracked from some distance by a stationary cam-
era with gaze control that keeps the car always in the center of the image; this is
called fixation-type vision and is assumed to function ideally in this simulation,
i.e., without any error).

The figure shows but a few snapshots of a steadily moving vehicle with sharp
edges in simulation. The actual aspect conditions are computed according to a mo-
tion model and graphically displayed on a screen, in front of which a camera ob-
serves the motion process. To be able to associate the actual image interpretation
with the results of previous measurements, a motion model is necessary in the
analysis process also, constraining the actual motion in 3-D; in simulation, of
course, the generic dynamical model is the same as in simulation. However, the ac-
tual control input is unknown and has to be reconstructed from the trajectory
driven and observed (see Section 14.6.1).

2.2.5 Representation of Motion

The laws and characteristic parameters describing motion behavior of an object or
a subject along the fourth dimension, time, are the equivalent to object shape repre-
sentations in 3-D space. At first glance, it might seem that pixel position in the im-
age plane does not depend on the actual speed components in space but only on the
actual position. For one time this is true; however, since one wants to understand 3-
D motion in a temporally deeper fashion, there are at least two points requiring
modeling of temporal aspects:
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1. Recursive estimation as used in this approach starts from the values of the state
variables predicted for the next time of measurement taking.

2. Deeper understanding of temporal processes results from having representa-
tional terms available describing these processes or typical parts thereof in sym-
bolic form, together with expectations of motion behavior over certain time-

scales.
A typical

example is the maneuver of lane changing. Being able to recognize

these types of maneuvers provides more certainty about the correctness of the per-
ception process. Since everything in vision has to be hypothesized from scratch,
recognition of processes on different scales simultaneously helps building trust in
the hypotheses pursued. Figure 2.17 may have been the first result from hardware-
in-the-loop simulation where a technical vision system has determined the input
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Figure 2.17. Changing aspect conditions and edge feature distributions while a simu-
lated vehicle drives on an oval track with gaze fixation (smooth visual pursuit) by a sta-
tionary camera. Due to continuity conditions in 3-D space and time, “catastrophic
events” like feature appearance/disappearance can be handled easily.
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control time history for a moving car from just the trajectory observed, but, of
course, with a motion model “in mind” (see Section 14.6.1).

The translations of the center of gravity (cg) and the rotations around this cg de-
scribe the motion of objects. For articulated objects also, the relative motion of the
components has to be represented. Usually, the modeling step for object motion re-
sults in a (nonlinear) system of n differential equations of first order with n state
components X, g (constant) parameters p and r control components U (for subjects
see Chapter 3).

2.2.5.1 Definition of State and Control Variables

A set of

e State variables is a collection of variables for describing temporal processes,
which allows decoupling future developments from the past. State variables
cannot be changed at one time. (This is quite different from “states” in computer
science or automaton theory. Therefore, to accentuate this difference, sometimes
use will be made of the terms s-state for systems dynamics states and a-state for
automaton-state to clarify the exact meaning.) The same process may be de-
scribed by different state variables, like Cartesian or polar coordinates for posi-
tions and their time derivatives for speeds. Mixed descriptions are possible and
sometimes advantageous. The minimum number of variables required to com-
pletely decouple future developments from the past is called the order n of the
system. Note that because of the second-order relationship between forces or
moments and the corresponding temporal changes according to Newton’s law,
velocity components are state variables.

e Control variables are those variables in a dynamic system, that may be changed
at each time “at will”. There may be any kind of discontinuity; however, very
frequently control time histories are smooth with a few points of discontinuity
when certain events occur.

Differential equations describe constraints on temporal changes in the system.

Standard forms are n equations of first order (“state equations™) or an n-th order

system, usually given as a transfer function of nth order for linear systems. There

are an infinite variety of (usually nonlinear) differential equations for describing
the same temporal process. System parameters p allow us to adapt the representa-
tion to a class of problems
dX /dt=f(X,p,t). (2.26)
Since real-time performance, usually, requires short cycle times for control, lin-
earization of the equations of motion around a nominal set point (index N) is suffi-
ciently representative of the process if the set point is adjusted along the trajectory.

With the substitution

X=Xy +X, (2.27)
one obtains
dX /dt=dX, /dt+dx/dt. (2.28)

The resulting sets of differential equations then are for the nominal trajectory:
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for the linearized perturbation system follows:
dx/dt=F-x+v'(t), (2.30)

with F =df /dX, (2.31)
as an (n x n)-matrix and v’(t) an additive noise term.

2.2.5.2 Transition Matrices for Single Step Predictions

Equation 2.30 with matrix F may be transformed into a difference equation with
cycle time T for grid point spacing by one of the standard methods in systems dy-
namics or control engineering. (Precise numerical integration fromQ0to T forv=20
may be the most convenient one for complex right—hand sides.) The resulting gen-
eral form then is

X[(k+2)T]= A-x[KT]+V[KT]

or in short-hand X = A-X +VY,,

with matrix A of the same dimension as F. In the general case of local lineariza-
tion, all entries of this matrix may depend on the nominal state variables. Proce-
dures for computing the elements of matrix A from F have to be part of the 4-D
knowledge base for the application at hand.

For objects, the trajectory is fixed by the initial conditions and the perturbations
encountered. For subjects having additional control terms in these equations, de-
termination of the actual control output may be a rather involved procedure. The
wide variety of subjects is discussed in Chapter 3.

(2.32)

2.2.5.3 Basic Dynamic Model: Decoupled Newtonian Motion

The most simple and yet realistic dynamic model for the motion of a rigid body
under external forces F. is the Newtonian law
d2x/dt2=%F,(t)/m. (2.33)

With unknown forces, colored noise v(t) is assumed, and the right—hand side is
approximated by first—order linear dynamics (with time constant T¢ = 1/a for ac-
celeration a). This general third-order model for each degree of freedom may be
written in standard state space form [BarShalom, Fortmann 1988]

X 01 0)(x 0

d/dt|V (={0 0 21 ||V |+]0]-v(t). (2.34)
a 0 0 -a)la 1
Y =

F g
For the corresponding discrete formulation with sampling period T and

-a

e’ =y, the transition matrix A becomes
1 T [T/a-Q-p)la] 1 T T/2
A=|0 1  (@-p)/a | fora=0:A=0 1 T | (2.35)
00 y 00 1

The perturbation input vector is modeled by
b v, with b =[T*/2, T, 1], (2.36)
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which yields the discrete model
X = A Xy +B v (2.37)
The value of the expectation is E[v,]=0, and the variance is E[v}]= o—j (essen-
tial for filter tuning).The covariance matrix Q for process noise is given by
T4 T3/2 T?)2
Q=b.clb =|T%2 T* T | (2.38)
T2 T 1

This model may be used independently in all six degrees of freedom as a default
model if no more specific knowledge is given.

2.3 Points of Discontinuity in Time

The aspects discussed above for smooth parts of a mission with nice continuity
conditions alleviate perception; however, sudden changes in behavior are possible,
and sticking to the previous mode of interpretation would lead to disaster.

Efficient dynamic vision systems have to take advantage of continuity condi-
tions as long as they prevail; however, they always have to watch out for disconti-
nuities in object motion observed to adjust readily. For example, a ball flying on an
approximately parabolic trajectory through the air can be tracked efficiently using
a simple motion model. However, when the ball hits a wall or the ground, elastic
reflection yields an instantaneous discontinuity of some trajectory parameters,
which can nonetheless be predicted by a different model for the motion event of re-
flection. So the vision process for tracking the ball has two distinctive phases
which should be discovered in parallel to the primary vision task.

2.3.1 Smooth Evolution of a Trajectory

Flight phases (or in the more general case, smooth phases of a dynamic process) in
a homogeneous medium without special events can be tracked by continuity mod-
els and low-pass filtering components (like Section 2.2.5.3). Measurement values
with oscillations of high frequency are considered to be due to noise; they have to
be eliminated in the interpretation process. The natural sciences and engineering
have compiled a wealth of models for different domains. The least-squares error
model fit has proven very efficient both for batch processing and for recursive es-
timation. Gauss [1809] opened up a new era in understanding and fitting motion
processes when he introduced this approach in astronomy. He first did this with the
solution curves (ellipses) for the differential equations describing planetary motion.

Kalman [1960] derived a recursive formulation using differential models for the
motion process when the statistical properties of error distributions are known.
These algorithms have proven very efficient in space flight and many other appli-
cations. Meissner, Dickmanns [1983]; Wuensche [1987] and Dickmanns [1987] extended
this approach to perspective projection of motion processes described in physical
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space; this brought about a quantum leap in the performance capabilities of real-
time computer vision. These methods will be discussed for road vehicle applica-
tions in later sections.

2.3.2 Sudden Changes and Discontinuities

The optimal settings of parameters for smooth pursuit lead to unsatisfactory track-
ing performance in case of sudden changes. The onset of a harsh braking maneuver
of a car or a sudden turn may lead to loss of tracking or at least to a strong transient
motion estimated. If the onsets of these discontinuities can be predicted, a switch in
model or tracking parameters at the right moment will yield much better results.
For a bouncing ball, the moment of discontinuity can easily be predicted by the
time of impact on the ground or wall. By just switching the sign of the angle of in-
cidence relative to the normal of the reflecting surface and probably decreasing
speed by some percentage, a new section of a smooth trajectory can be started with
very likely initial conditions. Iteration will settle much sooner on the new, smooth
trajectory arc than by continuing with the old model disregarding the discontinuity
(if this recovers at all).

In road traffic, the compulsory introduction of the braking (stop) lights serves
the same purpose of indicating that there is a sudden change in the underlying be-
havioral mode (deceleration), which can otherwise be noticed only from integrated
variables such as speed and distance. The pitching motion of a car when the brakes
are applied also gives a good indication of a discontinuity in longitudinal motion; it
is, however, much harder to observe than braking lights in a strong red color.

Conclusion:

As a general scheme in vision, it can be concluded that partially smooth sec-
tions and local discontinuities have to be recognized and treated with proper
methods both in the 2-D image plane (object boundaries) and on the time
line (events).

2.4 Spatiotemporal Embedding and First-order
Approximations

After the rather lengthy excursion to object modeling and how to embed temporal
aspects of visual perception into the recursive estimation approach, the overall vi-
sion task will be reconsidered in this section. Figure 2.7 gave a schematic survey of
the way features at the surface of objects in the real 3-D world are transformed into
features in an image by a properly defined sequence of “homogeneous coordinate
transformations” (HCTSs). This is easily understood for a static scene.

To understand a dynamically changing scene from an image sequence taken by
a camera on a moving platform, the temporal changes in the arrangements of ob-
jects also have to be grasped by a description of the motion processes involved.
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Therefore, the general task of real-time vision is to achieve a compact internal rep-
resentation of motion processes of several objects observed in parallel by evaluat-
ing feature flows in the image sequence. Since egomotion also enters the content of
images, the state of the vehicle carrying the cameras has to be observed simultane-
ously. However, vision gives information on relative motion only between objects,
unfortunately, in addition, with appreciable time delay (several tenths of a second)
and no immediate correlation to inertial space. Therefore, conventional sensors on
the body yielding relative motion to the stationary environment (like odometers) or
inertial accelerations and rotational rates (from inertial sensors like accelerometers
and angular rate sensors) are very valuable for perceiving egomotion and for telling
this apart from the visual effects of motion of other objects. Inertial sensors have
the additional advantage of picking up perturbation effects from the environment
before they show up as unexpected deviations in the integrals (speed components
and pose changes). All these measurements with differing delay times and trust
values have to be interpreted in conjunction to arrive at a consistent interpretation
of the situation for making decisions on appropriate behavior.

Before this can be achieved, perceptual and behavioral capabilities have to be
defined and represented (Chapters 3 to 6). Road recognition as indicated in Figures
2.7 and 2.9 while driving on the road will be the application area in Chapters 7 to
10. The approach is similar to the human one: Driven by the optical input from the
image sequence, an internal animation process in 3-D space and time is started
with members of generically known object and subject classes that are to duplicate
the visual appearance of “the world” by prediction-error feedback. For the next
time for measurement taking (corrected for time delay effects), the expected values
in each measurement modality are predicted. The prediction errors are then used to
improve the internal state representation, taking the Jacobian matrices and the con-
fidence in the models for the motion processes as well as for the measurement
processes involved into account (error covariance matrices).

For vision, the concatenation process with HCTs for each object-sensor pair
(Figure 2.7) as part of the physical world provides the means for achieving our
goal of understanding dynamic processes in an integrated approach. Since the
analysis of the next image of a sequence should take advantage of all information
collected up to this time, temporal prediction is performed based on the actual best
estimates available for all objects involved and based on the dynamic models as
discussed. Note that no storage of image data is required in this approach, but only
the parameters and state variables of those objects instantiated need be stored to
represent the scene observed; usually, this reduces storage requirements by several
orders of magnitude.

Figure 2.9 showed a road scene with one vehicle on a curved road (upper right)
in the viewing range of the egovehicle (left); the connecting object is the curved
road with several lanes, in general. The mounting conditions for the camera in the
vehicle (lower left) on a platform are shown in an exploded view on top for clarity.
The coordinate systems define the different locations and aspect conditions for ob-
ject mapping. The trouble in vision (as opposed to computer graphics) is that the
entries in most of the HCT-matrices are the unknowns of the vision problem (rela-
tive distances and angles). In a tree representation of this arrangement of objects
(Figure 2.7), each edge between circles represents an HCT and each node (circle)
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represents an object or sub—object as a movable or functionally separate part. Ob-
jects may be inserted or deleted from one frame to the next (dynamic scene tree).

This scene tree represents the mapping process of features on the surface of ob-
jects in the real world up to hundreds of meters away into the image of one or more
camera(s). They finally have an extension of several pixels on the camera chip (a
few dozen micrometers with today’s technology). Their motion on the chip is to be
interpreted as body motion in the real world of the object carrying these features,
taking body motion affecting the mapping process properly into account. Since
body motions are smooth, in general, spatiotemporal embedding and first-order ap-
proximations help making visual interpretation more efficient, especially at high
image rates as in video sequences.

2.4.1 Gain by Multiple Images in Space and/or Time for Model Fitting

High—frequency temporal embedding alleviates the correspondence problem be-
tween features from one frame to the next, since they will have moved only by a
small amount. This reduces the search range in a top-down feature extraction mode
like the one used for tracking. Especially, if there are stronger, unpredictable per-
turbations, their effect on feature position is minimized by frequent measurements.
Doubling the sampling rate, for example, allows detecting a perturbation onset
much earlier (on average). Since tracking in the image has to be done in two di-
mensions, the search area may be reduced by a square effect relative to the one-
dimensional (linear) reduction in time available for evaluation. As mentioned pre-
viously for reference, humans cannot tell the correct sequence of two events if they
are less than 30 ms apart, even though they can perceive that there are two separate
events [Poppel, Schill 1995]. Experimental experience with technical vision systems
has shown that using every frame of a 25 Hz image sequence (40 ms cycle time)
allows object tracking of high quality if proper feature extraction algorithms to
subpixel accuracy and well-tuned recursive estimation processes are applied. This
tuning has to be adapted by knowledge components taking the situation of driving
a vehicle and the lighting conditions into account.

This does not include, however, that all processing on the higher levels has to
stick to this high rate. Maneuver recognition of other subjects, situation assess-
ment, and behavior decision for locomotion can be performed on a (much) lower
scale without sacrificing quality of performance, in general. This may partly be due
to the biological nature of humans. It is almost impossible for humans to react in
less than several hundred milliseconds response time. As mentioned before, the
unit “second” may have been chosen as the basic timescale for this reason.

However, high image rates provide the opportunity both for early detection of
events and for data smoothing on the timescale with regard to motion processes of
interest. Human extremities like arms or legs can hardly be activated at more than
2 Hz corner frequency. Therefore, efficient vision systems should concentrate
computing resources to where information can be gained best (at expected feature
locations of known objects/subjects of interest) and to regions where new objects
may occur. Foveal-peripheral differentiation of spatial resolution in connection
with fast gaze control may be considered an optimal vision system design found in
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nature, if a corresponding management system for gaze control, knowledge appli-
cation and interpretation of multiple, piecewise smooth image sequences is avail-
able.

2.4.2 Role of Jacobian Matrix in the 4-D Approach to Dynamic Vision

It is in connection with 4-D spatiotemporal motion models that the sensitivity ma-
trix of perspective feature mapping gains especial importance. The dynamic mod-
els for motion in 3-D space link feature positions from one time to the next. Con-
trary to perspective mapping in a single image (in which depth information is
completely lost), the partial first-order derivatives of each feature with respect to
all variables affecting its appearance in the image do contain spatial information.
Therefore, linking the temporal motion process in 4-D with this physically mean-
ingful Jacobian matrix has brought about a quantum leap in visual dynamic scene
understanding [Dickmanns, Meissner 1983, Wiinsche 1987, Dickmanns 1987, Dickmanns,
Graefe 1988, Dickmanns, Wuensche 1999]. This approach is fundamentally different
from applying some (arbitrary) motion model to features or objects in the image
plane as has been tried many times before and after 1987. It was surprising to learn
from a literature review in the late 1990s that about 80 % of so-called Kalman-
filter applications in vision did not take advantage of the powerful information
available in the Jacobian matrices when these are determined, including egomotion
and the perspective mapping process.

The nonchalance of applying Kalman filtering in the image plane has led to the
rumor of brittleness of this approach. It tends to break down when some of the (un-
spoken) assumptions are not valid. Disappearance of features by self-occlusion has
been termed a catastrophic event. On the contrary, Wiinsche [1986] was able to
show that not only temporal predictions in 3-D space were able to handle this situa-
tion easily, but also that it is possible to determine a limited set of features allowing
optimal estimation results. This can be achieved with relatively little additional ef-
fort exploiting information in the Jacobian matrix. It is surprising to notice that this
early achievement has been ignored in the vision literature since. His system for
visually perceiving its state relative to a polyhedral object (satellite model in the
laboratory) selected four visible corners fully autonomously out of a much larger
total number by maximizing a goal function formed by entries of the Jacobian ma-
trix (see Section 8.4.1.2).

Since the entries into a row of the Jacobian matrix contain the partial derivatives
of feature position with respect to all state variables of an object, the fact that all
the entries are close to zero also carries information. It can be interpreted as an in-
dication that this feature does not depend (locally) on the state of the object; there-
fore, this feature should be discarded for a state update.

If all elements of a column of the Jacobian matrix are close to zero, this is an in-
dication that all features modeled do not depend on the state variable correspond-
ing to this column. Therefore, it does not make sense to try to improve the esti-
mated value of this state component, and one should not wonder that the
mathematical routine denies delivering good data. Estimation of this variable is not
possible under these conditions (for whatever reason), and this component should
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be removed from the list of variables to be updated. It has to be taken as a standard
case, in general in vision, that only a selection of parameters and variables describ-
ing another object are observable at one time with the given aspect conditions.
There has to be a management process in the object recognition and tracking pro-
cedures, which takes care of these particular properties of visual mapping (see later
section on system integration).

If this information in properly set up Jacobian matrices is observed during track-
ing, much of the deplored brittleness of Kalman filtering should be gone.



3 Subjects and Subject Classes

Extending representational schemes found in the literature up to now, this chapter
introduces a concept for visual dynamic scene understanding centered on the phe-
nomenon of control variables in dynamic systems. According to the international
standard adopted in mathematics, natural sciences, and engineering, control vari-
ables are those variables of a dynamic system, which can be changed at any mo-
ment. On the contrary, state variables are those, which cannot be changed instan-
taneously, but have to evolve over time. State variables de-couple the future
evolution of a system from the past; the minimal number required to achieve this is
called the order of the system.

It is the existence of control variables in a system that separates subjects from
objects (proper). This fact contains the kernel for the emergence of a “free will”
and consciousness, to be discussed in the outlook at the end of the book. Before
this can be made understandable, however, this new starting point will be demon-
strated to allow systematic access to many terms in natural language. In combina-
tion with well-known methods from control engineering, it provides the means for
solving the symbol grounding problem often deplored in conventional Al [Wino-
grad, Flores 1990]. The decisions made by subjects for control application in a given
task and under given environmental conditions are the driving factors for the evo-
lution of goal-oriented behavior. This has to be seen in connection with perform-
ance evaluation of populations of subjects. Once this loop of causes becomes suffi-
ciently well understood and explicitly represented in the decision-making process,
emergence of “intelligence” in the abstract sense can be stated.

Since there are many factors involved in understanding the actual situation
given, those that influence the process to be controlled have to be separated from
those that are irrelevant. Thus, perceiving the situation correctly is of utmost im-
portance for proper decision-making. It is not intended here to give a general dis-
cussion of this methodical approach for all kinds of subjects; rather, this will be
confined to vehicles with the sense of vision just becoming realizable for transport-
ing humans and their goods. It is our conviction, however, that all kinds of subjects
in the biological and technical realm can be analyzed and classified this way.

Therefore, without restrictions, subjects are defined as bodily objects with
the capability of measurement intake and control output depending on the
measured data as well as on stored background knowledge.

This is a very general definition subsuming all animals and technical devices with
these properties.
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3.1 General Introduction: Perception — Action Cycles

Remember the definition of control variables given in the previous chapter: They
encompass all variables describing the dynamic process, which can be changed at
any moment. Usually, it is assumed as an idealization that a mental or computa-
tional decision for a control variable can be implemented without time delay and
distortion of the time history intended. This may require high gains in the imple-
mentation chain. In addition, fast control actuation relative to slow body motion
capabilities may be considered instantaneous without making too large an error. If
these real-world effects cannot be neglected, these processes have to be modeled
by additional components in the dynamic system and taken into account by in-
creasing the order of the model.

The same is true for the sensory devices transducing real-world state variables
into representations on the information processing level. Situation assessment and
control decision-making then are computational activities on the information proc-
essing level in which measured data are combined with stored background knowl-
edge to arrive at an optimal (or sufficiently good) control output. The quality of re-
alization of this desired control and the performance level achieved in the mission
context may be monitored and stored to allow us to detect discrepancies between
the mental models used and the real-world processes observed. The motion-state of
the vehicle’s body is an essential part of the situation given, since both the quality
of measurement data intake and control output may depend on this state.

Therefore, the closed loop of perception, situation assessment/decision—making
and control activation of a moving vehicle always has to be considered in conjunc-
tion. Potential behavioral capabilities of subjects can thus be classified by first
looking at the capabilities in each of these categories separately and then by stating
which of these capabilities may be combined to allow more complex maneuvering
and mission performance. All of this is not considered a sequence of quasi-static
states of the subject that can be changed in no time (as has often been done in con-
ventional Al). Rather, it has to be understood as a dynamic process with alternating
smooth phases of control output and sudden changes in behavioral mode due to
some (external or internal) event. Spatiotemporal aspects predominate in all phases
of this process.

3.2 A Framework for Capabilities

To link image sequences to understanding motion processes in the real world, a
few basic properties of control application are mentioned here. Even though con-
trol variables, by definition, can be changed arbitrarily from one time to the next,
for energy and comfort reasons one can expect sequences of smooth behaviors. For
the same reason, it can even be expected that there are optimal sequences of con-
trol application (however “optimal” is defined) which occur more often than oth-
ers. These stereotypical time histories for achieving some state transition effi-
ciently constitute valuable knowledge not only for controlling movements of the
vehicle’s body, but also for understanding motion behavior of other subjects. Hu-
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man language has special expressions for these capabilities of motion control,
which often are performed sub-consciously: They are called maneuvers and have a
temporal extension in the seconds-to-minutes range.

Other control activities are done to maintain an almost constant state relative to
some desired one, despite unforeseeable disturbances encountered. These are
called regulatory control activities, and there are terms in human language describ-
ing them. For example, “lane keeping” when driving a road vehicle is one such ac-
tivity where steering wheel input is somehow linked to road curvature, lateral off-
set, and yaw angle relative to the road. The speed V driven may depend on road
curvature since lateral acceleration depends on V2/R, with R the radius of the curve.
When driving on a straight road, it is therefore also essential to recognize the onset
of a beginning curvature sufficiently early so that speed can be reduced either by
decreasing fuel injection or by activating the brakes. The deceleration process takes
time, and it depends on road conditions too [dry surface with good friction coeffi-
cient or wet (even icy) with poor friction]. Vision has to provide this input by con-
centrating attention on the road sections both nearby and further away. Only
knowledgeable agents will be able to react in a proper way: They know where to
look and for what (which types of features yield reliable and good hints). This ex-
ample shows that there are situations where a more extended task context has to be
taken into account to perform the vision task satisfactorily.

Another example is given in
Figure 3.1. If both vehicles have ‘\—
just a radar (or laser) sensor on  —————————__
board, which is not able to rec- =1 TSt =)
ognize the road and lane —— —_ = TTTTTTTTTTTC
boundaries, the situation per- ‘—\—
ceived seems quite dangerous.

Two cars are moving toward  Figure 3.1. Judgment of a situation depends on
each other at high speed (shown  the environmental context and on knowledge
by the arrows in front) on a about behavioral capabilities and goals

common straight line.

Humans and advanced tech-
nical vision systems seeing the S-shaped road curvature conclude that the other ve-
hicle is going to perform lane keeping as an actual control mode. The subject vehi-
cle doing the same will result in no stress and a harmless passing maneuver. The
assumption of a suicidal driver in the other car is extremely unlikely. This shows,
however, that the decision process from basic vision “here and now” to judgment
of a situation and coming up with a reasonable or optimal solution for one’s own
behavior may be quite involved. Intelligent reactions and defensive driving require
knowledge about classes of subjects encountered in a certain domain and about
likely perceptual and behavioral capabilities of the participants.

Driving in dawn or dusk near woods on minor roads may lead to an encounter
with animals. If a vehicle has killed an animal previously and the cadaver lies on
the road, there may be other animals including birds feeding on it. The behavior to
be expected of these animals is quite different depending on their type.

Therefore, for subjects and proper reactions when encountering them, a knowl-
edge base should be available on
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1. How to recognize members of classes of subjects.

2. Which type of reaction may be expected in the situation given. Biological
subjects, in general, have articulated bodies with some kind of elasticity or
plasticity. This may complicate visual recognition in a snapshot image. In
real life or in a video stream, typical motion sequences (even of only parts
of the body) may alleviate recognition considerably. Periodic motion of
limbs or other body parts is such an example. This will not be detailed here;
we concentrate on typical motion behaviors of vehicles as road traffic par-
ticipants, controlled by humans or by devices for automation.

Before this is analyzed in the next section, Table 3.1 ends this general introduction
to the concept of subjects by showing a collection of different categories of capa-
bilities (not complete).

Table 3.1. Capabilities characterizing subjects (type: road vehicles)

Categories of capabilities | Devices/algorithms Capabilities

Sensing

odometry,

inertial sensor set, radar,
laser range finder,
body-fixed imaging

measure distance traveled,
speed; 3 linear accelera-
tions, 3 rotational rates;
range to objects, bearing;

sensors, active
vertebrate-type vision.

data processing algorithms,
data fusion,

data interpretation,
knowledge representation
rule bases,

integration methods,

value systems

controllers, feed-forward
and feedback algorithms,

body-fixed fields of view,
gaze controlled vision

motion understanding,
scene interpretation,
situation assessment

Perception (data
association with
knowledge stored)

prediction of trajectories,
evaluation of goal oriented
behaviors;

locomotion,

viewing direction control,

Decision-making

Motion control

actuators articulated motion
Data logging and storage media, remembrance,
retrieval, algorithms judge data quality,
statistical evaluation form systematic databases
Learning value system, quality improvement and extension
criteria, application rules of own behavior
Team work, communication channels, joint (coordinated) solution

of tasks and missions,
increase efficiency

group planning

cooperation visual interpretation

Reasoning Al software

The concept of explicitly represented capabilities allows systematic structuring
of subject classes according to the performance expected from its members. Beside
shape in 3-D space, subjects can be recognized (and sometimes even identified as
individual) by their stereotypical behavior over time. To allow a technical vision
system to achieve this level of performance, the corresponding visually observable
motion and gaze control behaviors should be modeled into the knowledge base. It
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has to be allocated at a higher perceptual level for deeper understanding of dy-
namic scenes.

The basic capabilities of a subject are

1. Sensing (measuring) some states of environmental conditions, of other ob-
jects/subjects in the environment, and of components of the subject state.

2. Storing results of previous sensing activities and linking them to overall situ-
ational aspects, to behavior decisions, and to resulting changes in states ob-
served.

3. Behavior generation depending on 1 and 2.

Step 2 may already require a higher developmental level not necessarily needed in
the beginning of an evolutionary biological process. For the technical systems of
interest here, this step is included right from the beginning by goal-oriented engi-
neering, since later capabilities of learning and social interaction have to rely on it.
Up to now, these steps are mostly provided by the humans developing the system.
They perform adaptations to changing environmental conditions and expand the
rule base for coping with varying environments. In these cases, only data logging is
performed by the system itself; the higher functions are provided by the developer
on this basis. Truly autonomous systems, however, should be able to perform more
and more of these activities by themselves; this will be discussed in the outlook at
the end of the book. The suggestion is that all rational mental processes can be de-
rived on this basis.

The decisive factors for these learning activities are (a) availability of time
scales and the scales for relations of interest, like spatial distances; (b) knowledge
about classes of objects and of subjects considered; (c) knowledge about perform-
ance indices; and (d) about value systems for behavior decisions; all these enter the
decision-making process.

3.3 Perceptual Capabilities

For biological systems, five senses have become proverbial: Seeing, hearing,
smelling, tasting, and touching. It is well known from modern natural sciences that
there are a lot more sensory capabilities realized in the wide variety of animals.
The proprioceptive systems telling the actual state of an articulated body and the
vestibular systems yielding information on a subject’s motion-state relative to iner-
tial space are but two essential ones widely spread. Ultrasound and magnetic and
infrared sensors are known to exist for certain species.

The sensory systems providing access to information about the world to animals
of a class (or to each individual in the class by its specific realization) are charac-
teristic of their potential behavioral capabilities. Beside body shape and the specific
locomotion system, the sensory capabilities and data processing as well as knowl-
edge association capabilities of a subject determine its behavior.

Perceptual capabilities will be treated separately for conventional sensors and the
newly affordable imaging sensors, which will receive most attention later on.
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3.3.1 Sensors for Ground Vehicle Guidance

In ground vehicles, speed sensors (tachometers) and odometers (distance traveled)
are the most common sensors for vehicle guidance. Formerly, these signals were
derived from sensing at just one wheel. After the advent of antilock braking sys-
tems (ABS), the rotational speed of each wheel is sensed separately. Because of the
availability of a good velocity signal, this state variable does not need to be deter-
mined from vision but can be used for motion prediction over one video cycle.

Measuring oil or water temperature and oil pressure, rotational engine speeds
(revolutions per minute) and fuel remaining mainly serves engine monitoring. In
connection with one or more inertial rotational rate sensors and the steering angle
measured, an “electronic stability program” (ESP or similar acronym) can help
avoid dangerous situations in curve steering. A few top-range models may be or-
dered with range measurement devices to objects in front for distance keeping (ei-
ther by radar or laser range finders). Ultrasound sensors for (near-range) parking
assistance are available, too. Video sensors for lane departure warning just entered
the car market after being available for trucks since 2000.

Since the U.S. Global Positioning System (GPS) is up and open to the general
public, the absolute position on the globe can be determined to a few meters accu-
racy (depending on parameters set by the military provider). The future European
Galileo system will make global navigation more reliable and precise for the gen-
eral public.

The angular orientations of the vehicle body are not measured conventionally, in
general, so that these state variables have to be determined from visual motion
analysis. This is also true for the slip (drift) angle in the horizontal plane stating the
difference in azimuth as angle between the vehicle body and the trajectory tangent
at the location of the center of gravity (cg).

Though ground vehicles did not have any inertial sensors till lately, modern cars
have some linear accelerometers and angular rate sensors for their active safety
systems like airbags and electronic stability programs (ESP); this includes meas-
urement of the steering angle. Since full sets of inertial sensors have become rather
inexpensive with the advent of microelectronic devices, it will be assumed that in
the future at least coarse acceleration and rotational rate sensors will be available in
any car having a vision system. This allows the equivalent of vestibular — ocular
data communication in vertebrates. As discussed in previous chapters, this consid-
erably alleviates the vision task under stronger perturbations, since a subject’s body
orientation can be derived with sufficient accuracy before visual perception starts
analyzing data on the object level. Slow inertial drifts may be compensated for by
visual feedback. External thermometers yield data on the outside temperature
which may have an important effect on visual appearance of the environment
around the freezing point. This may sometimes help in disambiguating image data
not easily interpretable.

For a human driver guiding a ground vehicle, the sense of vision is the most im-
portant source of information, especially in environments with good look-ahead
ranges and sudden surprising events. Over the last two decades, the research com-
munity worldwide has started developing the sense of vision for road vehicles, too.
[Bertozzi et al. 2000] and [Dickmanns 2002 a, b] give a review on the development.
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3.3.2 Vision for Ground Vehicles

Similar to the differences between insect and vertebrate vision systems in the bio-
logical realm, two classes of technical vision systems can also be found for ground
vehicles. The more primitive and simple ones have the sensory elements directly
mounted on the body. Vertebrate vision quickly moves the eyes (with very little in-
ertia by themselves) relative to the body, allowing much faster gaze pointing con-
trol independent of body motion.

The performance levels achievable with vision systems depend very much on the
field of view (f.0.v.) available, the angular resolution within the f.o.v., and the ca-
pability of pointing the f.0.v. in certain directions. Figure 3.2 gives a summary of
the most important performance parameters of a vision system. Data and knowl-
edge processing capabilities available for real-time analysis are the additional im-
portant factors determining the performance level in visual perception.

- Light sensitivity, dynamic range (up to 10%)
- Shutter control 3
- Black & white, .- =~

- Simultaneous field of view
- CoIoI,,[\

"‘_‘\\ \7 T perpixelf
N Fixed focus or

- Number ~~~__ |
of pixels on chip ~~¥. zoom lense

- Frame rates possible
- Number of chips for color

Potential
pointing directions

Single camera or arrangement of a diverse set of cameras for
stereovision, multifocal imaging, and various light sensitivities.

Figure 3.2. Performance parameters for vision systems

Cameras mounted directly on a vehicle body are subjected to any motion of the
entire vehicle; they can be turned towards an object of interest only by turning the
vehicle body. Note that with typical “Ackermann”-type steering of ground vehicles
(front wheels on the tips of the front axle can be turned around an almost vertical
axis), the vehicle cannot change viewing direction when stopped, and only in a
very restricted manner otherwise. In Al-literature, this is called a nonholonomic
constraint.

Resolution within the field of view is homogeneous for most vision sensors.
This is not a good match to the problem at hand, where looking almost parallel to a
planar surface from an observation point at small elevation above the surface
means that distance on the ground in the real world changes with the image row
from the bottom to the horizon. Non-homogeneous image sensors have been re-
searched [e.g., Debusschere et al. 1990] but have not found wider application yet. Us-
ing two cameras with different focal lengths and almost parallel optical axes has
also been studied [Dickmanns, Mysliwetz 1992]; the results have led to the MarVEye—
concept to be discussed in Chapter 12.
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Since most of the developments of vision systems for road vehicles are using the
simple approach of mounting cameras directly on the vehicle body, some of the
implications will be discussed first so that the limitations of this type of visual sen-
sor are fully understood. Then, the more general and much more powerful verte-
brate-type active vision capabilities will be discussed.

3.3.2.1 Eyes Mounted Directly on the Body

Since spatial resolution capabilities improve with elevation above the ground, most
visual sensors are mounted at the top of the front windshield. Figure 3.3 shows an
: example of stereovision. A single camera
or two cameras with different focal
lengths, not requiring a large stereo base,
can be hidden nicely behind the rear-view
mirror inside the vehicle. The type of vi-
Figure 3.3. Two cameras mounted fix  sion system may thus be discovered by
on vehicle body visual inspection when the underlying
principles are known.
Pitch effects: When driving on smooth surfaces, pitch perturbations on the body
are small (less than 1°), usually. Strong braking actions and accelerations may lead
to pitch angle changes of up to 3 or 4°. Pitch angles have an influence on the verti-
cal range of rows to be evaluated when searching for objects on a planar ground at
a given distance in the 3-D world. For a camera with a strong telelens (f.o.v. of ~
same size as the perturbation, 3 to 4°), this means that an object of interest previ-
ously tracked may no longer be visible at all in a future image! In a camera with a
normal lens of ~ 35° vertical f.0.v., this corresponds to a shift of only ~ 10 % of the
total number of rows (~ 50 rows in absolute terms). This clearly indicates that
body-fixed vision sensors are limited to cameras with small focal lengths. They
may be manageable for seeing large objects in the near range; however, they are
unacceptable for tracking objects of the same size further away.

When the front wheels of a car drive over an obstacle on the ground of about 10
cm height with the rear wheels on the flat ground (at a typical axle distance ~ 2.5
m), an oscillatory perturbation in pitch with amplitude of about 2° will result. At 10
meters distance, this perturbation will shift the point, where an optical ray through
a fixed pixel hits an object with a vertical surface, by almost half a meter up and
down. However, at 200 meters distance, the vertical shift will correspond to plus or
minus 10 meters! Assuming that the highly visible car body height is ~ 1 m, this
perturbation in pitch (min. to max.) will lead to a shift in the vertical direction of 1
unit (object size) at 10 m distance, while at 200 m distance, this will be 20 units.
This shows that object-oriented feature extraction under perturbations requires a
much larger search range further away for this type of vision system. Looking al-
most parallel to a flat ground, the shift in look-ahead distance L for a given image
line z is much greater. To be precise, for a camera elevation of 1.5 m above the
ground, a perturbation of 50 mrad (~ 3°) upward shifts the look-ahead distance
from 30 m to infinity (to the horizon).

If the pitch rate could be measured inertially, the gaze-controllable eye would
allow commanding the vertical gaze control by the negative value of the pitch rate




3.3 Perceptual Capabilities 67

measured. Experiments with inexpensive rate sensors have shown that perturba-
tions in the pitch angle amplitude of optical rays can be reduced by at least one or-
der of magnitude this way (inertial angular rate feedback, see Figure 12.2).

Driving cross-country on rough terrain may lead to pitch amplitudes of + 20° at
frequencies up to more than 1 Hz. Pitch rates up to ~ 100°/s may result. In addition
to pitch, bank and yaw angles may also have large perturbations. Visual orientation
with cameras mounted directly on the vehicle body will be difficult (if not
impossible) under these conditions. This is especially true since vision, usually, has
a rather large delay time (in the tenths of a second range) until the situation has
been understood purely based on visual perception.

If a subject’s body motion can be perceived by a full set of inertial sensors
(three linear accelerometers and three rate sensors), integration of these sensor sig-
nals as in “strap-down navigation” will yield good approximations of the true an-
gular position with little time delay (see Figure 12.1). Note however, that for cam-
eras mounted directly on the body, the images always contain the effects of motion
blur due to integration time of the vision sensors! On the other hand, the drift errors
accumulating from inertial integration have to be handled by visual feedback of
low-pass filtered signals from known stationary objects far away (like the horizon).

In a representation with a scene tree as discussed in Chapter 2, the reduction in
complexity by mounting the cameras directly on the car body is only minor. Once
the computing power has been there for handling this concept, there is almost no
advantage in data processing compared to active vision with gaze control. Hard-
ware costs and space for mounting the gaze control system are the issues keeping
most developers away from taking advantage of a vertebrate type eye. As soon as
high speeds with large look-ahead distances or dynamic maneuvering are required,
the visual perception capabilities of cameras mounted directly on body will no
longer be sufficient.

Yaw effects: For roads with small radii of curvature R, another limit shows up. For
example, for R = 100 m, the azimuth change along the road is curvature C = 1/R
(0.01 m™) times arc-length I. The lateral offset y at a given look-ahead range is
given by the second integral of curvature C (assumed constant here, see Figure 3.4)
and can be approximated for small angles by the term to the right in Equation 3.1.

X=%+C-1; Y= Yo+ [sinygdlxy,-1+C-17/2 (3.2)

For a horizontal f.o.v. of 45° (+ 22.5°), the look-ahead range up to which other
vehicles on the road are still in the f.o.v. is ~ 73 m (y, = 0). (Note that the distance
traveled on the arc is 45° - ©/ 180° - 100 m = 78.5 m.) At this point, the heading
angle of the road is 0.785 radian (~ 45°), and the lateral offset from the tangent
vector to the subject’s motion is ~ 30 m; the bearing angle is 22.5°, so that the as-
pect angle of the other vehicle is 45° — 22.5° = 22.5° from the rear right-hand side.
Increasing the f.0.v. to 60° (+ 33%) increases the look-ahead range to 87 m (+
19%) with a lateral range of 50 m (+67%). The aspect angle of the other vehicle
then is 30°. This numerical example clearly shows the limitations of fixed camera
arrangements. For roads with even smaller radii of curvature, look-ahead ranges
decrease rapidly (see circles 50 and 10 m radius on lower right in Figure 3.4).
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Especially tight maneu-
vering with radii of curva-
ture R down to ~ 6 m (stan-
dard for road vehicles) re-
quires active gaze control if
special sensors for these
rather rare opportunities are
to be avoided. By increasing
the range of yaw control in
gaze azimuth to about 70°
relative to the vehicle body,
all cases mentioned can be
handled easily.

In addition, without ac-
tive gaze control, all angular
perturbations from rough
ground are directly inflicted
upon the camera viewing
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Figure 3.4. Horizontal viewing ranges

conditions leading to motion blur. Centering of other objects in the image may be
impossible if this is in conflict with the driving task.

3.3.2.2 Active Gaze Control

The simplest and most effective degree of freedom for active gaze control of road
vehicles on smooth surfaces with small look-ahead ranges is the pan (yaw) angle
(see Figure 1.3). Figure 3.5 shows a solution with the pan as the outer and the tilt
degree of freedom as the inner axis for the test vehicle VaMoRs, designed for driv-
ing on uneven ground. This allows a large horizontal viewing range and improves
the problem due to pitching motion by inertial stabilization; inertial rate sensors for
a single axis are mounted directly on the platform so that pitch stabilization is in-

Figure 3.5. Two-axes gaze control
platform with large stereo base of ~
30 cm for VaMoRs. Angular ranges:
Pan (yaw) ~ + 70°, tilt (pitch) ~ £
25°. It is mounted behind the upper
center of the front windshield, about
2 m above the ground

dependent from gaze direction in yaw. Be-
side the possibility of view stabilization,
active gaze control brings new degrees of
freedom for visual perception. The poten-
tial gaze directions enlarge the total field of
view. The pointing ranges in yaw and pitch
characterize the design. Typical values for
automotive applications are £ 70° in yaw
(pan) and 25° in pitch (tilt). They yield a
very much enlarged potential field of view
for a given body orientation. Depending on
the missions to be performed, the size of
and the magnification factor between the
simultaneous fields of view (given one
viewing direction) as well as the potential
angular viewing ranges have to be selected
properly. Of course, only features appear-



3.3 Perceptual Capabilities 69

ing in the actual simultaneous field of view can be detected and can attract atten-
tion (if there is no other sensory modality like hearing in animals, calling for atten-
tion in a certain direction). If the entire potential field of view has to be covered for
detecting other objects, this can be achieved only by time-slicing attention with the
wide field of view through sequences of viewing direction changes (scans). Usu-
ally, in most applications there are mission elements and maneuvers for which the
viewing area of interest can be determined from the mission plan for the task to be
solved next. For example, turning off onto a crossroad to the right or left automati-
cally requires shifting the field of view in this direction (Chapter 10 and Section
14.6.5).

The request for economy in vision data leads to foveal-peripheral differentia-
tion, as mentioned above. The size and the increase in resolution of the foveal
f.o.v. are interesting design parameters to be discussed in Chapter 12. They should
be selected such that several seconds of reaction time for avoiding accidents can be
guaranteed. The human fovea has a f.0.v. from 1 to 2°. For road vehicle applica-
tions, a ratio of focal lengths from 3 to 10 as compared to wide-angle cameras has
proven sufficient for the same size of imaging chips in all cameras.

Once gaze control is given, the modes of operation available are characteristic
of the system. Being able to perform very fast gaze direction changes reduces the
time delays in saccadic vision. In order to achieve this, usually, nonlinear control
modes taking advantage of the maximal power available are required. Maximum
angular speeds of several hundred degrees per second are achievable in both bio-
logical and technical systems. This allows reducing the duration of saccades to a
small fraction of a second even for large amplitudes.

For visual tracking of certain objects, keeping their image centered in the field
of view by visual feedback reduces motion blur (at least for this object of special
interest). With only small perturbations remaining, the relative direction to this ob-
ject can be read directly from the angle encoders for the pointing platform (solving
part of the so-called “where”-problem by conventional measurements). The overall
vision process will consist of sequences of saccades and smooth pursuit phases.

Search behavior for surveillance of a certain area in the outside world (3-D
space) is another mode of operation for task performance. For optimal results, the
parameters for search should depend on the distance to be covered.

When the images of the camera system (vehicle eye) are analyzed by several de-
tection and recognition processes, there may be contradictory requirements for
gaze control from these specialists for certain object classes. Therefore, there has to
be an expert for the optimization of viewing behavior taking the information gain
for mission performance of the overall system into account. If the requirements of
the specialist processes cannot be satisfied by a single viewing direction, sequential
phases of attention with intermediate saccadic gaze shifts have to be chosen
[Pellkofer 2003]; more details will be discussed in Chapter 14. It is well known that
the human vision system can perform up to five saccades per second. In road traf-
fic environments, about one to two saccades per second may be sufficient; coarse
tracking of the object not viewed by the telecamera may be done by one of the
wide-angle cameras meanwhile.

If the active vision system is not able to satisfy the needs of the specialists for
visual interpretation, it has to notify the central decision process to adjust mission
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performance to this situation (see Figure 14.1). Usually in ground vehicle guid-
ance, slowing down or stopping under safe conditions is the way out for buying
more time for perception.

3.3.2.3 Capability Network for Active Vision

The perceptual capabilities discussed above can be grouped according to signal
flows required during execution and according to the complexity needed for solv-
ing typical classes of tasks. No general survey on active vision is intended here. A
number of publications dealing with this problem are [Aloimonos et al. 1987; Ballard
1991; Blake and Yuille 1992; more recent ones]. Here, we will follow the approach de-
veloped by [Pellkofer 2003] (see also [Pellkofer et al. 2001, 2002]).

Figure 3.6 shows a graphical representation of the capabilities available for gaze
control in the EMS-vision system (to be discussed in more detail in Chapters 12
and 14). The lowest row in the figure contains the hardware for actuation in two
degrees of freedom and the basic software for gaze control (box, at right).

Schematic Selects / applies for Central
capabilities l Optimization Decision
of viewing

behavior

triggers
j iyl BDGAX

1 Gaze
-1 Control

_itriggers

_ Controller
Actuators | motor J ST program

Figure 3.6. Capability network for active gaze control (after [Pellkofer 2003])
*BDGA = behavior decision for gaze and attention

On the second level from the bottom, the basic skills are represented with the
expert for gaze control (GC) in the box to the right. This process runs on the proc-
essor closest to the hardware to minimize delay times. It receives its commands
from the process for behavior decision for gaze and attention (BDGA). By combin-
ing two of its basic skills in a sequence with proper transitions, more complex
skills on the third level originate. Scans differ from fixation (visual feedback) in
that they are performed with constant angular speed (a parameter set by BDGA).
GC is the process executing the commands from BDGA; these may be given partly
by symbols and partly by just specifying the parameters needed.

The algorithms for planning sequences of saccades and phases of smooth pursuit
are represented in the capability network on the upper level by the capability node
“optimization of viewing behavior” (OVB, upper left). By representing these capa-
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bilities explicitly on the abstract level in the capability network, the process “cen-
tral decision” (CD, upper right) can parameterize and use it in a flexible way. The
capability OVB depends on the availability of the complex skill saccade and
smooth pursuit. It possesses as parameters the maximal number of saccades, the
planning horizon, eventually, a constant angular position for one of the platform
axes, and the potential for initiating a new plan for gaze direction control. The de-
mand of attention and the combination of regions of attention for certain objects to
be observed are communicated by the specialists for recognizing and tracking these
objects (see Chapters 13 and 14). Complex patterns in visual perception may
emerge this way depending on the priorities set in the system. The second sche-
matic capability beside OVB on this level is 3-D search. This allows scanning a
certain area in the environment of the vehicle in the real world by sequences of
saccades and scans. The scans are performed with constant angular speeds so that
image evaluation is possible; saccades may be interspersed so that the scanning di-
rection is always the same. Scan rate may depend on the distance viewed.

Central decision (CD), the process in charge of achieving the goals of the mis-
sion, has contact only with BDGA, not to the lower levels directly. This modulari-
zation alleviates system development and naturally leads to multiple scales (coarse-
to-fine differentiation). It should have become clear that this scheme allows charac-
terizing vision systems to a relatively fine degree. Compact representation schemes
for a wide variety of vision systems are possible and left open for future develop-
ments. The concept has been designed to be flexible and easily expandable.

3.3.2.4 Feature Extraction Capabilities

Beside the capabilities of gaze control, the capabilities of visual feature extraction
characterize the performance level achievable by a subject. Thresholds in percep-
tion of edge and corner features are as important as recognizing shades of gray val-
ues or colors in a stable way. Recognizing shapes originating from boundaries of
homogeneous image areas or from smooth or connected boundary sections allows
inferences for hypothesis generation of objects or subjects seen, especially when
continuity conditions over time can be discovered and also tracked. This will be
one of the major topics of this book.

Biological vision systems have developed a high standard in recognizing tex-
tures, even two different ones simultaneously, as when one surface moves behind a
partially obscuring other object (for example, an animal behind a tree or bush). The
state of development of processing power of computers does not yet allow this in
technical systems. In biological evolution, in certain situations like a predator ap-
proaching prey, maybe only those prey animals had a chance to survive which
were able to solve this problem sufficiently well. For many applications of techni-
cal systems, this high level of visual capabilities is probably not necessary.
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3.3.3 Knowledge Base for Perception Including Vision

At least as important for high-performance vision systems as the bottom-up capa-
bilities for sensor data acquisition and processing is the knowledge that can be
made readily available to the interpretation process for integration of information.
Deeper understanding of complex situations and the case decisions necessary for
proper reaction can be achieved only if relevant knowledge is available to a suffi-
cient degree. This will be discussed in later chapters to some extent because of its
importance, after the notions of subjects and situations have been fully introduced
in this and the next chapter. This broad topic is considered a major area of devel-
opment for intelligent systems with the sense of vision.

3.4 Behavioral Capabilities for Locomotion

The behavior most easily detectable by a vision system is motion of other objects
or subjects. Therefore, this will be treated here ahead of decision making, even
though decisions have to precede egomotion internally after signals from sensors
have been received.

Motion capabilities depend very much on the basic shape of the body and on the
means for locomotion of the subject. Legged motion widely spread in biological
systems is hardly found in technical systems. On the other hand, the “axle-and-
wheels” solution for locomotion abundant in technical systems cannot be found in
biological systems because nature has not been able to solve the maintenance prob-
lems of these devices with soft tissue and blood vessels. Also, special preparation
of the natural environment needed for using wheels efficiently could not be pro-
vided; humans solved this problem by road building, one of the outstanding
achievements of human civilization. Tracked vehicles for going cross-country also
use wheels, but have a special device for smoothing the surface these wheels roll
on (tracks with articulated chain members).

Birds are able to walk on two legs and to hop, and, in addition, most species
have the capability to fly by flapping their wings which they can fold to the body
and unfold for flying. On the contrary, human technology again uses the “axle-and-
wheels” solution with blades mounted to the wheel for generating propulsion (in
propellers and partly in jet engines) or lift (in helicopters). Both principles are di-
rectly reflected in the visual appearance of these subjects. In the realm of insects,
many more locomotion solutions can be found. Snakes solved their locomotion
problem by typical wave-like sliding motion. For locomation in vertical structures
like trees, many-legged solutions may be of advantage.

The most highly developed creatures in biology with four limbs have developed
special skills with their backward “legs” for running on almost flat ground. As
soon as vertical structures have to be dealt with, the forward “arms” may support
locomotion by grasping and swinging. This multiple use of extremities in connec-
tion with the wide variety of image processing needed for this purpose (including
evaluation of data from inertial sensor of their body) may have led to the develop-
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ment of the most powerful brain found on our planet. Some species even use their
tail to improve climbing and swinging performance in trees.

Without locomotion of the body, subjects with articulated bodies in both the
biological and the technical realm are able to move their limbs for some kind of
behavior. Grasping for objects nearby may be found in both areas (arm motion of
animals or of industrial robots). Humans may use their arms for conveying infor-
mation to a partner or to opponents. Cranes move their arms for loading and un-
loading vehicles or for lifting goods.

This may suffice to show the generality of the approach for understanding dy-
namic scenes by body shapes, their articulations, and their degrees of freedom for
motion, controlled by some actuators with constrained motion capabilities, which
get their commands from some data and knowledge processing device. Species
may be recognized by their stereotypical motion behaviors, beside their appearance
with 3-D shape and surface properties.

3.4.1 The General Model: Control Degrees of Freedom

To enable the link between image sequence interpretation and understanding mo-
tion processes with subjects in the real world, a few basic properties of control ap-
plication are discussed here. Again, it is not intended to treat all possible classes of
subjects but to concentrate on just one class of technical subjects from which a lot
of experience has been gained by our group over the last two decades: Road vehi-
cles (and air vehicles not treated here).

3.4.1.1 Differential Equations with Control Variables

As mentioned in the introduction, control variables are the variables in a dynamic
system that distinguishes subjects from objects (proper). Control variables may be
changed at each time “at will”. Any kind of discontinuities are allowed; however,
very frequently control time histories are smooth with a few points of discontinuity
when certain events occur.

Differential equations describe constraints on temporal changes in the system,
including the effects of control input. Again, standard forms are n equations of first
order (“state equations™) for an nth order system. In the transformed frequency
domain, they are usually given as a set of transfer functions of nth order for linear
systems. There is an infinite variety of (usually nonlinear) differential equations for
describing the same temporal process. System parameters p allow us to adapt the
representation to a class of problems

dXrdt=f(X,U,p,t). (3.2)

Since real-time performance usually requires short cycle times for control, lin-
earization of the equations of motion around a nominal set point (index N) is suffi-
ciently representative of the process, if the set point is adjusted along the trajectory.
With the substitutions

X=Xy +X, U=U, +u, (33)
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one obtains
dX/dt = dX,/dt + dx/dt. (3.4
The resulting sets of differential equations for the nominal trajectory then are
dXy fdt=f(Xy,Uy.p. 1), (3.5)
and for the linearized perturbation system,
dx/dt=F. x+ G-u + V'(t), (3.6)

with  F=df/dX|,; G=df/dUl|
as (n x n)- respectively (n x r)-matrices and v’(t) an additive noise-term. In systems
with feedback components, the local feedback component simultaneously ensures
(or at least improves) the validity of the linearized model, if the loop is stable.
Figure 3.7 shows this approximation of a nonlinear process with perturbations
by a nominal nonlinear part (without perturbations), superimposed by a linear

In-advance computation of nominal :

i trajectory: : X =fXUpt

X(B) = Xn(®) + (1)

! Optimal state history, : U(t) = Upn(t) + u(t)

: Feed-forward control  : )

time i X = Xy(t) +X(t) = f(Xy, Uy, p, 1)

.............................. nistoryE - afiax - x+offou - u+
T ~ O

Parameter . )
adaptation | | _XZTFO x*+CO-u (lin. deg)

ole : Nonlinear
plant

e !f:orrection Z(t)

Measurements
(observation) <

Figure 3.7. Approximation of a nonlinear process by superposition of a nominal nonlin-
ear part and a superimposed linear part with a vector of perturbations v(t)

(usually time-varying) feedback part taking care of unpredictable perturbations.
The nominal nonlinear part is numerically optimized off-line in advance of the
nominal conditions exploiting powerful numerical optimization methods derived
from the calculus of variation. Along the optimal trajectory, the time histories of
the partial derivative matrices F and G are stored; this is the basis for time-varying
feedback with the linear perturbation system.

This approach is very common in engineering (for example in aero/space trajec-
tory control) since the advent of digital computers in the second half of the last
century. From here on, underlining of vectors will be dropped; the context will
make the actual meaning clear.
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3.4.1.2 Transition Matrices for Single Step Predictions

Equation 3.6 with matrices F and G may be transformed into a difference equation
with the cycle time T for grid point spacing by one of the standard methods. (Pre-
cise numerical integration from 0 to T for v = 0 may be the most convenient one for
complex right-hand sides.) The resulting general form then is
X[(k+2)T] = A-x[KT] + B-u[kT] + V[KT]
or in short-hand notation, x,,, = A-x, + B-u, +v,,
where the matrices A, B have the same dimensions as F, G. In the general case of
local linearization, all entries of these matrices may depend on the nominal state
and control variables (Xy, Uy). The procedures for computing the elements of A
and B have to be part of the “4-D knowledge base” for the application at hand.
Software packages for these transformations are standard in control engineering.

For deeper understanding of motion processes of subjects observed, a knowl-
edge base has to be available linking the actual state and its time history to goal-
oriented behaviors and to stereotypical control outputs on the time line. This will
be discussed in Section 3.4.3.

Once the initial conditions of the state are fixed or given, the evolving trajectory
will depend both on this state (through matrix A, the so-called homogeneous part)
and on the controls applied (the non-homogeneous part). Of course, this part also
has to take the initial conditions into account to achieve the goals set in a close-to-
optimal way. The collection of conditions influencing the decision for control out-
put is called the “situation” (to be discussed in Chapters 4 and 13).

(3.7)

3.4.2 Control Variables for Ground Vehicles

A wheeled ground vehicle has three control variables, usually, two for longitudinal
control and one for lateral control, the steering system. Longitudinal control is
achieved by actuating either fuel injection (for acceleration or mild decelerations)
or brakes (for decelerations up to ~ —1 g (Earth gravity acceleration ~ 9.81 m s ?)).
Ground vehicles are controlled through proper time histories of these three control
variables. In synchronization with the video signal this is done 25 (PAL-imagery)
or 30 times a second (NTSC). Characteristic maneuvers require corresponding
stereotypical temporal sequences of control output. The result will be correspond-
ing time histories of changing state variables. Some of these can be measured di-
rectly by conventional sensors, while others can be observed from analyzing image
sequences.

After starting a maneuver, these expected time histories of state variables form
essential knowledge for efficient guidance of the vehicle. The differences between
expectations and actual measurements give hints on the situation with respect to
perturbations and can be used to apply corrective feedback control with little time
delay; the lower implementation level does not have to wait for the higher system
levels to respond with a change in the behavioral mode running. To a first degree
of approximation, longitudinal and lateral control can be considered decoupled (not
affecting each other). There are very sophisticated dynamic models available in
automotive engineering in the car industry and in research for simulating and ana-
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lyzing dynamical motion in response to control input and perturbations; only a very
brief survey is given here. Mitschke (1988, 1990) is the standard reference in this
field in German. (The announced reference [Giampiero 2007] may become a coun-
terpart in English.)

3.4.2.1 Longitudinal Control Variables

For longitudinal acceleration, the following relation holds:
d’x/dt* = {~-F, -F, - F, - F, - F, +F}/m. (3.8)
F. = aerodynamic forces proportional to velocity squared (V),
F, =roll-resistance forces from the wheels,
Fy = weight component in hilly terrain (— m-g-sin(y); y = slope angle);
F, = braking force, depends on friction coefficient p (tire — ground), normal
force on tire, and on brake pressure applied (control Ujeny);
F. =longitudinal force due to curvature of trajectory,
F, = propulsive forces from engine torque through wheels (control ujen),
m = vehicle mass.

Figure 3.8 shows the basic effects of propulsive forces F, at the rear wheels. Add-
ing and subtracting the same force at the cg yields torque-free acceleration of the
center of gravity and a torque around : Axle distance 2"
the cg of magnitude HcF, which is
balanced by the torque of additional
vertical forces AV at the front and rear
axles. Due to spring stiffness of the
body suspension, the car body will
pitch up by A8, which is easily noticed
in image analysis. Figure 3.8. Propulsive acceleration con-
Similarly, the braking forces at the  trol: Forces, torques and orientation
wheels will result in additional vertical  changes in pitch
force components of opposite sign,
leading to a downward pitching motion
A®y, which is also easily noticed in vision. Figure 3.9 shows the forces, torque, and
change in pitch angle. Since the braking force is proportional to the normal (verti-
cal) force on the tire, it can be seen that the front wheels will take more of the brak-
ing load than the rear wheels. Since vehicle acceleration and deceleration can be
easily measured by linear accelerometers mounted to the car body, the effects of
O control applicati_on can be dirgctly
« > “felt” by conventional sensors. This al-
: ‘ lows predicting expected values for
several sensors. Tracking the differ-
ence between predicted and measured
values helps gain confidence in motion
models and their assumed parameters,
on the one hand, and monitoring envi-
ronmental conditions, on the other
hand. The change in visual appearance

Figure 3.9. Longitudinal deceleration
control: Braking
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of the environment due to pitching effects must correspond to accelerations sensed.
A downward pitch angle leads to a shift of all features upward in the images. [In
humans, perturbations destroying this correspondence may lead to “motion sick-
ness”. This may also originate from different delay times in the sensor signal paths
(e.g., “simulator sickness”) or from additional rotational motion around other axes
disturbing the vestibular apparatus in humans which delivers the inertial data.]

For a human driver, the direct feedback of inertial data after applying one of the
longitudinal controls is essential information on the situation encountered. For ex-
ample, when the deceleration felt after brake application is much lower than ex-
pected the friction coefficient to the ground may be smaller than expected (slippery
or icy surface). With a highly powered car, failing to meet the expected accelera-
tion after a positive change in throttle setting may be due to wheel spinning. If a ro-
tation around the vertical axis occurs during braking, the wheels on the left- and
right-hand sides may have encountered different frictional properties of the local
ground. To counteract this immediately, the system should activate lateral control
with steering, generating the corresponding countertorque.

3.4.2.2 Lateral Control of Ground Vehicles

A generic steering model for lateral control is given in Figure 3.10; it shows the so-
called Ackermann-steering, in which (in an idealized quasi-steady state) the axes
of rotation of all wheels always point
to a single center of rotation on the
extended rear axle. The simplified C = (tan A)/a R
“bicycle model” (shown) has an aver-

'Y
tanr=a/lR,=a-C “7~

Riin P T

cg

4449,4444

age steering angle A at the center of P ; ;
the front axle and a turn radius R ~ R¢ T v R —
~ R,. The curvature C of the trajectory Riou = V(R + by /2)2 + a2 o,

driven is given by C = 1/R; its rela-
tion to the steering angle X is shown Figure 3.10. Ackermann steering for
in the figure. ground vehicles: Steer angle A, turn radius
Setting the cosine of the steering R, curvature C = 1/R, axle distance a
angle equal to 1 and the sine equal to
the argument for magnitudes A smaller than 15° leads to the simple relation
A=alR=a-C,or
C=11/a. (3.9
Since curvature C is defined as “heading change over arc length” (dy/dl), this
simple (idealized) model neglecting tire softness and drift angles yields a direct in-
dication of heading changes due to steering control:
dy/dt=dy/dl-dl/dt=C-V =V -1/a. (3.10)
Note that the trajectory heading angle y is rarely equal to the vehicle heading
angle v; the difference is called the slip angle B. The simple relation Equation 3.10
yields an expected turn rate depending linearly on speed V multiplied by the steer-
ing angle. The vehicle heading angle v can be easily measured by angular rate sen-
sors (gyros or tiny modern electronic devices). Turn rates also show up in image
sequences as lateral shifts of all features in the images.
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Simple steering maneuvers: Applying a constant steering rate A (considered the
standard lateral control input and representing a good approximation to the behav-
ior of real vehicles) over a period Tsg Yields the final steering angle and path curva-
ture

A=2+At, C=(+At)/a=C,+A-t/a;

A =g+ ATy, C, =C,+A Ty /a. (3.11)

Integrating Equation 3.10 with the top relation 3.11 for C yields the (idealistic!)
change in heading angle for constant speed V

AX:I(C-V)dt:V-I[CO+A-t/a]dt

=V [Cy T+ A-TS /(2 Q)]
The first term on the right-hand side is the heading change due to a constant steer-
ing angle (corresponding to Cy); a constant steering angle for the duration t thus
leads to a circular arc of radius 1/C, with a heading change of magnitude
Ay. = V-C, 7. (3.133)
The second term (after the plus sign) in Equation 3.12 describes the contribution of
the ramp-part of the steering angle. For initial curvature C, = 0, there follows

Alpamp =V - I[At/a]dt:O.S-V-AtZ/a. (3.13b)

Turn behavior of road vehicles can be characterized by their minimal turn radius
(Rmin = 1/Cax)- For cars with axle distance “a” from 2 to 3.5 m, R may be as low
as 6 m, which according to Figure 3.10 and Equation 3.9 yields A around 30°.
This means that the linear approximation for the equation in Figure 3.10 is no
longer valid. Also the bicycle model is only a poor approximation for this case.
The largest radius of all individual wheel tracks stems from the outer front wheel
Rout. FOr this radius, the relation to the radius of the center of the rear axle R,, the
width of the vehicle track by, and the axle distance are given at the lower left of
Figure 3.10. The smallest radius for the rear inner wheel is R, - br,2. For a track
width of a typical car by, = 1.6 m, a = 2.6 m, and R, = 6 m, the rear axle radius
for the bicycle model would be 4.6 m (and thus the wheel tracks would be 3.8 m
for the inner and 5.4 m for the outer rear wheel) while the radius for the inner front
wheel is also 4.6 m (by chance here equal to the center of the rear axle). This gives
a feeling for what to expect from standard cars in sharp turns. Note that there are
four distinct tracks for the wheels when making tight turns, e.g., for avoiding nega-
tive obstacles (ditches). For maneuvering with large steering angles, the linear ap-
proximation of Equation 3.9 for the bicycle model is definitely not sufficient!

Another property of curve steering is also very important and easily measurable
by linear accelerometers mounted on the vehicle body with the sensitive axis in the
direction of the rear axle (y-axis in vehicle coordinates). It measures centrifugal ac-
celerations a, which from mechanics are known to obey the law of physics:

a, =V?/R=V?.C. (3.14)
For a constant steering rate A over time t this yields with Equation 3.11 a con-

stantly changing curvature C, assuming no other effects due to dynamics, time de-
lays, bank angle or soft tires:

a,=V% (4, +At)la. (3.15)

(3.12)
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At the end of a control input phase starting from %o = 0 with constant steering

rate over a period Tsg, the maximal lateral acceleration is
Ay max =V%. AT,/a. (3.16)

For passenger comfort in public transportation, horizontal accelerations are usu-
ally kept below 0.1 g = 1 m/s2 In passenger cars, levels of 0.2 to 0.4 g are com-
monly encountered. With a typical steering rate of |A| = 1.15 °/s = 0.02 rad/s, the
lateral acceleration level of ~ 0.2 g (2 m/s?) is achieved in a maneuver-time
dubbed T,. For the test vehicle “VaMP”, a Mercedes sedan 500-SEL with an axle
distance a = 3.14 m, this maneuver time T, (divided by a factor of 2 for scaling in
the figure) is shown in Figure 3.11 as a curved solid line. Table 3.2 contains some
numerical values for low speeds and precise values for higher speeds.

It can be seen that for low speeds this maneuver time is relatively large (row 3
of the table); a large steering angle (line with triangles and row four) has to be built
up until the small radius of curvature (line with stars, third row from bottom) yields
the lateral acceleration set as limit. For very low speeds, of course, this limit cannot
be reached because of the limited steering angle. At a speed of 15 m/s (54 km/h, a
typical maximal speed for city traffic) the acceleration level of 0.2 g is reached af-
ter ~ 1.4 seconds. The (idealized) radius of curvature then is = 113 m; this shows
that the speed is too high for tight curving. Also when the heading angle reaches
the lateral acceleration limit (falling dashed curved line in Figure 3.11), the (ideal-
ized) lateral speed at that point (dashed curved line) and the lateral positions (dot-
ted line) become small rapidly with higher speeds V driven.

Quasi-static lateral motion parameters as f(V) for VaMP; ay,max = 2 m/s’
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Figure 3.11. Idealized motion parameters as function of speed V for a steering rate
step input of A = 0.02 rad/s until the lateral acceleration level of 2 m/s? is reached
(quasi-static results for a first insight into lateral dynamics)
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These numbers may serve as a first reference for grasping the real-world effects
when the corresponding control output is used with a real vehicle in testing. In Sec-
tion 3.4.5, some of the most essential effects stemming from systems dynamics ne-
glected here will be discussed.

Table 3.2. Typical final state variables as function of speed V for a steering maneuver with
constant control output (steering-rate A = 0.02 rad/s) starting from A = 0 until a centrifugal
acceleration of 0.2 g is reached (idealized with infinite cornering stiffness)

0 1 2 3 4 5 6 7 8

v(mis) | 5278 75 10 15 20 30 40 70
T,(s) | 1127 558 314 1396 0785 0349 0196  0.064
Me() | 129 640 360  1.60 089 040 0225 0.073
A () | 1222 426 180 533 225 0666 0281 0.0525

Rim) | 139 281 50 113 200 450 800  2.450
vimis) | () (558) (3.14) 1396 0785 0349 0196  0.064
ye (m) - (104) (329) 065 0205 0041 0013 00014

Column 1 (for about 19 km/h) marks the maximal steering angle for which the
linearization for the relation C(}) (Equation 3.10) is approximately correct; the fol-
lowing columns show the rapid decrease in maneuver time until 0.2 g is reached.
Columns 2, 3, and 4 correspond to speeds for driving in urban areas (27, 36, and 54
km/h), while 30 m/s = 67.5 mph = 108 km/h (column 6) is typical for U.S. high-
ways; average car speed on a free German Autobahn is around 40 m/s (= 145
km/h), and the last column corresponds to the speed limit electronically set in
many premium cars (= 250 km/h). Of course, the turn rate A at high speeds has to
be reduced for increased accuracy in lateral control. Notice that for high speeds,
the lateral acceleration level of 2 m/s? is reached in a small fraction of a second
(row 3) and that the heading angles ys (row 5) are very small.

Real-world effects of tire stiffness (acting like springs in the lateral direction in
combination with the vector of the moment of momentum) will change the results
dramatically for this type of control input as a function of speed. This will be dis-
cussed in Section 3.4.5. To judge the changes in behavior due to speed driven by
these types of vehicles, these results are important components of the knowledge
base needed for safe driving. High-speed driving requires control inputs quite dif-
ferent from those for low-speed driving; many drivers missing corresponding ex-
perience do not know this. Section 3.4.5.2 is devoted to high-speed driving with
impulse-like steering control inputs.

For small steering and heading (y) angles, lateral speed v; and lateral position y;
relative to a straight reference line can be determined as integrals over time. For Aq
=0, the resulting final lateral speed and position of this simple model according to
Equation 3.14 would be

Vi =V A =05-V2-ATE /a,

2 3
Vi = [V Ay )dt =05V A- [tPdlt/ :\%. (3.17)
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Row 7 (second from the bottom) in Table 3.2 shows lateral speed v; and row 8
lateral distance ys traveled during the maneuver. Note that for speeds V < 10 m/s
(columns 1 to 3), the heading angle (row 5) is so large that computation with the
linear model (Equation 3.17) is no longer valid (see terms in brackets in the dotted
area at bottom left of the table). On the other hand, for higher speeds (> = 30 m/s),
both lateral speed and position remain quite small when the acceleration limit is
reached; at top speed (last column), they remain close to zero. This indicates again
quite different behavior of road vehicles in the lower and upper speed ranges. The
full nonlinear relation replacing Equation 3.17 for large heading angles is, with
Equation 3.13b,

V(t) = V -Sin(Ayump) = V-sin(0.5:V - A-t*/a). (3.18)

Since the cosine of the heading angle can no longer be approximated by 1, there
is a second equation for speed and distances in the original x-direction:

dx/dt =V -COS(Ax,4m,) =V -€05(0.5-V - A-t?/a). (3.19)

The time integrals of these equations yield the lateral and longitudinal positions
for larger heading angles as needed in curve steering; this will not be followed
here. Instead, to understand the consequences of one of the simplest maneuvers in
lateral control, let us adjoin_ a negative Steer angle 7. (state)
ramp of equal magnitude directly after A Z
the positive ramp. This so-called “dou- // - h S i
blet” is shown in Figure 3.12. T o TimelTon

The integral of this doublet is a tri- A_S!t ! e du T =2 Ter
angUIar “pmse" in steering angle time (:ep?(reé:v‘:ise constant control input (doublet))
history (dashed line). Scaling time by
Tsr leads to the general description  Figure 3.12. Doublet in constant steering
given in the figure. Since the maneuver  rate Uy (t) = dA/dt as control time history
is locally symmetrical at around point  over two periods Tsg with opposite sign +
“1” and since the steering angle is zero A yields a “pulse” in steer angle for head-
at the end, this maneuver leads to a  ing change
change in heading direction.

Pulses in steering angle: Mirroring the steering angle time history at Tsg = T,
(when a lateral acceleration of 0.2 g is reached), that is, applying a constant nega-
tive steering rate —A from T, to 2T, yields a heading change maneuver (idealized)
with maximum lateral acceleration of = 2 m/s2.

The steering angle is zero at the end, and the heading angle is twice the value
given in row 5 of Table 3.2 for infinite tire stiffness. From column 2, row 5 it can
be seen that for a speed slightly lower than 7.5 m/s = 25 km/h a 90°-turn should re-
sult with a minimal turn radius of about 28 m (row 6). For exact computation of the
trajectory driven, the sine— and cosine—effects of the heading angle y (according to
Equations 3.18/3.19) have to be taken into account.

For speeds higher than 50 km/h (= 14 m/s), all angles reached with a “pulse”-
maneuver in steering and moderate maximum lateral acceleration will be so small
that Equation 3.17 is valid. The last two rows in Table 3.2 indicate for this speed
range that a driving phase with constant A¢ (and thus constant lateral acceleration)
over a period of duration t should be inserted at the center of the pulse to decrease
the time for lane changing (lane width is typically 2.5 to 3.8 m) achievable by a
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proper sequence of two opposite Steer rate di/dt

pulses. This maneuver, in contrast, = piecewise constant control input: A, 0, -A
will be called an “extended pulse” A state) e =~ T TR = AT
(Figure 3.13). It leads to an in- = i = i time
creased heading angle and thus to 0 steer angle 2.1 SR T —»| e
higher lateral speed at the end of the — -a—+ :

extended pulse. However, tire stiff- Toc =2 Tep*

ness not taken into account here will ~ Figure 3.13. “Extended pulse” steering
change the picture drastically for with central constant Iat(_eral a}cceleration
higher speeds, as will be discussed level as maneuver control tlme history ug (t)
below; for low speeds, the magni- = di/dt for controlled heading changes at
tude of the steering rate A and the  "gner speeds

absolute duration of the pulse or the

extended pulse allow a wide range of maneuvering, taking other limits in lateral
acceleration into account.

Steering by extended pulses at moderate speeds: In the speed range beyond
about 20 m/s (= 70 km/h), lateral speed v¢ and offset yr (last two rows in Table 3.2)
show very small numbers when reaching the lateral acceleration limit of &, max =
0.2 g with a ramp. A period of constant lateral acceleration with steering angle A
(infinite tire stiffness assumed again!) and duration t is added (see Figure 3.13) to
achieve higher lateral speeds. To make a smooth lane change (of lane width w_ =
3.6 m lateral distance) in a reasonable time, therefore, a phase with constant A over
a duration t (e.g., T = 0.5 seconds) at the constant (quasi-steady) lateral acceleration
level of aymax (2 m/s?) increases lateral speed by Avc = ayma - T (=1 m/s fort=10.5
s). The lateral distance traveled in this period due to the constant steering angle is
AYco = aymax: T2 12 (= 2 - 0.52 /2 = 0.25 m in the example chosen). Due to the small
angles involved (sine =~ argument), the total “extended pulse” builds up a lateral ve-
locity vep (vf from Equation 3.17, row 7 in Table 3.2) and a lateral offset ygp at the
end of the extended pulse (y; from row 8 of the table) of

Vep = (AVe +2-Vy); Yer =AYco+2- Yy - (3.20)

Lane change maneuver: A generic lane change maneuver can be derived from
two extended pulses in opposite directions. In the final part of this maneuver, an
extended pulse similar to the initial one is used (steering rate parameter —A); it will
need the same space and time to turn the trajectory back to its original direction.
Subtracting the lateral offset gained in these phases (2 ygp) from lane width w,
yields the lateral distance to be passed in the intermediate straight line section be-
tween the two extended pulses; dividing this distance by the lateral speed vgp at the
end of the first pulse yields the time T, ¢ spent driving straight ahead in the center
section.
Tie = (W =2 Yep) [ Vep - (3.21)

Turning the vehicle back to the original driving direction in the new lane requires
triggering the opposite extended pulse at the lateral position —ygp from the center of
the new lane (irrespective of perturbations encountered or not precisely known lane
width). This (quasi-static) maneuver will be compared later on to real ones taking
dynamic effects into account.
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Learning parameters of generic steering maneuvers: Performing this “lane
change maneuver” several times at different speeds and memorizing the parameters
as well as the real outcome constitutes a learning process for car driving. This will
be left open for future developments. The essential point here is that knowledge
about these types of maneuvers can trigger a host of useful (even optimal) behav-
ioral components and adaptations to real-world effects depending on the situation
encountered. Therefore, the term “maneuver” is very important for subjects: Its
implementation in accordance with the laws and limits of physics provides the be-
havioral skills of the subject. Its compact representation with a few numbers and a
symbolic name is important for planning, where only the (approximate) left and
right boundary values of the state variables, the transition time, and some extreme
values in between (quasi-static parameters) are sufficient for decision-making. This
will be discussed in Section 3.4.4.1.

Effects of maneuvers on visual perception: The final effects to be discussed here
are the centrifugal forces in curves and their influence on measurement data, in-
cluding vision. The
centrifugal forces pro-
portional to curvature
of the trajectory C-V?
may be thought to at-
tack at the center of
gravity. The counter-
acting forces keeping
the vehicle on the road
occur at the points
where the  vehicle
touches the ground.
Figure 3.14 shows the balance of forces and torques leading to a bank angle @ of
the vehicle body in the outward direction of the curve driven. Therefore, the eleva-
tion He, of the cg above the ground is an important factor determining the inclina-
tion to banking of a vehicle in curves. Sports utility vehicles (SUV) or vans (Figure
3.14 right) tend to have a higher cg than normal cars (left) or even racing cars.
Their bank angle @ is usually larger for the same centrifugal forces; as a conse-
quence, speed in curves has to be lower for these types of vehicles. However, sus-
pension system design allows reducing this banking effect by some amount.
Critical situations may occur in dynamic maneuvering when both centrifugal
and braking forces are applied. In the real world, the local friction coefficients at
the wheels may be different. In addition, the normal forces at each wheel also dif-
fer due to the torque balance from braking and curve steering. Figure 3.15 shows a
qualitative representation in a bird’s-eye view. Unfortunately, quite a few accidents
occur because human drivers are not able to perceive the environmental conditions
and the inertial forces to be expected correctly. Vehicles with autonomous percep-
tion capabilities could help reduce the accident rate. A first successful step in this
direction has been made with the device called ESP (electronic stability program or
similar acronym, depending on the make). Up to now, this unit looks just at the
yaw rate (maybe linear accelerations in addition) and the individual wheel speeds.
If these values do not satisfy the conditions for a smooth curve, individual braking

Figure 3.14. Vehicle banking in a curve due to centrifugal
forces ~ C-V?; influence of elevation of cg



84 3 Subjects and Subject Classes

forces are applied at proper wheels. This device has
been introduced as a mass product (especially in
Europe) after the infamous “moose tests” of a Swed-
ish journalist with a brand new type of vehicle.

He was able to topple over this vehicle toward
the end of a maneuver intended to avoid collision
with a moose on the road; the first sharp turn did not
do any serious harm. Only the combination of three
sharp turns in opposite directions at a certain fre-
guency in resonance with the eigenfrequencies of
the car suspension produced this effect. Again, this
indicates how important knowledge of dynamic be-  gigyre 3.15. Frictional and
havior of the car and “maneuvers” as stereotypical  jnertial forces yield torques
control sequences can be. around all axes; in curves,

3.4.3 Basic Modes of Control Defining Skills

In general, there are two components of control activation involved in intelligent
systems. If a payoff function is to be optimized by the maneuver, previous experi-
ence will have shown that certain control time histories perform better than others.
It is essential knowledge for good or even optimal control of dynamic systems to
know, in which situations what type of maneuver should be performed with which
set of parameters; usually, the maneuver is defined by certain time histories of (co-
ordinated) control input. The unperturbed trajectory corresponding to this nominal
feed-forward control time history is also known, either stored or computed in par-
allel by numerical integration of the dynamic model exploiting the given initial
conditions and the nominal control input. If perturbations occur, another important
knowledge component is how to link additional control inputs to the deviations
from the nominal (optimal) trajectory to counteract the perturbations effectively
(see Figure 3.7). This has led to the classes of feed-forward and feedback control in
systems dynamics and control engineering:

1. Feed-forward components Ug derived from a deeper understanding of the proc-
ess controlled and the maneuver to be performed.

2. Feedback components ug, to force the trajectory toward the desired one despite
perturbations or poor models underlying step 1.

3.4.3.1 Feed-forward Control: Maneuvers

There are classes of situations for which the same (or similar) kinds of control laws
are useful; some parameters in these control laws may be adaptable depending on
the actual states encountered.

Heading change maneuvers: For example, to perform a change in driving direc-
tion, the control time history input displayed in Figure 3.13 is one of a generic
class of realizations. It has three phases with constant steering rate, two of the same



3.4 Behavioral Capabilities for Locomotion 85

magnitude A, but with opposite signs and one with zero output in between. The two
characteristic time durations are T for £ A and t for the central zero-output.

A Tgg yields the maximum steering angle A¢ (fixing the turn radius), with which
a circular arc of duration t is driven (see Table 3.2); the total maneuver time Tpc
for a change in heading direction then is 2-Tsg + 1. The total angular change in
heading is the integral of curvature over the arc length and depends on the axle dis-
tance of the car (see Figure 3.10 for the idealized case of infinitely stiff tires).
Proper application of Equation 3.12 yields the (idealized) numerical values.

A special case is the 90° heading change for turning off onto a crossroad. If the
vehicle chosen drives at 27 km/h (V = 7.5 m/s, column 2 in Table 3.2) then Tsg =
T, is = 5.6 seconds, and the limit of 2 m/s? for lateral acceleration is reached with
A)s = 6.4° and Ay ~ 42.6°. The radius of curvature R is 28.1 m (C = 0.0356 m™*,
Equation 3.9); this yields a turn rate C-V (Equation 3.10) of 15.3°/s. Steering back
to straight-ahead driving on the crossroad with the mirrored maneuver for the steer-
ing angle leaves almost no room for a circular arc with radius R¢ [t = (90 —
2:42.6)/15.3 = 0.3 s]; the total turn—off—duration then is = 11.2 s and the total dis-
tance traveled is about 84 m.

For tight turns on narrow roads, either the allowed lateral acceleration has to be
increased, or lower speed has to be selected. A minimal turn radius of 6 m driven at
V =7 m/s yields an ideal turn rate V/R of about 67°/s and a (nominal) lateral accel-
eration V2/R of about 0.82 g (~ 8 m/s?); this is realizable only on dry ground with
good homogeneous friction coefficients at all wheels. Slight variations will lead to
slipping motion and uncontrollable behavior. For the selected convenient limit of
maximum lateral acceleration of 2 m/s? with the minimal turn radius possible (6
m), a speed of V = 3.5 m/s (= 12.5 km/h or 7.9 mph)should be chosen. These ef-
fects have to be kept in mind when planning turns.

The type of control according to Figure 3.13 is often used at higher speeds with
smaller values for A and Tsg (t close to 0) for heading corrections after some per-
turbation. Switching the sequence of the sign of A results in a heading change in
the opposite direction.

Lane change maneuvers: Combining two extended pulses of opposite sign with
proper control of magnitude and duration results in a “lane change maneuver” dis-
cussed above and displayed in Figure 3.16.

The numerical values and the temporal extensions of these segments for a lateral
translation of one lane width depend on the speed driven and the maximum lateral
acceleration level acceptable. The behavioral capability of lane changing may thus
be represented symbolically by a name and the parameters specifying this control
output (just a few numbers, as given in the legend of the figure). Together with the
initial and final boundary values of the state variables and maybe some extreme
values in between, this is sufficient for the (abstract) planning and decision level.
Only the processor directly controlling the actuator needs to know the details of
how the maneuver is realized. For very high speeds, maneuver times for the pulses
become very small [see T2—curve (solid) in Figure 3.11]. In these cases, tire stiff-
ness effects play an important role; there will be additional dynamic responses
which interact with vehicle dynamics. This will be discussed in Section 3.4.5.2.
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Steering rate ug(t) = dA / dt — piecewise constant control input:

} A0, -A o -A, 0, A)
A y « Lateral drift period T, >
B \ 1 1
0 \ Point symmetry,for steer angle A : ] | |Time -
& iz 10.5Tyc N : /ETHC -
Teri | |Uff(t) 1 Steering angle A, A
AT DT T state variable) 1%
Initial pulse Mirror plane for control ug(t) Final pulse

{symmetry on time line}

Figure 3.16. High-speed lane change maneuver with two steering “pulses”, including a
central constant lateral acceleration phase of duration < at the beginning and end, as well
as a straight drift period Tp, in between; the duration Tp is adapted such that at the end of
the second (opposite) pulse, the vehicle is at the center of the neighboring lane driving
tangentially to the road. The maneuver control time history ug(t) = d.A/dt for lane change
at higher speeds is [legend: magnitude(duration)]: A(Tsg), 0(t), —A(Tsr), 0(Tp), —“A(TsRr),
0(z), ~A(Tsr)

Table 3.3 shows in column 2 a list of standard maneuvers for ground vehicles
(rows 1 — 6 for longitudinal, 7 — 11 for lateral, and 12 —18 for combined longitudi-
nal and lateral control). Detailed realizations have been developed by [Zapp 1988,
Bruedigam 1994; Mueller 1996; Maurer 2000; and Siedersberger 2003]. Especially the
latter two references elaborate the approach presented here.

The development of behavioral capabilities is an ongoing challenge for autono-
mous vehicles and will need attention for each new type of vehicle created. It
should be a long—-term goal that each new autonomous vehicle is able to adapt to its
own design parameters at least some basic generic behavioral capabilities from a
software pool by learning via trial and error. Well-defined payoff functions (quality
and safety measures) should guide the learning process for these maneuvers.

3.4.3.2 Feedback Control

Suitable feedback control laws are selected for keeping the state of the vehicle
close to the ideal reference state or trajectory; different control laws may be neces-
sary for various types and levels of perturbations. The general control law for state
feedback with gain matrix K and Ax = Xxc — x (the difference between commanded
and actual state values) is
Uy, (KT) = KT - AX(KT). (3.22)

For application to the subject vehicle, either the numerical values of the ele-
ments of the matrix K directly or procedures for determining them from values of
the actual situation and/or state have to be stored in the knowledge base. To
achieve better long-term precision in some state variable, the time integral of the
error Ax; = Xci — X; may be chosen as an additional state with a commanded value of
zero.

For observing and understanding behaviors of other subjects, realistic expected
perturbations of trajectory parameters are sufficient knowledge for decision—
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making with respect to safe behavior; the exact feedback laws used by other sub-
jects need not be known.

Table 3.3. Typical behavioral capabilities (skills) needed for road vehicles

Longi- Feed-forward control Feedback control
tudinal (maneuver)
1 Acceleration from standstill to speed Drive at constant speed
set
Transition to convoy driving from Distance keeping to vehicle ahead
higher speed (average values, fluctuations)
2 Observe right of way at intersections
3 Braking to a preset speed Safe convoy driving with
distance = f(speed)
4 Braking to stop at reasonable distance Halt at preset location
(moderate, early onset)
5 Stop and Go driving
6 Emergency stops
Lateral
7 Lane changing [ranges and maneuver Lane keeping (accuracy), Road-
times as f (speed)] running, Line following
8 Follow vehicle ahead (in maneuvers Follow vehicle ahead in same
recognized) track
9 Obstacle avoidance Keep safety margin to moving ob-
stacle
10 Handling of road forks Distance keeping to border line
11 Proper setting of turn lights before
start of maneuver
Longit.
+lateral
12 Turning off onto crossroad Moving into lane with flowing
traffic
13 Entering and leaving a traffic circle Entering and driving in a traffic
circle
14 Overtaking behavior [safety margins Observe safety margins
as f (speed)]
15 Negotiating “hairpin” curves Proper reaction to animals de-
(switchbacks) tected on or near the driveway
16 U-turns on bidirectional roads
17 Observing traffic regulations Proper reaction to static obstacles
(max. speed, passing interdiction) detected in own lane
18 Parking in a parking bay Parking alongside the road

More detailed treatment of modeling will be given in the application domains in
later chapters. To aid practical understanding, a simple example of modeling
ground vehicle dynamics will be given in Section 3.4.5. Depending on the situation
and maneuver intended, different models may be selected. In lateral control, a
third-order model is sufficient for smooth and slow control of lateral position of a
vehicle when tire dynamics does not play an essential role. A fifth-order model tak-
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ing tire stiffness and rotational dynamics into account will be shown as contrast for
demonstrating the effects of short maneuver times on dynamic behavior.

Depending on the situation and maneuver intended, different models may be se-
lected. In lateral control, a third-order model is sufficient for smooth and slow con-
trol of lateral position of a vehicle when tire dynamics does not play an essential
role. A fifth-order model taking tire stiffness and rotational dynamics into account
will be shown as contrast for demonstrating the effects of short maneuver times on
dynamic behavior.

Instead of full state feedback, often simple output feedback with a PD- or PID-
controller is sufficient. Taking visual features in 2-D as output variable even works
sometimes (in relatively simple cases like lane following on planar high-speed
roads). Typical tasks solved by feedback control for ground vehicles are given in
the right-hand column of Table 3.3. Controller design for automotive applications
is a well-established field of engineering and will not be detailed here.

3.4.4 Dual Representation Scheme

To gain flexibility for the realization of complex systems and to accommodate the
established methods from both systems engineering (SE) and artificial intelligence
(Al), behaviors are represented in duplicate form: (1) in the way they are imple-
mented on real-time processors for controlling actuators in the real vehicle, and (2)
as abstracted entities for supporting the process of decision making on the mental
representation level, as indicated above (see Figure 3.17).

In the case of simple maneuvers, even approximate analytical solutions of the
dynamic maneuver are available; e ———— — —
they will be discussed in more de- Extended __Road unning nounlane _Y | artil

state Decision—making for longitudinal control \ intelli-

tail in Section 3.4.5 and can be charts [~ === R genes
. | K Approach e——" usel JTran- y| methods
used twofold: (quasi / _____ P J:(_)rjt_ng‘,?i sitic \
1. For computing reference time static); +*Distance <y I \\
histories of some state variables P e B o LU
or measurement values to be |
expected, like heading or lateral . |§ Ji_Longiticinal ghidance Systems
e ontrol; T 3 N
position or accelerometer and taws § {(to convoy el |\ dmamies

: driving
{7 Distance Controller for
controller rake pressurt

. . Figure 3.17. Dual representation of behav-
ning on the_ higher levels. Just ioral modes: 1. Decision level (dashed), quasi-
tran_SItlon t|n_1e and the s_tate static Al-methods, extended state charts
variables achieved at that time,  [parel 1987] with conditions for transitions
altogether only a few (quasi-  petween modes. 2. Realization on (embedded,
static) numbers, are sufficient  gistributed) processors close to the actuators
(symbolic) representations of  through feed-forward and feedback control
the process treated, lasting sev-  laws [Maurer 2000; Siedersherger 2004]

eral seconds in general.

gyro readings at each time, and
2. for taking the final boundary

values of the predicted maneu-

ver as base for maneuver plan-
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3.4.4.1 Representation for Supporting the Process of Decision-Making

Point 2 constitutes a sound grounding of linguistic situation aspects. For example,
the symbolic statement: The subject is performing a lane change (lateral offset of
one lane width) is sufficiently precise for decision-making if the percentage of the
maneuver already performed and vehicle speed are known. With respect to the end
of this maneuver, two more linguistic aspects can be predicted: The subject will
have the same heading direction as at the start of the maneuver and the tangential
velocity vector will be at the center of the neighboring lane being changed to.

In more complicated situations without analytical solutions available, today's
computing power allows numerical integration of the corresponding equations over
the entire maneuver time within a fraction of a video cycle and the use of the nu-
merical results in a way similar to analytical solutions.

Thus, a general procedure for combining control engineering and Al methods
may be incorporated. Only the generic nominal control time histories ug(-) and
feedback control laws guaranteeing stability and sufficient performance for this
specific maneuver have to be stored in a knowledge base for generating these “be-
havioral competencies”. Beside dynamical models, given by Equation 3.6 and 3.8
for each generic maneuver element, the following items have to be stored:

1. The situations when it is applied (started and ended), and
2. the feed-forward control time histories ug(-); together with the dynamic models.
This includes the capability of generating reference trajectories (commanded
state time histories) when feedback control is applied in addition to deal with
unpredictable perturbations.

All these maneuvers can be performed in different fashions characterized by some
parameters such as total maneuver time, maximum acceleration or deceleration al-
lowed, rate of control actuation, etc. For example, lane change may either be done
in 2, 6, or in 10 seconds at a given speed. The characteristics of a lane change ma-
neuver will differ profoundly for the speed range of modern vehicles when all real-
world dynamic effects are taken into account. Therefore, the concept of maneuvers
may be quite involved from the point of view of systems dynamics. Maneuver time
need not be identical with the time of control input; it is rather defined as the time
until all state variables settle down to their (quasi-) steady values. These real-world
effects will be discussed in Section 3.4.5; they have to be part of the knowledge
base and have to be taken into account during decision-making. Otherwise, the dis-
crepancies between internal models and real-world processes may lead to serious
problems.

It also has to be ensured that the models for prediction and decision-making on
the abstract (Al-) level are equivalent — with respect to their outcome — to those
underlying the implementation algorithms on the systems engineering level. Figure
3.17 shows a visualization of the two levels for behavior decision and implementa-
tion [Maurer 2000, Siedersherger 2004].

3.4.4.2 Implementation for Control of Actuator Hardware

In modern vehicles with specific digital microprocessors for controlling the actua-
tors (qualified for automotive environments), there will be no direct access to ac-
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tuators for processors on higher system levels. On the contrary, it is more likely
that after abstract decision-making, there will be several processors in the down-
link chain to the actuators. To achieve efficient system architectures, the question
then is which level should be assigned which task. Here, it is assumed that (as in
the EMS—-implementation for VaMoRs and VaMP, see Figure 14.7), a PC-type
processor forms the interface between the perception- and evaluation level (PEL),
on one hand, and specific microprocessors for actuator control, on the other hand.
This processor has direct access to conventional measurement data and can close
loops from measurements to actuator output with minimal time delay.

The control process has to know what to do with the symbolic commands com-
ing from the PEL for implementing basic strategic decisions, taking the actual state
of the vehicle into account. It has more up-to-date information available on local
aspects and should, therefore, not be forced to work as a slave, but should have the
freedom to choose how to optimally achieve the goals set by the strategic decision
received from the PEL. For example, quick reactions to unforeseen perturbations
should be performed under the subject’s responsibility. Of course, these cases have
to be communicated back to the higher levels for more thorough and in-depth
evaluation.

It is on this level that all control time histories for standard maneuvers and all
feedback laws for regulation of desired states have to be decided in detail. This is
the usual task of controller design and of proper triggering in systems dynamics. In
Figure 3.17, this is represented by the lower level shown for longitudinal control.

3.4.5 Dynamic Effects in Road Vehicle Guidance

Due to the relatively long delay times associated with visual scene interpretation it
is important for instant correct appreciation of newly developing situations that two
facts mentioned above already are taken into account: First, inertial sensing allows
immediate perception of effects of perturbations onto the own body. It also imme-
diately reflects actual control implementation in most degrees of freedom. Second,
exploiting the dynamical models in connection with measured control outputs, ex-
pectations for state variable time histories can be computed. Comparing these to
actually measured or observed ones allows checking the correctness of conditions
for which the behavioral decisions have been made. If discrepancies exceed thresh-
old values, careful and attentive checking of the developing states may help avoid-
ing dangerous situations.

A typical example is a braking action on a winter road. In response to a com-
manded brake pressure with steering angle zero, a certain deceleration level with
no rotations around the longitudinal and the vertical axes are expected. There will
be a small pitching motion due to the distance between the points where forces act
(see Figure 3.9 above). With body suspension by springs and dampers, a second-
order (oscillatory or critically damped) rotational motion can be expected. Very of-
ten in winter, road conditions are not homogeneous for all wheels. Assume that the
wheels on one side move on snow or ice while on the other side the wheels run on
asphalt (MacAdam, concrete). This yields different friction coefficients and thus
different braking forces on both sides of the vehicle. Since total friction has de-
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creased, the measured longitudinal deceleration (a, < 0) will be lower than ex-
pected. However, due to the torque developed by the different braking forces on
both sides of the vehicle, there also will be a rotational onset around the vertical
axis and maybe a slight banking (rolling) motion around the longitudinal axis. This
situation is rather common, and therefore, one standard automotive test procedure
is the so-called “p-split braking” behavior of vehicles (testing exactly this).

Because of the importance of these effects for safe driving, they have to be
taken into account in visual scene interpretation. The 4-D approach to vision has
the advantage of allowing us to integrate this knowledge into visual perception
right from the beginning. Typical motion behaviors are represented by generic
models that are available to the recursive estimation processes for prediction—error
feedback when interpreting image sequences (see Chapter 6). This points to the
fact that humans developing dynamic vision systems for ground vehicles should
have a good intuition with respect to understanding how vehicles behave after spe-
cific control inputs; maybe they should have experience, at least to some degree, in
test driving.

3.4.5.1 Longitudinal Road Vehicle Guidance

The basic differential equation for locomotion in longitudinal degrees of freedom
(dof) has been given in a coarse form in Equation 3.8. However, longitudinal dof
encompass one more translation (vertical motion or “heave”), dominated by Earth
gravity, and an additional rotation (pitch) around the y-axis (parallel to the rear
axle and going through the cg).

Vertical curvature effects: Normally, Earth gravity (g = 9.81 m/s?) keeps the
wheels in touch with the ground and the suspension system compressed to an aver-
age level. On a flat horizontal surface, there will be almost no vertical wheel and
body motion (except for acceleration and deceleration). However, due to local sur-
face slopes and curvatures, the vertical forces on a wheel will vary individually.
Depending on the combination of local slopes and bumps, the vehicle will experi-
ence all kinds of motion in all degrees of freedom. Roads are designed as networks
of surface “bands” having horizontal curvatures (in vertical projection) in a limited
range of values. However, for the vertical components of the surface, minimal cur-
vatures in both lateral and longitudinal directions are attempted by road building.
In hilly terrain and in mountainous areas, vertical curvatures Cy may still have
relatively large values because of the costs of road building. This will limit top
speed allowed on hilly roads since at the lift-off speed V., the centrifugal accelera-

tion will compensate for gravity. From V -C, = g there follows

V. =449/C, . (3.23)
Driving at higher speed, the vehicle will lift off the ground (lose instant controlla-
bility). Only a small fraction of weight is allowed to be lost due to vertical cen-
trifugal forces V2.Cy, for safe driving. At V = 30 m/s (108 km/h), the vertical radius
of curvature for liftoff will be Ry = 1/Cy, = 92 m; to lose at most 20% of normal
weight as contact force, the maximal vertical radius of curvature would be 450 m.
Going cross-country at 5 m/s (18 km/h), local vertical radii of curvature of about
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2.5 m would have the local (say, the front) wheels leave the ground. Since, in gen-
eral, there will be forces on the rear wheels, pitch acceleration downward will also
result. These are conditions well-known from rallye-driving. Vertical curvatures
can be recognized by vision in the look-ahead range so that these dynamic effects
on vehicle motion can be foreseen and will not come by surprise.

Autonomous vehicles going cross-country have to be aware of these conditions
to select proper speed as well as the shape and location of the track for steering.
This is a complex optimization task: On the tracks, for the wheels on both sides of
the vehicle the vertical surface profiles have to be recognized at least approxi-
mately correctly. From this information, the vertical and rotational perturbations
(heave, pitch, and roll) to be expected can be estimated. Since lateral control leaves
a degree of freedom in the curvature of the horizontal track through steering, a
compromise allowing a safe trajectory at a good speed with acceptable perturba-
tions from uneven terrain has to be found. This will remain a challenging task for
some time to come.

Slope effects on longitudinal motion: Figure 3.18 is a generalization of the hori-
zontal case with acceleration, shown in Figure 3.8, to the case of driving on terrain
that slopes in the driving direction. Now, the all dominating gravity vector has a
component of magnitude (m - g - sin6) in the driving direction. Going uphill, it will

oppose vehicle acceleration,
Axle distance & - = » and downhill it will push in the

driving direction. It will be
measured by an accelerometer
-2~ sensitive in this direction even
' when standing still. In this case,
it may be used for determining
the orientation in pitch of the

of gravity “cg”
J Gravity component
\ in 6

Slope angle 6

“Remaining propulsive vehicle body. Also when driv-
orce after subtraction . . .

of gravity component ing, this part will not corre-
Figure 3.18. Longitudinal acceleration compo- spond to real vehicle accelera-
nents going uphill: Forces, torques, and orienta- tion (dv/dt) relative to the
tion changes in pitch environment. The gravity com-

ponent has to be subtracted
from the reading of the accelerometer (sensor signal) for interpretation. The effect
of slopes on speed control is tremendous for normal road vehicles. Uphill, speeds
achievable are much reduced; for example, a vehicle of 2000 kg mass driving at 20
m/s on a slope of 10% (5.7°) needs ~ 40 kW power just for weight lifting. Going
downhill, at a slope angle of 11.5° the braking action has to correspond to 0.2 - g in
order not to gain speed.

Driving not in the direction of maximum slope (angle Ay relative to gradient di-
rection) will complicate the situation, since there will be a lateral force component
acting in addition to the longitudinal one. Note that the longitudinal component
aLon Will remain almost constant for small deviations Ay from the gradient direc-
tion (cosine-effect cos Ay = 1 up to 15°, that is, a,on = 8gra¢ = 9 * Sin 6), While the
lateral component will increase linearly according to the sine of the relative head-
ing angle Ay (aj = g - sin 6 - sin Ay, yielding = 0.2 g - sin 6 for an angle Ay of
11.5°). At Ay = 45° (midway between the vertical gradient and horizontal direc-
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tion), both longitudinal and lateral components of gravity acceleration will be 0.7 -
agrad » Yielding a sum of the components of ~ 141% of ag,q. These facts lead to the
rule that going uphill or downhill should preferably be done in gradient direction,
especially since the width of the vehicle track, usually, is smaller than the axle dis-
tance so that the danger of toppling over after hitting a perturbation is minimized.

Horizontal longitudinal acceleration capabilities: An essential component for
judging vehicle performance is the acceleration capability from one speed level to
another, measured in seconds. Standard tests for cars are acceleration from rest to
100 km/h and from 80 to 120 km/h (e.g., for passing). Assuming a constant accel-
eration level of “1 g” (9.81 m/s?) would yield 2.83 seconds from 0 to 100 km/h.
Since the friction coefficient is, usually, less than 1, this value may be considered a
lower limit for the acceleration time from 0 to 100 km/h of very-high-performance
vehicles. Racing cars with downward aerodynamic lift can exploit higher normal
forces on the tires and thus higher acceleration levels at higher speeds if engine
power permits. Today’s premium cars typically achieve values from 4 to 8 sec-
onds, while standard cars and vans show values between 10 and 20 seconds from 0
to 100 km/h.

Figure 3.19 shows test results of our test vehicle VaMoRs, a 5-ton van with top
speed of around 90 km/h (= 25 m/s). It needed about 40 s to accelerate from 1.5 to
10 m/s (left plot) and ~ 55 s from 13 to 20 m/s (right-hand plot). The approach of
top speed is very slow (as usual in low-powered vehicles). Taking the throttle posi-
tion back decelerates the vehicle at a rate of about 0.3 m/s2 at 10 m/s (left) and
about 0.45 m/s2 at 20 m/s (right). To achieve higher deceleration levels, the brakes
have to be used.

| 20 | poreensens ; T
Speedfinmis | 4 // -\ speed v
.Stepé in throtle setting | 10 f.ﬂ i f i ................
0 -100 - \ Speed V Steps in throttle setting
R L \ ] 5 L 100 - 200 - 100 (dotted line)
| i R ! ! ‘
'\lv.\,\w 0 1 H

0 20 40 60 80 Time/s O 20 40 60 80 100

Figure 3.19. Speed over time as a step response to throttle setting: Experimental results
for test vehicle VaMoRs, 5-ton van [ Briidigam 1994]

Braking capability: A big advantage of ground vehicles as compared to aquatic or
air vehicles is the fact that large deceleration forces can easily be generated by
braking. Modern cars on dry surfaces achieve braking decelerations close to “- 1g”
(gravity acceleration). This corresponds to a braking distance of about 38.6 m (in
2.83 s) from V = 100 km/h to halt. Here the friction coefficient is close to 1, and

the measured total acceleration magnitude including gravity is\/i-g (45° down-

ward to the rear). It is immediately clear that all objects lying loosely in the vehicle
body will experience a large acceleration relative to the body; therefore, they have
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Figure 3.20. Deceleration by braking: Forces, torques, m/s2. that is. from 100

and orientation change in pitch km/h to a stop in 5.56 s)

Figure 3.20 shows the
components for judging the dynamic effects of braking.

Since the center of gravity is at elevation he above the point where the braking
forces of the wheels attack (Fys at front and Fy, at the rear wheels in the contact re-
gion with the ground), there will be an additional torque in the vertical plane, coun-
teracted initially by the moment of inertia in pitch (—1,-d26/dt?). This leads to a

downward pitch acceleration (with I, =m - i,) viah, -m-a, =— 1 -d*¢/dt* of
d?g/dt* = h, -a, llj. (3.24)

Now, due to the suspension system of the body relative to the wheels with
springs and damping elements, vertical forces AV; in wheel suspension will build
up, counteracting the torque from the braking forces. Spring force components AV
are proportional to vertical displacements (f, - Az ~ 6), and damping force compo-
nents are proportional to displacement speed (d(Az)/dt ~ d6/dt). Usually, the result-
ing motion will be a damped rotational oscillation (second-order system). Since
this immediately affects vision when the cameras are mounted directly on the vehi-
cle body, the resulting visual effects of (self-initiated) braking actions should be
taken into account at all interpretation levels. This is the reason that expectations of
motion behavior are so beneficial for vision with its appreciable, unavoidable delay
times of several video cycles.

In a steady deceleration phase (—ax = constant), the corresponding change in
pitch angle 6, can be determined from the equilibrium condition of the additional
horizontal and vertical forces acting at axle distance a, taking into account that the
vertical motion at the axles is 0,-a/2 = Az (cg at a/2) and h,-m-a, =—a-AV, =

Center of qravity cg

-a- f,-0,-a/2which yields
eb :_[thg'm/(fz'az)]'ax:_pb'ax (325)

The term in brackets is a proportionality factor p, between constant linear decel-
eration (—ay) and resulting stationary additional pitch angle 6, (downward positive
here). The time history of 0 after braking control initiation will be constrained by a
second-order differential equation taking into account the effects discussed in con-
nection with Equation 3.24. In visual state estimation to be discussed in Chapter 9,
this knowledge will be taken into account; it is directly exploited in the recursive
estimation process. Figure 3.21 shows, in the top left graph, the pitch rate response
to a step input in acceleration. The softness of the suspension system in combina-
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tion with inertia of the body lead to the oscillation extending to almost 2 seconds
after the change in control input. The general second-order dynamic model for an
arbitrary excitation f [ay (t)] for braking is given by

2 2
d?6/dt* +D-d@/dt+ fy, -0 = f[a,(1)] (3.26)
pitch rate de/dt cg - motion above the ground
TV 0 dz/dt
Time i‘n sec‘onds —‘b ‘ Time ip secpnds —>
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Step input of moment My around Step input of moment My around
y-axis due to acceleration y-axis due to acceleration
Road height h ‘ step input Road height h | step input
L L L Il Il i i L | i
2 3 4 5 6 7 8 2 3 4 5 6 7 8
— Time in seconds —» Time in seconds

Figure 3.21. Simulation of vehicle suspension model: Pitch rate (top left) and heave re-
sponse (top right) of ground vehicle suspension after step input in acceleration (center)
as well as the height profile of the ground (bottom)

Since the eigenfrequency of the vehicle does not change over time and since it is
characteristic of the vehicle in a given loading state, this oscillation over as many
as 50 video cycles can be expected for a certain control input. This alleviates image
sequence interpretation when properly represented in the perception system.

Pitching motion due to partial loss of wheel support: This topic would also fit
under “vertical curvature effects” (above). However, the eigenmotion in pitch after
a step input in wheel support may be understood more easily after the step input in
deceleration has been discussed. Figure 3.22 shows a vehicle that just lost ground

Axle distance a under the front wheels
due to a negative step
input of the supporting
surface while driving at

Center of
Tw- gravity cg

CEREEELO /.\ e a certain speed.

; + m-g<l W The weight (m - g) of the
/e

vehicle together with the

-mz forces at the rear axle

F=m-g-m 7 |5=-ap 8 |Fa2=1,8=m-iz-6 | will produce both a

downward acceleration

Figure 3.22. Pitch and downward acceleration after losing  of the cg and a rotational

ground contact with the front wheels (cg assumed at cen-  gcceleration around the

ter of axle distance) cg. The relations given

at the bottom of the fig-

ure (including D’ Alembert inertial forces and moments) yield the differential equa-
tion

d?0/dt*-(a*/4+i)=g-al2. (3.27)
Normalizing the inertial radius iy by half the axle distance a/2 to the non-
dimensional inertial radius iyy finally yields the initial rotational acceleration
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d?4/dt? :2-g/[a-(1+i§N)]. (3.28)

With iyy in the range of 0.8 to 0.9, usually, and axle distances between 2 and
3.5 m for cars, angular accelerations to be expected are in the range from about 6 to
12 rad/s?, that is 350 to 700°/s squared resulting in a build—up of angular speed of
about 14 to 28°/s per video cycle time of 40 ms. Inertial sensors will immediately
measure this crisply way, while image interpretation will be confused initially; this
is a strong argument in favor of combined inertial/visual dynamic scene interpreta-
tion. Nature, of course, has discovered these complementarities early and continues
to use them in vertebrate type vision. Figure 3.21 has shown pitch rate and heave
motion after a step input in surface elevation in the opposite direction in the top
two graphs (right-hand part); the response extends over many video cycles (~ 1.5
seconds, i.e., about 35 cycles). Due to tire softness, the effects of a positive or
negative step input will not be exactly the same, but rather similar, especially with
respect to duration.

Pitching and rolling motion due to wheel — ground interaction: A very general
approach to combined visual/inertial perception in ground vehicle guidance would
be to mount linear accelerometers in the vertical direction at each suspension point
of the (four) wheels and additional angular rate sensors around all body axes. The
sum of the linear accelerations measured, integrated over time, would yield heave
motion. Integrals of pairwise sums of accelerometer signals (front vs. rear and left
vs. right-hand side) would indicate pitch and roll accelerations which could then be
fused with the rate sensor data for improved reliability. Their integral would be
available with almost no time delay compared to visual interpretation and could be
of great help when driving in rough terrain, since at least the high-frequency part of
the body orientation would be known for visual interpretation. The (low-
frequency) drift errors of inertial integrals can be removed by results from visual
perception.

Remember the big difference between inertial and visual data interpretation: In-
ertial data are “lead” signals (measured time derivatives) containing the influence
of all kinds of perturbations, while visual interpretation relies very much on models
containing (time-integrated) state variables. In vision, perturbations have to be dis-
covered “in hindsight” when assumptions made do not show up to be valid (after
considerable delay time).

3.4.5.2 Lateral Road Vehicle Guidance

To demonstrate some dynamic effects of details in modeling of the behavior of
road vehicles, the lane change maneuvers with the so-called “bicycle model” (see
Figure 3.10) of a different order are discussed here. First, let us consider an ideal-
ized maneuver (completely decoupled translational motion and no rotations). Ap-
plying a constant lateral acceleration a, (of, say, 2 m/s?) in a symmetrical positive
and negative fashion, we look for the time T ¢ in which one lane width W, of 3.6
m can be traversed with lateral speed v, back to zero again at the end. One obtains

Te=2-yW_/a,. (3.29)
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For the data mentioned, the lane change time is T.c = 2.68 seconds, and the
maximum speed at the center of the idealized maneuver is Vymaxici {t = Tic/2} =
2.68 m/s. Since Ackermann steering is nonholonomic, real cars cannot perform this
type of lane change maneuver; however, it is nice as a reference for realizable ma-
neuvers to be discussed in the following. For a, = 4 m/s?, lane change time would
be 1.9 seconds and maximum lateral speed v (T c/2) = 3.8 m/s.

Fifth-order dynamic model for lateral road vehicle guidance: The very busy
Figure 3.23 shows the basic properties of a simple but full order (linear) bicycle

Axle distance a Inertlil referencgdlrectlon

AU
Rri \ ERr ;' N steer angle (first integral of
\ ‘-‘ ' K control variable)
PR /| B side slip angle at cg
i ' E /| g yawrate (inertial)
i | E ," I, distance from cg to front axle
, '\ ! / I, distance from cg to rear axle
E ‘.‘ E ,” a; angle of attack at front wheel
E \ E ;' o, angle of attack at rear wheel
' Vo / V  velocity vector of cg
i '-‘ i /’ Y V; velocity vector of front wheel
E '.‘ i ’,‘ /| Vi velocity vector of rear wheel
E ‘.‘ i ! I,’ P point on longitudinal axis of body
' o ’ where the velocity vector is
! (effective tangential to body
i ‘;ggﬁ;:)f R, turn radius of vehicle body
E s Fy ti_re force components tangential
ﬁ M, % M (index x) and normal to wheel (y)

Figure 3.23. Bicycle model with rotational dynamics

model, taking combined tire forces from both the left- and right-hand side as well
as translational and rotational dynamics into account. [The full model with all
nonlinearities and separately modeled dynamics for the wheel groups and the body
is too complex to allow analytical solutions; these are used in numerical simula-
tions.] Here, interest lies in some major effects of lateral maneuvering for turns and
lane changes. More involved models may be found in [Mitschke 1990; Giampiero
2007].

Side forces on the wheels (index y) are generated by introducing an angle of at-
tack at the front wheel(s) through a steering angle A. Tires may be considered to act



98 3 Subjects and Subject Classes

as springs in the lateral direction with an approximately linear characteristic for
small angles of attack (o] <= 3°); only this regime is considered here. For the test
vehicle VaMoRs, this allows lateral accelerations up to about 0.4 g = 4 m/s2 in the
linear range.
With kg as the lateral tire force coefficient linking vertical tire force Fy = my g
(wheel load due to gravity) via angle of attack to lateral tire force F,, there follows
Fo =k -a; - Fys F =k, -Fy. (3.30)
If the vehicle weight is distributed almost equally onto all wheels of a four-
wheel vehicle, my, is close to one quarter of total vehicle mass; in the bicycle
model, it is close to one half the total mass both on the front and rear axle. Defin-
ing the mass related lateral force coefficient ki
Kt = Fy /(M -a¢) =k; -9 (inm/s?/rad) , (3.31)
and multiplying this coefficient with both the actual wheel load (in terms of mass)
and the angle of attack yields the lateral tire force F,. The sum of all torques (in-
cluding the inertial D’Alembert-term with I, = m - i,2 as the moment of inertia
around the vertical axis) yields (see Figure 3.23)
I,y —F, | +(F; -sini+F, -cosi)-If =0. (3.32)
The force balance normal to the vehicle body yields with dy/dt = dy/ds - ds/dt =
(curvature C of the trajectory driven times speed V), and thus with the centrifugal
force at the cg: C -V2=m- V- dy/dt
m-V -dy/dt-cosf+m-d/dt-sin 5+
+F, +F, -sini+F, -cosi=0. (3.33)

From the center of Figure 3.23, it can be seen that trajectory heading y is the
sum of vehicle body heading v and side slip angle B (y = v + B) and thus
dy/dt=dy/dt+dg/dt. (3.34)
For small angles of attack at the wheels, the following relations hold after
[Mitschke 1990]:
a; =p-A+dy/dt-1, /V; o, =p—-dy/dt-1./V. (3.35)
For further simplification of the relations, the cg is assumed to lie at the center
between the front and rear axles (Is = I, = a/2), so that half of the vehicle mass rests
on each axle (wheel of bicycle model: Fy, = Fns = mg/2). Then, the following lin-
ear fifth-order dynamic model for lateral control of a vehicle with Ackermann-
steering at constant speed and with the state vector x,, (steering angle A, inertial
yaw rate dy/dt, slip angle B, body heading angle v, and lateral position y) results:

Xt = [4 v, B, v, ¥l (3.36)
With the following abbreviations:
i%, =[i, /(a/ 2T
T, =V i /ks; and (3.37)
T, =V /Ky,
the set of first-order differential equations is written



3.4 Behavioral Capabilities for Locomotion 99

A 0 0 0 0 0)(4 1

; v| |Vi@T,) 1T, 0 0 0||y| [0

— =| 1/(2T -1 -1/1T, 0 O} +|/0]-u

at| P (2T,) “ A (3.38)
17 0 1 0 0 Of|w]| |O
y 0 0 \Y vV 0)\y 0

dx,, /dt = @ ‘X, +hb-dr/dt

For the test vehicle VaMP, a 240 kW (325 HP) powered sedan Mercedes 500
SEL, the parameters involved are (average representative values) m = 2650kg (that
is, myL = m/2 = 1325 kg for the bicycle model), kt = 96 kN/rad, 1, = 5550 kg mz;
and a = 3.14 m. This leads to i,g2 = 0.85 and ks = 72 (m/s? per rad) = 1.25 (m/s2 per
degree wheel angle of attack), and finally to the following speed-dependent time
constants for lateral motion (V in m/s):

T, =V /84.7=0.01389-V (s),

T,=V/72 =0.0118-V (s). (3.39)

These values as a func-
tion of speed V already
have been shown in Figure
3.11 for the test wvehicle
VaMP (top right). They in-
crease up to values of 0.9
seconds at  maximum
speed. The block diagram
corresponding to Equation
3.38 is shown in Figure

UTg= Ky V
3.24.
Figure 3.24. Block diagram of fifth-order (bicycle) From the fact that the
model for lateral control of road vehicles taking rota-  Systems dynamics matrix
tional dynamics around the vertical axis into account @ has only zeros above the

diagonal and the negative
inverse values of the two time constants on the diagonal, the specialist in systems
dynamics immediately recognizes that the system has three eigenvalues at the ori-
gin of the Laplace-transform “s”-plane (integrators) and two first-order subsystems
with eigenvalues as inverse time constants on the negative real axis; the corre-
sponding time histories are exponentials of the natural number e = 2.71828 of the
form c; - exp(—t/T;). Since the maximum speed of VaMP is 70 m/s, the eigenvalue
—1/Tg will range from —co to —1 s!. Since amplitudes of first-order systems have
diminished to below 5% in the time range of three time constants, it can be seen
that for speeds above about 1 m/s (= 3.6 km/h), the dynamic effects should be no-
ticeable in image sequence analysis at video rate (40 ms cycle time). On the other
hand, four video cycles (160 ms) are typical delay times for recognition of complex
scenes by vision including proper reaction so that up to speeds of 4 m/s (= 14
kr111/h), neglecting the dynamic effects may be within the noise level (1/Tg; =~ 18
s ).
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PR S The eigenfrequency of human
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bl — v T ——-..0 ume, fects. This will be shown with an
A L e > T =2 T idealized maneuver: The doublet as
A Lt t+ 21, shown in Figure 3.12 is redrawn in
! Figure 3.25 on an absolute timescale
1 Je— with control output beginning at zero.
T2 From Table 3.2, it can be seen that
, Steering rate di/dt time T,, in which a preset accelera-
-A, piecewise constant control input (doublet) tion limit can be reached with con-

stant control output A, decreases rap-
idly with speed V. Let us, therefore,
look at the limiting case for the dou-
blet when its duration 2t goes to
zero.

The doublets in Figure 3.25 can be
generated as a sum of three step func-
tions. From 0 to t the only step function uy(t) = A 1(t) is active; from 1 to 2t a su-
perposition of two step functions, the second one delayed by t, yields u,(t) =
A’[1(t) — 2:1(t — ©)]. For the third phase from 2t forward, the previous function
plus a step delayed by 2t is valid: u(t) = u,(t) + A” 1(t — 21).

This yields the control input time history of superimposed delayed step func-
tions shown in the figure, which can be summarized as control function with the
two parameters A’ and

u(t) = A [1) - 2(t - 1) +1(t - 27)] . (3.40)

For making the transition to distribution theory [Papoulis 1962] when the period
of the doublet t goes to zero, we rewrite the amplitude A’ in Equation 3.40 under
the side constraint that the product (A" t2) is kept constant when duration T; is de-
creased to zero

Figure 3.25. Doublet in constant steer rate
U (1) = dA/dt as control time history over
two periods t with opposite sign of ampli-
tude = A’ yields an “ideal impulse” in steer
angle for heading change and t — 0

Att)=Alx. (3.41)
This (purely theoretical) time function has a simple description in the frequency
domain; Equation 3.40 can now be written with A = constant

u(t,7) = A-[Ut)-2-1(t—7)+1(t-2-7)]/ z*. (3.42)
As a two-step difference approximation based on step functions, there follows
u(t,7) = A'[l(t) —]T.(t—z') At-1) —:(t—Z-r)}/z_ . (3.43)

Recognizing that each expression in the square bracket describes a Dirac impulse
for t toward 0, nice theoretical results for the (ideal) doublet and doublet responses
are obtained easily.
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In the (idealized) limit, when 1 decreases to 0 with the product A’- 12 = A kept
constant (that is, A’ increases strongly, see Figure 3.25), the doublet input function
becomes the derivative of the Dirac impulse:
M| =5(t). (3.44)

T

7—0

Uigg = [ILT(')I u(t,7) =

This shows that the “idealized” doublet is the second derivative of the step func-
tion and the first derivative of the Dirac impulse; since in the Lapace-domain form-
ing the derivative means multiplication by s, there follows ujg4(s) = A-s.

Applying the Laplace transform to Equation 3.38 and grouping terms yields,
with the initial values x, ,(0),

(sl = @)X, (s) =b-u(s) + x,(0). (3.45)

As derived in Appendix B.2, the time responses to the idealized doublet in steer-
ing rate u;gq(S) = A-s as input are simple products of the transfer function with this
input function. Figure 3.26 shows results not scaled on the time axis with data for

Response ay after steer rate doublet at t = 0
T T T T T

Response vy after steer rate doublet at t = 0
T T T T T

N

o
velocity vy

acceleration ay

N A o ®

o

time t in seconds time t in seconds

Figure 3.26. Lateral acceleration and speed after (an idealized) doublet in steer rate (Dirac
impulse in steer angle) at t = 0. This leads to a change in driving direction (heading). Due
to tire dynamics, maximum lateral acceleration occurs at later times (between Ty and T,,)
up to about 1 second after the control input (for VaMP) with increasing forward velocity V
(parameter on curves). Lateral acceleration effects after a steer angle impulse extend over
more than 100 video cycles with no control activity. At higher driving speeds V, a large
percentage of the lateral velocity vy, develops over time due to dynamic effects from tires
and rotational motion.

the test vehicle VaMP. It can be seen that for small velocities V, the effect of the
doublet on steering rate is concentrated around t = 0. For higher speeds, the energy
stored initially in the tires due to their stiffness (spring property) has an effect on
lateral acceleration over several seconds. Maximal lateral acceleration occurs be-
tween T and T, (see Figure B.1); the absolute value for the same input amplitude
A at high speeds is about an order of magnitude larger than at low speeds. This re-
quires adaptation in behavior. The control input A has to be adjusted with speed so
that the underlying conditions for linearity and for comfort are not violated.

At top speed of V = 70 m/s, about half of the final lateral speed results from this
effect, while for V =5 m/s (lowest thin line in bottom figure), this part is negligi-
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ble. These differences in dynamic behavior have to be taken into account when
computing expectations after a control input in steering angle. They play an impor-
tant role in decision-making, for example, when the amplitude of a control input as
a function of speed driven has to be determined as one of the situational aspects.

Lane changes with realistic control input: The idealized relations discussed
above yield a good survey of the basic behavioral properties of road vehicles as a
function of speed driven. Real maneuvers have to take the saturation effects in
steering rate into account. Analytical solutions become rather complex for these
conditions. Simulation results with the nonlinear set of equations are easily avail-
able today. Table 3.4 and Figure 3.27 show some simulation results for a typical
vehicle. Three different characteristic control input times T have been selected: 6,
4, and 2 seconds (column 1, Table 3.4) for two speeds. Column 2 shows the steer-
ing rates leading to a final lateral offset of one lane width (3.75 m) after the tran-
sients have settled, with the other parameters pre—selected (duration of central 0-
input time beside T¢).

Table 3.4. Expectations for lane change maneuvers (Ay = 3.75 m) with preset control in-
put times according to the 5th-order bicycle model with piecewise constant steering rates

Column 1 2 3 4 5 6 7 8 Re-
Te state mark:
Speed | control | dMdt | Amax | Wmax | Pmax | @ymax | Vymax | tranmsit. | Figure
V/ikm/h | time/s | /°/s /° /° /° /m/s* | I'mis | time/s 3.27
40 6 0.9 14 | 6.4 | 0.16 0.7 1.2 6.5
40 4 3.1 31 | 96 | 0.36 1.5 1.8 45
40 2 24 12 | 185 | 1.7 5.2 3.2 2.7
100 6 0.16 | 022 | 25 | 05 0.6 1.2 7.9 @)
100 4 0.5 05 | 3.7 | 095 1.1 1.6 6.0
100 2 3.9 2 65 | 2.6 2.7 2.35 4.4 (b)
100 6 018 | 023 | 22 | 05 0.6 1 7.9
100 4 064 | 051 32 | 0.9 11 1.45 6
100 2 5.1 2 6 2.2 2.3 2.26 4.4 (c)

It is seen that state transition time (column 8) increases relative to T with in-
creased speed; the ratio of these times increases with decreasing Tc. Figure 3.27a
(corresponding to row 4 in Table 3.4, maneuver time 6 seconds) shows that the
state transitions are almost finished when the control input is finished. Figure 3.27b
(corresponding to row 6 in Table 3.4, maneuver time 2 seconds) shows in the lower
right part, that maximum (negative) lateral acceleration occurs after control input
has been finished (is back to 0). The maximum positive acceleration has increased
4.5-fold compared to a), while the maximal lateral speed has almost doubled.
Steering rate (column 2) for the 2-second maneuver is 24 times as high as for the 6-
second maneuver while the maximum steering angle increased by a factor of 9
(column 3). Maximum slip angle (column 5) increases fivefold while the maximum
heading angles (column 4) differ by a factor of only 2.6. In the short maneuver
with Tc = 2 [1/3 of case a)], state transition needs about twice the control input time
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Figure 3.27. Comparison of lane change maneuvers with fifth-order dynamic model at a
speed of V = 100 km/h (27.8 m/s) and realistic steer rate inputs. The amplitude A is ad-
justed such that the lateral offset y; is exactly one lane width of 3.75 m after the tran-
sients have settled. Left column shows the variables (over time): di/dt = steer rate
(——=)in(°/s); angle A (----); slip angle B (- - =) in (°); dy/dt = yaw rate (— - —) in (°/s), angle y
(). Right column the variables (over distance): lateral acceleration ay (- - -) in (m/s?) and
the integral of its magnitude over time (— - —); lateral velocity vy (- ), offset y (—); integral of
magnitude of a, (dash-dotted line).

(column 8): compared to (a), maneuver time for the complete state transition is re-
duced from 7.9 to 4.4 s (by ~ 45%).

Inserting a central section of 20% duration (0.4 seconds) with zero control input
(last row in the table corresponding to Figure 3.27¢ requires an increase in steering
rate by about 30% for the same lateral offset ys = 3.75 m at the end of the maneu-
ver. This leads to the same maximal steering angle (column 2) as the case without
the central 0-input section. However, the maximal values of lateral acceleration
and of the other state variables (y, B, vy) are reduced slightly.
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Since perturbations are abundant in road traffic, toward the end of the lane
change maneuver after taking the new lane as reference for perception, a feedback
component is superimposed leading to automatic centering in the new lane. This
also takes care of curvature onsets during the lane change maneuver.

Driving on curved roads: The assumption is made that longitudinal speed V is
controlled in dependence of road curvature in order not to exceed lateral accelera-
tion limits. Speed acts as a parameter in selecting lateral behaviors as discussed
above.

The heading angle of the vehicle body with respect to inertial space is desig-
nated by waps and with respect to the local road tangent by .. Between s and
Ve IS the heading angle of the road x. The temporal change in road heading at
speed V is (see Equation 3.10)

dy/dt=C,, -V . (3.46)

The visually recognizable curvature Cy, of the road at the actual location of ve-
hicle cg can be introduced as an additional term in the dynamic model (see Chapter
6). In the block diagram Figure 3.24 (center top), this has been used to decouple
local roadrunning from the absolute geodetic direction. Local heading v times
speed V vyields the lateral speed v on the road.

With representations like these, the linguistic symbol “lane keeping” is activated
by organizing the feedback control output computed by Equation 3.22 with a
proper matrix K to be used for the steering rate A-dot. Note that the visually deter-
mined quantities “road curvature Cy,”, lateral position in the lane y, relative head-
ing angle . as well as the conventionally measured value of vehicle speed V are
used in the closed-loop action-perception cycle taking a dynamic model for the
motion process into account. It has been shown in linear control theory that com-
plete state feedback yields optimal control laws with respect to a chosen payoff
function.

This feedback control constitutes the behavioral capability “‘roadrunning” made
up of the perceptual capability road (lane) recognition with relative egostate (in-
cluding reconstruction of the slip angle B not directly measurable) and the locomo-
tion capability lane keeping by state feedback. Since visual evaluation of the situa-
tion and control computation as well as implementation take their time (a few
tenths of a second), this time delay between measurement taking and control output
has to be taken into account when determining the control output. The spatio-
temporal models of the process allow doing this with well-known methods from
control engineering. Tuning all the parameters such that the abstract symbolic ca-
pabilities for roadrunning coincide with real-world behavior of subjects is the
equivalent of ““symbol grounding”, often deplored in Al as missing.

3.4.6 Phases of Smooth Evolution and Sudden Changes

Similar to what has been discussed for “lane keeping” (by feedback control) and
for “lane change” (by feed-forward control), corresponding control laws and their
abstract representation in the system have to be developed for all behavioral capa-
bilities like turningoff, etc. This is not only true for locomotion but also for gaze
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control in an active vision system. By extending these types of explicit representa-
tions to all processes for perception, decision-making, and mission planning as
well as mission performance and monitoring, a very flexible overall system will re-
sult. These aspects have been discussed here to motivate the need for both smooth
parts of mission performance with nice continuity conditions alleviating percep-
tion, and sudden changes in behavior where sticking to the previous mode would
lead to failure (or probably disaster).

Efficient dynamic vision systems have to take advantage of continuity condi-
tions as long as they prevail; however, they always have to watch out for disconti-
nuities in motion, both of the subject’s body and of other object observed, to be
able to adjust readily. For example, a vehicle following the rightmost lane on a
road can be tracked efficiently using a simple motion model. However, when an
obstacle occurs suddenly in this lane, for example, a ball or an animal running onto
the road, there may be a harsh reaction to one side. At this moment, a new motion
phase begins, and it cannot be expected that the filter tuning for optimal tracking
remains the same. So the vision process for tracking (similar to the bouncing ball
example in Section 2.3.2) has two distinctive phases which should be handled in
parallel.

3.4.6.1 Smooth Evolution of a Trajectory

Continuity models and low-pass filtering components can help to easily track
phases of a dynamic process in an environment without special events. Measure-
ment values with high-frequency oscillations are considered due to noise, which
has to be eliminated in the interpretation process. The natural sciences and engi-
neering have compiled a wealth of models for different domains. The methods de-
scribed in this book have proven to be well suited for handling these cases on net-
works of roads.

However, in road traffic environments, continuity is interrupted every now and
then due to initiation of new behavioral components by subjects and maybe by
weather.

3.4.6.2 Sudden Changes and Discontinuities

The optimal settings of parameters for smooth pursuit lead to unsatisfactory track-
ing performance in cases of sudden changes. The onset of a harsh braking maneu-
ver of a car or a sudden turn may lead to loss of tracking or at least to a strong tran-
sient motion estimated, especially so, if delay times in the visual perception
process are large. If the onsets of these discontinuities could be well predicted, a
switch in model or tracking parameters at the right time would yield much better
results. The example of a bouncing ball has already been mentioned.

In road traffic, the compulsory introduction of the braking (stop) lights serves
the same purpose of indicating that there is a sudden change in the underlying be-
havioral mode (deceleration). Braking lights have to be detected by vision for de-
fensive driving; this event has to trigger a new motion model for the car at which it
is observed. The level of braking is not yet indicated by the intensity of the braking
lights. There are some studies under way for the new LED-braking lights to couple
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the number of LEDs lighting up to the level of braking applied; this could help
finding the right deceleration magnitude for the hypothesis of the observed braking
vehicle and thus reduce transients.

Sudden onsets of lateral maneuvers are supposed to be preceded by warning
lights blinking at the proper side. However, the reliability of behaving according to
this convention is rather low in many parts of the world.

As a general scheme in vision, it can be concluded that partially smooth sections
and local discontinuities have to be recognized and treated with proper methods
both in the 2-D image plane (object boundaries) and on the time line (events).

3.4.6.3 A Capability Network for Locomotion

The capability network shows how more complex behaviors depend on more basic
ones and finally on the actuators available. The timing (temporal sequencing) of
their activation has to be learned by testing and corresponding feedback of errors
occurring in the real world. Figure 3.28 shows the capability network for locomo-
tion of a wheeled ground vehicle. Note that some of the parameters determining the
trigger point for activation depend on visual perception and on other measurement
values. The challenges of system integration will be discussed in later chapters af-
ter the aspects of knowledge representation have been discussed.

Schematic
capabilities

Stop in >

front of Drive
at distance y
along guide

Longitudinal control Lateral control

Figure 3.28. Network of behavioral capabilities of a road vehicle: Longitudinal
and lateral control is fully separated only on the hardware level with three actua-
tors; many basic skills are realized by diverse parameterized feed-forward and
feedback control schemes. On the upper level, abstract schematic capabilities as
triggered from “central decision” are shown [Maurer 2000, Siedersherger 2004]
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3.5 Situation Assessment and Decision-Making

Subjects differ from objects (proper) in that they have perceptual impressions from
the environment and the capability of decision-making with respect to their control
options. For subjects, a control term appears in the differential equation constraints
on their motion activities, which allows them to influence their motion; this makes
subjects basically different from objects.

If decisions on control selection are not implicitly given in the code implement-
ing subject behavior, but may be made according to some explicit goal criteria,
something like free will occurs in the behavior decision process of the subject. Be-
cause of the fundamentally new properties of subjects, these require separate meth-
ods for knowledge representation and for combining this knowledge with actual
perception to achieve their goals in an optimal fashion (however defined). The col-
lection of all facts of relevance for decision-making is called the situation. It is es-
pecially difficult if other subjects, who also may behave at will to achieve their
goals, form part of this process; these behaviors are unknown, usually, but may be
guessed sometimes from reasoning as for own decision-making.

Some expectations for future behavior of other subjects can be derived from try-
ing to understand the situation as it might look for oneself in the situation supposed
to be given for the other subject. At the moment, this is beyond the actual state of
the art of autonomous systems. But the methods under development for the sub-
ject’s decision-making will open up this avenue. In the long run, capabilities of
situation assessment of other subjects may be a decisive factor in the development
of really intelligent systems. Subjects may group together, striving for common
goals; this interesting field of group behavior taking real-world constraints into ac-
count is even further out in the future than individual behavior. But there is no
doubt that the methods will become available in the long run.

3.6 Growth Potential of the Concept, Outlook

The concept of subjects characterized by their capabilities in sensory perception, in
data processing (taking large knowledge bases for object/subject recognition and
situation assessment into account), in decision-making and planning as well as in
behavior generation is very general. Through an explicit representation of these ca-
pabilities, avenues for developing autonomous agents with new mental capabilities
of learning and cooperation in teams may open up. In preparation for this long-
term goal, representing humans with all their diverse capabilities in this framework
should be a good exercise. This is especially valuable for mixed teams of humans
and autonomous vehicles as well as for generating intelligent behavior of these ve-
hicles in environments abounding with activities of humans, which will be the
standard case in traffic situations.

In road traffic, other subjects frequently encountered (at least in rural environ-
ments) beside humans are four-legged animals of different sizes: horses, cattle,
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sheep, goats, deer, dogs, cats, etc.; birds and poultry are two-legged animals, many
of which are able to fly.

Because of the eminent importance of humans and four-legged animals in any
kind of road traffic, autonomous vehicles should be able to understand the motion
capabilities of these living beings in the long run. This is out into the future right
now; the final section of this chapter shows an approach and first results developed
in the early 1990s for recognition of humans. This field has seen many activities
since the early work of Hogg (1984) in the meantime and has grown to a special
area in technical vision; two recent papers with application to road traffic are [Ber-
tozzi et al. 2004; Franke et al. 2005]

3.6.1 Simple Model of Human Body as Traffic Participant

Head
(with neck)

Elaborate models for the motion ca-
pabilities of human bodies are avail-
able in different disciplines of physi-
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Body segments Joints tion with the 4-D approach to dy-

namic vision. Visual recognition of
moving humans becomes especially
difficult due to the vast variety of
clothing encountered and of objects
carried. For normal Western style
clothing the cyclic activities of extremities are characteristic of humans moving.
Motion of limbs should be separated from body motion since they behave in dif-
ferent modes and at different eigenfrequencies, usually.

Limbs tend to be used in typical cyclic motion, while the body moves more
steadily. The rotational movements of limbs may be in the same or in opposite di-
rection depending on the style and the phase of grasping or running.

Figure 3.30 shows early results achieved with the lower part of the body model
from Figure 3.29; cyclic motion of the upper leg (hip angle, amplitude = 60°, upper
graph) and the lower leg (knee angle, amplitude =~ 100°, bottom graph) has been
recognized roughly in a computer simulation with real-time image sequence

Figure 3.29. Simple generic model for hu-
man shape with 22 degrees of freedom, af-
ter [Kinzel 1994]
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Figure 3.30. Quantitative recognition of motion parameters of a human
leg while running: simulation with real image sequence processing, after
[Kinzel 1994].

evaluation and tracking. At that time, microprocessor resources were not sufficient
to do this onboard a car in real time (at least a factor of 5 was missing). In the
meantime, computing power has increased by more than two orders of magnitude
per processor, and human gesture recognition has attracted quite a bit of attention.
Also the wide-spread activities in computer animation with humanoid robots, and
especially the demanding challenge of the humanoid robo-cup league have ad-
vanced this field considerably, lately.

From the field last-mentioned and from analysis of sports as well as dancing ac-
tivities there will be a pressure towards automatically recognizing human (-oid)
motion. This field can be considered developing on its own; application within
semi-autonomous road or autonomous ground vehicles will be more or less a side
product. The knowledge base for these application areas of ground vehicles has to
be developed as a specific effort, however. In case of construction sites or accident
areas with human traffic regulation, future (semi-) autonomous vehicles should
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also have the capability of proper understanding of regulatory arm gestures and of
proper behavior in these unusual situations. Recognizing grown-up people and
children wearing various clothing and riding bicycle or carrying bulky loads will
remain a challenging task.

3.6.2 Ground Animals and Birds

Beside humans, two superclasses of other animals play a role in rural traffic: Four-
legged animals of various sizes and with various styles of running, and birds (from
crows, hen, geese, turkeys, to ostrich), most of which can fly and run or hop on the
ground. This wide field of subjects has hardly been touched for technical vision
systems. In principle, there is no basic challenge for successful application of the
4-D approach. In practice, however, a huge volume of work lies ahead until techni-
cal vision systems will perceive animals reliably.



4 Application Domains, Missions, and Situations

In the previous chapters, the basic tools have been treated for representing objects
and subjects with homogeneous coordinates in a framework of the real 3-D world
and with spatiotemporal models for their motion. Their application in combination
with procedural computing methods will be the subject of Chapters 5 and 6. The
result will be an estimated state of single objects/subjects for the point “here and
now” during the visual observation process. These methods can be applied multiple
times in parallel to n objects in different image regions representing different spa-
tial angles of the world around the set of cameras.

Vision is not supposed to be a separate exercise of its own but to serve some
purpose in a task or mission context of an acting individual (subject). For deeper
understanding of what is being seen and perceived, the goals of egomotion and of
other moving subjects as well as the future trajectories of objects tracked should be
known, at least vaguely. Since there is no information exchange between oneself
and other subjects, usually, their future behavior can only be hypothesized based
on the situation given and the behavioral capabilities of the subjects observed.
However, out of the set of all objects and subjects perceived in parallel, generally
only a few are of direct relevance to their own plans of locomotion.

To be efficient in perceiving the environment, special attention and thus percep-
tual resources and computing power for understanding should be concentrated on
the most important objects/subjects. The knowledge needed for this decision is
quite different from that one needed for visual object and state recognition. The de-
cision has to take into account the mission plan and the likely behavior of other
subjects nearby as well as the general environmental conditions (like quality of
visual perception, weather conditions and likely friction coefficient for maneuver-
ing, as well as surface structure). In addition, the sets of rules for traffic regulation
valid in the part of the world, where the vehicle is in operation, have to be taken
into account.

4.1 Structuring of Application Domains

To survey where the small regime, onto which the rest of the book will be concen-
trating, fits in the overall picture, first (contributions to) a loosely defined ontology
for ground vehicles will be given. Appendix A shows a structured proposal which,
of course, is only one of many possible approaches. Here, only some aspects of
certain missions and application domains are discussed to motivate the items se-
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lected for presentation in this book. An all-encompassing and complete ontology
for ground vehicles would be desirable but has not yet been assembled in the past.

From the general environmental conditions grouped under A.1, up to now only
a few have been perceived explicitly by sensing, relying on the human operator to
take care for the rest. More autonomous systems have to have perceptual capabili-
ties and knowledge bases available to be able to recognize more of them by them-
selves. Contrary to humans, intelligent vehicles will have much more extended ac-
cess to satellite navigation (such as GPS now or Galileo in the future). In
combination with digital maps and geodetic information systems, this will allow
them improved mission planning and global orientation.

Obstacle detection both on roads and in cross-country driving has to be per-
formed by local perception since temporal changes are too fast, in general, to be re-
liably represented in databases; this will presumably also be the fact in the future.
In cross-country driving, beside the vertical surface profiles in the planned tracks
for the wheels, the support qualities of the ground for wheels and tracks also have
to be estimated from visual appearance. This is a very difficult task, and decisions
should always be on the safe side (avoid entering uncertain regions).

Representing national traffic rules and regulations (Appendix A.1.1) is a
straightforward task; their ranges of validity (national boundaries) have to be
stored in the corresponding databases. One of the most important facts is the gen-
eral rule of right- or left-hand traffic. Only a few traffic signs like stop and one-way
are globally valid. With speed signs (usually a number on a white field in a red cir-
cle) the corresponding dimension has to be inferred from the country one is in
(km/h in continental Europe or mph in the United Kingdom or the United States,
etc.).

Lighting conditions (Appendix A.1.2) affect visual perception directly. The dy-
namic range of light intensity in bright sunshine with snow and harsh shadows on
dark ground can be extremely large (more than six orders of magnitude may be en-
countered). Special high-dynamic-range cameras (HDRC) have been developed to
cope with the situation. The development is still going on, and one has to find the
right compromise in the price-performance trade-off. To perceive the actual situa-
tion correctly, representing the recent time history of lighting conditions and of po-
tential disturbances from the environment may help. Weather conditions (e.g., blue
skies) and time of day in connection with the set of buildings in the vicinity of the
trajectory planned (tunnel, underpass, tall houses, etc.) may allow us to estimate
expected changes which can be counteracted by adjusting camera parameters or
viewing directions. The most pleasant weather condition for vision is an overcast
sky without precipitation.

In normal visibility, contrasts in the scene are usually good. Under foggy condi-
tions, contrasts tend to disappear with increasing distance. The same is true at dusk
or dawn when the light intensity level is low. Features linked to intensity gradients
tend to become unreliable under these conditions. To better understand results in
state estimation of other objects from image sequences (Chapters 5 and 6), it is
therefore advantageous to monitor average image intensities as well as maximal
and minimal intensity gradients. This may be done over entire images, but comput-
ing these characteristic values for certain image regions in parallel (such as sky or
larger shaded regions) gives more precise results.



4.1 Structuring of Application Domains 113

It is recommended to have a steady representation available of intensity statis-
tics and their trends in the image sequence: Averages and variances of maximum
and minimum image intensities and of maximum and minimum intensity gradients
in representative regions. When surfaces are wet and the sun comes out, light re-
flections may lead to highlights. Water surfaces (like puddles) rippled by wind may
exhibit relatively large glaring regions which have to be excluded from image in-
terpretation for meaningful results. Driving toward a low standing sun under these
conditions can make vision impossible. When there are multiple light sources like
at night in an urban area, regions with stable visual features have to be found al-
lowing tracking and orientation by avoiding highlighted regions.

Headlights of other vehicles may also become hard to deal with in rainy condi-
tions. Backlights and stoplights when braking are relatively easy to handle but re-
quire color cameras for proper recognition. In RGB-color representation, stop
lights are most efficiently found in the R-image, while flashing blue lights on vehi-
cles for ambulance or police cars are most easily detected in the B-channel. Yellow
or orange lights for signaling intentions (turn direction indicators) require evalua-
tion of several RGB channels or just the intensity signal. Stationary flashing lights
at construction sites (light sequencing, looking like a hopping light) for indication
of an unusual traffic direction require good temporal resolution and correlation
with subject vehicle perturbations to be perceived correctly.

Recognition of weather conditions (Appendix A.1.3) is especially important
when they affect the interaction of the vehicle with the ground (acceleration, decel-
eration through friction between tires and surface material). Recognizing and ad-
justing behavior to rain, hail, and snow conditions may prevent accidents by cau-
tious driving. Slush and loose or wet dirt or gravel on the road may have similar
effects and should thus be recognized. Heavy winds and gusts can have a direct ef-
fect on driving stability; however, they are not directly visible but only by secon-
dary effects like dust or leaves whirling up or by moving grass surfaces and plants
or branches of trees. Advanced vision systems should be able to perceive these
weather conditions (maybe supported by inertial sensors directly feeling the accel-
erations on the body). Recognizing fine shades of texture may be a capability for
achieving this; at present, this is beyond the performance level of microprocessors
available at low cost, but the next decade may open up this avenue.

Roadway recognition (Appendix A.2) has been developed to a reasonable state
since recursive estimation techniques and differential geometry descriptions have
been introduced two decades ago. For freeways and other well-kept, high-speed
roads (Appendices A.2.1 and A.2.2), lane and road recognition can be considered
state of the art. Additional developments are still required for surface state recogni-
tion, for understanding the semantics of lane markings, arrows, and other lines
painted on the road as well as detailed perception of the infrastructure along the
road. This concerns repeating poles with different reflecting lights on both sides of
the roadway, the meaning of which may differ from one country to the next, and
guiderails on road shoulders and many different kinds of traffic and navigation
signs which have to be distinguished from advertisements. On these types of roads
there is only unidirectional traffic (one-way), usually, and navigation has to be
done by proper lane selection.
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On ordinary state roads with two-way traffic (Appendix A.2.3) the perceptual
capabilities required are much more demanding. Checking free lanes for passing
has to take oncoming traffic with high speed differences between vehicles and the
type of central lane markings into account. With speeds allowed of up to 100 km/h
in each direction, relative speed can be close to 60 m/s (or 2.4 m per video cycle of
40 ms). A 4-second passing maneuver thus requires about 250 m look-ahead range,
way beyond what is found in most of today’s vision systems. With the resolution
required for object recognition and the perturbation level in pitch due to nonflat
ground, inertial stabilization of gaze direction seems mandatory.

These types of roads may be much less well kept. Lane markings may be re-
duced to a central line indicating by its type whether passing is allowed (dashed
line) or not (solid line). To the sides of the road, there may be potholes to be
avoided; sometimes these may be found even on the road itself.

On all of these types of road, for short periods after (re-) construction there may
be no lane markings at all. In these cases, vehicles and drivers have to orient them-
selves according to road width and to the distance from “their” side of the sealed
surface. “Migrating construction sites” like for lane marking may be present and
have to be dealt with properly. The same is true for maintenance work or for grass
cutting in the summer.

Unmarked country roads (Appendix A.2.4) are usually narrow, and oncoming
traffic may require slowing down and touching the road shoulders with their outer
wheels. The road surface may not be well kept, with patches of dirt and high-
spatial frequency surface perturbations. The most demanding item, however, may
be the many different kinds of subjects on the road: People and children walking,
running and bicycling, carrying different types of loads or guarding animals. Wild
animals range from hares to deer (even moose in northern countries) and birds
feeding on cadavers.

On unsealed roads (Appendix A.2.5) where speed driven is much slower, usu-
ally, in addition to the items mentioned above, the vertical surface structure be-
comes of increasing interest due to its unstable nature. Tracks impressed into the
surface by heavily loaded vehicles can easily develop, and the likelihood of pot-
holes (even large ones into which wheels of usual size will fit) requires stereovi-
sion for recognition, probably with sequential view fixation on especially interest-
ing areas.

Driving cross-country, tracks (Appendix A.2.6) can alleviate the task in that
they show where the ground is sufficiently solid to support a vehicle. However,
due to non-homogeneous ground properties, vertical curvature profiles of high spa-
tial frequency may have developed and have to be recognized to adjust speed so
that the vehicle is not bounced around losing ground contact. After a period of rain
when the surface tends to be softer than usual, it has to be checked whether the
tracks are not so deep that the vehicle touches the ground with its body when the
wheels sink into the track. Especially, tracks filled with water pose a difficult chal-
lenge for decision-making.

In Appendix A.2.7, all infrastructure items for all types of roads are collected to
show the gamut of figures and objects which a powerful vision system for traffic
application should be able to recognize. Some of these are, of course, specific to
certain regions of the world (or countries). There have to be corresponding data
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bases and algorithms for recognizing these items; they have to be swapped when
entering a zone with new regulations.

In section Appendix A.3 the different types of vehicles are listed. They have to
be recognized and treated according to their form (shape), appearance and function
of the vehicle (Appendix A.4). This type of structuring may not seem systematic at
first glance. There is, of course, one column like A.4 for each type of vehicle under
A.3. Since this book concentrates on the most common wheeled vehicles (cars and
trucks), only these types are discussed in more detail here. Geometric size and 3-D
shape (Appendix A.4.1) have been treated to some extent in Section 2.2.3 and will
be revisited for recognition in Chapters 7 to 10.

Subpart hierarchies (Appendix A.4.2) are only partially needed for vehicles
driving, but when standing, open doors and hoods may yield quite different ap-
pearances of the same vehicle. The property of glass with respect to mirroring of
light rays has a fundamental effect on features detected in these regions. Driving
through an environment with tall buildings and trees at the side or with branches
partially over the road may lead to strongly varying features on the glass surfaces
of the vehicle, which have nothing to do with the vehicle itself. These regions
should, therefore, be discarded for vehicle recognition, in general. On the other
hand, with low light levels in the environment, the glass surfaces of the lighting
elements on the front and rear of the vehicle (or even highlights on windscreens)
may be the only parts discernible well and moving in conjunction; under these en-
vironmental conditions, these groups are sufficient indication for assuming a vehi-
cle at the location observed.

Variability of image shape over time depending on the 3-D aspect conditions of
the 3-D object “vehicle” (Appendix A.3) is important knowledge for recognizing
and tracking vehicles. When machine vision was started in the second half of the
last century, some researchers called the appearance or disappearance of features
due to self-occlusion a “catastrophic event” because the structure of their (insuffi-
cient) algorithm with fixed feature arrangements changed. In the 4-D approach
where objects and aspect conditions are represented as in reality and where tempo-
ral changes also are systematically represented by motion models, there is nothing
exciting with the appearance of new or disappearance of previously stable features.
It has been found rather early that whenever the aspect conditions bring two fea-
tures close to each other so that they may be confused (wrong feature correspon-
dence), it is better to discard these features altogether and to try to find unambigu-
ous ones [Wiinsche 1987]. The recursive estimation process to be discussed in
Chapter 6 will be perturbed by wrong feature correspondence to a larger extent
than by using slightly less well-suited, but unambiguous features. Grouping re-
gimes of aspect conditions with the same highly recognizable set of features into
classes is important knowledge for hypothesis generation and tracking of objects.
When detecting new feature sets in a task domain, it may be necessary to start
more than one object hypothesis for fast recognition of the object observed. Such
4-D object hypotheses allow predicting other features which should be easily visi-
ble; in case they cannot be found in the next few images, the hypothesis can be dis-
carded immediately. An early jump to several 4-D hypotheses thus has advantages
over too many feature combinations before daring an object hypothesis (known as
a combinatorial explosion in the vision literature).
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Photometric appearance (Appendix A.4.4) can help in connection with the as-
pect conditions to find out the proper hypothesis. Intensity and color shading as
well as high resolution in texture discrimination contribute positively to eliminat-
ing false object hypotheses. Computing power and algorithms are becoming avail-
able now for using these region-based features efficiently. The last four sections
discussed are concerned with single object (vehicle) recognition based on image
sequence analysis. In our approach, this is done by specialist processes for certain
object classes (roads and lanes, other vehicles, landmarks, etc.).

When it comes to understanding the semantics of processes observed, the func-
tionality aspects (Appendix A.4.5) prevail. For proper recognition, observations
have to be based on spatially and temporally more extended representation. Trying
to do this with data-intensive images is not yet possible today, and maybe even not
desirable in the long run for data efficiency and corresponding delay times in-
volved. For this reason, the results of perceiving single objects (subjects) “here and
now” directly from image sequence analysis with spatiotemporal models are col-
lected in a “dynamic object database” (DOB) in symbolic form. Objects and sub-
jects are represented as members of special classes with an identification number,
their time of appearance, and their relative state defined by homogeneous coordi-
nates, as discussed in Section 2.1.1. Together with the algorithms for homogeneous
coordinate transformations and shape computation, this represents a very compact
but precise state and shape description. Data volumes required are decreased by
two to three orders of magnitude (KB instead of MB). Time histories of state vari-
ables are thus manageable for several (the most important) objects/subjects ob-
served.

For subjects, this allows recognizing and understanding maneuvers and behav-
iors of which one knows members of this type of subject class are capable (Appen-
dix A.4.6). Explicit representations of perceptual and behavioral capabilities of
subjects are a precondition for this performance level. Tables 3.1 and 3.3 list the
most essential capabilities and behavioral modes needed for road traffic partici-
pants. Based on data in the ring-buffer of the DOB for each subject observed, this
background knowledge now allows guessing the intentions of the other subject.
This qualitatively new information may additionally be stored in special slots of
the subject’s representation. Extended observations and comparisons to standards
for decisions—making and behavior realization now allows attributing additional
characteristic properties to the subject observed. Together with the methods avail-
able for predicting movements into the future (fast-in-advance simulation), this al-
lows predicting the likely movements of the other subject; both results can be
compared and assessed for dangerous situations encountered. Thus, real-time vi-
sion as propagated here is an animation process with several individuals based on
previous (actual) observations and inferences from a knowledge base of their inten-
tions (expected behavior).

This demanding process cannot be performed for all subjects in sight but is con-
fined to the most relevant ones nearby. Selecting and perceiving these most rele-
vant subjects correctly and focusing attention on them is one of the decisive tasks
to be performed steadily. The judgment, which subject is most relevant, also de-
pends on the task to be performed. When just cruising with ample time available,
the situation is different from the same cruising state in the leftmost of three lanes,
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but an exit at the right is to be taken in the near future. On a state road, cruising in
the rightmost lane but having to take a turnoff to the left from the leftmost lane
yields a similar situation. So the situation is not just given by the geometric ar-
rangement of objects and subjects but also depends on the task domain and on the
intentions to be realized.

Making predictions for the behavior of other subjects is a difficult task, espe-
cially when their perceptual capabilities (Appendix A.4.7) and those for planning
and decision-making (Appendix A.4.8) are not known. This may be the case with
respect to animals in unknown environments. These topics (Appendix A.6) and the
well-known but very complex appearance and behavior of humans (Appendix A.5)
are not treated here.

Appendix A.7 is intended to clarify some notions in vehicle and traffic control
for which different professional communities have developed different terminol-
ogies. (Unfortunately, it cannot be assumed that, for example, the terms “dynamic
system” or “state” will be understood with the same meaning by one person from
the computer science and a second one from the control engineering communities.)

4.2 Goals and Their Relations to Capabilities

To perform a mission efficiently under perturbations, both the goal of the mission
together with some quality criteria for judging mission performance and the capa-
bilities needed to achieve them have to be known.

The main goal of road vehicle traffic is to transport humans or goods from point
A to point B safely and reliably, observing some side constraints and maybe some
optimization criteria. A smooth ride with low values of the time integrals of (longi-
tudinal and lateral) acceleration magnitudes (absolute values) is the normal way of
driving (avoiding hectic control inputs). For special missions, e.g., on ambulance
or touring sightseers, these integrals should be minimized.

An extreme type of mission is racing, exploiting vehicle capabilities to the ut-
most and probably reducing safety by taking more risks. Minimal fuel consumption
is the other extreme where travel time is of almost no concern.

Safety and collision avoidance even under adverse conditions and in totally un-
expected situations is the most predominant aspect of vehicle guidance. Driving at
lower speed very often increases safety; however, on high-speed roads during
heavy traffic, it can sometimes worsen safety. Going downhill, the additional thrust
from gravity has to be taken into account which may increase braking distance
considerably. When entering a crossroad or when starting a passing maneuver on a
road with two-way traffic, estimation of the speed of other vehicles has to be done
with special care, and an additional safety margin for estimation errors should be
allowed. Here, it is important that the acceleration capabilities of the subject vehi-
cle under the given conditions (actual mass, friction coefficient, power reserves)
are well known and sufficient.

When passing on high-speed roads with multiple lanes, other vehicles in the
convoy being passed sometimes start changing into your lane at short distances,
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without using indication signs (blinker); even these critical situations not conform-
ing to standard behavior have to be coped with successfully.

4.3 Situations as Precise Decision Scenarios

The definition for “situation” used here is the following: A situation encompasses
all aspects of relevance for decision-making in a given scenario and mission con-
text. This includes environmental conditions affecting perception and limit values
for control application (such as wheel to ground friction coefficients) as well as the
set of traffic regulations actually valid that have been announced by traffic signs
(maximum speed allowed, passing prohibited, etc.). With respect to other ob-
jects/subjects, a situation is not characterized by a single relation to one other unit
but to the total number of objects of relevance. Which of those detected and
tracked are relevant is a difficult decision. Even the selected regions of special at-
tention are of importance. The objects/subjects of relevance are not necessarily the
nearest ones; for example, driving at higher speed, some event happening at a far-
ther look-ahead distance than the two preceding vehicles may be of importance: A
patch of dense fog or a front of heavy rain or snow can be detected reliably at rela-
tively long distance. One should start reacting to these signs at a safe distance ac-
cording to independent judgment and not only when the preceding vehicles start
their reactions.

Some situational aspects can be taken into account during mission planning. For
example, driving on roads heading into the low-standing sun at morning or evening
should be avoided by proper selection of travel time. Traffic congestion during
rush hour also may be avoided by proper timing. Otherwise, the driver/autonomous
vehicle has to perceive the indicators for situational aspects, and from a knowledge
base, the proper behavior has to be selected. The three components required to per-
form this reliably are discussed in the sections below: Environmental background,
objects/subjects of relevance, and the rule systems for decision-making. Beside the
rules for handling planned missions, another set of perceptual events has to be
monitored which may require another set of rules to be handled for selecting
proper reactions to these events.

4.3.1 Environmental Background

This has not received sufficient attention in the recent past since, at first, the basic
capabilities of perceiving roads and lanes as well as other vehicles had to be dem-
onstrated. Computing power for including at least some basic aspects of environ-
mental conditions at reasonable costs is now coming along. In Section 4.1 and Ap-
pendix A.1.2 (lighting conditions)/A.1.3 (weather conditions), some aspects have
already been mentioned. Since these environmental conditions change rather
slowly, they may be perceived at a low rate (in the range of seconds to minutes).
An economical way to achieve this may be to allot remaining processing time per
video cycle of otherwise dedicated image processing computers to this “environ-
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mental processing” algorithm. These low-frequency results should be made avail-
able to all other processes by providing special slots in the DOB and depositing the
values with proper time stamps. The situation assessment algorithm has to check
these values for decision-making regularly.

The specialist processes for visual perception should also have a look at them to
adjust parameters in their algorithms for improving results. In the long run, a direct
feedback component for learning may be derived. Perceiving weather conditions
through textures may be very computer-intensive; once the other basic perception
tasks for road and other vehicles run sufficiently reliable, additional computing
power becoming available may be devoted to this task, which again can run at a
very low rate. Building up a knowledge base for the inference from distributed tex-
tures in the images toward environmental conditions will require a large effort.
This includes transitions in behavior required for safe mission performance.

4.3.2 Objects/Subjects of Relevance

A first essential step is to direct attention (by gaze control and corresponding im-
age evaluation) to the proper environmental regions, depending on the mission
element being performed. This is, of course, different for simple roadrunning, for
preparing lane changes, or for performing a turnoff maneuver. Turning off to the
left on roads with oncoming (right-hand) traffic is especially demanding since their
lane has to be crossed.

Driving in urban environments with right-of-way for vehicles on crossroads
coming from the right also requires special attention (looking into the road). Enter-
ing traffic circles requires checking traffic in the circle, because these vehicles
have the right-of-way. Especially difficult are 4-way-stops in use in some coun-
tries; here the right-of-way depends on the time of reaching the stop—lines on all
four incoming roads.

Humans may be walking on roads through populated areas and in stop-and-go
traffic. On state, urban and minor roads, humans may ride bicycles, may be roller
skating, jogging, walking, or leisurely strolling. Children may be playing on the
road. Recognizing these situations with their semantic context is actually out of
range for machine vision. However, detecting and recognizing moving volumes
(partially) filled with massive bodies is in the making and will become available
soon for real-time application. Avoiding these areas with a relatively large safety
margin may be sufficient for driver assistance and even for autonomous driving.
Some nice results for assistance in recognizing humans crossing in front of the ve-
hicle (walking or biking) have been achieved in the framework of the project “In-
vent” [Franke et al. 2005].

With respect to animals on the road, there are no additional principal difficulties
for perception except the perhaps erratic motion behavior some of these animals
may show. Birds can both move on the ground and lift off for flying; in the transi-
tion period there are considerable changes in their appearance. Both their shapes
and the motion characteristics of their limbs and wings will change to a large ex-
tent.
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4.3.3 Rule Systems for Decision-Making

Perception systems for driver assistance or for autonomous vehicle guidance will
need very similar sets of rules for the perception part (maybe specialized to some
task of special interest). Once sufficient computing power for visual scene analysis
and understanding is affordable, the information anyway in the image streams can
be fully exploited, since both kinds of application will gain from deeper under-
standing of motion processes observed. This tends to favor three separate rule
bases in a modular system: The first one for perception (control of gaze direction
and attention) has to be available for both types of systems. In addition, there have
to be two different sets, one for assistance systems and one for autonomous driving
(locomotion, see Chapters 13 and 14).

Since knowledge components for these task domains may differ widely, they
will probably be developed by different communities. For driver assistance sys-
tems, the human-machine-interface with many psychological aspects poses a host
of challenges and interface parameters. Especially, if the driver is in charge of all
safety aspects for liability reasons, the choice of interface (audio, visual, or tactile)
and the ways of implementing the warnings are crucial. Quite a bit of effort is go-
ing into these questions in industry at present (see the proceedings of the yearly In-
ternational Symposium on Intelligent Vehicles [Masaki 1992-1999]). Tactile inputs
may even include motion control of the whole vehicle. Horseback riders develop a
fine feeling for slight reactions of the animal to its own perceptions. The question
is whether similar types of special motion are useful for the vehicle to direct atten-
tion of the driver to some event the vehicle has noticed. Introducing vibrations at
the proper side of the driver seat when the vehicle approaches one of the two lane
markers left or right too closely is a first step done in this direction [Citroen 2004].
First correcting reactions in the safe direction or slight resistance to maneuvers in-
tended may be further steps; because of the varying reactions from the population
of drivers, finding the proper parameters is a delicate challenge.

For autonomous driving, the relatively simple task is to find the solution when
to use which maneuvers or/and feedback algorithms with which set of optimal pa-
rameters. Monitoring the process initiated is mandatory for checking actual per-
formance achieved in contrast to the nominal one expected. Statistics should be
kept on the behavior observed, for learning reasons.

In case some unexpected “event” occurs (like a vehicle changing into your lane
immediately in front of you without giving signs), this situation has to be handled
by a transition in behavior; reducing throttle setting or hitting the brakes has to be
the solution in the example given. These types of transitions in behavior are coded
in extended state charts [Harel 1987; Maurer 2000]; actual implementation and results
will be discussed in later chapters. The development of these algorithms and their
tuning, taking delay times of the hardware involved into account is a challenging
engineering task requiring quite a bit of effort.

Note that in the solution chosen here, the rule base for decision—making does
not contain the control output for the maneuvers but only the conditions, when to
switch from one maneuver or driving state to another one. Control implementation
is done at a lower level with processors closer to the actuators (see Section 3.4.4).
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4.4 List of Mission Elements

Planning entire missions is usually done before the start of the mission. During this
process, the mission is broken down into mission elements which can be performed
with the same set of behavioral modes. The list of mission elements is the task de-
scription for the process governing situation assessment and behavior decision. It
also calls for implementation of behavioral capabilities actually available. In case
some nominal behavioral capability is actually not available because of some
hardware failure, this fact is detected by this process (by polling corresponding bits
in the hardware monitoring system), and mission replanning has to take this new
situation into account.

The duration of mission elements may be given by local timescales or by some
outside event; for example, lane following should be done until a certain geo-
graphical position has been reached at which a turnoff at an intersection has to be
taken. This is independent of the time it took to get there.

During these mission elements defined by nominal “strategic” aspects of mis-
sion performance, tactical deviations from the nominal plan are allowed such as
lane changing for passing slower traffic or convoy driving at speeds lower than
planned for the mission element. To compensate for the corresponding time losses,
the vehicle may increase travel speed for some period after passing the convoy (pa-
rameter adjustment) [Gregor 2002; Hock 1994].

In the region of transition between two mission elements, the perception system
may be alerted to detect and localize the relative position so that a transient ma-
neuver can be started in time, taking time delays for implementation into account.
A typical example is when to start the steer rate maneuver for a turnoff onto a
crossroad. Sections 14.6.5 and 14.6.6 will discuss this maneuver as one important
element of mission performance as implemented on the test vehicle VaMoRs. Fig-
ure 14.15 shows the graphical visualization of the overall mission. The correspond-
ing list of mission elements (coarse resolution) is as follows:

1. Perform roadrunning from start till GPS signals the approach of a crossroad
onto which a turnoff to the left shall be made.

2. While approaching the crossroad, determine by active vision the precise width
and orientation of the cross road as well as the distance to the intersection.

3. Perform the turnoff to the left.

4. At agiven GPS-waypoint on the road, leave the road at a right angle to the right
for cross-country driving.

5. Drive toward a sequence of landmarks (GPS-based); while driving, detect and
perceive negative obstacles (ditches) visually and avoid them through bypass-
ing on the most convenient side. [There is no one, actually in this part of the
mission.]

6. Visually detect and recognize a road being approached during cross-country
driving (point 6 in Figure 14.5). Estimate intersection angle, road width, and
distance to the road (continually while driving).

7. Turn onto road to the left from cross-country driving; adjust speed to surface
inclination encountered.

8. Perform roadrunning, recognizing crossroad as landmarks (points 6 to 8).
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9. Cross hoth intersections (T-junction left and right).

10. Leave road to the left at GPS-waypoint (9) for cross-country driving.

11. While driving toward a sequence of landmarks (GPS-based), detect and per-
ceive negative obstacles (ditches) visually and avoid them through bypassing
on the most convenient side. [In the case of Figure 14.15 there is one ditch on
trajectory-arc 10; it should be avoided by evading to the right. If a ditch is en-
countered, there is a new list of tasks to be performed in a similar manner for
this complex evasive maneuver consisting of several perceptual tasks and se-
guences of motion control.]

12. Finish mission at GPS-landmark X (in front of a road).

In driver assistance systems, similar mission elements exist, such as roadrunning
(with “lane departure warning”), convoy driving (with “adaptive cruise control”),
or “stop-and-go” traffic. The assistance functions can be switched on or off sepa-
rately by the human operator. A survey on this technology including the human-
machine-interface (HMI) may be found in [Maurer, Stiller 2005].



5 Extraction of Visual Features

In Chapters 2 and 3, several essential relations among features appearing in images
and objects in the real world have been discussed. In addition, basic properties of
members of the classes “objects” and “subjects” have been touched upon to enable
efficient recognition from image sequences. Not only spatial shape but also motion
capabilities have been described as background for understanding image sequences
of high frequency (video rate). This complex task can be broken down into three
consecutive stages (levels), each requiring specialized knowledge with some over-
lap. Since the data streams required for analysis are quite different in these stages,
namely (1) whole images, (2) image regions, and (3) symbolic descriptions, they
should be organized in specific data bases.

The first stage is to discover the following items in the entire fields of view (im-
ages): (a) what are characteristic image parameters of influence for interpreting the
image stream, and (b) where are regions of special interest in the images?

The answer to question (a) has to be determined to tap background knowledge
which allows deeper understanding of the answers found under (b). Typical ques-
tions to be answered by the results to complex (a) are (1) What are the lowest and
the highest image intensities found in each image? It is not so much the value of a
single pixel of interest here [which might be an outlier (data error)] but of small lo-
cal groups of pixels, which can be trusted more. (2) What are the lowest and high-
est intensity gradients (again evaluated by receptive fields containing several pix-
els)? (3) Are these values drastically different in different parts of the images?
Here, an indication of special image regions such as ‘above and below the hori-
zon’, or ‘near a light source or further away from it” may be of importance. (4) Are
there large regions with approximately homogeneous color or texture distribution
(representing areas in the world with specific vegetation or snow cover, etc.)? At
what distance are they perceived?

Usually, the answer to (b) will show up in collections of certain features. Which
features are good indicators for objects of interest is, of course, domain specific.
Therefore, the knowledge base for this stage 1 concentrates on types and classes of
image features for certain task domains and environmental conditions; this will be
treated in Section 5.1.

At this level, only feature data are to be computed as background material for
the higher levels, which try to associate environmental aspects with these data sets
by also referring to the mission performed and to knowledge about the environ-
ment, taking time of day and year into account.

In the second stage, the question is asked ‘What type of object is it, generating
the feature set detected’, and ‘what is its relative state at the present time’? Of
course, this can be answered for only one object/subject at one time by a single in-
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terpretation process. So, the amount of image data to be touched is reduced drasti-
cally, while background knowledge on the object/subject class allows asking spe-
cific questions in image interpretation with correspondingly tuned feature extrac-
tors. Continuity conditions over time play an important role in state estimation
from image data. In a complex scene, many of these questions have to be answered
in parallel during each video cycle. This can be achieved by time slicing attention
of a single processor/software combination or by operating with several or many
processors (maybe with special software packages) in parallel. Increasing comput-
ing power available per processor will shift the solution to the former layout. Over
the last decade, the number of processors in the vision systems of UniBwM has
been reduced by almost an order of magnitude (from 46 to 6) while at the same
time the performance level increased considerably. The knowledge bases for rec-
ognizing single objects/subjects and their motion over time will be treated in Chap-
ters 6 and 12.
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The results of all of these single-object—recognition processes have to be pre-
sented to the situation assessment level in unified form so that relative motion be-
tween objects and movements of subjects can be appreciated on a larger spatial and
temporal scale. The dynamic object database (DOB) solves this task. On the situa-
tion level, working on huge volumes of image data is no longer possible. There-
fore, the DOB also serves the purpose of presenting the scene recognized in an ob-
ject-oriented, symbolic way. Figure 5.1 shows the three levels for image sequence
processing and understanding. The results of the right-hand branch from level 1 are
fed into this scheme to provide background information on the lighting and other
environmental conditions.

The situation to be assessed on the decision level has to include all of this and
the trajectory planned for the subject body in the near future. Both safety aspects
and mission goals have to be taken into account here; a selection has to be made
between more and less relevant objects/subjects by judging hazard potentials from
their trajectories/behaviors. This challenge will be discussed in Chapter 13. Figure
5.1 visualizing the stages mentioned for visual dynamic scene interpretation will be
discussed in more detail after the foundations for feature extraction and ob-
ject/subject recognition have been laid down.

5.1 Visual Features

The discussion of the topic of feature extraction will be done here in an exemplary
fashion only for road scenes. Other domains may require different feature sets;
however, edge and corner features are very robust types of features under a wide
range of varying lighting and aspect conditions in many domains. Additional fea-
ture sets are gray value or color blobs, certain intensity or color patterns, and tex-
tures. The latter cover a wide range; they are very computer-intensive, in general.
In biological vertebrate vision, edge features of different size and under different
orientations are one of the first stages of visual processing (in V1 [Hubel and Wiesel
1962]). There are many algorithms available for extracting these features (see
[Duda, Hart 1973; Ballard, Brown 1982; Canny 1983; http://iris.usc.edu/Vision-
Notes/bibliography/contents.html]. A very efficient algorithm especially suited for
road-scene analysis has been developed by Kuhnert (1988) and Mysliwetz (1990).
Search directions or patterns are also important for efficient feature extraction. A
version of this well-proven algorithm, the workhorse of the 4-D approach over two
decades, will be discussed in detail in Section 5.2. Computing power in the 1980s
did not allow more computer-intensive features for real-time applications at that
time. Now that four orders of magnitude in computing power per microprocessor
have been gained and are readily available, a more general feature extraction
method dubbed “UBM?”, the basic layout of which has been developed by Hof-
mann (2004) and the author, will be discussed in Section 5.3. It unifies the extrac-
tion of the following features in a single pass: Nonplanar regions of the image in-
tensity function, linearly shaded blobs, edges of any orientation, and corners.
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5.1.1 Introduction to Feature Extraction

The amount of data collected by an imaging sensor is the same when looking at a
uniformly gray region or at a visually complex colored scene. However, the
amount of information perceived by an intelligent observer is considerably differ-
ent. A human would characterize the former case exhaustively by using just three
words: “uniformly gray”, and possibly a term specifying the gray tone (intensity).
The statement “uniformly” may be the result of rather involved low-level parallel
computations; but this high-level representational symbol in combination with the
intensity value contains all the information in the image. In contrast, if several ho-
mogeneously colored or textured subregions are being viewed, the borderlines be-
tween these regions and the specification of the color value per region contain all
the information about the scene (see Figure 5.2).

Instead of having to deal with all
the color values of all pixels, this
Boundary curve number of data may be considerably
reduced by just listing the coordinates
of the boundary elements; depending
on the size of th_e regions, this may be

orders of magnitude less data for the
same amount of information. This is
the reason that sketches of boundary
lines are so useful and widely spread.

Very often in images of the real
world, line elements change direction
smoothly over arc-length, except at
discrete points called “corners”. The direction change per unit arc-length is termed
curvature and is the basis for differential geometry [Spivak 1970]. The differential
formulation of shapes is coordinate-free and does not depend on the position and
angular orientation of the object described. The same 2-D shape on different scales
can be described in curvature terms by the same function over arc length and one
scaling factor. Measurement of the tangent direction to a region, therefore, is a ba-
sic operation for efficient image processing. For measuring tangent directions pre-
cisely at a given scale, a sufficiently large environment of the tangent point has to
be taken into account to be precise as a function of scale level and to avoid “spuri-
ous details” [Florack et al. 1992]. Direction coding over arc length is a common
means for shape description [Freeman 1974; Marshall 1989].

Curvature coding over arc length is less widely spread. In [Dickmanns 1985], an
approximate, general, efficient, coordinate-free 2-D shape description scheme in
differential-geometry terms has been given, based on local tangent direction meas-
urements relative to the chord line linking two consecutive boundary points with
limited changes in tangent direction (< 0.2 radians). It is equivalent to piecewise
third-order Hermite polynomial approximations based on boundary points and their
tangent directions.

However, sticking to the image plane for shape description of 3-D bodies in the
real world may not be the best procedure; rigid 3-D bodies and curves yield an in-
finite number of 2-D views by perspective mapping (at least theoretically), depend-

Uniformly textured (gray)

Figure 5.2. Two homogeneous regions;
most information is in the boundary curve
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ing on the aspect conditions. The shape invariance in this case can be captured only
by using 3-D shape models and models for mapping by central projection. This ap-
proach is much better suited for visually recognizing the environment during ego-
motion and for tracking other (massive) objects over time, than for single snapshot
interpretation. This is true since massive bodies move smoothly over time, and in-
variance properties with respect to time, such as eigen—frequencies, damping, and
stereotypic motion characteristics (like style of walking), may be exploited as
knowledge about specific objects/subjects in the real world. Therefore, embedding
the image analysis task in a temporal continuum and exploiting known motion
characteristics in an object-oriented way will alleviate the image sequence interpre-
tation task (extended idea of gestalt). It requires, however, that the internal repre-
sentation be in four dimensions right from the beginning: in 3-D space and time for
single objects. This is the essence of the 4-D approach to dynamic machine vision
developed in the early 1980s [Meissner, Dickmanns 1983; Dickmanns 1987; Wiinsche
1987].

By embedding (a) simple feature extraction with linear edge elements, (b) re-
gions with linear shading models, and (c) horizontal and vertical image stripes into
this framework of spatio—temporal object orientation, these methods gain consid-
erably in power and useful range of application. By exploiting a knowledge base
on dynamic motion derived from previous experience in observing motion proc-
esses in 3-D space of specific 3-D objects carrying highly visible features on their
surface, scene understanding is considerably alleviated. Specific groups of linearly
extended edge feature sets and adjacent homogeneous areas of gray, color (or in
the future texture) values are interpreted as originating from these spatial objects
under specific aspect conditions. This background may also be one of the reasons,
beside their robustness to changing lighting conditions, that in highly developed
biological vision systems (like the mammalian ones) edge element operators
abound [Hubel, Wiesel 1962; Koenderink, van Doorn 1990]. Without 3-D invariance
and without knowledge about motion processes and about perspective projection
(implicit or explicit), the situation would be quite different with respect to the use-
fulness of these operators.

The edge-based approach has an advantage over region-based approaches if in-
variance under varying lighting conditions is considered. Even though the intensi-
ties and color values may change differently with time in adjacent image regions,
the position of the boundaries between them does not, and the edge will remain
visible as the locus of highest intensity or color gradient. In natural environments,
changing lighting conditions are more the rule than an exception. Therefore, Sec-
tion 5.2 will be devoted to edge-based methods.

However, for robust interpretation of complex images, region-based image
evaluation is advantageous. Since today's processors do not allow full scale area-
based processing of images in real time, a compromise has to be sought. Some as-
pects of region-based image evaluation may be exploited by confining the regional
operations to the vicinity of edges. This is done in conjunction with the edge-based
approach, and it can be of help in establishing feature correspondence for object
recognition using a knowledge base and in detecting occlusions by other objects.

A second step toward including area-based information in the 4-D scheme under
the constraint of limited computing power is to confine the evaluation areas to
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stripes, whose orientation and width have to be chosen intelligently ad hoc, exploit-
ing known continuity conditions in space and time. These stripes will be condensed
to one-dimensional (averaged over the width of the stripes) representation vectors
by choosing proper schemes of symbolic descriptions for groups of pixel values in
the stripe direction.

Coming back to the difference between data and information, in knowledge-
based systems, there may be a large amount of information in relatively few data, if
these data allow a unique retrieval access to a knowledge base containing informa-
tion on the object recognized. This, in turn, may allow much more efficient recog-
nition and visual tracking of objects by attention focusing over time and in image
regions of special interest (window concept).

According to these considerations, the rest of Chapter 5 will be organized as fol-
lows: In Section 5.1.2, proper scaling of fields of view in multi-focal vision and in
selecting scales for templates is discussed. Section 5.2 deals with an efficient basic
edge feature extraction operator optimized for real-time image sequence under-
standing. In Sections 5.3, (2-D) region-based image evaluation is approached as a
sequence of one-dimensional image stripe evaluations with transition to symbolic
representations for alleviating data fusion between neighboring stripes and for im-
age interpretation. An efficient method with some characteristics of both previous
approaches is explained in Section 5.4; it represents a trade-off between accuracy
achievable in perception and computational expense.

Contrasting the feature extraction methods oriented towards single-object rec-
ognition, Section 5.5 gives an outlook on methods and characteristic descriptors for
recognizing general outdoor environments and situations. Computing power avail-
able in the past has not allowed applying this in real-time onboard vehicles; the
next decade should allow tackling this task for better and more robust scene under-
standing.

5.1.2 Fields of View, Multi-focal Vision, and Scales

In dealing with real-world tasks of surveillance and motion control very often cov-
erage of the environment with a large field of view is needed only nearby. For a
vehicle driving at finite speed, only objects within a small distal range will be of
interest for collision avoidance. When one is traveling at high speed, other low-
speed objects become of interest for collision avoidance only in a rather small an-
gular region around the subject’s velocity vector. [For several high-speed vehicles
interacting in the same space, special rules have to be established to handle the
situations, such as in air traffic control, where different altitudes are assigned to
airplanes depending on their heading angle (in discrete form by quadrants).]

Central projection is the basic physical process of imaging; depending on the
distal range of the object mapped into the image, this results in one pixel represent-
ing areas of different size on objects in the real world. Requiring a certain resolu-
tion normal to the optical axis for objects in the real world, therefore, requires
range-dependent focal lengths for the imaging system.

Biological systems have mastered this problem by providing different pixel and
receptive field sizes in the sensor hardware eye. In the foveal area designed for
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long-range, high-resolution viewing, the density of sensor elements is very high; in
the peripheral areas added for large angular viewing range, element density is
small. By this combination, a large viewing range can be combined with high reso-
lution at least in some area with relatively moderate overall data rates. The area of
high resolution can be shifted by active viewing direction (gaze) control by both
the eye and the head.

In technical systems, since inexpensive sensors are available only with homo-
geneous pixel distributions, an equivalent mapping system is achieved by mount-
ing two or mores cameras with lenses of different focal lengths fixed relative to
each other on a platform. The advantage of a suite of sensors covering the same
part of the scenery is that this part is immediately available to the system in a mul-
ti-scale data set. If the ratio of the focal lengths is four, the image produced by the
shorter focal length represents (coarse) information on the second pyramid level of
the image taken with the higher resolution (larger focal length). This dual scale fac-
tor may sometimes be advantageous in real-time vision where time delays are criti-
cal. On one hand, efficient handling of objects requires that a sufficiently large
number of pixels be available on each object for recognition and identification; on
the other hand, if there are too many pixels on a single object, image processing
becomes too involved and slow.

As mentioned in the introduction, in complex scenes with many objects or with
some objects with a complex pattern of sub-objects, relying solely on edge features
may lead to difficulties and ambiguities. Combining the interpretation of edge fea-
tures with area-based features (average intensity, color, or texture) often allows
easy disambiguation. Figure 5.3 shows a case of efficient real-time image sequence
processing. Large homogeneous areas can be tracked by both edge features and re-
gion-based features. In the near range, the boundaries between the regions are not
sharp but fuzzy (strongly perturbed, unsealed country road with grass spreading
onto the road). For initialization from a normal driving situation, searching edges
with large receptive fields in most likely areas is very efficient.

The area-based method covering the entire image width would improve robust-
ness to road parameters other than expected, but would also be costly because of

s81 | 4 ||| s2

Figure 5.3. Combining edge and area-based features for robust object detection and rec-
ognition. Near range: Only edge detection in regions and with parameters selected accord-
ing to a normal driving situation. Far range: Four stripes covering the entire width of the
image; determine steep edges and intensity plateaus (lower part) to discover road forks.
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the many pixels to be touched. Working with large receptive fields has proven to
be reasonably reliable and efficient here. However, if computing power will allow
color and texture processing with new area-based features, a new quality of recog-
nition and higher robustness will result. Therefore, a compromise has been found
that allows using some of the advantages of area-based features efficiently in con-
nection with the 4-D approach.

In road vehicle guidance where the viewing direction is essentially parallel to
the ground, this method offers some advantages. Due to the scaling effect of range
(distance x) in perspective mapping, features further away will be reduced in size;
this may cause trouble in the interpretation process for a stereotypical application
of pyramid-methods over larger image regions. In the upper rows, each pixel cov-
ers a much larger distance in range than in the lower ones.

Figure 5.4 with the inserted table shows the effect of distance in a vertical stripe
of an image, scaled by the camera elevation H above the ground; the same stripe
width in the real world on the ground shows up in a decreasing number of rows
with distance.

05 1 2 3 4 5 6 7 ==>LMH 9 10 10.5

L/H 4 5 7 10 20 30
Zol pel 167 136 100 71 36.6 24.6
Zu [ pel 214 167 115 79 38.5 25.4
AZ | pel a7 31 15 8 1.9 0.8

Figure 5.4. Mapping of a horizontal slice at distance L/H (from Zu = (L/H - 0.5) to Zo
= (L/H + 0.5) into the image plane (focal length f = 750 pixel)

Confining regional representations to image slices or stripes at almost constant
distance, these problems may be reduced by proper selection of stripe width (see
Figure 5.3, upper part). Due to unknown road curvature, the road may appear any-
where in the image, and it may have a forking point somewhere. Therefore, the
horizontal stripes SB1 to SB4 in Figure 5.3 are selected as a bunch of regions ex-
tending over the entire image width. The resulting image intensity distributions are
shown in the lower part. In SB1, the road fork does not yet show up. SB2 has a
small dark section between two brighter ones (with almost the same total width in
the image between the outer edges, even though further away), indicating that the
road may have branched. This is confirmed in SB3 with a widened dark area in be-
tween. The value of stripe SB4 is doubtful in this case since the branched-off road
fills only a few pixels; with the hypothesis of a road fork from SB2, 3, it would be
more meaningful to search in a separate stripe for the off-going branch with prop-
erly adapted parameters in the next image, if possible with higher image resolution.

In other cases, the stripes need not cover the entire image width right from the
beginning but may be confined to some meaningful fraction depending on object
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size expected (domain knowledge) or known from previous images, thereby reduc-
ing the computational load.

It can be seen from Figure 5.4 that the same width at scaled distance 5 (depth in
viewing direction, 31 pixels wide) is reduced to about 2 pixels at a scaled distance
of 20. Clearly, features in the real world will change in appearance accordingly! In
the stripe-based method to be discussed in Section 5.3, these facts may be taken
into account by proper parameter specifica-
tion depending on the actual situation en- Crossroad, area-based
countered. At longer distances, often the gEErsEmwE—,
center of homogeneous regions in a stripe
can be more reliably detected than the exact
position of edges belonging to the same re-
gion. For example, crossroad detection as
shown in Figure 5.5 is much more robust
based on area-based features than based on
edge features since these may abound in the i
region along the road. Checking aggrega- Local road, edge-based
tions of homogeneous areas in road direc- measurement model
tion, as needed in the next step for hypothe-
sis generation, is much more efficient than
checking edge aggregations with their com-
binatorial explosion.

Distant

road
Area-based

X |
detection

Figure 5.5. Crossroad detection in
look-ahead region further away.

5.2 Efficient Extraction of Oriented Edge Features

In general, multiple scales are advantageous in image processing to optimally ex-
ploit information in noise corrupted images [Florack et al. 1992]. To avoid spurious
details, the finest scale should be much larger than pixel size; a mask size of three
or four pixels is considered a practical lower bound for the extraction of linearly
extended features. The upper scale limit is given by image size, since during the
search process, no image boundary should be hit; a maximum mask size of one-
half or one-third of the image size seems to be a meaningful upper limit. Spacing
mask sizes by a factor of 2 then results in seven or eight mask sizes for 1Kx1K
pixel images.

An alternative approach to working with large mask sizes is to compute pyramid
images [Burt et al. 1981] by averaging four neighboring pixels on the ith level to one
pixel at the (i+1)th pyramid level and then applying a smaller mask size to the
higher level image. Note however, that these two operations are not exactly the
same, since in the latter case resolution in the image plane has been lost. Therefore,
to preserve high resolution at the small scale, mask sizes up to 17 pixels in width
have been generated and implemented. Masks of larger size have not been neces-
sary in the problem areas treated up to now. If they are needed, either four or five
pyramid levels have to be generated or, for the sake of saving computing time,
simple sub-sampling may be done, substituting one intensity value of level i for the
mean of four neighboring ones on level i—1 in the exact pyramid. Thus, about half
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the scale range is covered by different mask sizes while the other half is handled on
larger scales by image size reduction.

Literature on edge feature extraction abounds (see, e.g., World Wide Web:
http://iris.usc.edu/Vision-Notes/bibliography/contents.html; detection and analysis
of edges and lines (Chapter 5 there); 2-D feature analysis, extraction, and represen-
tations (Chapter 7); Chapter 3 there gives a survey on books (3.2), collections,
overviews, and surveys).

5.2.1 Generic Types of Edge Extraction Templates

A substantial reason for the efficiency of the methods developed at UniBwM for
edge feature extraction stems from the fact that both low-pass filtering in one di-
rection and accurate search in an almost normal direction were combined. By
proper partitioning of the overall task, simple but efficient pixel processing in just
one dimension has been achieved consecutively. It is assumed that the direction of
the edge to be found is known approximately. While this is true for tracking, it
turned out that the algorithms are also useful for initialization if proper parameter
settings are chosen. The software packages developed for edge extraction are gen-
eralizations of the Prewitt operator [Ballard, Brown 1982]; they have matured over
three generations of coding in different computer languages. The original ideas of
Kuhnert (1988) have been refined and coded first in the second half of the 1980s in
the language FORTRAN by Mysliwetz (1990); the current version was developed in
the early 1990s under the name KRONQOS D.Dickmanns (1997) in the language Oc-
cam for transputers. For the next generation of processors, it has been converted to
C under the name CRONOS and polished by S. Fuerst.

5.2.1.1 Low-pass Filtering of an Oriented Pixel Field into a Vector

To obtain good correlation values for a local edge extraction operator, its orienta-
tion should be almost tangential to the edge in the image. Figure 5.6 shows a trape-
zoidal dark area in front of a pixel grid, the edges of which are to be detected. The
mask for edge detection shown to the

left in the pixel grid has approximately Correlation 4 @M‘a

the same inclination as the left edge of  mask FEEer—F/ sz o
the area to be detected; the mask is n,, = N A
17 pixels wide and mq = 5 pixels deep. % /,EW,'”dOW H
To be independent of absolute light in- T =t

tensity, the number of plus signs and HHE i
minus signs in the mask has to be equal; R £ pees. 2

in the case shown, there are two pixel T FHHHHHH Search
formations along the edge (called “mask ~ Threshold | ,_/'\ _.....path
‘\: /"« Mask responses

elements” henceforth, one pixel wide)

with minus and two with plus signs. ¥ % Extreme values
Separating these two blocks is a mask
element with zeros which reduces sensi-  Figure 5.6. Edge localization by shifting

tivity to slightly deviating edge direction  aternary correlation mask
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from the mask direction or to slightly curving edges; image pixels under the zero-
mask elements need not be touched, of course, since their weight in the mask van-
ishes.

For efficient computation of correlations, search direction should be either hori-
zontal (in the y-direction, rows, dash-dotted arrow in the figure) or vertical (in the
z-direction, columns); diagonal searches have also been used, initially, but because
of the square-root-of-2 effect in spacing, when proceeding in diagonal search direc-
tion, they have not gained acceptance. The wider the masks chosen, the more angu-
lar orientations may be specified. Figure 5.7 shows the basic pixel alignments for
mask elements of different mask widths ny, (3, 5, 9, 17) and the orientation angles
achievable.

These numbers also give the
angular resolution achievable
per quadrant (45° for n,, = 3
1 down to 5.6° for n,, = 17). Mir-
| umEnmEnEE . H roring at the horizontal and/or
vertical boundaries yields all
directions. In a first step of the
I algorithm, all pixels for one

1 mask element  (directions
H shown gray in Figure 5.7) in
the entire search range are
H summed up and stored at the
.
|

center position (black pixel in
- 1 the figure). Mask correlation
T then only has to deal with a

,..v'. HHT  E mEREEEaE vector instead of a 2-D pixel
i = array, independent of mask
n,=3 n,=5 n,=9 n, =17 width n,,. This corresponds to

low-pass filtering in the edge

Figure 5.7. Basic edge directions as used in the direction. Due to the discrete

edge extractor “CRONOS”: four mask widths of pixel size, the spacing between

ny=3,5,9 17 pixels (n, =2'+ 1,i =1, ...4) the edge element orientations is

not exactly the same; this is in-

dicated in Figure 5.7 for an ex-

treme case with n,, = 17 by shifting the black pixel by one unit. Since the results

are used in recursive estimation with a high sampling rate (25 Hz) this has not been
detrimental; it is one minor component in measurement noise.

The zero-direction is defined as horizontal to the right; clockwise counting is
applied. The set of edge directions shown in Figure 5.8 is generated from the basic
set for horizontal search with edge directions between 270 and 315° (above the di-
agonal); the set for the angles from 225 to 270° is obtained by mirroring at the ver-
tical axis. The sets needed for vertical search (315 to 360° and 180 to 225°) are ob-
tained by mirroring those given at the 315° respectively, at the 225°-line. Mirroring
all of these at the horizontal line completes the full set from 0 to 360°. (However,
in the way these elements will be used, only one half set is needed since the other
is just an inversion of the sign, see below).
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After specification of search
range, mask width, and orienta-
tion to be used, the first computa-
tional step is to sum up all the
pixel values over the mask width
ny and, thus, collapse the width to
a single vector component. This
vector spans over the search range
(named PathLen in CRONOS, see
Figure 5.9).

It represents the average inten-
sity values in the direction of
mask orientation; this corresponds
to low-pass filtering in this mask
direction. With more than 16-bit
processors and 8-bit intensity val-
ues for each pixel, there is no
need to divide by the number of pixels summed, thus saving computing time. (If
intensity values close to the original ones are preferred, shift operations may be
used.) In the software packages in use at UniBwM, the options for mask widths
are n,, = 2'+ 1, with preference for i = 2 to 4; this means that the smallest mask
width with only three pixels is not used.

This odd value of n,, has been chosen initially to have a symmetrical distribution
of the image stripe represented around the center of the nominal pixel position,

2475 270 2925

1125 90 67.5

Figure 5.8. Definition of edge orientation as
used in CRONOS: Starting from the horizontal
direction to the right, angular increments are
counted clockwise

which is convenient if no A Vo) g Mesk element 444441
subpixel resolution is used. T _ | i
Using subpixel resolution, R MsESHE ul
defining n, = 2' is the o) e e e
cleaner solution for work- H1H Vector representing low-pass—-FH-{-| &|
. . T i — filtered values along edge T s |
ing on different scales. : - R j 1w

It is seen from Figure [INNENE NN LI J
5.9 that part of the search Sean | lemmolsearchoath Patien lEnd

! = Value of ‘ColSum’ = sum of intensity values of pixels in mask element

path length is lost at the

boundaries for  oblique
mask orientations; this has
to be taken into account
when specifying the search

Figure 5.9. Low-pass (high spatial frequency) filtering
orthogonal to the expected edge direction reduces the
search stripe to a vector, independent of mask width n,,
for efficient computation of correlation values

range.

5.2.1.2 Computation of Ternary Correlation Values

The vector obtained in the previous section is the basis for edge localization by ter-
nary correlation. By subtracting two consecutive vector components from each
other, gradient information in the search direction for the given angular orientation
of the mask is obtained (see Figure 5.10a, upper left). At the point where this dif-
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ference is largest in amplitude,
the gradient over two consecu-
tive mask elements is maxi-
mal.

Masks characterized bv: (nd nO nd)

21 2
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my =

3 7' m, = 17 (Total mask depth)

However, due to local per- e T T T T 1T
turbations, this need not corre- ©
spond to an actual extreme " siockag) __ BlockBl)
gradient on the scale of inter- '|r| o]+l + |F| | T | =1 ﬁ:{ | ]j
est. Experience with images B
from naFt)uraI environments ﬁas ﬁ\*_nf_" l_"__.l L l BBSSE l [;»AT [T1]
shown that two additional pa- . BlockAlel) LT ’43ﬁ:ﬁ:::n

rameters may considerably

improve the results obtained:

Figure 5.10. Efficient mask evaluation with the
“Colsum”-vector; the ng-values given are typical
for sizes of “receptive fields” formed

to be dropped, the results achieved may be more robust. This can be
immediately appreciated when taking into account that either the actual edge
direction may deviate from the mask orientation used or the edge is not
straight but curved; by setting central elements of the mask to zero, the
extreme intensity gradient becomes more pronounced. The rest of Figure 5.10
shows typical mask parameters with ny = 1 for masks three and five pixels in
depth (mgq = 3 or 5), and with ny = 2 for myq = 8 as well as ny = 3 for my = 17

1. By allowing a yet to be
specified number ny of
entries in the mask center
(rows b, c).

2.

Local perturbations are suppressed by assigning to the mask a significant
depth ng, which designates the number of pixels along the search path in each
row or column in each positive and negative field. The total mask depth mq
then is my = 2 ng + ny. Figure 5.10 shows the corresponding mask schemes. In
line (b) a rather large mask for finding the transition between relatively large
homogeneous areas with ragged boundaries is given (mgq = 17 pixels wide and
each field with seven elements, so that the correlation value is formed from
large averages; for a mask width n,, of 17 pixels, the correlation value is
formed from 7.17 = 119 pixels). With the number of zero-values in between
chosen as ny = 3, the total receptive field (= mask) size is 17-17 = 289 pixels.
The sum formed from ny mask elements (vector values “ColSum”) divided by
(nw ng) represents the average intensity value in the oblique image region
adjacent to the edge. At the maximum correlation value found, this is the
average gray value on one side of the edge. This information may be used for
recognizing a specific edge feature in consecutive images or for grouping
edges in a scene context.

For larger mask depths, it is more efficient when shifting the mask along the

search direction, to subtract the last mask element (ColSum-value) from the
summed field intensities and add the next one at the front in the search direction,
see line (c) in Figure 5.10); the number of operations needed is much lower than
for summing all ColSum elements anew in each field.

The optimal value of these additional mask parameters nq and ny as well as the

mask width n,, depend on the scene at hand and are considered knowledge gained
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by experience in visually similar environments. From these considerations, generic
edge extraction mask sets for specific problems have resulted. In Figure 5.11, some
representative receptive fields for different tasks are given. The mask parameters
can be changed from one video frame to the next, allowing easy adaptation to
changing scenes observed continuously, like driving on a curved road.

The large mask in the center top of Figure 5.11 may be used on dirt roads in the
near region with ragged transitions from road to shoulder. For sharp, pronounced
edges like well-kept lane markings, a receptive field like that in the upper right cor-
ner (probably with ng = 2, that is, myg = 5) will be most efficient. The further one
looks ahead, the more the mask width n,, should be reduced (9 or 5 pixels); part (c)
in the lower center shows a typical mask for edges on the right-hand side of a
straight road further away (smaller and oblique to the right).

The 5 x 5 (2, 1, 2) mask at the left hand side of Figure 5.11 has been the stan-
dard mask for initial detection of other vehicles and obstacles on the road through
horizontal edges; collections of horizontal edge elements are good indicators for
objects torn by gravity to the road surface. Additional masks are then applied for
checking object hypotheses formed.

If narrow lines like lane markings have to be detected, there is an optimal mask
width depending on the width of the line in the image: If the mask depth ny chosen
is too large, the line will be low-pass-filtered and extreme gradients lose in magni-
tude; if mask depth is too small, sensitivity to noise increases.

As an optional step, while adding up pixel values for mask elements “ColSum”
or while forming the receptive fields, the extreme intensity values of pixels in Col-
Sum and of each ColSum vector component (max. and min.) may be determined.
The former gives an indication of the validity of averaging (when the extreme val-
ues are not too far apart), while the latter may be used for automatically adjusting
threshold parameters. In natural environments, in addition, this gives an indication
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Figure 5.11. Examples of receptive fields and search paths for efficient edge feature ex-
traction; mask parameters can be changed from one video-frame to the next, allowing
easy adaptation to changing scenes observed continuously
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of the contrasts in the scene. These are some of the general environmental parame-
ters to be collected in parallel (right-hand part of Figure 5.1).

5.2.2 Search Paths and Subpixel Accuracy

The masks defined in the previous section are applied to rectangular search ranges
to find all possible candidates for an edge in these ranges. The smaller these search
ranges can be kept, the more efficient the overall algorithm is going to be. If the
high-level interpretation via recursive estimation is stable and good information on
the variances is available, the search region for specific features may be confined
to the 3 o region around the predicted value, which is not very large, usually (c =
standard variation). It does not make sense first to perform the image processing
part in a large search region fixed in advance and afterwards sort out the features
according to the variance criterion. In order not to destabilize the tracking process,
prediction errors > 3 ¢ are considered outliers and are usually removed when they
appear for the first time in a sequence.]

Figure 5.6 shows an example of edge localization with a ternary mask of size n,,
=17, ng = 2, and ng = 1 (i.e., mask depth myq = 5). The mask response is close to
zero when the region to which it is applied is close to homogeneously gray (irre-
spective of the gray value); this is an important design factor for abating sensitivity
to light levels. It means that the plus— and minus regions have to be the same size.

The lower part of the figure shows the resulting correlation values (mask re-
sponses) which form the basis for determining edge location. If the image areas
within each field of the mask are homogeneous, the response is maximal at the lo-
cation of the edge. With different light levels, only the magnitude of the extreme
value changes but not its location. Highly discernible extreme values are obtained
also for neighboring mask orientations. The larger the parameter no, the less pro-
nounced is the extreme value in the search direction, and the more tolerant it is to
deviations in angle. These robustness aspects make the method well suited for
natural outdoor scenes.

Search directions (horizontal or vertical) are automatically chosen depending on
the feature orientation specified. The horizontal search direction is used for mask
orientations between 45 to 135° as well as between 225 and 315°; vertical search is
applied for mask directions between 135 to 225° and 315 to 45°. To avoid too fre-
quent switching between search directions, a hysteresis (dead zone of about one di-
rection—increment for the larger mask widths) is often used that means switching is
actually performed (automatically) 6 to 11° beyond the diagonal lines, depending
on the direction from which these are approached.

5.2.2.1 Subpixel Accuracy by Second-Order Interpolation

Experience with several interpolation schemes, taking up to two correlation values
on each side of the extreme value into account, has shown that the simple second-
order parabola interpolation is the most cost-effective and robust solution (Figure
5.12). Just the neighboring correlation values around a peak serve as a basis.
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Figure 5.12. Subpixel edge localiza-
tion by parabolic interpolation after
passing a maximum in mask response

D, =C,-C,;

If an extreme value of the magnitude of
the mask response above the threshold
level (see Figure 5.6) has been found by
stating that the new value is smaller than
the old one, the last three values are used
to find the interpolating parabola of second
order. Its extreme value yields the position
Yextr OF the edge to subpixel accuracy and
the corresponding magnitude Cey; this po-
sition is obtained at the location where the
derivative of the parabolic unction is zero.
Designating the largest correlation value
found as C, at pixel position 0, the previ-
ous one C,, at —1, and the last correlation
value C, at position +1 (which indicated
that there is an extreme value by its magni-
tude C, < Cy), the following differences

yield the location of the extreme value at distance

from pixel position 0, such that:

D, =C, —Cp (5.1)
dy =—05/(2-D,/D, +1)
Year = Yo +dy (5.2)
=C,—-0.25-D, -dy.

with the value C

extr

From the last expressions of Equation 5.1 and 5.2 it is seen that the interpolated
value lies on the side of C, on which the neighboring correlation value measured is
larger. Experience with real-world scenes has shown that subpixel accuracy in the

range of 0.3 to 0.1 may be achieved.

5.2.2.2 Position and Direction of an Optimal Edge

Determining precise edge direction by applying, additionally, the two neighboring
mask orientations in the same search path and performing a bi-variant interpola-

tion has been investigated, but the
results were rather disappointing.
Precise edge direction can be de-
termined more reliably by exploit-
ing results from three neighboring
search paths with the same mask
direction (see Figure 5.13).

The central edge position to
subpixel accuracy yields the posi-
tion of the tangent point, while the
tangent direction is determined
from the straight line connecting
the positions of the (equidistant)
neighboring edge points; this is

Y(k+1)

Y(k-1) Yik)

Figure 5.13. Determination of the tangent di-
rection of a slightly curved edge by sub-pixel
localization of edge points in three neighboring
search paths and parabolic interpolation
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the result of a parabolic interpolation for the three points.

Once it is known that the edge is curved — because the edge point at the center
does not lie on the straight line connecting the neighboring edge points — the ques-
tion arises whether the amount of curvature can also be determined with little effort
(at least approximately). This is the case.

5.2.2.3 Approximate Determination of Edge Curvature

When applying a series of equidistant search stripes to an image region, the method
of the previous section yields to each point on the edge also the corresponding edge
direction that is its tangent. Two points and two slopes determine the coefficients
of a third-order polynomial, dubbed Hermite-interpolation after a French mathema-
tician. As a third-order curve, it can have at most one inflection point. Taking the
connecting line (dash-dotted in Figure 5.14) between the two tangent points P_4 and
P.q as reference (chord line or secant), a simple linear relationship for a smooth
curve with small angles v relative to the chord line can be derived. Tangent direc-
tions are used in differential-geometry terms, yielding a linear curvature model; the
reference is the slope of the straight line connecting the tangent points (secant). Let
m_q and m.4 be the slopes of the tangents at points P_4 and P.q4 respectively; s be the
running variable in the direction of the arc (edge line); and y the angle between the
local tangent and the chord direction (Jy| < 0.2 radian so that cos(y) ~1).

The linear curvature model in differential-geometry terms with s as running
variable along the arc s from x ~ —d to x = +d is:

C =C,+C;'s; dy =C-ds. (5.3)

Since curvature is a second-order concept with respect to Cartesian coordinates,
lateral position y results from a second integral of the curvature model. With the
origin at the center of the chord, x in the direction of the chord, y normal to it, and
y_g = arctan(mgy) ~ m_q4 as the angle between the tangent and chord directions at
point P_4, the equation describing the curved arc then is given by Equation 5.4 be-
low [with v in the range £ 0.2 radian (~ 11°), the cosine can be approximated by 1
and the sine by the argument v]:

S
x=—d +s; y(s)=y, + IC(G) do = yy+Cy-5+C,-5%/2;
0

s (5.4)
Y(s) = Yo + [sinlw(o)] do = Yo + o+ + Cq-5°/2+C, 576,
0
At the tangent points at the ends of the chord (£ d), there is
m, =y 4 =y,—C,-d +C, -d?2; @)
d d 0 0 1 , (55)
Mg Yag = Yo+ Co-d +C,-d7/2. (b)
At the points of intersection of chord and curve, there is, by definition y(£ d) = 0,
y(-d) =y, -y, -d+C,-d?/2-C,-d*/6 = O; (@) -
y(+d) =y, +y,-d+C,-d*/2+C,-d*/6 = 0. (b) (5.6)

Equations 5.5 and 5.6 can be solved for the curvature parameters C, and C; as
well as for the state values yo and mg (o) at the origin x = 0 to yield
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Co=(m,g—m_4)/(2-d),

C,=15-(m,y + m_,)/d?
v, =—0.25-(m 4+ m),
Yo = 0.25-(m,4—m_)-d.

(5.7)

The linear curva-

Linear curvature model: Yo=0.25 (m,y—m_g)-d \ - ture  model _Can be
C=Co+C;si -d<s<+d |/ Pry =" Mg computed easily from
0/ the tangent directions
relative to the chord
line and the distance

Y_4 = arctan(m_q) = m_q

Cy = (Mag— M_g)(2) (2-d) betwgen the
. C, = 15(my + m,q)ld? tangent points. Of
mg course, this distance

o= 7025(M-a* M) has to be chosen such
Figure 5.14. Approximate determination of curvature of a  that the angle con-
slightly curved edge by sub-pixel localization of edge points  Straint (jy| < 0.2 ra-
and tangent directions: Hermite-interpolation of a third order  dian) is not violated.
parabola from two tangent points On smooth curves,
this is always possi-
ble; however, for
large curvatures, the distance d allowed becomes small and the scale for measuring
edge locations and tangent directions probably has to be adapted. Very sharp
curves have to be isolated and jumped over as “corners” having large directional
changes over small arc lengths. In an idealized but simple scheme, they can be ap-
proximated by a Dirac impulse in curvature with a finite change in direction over
zero arc length.

Due to the differencing process unavoidable for curvature determination, the re-
sults tend to be noisy. When basic properties of objects recognized are known, a
post—processing step for noise reduction exploiting this knowledge should be in-
cluded.

Remark: The special advantage of subscale resolution for dynamic vision lies in
the fact that the onset of changes in motion behavior may be detected earlier, yield-
ing better tracking performance, crucial for some applications. The aperture prob-
lem inherent in edge tracking will be revisited in Section 9.5 after the basic track-
ing problem has been discussed.

5.2.3 Edge Candidate Selection

Usually, due to image noise there are many insignificant extreme values in the re-
sulting correlation vector, as can be seen in Figure 5.6. Positioning the threshold
properly (and selecting the mask parameters in general) depends very much on the
scene at hand, as may be seen in Figure 5.15, due to shadow boundaries and scene
noise, the largest gradient values may not be those looked for in the task context
(road boundary). Colinearity conditions (or even edge elements on a smoothly
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Figure 5.15. The challenge of edge feature selection in road scenes: Good decisions can
be made only by resorting to higher level knowledge. Road scenes with shadows (and
texture); extreme correlation values marking road boundaries may not be the absolutely
largest ones.

curved line) may be needed for proper feature selection; therefore, threshold selec-
tion in the feature extraction step should not eliminate these candidates. Depending
on the situation, these parameters have to be specified by the user (now) or by a
knowledge-based component on the higher system levels of a more mature version.
Average intensity levels and intensity ranges resulting from region-based methods
(see Section 5.3) will yield information for the latter case.

As a service to the user, in the code CRONOS, the extreme values found in one
function call may be listed according to their correlation values; the user can spec-
ify how many candidates he wants presented at most in the function call. As an ex-
treme value of the search either the pixel position with the largest mask response
may be chosen (simplest case with large measurement noise), or several neighbor-
ing correspondence values may be taken into account allowing interpolation.

5.2.4 Template Scaling as a Function of the Overall “Gestalt”

An additional degree of freedom available to the designer of a vision system is the
focal length of the camera for scaling the image size of an object to its distance in
the scene. To analyze as many details as possible of an object of interest, one tends
to assume that a focal length, which lets the object (in its largest dimension) just
fill the image would be optimal. This may be the case for a static scene being ob-
served from a stationary camera. If either the object observed or the vehicle carry-



142 5 Extraction of Visual Features

ing the camera or both can move, there should be some room left for searching and
tracking over time. Generously granting an additional space of the actual size of
the object to each side results in the requirement that perspective mapping (focal
length) should be adjusted so that the major object dimension in the image is about
one third of the image. This leaves some regions in the image for recognizing the
environment of the object, which again may be useful in a task context.

To discover essential shape details of an object, the smallest edge element tem-
plate should not be larger than about one-tenth of the largest object dimension.
This yields the requirement that the size of an object in the image to be analyzed in
some detail should be about 20 to 30 pixels. However, due to the poor angular
resolution of masks with a size of three pixels, a factor of 2 (60 pixels) seems more
comfortable. This leads to the requirement that objects in an image must be larger
than about 150 pixels. Keep in mind that objects imaged with a size (region) of
only about a half dozen pixels still can be noticed (discovered and roughly
tracked), however, due to spurious details from discrete mapping (rectangular pixel
size) into the sensor array, no meaningful shape analysis can be performed.

This has been a heuristic discussion of the effects of object size on shape recog-
nition. A more operational consideration based on straight edge template matching
and coordinate-free differential geometry shape representation by piecewise func-
tions with linear curvature models is to follow.

A lower limit to the support region required for achieving accuracy of about
one-tenth of a pixel in a tangent position and about 1° in the tangent direction (or-
der of magnitude) by subpixel resolution is about eight to ten pixels. The efficient
scheme given in [Dickmanns 1985] for accurately determining the curvature parame-
ters is limited to a smooth change in the tangent direction of about 20 to 25°; for
recovering a circle (360°). This means that about nges = 15 to 18 elemental edge
features have to be measured. Since the ratio of circumference to diameter is = for
a circle, the smallest circle satisfying these conditions for non—overlapping support
regions is neir times (mask size = 8 to 10 pixels) divided by =. This yields a re-
quired size of about 40 to 60 pixels in linear extension of an object in an image.

Since corners (points of finite direction change) can be included as curvature
impulses measurable by adjacent tangent directions, the smallest (horizontally
aligned) measurable square is ten pixels wide while the diagonal is about 14 pixels;
more irregularly shaped objects with concavities require a larger number of tangent
measurements. The convex hull and its dimensions give the smallest size measur-
able in units of the support region. Fine internal structures may be lost.

From these considerations, for accurate shape analysis down to the percent
range, the image of the object should be between 20 and 100 pixel in linear exten-
sion, in general. This fits well in the template size range from 3 (or 5) to 17 (or 33)
pixels. Usual image sizes of several hundred lines allow the presence of several
well-recognizable objects in each image; other scales of resolution may require dif-
ferent focal lengths for imaging (from microscopy to far ranging telescopes).

Template scaling for line detection: Finally, choosing the right scale for detecting
(thin) lines will be discussed using a real example [Hofmann 2004]. Figure 5.16
shows results for an obliquely imaged lane marking which appears 16 pixels wide
in the search direction (top: image section searched, width n,, = 9 pixel). Summing
up the mask elements in the edge direction corresponds to rectifying the image
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Lane
Original image section of road _marking

‘Rectified image stripe of road’
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Figure 5.16. Optimal mask size for line recognition: For general scaling, mask size
should be scaled by line width (= 16 pixels here)

stripe, as shown below in the figure; however, only one intensity value remains, so
that for the rest of the pixel-operations with different mask sizes in the search di-
rection, about one order of magnitude in efficiency is gained. All five masks inves-
tigated (a) to (e) rely on the same “ColSum”-vector; depending on the depth of the
masks, the valid search ranges are reduced (see double-arrows at bottom).

The averaged intensity profile of the mask elements is given in the vertical cen-
ter (around 90 for the road, and ~130 for the lane marker); the lane marking clearly
sticks out. Curve (e) shows the mask response for the mask of highest possible
resolution (1, 0, 1); see legend. It can be seen that the edge is correctly detected
with respect to location, but due to the smaller extreme value, sensitivity to noise is
higher than that for the other masks. All other masks have been chosen with ny = 3
for reducing sensitivity to slightly different edge directions including curved edges.
In practical terms, this means that the three central values under the mask shifted
over the ColSum—vector need not be touched; only nq values to the left and to the
right need be summed.

Depth values for the two fields of the mask of nq = 4, 8, and 16 (curves a, b, c)
yield the same gradient values and edge location; the mask response widens with
increasing field width. By scaling the field depth ny of the mask by the width of the
line I, to be detected, the curves can be generalized to scaled masks of depths ng/l,,
=Y, %, and 1. Case (d) shows with n¢/l,, = 21/16 = 1.3 that for field depths larger
than line width, the maximal gradient decreases and the edge is localized at a
wrong position. So, the field width selected should always be smaller than the line
to be detected. The number of zeros at the center should be less than the field
depth, probably less than half that value for larger masks; values between 1 and 3
have shown good results for nq up to 7. For the detection of dirt roads with jagged
edges and homogeneous intensity values on and off the road, large ng are favorable.
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5.3 The Unified Blob-edge-corner Method (UBM)

The approach discussed above for detecting edge features of single (sub-) objects
based on receptive fields (masks) has been generalized to a feature extraction
method for characterizing image regions and general image properties by oriented
edges, homogeneously shaded areas, and nonhomogeneous areas with corners and
texture. For characterizing textures by their statistical properties of image intensi-
ties in real time (certain types of textures), more computing power is needed; this
has to be added in the future. In an even more general approach, stripe directions
could be defined in any orientation, and color could be added as a new feature
space. For efficiency reasons, here, only horizontal and vertical stripes in intensity
images are considered, for which only one matrix index and the gray values vary at
a time). To achieve reusability of intermediate results, stripe widths are confined to
even numbers and are decomposed into two half-stripes.

5.3.1 Segmentation of Stripes through Corners, Edges, and Blobs

In this image evaluation method, the goal is to start from as few assumptions on in-
tensity distributions as possible. Since pixel noise is an important factor in outdoor
environments, some kind of smoothing has to be taken into account, however. This
is done by fitting models with planar intensity distribution to local pixel values if
they exhibit some smoothness conditions; otherwise, the region will be character-
ized as nonhomogeneous. Surprisingly, it has turned out that the planarity check
for local intensity distribution itself constitutes a nice feature for region segmenta-
tion.

5.3.1.1 Stripe Selection and Decomposition into Elementary Blocks

The field size for the least-squares fit of a planar pixel-intensity model is (2-m) x
(2:n), and is called the “model support region” or mask region. For reusability of
intermediate results in computation, this support region is subdivided into basic
(elementary) image regions (called mask elements or briefly “mels”) that can be
defined by two numbers: The number of pixels in the row direction m, and the
number of pixels in the column direction n. In Figure 5.17, m has been selected as
4 and n as 2; the total stripe width for row search thus is 4 pixels. Form =n =1,
the highest possible image resolution will be obtained; however, strong influence
of noise on the pixel level may show up in the results in this case.

When working with video fields (sub—images with only odd or even row-
indices, as is often done in practical applications), it makes sense for horizontal
stripes to choose m = 2n; this yields averaging of pixels at least in row direction for
n = 1. Rendering these mels as squares, finally yields the original rectangular im-
age shape with half the original full-frame resolution. By shifting stripe evaluation
by only half the stripe width, all intermediate pixel results in one half-stripe can be
reused directly in the next stripe by just changing sign (see below). The price to be
paid for this convenience is that the results obtained have to be represented at the
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center point of the support region which is exactly at pixel boundaries. However,
since subpixel accuracy is looked for anyway, this is of no concern.

Values in these half-stripes of stripe 2 are stored for reuse in stripe 3

Center points of " Center points of
mel regions mel regions : Edge direction
Stripe ‘C1' ‘Stripe ‘¢ Number of [ _-Image region
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Figure 5.17. Stripe definition (row = horizontal, column = vertical) for the (multiple)
feature extractor ‘UBM’ in a pixel-grid; mask elements (mels) are defined as basic rec-

tangular units for fitting a planar intensity model

Still open is the question of how to proceed w

ithin a stripe. Figure 5.17 suggests

taking steps equal to the width of mels; this covers all pixels in the stripe direction
once and is very efficient. However, shifting mels by just 1 pixel in the stripe di-
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Figure 5.18. Mask elements (mels) for efficient
computation of gradients and average intensities

rection yields smoother (low-
pass filtered) results [Hofmann
2004]. For larger mel-lengths, in-
termediate computational results
can be used as shown in Figure
5.18.

This corresponds to the use of
Colsum in the method CRONOS
(see Figures 5.9 and 5.10). The
new summed value for the next
mel can be obtained by subtract-
ing the value of the last column
and adding the one of the next
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column [(j—2) and (j+2) in the example shown, bottom row in Figure 5.18].

For the vertical search direction, image evaluation progresses top-down within
the stripe and from left to right in the sequence of stripes. Shifting of stripes is al-
ways done by mel-size m or n (width of half-stripe), while shifting of masks in the
search direction can be specified from 1 to m or n (see Figure 5.19b below); the lat-
ter number m or n means pure block evaluation, however, only coarse resolution.
This yields the lowest possible computational load with all pixels used just once in
one mel. For objects in the near range, this may still be sufficient for tracking.

The goal was to obtain an algorithm allowing easy adaptation to limited com-
puting power; since high resolution is required in only a relatively small part of
images, in general in outdoor scenes, only this region needs to be treated with more
finely tuned parameters (see Figure 5.37 below). Specifying a rectangular region of
special interest by its upper left and lower right corners, this sub-area can be pre-
cisely evaluated in a separate step. If no view stabilization is available, the decision
for the corner points may even be based on actual evaluation results with coarse
resolution. The initial analysis with coarse resolution guarantees that only the most
promising subregions of the image are selected despite angular perturbations
stemming from motion of the subject body, which shifts around the inertially fixed
scene in the image. This attention-focusing avoids unnecessary details in regions of
less concern.

Figure 5.19 shows the definitions necessary for performing efficient multiple-
scale feature evaluation. The left part (a) shows the specification of masks of dif-
ferent sizes (with mel-sizes from 1x1 to 4x2 and 4x4, i.e., two pyramid stages).
Note that the center of a pixel or of mels does not coincide with the origin O of the
masks, which is for all masks at (0, 0). The mask origin is always defined as the
point where all four quadrants (mels) meet. The computation of the average inten-
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3 1 . . : -1 :
| .
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Figure 5.19. With the reference points chosen here for the mask and the average image
intensities in quadrants Qi, fusing results from different scales becomes simple; (a) basic
definitions of mask elements, (b) progressive image analysis within stripes and with se-
quences of stripes (shown here for rows)
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sities in each mel (115, l11, l21, I in quadrants Q1 to Q4) is performed with the ref-
erence point at (0.5, 0.5), the center of the first pixel nearest to the mask origin in
the most recent mel; this yields a constant offset for all mask sizes when rendering
pixel intensities from symbolic representations. For computing gradients, of
course, the real mel centers shown in quadrant Q4 have to be used.

The reconstruction of image intensities from results of one stripe is done for the
central part of the mask (x half the size of the width normal to the search direction
of the mask element). This is shown in the right part (b) of the figure by different
shading. It shows (low-frequency) shifting of the stripe position by n = 2 (index i)
and (high-frequency) shifting of the mask position in search direction by 1 (index
k). Following this strategy in both row and column direction will yield nice low-
pass-filtered results for the corresponding edges.

5.3.1.2 Reduction of the Pixel Stripe to a Vector with Attributes

The first step is to sum up all n pixel or cell values in the direction of the width of
the half-stripe (lower part in Figure 5.18). This reduces the half-stripe for search to
a vector, irrespective of stripe width specified. It is represented in Figure 5.18 by
the bottom row (note the reduction in size at the boundaries). Each and every fur-
ther computation is based on these values that represent the average pixel or cell
intensity at the location in the stripe if divided by the number of pixels summed.
However, these individual divisions are superfluous computations and can be
spared; only the final results have to be scaled properly for image intensity.

In our example with m = 4 in Figure 5.18, the first mel value has to be computed
by summing up the first four values in the vector. When the mels are shifted by one
pixel or cell length for smooth evaluation of image intensities in the stripe (center
row), the four new mel values are obtained by subtracting the trailing pixel or cell
value at position j —2 and by adding the leading one at j +2 (see lower left in Figure
5.18). The operations to be performed for gradient computation in horizontal and
vertical directions are shown in the upper left and center parts of the figure. Sum-
ming two mel values (vertically in the left and horizontally in the center sub-
figure) and subtracting the corresponding other two sums yields the difference in
(average) intensities in the horizontal and vertical directions of the support region.
Dividing these numbers by the distances between the centers of the mels yields a
measure of the (averaged) horizontal and vertical image intensity gradient at that
location. Combining both results allows computing the absolute gradient direction
and magnitude. This corresponds to determining a local plane tangent to the image
intensity distribution for each support region (mask) selected.

However, it may not be meaningful to enforce a planar approximation if the in-
tensities vary irregularly by a large amount. For example, the intensity distribution
in the mask top left of Figure 5.17 shows a situation where averaging does not
make sense. Figure 5.20a shows the situation with intensities as vectors above the
center of each mel. For simplicity, the vectors have been chosen of equal magni-
tude on the diagonals. The interpolating plane is indicated by the dotted lines; its
origin is located at the top of the central vector representing the average intensity
Ic. From the dots at the center of each mel in this plane, it can be recognized that
two diagonally adjacent vectors of average mel intensity are well above, respec-
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®) T 1 tively, below the interpolating

plane. This is typical for two cor-
ners or a textured area (e.g., four
checkerboard fields or a saddle
point).

Figure 5.20b represents a per-
fect (gray value) corner. Of
course, the quadrant with the dif-
fering gray value may be located
anywhere in the mask. In general,
all gray values will differ from
each other. The challenge is to

Figure 5.20. Feature types detectable by UBM find algorithms allowing reason-
in stripe analysis able separation of these feature
types versus regions fit for inter-
polation with planar shading models (lower part of Figure 5.20) at low computa-
tional cost. Well known for corner detection among many others are the “Harris”-
[Harris, Stephens 1988], the KLT- [Tomasi, Kanade 1991] and the “Haralick”-
[Haralick, Shapiro 1993] algorithms, all based on combinations of intensity gradients
in several regions and directions. The basic ideas have been adapted and integrated
into the algorithm UBM. The goal is to segment the image stripe into regions with
smooth shading, corner points, and extended nonhomogeneous regions (textured
areas). It will turn out that nonplanarity is a new, easily computable feature on its
own (see Section 5.3.2.1).

Corner points are of special value in tracking since they often allow determining
optical feature flow in image sequences (if robustly recognizable); this is one im-
portant hint for detecting moving objects before they have been identified on
higher system levels. These types of features have shown good performance for de-
tecting pedestrians or bicyclists in the near range of a car in urban traffic [Franke et
al. 2005].

Stripe regions fit for approximation by sequences of shading models are charac-
terized by their average intensities and their intensity gradients over certain regions
in the stripe; Figure 5.20c shows such a case. However, it has to be kept in mind
that a planar fit to intensity profiles with nonlinear intensity changes in only one di-
rection can yield residues of magnitude zero with the four symmetric support
points in the method chosen (see Figure 5.20d); this is due to the fact that three
points define a plane in space, and the fourth point (just one above the minimal
number required for fixing a plane) is not sufficient for checking the real spatial
structure of the surface to be approximated. This has to be achieved by combining
results from a sequence of mask evaluations.

By interpolation of results from neighboring masks, extreme values of gradients
including their orientation are determined to subpixel accuracy. Note that, contrary
to the method CRONOS, no direction has to be specified in advance; the direction
of the maximal gradient is a result of the interpolation process. For this reason the
method UBM is called “direction-sensitive” (instead of “direction selective” in the
case of CRONOS). It is, therefore, well suited for initial (strictly “bottom-up”) im-
age analysis [Hofmann 2004], while CRONOS is very efficient once predominant

interpolated
intensity planes

(d)
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edge directions in the image are known and their changes can be estimated by the
4-D approach (see Chapter 6).

During these computations within stripes, some statistical properties of the im-
ages can be determined. In step 1, all pixel values are compared to the lowest and
the highest values encountered up to then. If one of them exceeds the actual ex-
treme value, the actual extreme is updated. At the end of the stripe, this yields the
maximal (Imax-st) and the minimal (Imin) image intensity values in the stripe. The
same statistic can be run for the summed intensities normal to the stripe direction
(Lymax-st @nd lyminst) @nd for each mel (Igmax-st and lemin-st); dividing the maximal and
minimal value within each mel by the average for the mel, these scaled values will
allow monitoring the appropriateness of averaging. A reasonable balance between
computing statistical data and fast performance has to be found for each set of
problems.

Table 5.1 summarizes the parameters for feature evaluation in the algorithm
UBM,; they are needed for categorizing the symbolic descriptions within a stripe,
for selecting candidates, and for merging across stripe boundaries. Detailed mean-
ings will be discussed in the following sections.

Table 5.1. Parameters for feature evaluation in image stripes

ErrMax | Maximally allowed percent error of interpolated intensity
plane through centers of four mels (typically 3 to 10%);
note that the errors at all mel centers have same magnitude!
(see Section 5.3.2.2)

CircMin | Minimal “circularity” required, threshold value on scaled

. second eigenvalue for corner selection [0.75 corresponds to
(gmin) an ideal corner (Figure 5.20b), the maximal value 1 to an
ideal double—corner (checkerboard, Figure 5.20a)]; (see
section 5.3.3)

traceNmin | (Alternate) threshold value for selection of corner candi-
dates; useful for adjusting the number of corner candidates.
IntensGradMin | Threshold value for intensity gradients to be accepted as
edge candidates; (see Section 5.3.2.3)

AngleFactHor | Factor for limiting edge directions to be found in horizontal
search direction (rows); (see Section 5.3.2.3)
AngleFactVer | Factor for limiting edge directions to be found in vertical
search direction (columns); (see Section 5.3.2.3)

VarLim | Upper bound on variance allowed for a fit on both ends of
a linearly shaded blob segment

Lsegmin | Minimum length required of a linearly shaded blob seg-
ment to be accepted (suppression of small regions)
DellthreshMerg | Tolerance in intensity for merging adjacent regions to 2-D
blobs

DelSlopeThrsh | Tolerance for intensity gradients for merging adjacent re-
gions to 2-D blobs

The five feature types treated with the method UBM are (1) textured regions
(see Section 5.3.2.1), (2) edges from extreme values of gradients in the search di-
rection (see Section 5.3.2.3), (3) homogeneous segments with planar shading mod-
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mask
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PR yes / check viaratio R of difference  \N0 | pir=p3p2 |
l21 l22 over sum of intensities on | sm=D1+D2 |
diagonals: EmMax>R %/ ..J.-R =Dif/sm 1
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difference of gradients

Store in list of inhomogeneous
segments (texture)

Check conditions for an
extreme value of intensity
gradient: product [(last d.o.g.) +

x (actual d.0.g.*)] < 0]? Are the conditions

¥ yes for corner candidates yes
- - satisfied? (circularity > q,i,)
Determine edge location and edge ‘and’ (traceN > traceN, )

orientation to subpixel accuracy;
store in list of ‘edge features’

\4

Update description of Store in list of Store in list of
candidates for homo- ‘nonlinearly shaded’ corner
geneous shading segments candidates
|r At the end of each stripe, :
Attt v
Search for the best local Select
linearly shaded intensity regions (blobs); ‘best local’
(Variance at boundaries < VarLim) corner points
‘and’ (segment length > Lsegn) (local pay)
v

Compare results with previous stripe and merge regions
of similar shading (intensity and gradient components);
this yields 2-D homogeneously shaded blobs.

Figure 5.21. Decision tree for feature detection in the unified blob-edge-corner method
(UBM) by local and global gradients in the mask region

els (see Section 5.3.2.4), (4) corners (see Section 5.3.3), and (5) regions nonline-
arly shaded in one direction, which, however, will not be investigated further here.
They have to lie between edges and homogeneously shaded areas and may be
merged with class 1 above.

The sequence of decisions in the unified approach to all these features, exploit-
ing the same set of image data evaluated in a stripe-wise fashion, is visualized in
Figure 5.21. Both horizontal and vertical stripes may be searched depending on the
orientation of edges in the image. Localization of edges is best if they are oriented
close to orthogonal to the search direction; therefore, for detecting horizontal edges
and horizontal blob boundaries, a vertical search should be preferred. In the general
case, both search directions are needed, but edge detection can then be limited to
(orthogonal to the search direction) £ 50°. The advantage of the method lies in the
fact that (1) the same feature parameters derived from image regions are used
throughout, and (2) the regions for certain features are mutually exclusive. Com-
pared to investigating the image separately for each feature type, this reduces the
computer workload considerably.
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5.3.2 Fitting an Intensity Plane in a Mask Region

For more efficient extraction of features with respect to computing time, as a first
step the sum of pixel intensities I is formed within rectangular regions, so-called
cells of size m¢x n ; this is a transition to a coarser scale. For m:= n., pyramid lev-
els are computed, especially for m¢= n. = 2 the often used step-2 pyramids. With I;;
as pixel intensity at location u = i and v = j there follows for the cell

Icszzzlij' (58)
i=1 j=1

The average intensity I_ of all pixels in the cell region then is

I, =1 /(m,-n,). (5.9)
The normalized pixel intensity I,y for each pixel in the cell region is
I =1, /1, around the average value I_. (5.10)

Cells of different sizes may be used to generate multiple scale images of reduced
size and resolution for efficient search of features on a larger scale. When working
with video fields, cells of size 2 in the row and 1 in the column direction will bring
some smoothing in the row direction and lead to much shorter image evaluation
times. When coarse-scale results are sufficient, as for example with high-resolution
images for regions nearby, cells of size 4 x 2 efficiently yield scene characteristics
for these regions, while for regions further away, full resolution can be applied in
much reduced image areas; this foveal-peripheral differentiation contributes to ef-
ficiency in image sequence evaluation. The region of high-resolution image
evaluation may be directed by an attention focusing process on a higher system
level based on results from a first coarse analysis (in a present or previous image).
The second step is building mask elements (“mels”) from cells; they contain

m-m, = m, pixels in the search direction, and
n-n,= n, pixels normal to the search direction. (511)
Define

m n _

lves = 2D Ty (sum of cell intensities) I , (5.12)
i=1 j=1
then the average intensity of cells and thus also of pixels in the mask element is

Tve = lygs /(M-n) . (5.13)

In the algorithm UBM, mels are the basic units on which efficiency rests. Four
of those are always used to form masks (see Figures 5.17-5.19) as support regions
for image intensity description by symbolic terms:

Masks are support regions for the description and approximation of local
image intensity distributions by parameterized symbols (image features):
(1) “Textured areas’ (nonplanar elements), (2), ‘oriented edges’ (3) ‘linearly
shaded regions’, and (4) ‘corners’. Masks consist of four mask elements
(mels) with average image intensities 1,;¢, 1 ,5¢, g, 1o -
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The average intensity of all mels in the mask region is
Iean,s = (ligs + Tiog + losg + 1525) /4. (5.14)
To obtain intensity elements of the order of magnitude 1, the normalized inten-
sity in mels is formed by division by the mean value of the mask:

= IJS / IMean,s' (515)

(Dl ]ra=1. (5.16)

The (normalized) gradient components in a mask then are given as the differ-
ence of intensities divided by the distance between mel-centers:

This means that

f, =(lpy —lay)/m  (upper row direction) (a)
f =(lpn -1y )/m  (lower row direction) (b)
f. =(luy—luy)/n  (leftcolumn direction) [ (c) (5.17)
fo =(lpy -1y )/n  (right column direction). ) (d)

The first two are local gradients in the row-direction (index r) and the last two in
the column direction (index c). The global gradient components of the mask are

fo=(f +f /2 (global row direction)
N ( 1IN 2N )/ (518)
f, = ( fo, 1, )/2 (global column direction).

The normalized global gradient gy and its angular orientation y then are

gy =/ f2 + 2 (5.19)

y=arctan(f, /f_). (5.20)

y is the gradient direction in the (u, v)-plane. The direction of the vector normal to
the tangent plane of the intensity function (measured from the vertical) is given by

y=arctan(gy ). (5.21)

5.3.2.1 Adaptation of a Planar Shading Model to the Mask Area

The origin of the local coordinate system used is chosen at the center of the mask

area where all four mels meet. The model of the planar intensity approximation

with least sum of the squared errors in the four mel—centers has the yet unknown

parameters lo, gy, and g, (intensity at the origin, and gradients in the y- and z-

directions). According to this linear model, the intensities at the mel—centers are
L =1o-9,-m/2-g,-n/2,

lon =1lp+9,-m/2-g,-n/2,
I
lyonp =1 +9,-Mm/2+9g,-n/2.

5.22
anp = lo—0,-m/2+9,-n/2, ( )

Let the measured values from the image be I,;y,, Iy, Ly, @nd 15,y . Then the er-
rors e;j can be written:
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ey |= g — lune =[1 —-m/2 -n/2
e, :|12Np_|12Nu: 1 +m/2 -n/2
-1

€ |= I21Np ane =1 -m/2 +n/2 g 21Np (5'23)
ey |=loonp = loonu =1 +mM/2 +n/2]-7° 2N
To minimize the sum of the squared errors, this is written in matrix form:
e=Ag-1ly, (a)
1 1 1 1
where A =|-m/2 m/2 -m/2 m/2 (b)  (5.24)

-n/2 -n/2 nl2 nl2
ILu :|:|1le |12Nu IZle |22N],1:| : (©
The sum of the squared errors is e'e and shall be minimized by proper selection

of [IO g, gz] = p' . The necessary condition for an extreme value is that the par-

and

tial derivative d(e"e)/dp =0 ; this leads to
ATINH:ATA~ P, (5.25)
with solution (pseudo—-inverse) p=(ATA) AT (5.26)
From Equation 5.24b follows

2

4 0 0
ATA=|0 m?> 0
0 0

n
and (5.27)
1/4 0 0
(A"A*'=| 0 1/m* 0 |,
0 0 1n’
and with Equations 5.24c and 5.14
4
Ay, =| (f,, + 1, )m*/2]. (5.28)

(f,, +f, )n*/2
Inserting this into Equation 5.26 yields, with Equation 5.17, the solution
p' =[l, gy 9.1=[1 f ful (5.29)

5.3.2.2 Recognizing Textured Regions (limit for planar approximations)

By substituting Equation 5.29 into 5.23, forming (e, —e,;) and (e, —e,,) as well
as (e, —e;) and (e,,—e,), and by summing and differencing the results, one fi-

nally obtains
€1 =€, (5.30)
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and €1=6 ;
this means that the errors on each diagonal are equal. Summing up all errors e,

yields, with Equation 5.16, Zeii =0.

This means that the errors on the diagonals have opposite signs, but their magni-
tudes are equal! These results allow an efficient combination of feature extraction
algorithms by forming the four local gradients after Equation 5.17 and the two
components of the gradient within the mask after Equations 5.18 and 5.29. All four
errors of a planar shading model can thus be determined by just one of the four
Equations 5.23. Even better, inserting proper expressions for the terms in Equation
5.23, the planar interpolation error with Equation 5.12 turns out to be

Errinterp = [(1;; + 1,,) = (1, + 1,)]/ Tyes - (5.31)

Efficiently programmed, its evaluation requires just one additional difference
and one ratio computation. The planar shading model is used only when the magni-
tude of the residues is sufficiently small
|Errinterp |< g, ., (dubbed ErrMax). (5.32)
MaxErr = 4%; 1291 features in row—, 2859 in column search

0.59% of pixels 1.3% of pixels

Figure 5.22. Nonplanarity features in central rectangle of an original video—field
(cell size m;=1, n. = 1, mel size 1x1, finest possible resolution, MaxErr = 4%)

Figure 5.22 shows a video field of size 288 x 768 pixels with nonplanar regions
for m; = n, = m = n =1 (highest possible resolution) and ErrMax = 4% marked by
white dots; regions at the left and right image boundaries as well as on the motor
hood (lower part) and in the sky have been excluded from evaluation.

Only the odd or even rows of a full video frame form a field; fields are transmit-
ted every 40 ms in 25 Hz video. Confining evaluation to the most interesting parts
of fields leaves the time of the complementary field (20 ms) as additional comput-
ing time; the image resolution lost in the vertical direction is hardly felt with sub-
pixel feature extraction. [Interleaved video frames (from two fields) have the addi-
tional disadvantage that for higher angular turn rates in the row direction while
taking the video, lateral shifts result between the fields.]

The figure shows that not only corner regions but also — due to digitization ef-
fects — some but not all edges with certain orientations (lane markings on the left
and parts of silhouettes of cars) are detected as nonplanar. The number of features
detected strongly depends on the threshold value ErrMax.
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Figure 5.23 shows a
summary of results for the
absolute number of masks
with nonplanar intensity
distribution as a function
of a variety of cell and
mask parameters as well
as of the threshold value
ErrMax in percent. If this
threshold is selected too
small (say, 1%), very
many nonplanar regions
are found. The largest
number of over 35 000 is
obtained if a mask element
is selected as a single
pixel; this corresponds to
~ 17% of all masks evalu-
ated of the image. Figure 5.23. Absolute number of mask locations with

The number of nonpla-  residues exceeding ErrMax for a wide variety of cell
nar regions comes down  and mask parameters m, n, m;, n. . For ErrMax > 3% a
rapidly for higher values  new scale is used for better resolution. For ErrMax >
of ErrMax. For ErrMax = 5% at most 2000 nonplanar intensity regions are found
2%, this number drops to out of at most ~ 200 000 mask locations for highest
less than 1/3; for higher  resolution with mel = pixel in a video-field.
values of ErrMax, the
scale has been changed in
the figure for better resolution. For ErrMax = 5%, the maximum number of non-
planar masks is less than 2000, that is less than 1% of the number of original pix-
els; on the other hand, for all cell and mask parameters investigated in the range [1
<(m, ng) <2 and 1< (m, n) < 4], the number of nonplanar intensity regions does
not drop below ~ 600 (for ErrMax = 5%). This is an indication that there is signifi-
cant nonplanarity in intensity distribution over the image which can be picked up
by any set of cell and mask parameters and also by the computer-efficient ones
with higher parameter values that show up in the lower curves of Figure 5.23. Note
that these curves include working on the first pyramid level m; = n, = 2 with mask
elements m <4 and n < 4; only the lowest curve 11.44 (m = n =1, m; = n, = 4), for
which the second pyramid level has been formed by preprocessing during cell
computation, shows ~ 450 nonplanar regions for ErrMax = 5%. The results point in
the direction that a combination of features from different pyramid scales will form
a stable set of features for corner candidates.

For the former set of parameters (first pyramid level), decreasing the threshold
value ErrMax to 3% leaves at least ~ 1500 nonplanar features; for curve 11.44, to
reach that number of nonplanar features, ErrMax has to be lowered to 2%; how-
ever, this corresponds to ~ 50 % of all cell locations in this case. Averaging over
cells or mask elements tends to level-off local nonplanar intensity distributions; it
may therefore be advisable to lower threshold ErrMax in these cases in order not to

Absolute number of locations
of nonplanarity

Absolute number of occurrences (thousands)

ErrMax %
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ErrMax =
2% 3% 4% 5% 7.5%

Figure 5.24. Visualization of %-threshold values in image intensity for separating pla-
nar from nonplanar local intensity models: In the rectangles, all pixel values have been
increased by a factor corresponding to the percentage indicated as inset

lose sharp corners of moderate intensity differences. On the contrary, one might
guess that for high resolution images, analyzed with small parameter values for
cells and masks, it would be advantageous to increase ErrMax to get rid of edges
but to retain corners. To visualize the 5%-threshold, Figure 5.24 shows the video
field with intensities increased within seven rectangular regions by 2, 3, 4, 5, 7.5,
10, and 15% respectively; the manipulation is hardly visible in darker regions for
values less than 5%, indicating that this seems to be a reasonable value for the
threshold ErrMax from a human observer’s point of view. However, in brighter
image regions (e.g., sky), even 3% is very noticeable.

The effect of lifting the threshold value ErrMax to 7.5% for planar intensity ap-
proximation for highest resolution (all parameters = 1, in shorthand notation
(11.11) for the sequel) is shown in Figure 5.25.

In comparison to Figure 5.22, it can be seen that beside many edge positions
many corner candidates have also been lost, for example, on tires and on the dark

Figure 5.25. Nonplanar features superimposed on original videofield for the threshold
values MaxErr = 4% (left) and 7.5% (right); cell size m¢=1, n, = 1, mel size 1x1 (rows
compressed after processing). More than 60% of features are lost in right image.

truck in front. This indicates that to keep candidates for real corners in the scene,
ErrMax should not be chosen too large. The threshold has to be adapted to the
scene conditions treated. There is not yet sufficient experience available to auto-
mate this threshold adaptation which should certainly be done based on results
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from several sets of parameters (m., n., m, n) and with a payoff function yet to be
defined. Values in the range 2 < ErrMax < 5% are recommended as default for re-
ducing computer load, on the one hand, and for keeping good candidates for cor-
ners, on the other.

Larger values for mel and cell parameters should be coupled with smaller values
of ErrMax. Working on the first (2x2) pyramid level of pixels (cell size m;= 2, n.
= 2) reduces the number of mask evaluations needed by a factor of 8 compared to
working on the pixel level. The third power of 2 is due to the fact that now the
half-stripe in the number of pixels is twice as wide as in the number of cells; in to-
tal, this is roughly a reduction of one power of 10 in computing effort (if the pyra-
mid image is computed simultaneously with frame grabbing by a special device).

Figure 5.26 shows a juxtaposition of results on the pixel level (left) and on the
first pyramid level (right). For ErrMax = 2% on the pixel level (left part), the 4% of
occurrences of the number of nonplanar regions corresponds to about 8000 loca-
tions, while on the first pyramid level, 16% corresponds to about 4000 locations
(see reference numbers on the vertical scale). Thus, the absolute number of non-
planar elements decreases by about a factor of 2 on the first pyramid level while
the relative frequency in the

image increases by about a g 18 Number of o 18 Number of mask
. . —_ umber o i
fa?tor of 4. Keepmg in 8 .% 16 '\ mask locations 38 %16 locations with
mind that the number of & £14°\ withnonplanar 1 S14 nonplanar cell
image elements on the first 1 8 12 intensity distri- 1 212 intensity distribu-
: 5 2 10 bution for vari- 6 -2 10 tion for various
pyramid level has de- <8 g | ousmnand g 8 m, nand
creased by the same factor = 2 m=n=1 g2 m,=n, =2
of 4, this tells us that on this 8 3 i: 8% 2
level, most nonplanar fea- ¢ & g 2E ;
tures are preserved. On the 3 0T 3 0 |
pixel level, many spurious  © 1 2 3 4 5 ° 2 3 4 5

details cause the frequency Threshold ‘ErrMax’ in % of average intensity value
of this feature to increase; ) )
this is especially true if the ~ Figure 5.26. Relative number of nonplanar mask lo-

threshold ErrMax is re-  cations as a function of parameters for mask element
duced (see leftmost ordi- formation m, n, m; , n.. Note that in the right part
nate in Figure 5.26 for ErrM_ax starts at 2_%; in the left part, yvhich represents
ErrMax = 1%). working on the pixel level, the relative frequency of

For the largest part of nonplanar regions is down to ~ 4% for this value.

standard  images  from
roads, therefore, working on the first pyramid level with reduced resolution is suf-
ficient; only for the farther look-ahead regions on the road, which appear in a rela-
tively small rectangle around the center, is full resolution recommended. Quite
naturally, this yields a foveal-peripheral differentiation of image sequence analysis
with much reduced computing resources needed. Figure 5.27 demonstrates that
when working with video fields, a further reduction by a factor of 2 is possible
without sacrificing detection of significant nonplanar features.

The right-hand picture is based on cell size (4x2); 4 pixels each in two rows are
summed to yield cell intensity, while on the left, the cell is a pixel on the (2x2) first
pyramid level. The subfigures are superpositions of all pixels found to belong to
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Figure 5.27. Nonplanar features for parameter set ErrMax = 2.5%, mask elements m =
n =2 and cell size n, = m¢ = 2 (i.e., first pyramid level, left; after processing compressed
2:1 in rows for better comparison). Changing m. to 4 (right) yields about the same num-
ber of features : ~ 2500.

nonplanar regions, both in row search (horizontal white bars) and in column search
(vertical white bars); it can be seen that beside corner candidates many edge candi-
dates are also found in both images. For similar appearance to the viewer, the left
picture has been horizontally compressed after finishing all image processing.
From the larger number of local vertical white bars on the left, it can be seen that
nonplanarity still has a relatively large spread on the first pyramid level; the larger
cell size of the right-hand image cuts the number of masks to be analyzed in half
(compare results in corner detection in Figure 5.39, 5.40 below). Note that even the
reflections on the motor hood are detected. The locations of the features on differ-
ent scales remain almost the same. These are the regions where stable corner fea-
tures for tracking can be found, avoiding the aperture problem (sliding along
edges). All significant corners for tracking are among the nonplanar features. They
can now be searched for with more involved methods, which however, have to be
applied to candidate image regions at least an order of magnitude smaller (see Fig-
ure 5.26). After finding these regions of interest on a larger scale first, for precise
localization full resolution may be applied in those regions.

5.3.2.3 Edges from Extreme Values of Gradients in Search Direction

defined by extreme values of the
gradient function in the search

Gradient values of the intensity @ I
function have to be determined i 5
for least-squares fit of a tangent Intensity :
plane in a rectangular support re- gfﬁf"ge”‘
gion (Equation 5.29). Edges are I 5

/-' —>?y<— i

0. i i .. fhrgshgd

direction (see Figure 5.28). These — ; 0. parameters:

can easily be detected by multi- R  Eptraticury
p|y|ng two Consecutive values Of Mask location for evaluation

their differences in the search di-  Figure 5.28. Localization of an edge to subpixel

r(_ection [(9o — gm)(9p - 9o)]; if_the accuracy by parabolic interpolation after passing
sign of the product is negative,  a maximum value g, of the intensity gradient
an extreme value has been
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passed. Exploiting the same procedure shown in Figure 5.12, the location of the ex-
treme value can be determined to sub-cell accuracy. This indicates that accuracy is
not necessarily lost when cell sizes are larger than single pixels; if the signals are
smooth (and they become smoother by averaging over cells), the locations of the
extreme values may be determined to better than one-tenth the cell size. Mel sizes
of several pixels in length and width (especially in the search direction), therefore,
are good candidates for efficient and fast determination of edge locations with this
gradient method.

Figure 5.28a shows three gradient values gm, go, and g, determining the parabola
to be interpolated. The second-order coefficient of this parabolic curve, dubbed
“mintcurv” is given by

mintcurv = 0.5-(g,, + g,) - gp- (5.33)
To eliminate noise effects from data, two threshold values are introduced before an
edge is computed:

1. The magnitude of mintcurv has to be larger than a threshold value gy this
eliminates very shallow extremes (large radii of the osculating circles, dashed
lines in 5.28a). Leaving this threshold out may often be acceptable.

2. The absolute value of the maximum gradient encountered has to be larger than a
threshold value “IntGradMin”; this admits only significant gradients as candi-
dates for edges. The larger the mel size, the smaller this threshold should be
chosen.

Proper threshold values for classes of problems have to be found by experimenta-

tion; in the long run, the system should be capable of doing this by itself, given

=0z

Setting the
exclusion factor
k, = 0.8 and
requesting
|9y| > ku,hor loel
edge directions in
the range = ~ 50 °
(case 3) from the
orthogonal to the
search direction
are picked up.

corresponding payoff functions.
Since edges oriented directly in
the search direction are prone to
larger errors, they can be ex-
cluded by limiting the ratio of
the gradient components for ac-
ceptance of candidates. Figure
5.29 shows the principal idea.
When both gradient compo-
nents |g,| and |g,| are equal, the

edge direction is 45°. Excluding
all cases where Equation 5.34 is
valid, a selection of k, around 1
will allow finding all edges by a
combined row and column
search.

|9y | > Kynor - 19,| inrow search and

Figure 5.29. Limiting edge directions to be found
in row—search around the vertical can be achieved
by introducing limits for the ratio of gradient
components (|9y| / |9;| > Kqnor); (@analogous for col-
umn search: k, nor Nneed not be equal to Ky ver)

. (5.34)
19, | > Kyyen - 19,] in column search,

(Edges with orientation close to diagonal should be detected in both search direc-
tions, leading to redundancy for cross checking.) Sub-mel localization of edges is
performed only when all conditions mentioned are satisfied. The extreme value is
found where the derivative of the gradient is zero. Defining
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slopegr =0.5-(9, - 9,,) (5.35)
for a row search leads to the results: (a) sub-mel location dy from the central refer-
ence 0 and (b) the magnitude of the extreme gradient component gymax:

dy =— 0.5-slopegr/mintcurv,

Oymx = Jo + (slopegr + 0.5-mintcurv -dy)-dy.

To determine the edge direction precisely, it is necessary to compute the value of
the orthonormal gradient component (here g, ¢qq¢) With a second-order interpolation
from the corresponding g, values and with the same dy also. The expressions for
column search (dz, Osmax, and Qyeqqe) are obtained in analog fashion. Figure 5.30
shows results of edge finding on the cell level (m; = 2, n. = 1, i.e., pure horizontal
field compression) with mels of sizem=n=3.

Even edges in re-
flections on the motor—
hood (bottom of im-
age) and  shadow
boundaries are de-
tected. Road areas are
almost free of edge
elements  originating
from noise, but lane
markings are fully de-
tected in a column
search; the lane mark-
ing to the right is par-
tially detected in a row  Figure 5.30. Edges from extreme values in gradient com-
search also, because of  ponents in row (yellow) and column search (red, parame-
the steepness of the tersm,n.mg ng= 33.21), IntGradMin = 0.016; white re-
edge around /4 in the  gions are bi-directionally nonplanar features.
image. It was surpris-
ing to see the left front wheel of the truck to the right detected so well with the new
computation of edge directions from the interpolated gradient components. Such
results can hardly be expected from radar or even from laser range finders; for this
reason, once the computing power is available at low cost, machine vision is con-
sidered the favorite sense for perceiving the road environment in detail.

Distance to other vehicles can easily be estimated sufficiently accurate by the
“flat ground”-assumption and by finding the lower bounds of collections of fea-
tures moving in conjunction [Thomanek 1996]; especially, the dark areas underneath
the vehicles and their boundary lines are highly visible in the figure. Taking the re-
gions of the road blobs into account, seven vehicle hypotheses can be derived im-
mediately (two in the left lane, two upfront in the own lane, and three in the lane to
the right). Tracking these hypotheses over time will clarify the situation, in general.

Due to the small size of Figure 5.30, it is hard to appreciate the details; the origi-
nal visualization on a large screen with thinner lines for the results from row and
column search yields vivid impressions to the human observer. The white line ele-
ments in the figure show the locations of bi-directionally nonplanar features (non-
homogeneous areas determined in the first step of the UBM). Edges can be re-

(5.36)
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garded as uni-directionally nonplanar features. The cross-section shown in Figure
5.28b is more clearly visualized in perspective projection in Figure 5.31; there is a
transition between two different intensity levels with the edge at the position of
steepest gradient (not emphasized here; it would lie approximately at the position
of the right mel centers I, and Iy, ,
where the plane fitted cuts the nonlinear of Mol carion.
intensity surface in the figure).

Usually, edges are boundaries of
homogeneously shaded, textured, or

Normal vector to image
plane in origin of mask

Interpolated
~“intensity plane

colored regions. Textured regions ex- Image

hibit nonplanar features all over (e.g., 'S']{j” :
see tree in upper left center of Figure : Image
5.30, left of the dark truck); usually, P : stripe |
they do not have simple characteristic A T ™ y

parameters; trees, text on traffic or

havigation SIgns, and str_ongly Curve_d that curvature in only one direction of
edges of Vemde_s reflecting the enV_" the intensity function (orthonormal cur-
ronment are typical textured areas in  yapyre = 0) yields residues = 0, using
road scenes (see Figure 5.30). These  four support points; the mask passes the

regions are grouped as inhomogeneo_us (weak) nonplanarity test of Section 5.3
and are discarded from further analysis,

at present, except testing for corner fea-
tures (see Section 5.33 below).

The rest of the image between nonplanar regions and edge features now has to
be checked for linearly shaded blobs. These candidate regions are analyzed first
within a single stripe only; to be efficient, linearly shaded segments satisfying cer-
tain variance conditions have to have a certain minimal length Lsegmin to qualify as
1-D blob features; this suppresses spurious details right from the beginning. After
finding a blob-centered description for the 1-D blob, merging into larger regions
with the results of previously analyzed stripes is performed, if certain threshold
conditions for fusion are met; this leads to so-called 2-D blobs. Stable blobs and
their centers are very nice features for tracking. Contrary to edges, their shading
characteristics (average gray value and gradient components) allow easier recogni-
tion of objects from one image to the next, both within a temporal sequence for
tracking and between images from a pair of cameras for stereo interpretation.

Figure 5.31. Visualization of the fact

5.3.2.4 Extended Shading Models in Image Stripes

Figure 5.32 shows a result of intensity analysis in a vertical stripe [Hofmann 2004].
Regions within stripes with similar shading parameters (average intensity, gradient
magnitude and gradient direction) are grouped together as homogeneously shaded
segments with a set of common parameters; they are called (1-D) blob-features
here. The vertical image stripe marked by a white rectangle (at the right-hand side)
yields the feature set shown graphically to the left, with some dotted lines indicat-
ing correspondences.

It is proposed here, to group regions satisfying the threshold conditions on the vari-
ance, but of small segment length < Lsgmin, into a special class; depending on the
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Figure 5.32. Intensity profile for one vertical image stripe, rows 60 to 200 (white rec-
tangle in part of a video field, see insert at right boundary); sky (rows < 60) and motor
hood (rows > 200) are excluded (basic figure from [Hofmann 2004], see text)

scale of analysis they may be considered as “textured”. Since there will be very
many of these local features, in general, they are not characteristic for understand-
ing the scene observed. To concentrate on highly visible features that can be rec-
ognized and tracked well, the size of blob features should have an extension of a
certain percentage of the whole image in at least one dimension, say, a few percent.
Taking 500 pixels as a characteristic (average) image resolution in one dimension,
the minimal segment length should be chosen as 5 < Legmin < 25 pixels, in general.

In Figure 5.32, blobs 1, 2, and 4 clearly satisfy this condition. If smaller regions
show an image intensity level considerably different from their environment, they
may qualify as blob features also, despite their small size. Maybe a characteristic
number depending on the product of segment length and intensity difference
should be chosen for decision-making. Lane markings on roads are typical exam-
ples; blob 3 (at the right-hand side), but also the spike left of blob 2 in Figure 5.32
are points in case. However, all four edges of these two lane markings are strong
features by themselves and will be detected independently of the blob analysis,
usually (see lower bar in the figure with characterization of edges as DH for dark-
to-bright and HD for bright-to-dark transitions [Hofmann 2004]).

The basic mathematical tool used for the least squares fit of a straight line to
segments with free floating boundary points at both ends in UBM is derived in Ap-
pendix C. This is an extension of the stripe-wise image interpretation underlying
Figure 5.32. Figure C.3 in Appendix C shows a close-up view of blob 1 in the fig-
ure, indicating the improvements in line fit achievable. Therefore, after a recursive
line fit in forward direction, the starting point should be checked against the vari-
ance of the fit achieved in the overall segment for possible improvements by drop-
ping initial values (see Appendix C). This extension to a floating fit by checking
the boundary points at both ends against the variance criterion has become the
standard blob fit approach. Figure 5.33 shows some results for different vertical
cross sections (columns) through an image (white lines in image top left with col-
umn numbers). The video field was compressed with (m; n;) = (2 1); the threshold
value for the variance allowed at the boundaries was VarLim = 7.5, and the mini-
mal segment length accepted was Lgeg > Lsegmin = 4.

Several typical regions such as road, lane markings, dark shade underneath ve-
hicles, and sky are designated; some correspondences are shown by dotted lines. In
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Figure 5.33. Intensity profiles through columns marked by white lines in image top left;
the solid dark straight lines are the 1-D blobs segmented

creasing Leegmin and possibly the threshold value VarLim to allow more generous
grouping would lead to reduced numbers of 1-D blobs; values for VarLim of up to
100 (ten intensity levels out of 256 typical for 8-bit intensity coding in video) yield
acceptable results for many applications.

A good check for the usefulness of the blob concept is the image quality judged
by humans, after the image has been reconstructed from its abstract blob represen-
tation by average gray values, shading parameters, and the locations of the seg-
ments. In [Hofmann 2004] this has been shown to work well for small masks, disre-
garding the special treatment of nonplanar regions and allowing arbitrarily small
segment lengths. On the contrary, Figure 5.34 shows the reconstruction result from
the first pyramid stage of a video field (m, = n. = 2) with mask elements m=n=2
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Figure 5.34. Image reconstruction for the pa-
rameter set (22.22) and vertical search direc-
tion, compressed horizontally 2:1 for display
after processing. Scene recognition is no
problem for the human observer

in column search (shorthand nota-
tion: 2222C). The resulting image
has been compressed in row direc-
tion for standard viewing condi-
tions. Recall that stepping of the
mask in search direction is done by
one-pixel-steps, while stripes are
shifted by m = 2; after compres-
sion, this corresponds to one
(pyramid-) pixel also.

The figure shows typical digiti-
zation effects, but object recogni-
tion is very well possible, even for
an untrained person. Six vehicles
can be distinguished clearly; four
cars, one bus and one truck are eas-
ily distinguished. Lane markings
and shadow boundaries look almost
natural. The question is, how many

of these details will be lost when image compression is done together with comput-
ing the pyramid image (i.e., m¢ n. = 42 instead of 22), when larger segments only
are accepted for blob building, and when all nonlinear intensity regions (corner
candidates and edges) are excluded beforehand.

The scene analyzed is only slightly different from the one before; the variance
threshold VarLim has been set to 15 and the minimal segment length required is

Cell 42, mel 11,$column search; Lsegmin =4; VarLim =15, *row search

-,
= |

Row Over Column;

combined results Column Over Row

Figure 5.35. Reconstructed images from blob representations: Column search only (top
left), row search only (top right), superimposed results (bottom); pixels missing have
been filled by results from the alternate search direction
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Lsegmin = 4 pyramid-pixels or 16 original image pixels. Figure 5.35 shows the re-
sults for column search (top left), for row search (top right), and superimposed re-
sults, where pixels missing in one reconstructed image have been added from the
other one, if available.

The number of blobs to be handled is at least one order of magnitude smaller
than for the full representation underlying Figure 5.34. For a human observer, rec-
ognizing the road scene is not difficult despite the pixels missing. Since homoge-
neous regions in road scenes tend to be more extended horizontally, the superposi-
tion “‘column over row’ (bottom right) yields the more naturally looking results.

Note, however, that up to now no merging of blob results from one stripe to the
next has been done by the program. When humans look at a scene, they cannot but
do this unwillingly and apparently without special effort. For example, nobody will
have trouble recognizing the road by its almost homogeneously shaded gray val-
ues. The transition from 1-D blobs in separate stripes to 2-D blobs in the image and
to a 3-D surface in the outside world are the next steps of interpretation in machine
vision.

5.3.2.5 Extended Shading Models in Image Regions

The 1-D blob results from stripe analysis are stored in a list for each stripe, and are
accumulated over the entire image. Each blob is characterized by

1. the image coordinates of its starting point (row respectively column num-

ber and its position jyg in it),

2. its extension Ly in search direction,

3. the average intensity I, at its center, and

4. the average gradient components of the intensity a, and a,.
This allows easy merging of results of two neighboring stripes. Figure 5.36a shows
the start of 1-D blob merging when the threshold conditions for merger are satis-
fied in the region of overlap in adjacent stripes: (1) The amount of overlap should
exceed a lower bound, say, two

or three pixels. (2) The differ- (a) Merging of first two 1-D blobs to a 2-D blob
ence in image intensity at the Uy Uy Ve oy

center of overlap should be }_V; ________ S v A_A._L___kg L -17]
small. Since the 1-D blobs are e e oF o
given by their cg-position (uy; t <o, TR

= Jref + Lsegi /2), their ‘weights’ 2

(proportional to the segment (b) Recursive merging of a 2-D blob with an overlap-
length L), and their intensity ping 1-D blob to an extended 2-D blob.

gradients, the intensities at the st

center of overlap can be com- - ggw_ Egswdﬂ _—
puted in both stripes (I¢ovz) and T_aL 2",_“ segl  —seg2
leowiz) from the distance be- CYsnew

__________ . Lige=6 8C03
tween the blob center and the t

center of overlap exploiting the  Figure 5.36. Merging of overlapping 1-D blobs in
gradient information. This  adjacent stripes to a 2-D blob when intensity and
yields the condition for accep-  gradient components match within threshold limits
tance
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[ 1ovis — looui2 | < DellthreshMerg . (5.37)

Condition (3) for merging is that the intensity gradients should also lie within small
common bounds (difference < DelSlopeThrsh, see Table 5.1).

If these conditions are all satisfied, the position of the new cg after merger is
computed from a balance of moments on the line connecting the cg’s of the regions
to be merged; the new cg of the combined areas S,p thus has to lie on this line. This
yields the equation (see Figure 5.36a)

6US ’ Lsegl - (5ucg - 6”5) ’ Lsegz =0, (538)
and, solved for the shift dus with Syp = Lsegr + Lsego, the relation
5US = Lsegz /(Lsegl + Lsegz) '5ucg = 5ucg : Lsegz /SZD (539)
is obtained. The same is true for the v-component
5\/5 = Lsegz /(Lsegl + Lsegz) '5ch = 5ch ’ LsegZ /SZD' (540)

Figure 5.36b shows the same procedure for merging an existing 2-D blob, given

by its weight S;p, the cg-position at cgzp, and the segment boundaries in the last
stripe. To have easy access to the latter data, the last stripe is kept in memory for
one additional stripe evaluation loop even after the merger to 2-D blobs has been
finished. The equations for the shift in cg are identical to those above if Ly is re-
placed by S,poq. The case shown in Figure 5.36b demonstrates that the position of
the cg is not necessarily inside the 2-D blob region.
A 2-D blob is finished when in the new stripe no area of overlap is found any
more. The size S,p of the 2-D blob is finally given by the sum of the Leg-values of
all stripes merged. The contour of the 2-D blob is given by the concatenated lower
and upper bounds of the 1-D blobs merged. Minimum (Umin, Vimin) and maximum
values (Umax, Vimax) OF the coordinates yield the encasing box of area

'%ncbox = (umax - umin) : (Vmax ~ Viin )+ (a) (541)
A measure of the compactness of a blob is the ratio
RcompBIob = S2D /A%ncbox ' (b)

For close to rectangular shapes it is close to 1; for circles it is /4, for a triangle it is
0.5, and for an oblique wide line it tends toward 0. The 2-D position of the blob is
given by the coordinates of its center of gravity ucg and veg. This robust feature

makes highly visible blobs attractive for tracking.

5.3.2.6 Image Analysis on two Scales

Since coarse resolution may be sufficient for the near range and the sky, fine scale
image analysis can be confined to that part of the image containing regions further
away. After the road has been identified nearby, the boundaries of these image re-
gions can be described easily around the subject’s lane as looking like a “pencil
tip” (possibly bent). Figure 5.37 shows results demonstrating that with highest
resolution (within the white rectangles), almost no image details are lost both for
the horizontal (left) and the vertical search (right).

The size and position of the white rectangle can be adjusted according to the ac-
tual situation, depending on the scene content analyzed by higher system levels.
Conveniently, the upper left and lower right corners need to be given to define the
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Reconstructed image (horizontal): Reconstructed image (vertical):

Coarse (4x4) . Coarse (4x4)

Figure 5.37. Foveal—peripheral differentiation of image analysis shown by the ‘imag-
ined scene’ reconstructed from symbolic representations on different scales: Outer
part 44.11, inner part 11.11 from video fields compressed 2:1 after processing; left:
horizontal search, right: vertical search, with the Hofmann operator.

rectangle; the region of high resolution should be symmetrical around the horizon
and around the center of the subject’s lane at the look-ahead distance of interest, in
general.

5.3.3 The Corner Detection Algorithm

Many different types of nonlinearities may occur on different scales. For a long
time, so-called 2-D-features have been studied that allow avoiding the “aperture
problem”; this problem occurs for features that are well defined only in one of the
two degrees of freedom, like edges (sliding along the edge). Since general texture
analysis requires significantly more computing power not yet available for real-
time applications in the general case right now, we will also concentrate on those
points of interest which allow reliable recognition and computation of feature flow
[Moravec 1979; Harris, Stephens 1988; Tomasi, Kanade 1991; Haralick, Shapiro 1993].

5.3.3.1 Background for Corner Detection

Based on the references just mentioned, the following algorithm for corner detec-
tion fitting into the mask scheme for planar approximation of the intensity function
has been derived and proven efficient. The structural matrix
N = (( friN + frZZN 22 er : fczN j: [nll nlz) (542)

2-f o (fin + foan Ny Ny
has been defined with the terms from Equations 5.17 and 5.18. Note that compared
to the terms used by previously named authors, the entries on the main diagonal are
formed from local gradients (in and between half-stripes), while those on the cross-
diagonal are twice the product of the gradient components of the mask (average of
the local values). With Equation 5.18, this corresponds to half the sum of all four
cross-products
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N, =Ny =05 Zi,j:l,z( frin - fch) . (5.43)
This selection yields proper tuning to separate corners from planar elements in
all possible cases (see below). The determinant of the matrix is
w=detN =n,-n, -n’. (5.44)
With the equations mentioned, this becomes
det N = 0.75-n,-n,, —
=05 (ny-fy-f, + Ny F- )= f,- Ty T
Haralick calls detN =w the “Beaudet measure of cornerness”, however,
formed with a different term n, =X f,; - f,. The eigenvalues A of the structural
matrix are obtained from
|:7‘ —Ny mL?!
=Ny, A— Ny,

(5.45)

}:(x—nnm—nzz)—nfz:o,

Ny Ny —A(Ny +0,, ) +A%—nj =0.
With the quadratic enhancement term Q,
Q=(ny+ny)/2, (5.47)
there follows for the two eigenvalues i, X, ,

hyo = Q|1 1-detN/Q" |. (5.48)

Normalizing these with the larger eigenvalue A yields
An =1 A,y =A, [Ag;

han =(l—m)/(l+m)_ (5.49)

Haralick defines a measure of circularity q as

(5.46)

2
qzl{”fﬂ o Alky (5.50)
A A, (7»1 +x2)
With Equation 5.48 this reduces to
q=detN/Q?=4-(n,-n,, —n3)/(n, +n,,)*, (5.51)
and in normalized terms (see Equation 5.49), there follows
Q=4 [ (L+20p)% (5.52)

It can thus be seen that the normalized second eigenvalue A,y and circularity g
are different expressions for the same property. In both terms, the absolute magni-
tudes of the eigenvalues are lost.

Threshold values for corner points are chosen as lower limits for the determi-
nant detN = w and circularity g:

wW> W
and (5.53)
q > qmin '

In a post-processing step, within a user-defined window, only the maximal value

of w = w* is selected.
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Harris was the first to use the eigenvalues of the structural matrix for threshold
definition. For each location in the image, he defined the performance value

R, (y,z) =detN —a(trace N)*, (5.54)
where detN =2, -A, and
traceN =4, +4, =2Q, (5.55)
yielding
Ry =2k, —a (A +2,)° (a) (5.56)
With k=2, /A, (A, ,See Equation 5.49), there follows
R, :}\.f|:K—OL(1+K)Z:|. (b)
For Ry>0and 0 <k <1, a has to be selected in the range,
0<a<k/(l+x)* <025 . (5.57)

Corner candidates are points for which Ry > 0 is valid; larger values of o yield
fewer corners and vice versa. Values around o = 0.04 to 0.06 are recommended.
This condition on Ry, is equivalent to (from Equations 5.44, 5.53, and 5.54)

detN > 4aQ?. (5.58)

Kanade et al. (1991) (KLT) use the following corner criterion: After a smooth-

ing step, the gradients are computed over the region D-D (2 < D < 10 pixels). The

reference frame for the structural matrix is rotated so that the larger eigenvalue 2,
points in the direction of the steepest gradient in the region

Mt = N frz + fc2 ' (5.59)

A1 is thus normal to a possible edge direction. A corner is assumed to exist if A,
is sufficiently large (above a threshold value Ayy,). From the relation det N = A;: A5,
the corresponding value of Ay« 1 can be determined

Appr = det N/leLT : (5.60)

If

Mokt > Aoy (5.61)
the corresponding image point is put in a candidate list. At the end, this list is
sorted in decreasing order of A« T, and all points in the neighborhood with smaller
oLt values are deleted. The threshold value has to be derived from a histogram of

A, by experience in the domain. For larger D, the corners tend to move away from
the correct position.

5.3.3.2 Specific Items in Connection with Local Planar Intensity Models

Let us first have a look at the meaning of the threshold terms circularity (g in Equa-
tion 5.50) and trace N (Equation 5.55) as well as the normalized second eigenvalue
(Aon In Equation 5.49) for the specific case of four symmetrical regions ina 2 x 2
mask, as given in Figure 5.20. Let the perfect rectangular corner in intensity distri-
bution as in Figure 5.38b be given by local gradients f; = f,; =0 and f,, = f., = —K.
Then the global gradient components are f, = f. = —K/2. The determinant Equation
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5.44 then has the value det N = 3/4-K*. The term Q (Equation 5.47) becomes Q =
K?, and the “circularity” q according to Equation 5.51 is

q=det N/Q? =4/3=0.75. (5.62)

, P Shifting location of _ y
’ ’ ! Imean= 0.5
| f evaluation mask column
el 1c2 | e » f,=05_ ‘
. - — 7 -
5 = = Yy o_

f3=0

Figure 5.38. Local intensity gradients on mel-level for calculation of circularity g in
corner selection: (a) Ideal checker-board corner: q = 1. (b) ideal single corner: q = 0.75;
(c) slightly more general case (three intensity levels, closer to planar); (d) ideal shading,
one direction only (linear case for interpolation, g = 0); (e) demanding (idealized) corner
feature for extraction (see text).

The two eigenvalues of the structure matrix are A; = 1.5-K? and A, = 0.5-K? so
that traceN = 2Q is 4-K?; this yields the normalized second eigenvalue as Aoy = 1/3.
Table 5.2 contains this case as the second row. Other special cases according to the
intensity distributions given in Figure 5.38 are also shown. The maximum circular-
ity of 1 occurs for the checkerboard corners in Figure 5.38a and row 1 in Table 5.2;
the normalized second eigenvalue also assumes its maximal value of 1 in this case.
The case Figure 5.38c (third row in the table) shows the more general situation
with three different intensity levels in the mask region. Here, circularity is still
close to 1 and A,y is above 0.8. The case in Figure 5.38e with constant average
mask intensity in the stripe is shown in row 5 of Table 5.2: Circularity is rather
high at g = 8/9 = 0.89 and X,y = 0.5. Note that from the intensity and gradient val-
ues of the whole mask this feature can only be detected by g, (Iv and gy) remain
constant along the search path.

By setting the minimum required circularity qmi, as the threshold value for ac-
ceptance to

qmin = 07 1 (563)
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all significant cases of intensity corners will be picked. Figure 5.38d shows an al-
most planar intensity surface with gradients —K in the column direction and a very
small gradient + ¢ in the row direction (K >> ). In this case all characteristic val-
ues: det N, circularity g, and the normalized second eigenvalue A,y all go to zero
(row 4 in the table). The last case in Table 5.2 shows the special planar intensity
distribution with the same value for all local and global gradients (—K); this corre-
sponds to Fig 5.20c. It can be seen that circularity and A,y are zero; this nice fea-
ture for the general planar case is achieved through the factor 2 on the cross-
diagonal of the structure matrix Equation 5.42.

When too many corner candidates are found, it is possible to reduce their number
not by lifting qmi, but by introducing another threshold value traceN, that limits
the sum of the two eigenvalues. According to the main diagonals of Equations 5.42
and 5.46, this means prescribing a minimal value for the sum of the squares of all
local gradients in the mask.

Table 5.2. Some special cases for demonstrating the characteristic values of the structure
matrix in corner selection as a function of a single gradient value K. TraceN is twice the va-
lue of Q (column 4).

Example Local gradi- Det. N TermQ | Circula- M Aon =
ent values Equation | Equation rity q Ao
5.44 5.47

Figure +, — K (2 each) 4K* 2 K? 1 2 K? 1
5.38a
Figure 0, — K (2 each) % K* K? 0.75 1.5K* | 0.3333
5.38b
Figure 0, K (f.1, fro), 5K* 3K? 5/9 5K? 0.2
5.38¢c —2K =0.556
Figure fi=£K 8 K* 3K? 8/9 4K? 0.5
5.38¢ fi=0; - 2K
Figure fizxe (<<K) | 4*?K® | (+K%) | ~4&/KP | =2* | =2dIK
5.38d fi=-K ~ ~K? ~ (K2 %) ~
Planar fii=— K (4%) 0 2 K? 0 4*K? 0

This parameter depends on the absolute magnitude of the gradients and has thus to
be adapted to the actual situation at hand. It is interesting to note that the planarity
check (on 2-D curvatures in the intensity space) for interpolating a tangent plane to
the actual intensity data has a similar effect as a low boundary of the threshold
value, traceNpmin.

5.3.4 Examples of Road Scenes

Figure 5.39 left shows the nonplanar regions found in horizontal search (white
bars) with ErrMax = 3%. Of these, only those locations marked by cyan crosses
have been found satisfying the corner condition qmi, = 0.6 and traceNy,, = 0.11.
The figure on the right-hand side shows results with the same parameters except
the reduction of the threshold value to traceNm, = 0.09, which leaves an increased
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Figure 5.39. Corner candidates derived from regions with planar interpolation resi-
dues > 3% (white bars) with parameters (m, n, m¢, n, = 3321). The circularity threshold
Omin = 0.6 eliminates most of the candidates stemming from digitized edges (like lane
markings). The number of corner candidates can be reduced by lifting the threshold on
the sum of the eigenvalues traceN, from 0.09 (right: 103, 121) to 0.11 (left image: 63,
72 candidates); cyan = row search, red = column search.

number of corner candidates (over 60% more). Note that all oblique edges (show-
ing minor corners from digitization), which were picked by the nonplanarity check,
did not pass the corner test (no crosses in both figures). The crosses mark corner
candidates; from neighboring candidates, the strongest yet has to be selected by
comparing results from different scales. m; = 2 and n, = 1 means that two original
pixels are averaged to a single cell value; nine of those form a mask element (18
pixels), so that the entire mask covers 18x4 = 72 original pixels.

Figure 5.40 demonstrates all results obtainable by the unified blob-edge-corner
method (UBM) in a busy highway scene in one pass: The upper left subfigure
shows the original full video image with shadows from the cars on the right-hand
side. The image is analyzed on the pixel level with mask elements of size four pix-
els (total mask = 16 pixels). Recall that masks are shifted by steps of 1 in search di-
rection and by steps of mel-size in stripe direction. About 10° masks result for
evaluation of each image. The lower two subfigures show the small nonplanarity
regions detected (about 1540), marked by white bars. In the left figure the edge
elements extracted in row search (yellow, = 1000) and in column search (red, =
3214) are superimposed. Even the shadow boundaries of the vehicles and the re-
flections from the own motor hood (lower part) are picked. The circularity thresh-
old of guin = 0.6 and traceN,, = 0.2 filter up to 58 corner candidates out of the
1540 nonplanar mask results; row and column search yield almost identical results
(lower right). More candidates can be found by lowering ErrMax and traceNpin.

Combining edge elements to lines and smooth curves, and merging 1-D blobs to
2-D (regional) blobs will drastically reduce the number of features. These com-
pound features are more easily tracked by prediction error feedback over time. Sets
of features moving in conjunction, e.g. blobs with adjacent edges and corners, are
indications of objects in the real world; for these objects, motion can be predicted
and changes in feature appearance can be expected (see the following chapters).
Computing power is becoming available lately for handling the features mentioned
in several image streams in parallel. With these tools, machine vision is maturing
for application to rather complex scenes with multiple moving objects. However,
quite a bit of development work yet has to be done.
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Figure 5.40. Features extracted with unified blob-edge-corner method (UBM): Bi-
directionally nonplanar intensity distributions (white regions in lower two subfigures, ~
1540), edge elements and corner candidates (column search in red), and linearly shaded
blobs. One vertical and one horizontal example is shown (gray straight lines in upper
right subfigure with dotted lines connecting to the intensity profiles between the images.
Red and green are the intensity profiles in the two half-stripes used in UBM; about 4600
1-D blobs resulted, yielding an average of 15 blobs per stripe. The top right subfigure is
reconstructed from symbolically represented features only (no original pixel values).
Collections of features moving in conjunction designate objects in the world.

Conclusion of section 5.3 (UBM): Figure 5.41 shows a road scene with all fea-
tures extractable by the unified blob-edge-corner method UBM superimposed. The
image processing parameters were: MaxErr = 4%, m=n=3, m;=2,n. =1
(33.21); anglefact = 0.8 and IntGradMin = 0.02 for edge detection; gmi, = 0.7; tra-
ceNpin = 0.06 for corner detection and Lsegmi, =4, VarLim = 64 for shaded blobs.
Features extracted were 130 corner candidates, 1078 nonplanar regions (1.7%),
4223 ~vertical edge elements, 5918 ~horizontal edge elements, 1492 linearly
shaded intensity blobs (from row search) and 1869 from column search; the latter
have been used only partially to fill gaps remaining from the row search. The non-
planar regions remaining are the white areas.

Only an image with several colors can convey the information contained to a
human observer. The entire image is reconstructed from symbolic representations
of the features stored. The combination of linearly shaded blobs with edges and
corners alleviates the generation of good object hypotheses, especially when char-
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Figure 5.41. “Imagined” feature set extracted with the unified blob-edge-corner method
UBM: Linearly shaded blobs (gray areas), horizontally (green) and vertically extracted
edges (red), corners (blue crosses) and nonhomogeneous regions (white).

acteristic sub-objects such as wheels can be recognized. With the background
knowledge that wheels are circular (for smooth running on flat ground) with the
center on a horizontal axis in 3-D space, the elliptical appearance in the image al-
lows immediate determination of the aspect angle without any reference to the
body on which it is mounted. Knowing some state variables such as the aspect an-
gle reduces the search space for object instantiation in the beginning of the recog-
nition process after detection.

5.4 Statistics of Photometric Properties of Images

According to the results of planar shading models (Section 5.3.2.4), a host of in-
formation is now available for analyzing the distribution of image intensities to ad-
just parameters for image processing to lighting conditions [Hofmann 2004]. For
each image stripe, characteristic values are given with the parameters of the shad-
ing models of each segment. Let us assume that the intensity function of a stripe
can be described by ns segments. Then the average intensity b, of the entire stripe
over all segments i of length I; and average local intensity b; is given by

by = (L-b)/ DL (5.64)
i=1 i=1
For a larger region G segmented into Ng image stripes, then follows

bs = ZG:{ZS:(IH bu)} il:i(lll):| (5.65)

j=1
The values of bgand by are different from the mean value of the image intensity
since this is given by
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resp., (5.66)
MeanG I:Z[Z J:l ;nsj

The absolute minimal and maximal value of all mel-intensities of a single stripe
can be obtained by standard comparisons as Min,,,,s and Max,.,.s ; Similarly, for a

maxs$S ?
larger region, there follows

min

ng; g

Min ;e = m|n{m|n(m|n,l)} MaXx e max[max(max”)} (5.67)

The difference between both expressions yields the dynamic range in intensity
Hs within an image stripe, respectively, Hg an image region. The dynamic range in
intensity of a single segment is given by H; = max; — min;. The average dynamic
range within a stripe, respectively in an image region, then follows as

Hygeans = [ZH ]/ resp., HMeane{z(iH H ins,.. (5.68)

If the maximal or minimal intensity value is to be less sensitive to single outliers
in intensity, the maximal, respectively, minimal value over all average values b; of
all segments may be used:

Ng

Buins = min (i) -

i=1

resp. (5.69)

Ns

Byaxs = max () »

i=1

similarly, for larger regions there follows

Buine = mm{mm(bu)} 1 Dy = max{max(bu)} (5.70)

j=1 i=1 j=1 i=1

Depending on whether the average value of the stripe is closer to the minimal or
maximal value, the stripe will appear rather darker than brighter.

An interesting characteristic property of edges is the average intensity on both
sides of the edge. This has been used for two decades in connection with the
method CRONOS for the association of edges with objects. When using several
cameras with independent apertures, gain factors, and shutter times, the ratio of
these intensities varies least over time; absolute intensities are not that stable, gen-
erally. Statistics on local image areas, respectively, single stripes should always be
judged in relation to similar statistics over larger regions. Aside from characteris-
tics of image regions at the actual moment, systematic temporal changes should
also be monitored, for example, by tracking the changes in average intensity values
or in variances.

The next section describes a procedure for finding transformations between im-
ages of two cameras looking at the same region (as in stereovision) to alleviate
joint image (stereo) interpretation.
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5.4.1 Intensity Corrections for Image Pairs

This section uses some of the statistical values defined previously. Two images of
a stereo camera pair are given that have different image intensity distributions due
to slightly different apertures, gain values, and shutter times that are independently
automatically controlled over time (Figure 5.42a, b). The cameras have approxi-
mately parallel optical axes and the same focal length; they look at the same scene.
Therefore, it can be assumed that segmentation of image regions will yield similar
results except for absolute image intensities. The histograms of image intensities
are shown in the left-hand part of the figure. The right (lower) stereo image is
darker than the left one (top). The challenge is to find a transformation procedure
which allows comparing image intensities to both sides of edges all over the image.

; © i:-llll|IlIIIII!!hhllll'u.u‘-;llllll--'uhi!hlhuiulv =

Figure 5.42. Images of different brightness of a stereo system with corresponding his-
tograms of the intensity: (a) left image, (b) right-hand-side image, and (c) right-hand
image adapted to the intensity distribution of the left-hand image after the intensity
transformation described (see Figure 5.43, after [Hofmann 2004]).

The lower sub—figure (c) shows the final result. It will be discussed after the
transformation procedure has been derived.

At first, the characteristic photometric properties of the image areas within the
white rectangle are evaluated in both images by the stripe scheme described. The
left and right bars in Figure 5.43a, b show the characteristic parameters considered.
In the very bright areas of both images (top), saturation occurs; this harsh nonlin-
earity ruins the possibility of smooth transformation in these regions. The intensity
transformation rule is to be derived using five support points: byinc, Daunkeic » Do »
brenc and byax Of the marked left and right image regions. The full functional rela-
tionship is approximated by interpolation of these values with a fourth-order poly-
nomial. The central upper part of Figure 5.43 shows the resulting function as a
curve; the lower part shows the scaling factors as a function of the intensity values.
The support points are marked as dots. Figure 5.42c shows the adapted histogram
on the left-hand side and the resulting image on the right-hand side. It can be seen
that after the transformation, the intensity distribution in both images has become
much more similar. Even though this transformation is only a coarse approxima-
tion, it shows that it can alleviate evaluation of image information and correspon-
dence of features.
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Figure 5.43. Statistical photometric characteristics of (a) the left-hand, and (b) the right-
hand stereo image (Figure 5.42); the functional transformation of intensities shown in
the center minimizes differences in the intensity histogram (after [Hofmann 2004]).

The largest deviations occur at high intensity values (right end of histogram);
fortunately, this is irrelevant for road-scene interpretation since the corresponding
regions belong to the sky.

To become less dependent on intensity values of single blob features in two or
more images, the ratio of intensities of several blob features recognized with uncer-
tainty and their relative location may often be advantageous to confirm an object
hypothesis.

5.4.2 Finding Corresponding Features

The ultimate goal of feature extraction is to recognize and track objects in the real
world, that is the scene observed. Simplifying feature extraction by reducing, at
first search, spaces to image stripes (a 1-D task with only local lateral extent) gen-
erates a difficult second step of merging results from stripes into regional charac-
teristics (2-D in the image plane). However, we are not so much interested in (vir-
tual) objects in the image plane (as computational vision predominantly is) but in
recognizing 3-D-objects moving in 3-D space over time! Therefore, all the knowl-
edge about motion continuity in space and time in both translational and rotational
degrees of freedom has to be brought to bear as early as possible. Self-occlusion
and partial occlusion by other objects has to be taken into account and observed
from the beginning. Perspective mapping is the link from spatio—temporal motion
of 3-D objects in 3-D space to the motion of groups of features in images from dif-
ferent cameras.

So the difficult task after basic feature extraction is to find combinations of fea-
tures belonging to the same object in the physical world and to recognize these fea-
tures reliably in an image sequence from the same camera and/or in parallel images
from several cameras covering the same region in the physical world, maybe under
slightly different aspect conditions. Thus, finding corresponding features is a basic
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task for interpretation; the following are major challenges to be solved in dynamic
scene understanding:

— Chaining of neighboring features to edges and merging local regions to homo-
geneous more global ones.

— Selecting the best suited feature from a group of candidates for prediction error
feedback in recursive tracking (see below).

— Finding the corresponding features in sequences of images for determining fea-
ture flow, a powerful tool for motion understanding.

— Finding corresponding features in parallel images from different cameras for
stereointerpretation to recover depth information lost in single images.

The rich information derived in previous sections from stripewise intensity ap-
proximation of one-dimensional segments alleviates the comparison necessary for
establishing correspondence, that is, to quantify similarity. Depending on whether
homogeneous segments or segment boundaries (edges) are treated, different crite-
ria for quantifying similarity can be used.

For segment boundaries as features, the type of intensity change (bright to dark
or vice versa), the position and the orientation of the edge as well as the ratio of
average intensities on the right- (R) and left-hand (L) side are compared. Addition-
ally, average intensities and segment lengths of adjacent segments may be checked
for judging a feature in the context of neighboring features.

For homogeneous segments as features considered, average segment intensity,
average gradient direction, segment length, and the type of transition at the
boundaries (dark-to-bright or bright-to-dark) are compared. Since long segments in
two neighboring image stripes may have been subdivided in one stripe but not in
the other (due to effects of thresholding in the extraction procedure), chaining
(concatenation) procedures should be able to recover from these arbitrary effects
according to criteria to be specified. Similarly, chaining rules for directed edges are
able to close gaps if necessary, that is, if the remaining parameters allow a consis-
tent interpretation.

5.4.3 Grouping of Edge Features to Extended Edges

The stripewise evaluation of image features discussed in Section 5.3 yields (beside
the nonplanar regions with potential corners) lists of corners, oriented edges, and
homogeneously shaded segments. These lists together with the corresponding in-
dex vectors allow fast navigation in the feature database retaining neighborhood re-
lationships. The index vectors contain for each search path the corresponding im-
age row (respectively, column), the index of the first segment in the list of results,
and the number of segments in each search path.

As an example, results of concatenation of edge elements (for column search)
are shown in Figure 5.44, lower right (from [Hofmann 2004]); the steps required are
discussed in the sequel. Analog to image evaluation, concatenation proceeds in
search path direction [top-down, see narrow rectangle near (a)] and from left to
right. The figure at the top shows the original video-field with the large white rec-
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tangle marking the part evaluated; the near sky and the motor hood are left off. All
features from this region are stored in the feature database. The lower two subfig-
ures are based on these data only.

At the lower left, a full reconstruction of image intensity is shown based on the
complete set of shading models on a fine scale, disregarding nonlinear image in-
tensity elements like corners and edges; these are taken here only for starting new
blob segments. The number of segments becomes very large if the quality of the
reconstructed image is requested to please human observers. However, if edges
from neighboring stripes are grouped together, the resulting extended line features
allow to reduce the number of shaded patches to satisfy a human observer and to
appreciate the result of image understanding by machine vision.

Linear concatenation of directed 2-D edges: Starting from the first entry in the
data structure for the edge feature, an entry into the neighboring search stripe is
looked for, which approximately satisfies the colinearity condition with the stored
edge direction at a distance corresponding to the width of the search stripe. To ac-
cept correspondence, the properties of a candidate edge point have to be similar to
the average properties of the edge elements already accepted for chaining. To
evaluate similarity, criteria like the Mahalanobis-distance may be computed, which
allow weighting the contributions of different parameters taken into account. A
threshold value then has to be satisfied to be accepted as sufficiently similar. An-

Original image (single video field, 768 pixel / row)i%
&

from all stripes,

T x
} £ - C
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Reconstructed intensity.image ( {_/é’ﬁge features over
' > Z stripes

Figure 5.44. From features in stripes (here vertical) to feature aggregations over the 2-D
image in direction of object recognition: (a) Reduced vertical range of interest (motor
hood and sky skipped). (b) Image of the scene as internally represented by symbolically
stored feature descriptions (‘imagined’ world). (¢) Concatenated edge features which to-
gether with homogeneously shaded areas form the basis for object hypothesis generation
and object tracking over time.
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other approach is to define intervals of similarity as functions of the parameters to
be compared; only those edge points are considered similar with respect to a yet
concatenated set of points, whose parameters lie within the intervals.

If a similar edge point is found, the following items are computed as a measure
of the quality of approximation to the interpolating straight line: The slope a, the
average value b, and the variance Var of the differences between all edge points
and the interpolating straight line. The edge point thus assigned is marked as
“used” so that it will no longer be considered when chaining other edge candidates,
thus saving computing time.

If no candidate in the interval of the search stripe considered qualifies for accep-
tance, a number of gaps up to a predefined limit may be bridged by the procedure
until concatenation for the contour at hand is considered finished. Then a new con-
tour element is started with the next yet unused edge point. The procedure ends
when no more edge points are available for starting or as candidates for chaining.
The result of concatenation is a list of linear edge elements described by the pa-
rameter set given in Table 5.3 [Hofmann 2004].

Linear concatenation admits edge points as candidates only when the orthogonal
distance to the interpolated straight line is below a threshold value specified by the
variance Var. If grouping of edge points along an arbitrary, smooth, continuous
curve is desired, this procedure is not applicable. For example, for a constantly
curved line, the method stops after reaching the epsilon-tube with a nominal curve.
Therefore, the next section gives an extension of the concatenation procedure for
grouping sets of points by local concatenation. By limiting the local extent of fea-
ture points already grouped, relative to which the new candidate point has to satisfy
similarity conditions (local window), smoothly changing or constantly curved ag-
gregated edges can be handled. With respect to the local window, the procedure is
exactly the same as before.

Table 5.3. Data structure for results of concatenation of linear edge elements

uBegin, Starting point in image coordinates (pixel)
vBegin
uEnd, vEnd End point in image coordinates
du, dv Direction components in image coordinates

AngleEdge Angle of edge direction in image plane

a Slope in image coordinates

b Reference point for the edge segment (average)

Len Length of edge segment

MeanL Average intensity value on left-hand side of the edge

MeanR Average intensity value on right-hand side of the edge

MeanSegPos Average segment length in direction of search path

MeanSegNeg Average segment length in opposite direction of search path

NrPoints Number of concatenated edge points
su, sV sum of u-, resp., v-coordinate values of concatenated edge points
suu, svv sum of the squares of u-, resp., v-coordinate values of concatenated
edge points

When the new edge point satisfies the conditions for grouping, the local window
is shifted so that the most distant concatenated edge point is dropped from the list




5.5 Visual Features Characteristic of General Outdoor Situations 181

for grouping. This grouping procedure terminates as soon as no new point for
grouping can be found any longer. The parameters in Table 5.3 are determined for
the total set of points grouped at the end. Since for termination of grouping the ep-
silon-tube is applied only to the local window, the variance of the deviations of all
edge points grouped relative to the interpolated straight line may and will be larger
than epsilon. Figure 5.44c (lower right) shows the results of this concatenation
process. The image has been compressed after evaluation in row direction for stan-
dard viewing conditions).

The lane markings and the lower bounds of features originating from other ve-
hicles are easily recognized after this grouping step. Handling the effects of shad-
ows has to be done by information from higher interpretation levels.

5.5 Visual Features Characteristic of General Outdoor
Situations

Due to diurnal and annual light intensity cycles and due to shading effects from
trees, woods, and buildings, etc., the conditions for visual scene recognition may
vary to a large extent. To recognize weather conditions and the state of vegetation
encountered in the environment, color recognition over large areas of the image
may be necessary. Since these are slowly changing conditions, in general, the cor-
responding image analysis can be done at a much lower rate (e.g., one to two or-
ders of magnitude less than the standard video rate, i.e., about every half second to
once every few seconds).

One important item for efficient image processing is the adaptation of threshold
values in the algorithms, depending on brightness and contrast in the image. Using
a few image stripes distributed horizontally and vertically across the image and
computing the statistic representation mentioned in Section 5.4 allows grasping the
essential effects efficiently at a relatively high rate. If necessary, the entire image
can be covered at different resolutions (depending on stripe width selected) at a
lower rate.

During the initial summation for reducing the stripe to a single vector, statistics
can be done yielding the brightest and the darkest pixel value encountered in each
cross-section and in the overall stripe. If the brightest and the darkest pixel values
in some cross-sections are far apart, the average values represented in the stripe
vector may not be very meaningful, and adjustments should be made for the next
round of evaluation.

On each pyramid level with spatial frequency reduced by a factor of 2, new
mean intensities and spatial gradients (contrasts)of lower frequency are obtained.
The maximum and minimum values on each level relative to those on other levels
yield an indication of the distribution of light in spatial frequencies in the stripe.
The top pixel of the pyramid represents the average image intensity (gray value) in
the stripe. The ratio of minimum to maximum brightness on each level yields the
maximum dynamic range of light intensity in the stripe. Evaluating these extreme
and average intensity values relative to each other provides the background for
threshold adaptation in the stripe region.
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For example, if all maximum light intensity values are small, the scene is dark,
and gradients should also be small (like when looking to the ground at dusk or
dawn or moonlight). However, if all maximum light intensity values are large, the
gradients may either be large or small (or in between). In the former case, there is
good contrast in the image, while in the latter one, the stripe may be bright all over
[like when looking to the sky (upper horizontal image stripe)], and contrast may be
poor on a high intensity level. Vertical stripes in such an image may still yield
good contrasts, as much so as to disallow image evaluation with standard threshold
settings in the dark regions (near the ground). Looking almost horizontally toward
a sunset is a typical example. The upper horizontal stripe may be almost saturated
all over in light intensity; a few lower stripes covering the ground may have very
low maximal values over all of the image columns (due to uniform automatic iris
adjustment over the entire image. The vertical extension of the region with average
intensities may be rather small. In this case, treating the lower part of the image
with different threshold values in standard algorithms may lead to successful inter-
pretation not achievable with homogeneous evaluations all over the entire image.

For this reason, cameras are often mounted looking slightly downward in order
to avoid the bright regions in the sky. (Note that for the same reason most cars
have shading devices at the top of the windshield to be adjusted by the human
driver if necessary.)

Concentrating attention on the sky, even weather conditions may be recogniz-
able in the long run. This field is wide open for future developments. Results of
these evaluations of general situational aspects may be presented to the overall
situation assessment system by a memory device similar to the scene tree for single
objects. This part has been indicated in Figure 5.1 on the right-hand side. There is a
‘specialist block” on level 2 (analogous to the object / subject-specialists labeled 3
and 4 to the left) which has to derive these non-object-oriented features which,
nonetheless, contribute to the situation and have to be taken into account for deci-
sion-making.
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Real-time vision is not perspective inversion of a sequence of images. Spatial re-
cognition of objects, as the first syllable (re-) indicates, requires previous knowl-
edge of structural elements of the 3-D shape of an object seen. Similarly, under-
standing of motion requires knowledge about some basic properties of temporal
processes to grasp more deeply what can be observed over time. To achieve this
deeper understanding while performing image evaluation, use will be made of the
knowledge representation methods described in Chapters 2 and 3 (shape and mo-
tion). These models will be fitted to the data streams observed exploiting and ex-
tending least-squares approximation techniques [Gauss 1809] in the form of recur-
sive estimation [Kalman 1960].

Gauss improved orbit determination from measurements of planet positions in
the sky by introducing the theoretical structure of planetary orbits as cuts through
cones. From Newton’s gravitational theory, it was hypothesized that planets move
in elliptical orbits. These ellipses have only a few parameters to completely de-
scribe the orbital plane and the trajectory in this plane. Gauss set up this descrip-
tion with the structure prespecified but all parameters of the solution open for ad-
justment depending on the measurement values, which were assumed to contain
noise effects. The parameters now were to be determined such that the sum of all
errors squared was minimal. This famous idea brought about an enormous increase
in accuracy for orbit determination and has been applied to many identification
tasks in the centuries following.

The model parameters could be adapted only after all measurements had been
taken and the data had been introduced en bloc (so-called batch processing). It took
almost two centuries to replace the batch processing method with sequential data
processing. The need for this occurred with space flight, when trajectories had to
be corrected after measuring the actual parameters achieved, which, usually, did
not exactly correspond to those intended. Early correction is important for saving
fuel and gaining payload. Digital computers started to provide the computing
power needed for this corrective trajectory shaping. Therefore, it was in the 1960s
that Kalman rephrased the least-squares approximation for evolving trajectories.
Now, no longer could the model for the analytically solved trajectory be used (in-
tegrals of the equations of motion), but the differential equations describing the
motion constraints had to be the starting point. Since the actually occurring distur-
bances are not known when a least-squares approximation is performed sequen-
tially, the statistical distribution of errors has to be known or has to be estimated
for formulating the algorithm. This step to “recursive estimation” opened up an-
other wide field of applications over the last five decades, especially since the ex-
tended Kalman filter (EKF) was introduced for handling nonlinear systems when
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they were linearized around a nominal reference trajectory known beforehand [Gelb
1974; Maybeck 1979; Kailath et al. 2000].

This EKF method has also been applied to image sequence processing with arbi-
trary motion models in the image plane (for example, noise corrupted constant
speed components), predominantly with little success in the general case. In the
mid-1980s, it had a bad reputation in the vision community. The situation changed,
when motion models according to the physical laws in 3-D space over time were
introduced. Of course, now perspective projection from physical space into the im-
age plane was part of the measurement process and had to be included in the meas-
urement model of the EKF. This was introduced by the author’s group in the first
half of the 1980s. At that time, there was much discussion in the Al and vision
communities about 2-D, 2.5-D, and 3-D approaches to visual perception of image
sequences [Marr, Nishihara 1978; Ballard, Brown 1982; Marr 1982; Hanson, Riseman
1987; Kanade 1987].

Two major goals were attempted in our approach to visual perception by unlim-
ited image sequences: (1) Avoid storing full images, if possible at all, even the last
few, and (2) introduce continuity conditions over time right from the beginning and
try to exploit knowledge on egomotion for depth understanding from image se-
quences. This joint use of knowledge on motion processes of objects in all four
physical dimensions (3-D space and time) has led to the designation “4-D approach
to dynamic vision” [Dickmanns 1987].

6.1 Introduction to the 4-D Approach for Spatiotemporal
Perception

Since the late 1970s, observer techniques as developed in systems dynamics [Luen-
berger 1966] have been used at UniBwM in the field of motion control by computer
vision [Meissner 1982; Meissner, Dickmanns 1983]. In the early 1980s, H.J. Wuensche
did a thorough comparison between observer and Kalman filter realizations in re-
cursive estimation applied to vision for the original task of balancing an inverted
pendulum on an electro-cart by computer vision [Wuensche 1983]. Since then, re-
fined versions of the extended Kalman filter (EKF) with numerical stabilization
(UDU-factorization, square root formulation) and sequential updates after each
new measurement have been applied as standard methods to all dynamic vision
problems at UniBwWM [Dickmanns, Wuensche 1999].

This approach has been developed based on years of experience gained from
applications such as satellite docking [Wuensche 1986], road vehicle guidance, and
on-board autonomous landing approaches of aircraft by machine vision. It was re-
alized in the mid-1980s that the joint use of dynamic models and temporal predic-
tions for several aspects of the overall problem in parallel was the key to achieving
a quantum jump in the performance level of autonomous systems based on ma-
chine vision. Recursive state estimation has been introduced for the interpretation
of 3-D motion of physical objects observed and for control computation based on
these estimated states. It was the feedback of knowledge thus gained to image fea-
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ture extraction and to the feature aggregation level, which allowed an increase in
efficiency of image sequence evaluation of one to two orders of magnitude.

Figure 6.1 gives a graphical overview.
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Figure 6.1. Multiple feedback loops on different space scales for efficient scene interpreta-
tion and behavior control: control of image acquisition and processing (lower left corner), 3-
D “imagination” space in upper half; motion control (lower right corner).

Following state prediction, the shape and the measurement models were ex-

ploited for determining:

viewing direction control by pointing the two-axis platform carrying the cam-
eras with lenses of different focal lengths;

locations in the image where information for the easiest, non-ambiguous and
accurate state estimation could be found (feature selection),

the orientation of edge features which allowed us to reduce the number of
search masks and directions for robust yet efficient and precise edge localiza-
tion,

the length of the search path as a function of the actual measurement uncer-
tainty,

strategies for efficient feature aggregation guided by the idea of gestalt of ob-
jects, and

the Jacobian matrices of first-order derivatives of feature positions relative to
state components in the dynamic models that contain rich information for inter-



186 6 Recursive State Estimation

pretation of the motion process in a least-squares error sense, given the motion
constraints, the features measured, and the statistical properties known.

This integral use of

1. dynamic models for motion of and around the center of gravity taking actual
control outputs and time delays into account,

2. spatial (3-D) shape models for specifying visually measurable features,

3. the perspective mapping models, and

4. feedback of prediction-errors for estimating the object state in 3-D space and
time simultaneously and in closed-loop form was termed the 4-D approach.

It is far more than a recursive estimation algorithm based on some arbitrary model

assumption in some arbitrary subspace or in the image plane. It is estimated from a

scan of publications in the field of vision that even in the mid-1990s, most of the

papers referring to Kalman filters did not take advantage of this integrated use of

spatiotemporal models based on physical processes.

Initially, in our applications just the ego vehicle has been assumed to move on a
smooth surface or trajectory, with the cameras fixed to the vehicle body. In the
meantime, solutions of rather general scenarios are available with several cameras
spatially arranged on a platform, which may be pointed by voluntary control rela-
tive to the vehicle body. These camera arrangements allow a wide simultaneous
field of view, a central area for trinocular (skew) stereo interpretation, and a small
area with high image resolution for “tele”-vision (see Chapter 11 below). The ve-
hicle may move in full six degrees of freedom; while moving, several other objects
may move independently in front of a stationary background. One of these objects
may be “fixated” (tracked) by the pointing device using inertial and visual feed-
back signals to keep the object (almost) centered in the high-resolution image. A
newly appearing object in the wide field of view may trigger a fast change in view-
ing direction such that this object can be analyzed in more detail by one of the tele-
cameras. This corresponds to “saccadic” vision as known from vertebrates and al-
lows very much reduced data rates for a complex sense of vision. It trades the need
for time-sliced attention control and scene reconstruction based on sampled data
(actual video image) for a data rate reduction of one to two orders of magnitude
compared to full resolution in the entire simultaneous field of view.

The 4-D approach lends itself to this type of vision since both object-orientation
and temporal (“dynamic™) models are already available in the system. This com-
plex system design for dynamic vision has been termed EMS vision (from expecta-
tion-based, multifocal, and saccadic vision). It has been implemented with an ex-
perimental set of up to five miniature TV cameras with different focal lengths and
different spectral characteristics on a two-axis pointing platform named multi-focal
active/reactive vehicle eye (MarVEye). Chapter 12 discusses the requirements lead-
ing to this design; some experimental results will be shown in Chapter 14.

For subjects (objects with the capability of information intake, behavior deci-
sion, and control output affecting future motion), knowledge required for motion
understanding has to encompass typical time histories of control output to achieve
some goal or state transition and the corresponding trajectories resulting. From the
trajectories of subjects (or parts thereof) observed by vision, the goal is to recog-
nize the maneuvers intended to gain reaction time for own behavior decision. In
this closed-loop context, real-time vision means activation of animation capabili-
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ties, including the potential behavioral capabilities (maneuvers, trajectory control
by feedback) of other subjects. As Figure 6.1 indicates, recursive estimation is not
confined to perceiving simple physical motion processes of objects (proper) but al-
lows recognizing diverse, complex motion processes of articulated bodies if the
corresponding maneuvers (or trajectories resulting) are part of the knowledge base
available. Even developments of situations can be tracked by observing these types
of motion processes of several objects and subjects of interest. Predictions and ex-
pectations allow directing perceptual resources and attention to what is considered
most important for behavior decision.

A large part of mental activities thus is an essential ingredient for understanding
motion behavior of subjects. This field has hardly been covered in the past but will
be important for future really intelligent autonomous systems. In the next section, a
summary of the basic assumptions underlying the 4-D approach is given.

6.2 Basic Assumptions Underlying the 4-D Approach

It is the explicit goal of this approach to take advantage as much as possible of
physical and mathematical models of processes happening in the real world. Mod-
els developed in the natural sciences and in engineering over the last centuries in
simulation technology and in systems engineering (decision and control) over the
last decades form the base for computer-internal representations of real-world pro-
cesses (see also Chapters 1 to 3):

1. The (mesoscopic) world observed happens in 3-D space and time as the four
independent variables; non-relativistic (Newtonian) and non-quantum-
mechanical models are sufficient for describing these processes.

2. All interactions with the real world happen here and now, at the location of the
body carrying special input/output devices. Especially the locations of the sen-
sors (for signal or data input) and of the actuators (for control output) as well as
those body regions with strongest interaction with the world (as, for example,
the wheels of ground vehicles) are of highest importance.

3. Efficient interpretation of sensor signals requires background knowledge about
the processes observed and controlled, that is, both its spatial and temporal
characteristics. Invariants for process understanding may be abstract model
components not graspable at one time.

4. Similarly, efficient computation of (favorable or optimal) control outputs can be
done only by taking complete (or partial) process models into account; control
theory provides the methods for fast and stable reactions.

5. Wise behavioral decisions require knowledge about the longer term outcome of
special feed-forward or feedback control modes in certain situations and envi-
ronments; these results are obtained from integration of dynamic models. This
may have been done beforehand and stored appropriately or may be done on
the spot if analytical solutions are available or numerical ones can be derived in
a small fraction of real time as becomes possible now with the increasing proc-
essing power at hand. Behaviors are realized by triggering the modes that are
available from point 4 above.
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6. Situations are made up of arrangements of objects, other active subjects, and of
the goals pursued; therefore,

7. it is essential to recognize single objects and subjects, their relative state, and
for the latter also, if possible, their intentions to make meaningful predictions
about the future development of a situation (which are needed for successful
behavioral decisions).

8. As the term re-cognition tells us, in the usual case it is assumed that objects
seen are (at least) generically known already. Only their appearance here (in the
geometrical range of operation of the senses) and now is new; this allows a fast
jump to an object hypothesis when first visual impressions arrive through sets
of features. Exploiting background knowledge, the model based perception
process has to be initiated. Free parameters in the generic object models may be
determined efficiently by attention control and the use of special algorithms and
behaviors.

9. To do step 8 efficiently, knowledge about “the world” has to be provided in the
context of task domains in which likely co-occurrences are represented (see
Chapters 4, 13, and 14). In addition, knowledge about discriminating features is
essential for correct hypothesis generation (indexing into the object database).

10. Most efficient object (class) descriptions by invariants are usually done in 3-D
space (for shape) and time (for motion constraints or stereotypical motion se-
guences). Modern microprocessors are sufficiently powerful for computing the
visual appearance of an object under given aspect conditions in an image (in a
single one, or even in several with different mapping parameters in parallel) at
runtime. They are even powerful enough to numerically compute the elements
of the Jacobian matrices for sensor/object pairs of features evaluated with re-
spect to object state or parameter values (see Sections 2.1.2 and 2.4.2); this al-
lows a very flexible general framework for recursive state and parameter esti-
mation. The inversion of perspective projection is thus reduced to a least-
squares model fit once the recursive process has been started. The underlying
assumption here is that local linearization of the overall process is a sufficiently
good representation of the nonlinear real process; for high evaluation rates like
video frequency (25 or 30 Hz), this is usually the case.

11.1In a running interpretation process of a dynamic scene, newly appearing objects
will occur in restricted areas of the image such that bottom-up search processes
may be confined to these areas. Passing cars, for example, always enter the
field of view from the side just above the ground; a small class of features al-
lows detecting them reliably.

12. Subjects, i.e., objects with the capability of self-induced generation of control
actuation, are characterized by typical (sometimes stereotypical, i.e., predictive)
motion behavior in certain situations. This may also be used for recognizing
them (similar to shape in the spatial domain).

13. The same object/subject may be represented internally on different scales with
various degrees of detail; this allows flexible and efficient use in changing con-
texts (e.g., as a function of distance or degree of attention).

Since the use of the terms “state variables” and “dimensions” rather often are quite
different in the Al/computer science communities, on one hand, and the natural sci-
ences and engineering, on the other hand, a few sentences are spent here to avoid
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confusion in the sequel. In mesoscale physics of everyday life there are no more
than four basic dimensions, three in space and time. In each spatial dimension there
is one translational degree of freedom (d.o.f.) along the axis and one rotational
d.o.f. around the axis, yielding six d.o.f. for rigid body motion, in total. Since New-
tonian mechanics requires a second-order differential equation for properly de-
scribing physical motion constraints, a rigid body requires 12 state variables for
full description of its motion; beside the 3 positions and 3 angles there are the cor-
responding temporal derivatives (speed components).

State variables in physical systems are defined as those variables that cannot be
changed at one time, but have to evolve over time according to the differential
equation constraints. A full set of state variables decouples the future evolution of a
system from the past. By choosing these physical state variables of all objects of
interest to represent scenes observed, there is no need to store previous images.
The past of all objects (relevant for future motion) is captured in the best estimates
for the actual state of the objects, at least in theory for objects known with cer-
tainty. Uncertainty in state estimation is reflected into the covariance matrix which
is part of the estimation process to be discussed. However, since object hypothesis
generation from sparse data is a weak point, some feature data have to be stored
over a few cycles for possible revisions needed later on.

Contrary to common practice in natural sciences and engineering, in computer
science, state variables change their values at one time (update of sampled data)
and then remain constant over the cycle time for computing. Since this fate is the
same for any type of variable data, the distinct property of state variables in phys-
ics tends to be overlooked and the term state variable (or in short state) tends to be
used abundantly for any type of variable, e.g., an acceleration as well as for a con-
trol variable or an output variable (computed possibly from a collection of both
state and control variables).

Another point of possible misunderstanding with respect to the term “dimen-
sion” stems from discretizing a state variable according to thresholds of resolution.
A total length may be subdivided into a sequence of discrete “states” (to avoid ex-
ceedingly high memory loads and search times); each of these new states is often
called a dimension in search space. Dealing with 2-D regions or 3-D volumes, this
discretization introduces strong increases in “problem dimensions” by the second
or third power of the subdivisions. Contrary to this approach often selected, for ex-
ample, in [Albus, Meystel 2001], here the object state in one entire degree of freedom
is precisely specified (to any resolution desired) by just two state variables: posi-
tion (pose or angle) and corresponding speed component. Therefore, in our ap-
proach, a rigid body does not need more than 12 state variables to describe its ac-
tual state (at time “now”) in all three spatial dimensions.

Note that the motion constraints through dynamic models prohibit large search
spaces in the 4-D approach once the pose of an object/subject has been perceived
correctly. Easily scalable homogeneous coordinates for describing relative posi-
tions/orientations are the second item guaranteeing efficiency.
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6.3 Structural Survey of the 4-D Approach

Figure 6.2 shows the main three activities running in parallel in an advanced ver-
sion of the 4-D approach:

Control of processes
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4-D approach to dynamic machine vision:

Model-based recognition ; Analysis through synthesis
Figure 6.2. Survey of the 4-D approach to dynamic machine vision with three major areas
of activity: Object detection and recognition (central arrow upward), object tracking and

state estimation (recursive loop at lower right), and learning (loop at center top); the latter
two are driven by prediction-error feedback.

1. Detection of objects from typical collections of features not yet assigned to
some object already tracked (center, arrow upward). When these feature collec-
tions are stable over several frames, an object hypothesis is formed, and the
new object is added to the list of objects regularly tracked (arrow in upper part
of center to the right).

2. Tracking of objects and state estimation is shown in the loop at the lower
right in Figure 6.2; first, with the control output chosen, a single step prediction
is done in 3-D space and time, the “imagined real world.” This new state is
taken for projecting features to be tracked into the individual image planes for
each camera involved. Prediction-error feedback is then used for improving
state and parameter estimation based on the rich first-order derivative informa-
tion contained in the Jacobian matrices for each camera-object pair. This chap-
ter is devoted mainly to this topic.

3. Learning from observation is done with the same data as for tracking; how-
ever, this is not a single step loop but rather a low frequency estimation compo-
nent concentrating on “constant” parameters, or it is even an off-line compo-
nent with batch processing of stored data. This area is still under development
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at present; it will open up the architecture to becoming more autonomous in
knowledge acquisition in new task domains as experience with the system
grows. Both dynamical models (for the “where”-part) and shape models (for
the “what”-part) shall be learnable in the future.

Note that in the 4-D approach, system behavior is always considered in a closed,
real-time loop; both perception and behavior control are derived from spatio-
temporal models. The method has become mature and has remained stable for vis-
ual relative state estimation over two decades by now.

First, one proven implementation of the extended Kalman filter (EKF) method
for recursive estimation by vision will be discussed; based on the insight gained,
steps toward initialization of the tracking method will be mentioned.

6.4 Recursive Estimation Techniques for Dynamic Vision

As mentioned in the introduction to this chapter, the basic method is a recursive re-
formulation of the Gaussian least squares approach to fitting a solution curve of
known structure to a set of measurement data. Many variants have been derived in
the meantime; they will not be discussed here. There is a rich literature on this
topic available; even Web-search machines turn up a host of references and re-
views. Some standard references are [Maybeck 1979, 1990; Bar Shalom, Li 1998;
Kailath er al. 2000]. A recent book dedicated to “probabilistic robotics” is [Thrun ez
al. 2005]. As a basic reference to probability theory, the book [Jaynes 2003] is rec-
ommended. The reader not acquainted with Kalman filtering should refer to one of
these references if the description given here misses depth.

In view of these facts, here only the approach as developed at UniBwM will be
retraced. It has allowed achieving many “firsts” in visual guidance for autonomous
vehicles. It has been appreciated from the beginning that the linearization of per-
spective mapping, taking the prediction of motion components into account, would
yield excellent first-order approximations compensating for the loss of depth in-
formation in a single snapshot image. This turned out to be true and immediately
allowed motion stereointerpretation of dynamic scenes observed.

6.4.1 Introduction to Recursive Estimation

The n-vector of state variables x(t) of a dynamical system defined by the differen-
tial equation
(1) = fIx(1), ut), (1), p,], (6.1)

with u(t) an r-vector of control variables, z(t) an n-vector of disturbances, and ps a
vector of parameters of the system, usually, cannot be measured directly but only
through an m-vector y(t,) of output variables at discrete points t, in time (index k,
for short: at time k) spoiled by some superimposed measurement noise w’(t),
whose statistics are assumed to be known sufficiently well.
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The continuous, usually nonlinear dynamic model Equation 6.1 is transformed
into a discrete linear state transition model for sampled data with cycle time T by
one of the standard methods in systems theory (see Sections 2.2.3, 3.4.1 and, for
example, [Kailath 1980]). The standard form then is (Equation 3.7)

X =A- X, +Bu,_; +Vv, (6.2)
with A the n-n state transition matrix from (k-1)T to kT, B the n-r control effect ma-
trix, and v(z(t), T) the discrete noise term. For linearized systems, all these terms
may depend on the nominal state and control variables xy and uy, in general.

The observable output variables y(k) may also depend nonlinearly on the state
variables, and on some known or unknown (measurement) parameters py, like in
perspective mapping for vision

y(k) = h[x(k), p, ] + w(k). (6.3)

Therefore, the state variables have to be reconstructed from the output variables
by exploiting knowledge about the dynamical process itself and about the meas-
urement process h.

In vision, the measurement process is perspective projection, assumed here to be
sufficiently well described by a pinhole camera model (straight lines of light rays
through a pinhole). This is a nonlinear mathematical operation with no direct in-
version available. As will be detailed later, the nonlinear measurement equation is
linearized around the predicted nominal state xy of the process and the nominal pa-
rameter set py (g values) yielding (without the noise term)

y* (k) = yy (k) +38y(k)
=N(xy (k), py, k) +C, (k) -3x(k) + C, (k) -3p

where C, = oh/ox|y and C, = ch/op|y are the Jacobian matrices of perspective map-
ping with respect to the state components and the parameters involved. Since the
first terms on the right-hand side of the equality sign are equal by definition, Equa-
tion 6.4 may be used to determine ox and Jp as deviations from the nominal values
Xn and py in a least-squares sense from 8y, the measured prediction errors:

8y(k) = C, (k)-3x(k) +C, (k) -3p . (65)

To achieve this goal under the side constraints of Equations 6.2 and 6.4, the ac-
tual error covariance matrix P of the overall system and the covariance matrices Q
of the dynamic system as well as R of the measurement model have to be known;
observability is assumed to be given. This is the core of recursive estimation. The
basic mathematical relationships will be given in the next section.

Note that through Equation 6.2 and the covariance matrix Q, temporal continu-
ity with some room for stochastic adjustment is introduced into the interpretation
process. The challenge is to find out how prediction errors dy should contribute to
improving the various components of 6x and op.

(6.4)

6.4.2 General Procedure

The reader is assumed to have some understanding of Kalman filtering as a recur-
sive estimation process; therefore, a somewhat unusual approach is taken here. If
difficulties in understanding should occur, the reader is recommended to one of the
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basic textbooks to close the gap. The description is rather pragmatic and com-
pletely oriented towards real-time vision. For this specific application, the treat-
ment is rather exhaustive, so that the reader should be able to gain full understand-
ing of the basic ideas and application details.

6.4.2.1 Sequence of Steps

First, starting values x*(0) for the iteration have to be found before the recursive
loop can be initiated.

If not available otherwise, find a good guess for the n initial state components
x*(0) to start with (initial hypothesis).

Find an estimate for the probability distribution of this initial state in terms of
the first and second moments of a Gaussian distribution (mean value X, and the

(n-n) error covariance matrix Po,. The mean value is set to the estimated initial
state: X, = x*(0), which is believed to represent the best knowledge available,

but of course, is not the real value of x at k = 0. With the covariance matrix P,
the Gaussian probability distribution from the second moment by definition is
the following expression:

P(R,) = det(2xP,) ' exp[ ~4 (x = %) Py (x = %,) |. (6.6)

Assuming that the state components are independent of each other, the off-
diagonal terms in Py are zero, and the diagonal terms are the variance compo-
nents o’ of the states. This gives hints for finding good guesses for these
terms.

Now the time index is incremented (k—1 = Kqg; k = Kqig+1) and the state vari-
ables are predicted over one computing cycle exploiting the dynamic model
of the plant (Equation 6.2 with transition matrix A and control effect matrix
B, but without the noise term) => x*(k) . For nonlinear systems, this may be
done either with an analytical solution of the linearized state equations or by
numerical integration using the nonlinear model.

From the measurement model (Equation 6.3), compute the predicted nominal
measurement values y* (no noise)

y*(k) =h[x*(k), p,] (6.7
The usual noise model assumed is
E{w}=0
and (6.8)

E[w'w]=R (white noise).
Take the actual measurement values y(k) and compute the prediction errors:
8y (k) = y(k)—y*(k), (6.9)

for driving the iteration. Deeper understanding of visual interpretation is a-
chieved through the linear approximation around the expected point according
to Equation 6.5. Therefore, compute the Jacobian matrices C; (see Section
2.1.2). [To simplify notation from here on, new state variables X+ t0 X n.q are
defined with derivatives = 0 (constants) and driven by a noise term (for ad-
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justment). By increasing the order of the system from ngg to n = nyg + g and
by proper adjustment of all matrices involved, there need not be a distinction
any longer between states and parameters. The C-matrix now has dimension
m- (nyg + Q). For efficient coding, state variables and parameters should be
treated separately, however.]

e Improve the state estimate by the “innovation step” exploiting a (yet open)
gain matrix K(k) with the assumption that changes are small so that the linear
terms capture most of the functional relationships around x*(k):

K(k) = x*(k)+ K(k)-dy*(k) (6.10)

This new estimate for the state variables is the base for the next recursion loop.

6.4.2.2 Selection of the Matrix for Prediction-Error Feedback

Depending on the computational scheme for determining K(k), different methods
are distinguished:

deterministic scheme (no noise modeled) = Luenberger observer

stochastic scheme = Kalman filter.
Here, only the Kalman filter will be discussed, though in the first several years of
our research into recursive vision, the Luenberger observer has shown very good
performance, too [Meissner 1982]. In contrast to the (deterministic) observer, the so-
called “Kalman-gain” matrix K(k) is obtained from stochastic reasoning. Let the
dynamic system (plant) be described by Equation 6.2 with noise property

E[v]=0, E[v'v]=Q. (6.11)

The covariance matrices Q(k) for the motion prediction step and R(k) for the
measurement noise have to be determined from existing knowledge or heuristic
reasoning. Since they affect the convergence process in recursive estimation, spe-
cial care has to be taken when specifying these values. This process is known as
filter tuning, and the topic has to be revisited below. x*(0), v(0) and w(0) are as-
sumed to be uncorrelated.

Start of recursive loop: Increment time index k = k+1; predict expected values of
state variables (Equation 6.2 without noise v) and the expected error covariance
matrix (both marked by * as expected values);

x* =Ak-1)-%_,+B(k-1)-u,,,

P*(k)=AKk-1)-P(k-1)- A" (k-1) +Q(k —1).
The challenge now is to find a gain matrix K(k) such that the error covariance after
inclusion of the new measurement values is minimized [matrix P(k)]. The predic-
tion error 8X(k) will be the unknown real state x(k) minus the best estimate

X(k) yet to be found:

(6.12)

3% (k) = x(k) — (k) . (6.13)
The covariance matrix of the estimation error P = E[5%-6%"]follows with
Equation 6.10 for X(k) as
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P = E{[x(k) — X(K)]- [x(k) — X(k)]"}

. (6.14)
=E{[x—x*-K-C-3x*]-[x—x*-K-C-ox*] }.
The output error covariance with 8y = Céx*+v and Equation 6.11 is
E{0y-8y" }= E{(Cox*+V)-(Cox*+Vv)'}=C-P*.C" +R. (6.15)
Finding that matrix K that minimizes P under the given side constraints, yields
K=P*C'{C-P*C" +R}". (6.16)

With this result Equation 6.14 reduces to the well-known form for updating the er-
ror covariance matrix
P(k) = P*(k) - K(k)-C(k)-P*(k). (6.17)

6.4.2.3 Complete Recursion Loop in Kalman Filtering

These results are summarized in the following table as algorithmic steps for the ba-
sic version of the extended Kalman filter for real-time vision (4-D approach):

1. Find a good guess for the n initial state components x*(0) to start with [initial
hypothesis k = 0, %, =x*(0)].

2. Find an estimate for the probability distribution of this initial state in terms of
the first and second moments of a Gaussian distribution (mean value X, and
the (n-n) error covariance matrix Po). The diagonal terms are the components
o’ of the variance.

3. Find an estimate for the covariance matrices Q = E{v'v} of system noise v
and R = E{w'w} of measurement noise w.

—» Entry point for recursively running loop

4. Increment time index k = k+1;

5. Compute expected values for state variables at time k+1 (state prediction
x*K):  x* =Ak-1)-X_,+Bk-1)-u,_,.

6. Predict expected error covariance matrix P*(k) (components: state prediction
and noise corruption): P*(k)=A(k-1)-P(k-1)- A" (k-1)+Q(k -1).

7. Compute the expected measurement values y* (k) = h[x*(k), p,,] and the
(total) Jacobian matrix C = dy*/ ox|y as first-order approximations around this

oint.

8. E:ompute the gain matrix for prediction error feedback:

K=P*C' .{C-P*C" +R}".

9. Update the state variables (innovation) to the +best estimates, including the
last measurement values: X(k) = x* (k) + K (k) -[y(k) — y*(k)] .

10. Update the error covariance matrix (innovation of statistical properties):

P(k) =P*(k) - K(k)-C(k)-P*(k).

— Go back to step 4 for next loop.

Steps for monitoring convergence and progress in the vision process will be dis-
cussed in connection with applications.
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6.4.3 The Stabilized Kalman Filter

Equation 6.17 is not well conditioned for use on a computer with limited word
length. Canceling of significant digits may lead to asymmetries not allowed by the
definition of P*. Numerically better conditioned is the following equation (I =
identity matrix):

P=(1-K-C)-P*(I-K-C)" +K-R-KT, (6.18)
which results from using the reformulated Equation 6.16 (multiplying by the {}-
term)

KCP*CT +KR=P*C" - K-R=(I-K-C)P*C". (6.19)
Multiplying the right-hand form by K" from the right and shifting terms to the left
side of the equality sign yields

—(I-K-C)-P*CT-K" +K-R-K" =0. (6.20)
Adding this (0) to Equation 6.17 in the form P = (1 - K C ) P* yields Equation
6.18.

6.4.4 Remarks on Kalman Filtering

Filter tuning, that is, selecting proper parameter settings for the recursive algo-
rithm, is essential for good performance of the method. A few points of view will
be discussed in this section.

6.4.4.1 Influence of the Covariance Matrices Q and R on the Gain Matrix K

The basic effects of the influence of the covariance matrices Q and R on the gain
matrix K can be seen from the following simple scalar example: Consider the case
of just one state variable which may be measured directly as the output variable r:
X =aXy+bu,+vi, =6, +0+s .,
Ve =C X+ W =T +Sy, (6.21)
Q) =E{s;}=0;;  R(K)=E{s] }= o).
The variance of the prediction error then is

P*(k) = p*(k) = p(k-1) + &%, (6.22)
and for the scalar gain factor K, one obtains
K(k)=[pk-1)+c> ]/[p(k—1)+c§+c§] . (6.23)

Two limiting cases for the noise terms o> and ci show the effect of different val-

2
X !

ues of variances on the progress of the iteration. Forcf, <<o
measurements, a K value just below 1 results; for example,

f(k) = r*(k)+0.95{r, (k) —r*(k)}=0.05r*(k)+0.95 r, (k). (6.24)
This tells us for example, that when initial conditions are poor guesses and meas-
urement data are rather reliable, the R elements should be much smaller than the Q-

i.e., very good
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elements. But when the dynamic models are good and measurements are rather
noisy, they should be selected the other way round. For c§ >>c, i.e., for very poor
measurement data, a small filter gain factor K results; for example,
f(k)=r*(k)+0.1r, (k) -r*k)]=0.9 r*(k)+0.1r, (k). (6.25)
With poor measurements, also the variance of the estimation error will be im-
proved only a little:
p(k)=p*(k)-K-p*(k)=(1-K) p*(k) .

e.g., K=0.1 => p(k) = 0.9- p*(k).

These considerations carry over to the multivariate case.

(6.26)

6.4.4.2 Kalman Filter Design

For the observer (not treated here), the specification of the filter gain matrix is
achieved by assigning desired eigenvalues to the matrix (pole positions). In the
Kalman filter, the gain matrix K(k) is obtained automatically from the covariance
matrices Q(k) and R(k), assumed to be known for all t, , as well as from the error
covariance matrix P*.

K(K) results from P*;, R(k) and Q(K): P*, may be obtained by estimating the
quality of in-advance-knowledge about x, (how good/certain is X,?). R(k) may
eventually be derived from an analysis of the measurement principle used. On the
contrary, finding good information about Q(k) is often hard: Both the inaccuracies
of the dynamic model and perturbations on the process are not known, usually.

In practice, often heuristic methods are used to determine K(k): Initially, change
Q(k) only, for fixed R(k), based on engineering judgment. Then, after achieving
useful results, also change R(k) as long as the filter does not show the desired per-
formance level (filter tuning).

The initial transient behavior is essentially determined by the choice of P*,: The
closer P*, is chosen with respect to (the unknown) P*(k), the better the conver-
gence will be. However, the larger initial covariance values P*, selected, the more
will measured values be taken into account. (Compare the single variable case:
Large initial values of p*(k) resulted in K-values close to 1, => strong influence of
the measured values.) But note that this can be afforded only if measurement noise
R is not too large; otherwise, there may be no convergence at all. Filter tuning is
often referred to as an art because of the difficulties in correctly grasping all the
complex interrelationships.

6.4.4.3 Computational Load

For m measurement values, an (m x m) matrix has to be inverted to compute the
filter gain matrix K(k). In the numerical approach, first a transformation into trian-
gular form via the Householder transformation is done; then recursive elimination
is performed.

Especially in the stabilized form (Equation 6.18, called the “Joseph”-form),
computing load is considerable. This has led to alternative methods: Briefly dis-
cussed will be sequential Kalman filtering and UDU"-factored Kalman filtering.
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Gauss-Markov estimators with postfiltering are not discussed here; in this ap-
proach, in which more measurement equations than state variables have to be
available, the noise corrupted state variables arrived at by a Gauss-Markov estima-
tor are filtered in a second step. Its advantage lies in the fact that for each state
variable a filter factor between 0 and 1 can be set separately. Details on several re-
cursive filter types may be found in the reference [Thrun ez al. 2005].

6.4.5 Kalman Filter with Sequential Innovation

At time t,, the m, measurement values are obtained:
y(k) =h[x(K)]+w(k); E{w}=0; E{ww}=R (6.27)
For innovation of the state variables (see Section 6.4.2)
(k) =x*(k)+K(k)-[y(k) - y* (k)]
the nxn dimensional filter gain matrix
K(k) =P*(k)-C" (k)[C(k)-P*(k)-C" (k) + R(k)]*
is obtained by inversion of a matrix of dimension my, x my. The central statement
for the so-called “sequential innovation” is
Under certain conditions, an m,-dimensional measurement vector can always be

treated like my scalar single measurements that are exploited sequentially; this re-
duces the matrix inversion to a sequence of scalar divisions.

6.4.5.1 Preconditions

The m, measurement values have to be uncorrelated, that means R(k) has to be (es-
sentially) a diagonal matrix. If the covariance matrix R(k) is blockwise diagonal,
the corresponding subvectors may be treated sequentially. Correlated measure-
ments may always be transformed into uncorrelated pseudo-measurement data
which then may be treated sequentially [Maybeck 1979, p. 375].

In image processing, different features derived from video signals can be as-
sumed to be uncorrelated if the attributes of such features are gained by different
processors and with different algorithms. Attributes of a single feature (e.g., the y-
and z- components in the image plane) may well be correlated.

6.4.5.2 Algorithm for Sequential Innovation

The first scalar measurement at a sampling point ty,

yi(k) = gu[x(K)]+wy(k), E{w}=0, E{w}=s, (6.28)
leads to the first partial innovation [in the sequel, the index k will be given only
when needed for clarity; k; in the following is a column-vector of Kalman gains]:

d%, =k (y, - y™)- (6.29)
The (nx1)-dimensional filter vector k; is computed by
k=P c (c,Pc +s)7" P, = P*(k). (6.30)

Here, c; is the first row (vector) of the Jacobian matrix C(k) corresponding to y;.
After this first partial innovation, the following terms may be computed:



6.4 Recursive Estimation Techniques for Dynamic Vision 199

X, (k) = x* (k) + dX, (k), (improved estimate for the state)
P, =P, -k, P,  (improved error covariance matrix).
For the I-th partial innovation
dx, =d&,, +k,(y,-¥*), =1 ... ,m, dX, (6.32)
momentarily the best estimate for y, has to be inserted. This estimate is based on
the improved estimated value for x:

(6.31)

x*, (k) = X4 (k) = x* (k) +dX, , ; (6.33)
it may be computed either via the complete perspective mapping equation
Yy (k) =h, [x*, (K)], (6.34)

or, to save computer time, by correction of the predicted measurement value (at ty.;
for t) y*i0:
y* (K)=y* o (K)+c, -dX,,; (simplification: ¢, ~ const for t = t,). (6.35)
With this, the complete algorithm for sequential innovation is

Initialization:
Y*o=0, [x*(k) 1, =1 ... , m,
512 = E{Wf}l Y =9 [X|] + w, (6.36)
c, =dy* ,/dx, =1 ... , my,
dx, =0, P, = P*(k).
Recursionfor =1, ..., my:

y* = y* o+ ¢ -dX 4, (simplification: ¢, ~ const fort=t,)

kl =P ClT /(CI P ClT +S|2),

dx, =d% 5+ Kk, (y, —y*), (6.37)
P =P.i-k ¢ P,

Finalstepatt, :  X(k)=x*(k)+dx,, P(k) =h,.

6.4.6 Square Root Filters

Appreciable numerical problems may be encountered even in the so-called stabi-

lized form, especially with computers of limited word length (such as in navigation

computers onboard vehicles of the not too far past): Negative eigenvalues of P(k)

for poorly conditioned models could occur numerically, for example,

— very good measurements (eigenvalues of R small compared to those of P*),
amplified, for example, by large eigenvalues of Py;

— large differences in the observability of single state variables, i.e. large differ-
ences in the eigenvalues of P(k).

These problems have led to the development of so-called square root filters [Pot-
ter 1964] for use in the Apollo onboard computer. The equations for recursive com-
putation of P are substituted by equations for a recursion in the square root matrix
P¥2. The filter gain matrix K then is directly computed from PY2 This has the ad-
vantage that the eigenvalues allowable due to the limited word length of the co-
variance matrices P and R are increased considerably. For example, let the variance
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of the state variable “position of the space vehicle” be s? = 10° m? and the variance
of the measurement value “angle™: s7 =10 rad’. The numerical range for P , R

then is 10™°, while the numerical range for P2, R¥? is 10°.

For modern general-purpose microprocessors, this aspect may no longer be of
concern. However, specialized hardware could still gain from exploiting this prob-
lem formulation.

What is the “square roots of a matrix™? For each positive semidefinite matrix P
there exist multiple roots P¥2with the property P2 P*? = p. Of especial interest for
numerical computations are triangular decompositions. Cholesky decompositions
use the “lower” triangular matrices L: P = L L". With the so-called Carlson filter,
“upper” triangular matrices U' are being used: P = U' U'". Their disadvantage is the
relative costly computation of at least n scalar square roots for each recursion step.
This may be bypassed by using triangular matrices with 1s on the diagonal (unitar-
ian upper triangular matrices U) and a diagonal matrix D that may be treated as a
vector.

6.4.6.1 Kalman Filter with UDU'-Factorized Covariance Matrix

This method has been developed by Thornton and Bierman [Thornton, Bierman
1980]. It can be summarized by the following bullets:
¢ Use the decomposition of the covariance matrix

P=UDU". (6.38)
Due to the property U D*? = U, this filter is considered to belong to the class of
square root filters.
¢ In the recursion equations, the following replacement has to be done:

P* by U*D* U* . (6.39)

Modified innovation equations

o Starting from the sequential formulation of the innovation equations (with k; as
column vectors of the Kalman gain matrix and c; as row vectors of the Jacobian
matrix)

ki =PR,c /(c Pycl +s0), (6.40)
dX, =d%, + k(y,—y™*), (6.41)
Pi = Pi-l - ki Ci P|1 (6'42)

Equation 6.40 is introduced into Equation 6.42; by substituting
P, by U_D U’ (P, = P* =U*D*U*),
R by UDU (R, =P=UDU",
there follows
U.DUT=UDU’T-@U._DU'¢cUDUT)/(cU DU +5]), (6.43)

:u,{D,-[(D,ufciT) (DUTe) 1/(cuU_ DU +sf)}uf.

o With the definition of two column vectors with n components each
f=UTc, e=D_ f, , (6.44)



6.4 Recursive Estimation Techniques for Dynamic Vision 201

a scalar g, called the innovation covariance,

q=cUDU'c +s’ =57 +f-e=D;-f, (6.45)
and
U,DU] =U (D_-e-e"/q)uU’. (6.46)

the innovation of U and D is reduced to a decomposition of the symmetric
matrix (D_—e-e'/q):
(D_—e -e"/q)=U°D° U . There follows:

U.DUl=U_U°%D° U U, (6.47)
that is, U,=U_u°D, =D
e Computation of the n - 1 filter vector k; follows directly from Equation 6.40:
ki =U_e/q. (6.48)
e The recursive innovation for each of the m, measurement values then is
1. f=Ul_¢c .
2. qi=5i2+Di7'jj'fi’j; i=1 ... N,
3. ¢=D_f.
4. k=U_eglq.
5. recursive computation of U and D? from (D, —¢,- ' /q).
6. U,=U, U/’ .
7. D,=D’.
8. SetU;, = U, and D,,, = D, forthe next measurement value.
9. Repeatstepslto8fori=1,...., m
10. SetU =U, . and D =D, as starting values for the prediction step.

Extrapolation of the covariance matrix in UDU -factorized form:
The somewhat involved derivation is based on a Gram-Schmidt vector orthogo-
nalization and may be found in [Maybeck 1979, p. 396] Or [Thornton, Bierman 1977].
e The starting point is the prediction of the covariance matrix:
P*(k)=A(k-1) P(k-1) A" (k-1) +Q(k-1),,
with the decompositions,
P=UDU" and Q=U,D,Ug. (Us=lifQisdiagonal). (g 49)
P, by U_D u’ (P, =P* = U*D*U*),
P yb U,D, U (R, = P* =U*D*U*).
e U* and D* are to be found such that

U,DU/ =AUDU'A" + U, D, Ug (6.50)

=W D W' + U, D, U,
For this purpose, the following matrices are defined:
W =(A-U, U,) dimension:n x 2n, (6.51)
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D 0 : :
D :{0 DJ dimension: 2n x 2n . (6.52)
e The recursion obtained then is
Initialization: [a,, a,, ...... ,a, ] =WT" (column vectors a; of the transition
matrix A are rows of W). Recursion backwards for «k =n, n-1, ...., 1.
h.=D_a_; (hg=D_ a4 =12 ..,
1. . (6.53)
dim{h_}: 2n).
2. D,. =a] h_(scalar). (6.54)
3. d,. =h_/D,_. (normalizes diagonal terms to 1). (6.55)
4a, For j=1,..,x-1: U _=a -d. (@
j w=a;-d. (@) (6.56)
4b. Replacea; by (a; -U; - a,). (b)

6.4.6.2 Computational Aspects

The matrices U and D are stored as compact vectors. The recursion may be further
speeded up for sparse transition matrices A(k). In this case, index vectors for the
rows of A indicate at what column index the nonzero elements start and end; only
these elements contribute to the vector products. In an example with n = 8 state
variables and m, = 6 measurement values, by using this approach, half the comput-
ing time was needed with simultaneously improved stability compared to a Kalman
filter with sequential innovation.

6.4.6.3 General Remarks

With the UDU -factored Kalman filter, an innovation, that is, an improvement of
the existing state estimation, may be performed with just one measurement value
(observability given). The innovation covariance in Equation 6.45

q=cU DU'c +s’=s’+D; f;, j=1, ...n,

f=U"¢c,
is a measure for the momentary estimation quality; it provides information about
an error zone around the predicted measurement value y;* that may be used to

judge the quality of the arriving measurement values. If they are too far off, it may
be wise to discard this measured value all together.

(6.57)

6.4.7 Conclusion of Recursive Estimation for Dynamic Vision

The background and general theory of recursive estimation underlying the 4-D ap-
proach to dynamic vision have been presented in this chapter. Before the overall
integration for complex applications is discussed in detail, a closer look at major
components including the specific initialization requirements is in order: This will
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be done for road detection and tracking in Chapters 7 to 10; for vehicle detection
and tracking, it is discussed in Chapter 11. The more complex task with many ve-
hicles on roads will be treated in Chapter 14 after the resulting system architecture
for integration of the diverse types of knowledge needed has been looked at in
Chapter 13.

The sequence of increasing complexity will start here with an ideally flat road
with no perturbations in pitch on the vehicle and the camera mounted directly onto
the vehicle body. Horizontal road curvature and self-localization on the road are to
be recognized; [this has been dubbed SLAM (self-localization and mapping) since
the late 1990s]. As next steps, systematic variations in road (lane) width and rec-
ognition of vertical curvature are investigated. These items have to be studied in
conjunction to disambiguate the image inversion problem in 3-D space over time.
There also is a cross-connection between the pitching motion of the vehicle and es-
timation of lane or road width. It even turned out that temporal frequencies have to
be separated when precise state estimation is looked for. Depending on the loading
conditions of cars, their stationary pitch angle will be different; due to gas con-
sumption over longer periods of driving, this quasi-stationary pitch angle will
slowly change over time. To adjust this parameter that is important for visual range
estimation correspondingly, two separate estimation loops with different time con-
stants and specific state variables are necessary (actual dynamic pitch angle 6y, and
the quasi-stationary bias angle 6. This shows that in the 4-D approach, even sub-
tle points in understanding visual perception can be implemented straight-
forwardly.

Recursive estimation is not just a mathematical tool that can be applied in an
arbitrary way (without having to bear the consequences), but the models both for
motion in the real world and for perspective mapping (including motion blur!) have
to be kept in mind when designing a high-performance dynamic vision system.

Provisions to be implemented for intelligent control of feature extraction in the
task context will be given for these application domains. As mentioned before,
most gain in efficiency is achieved by looking at the perception and control process
in closed-loop fashion and by exploiting the same spatiotemporal models for all
subtasks involved.

The following scheme summarizes the recursive estimation loop with sequential
innovation and UDU"-factorization as it has been used in standard form with minor
modifications over almost two decades.

Complete scheme with recursion loops in sequential Kalman filtering and
UDU-factorization.

1. Find a good guess for the n initial state components x*(0) to start with (initial hypothe-
sisk=0, X, =x*(0)).

2. Find an estimate for the probability distribution of this initial state in terms of the first
and second moments of a Gaussian distribution (mean value X, and the (nxn) error co-
variance matrix Pg in factorized form UgDoU," ). The terms on the main diagonal of
matrix Dy now are the variance components 7 .

3. If the plant noise covariance matrix Q is diagonal, the starting value for Uy is the iden-
tity matrix I, and Q is Q =U, D, U; with D, the (guessed or approximately known)
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values on the diagonal of the covariance matrix E{v'v}. In the sequential formulation,
the measurement covariance matrix R = E{w"w} is replaced by the diagonal terms
s’ = E{w’} (Equation 6.28)
—» Entry point for recursively running main loop (over time)
4. Increment time index k = k+1.
5. Compute expected values for state variables at time k+1 [state prediction x*(k)]:
x* =Ak-1)-%_,+B(k-1)-u,,.
6. Compute the expected measurement values y* (k) = h[x*(k), p,,] and the (total)

Jacobian matrix C = oy*/ ox|y as first-order approximations around this point.
7. Predict expected error covariance matrix P*(k) in factorized form (Equations 6.43 and
6.49):
7.1 Initialize matricesW =[A-U, U, ] (dimension: n-2n; Equation 6.51)

D O
and D :{ } (dimension: 2n-2n, Equation 6.52).

0 D,
Entry point for sequential computation of expected error covariance matrix
7.2 Recursion backward fork=n,n-1, ...., 1 (Equations. 6.53 — 6.56)

h,=Da; (h;=D a i=1 2, ..., n; dim{h }:2n+1);

T . — .
scalar D =a] -h_;vector d_=h_/D_;

K !

(for j=1, .., x-1: U, =aj-d.)replace a;, by (a;-U; a).
go back to step 7.2 for prediction of error covariance matrix

8. Read new measurement values y(k); my in size (may vary with time k).
9. Recursive innovation for each of the m, measurement values:

Initialize with i = 1.
—»Entry point for sequential innovation (Equations 6.40 — 6.48)

9.1: f=U ¢, 9.2: q;=s7+D_;-f;, j=1.,n
93: ¢ =D_f, 94: k,=U,_e/q,

9.5: recursive computation of U° and D? from (D,_—¢, € /q),

96: U, =U,_ U7, 9.7: D, =D?,

9.8:Set U;,,_=U,, and D, =D, forthe next measurement value.

Increment i by 1
L— go back to 9.1 for next inner innovation loop as long as i <m.

(Loop 9 yields the matrices U =U,, , and D = D, , for prediction step 7.)

10. Monitor progress of perception process;
L go back to step 4 for next time step k = k+1.

This loop may run indefinitely, controlled by higher perception levels, possibly triggered
by step 10.



7 Beginnings of Spatiotemporal Road
and Ego-state Recognition

In the previous chapters, we have discussed basic elements of the 4-D approach to
dynamic vision. After an introduction to the general way of thinking (in Chapter
1), the basic general relations between the real world in 3-D space and time, on one
hand, and features in 2-D images, on the other, have been discussed in Chapter 2.
Chapter 5 was devoted to the basic techniques for image feature extraction. In
Chapter 6, the elementary parts of recursive estimation developed for dynamic vi-
sion have been introduced. They avoid the need for storing image sequences by
combining 3-D shape models and 3-D motion models of objects with the theory of
perspective mapping (measurement models) and feature extraction methods. All
this together was shown to constitute a very powerful general approach for dy-
namic scene understanding by research groups at UniBwM [Dickmanns, Graefe 1988;
Dickmanns, Wiinsche 1999].

Recognition of well-structured roads and the egostate of the vehicle carrying the
camera relative to the road was one of the first very successful application do-
mains. This method has been extensively used long before the SLAM-acronym
(simultaneous localization and mapping) became fashionable for more complex
scenes since the 1990s [Moutarlier, Chatila 1989; Leonhard, Durrant-White 1991; Thrun
et al. 2005]. This chapter shows the beginnings of spatiotemporal road recognition
in the early 1980s after the initial simulation work of H.G. Meissner between 1977
and 1982 [Meissner 1982], starting with observer methods [Luenberger 1964].

Since road recognition plays an essential role in a large application domain, both
for driver assistance systems and for autonomously driving systems, the next four
chapters are entirely devoted to this problem class. Over 50 million road vehicles
are presently built every year worldwide. With further progress in imaging sensor
systems and microprocessor technology including storage devices and high-speed
data communication, these vehicles would gain considerably in safety if they were
able to perceive the environment on their own. The automotive industry worldwide
has started developments in this direction after the “Pro-Art” activities of the Euro-
pean EUREKA-project “PROMETHEUS” (1987-1994) set the pace [Braess,
Reichart 1995a, b]. Since 1992, there is a yearly International Symposium on Intelli-
gent Vehicles [Masaki 1992++] devoted to this topic. The interested reader is re-
ferred to these proceedings to gain a more detailed understanding of the develop-
ments since then.

This chapter starts with assembling and arranging components for spatio-
temporal recognition of road borderlines while driving on one side of the road. It
begins with the historic formulation of the dynamic vision process in the mid-
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1980s which allowed driving at speeds up to ~ 100 km/h on a free stretch of Auto-
bahn in 1987 with a half dozen 16-bit Intel 8086 microprocessors and 1 PC on
board, while other groups using Al approaches without temporal models, but using
way more computing power, drove barely one-tenth that speed. Remember that
typical clock rates of general purpose microprocessors at that time were around 10
MHz and the computational power of a microprocessor was ~ 10 (0.1 per mille)
of what it is today. These tests proved the efficiency of the 4-D approach which af-
terward was accepted as a standard (without adopting the name); it is considered
just another extension of Kalman filtering today.

The task of robust lane and road perception is investigated in Section 7.4 with a
special approach for handling the discontinuities in the clothoid parameter C;.
Chapter 8 discusses the demanding initialization problem for getting started from
scratch. The recursive estimation procedure (Chapter 9) treats the simple planar
problem first (Section 9.1) without perturbations in pitch, before the more general
cases are discussed in some detail. Extending the approach to nonplanar roads
(hilly terrain) is done in Section 9.2, while handling larger perturbations in pitch is
treated in Section 9.3. The perception of crossroads is introduced in Chapter 10.

Contrary to the approaches selected by the Al community in the early 1980s
[Davis et al. 1986; Hanson, Riseman 1987; Kuan er al. 1987; Pomerleau 1989, Thorpe et al.
1987; Turk et al. 1987; Wallace et al. 1986], which start from quasi-static single image
interpretation, the 4-D approach to real-time vision uses both shape and motion
models over time to ease the transition from measurement data (image features) to
internal representations of the motion process observed.

The motion process is given by a vehicle driving on a road of unknown shape;
due to gravity and vehicle structure (Ackermann steering, see Figure 3.10), the ve-
hicle is assumed to roll on the ground with specific constraints (known in Al as
“nonholonomic™) and the camera at a constant elevation H, above the ground. Un-
der normal driving conditions (no free rotations), vehicle rotation around the verti-
cal axis (\) is geared to speed V and steering input A, while pitch (6) and roll (bank)

angles (@) are assumed to be small; while pitch angles may vary slightly but can-
not be neglected for large look-ahead ranges, the bank is taken as zero in the aver-
age here.

7.1 Road Model

The top equation in Figure 3.10 indicates that for small steering angles, curvature
C of the trajectory driven is proportional to the steering angle L. Driving at constant
speed V = dl/dt and with a constant steering rate dA/dt as control input, this means
that the resulting trajectory has a linear change of curvature over the arc length.
This class of curves is called clothoids and has become the basic element for the
design of high-speed roads. Starting the description from an initial curvature C, the
general model for the road element clothoid can then be written
C=C,+C,-I, (7.1)

with C; as the clothoid parameter fixing the rate of change of the inverse of the ra-
dius R of curvature (C = 1/R). This differential geometry model has only two pa-
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rameters and does not fix the location x, y and the heading y of the trajectory. With
the definition of curvature as the rate of change of heading angle over arc length |
(C = dy/dl), there follows as first integral

x= [Cdi=y, +Co-1+C-17/2. (7.2)

Heading direction is seen to enter as integration constant y,. The transition to Car-
tesian coordinates x (in the direction of the reference line for x) and y (normal to it)
is achieved by the sine and cosine component of the length increments I. For small
heading changes (< 15°), the sine can be approximated by its argument and the co-
sine by 1, yielding (with index h for horizontal curvature):

X = J.cosx-dl = X, + AX, (a)
y:jsinx-ou:j(xo+c0h-|+clh-|2/2)-d| : (7.3)
=Y, + %ol +Cop 17 12+Cy, 1216 =y, + 5, +Ay,. (b)

The integration constants X, and y, of this second integral specify the location of
the trajectory element. For local perception of the road by vision, all three integra-
tion constants are of no concern; setting them

< AX > to zero means that the remaining description is

Ay, yy > oriented relative to the tangent to the trajectory
| ; "Ayc at the position of the vehicle. Only the last two
| \ - terms in Equation 7.3b remain as curvature-

dependent lateral offset Ayc. This description is

Figure 7.1. From differential ge-  both very compact and convenient. Figure 7.1

ometry to Cartesian coordinates shows the local trajectory with heading change

Ayc and lateral offset Ayc due to curvature.

Roads are pieced together from clothoid elements with different parameters C, and

C,, but without jumps in curvature at the points of transition (segment boundaries).

Figure 7.2 shows in the top part a road built according to this rule; the lower part

shows the corresponding curvature over the arc length. For local vehicle guidance

on flat ground, it is sufficient to perceive the two curvature parameters of the road

Con and Cy, as well as the

' Design speed actual state of the vehicle

A Ve=T0km/h  relative to the road: lateral

iged offset y,, lateral velocity v,

and heading angle y [Dick-
manns, Zapp, 1986].

M\ /_\ [\ Note that in the general

M ’\/‘ M ’\_/‘ ’\_; case, there may be a slight
’ ‘ ©  discrepancy between the
700 600 250 300 350  tangent to the trajectory and
Figure 7.2. Road (upper curve in a bird’s-eye view) as  th€ Vehicle heading angle v,
a sequence of clothoid elements with continuity in po- ~ Namely, the slip angle B,
sition, heading, and curvature; the curvature change  due to the type of axles with

rate C; is a sequence of step functions. The curvature  front v_vheel steering and
over the arc length is a polygon (lower curve). due to tire softness.

o

Radius in 450 350 200 250
meters
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7.2 Simple Lateral Motion Model for Road Vehicles

Figure 7.3 shows simplified models based on the more complete one of Chapter 3.
Figure 3.10 described the simple model for road vehicle motion (see also Section
3.4.5.2). The lateral extension of the vehicle is idealized to zero, the socalled bicy-
cle model (with no bank angle degree of freedom!). Equation 3.37 and the block
diagram Figure 3.24 show the resulting fifth order dynamic model. Neglecting the
dynamic effects on yaw acceleration \y,,.and slip angle rate g (valid for small

speeds, T,, and T — 0, Equation 3.38), a lateral motion model of third order ac-
cording to block diagram Figure 7.3a results.

_ ¥ Cop
(a) Third-order model
u= A Waps = L.prel Wrey y
aNdC ] Via ==O— | 2O v > I o
+
> 5 B
Ll 1/2 - V /(Za'khf)

(b) Fourth-order model
A
L: V/a
ki (2V)

Figure 7.3. Block diagram for lateral control of road vehicles taking rotational dynamics
around the vertical axis only partially into account. (a) Infinite tire stiffness yields simplest
model. (b) Taking tire force build-up for slip angle into account (not for yaw rates) improves
observation results.
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Neglecting the dynamic term only in the differential equation for yaw accelera-
tion, the turn rate becomes directly proportional to steering angle (dy,s/dt) = V-A
/a, and the dynamic model reduces to order four. The split in omitting tire softness
effects for the yaw rate but not for the slip angle B can be justified as follows: The
yaw angle is the next integral of the yaw rate and does not influence forces or mo-
ments acting on the vehicle; in the estimation process, it will finally be approxi-
mated by the correct value due to direct visual feedback. On the contrary, the slip
angle B directly influences tire forces but cannot be measured directly.

Steering rate is the control input u(t), acting through a gain factor k;; the steering
angle directly determines the absolute yaw rate in the fourth-order model. By sub-
tracting the temporal heading rate of the road V-Cy, from this value, the heading
rate ., relative to the road results. After integrating, subtracting the slip angle,
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and multiplying the sum by speed V, the lateral speed relative to the road v = dy,/dt
is obtained. The set of differential equations for the reduced state variables then is

A 0 0 0 02 K, 0
: -1/T, 0 0 0 0
Prjo) Bz = P2 Luw+| ) fen (7.4)
V| [Via 0 0 Ofyy| |O Y
W 0 v VvV 0oy 0 0

with a, =1/(2T,) -V /a;T, =V/ ks ; a = axle distance; ki = Fy/(mwi-og) (in

m/s?/rad) (lateral acceleration as a linear function of angle of attack between the
tire and the ground, dubbed tire stiffness, see Section 3.4.5.2. For the UniBwM test
van VaMoRs, the actual numbers are a = 3.5 m, ks = 75 m/s?/rad, and Ty =
0.0133.V s™. For a speed of 10 m/s (36 km/h), the eigenvalue of the dynamic tire
mode is 1/Tg = 7.5 st (= 0.3 times video rate of 25 Hz); this can hardly be ne-
glected for the design of a good controller since it is in the perceptual range of hu-
man observers. For higher speeds, this eigenvalue becomes even smaller. The Ky —
value corresponds to an average lateral acceleration buildup of 1.3 m/s® per degree
angle of attack. [This is a rather crude model of the vehicle characteristics assum-
ing the cg at the center between the two axles and the same tire stiffness at the
front and rear axle; the precise data are as follows: The center of gravity is 1.5 min
front of the rear axle and 2 m behind the front axle; the resulting axle loads are rear
2286 and front 1714 kg (instead of 2000 each). Due to the twin wheels on each
side of the rear axle, the tire stiffness at the axles differs by almost a factor of 2.
The values for the simple model selected yield sufficiently good predictions for
visual guidance; this resulted from tests relative to the more precise model.]

7.3 Mapping of Planar Road Boundary into an Image

This section has been included for historical reasons only; it is not recommended
for actual use with the computing power available today. The simple mapping
model given here allowed the first autonomous high-speed driving in 1987 with
very little computing power needed (a few 16-bit microprocessors with clock rates
of order of magnitude 10 MHz). Only intelligently selected subregions of images
(256%256 pixels) could be evaluated at a rate of 12.5 Hz. Moving at speed V along
the road, the curvature changes C(l) appear in the image plane of the camera as
time-varying curves. Therefore, exploiting Equation 7.1 and the relationship V =
dl/dt, a simple dynamic model for the temporal change of the image of the road
while driving along the road can be derived.

7.3.1 Simple Beginnings in the Early 1980s
For an eye—point at elevation h above the road and at the lane center, a line element

of the borderline at the look-ahead distance L is mapped onto the image plane yg,
zg according to the laws of perspective projection (see Figure 7.4).
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Figure 7.4. Symbols for planar curvature analysis, look-ahead range from nearby (index
N) to L¢ (row zgg in image)

P* would be the image point for a straight planar road and the camera looking par-
allel to the road. Road curvature according to a clothoid element of the form Equa-
tion 7.1 would yield the lateral offset Ay*gr corresponding to Ayc given by Equa-
tion 7.3b at the look-ahead distance | = L¢ between points P* and P.

Figure 7.5 shows the more general situation in a top-down view where both a
lateral offset yy, of the camera from the lane center line (b/2 - y,) and a viewing di-
rection yk not tangential to the road at the vehicle (camera) position have been al-
lowed. At the look-ahead distance Ly, wk yields an offset Liyy in addition to yy.
Both contribute to shifts of image points P and P*.

\"ldznl /

projection center

Figure 7.5. Top view of general imaging situation for a borderline with lateral offset yy,
nontangential viewing direction yy, and road curvature; two preview ranges Ly and L¢
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The effects of small off-
sets on P* can be seen from
Figure 7.6. Lateral offsets
of the camera to the road or
lane center turn the road
image around the vanishing
point at L = oo (horizon)
and show up in the lower
p_art of the image €SSEN-  Figure 7.6. Effects of lateral offset y, (left) and camera
tially (near ranges), while  pointing direction i (right) on image of a straight
gaze shifts translate the  road (reference: thin lines). Positive y, turns lines to
mapped object laterally in |eft around the “vanishing” point at oo; negative

the image. shifts the entire image horizontally to the right.
Here, the camera is as-

sumed to be fixed directly

to the vehicle body in the x\~direction which forms an angle v with the road tan-
gent (Figure 7.5). The effects on a point on the curved borderline of the road are
more involved and require perspective mapping. Using the pinhole model (see Fig-
ure 2.4, Equation 2.4), perspective projection onto a focal plane at distance f from
the projection center (on left side in Figure7.5 at lateral position yy from the lane
center line) yields for small angles and perturbations (cos =~ 1, sine = argument) the
approximate image coordinates

ys=f-(b/2-y, +yc —Ly)/L
z, = fth/L.
Let us introduce for convenience the back-projected lateral offset yg in the im-

age to the look-ahead distance L as y,. Then with the first of Equations 7.5 multi-
plied by L/f,

[vanishing point
at range
(=)

(7.5)

yo=bl2—y, +yc—Ly =Ly /f. (7.6)
A dynamic model for road curvature determination is obtained by taking the
time derivative (constant lane width and look-ahead distance are assumed)
Yo=-W+Ye—Lvg. (7.7)
Now some substitutions are introduced: The lateral speed Y, relative to the road
may be expressed by the relative path angle Ay between the vehicle velocity vector
and the road tangent. With the viewing direction fixed to the car body axis xy, the
sideslip angle B (see Figure 7.5) between the velocity vector V and v has to be
taken into account yielding
Y =V Ay =V(yqy—B). (7.8)
This equation represents the right-hand part of Figure 7.3. For the term y, re-
garding the curvature effects from the position of the vehicle (I = 0) to the look-
ahead distance L, by applying the chain rule, one obtains
dy. /dt=dy. /dl-dl /dt =dy. /dl-V. (7.9
From Equation 7.3b, there follows for constant values Cy,, Cyp,
dy./dl=C,, -L+C,, -L*/2. (7.10)
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Similarly, there follows for the change with time of the curvature Cy, at the lo-

cation of the vehicle with Equation 7.1,
dC,, /dt =dC,, /dl-dl /dt=(C,, +1-AC,;-3(1 - 1))V . (7.11)

Cu IS piecewise constant; the stepwise change at transition points I; means a
Dirac impulse ACy; -6(l — Ig;) in the derivative dCy,/dl. For practical purposes, the
approximation of the last term in Equation 7.11 by Gaussian random noise w(t)
driving the time derivative of Cy, has proven to work sufficiently well with proper
tuning of the recursive filter (at least for these early trials, see Section 7.4).

The term v, in Equation 7.7 is the inertial yaw rate of the vehicle (= camera)

minus the heading change of the road over time, which is the curvature at the vehi-
cle location times speed
Ve = Waps ~ConV =(V/a)-A—=CyV . (7.12)

Equations 7.7 — 7.12 yield the state space model for estimating the curvature of
the right-hand road boundary; since the effects of a lateral offset yy, are contained
in the variable y, and since dy,/dt does not depend on it, for curvature estimation
(as a separately coded routine), this variable can be deleted from the state vector
yielding the third-order dynamic model,

Y 0 2LV LAV/2)(y, -LV/a V -V\(r 0
Co |=|0 O v Co |[+| O 0 0|lp |+/0 | (7.13)
¢,) \o o 0 J\c, 0 0 0 vy (W)

The second block gives the coupling of vehicle motion into the process of road
observation. The fourth state variable yy of the vehicle has been omitted here since
its coefficients in the vehicle part (right) are all zero; the observation part is in-
cluded in y,. This yields the historic formulation for road perception which looks a
bit unsystematic nowadays. For the near range, the effects of Cy, have been ne-
glected and the four vehicle states have been used to compute from Equation 7.5
the predicted distance ygy in the image for any look-ahead distance Ly

You = T [{0/2= ¥y +Ye (LM Ly =V ]. (7.14)
With Equation 7.3b for the curvature effects, the combined (total) state vector
(index t) becomes from Equations 7.4 and 7.13

XT =(ABoWres W Y0 Con Cpp) - (7.15)
With this terminology, the measurement equations for image interpretation from
the two edge positions ygy and ygr in the near and far range are
o f -f —f/L,: O f-Ly/2 0 b-f /(2L
yBN — N | N 'X1+ ( N) . (716)
Yee ) O 0 0 0 flL 0 o0 0
Note that the introduction of the new state variable y, for visual measurements
in the far range (Equation 7.6) contains the effects of the goal distance b/2 from the
road boundary for the trajectory to be driven, of the lateral offset yy from this line
and of the curvature yc; for this reason, all entries in the lower row of Equation
7.16 are zero except for the position corresponding to y.. However, y, also contains
a term proportional to the heading direction v; since this angle determines future
lateral offsets. Its feedback to corrective control in steering automatically yields a
lead term, which is known to be beneficial for damping oscillations [Zapp 1988].
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7.3.2 Overall Early Model for Spatiotemporal Road Perception

Since the images are taken cyclically as temporal samples with evaluation time
twice the video cycle time (Tg = 80 ms), the linear differential Equations 7.4 and
7.13 are transformed into difference equations by one of the standard methods in
sampled data theory. The complete set of differential equations to be transformed
into algebraic transition equations in matrix form for the time step from kTg to
(k+1) Tgis

X =F-x,+9g-u(t)+g,-n(t), where (7.17)
0 0 0 0!0 O 0 A K,
f,, UT, 0 0:10 0 0 B 0
Via 0 0 0'0 v 0 Ve 0
F=| 0 vV V 010 0 0 [ix=|% [g,=|0
(-Lv/a) vV Vio0 0 2V LV/2 v, 0
0 0 0!00 0 V Con 0
0 0 0100 O 0 Cu 0

g, =(0,0,0,0,0,0,n, )
with f, =1/(2T;)-V /a; T,=VIk,;  Equation 3.30.

This equation shows the internal dependences among the variables. The steering
angle X depends only on the control input u(t) = steering rate. The lateral position
of the vehicle yy as well as the variable y, does not affect vehicle dynamics directly
(columns 4, 5 in F). Vehicle dynamics (upper left block) depends on steering angle
(first column), slip and heading angle as well as curvature input (sixth column).
[Equation 3.37 shows that in the fifth-order model, with an additional time constant
in yaw rate buildup, this yaw rate also plays a role (e.g., for higher speeds). To gain
experience, it has sometimes been included in the model; note that for five state
variables, the number of entries in the upper left block of the F-matrix goes up by
56 % compared to just four.]

The two models for vehicle state estimation (upper left) and for road perception
(lower right) have been coded as separate fourth-order and third-order models with
cross-feeds of V-Cyq, into the yaw equation, and of the first three vehicle states into
the y_ equation[-A-LV /a+V (B—vy,,)] . Instead of 49 elements of the full matrix F,

the sum of elements of the decoupled matrices is just 25. This rigorous minimiza-
tion may have lost importance with the processors available nowadays.

The clothoid parameter curvature change with arc length, Cyy, is driven by a
noise input ncy(t) here; since Cyy, affects Cq, via integrals, introducing a properly
chosen noise level for this variable directly may help improve convergence; simi-
larly, introducing some noise input into the equation for v and y_ may compen-
sate for neglecting dynamic effects in the real world. The best parameters have to
be found by experimentation with the real setup (filter tuning).

The big advantage of this formulation of the visual perception process as a pre-
diction-error feedback task is automatic adjustment of the variables in a least
squares sense to the models chosen. The resulting linear measurement model Equa-
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tion 7.16 yields the Jacobian matrix directly for prediction-error feedback in recur-
sive estimation.

A perception model like that given (including the yaw acceleration equation)
was used for the first high-speed tests with VaMoRS [Dickmanns, Zapp 1987] when
autonomous driving elsewhere was at least one order of magnitude slower.

7.3.3 Some Experimental Results

This setup has allowed driving behavior up to higher speeds; details may be found
in [Zapp 1988]. Two consequential tests will be shown here since they had an im-
pact on the development of vision for road vehicle guidance in Europe. Figure 7.7
shows a demonstration setup in the skidpan of the Daimler-Benz AG (now part of
DaimlerChrysler) in November/December 1986.
The skidpan consists
Vinax =10 m/s (36 km/h) of circular areas with dif-
[ ....,_._._fpil’al arc, increasing ferent road Surface mate-
mranre rials. This is normally
Non-perfect — ysed for testing reactions
to different friction coef-
ficients between tire and
ground. For our pur-
poses, the differences in
brightness between con-
crete and basalt were es-
concrete _ sential. After accelerat-
: g ing along a straight line
(upper left), a tightening
spiral arc followed, lead-
ing to the natural bound-
ary between concrete and
basalt (area in ellipse,
upper right). The vehicle
then had to pick up the
edge in brightness be-
tween these materials (no

Figure 7.7. Historic first demonstration of visual road ~ @dditional line markers;
vehicle guidance to Daimler-Benz AG in their skidpan in ~ S€€ the two video images
Stuttgart: The test vehicle VaMoRs performed autono- N lower part). It can be
mous longitudinal and lateral guidance. It initially accel- ~ Seen that the transition
erated along a straight line which then turned into a spiral ~ Was not exactly tangen-
with increasing curvature that ended at a transition  tial (as asked for) but
boundary between circular areas of concrete and basalt in ~ showed a slight corner
the skid pan. Speed had to be adjusted automatically such ~ (to the left), which
that a lateral acceleration of 0.1 g (~ 1 m/s?) was not ex-  turned out to pose no
ceeded (see text). problem to perception;

the low-pass filtering

Start :
F_agcefratioﬂ ....... .
Yellow lane marking, straight

Daimler-Benz
Test track Stuttgart

(a) Bird’s eye view
of skidpan

Original
video
images
from
& location
~ marked
§ in (a) by
B an ellipse
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component of the algorithm just smoothed it away. (In crisp detailed perception,
there should have been a small section with negative curvature.) The downward
dip in the lower part of Figure 7.8 around 100 m was all that resulted.

The task then was to follow the circular edge at a speed such that the lateral ac-
celeration was 0.1 g (~ 1 m/s?). The top curve in Figure 7.8 shows on the right-
hand side that speed varied around V = 7.3 m/s, while the estimated curvature os-
cillated between 1/R = C = 0.019 and 0.025 m™. These demonstrations encouraged
Daimler-Benz to embark on a joint project with UniBwM named Autonomous Mo-
bile Systems that was supported by the German Ministry of Research and Technol-
ogy (BMFT). During this project, a major achievement in 1987 was the demonstra-
tion of the capability of visual autonomous driving at high speed on a free stretch
of Autobahn near Munich.

\% speed
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_H«-'/- V=73 mis -.__._—h..._w._._ ..... ]
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Figure 7.8. Skidpan test results (1986) for speed driven (top) and curvature estimated
(bottom). (See text for a more detailed explanation)

Figure 7.9 shows the speed history (top) over a stretch of 13 kilometers and the
estimated road curvature (bottom). It can be seen that speed is around 25 m/s (90
km/h) for about ten kilometers. The dips with speed reduction are due to erroneous
feature selection and stronger perturbations in the estimation process. The vehicle
then reduces speed which, usually, means fewer hazards and more time for reac-
tion; when the correct features are recovered after a few evaluation cycles of 80
ms, the vehicle accelerates again. Top speed achieved at around 9 km was 96 km/h,
limited by the engine power of the 5-ton van (actual weight was 4 metric tons).

The far look-ahead range was a little more than 20 m with a distribution of three
windows for image evaluation similar to Figure 7.7b. Due to the limited computing
power of the (16-bit) Intel 8086 microprocessors used for image processing, only
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— ——— the video signals within these

2O =T windows were grabbed by
Nl A Y - WU one processor each. The loca-
16 / tion of the windows in the
{ 5 |  image could be shifted from
* 1T 1 T one frame to the next. Up to
P9 S N N — : | —t— three search paths could be

oo 28 52 7.8 104 13 set up within each window,

distance driven in kilometers

but only the best looking one
would be used for interpreta-
tion (see further down be-
low). The left-hand window
was used for picking up the
left lane or road boundary
when higher curvatures were
met (mainly on minor roads
also investigated).

The relatively short look-
ahead range is the reason for
the long transient in averag-
ing out the correct road cur-
vature (bottom graph, left
side). In almost flat country-
side, a “post-WW2 Autobahn” in Germany should have radii of curvature R > 1
km (Cg, = 0.001 m-1); it is seen that the estimated curvature, starting from the ini-
tial value zero, increases in magnitude to almost 0.002 (R = 500 m) before leveling
out in the correct range |Con| < 0.001 m™ only after about 1 km. Even though curva-
ture estimation looks rather jagged, the lateral offset from the ideal centerline aver-
aged about 15 cm with occasional deviations up to 30 cm. This has to be judged
against a usual lane width of 3.75 m provided for vehicles less than ~2 m wide;
thus, the initial autonomous results were better than those normally shown by an
average human driver.

With the advent of higher performance microprocessors, more robust road and
lane recognition using multiple windows on lane markings or border lines on both
sides of the vehicle has been achieved with more advanced perception models
[Mysliwetz 1990]. The early results shown are considered of special importance
since they proved the high potential of computer vision for lateral guidance of road
vehicles versus buried cables as initially intended in the EUREKA-project “Prome-
theus” in 1987. This has led, within a few years, about a dozen car manufacturing
companies and about four dozen university institutes to start initiatives in visual
road vehicle guidance in the framework of this large EUREKA-project running
from 1987 till the end of 1994. As a consequence of the results demonstrated since
1986 both in the U.S. and in Europe, Japanese activities were initiated in 1987 with
the Personal Vehicle System (PVS) [Tsugawa, Sadayuki 1994]; these activities were
followed soon by several other car companies.

Though artificial neural net approaches (ANN) have been investigated for road
vehicle guidance on all continents, the derivatives of the method shown above fi-

Figure 7.9. Historic autonomous high-speed driving
with VaMoRs on a free stretch of Autobahn near
Munich in 1987: Top: Speed over distance driven
(Vimax = 26.7 m/s = 96 km/h = 60 mph). Bottom:
Curvature as estimated (note initial transient when
starting from straight-road assumption C = 0)
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nally outperformed the ANN-approaches; nowadays, spatiotemporal modeling and
recursive estimation predominate all applications for vehicle guidance around the
globe.

7.3.4 A Look at Vertical Mapping Conditions

Vertical mapping ge-

ometry is shown in Fig- \

ure 7.10. The elevation A Ox o

of the camera above the £ > 8
EBf

ground strongly affects - Hy

the depth-resolution in TSP l image \_ . optical
the viewing direction. plane s %
Since the sky is of little  f-— d—fe—Ly—
interest, in general, but v
may introduce high im- Zo
age brightness in the up-
per part of the image
(sky-region), cameras in
vehicles are mounted
with a downward look-
ing pitch angle, usually.
The slope of the mapping ray through points at the far look-ahead range L; rela-
tive to the road tangent in the vertical plane according to the figure is
0,, =0, +arctan(zg /(f -k,)
with (7.18)
0, =arctan(H, /L;).
Equating the tan of these expressions and exploiting the addition theorem for tan
(o + B) = (tan o + tan B)/(1- tan o - tan ) leads to
Hy /Ly =[tan0, +zg /(f -k,) ]/[1-tan0, -z /(T K,)]. (7.19)
Solving for the vertical image coordinate zg; as a function of the look-ahead
range L yields
Zgr = Tk, (H — Ly tan0, ) /(L; +H, tano, ). (7.20)
For 6k = 0, this reduces to the known simple pinhole model of perspective map-
ping. Inverting Equation 7.19 and taking the derivative with respect to the camera
pitch angle shows the sensitivity of the look-ahead range L with respect to changes
in pitch angle 6 (shorthand: z; =z, / f -k, ):

d(Li ) df1l-ztand)  1+(z) (7.21)
dol H, ) dol tan@+z, (sin® + z, cos0)® ' '
which for the optical axis zgs = 0 reduces to

Yao(L1),,.o =—H /ino)’. (7.22)

Ly

A\ 4

Figure 7.10. Vertical perspective mapping geometry with
downward looking camera (0x) for better imaging in near
range (index N)
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For the van VaMoRs, the camera elevation Hy above the ground is 1.8 to 2 m;
for the sedan VaMP, it is ~ 1.3 m. Table 7.1 gives some typical numbers for the
gaze angles relative to the horizontal (downward negative) and for the sensitivity
of the look-ahead range to small changes in pitch angles for these elevations. Col-
umns 3, 4 and 7, 8 show range changes in meters per image row (pixel) for two dif-
ferent focal lengths realizing resolutions of 8, respectively, 40 pixels per degree;
columns 3 and 7 are typical for images with 240 lines and a 30° vertical field of
view which has often been used as a standard lens, while columns 4 and 8 corre-
spond to a tele—lens with an 8° vertical field of view.

Table 7.1. Pitch angles 6 of optical axes for certain look-ahead ranges L, for two camera
elevations Hy above a planar ground, and for two focal lengths (resolutions)

0 1| 2 | 3 | 4 5 | 6 | 7 | 8
vehicle VaMoRs VaMP
Hkinm camera elevation = 1.8 m =1.3m  above ground
resolut. 8 pel/° | 30pel/° 8 pel/° | 30 pel/®
Loptaxis | ©in | dL/de | dLidpel | di/dpel | @in | dL/d6 | dLidpel | dL/dpel
inm degrees | mideg | m/pixel | m/pixel | gegrees | mideg | m/pixel | m/pixel
100 -1.03 97 12.1 3.2 -0.745 134 16.7 4.47
60 -1.72 19.4 2.4 0.65 -1.24 48 6 1.6
40 -2.58 155 1.9 0.52 -1.86 215 2.7 0.72
20 -5.14 3.91 0.5 0.13 -3.72 5.4 0.68 0.18
15 -6.84 2.2 0.275 0.073 -4.95 3.04 0.38 0.10
10 -10.2 1.00 0.125 0.033 -7.4 1.36 0.17 0.045
5 -19.8 0.274 0.034 0.009 -14.6 0.358 0.045 0.012
1.8 -45 0.063 0.008 0.002 (-35.8) | (0.066) | (0.008) | (0,002)

1° change in pitch angle at a look-ahead range of 20 m leads to look-ahead
changes of 3.9 m (~ 20 %, column 2) for the van and 5.4 m (27 %, column 6) for
the car; this corresponds to a half meter range change for the standard focal length
in the van and 68 cm in the car. For the telelens, the range change is reduced to
about 10 cm per pixel for the van and 14 cm for the car. However, at a look-ahead
range of 100 m, even the telelens experiences a 2.4 m range change per pixel (=
1/40 = 0.025° pitch angle) in the van and 3.35 m in the car.

A look at these values for larger look-ahead ranges shows that the pitch angle
cannot be neglected as a state variable for these cases, since minor nonplanarity of
the ground may lead to pitch perturbations in the range of a few tenths of 1°. This
problem area will be discussed in Section 9.3 after some experience has been
gained with the basic estimation process for perceiving road parameters.

7.4 Multiple Edge Measurements for Road Recognition

Since disturbances in the visual perception process in natural environments are
more the rule than an exception, multiply redundant measurements are mandatory
for robust road or lane recognition; the least-squares estimation process handles
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this case without additional problems. However, it has proven advantageous to take
a special approach for dealing with the discontinuity in C; over arc the length.

7.4.1 Spreading the Discontinuity of the Clothoid Model

Figure 7.11 shows a piece of a road skeleton line consisting of several clothoid
arcs: (1, see bottom of figure) straight line with Cq, = Cy, = 0; (2): clothoid (proper)
with increasing curvature C; (3) circular arc (positive curvature = turning to the
right); (4 and 5) clothoid with decreasing curvature (inflection point at the transi-
tion from 4 to 5); (6) negative circular arc (turning left); (7) clothoid back to
straight driving. [Note that this maneuver driven by a vehicle on a wide road would
mean a lane change when the parameters are properly chosen. The steering rate as
control input for constant speed driven would have to make jumps like Cy;, (second
curve from top); this of course is an idealization.] The location and magnitude of
these jumps is hard to measure from perspective image data.
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Figure 7.11. Clothoid road section:
Top in Cartesian coordinates X, y; sec-
ond row: clothoid parameters Cy, =
dC/dl; third row: curvature C over arc
length; fourth row: dCy/dl as Dirac
impulses (step jumps in Cyp)

Figure 7.12. Handling a discontinuity in
the clothoid parameter C, (top) by intro-
ducing an averaging model (index m) for
the curvature parameters (bottom)

Figure 7.12 displays the basic idea of the approach for avoiding the ideal Dirac
impulse and approximating it by a substitute system (index m); this should yield
the same lateral offset Ayc at the far end of the look-ahead distance. In principle, it
starts working when the look-ahead region up to the distance L in front of the vehi-
cle just touches the location of the impulse Icy; , which is of course unknown. Con-
tinuing egomotion, an increasing part of the road with C,, # 0 moves into the field
of view; its extension is measured by the running variable I starting from zero at
the location | = Ic;;— L. To obtain a non-dimensional description of the process, the
variable & = I./L is introduced (I, is a fraction of the look-ahead distance). The idea
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is to obtain “spread-out” variables as new curvature parameters Cgpy, and Cypy, 0f @
dynamic system that generate the same lateral offset Ayc of the curved line at the
look-ahead distance L at any moment as the real road curvature (see lower right
corner of Figure 7.12).

The assumption for computing the offset Ay of the real clothoid by the spread-
out system is that Coym and Cynpy OF this virtual system are constants with respect to
integration over the look-ahead distance (at each moment) even though they are
dynamic variables evolving with penetration of the look-ahead range into the re-
gion with Cy, #0.

The real lateral offset as function of penetration I for 0 <l <L and Co, =0, is

Ay, (1.)=C,l2/6. (7.23)

For the spread-out system, we write

AyCm (Ic) = AyCohm + AyClhm ;
where

AYeym = Com (1) - L2 16 (7.24)
AYeorm =Corm (1) - L2 12 = I]clhm (A dr-L2/2.

Setting Equations 7.23 and 7.24 equaloyields
I]clhm M dr-L2/2+Cy, (1) L216=C, 1316 (7.25)

0
By dividing by L6, differentiating with respect to I, and introducing & = I /L,
the following differential equation is obtained:

dCy,, /dE+3-Cyy,, (€) =3-Cy, .gz . (7.26)
Solving by one of the standard methods (e.g. Laplace transform) finally yields:
Cim (8) = Cyn (0) -exp(-38) + C,, {8 ~2/3-& + 2/9[1-exp(-3¢)]}. (7.27)

With Cy4n(0) = 0, one obtains the value Cyyy(1) = 0.5445 Cyy at the location of
the jump in Cy, (€ = 1). The magnitude of Cy, is yet unknown. Due to the disconti-
nuity in Cyp, @ new descriptive equation has to be chosen for § > 1. Selecting & =
(&-1) and the final value from the previous part (Cinm(1c1i) = 0.5445 Cyp) as the ini-
tial value for the following one, again the resulting lateral offset Aycy, should be
equal to the real one. The vehicle is now moving in the region where Cy, is increas-
ing linearly with Cy,,. Therefore, instead of Equation 7.24, we now have

Con(l)-L2/12+Cy, -’16 =Cy, (I.)- L2 /2+Cy (1) - L /6. (7.28)
Dividing again by L?/6, changing to &’ as a dimensionless variable, and taking
the derivative with respect to & now yields Equation 7.29. Since dCqyp, /d&’ = Cyp,
dCyp /dE’ = 0 and dCyn/dE’ = Cynm, there follows the differential equation for the
part after passing the discontinuity:
dCyy /dE'+3-Cpy (€)= 3-Cyy . (7.29)
It has the solution
Cipm (&) = Cypy (&' = 0) -exp(-38") + Cy, [1 - exp(-3E)]

=C,,[1-0.4555-exp(-3¢)]. (7.30)
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Figure 7.13 shows these functions scaled by C;,. It can be seen that the (theo-
retical) impulse at & = 1 is now spread out in the range 0 to = 2.5; it has a maxi-
mum value of 1,3665 at & = 1. At this point, the variable Cyyy, is about 54 % of Cyp,
and continues to grow smoothly toward this value (1).

The differential Equations 7.26 and 7.29 can be written as time derivatives with
d(-)/dl = d(-)/dt/dl/dt and dl/dt = V in the form

Cim =V ILACy, -[T(I. 7L)]-Cyr .
where
f(./L)=(,/L)* for I <L (7.31)
or
f(./L)=1 for 1. > L.

Since the locations Icy; of steps
in Cy, are unknown, the term in
square brackets is always set equal
to 1. Cyy, is driven by noise in the
recursive estimation process. This
corresponds to neglecting the con-
tributions of Cy, to curvature as
long as the vehicle has not passed
the point of the occurrence; in
Figure 7.13 this means neglecting
the shaded half plane on the left.
For this reason, the starting value
for Cynm NOW has to be zero at &’ =
0 (instead of 0.5445 Cy;); it can be
seen from the dashed-double-
dotted line how fast the new vari-
able Cin, approaches the actual
value Cy,. After driving the dis-
tance of one look-ahead range L,
the 5 % limit of (Cyyn(0) — Cyp) is
reached. In [Mysliwetz  1990;
Behringer 1996] it was shown that
this simple, pragmatic approach yields very good estimation results compared with
both known solutions in simulation studies and real experiments. Neglecting the
part & < 1 has the additional advantage that for multiple observation windows along
the look-ahead range, no special management is necessary for checking which of
those are within or outside the C,,, # 0 region.

The model for the new spread-out curvature variables is supposed to be valid in
the entire look-ahead range; all windows at different observation ranges contribute
to the same model via prediction-error feedback, so that an averaged model will re-
sult.

Figure 7.13. Approximation of the Dirac im-
pulse in curvature change rate dC,/d¢ by a fi-
nite model for improved recursive estimation
with the 4-D approach. For simplicity, only the
non-shaded part (&’ > 0) is used in the method
(see text); convergence is given by the dash-
double-dotted curve starting from zero for &’.



222 7 Beginnings of Spatiotemporal Road and Ego-state Recognition

7.4.2 Window Placing and Edge Mapping

Contrary to Figure 7.4, where the goal was to drive in the center of an imagined
lane of width b by observing just the right-hand borderline, here, we assume to be
driving on a road with lane markings. Lane width b and the subject’s lateral posi-
tion in the lane y,, off the lane center have to be determined visually by exploiting
many edge measurements for improved robustness and accuracy. In each of the
horizontal stripes in Figure 7.14, edges (and eventually bright lines) have to be
found that mark the lanes for driving. Two basically different approaches may be
chosen: One can first look for lines that constitute lane markings and determine
their shape over the arc length. Second-order or third-order parabolas have been
used frequently; in a second step, the lane is determined from two neighboring lane
markings. This approach, looking straightforward at a first glance, is not taken
here.

Lf L6 L5 L4,
I : Pl
S i J 1

‘ ’ : . - -

: = - 4 pixel ;
YBi1 Yic P Yer
Figure 7.14. Multiple horizontal stripes with measurement windows for lane recogni-
tion by edge detection and model based grouping. Image rows correspond to look-ahead
ranges L;; Ygr - Yai = bg(L;) shows lane width. Features are used for derivation of initial
values to start recursive estimation (see text).

The main reason is that the vehicle is supposed to drive in the center of the lane,
so the clothoid model should be valid there; the lane markings then are normal to
this skeleton line at distances + b/2. Lane width should be observed steadily while
driving; this model allows width to be one (smoothly varying) parameter in the re-
cursive estimation process. Lane observation can thus be continued in the case that
one marking line is strongly perturbed or even missing. Using the curvature model
of the previous section for the skeleton line, it can be described at the vertical cen-
ter of each horizontal stripe by

ycski = COhm le 12+ Clhm I‘|3 /6. (732)
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Assuming small heading changes of the road in the look-ahead region, the lat-
eral positions of the left and right lane markings then are at

Yo, = Yes, —D/2; Yor = Yo, TD/2. (7.33)

To obtain their mapping into the image, a more detailed overall model of the
vehicle-sensor arrangement has to be taken into account. First, the vehicle center
of gravity (cg for which the lateral offset yy, is defined) is not identical with the lo-
cation of the camera; in the test vehicle VaMoRs, there is a distance d =~ 2 m in the
longitudinal direction (see Figure 7.15). Similar to Figure 7.5, one can now write
for the lateral distance y, on the left-hand road boundary with —b/2 (index I) or on
the right-hand side with + b/2 (index r),

yLI‘r = ib/2+ yC” _(yV + y\yV + y\yKV) ' (734)

where y,v = L-yy and y,kv = L-yky are the shifts due to vehicle and camera head-
ing angles. With a pinhole camera model and the scaling factor k, for the camera,
one obtains for the image coordinates yg, in the row direction

Yei, = fk,- Yii, /L. (7.35)

£ image plane
L} ¥ .
("

Kv

Ryyr = 1/Cyp — 12

<

Figure 7.15. Precise model for recognition of lane and relative egostate: exact camera
location d and gaze angle yyy relative to the vehicle body. (Focal length f is extremely
exaggerated for better visibility)

For the vertical image coordinates zg;, Figure 7.10 and Equation 7.20 are valid
here, too. Subtracting the left-hand value yg; from the right-hand one yg;, for the
same zgj-coordinate yields the imaged lane width bg(L;). However, in the 4-D ap-
proach, this need not be done since b is a parameter in the measurement (imaging)
model (Equation 7.35 with 7.34); via the Jacobian matrix, this parameter is iterated
simultaneously for all horizontal measurement stripes L; together, which makes it
more stable and precise. Real lane width b is obtained together with the curvature
parameters.
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7.4.3 Resulting Measurement Model

The spread-out dynamic clothoid model for the skeleton line of the lane can be
written from Equations 7.24 — 7.27 in the time domain as

Conm =Cum Vs Cyp = (V/1)-(Cy, —Cypn)i Cyy = e, (7.36)
or in matrix form

0 v 0 Cohm 0
%, =AX, +n, =10 -3V/L V/L|Cy, [+|0 | (7.36)
0 0 0 Clh r]cm (a)

Equation 7.35 can be written with Equations 7.32 — 7.34 [two positions for lane
markings (left and right) with two edges each (dark-to-bright and bright-to-dark) in
each search stripe at zg;, yield the look-ahead distance L;, see Figure 7.14]:

+b_ . 2
Yai, = f-k, _ZL—yV_‘I/v =Wk +%C0hm +%C1hm . (7.37)

This measurement equation clearly indicates the dependency of edge features on
the variables and parameters involved: Lane width b and lateral position y, can best
be measured in the near range (when L; is small); measurement of the heading an-
gles is not affected by range (see Figure 7.6). Curvature parameters can best be
measured at large ranges (higher up in the image at smaller row indices zg;). Since
all variables for a given range L; enter Equation 7.37 linearly, the coefficients ac-
companying the variables are the elements in the corresponding columns of the
Jacobian matrix. (The rows of the Jacobian correspond to each feature measured.)

Since all expressions in Equation 7.37 except the sign of the b/2 term are the
same for the left- (yg;) and the right-hand boundary lines (yg;;), their difference di-
rectly yields the lane (road) width b;

by =L (Yei, — Yei )I(F-Ky) . (7.38)
The center of the lane in the image is at yg_ci = (Ygil *+ Ygir)/2. The difference be-

tween the y coordinate of the vanishing point ygp and yg, ¢ is a measure of the lat-
eral offset yy.. Analogous to Equation 7.35, one can write
Yoi = L+ (Vep () = Yerc) /(F -ky) . (7.39)
The dynamic model for the variables yy, and yy, (describing vehicle state relative
to the road) may be selected as fourth order, as in Section 7.2, or as fifth order
(Equation 3.37) depending on the application. With small perturbations in pitch
from roughness of the ground onto the vehicle, look-ahead distance L; is directly
linked to the vertical image coordinate zg; (Equation 7.19); with 0k representing the
pitch angle between the optical axis of the camera and a horizontal line, this equa-
tion in generalized form is valid here:
zg = f -k, (H, - L tan6, ) /(L +H, tand, ). (7.40)
The gaze angle yyy of a camera as well as the camera pitch angle 6xy relative to
the vehicle can usually be measured with sufficient accuracy directly in the vehi-
cle. The case that vehicle pitch also changes dynamically will be treated in Section
9.3. For driving on (smooth) rural dirt roads, the concept of this section is also
valid.
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Figure 7.16 shows such a
case. Only feature extraction has
to be adjusted: Since the road
boundaries are not crisp, large
masks with several zeros at the
center in the feature extractor
CRONOS are advantageous in
the near range; the mask shown
in Figure 5.10b [(ng, No, Ng) = 7,
3, 7] yielded good performance
(see also Figure 5.11, center
top). With the method UBM, it
is advisable to work on higher
pyramid levels or with larger
sizes for mask elements (values
m and n). To avoid large dis-
turbances in the far range, no edges but only the approximate centers of image re-
gions signifying “road” by their brightness are determined there (in Figure 7.16;
other characteristics may be searched for otherwise). Search stripes may be se-
lected orthogonal to the expected road direction (windows 7 to 10). The yg and zg
coordinates of the road center point in the stripe determine the curvature offset and
the range of the center on the skeleton line.

Figure 7.16. Recognition of the skeleton line of
a dirt road by edges in near range (with large
masks) and by the center of brighter regions in
ranges further away for improved robustness.
Road width is determined only in the near range.

7.4.4 Experimental Results

In this section, early results (1986) in robust road recognition with multiple redun-
dant feature extraction in eight windows are shown. In these windows, displayed in
Figure 7.17, one microprocessor Intel 8086 each extracted several edge candidates
for the lane boundaries (see figure).
On the left-hand side of the lane, the
tar filling in the gaps between the
plates of concrete that form the road
surface, gave a crisp edge; however,
disturbances from cracks and dirt on
the road were encountered. On the
right-hand side, the road boundary
changed from elevated curbstones to
a flat transition on grass expanding
onto the road.

Features accepted for representing
the road boundary had to satisfy con-
tinuity conditions in curvature (head-
ing change over arc length) and Figure 7.17. Multiple oriented edge extrac-
colinearity. Deviations from ex-  tion in eight windows with first-generation,
pected positions according to spatio- ~ real-time image processing system BVV2
temporal prediction also play a role: ~ [Mysliwetz 1990]
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Features with offsets larger than 3c from the expected value, were discarded alto-
gether; the standard deviation o is obtained from the error covariance matrix of the
estimation process. This conservative approach stabilizes interpretation; however,
one has to take caution that unexpected real changes can be handled. Especially in
the beginning of the estimation process, expectations can be quite uncertain or
even dead wrong, depending on the initially generated hypothesis. In these cases it
is good to have additional potential interpretations of the feature arrangement
available to start alternative hypotheses. At the time of the experiments described
here, just one hypothesis could be started at a time due to missing computing
power; today (four orders of magnitude in processing power per microprocessor
later!), several likely hypotheses can be started in parallel.

In the experiments performed on a campus road, the radius of curvature of about
140 m was soon recognized. This (low-speed) road was not designed as a clothoid,;
the estimated Cy,, parameter even changed sign (dotted curve in Figure 7.18a
around the 80 m mark). The heading angle of the vehicle relative to the road tan-
gent stayed below 1° (Figure 7.18b) and the maximum lateral offset y,, was always
less than 25 cm (Figure 5.18c). The steering angle (Figure 5.18d) corresponds di-
rectly to road curvature with a bit of a lead due to the look-ahead range and feed-
forward control.
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Figure 7.18. Test results in autonomous driving on unmarked campus—road: Transition
from straight to radius of curvature =~ 140 m. (a) Curvature parameters, (b) vehicle
heading relative to the road (<~ 0.9°), (c) lateral offset (< 25 cm), (d) steering angle
(time integral of control input). Speed was ~ 30 km/h.
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Two very different situations have to be distinguished for initialization in road
scenes: (1) The vehicle is being driven by a human operator when the visual per-
ception mode is switched on, and (2) the vehicle is at rest somewhere near the road
and has to find the road on its own. In the latter, much more difficult case, it has
sufficient time to apply more involved methods of static scene recognition. This
latter case will just be touched upon here; it is wide open for future developments.

It is claimed here that 3-D road recognition while driving along a road is easier
than with a static camera if some knowledge about the motion behavior of the ve-
hicle carrying the camera is given. In the present case, it is assumed that the
egovehicle is an ordinary car with front wheel steering, driving on ordinary roads.
Taking the known locomotion measured by odometer or speedometer into account,
integration of measurements over time from a single, passive, monocular, 2-D im-
aging sensor allows motion stereointerpretation in a straightforward and computa-
tionally very efficient way.

With orientation toward general road networks, the types of scenes investigated
are the human-built infrastructure “roads” which is standardized to some extent but
is otherwise quasi-natural with respect to environmental conditions such as lighting
including shadows, such as weather, and possible objects on the road; here, we
confine ourselves just to road recognition. The bootstrap problem discussed here is
the most difficult part and is far from being solved at present for the general case
(all possible lighting and weather conditions). At the very first start of the vision
process, alleviation for the task, of course, is the fact that during this self-
orientation phase no real-time control activity has to be done. Several approaches
may be tried in sequence; during development phases, there is an operator check-
ing the results of recognition trials independently. Solution times may lie in the
several-second range instead of tens of milliseconds.

8.1 Introduction to Visual Integration for Road Recognition

Some aspects of this topic have already been mentioned in previous chapters. Here,
the focus will be on the overall interpretation aspects of roads and how to get
started. For dynamic scene understanding based on edge and stripe features, the
spatial distribution of recognizable features has to be combined with translational
and rotational motion prediction and with the laws of central projection for map-
ping spatial features into the image plane. The recursive visual measurement proc-
ess fits the best possible parameters and spatial state time histories to the data
measured.
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These estimates satisfy the motion model in the sense of least-squares errors
taking the specified (assumed) noise characteristics into account. Once started, di-
rect nonlinear, perspective inversion is bypassed by prediction-error feedback. To
get started, however, either an initial perspective inversion has to be done or an in-
tuitive jump to sufficiently good starting values has to be performed somehow,
from which the system will converge to a stable interpretation condition. On stan-
dard roads in normal driving situations, the latter procedure often works well.

For hypothesis generation, corresponding object databases containing both mo-
tion characteristics and all aspects geared to visual feature recognition are key ele-
ments of this approach. Tapping into these databases triggered by the set of fea-
tures actually measured is necessary for deriving sufficiently good initial values for
the state variables and other parameters involved to get started. This is the task of
hypothesis generation to be discussed here.

When applying these methods to complex scenes, simple rigid implementation
will not be sufficient. Some features may have become occluded by another object
moving into the space between the camera and the object observed. In these cases,
the interpretation process must come up with proper hypotheses and adjustments in
the control parameters for the interpretation system so that feature matching and in-
terpretation continues to correspond to the actual process happening in the scene
observed. In the case of occlusion by other objects/subjects, an information ex-
change with higher interpretation levels (for situation assessment) has to be organ-
ized over time (see Chapter 13).

The task of object recognition can be achieved neither fully bottom-up nor fully
top-down exclusively, in general, but requires joint efforts from both directions to
be efficient and reliable. In Section 5.5, some of the bottom-up aspects have al-
ready been touched upon. In this section, purely visual integration aspects will be
discussed, especially the richness in representation obtained by exploiting the first-
order derivative matrix of the connection between state variables in 3-D space and
features in the image (the Jacobian matrix; see Sections 2.1.2 and 2.4.2). This will
be done here for the example of recognizing roads with lanes. Since motion control
affects conditions for visual observation and is part of autonomous system design
in closed-loop form, the motion control inputs are assumed to be measured and
available to the interpretation system. All effects of active motion control on visual
appearance of the scene are predicted as expectations and taken into account before
data interpretation.

8.2 Road Recognition and Hypothesis Generation

The presence of objects has to be hypothesized from feature aggregations that may
have been collected in a systematic search covering extended regions of the image.
For roads, the coexistence of left- and right-hand side boundaries in a narrow range
of meaningful distances (say, 2 to 15 m, depending on the type of road) and with
low curvatures are the guidelines for a systematic search. From the known eleva-
tion of the camera above the ground, the angle of the (possibly curved) “pencil tip”
in the image representing the lane or road can be determined as a function of lane
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or road width. Initially, only internal hypotheses are formed by the specialist algo-
rithm for road recognition and are compared over a few interpretation cycles taking
the conventionally measured egomotion into account (distance traveled and steer-
ing angle achieved); the tracking mode is switched on, but results are published to
the rest of the system only after a somewhat stable interpretation has been found.
The degree of confidence in visual interpretation is also communicated to inform
the other perception and decision routines (agents).

8.2.1 Starting from Zero Curvature for Near Range

Figure 7.14 showed some results with a search region of six horizontal stripes. Re-
alistic lane widths are known to be in the range of 2 to 4.5 m. Note that in stripes 3
and 4, no edge features have been found due to broken lines as lane markings (in-
dicating that lane changes are allowed). To determine road direction nearby robus-
tly, approximations of tangents to the lane borderlines are derived from features in
well separated stripes (1, 2, and 5 here). The least-squares fit on each side (dashed
lines) yields the location of the vanishing point (designated P; here). If the camera
is looking in the direction of the longitudinal axis of the vehicle (yxv = 0), the off-
set of P; from the vertical centerline in the image represents directly the scaled
heading angle of the vehicle (Figure 7.6). Similarly, if a horizonline is clearly visi-
ble, the offset of P; from the horizon is a measure of the pitch angle of the camera
Ok. Assuming that 6y is 0 (negligibly small), Equation 7.40 and its derivative with
respect to range L; can be written

2o (L) =f-kH /L;  dzg/dL =—f -k H, /L. (8.1)
Similarly, for zero curvature, the lateral image coordinate as a function of range
L; and its derivative become from Equation 7.37,

yBi,‘r(Li): f 'ky[(ib/z_yv)”-i ~— Wy _\VVK];
dyBi” /dL, =—f -ky-(ib/Z—yV)/Liz.

Dividing the derivative in Equation 8.2 by that in Equation 8.1 yields the ex-
pressions for the image of the straight left (+b) and right (—b) boundary lines;
dyg /dzg =—(b/2-yy)-(k, 7k,)/ Hy;

dy, /dzg = (b/2=y,)-(K, /k,)/ Hy.

Both slopes in the image are constant and independent of the yaw angles v (see
Figure 7.6). Since z is defined positive downward, the right-hand boundary—
coordinate increases with decreasing range as long as the vehicle offset is smaller
than half the lane width; at the vanishing point L; = oo, the vertical coordinate zg; is
zero for 6 = 0. The vehicle is at the center of the lane when the left and right
boundary lines are mirror images relative to the vertical line through the vanishing
point.

Assuming constant road (lane) width on a planar surface and knowing the cam-
era elevation above the ground, perspective inversion for the ranges L; can be done
in a straightforward manner from Equation 8.1 (left);

L="f -kH,/z;. (8.4)

(8.2)

(8.3)
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Equation 8.2 immediately yields the lumped yaw angle v for L; — oo as
Y=Yy Wy ==Y (b =)/ ok, (8.5)

These linear approximations of road boundaries usually yield sufficiently accu-
rate values of the unknown state variables (yy and yy) as well as the parameter lane
width b for starting the recursive estimation process; it can then be extended to fur-
ther distances by adding further search stripes at smaller values zg; (higher up in the
image). The recursive estimation process by itself has a certain range of conver-
gence to the proper solution, so that a rough approximate initialization is sufficient,
mostly. The curvature parameters may all be set to zero initially for the recursive
estimation process when look-ahead distances are small. A numerical example will
be shown at the end of the next section.

8.2.2 Road Curvature from Look-ahead Regions Further Away

Depending on the type of road, the boundaries to be found may be smooth (e.g.,
lane markings) or jagged [e.g., grass on the shoulder (Figure 7.16) or dirt on the
roadside]. Since road size in the image decreases with range, various properly sized
edge masks (templates) are well suited for recognizing these different boundary
types reliably with the method CRONQOS (see Section 5.2). Since in the near range
on roads, some a priori knowledge is given, usually, the feature extraction methods
can be parameterized reasonably well. When more distant regions are observed,
working with multiple scales and possibly orientations is recommended; a versatile
recognition system should have these at its disposal. Using different mask sizes
and/or sub—sampling of pixels as an inverse function of distance (row position in
the vertical direction of the image) may be a good compromise with respect to effi-
ciency if pixel noise is low. When applying direction-sensitive edge extractors like
UBM (see Section 5.3), starting from the second or third pyramid level at the bot-
tom of the image is advisable.

Once an edge element has been found, it is advisable for efficient search to con-
tinue along the same boundary in adjacent regions under colinearity assumptions;
this reduces search intervals for mask orientations and search lengths. Since lanes
and (two-lane) roads are between 2 and 7 m wide and do have parallel boundaries,
in general, this gestalt knowledge may be exploited to find the adjacent lane mark-
ing or road boundary in the image; mask parameters and search regions have to be
adjusted correspondingly, taking perspective mapping into account. Looking al-
most parallel to the road surface, the road is mapped into the image as a triangular
shape, whose tip may bend smoothly to the left (Figure 7.16) or right (Figure 7.17)
depending on its curvature.

As a first step, a straight road is interpreted into the image from the results of
edge finding in several stripes nearby, as discussed in the previous section; in Fig-
ure 7.14 the dashed lines with the intersection point P; result. From the average of
the first two pairs of lane markings, lane width and the center of the lane y,_c are
determined. The line between this center point and P; (shown solid) is the reference
line for determining the curvature offset Ay, at any point along the road. Further
lane markings are searched in stripes higher up in the image at increasingly further
distances. Since Equation 7.37 indicates that curvature can best be determined
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from look-ahead regions far away, this process is continued as long as lane mark-
ings are highly visible. During this process, search parameters may be adapted to
the results found in the previous stripe. Let us assume that this search is stopped at
the far look-ahead distance L.

Now the center point of the lane at L is determined from the two positions of
the lane markings yg, and yg,.. The difference of these values yields the lane width
in the image bgs at L¢ (Equation 7.38). The point where the centerline of this search
stripe hits the centerline of the virtual straight road is the reference for determining
the offset due to road curvature Ay.(Ls) (see distance marked in Figure 7.14). As-
suming that the contribution of Cyny, is negligible against that of Cym, from Equa-
tion 7.24, Ay.(Ly) = Conm'Li/2. With Equation 7.37 and the effects of y,, and v
taken care of by the line of reference, the curvature parameter can be estimated
from

AYer =AYy 'Lf/(f 'ky):COhm'sz/z
as (8.6)
Comm :Z'AYCf/L2 =AYy 'Z/Lf ok,
On minor roads with good contrast in intensity (as in Figure 7.16), the center of
the road far away may be determined better by region-based methods like UBM.

8.2.3 Simple Numerical Example of Initialization

Since initialization in Figure 7.16 is much more involved due to hilly terrain and
varying road width, this will be discussed in later chapters. The relatively easy ini-
tialization procedure for a highway scene while driving is discussed with the help
of Figure 7.14. The following parameters are typical for the test vehicle VaMoRs
and one of its cameras around 1990: Focal length f ~ 8 mm; scaling factors for the
imaging sensor: k, ~ 50 pixels/mm and k, =~ 40 pixels/mm; elevation of camera
above the ground Hx = 1.9 m. The origin of the yg, zg image coordinates is selected
here at the center of the image.

By averaging the results from stripes 1 and 2 for noise reduction, the lane width
measured in the image is obtained as 280 pixels; its center lies at y c = —4 pixels
and z, ¢ = 65 pixels (average of measured values). The vanishing point P;, found by
intersecting the two virtual boundary lines through the lane markings nearby and in
stripe 5 (for higher robustness), has the image coordinates ygp = 11 and zgp = —88
pixels. With Equation 8.5, this yields a yaw angle of y ~ 2° and with Equation 7.40
for Ly — oo, a pitch angle of 6 = —12°. The latter value specifies with Equation
7.40 that the optical axis (zg = 0) looks at a look-ahead range L., (distance to the
point mapped into the image center) of

L,=H,/tan6, =1.9/0.22=8.6m. (8.7

For the far look-ahead range L; at the measured vertical coordinate zgs = —55

pixel, the same equation yields with F = zg¢/(f -k,) = —0.1375
L;=H,(1-F-tan6,)/(F +tan6,)=22.3m . (8.8)

With this distance now the curvature parameter can be determined from Equa-

tion 8.6. To do this, the center of the lane at distance L has to be determined. From
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the measured values yg, = 80 and y,,, = 34 pixels the center of the lane is found at
YeLcr = 57 pixels; Equations 7.38 and 8.8 yield an estimated lane width of by = 3.2
m. The intersection point at L with the reference line for the center of the virtual
straight road is found at y, s, = 8 pixel. The difference Aycer = Yeice — Ygisp = 49
pixels according to Equation 8.6, corresponds directly to the curvature parameter
Conm Yielding

Conm = AYepr -2/(Ls - f-k,)=0.0137m™, (8.9)

or a radius of curvature of R = 73 m. The heading change of the road over the look-
ahead distance is Ay(Ls) = Conm L¢ = 17.5°. Approximating the cosine for an angle
of this magnitude by 1 yields an error of almost 5%. This indicates that to deter-
mine lane or road width at greater distances, the row direction is a poor approxima-
tion. Distances in the row direction are enlarged by a factor of ~ 1/cos [Ax(L¢)].

Since the results of (crude) perspective inversion are the starting point for recur-
sive estimation by prediction-error feedback, high precision is not important and
simplifications leading to errors in the few percent range are tolerable; this allows
rather simple equations and generous assumptions for inversion of perspective pro-
jection. Table 8.1 shows the collected results from such an initialization based on
Figure 7.14.

Table 8.1. Numerical values for initialization of the recursive estimation process derived
from Figure 7.14, respectively, assumed or actually measured

Name of variable Symbol (dimension) Numerical value | Equation
Gaze angle in yaw v (degrees) 2 8.5
Gaze angle in pitch 0 (degrees) =12 7.40
Look-ahead range (max) L¢ (meter) 22.3 8.8
Lane width b (meter) 3.35 7.38
Lateral offset from lane center yv (meter) 0.17 7.39
Road curvature parameter Conm (meter ) 0.0137=1/73 8.9
Slip angle B (degrees) unknown, set to 0

Cinm (Meter ) unknown, set to 0

Cun (meter ) unknown, set to 0
Steering angle A actually measured
Vehicle speed V (m/s) actually measured

Figure 8.1 shows a demanding initialization process with the vehicle VaMoRs at
rest but in almost normal driving conditions on a campus road of UniBwM near
Munich without special lane markings [Mysliwetz 1990]. On the right-hand side,
there are curbstones with several edge features, and the left lane limit is a very nar-
row, but very visible tar-filled gap between the plates of concrete forming the lane
surface. The shadow boundaries of the trees are much more pronounced in inten-
sity difference than the road boundary; however, the hypothesis that the shadow of
the tree is a lane can be discarded immediately because of the wrong dimensions in
lateral extent and the jumps in the heading direction.

Without the gestalt idea of a smoothly curved continuous road, mapped by per-
spective projection, recognition would have been impossible. Finding and checking
single lines, which have to be interpreted later on as lane or road boundaries in a
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separate step, is much more difficult than introducing essential shape parameters of
the object lane or road from the beginning at the interpretation level for single edge
features.

Figure 8.1. Initialization of road recognition; example of a successful instantiation of a
road model with edge elements yielding smoothly curved or straight boundary lines and
regions in between with perturbed homogeneous intensity distributions. Small local de-
viations from average intensity are tolerated (dark or bright patches). The long white
lines in the right image represent the lane boundaries for the road model accepted as
valid.

For verification of the hypothesis “road,” a region-based intensity or texture
analysis in the hypothesized road area should be run. For humans, the evenly ar-
ranged objects (trees and bushes) along the road and knowledge about shadows
from a deep-standing sun may provide the best support for a road hypothesis. In
the long run, machine vision should be able to exploit this knowledge as well.

8.3 Selection of Tuning Parameters for Recursive
Estimation

Beside the initial values for the state variables and the parameters involved, the
values describing the statistical properties of the dynamic process observed and of
the measurement process installed for the purpose of this observation also have to
be initialized by some suitable starting values. The recursive estimation procedure
of the extended Kalman filter (EKF) relies on the first two moments of the stochas-
tic process assumed to be Gaussian for improving the estimated state after each
measurement input in an optimal way. Thus, both the initial values of the error co-
variance matrix Pq and the entries in the covariance matrices Q for system pertur-
bations as well as R for measurement perturbations have to be specified. These data
describe the knowledge one has about uncertainties of the process of perception.

In Chapter 6, Section 6.4.4.1, it was shown in a simple scalar example that
choosing the relative magnitude of the elements of R and Q determines whether the
update for the best estimate can trust the actual state x and its development over
time (relatively small values for the variance o) more than the measurements y
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(smaller values for the variance of the measurements csyz). Because of the complex-
ity of interdependence between all factors involved in somewhat more complex
systems, this so called “filter tuning” is considered more an art than a science. Vi-
sion from a moving platform in natural environments is very complex, and quite
some experience is needed to achieve good behavior under changing conditions.

8.3.1 Elements of the Measurement Covariance Matrix R

The steering angle A is the only conventionally measured variable beside image
evaluation; in the latter measurement process, lateral positions of inclined edges
are measured in image rows. All these measurements are considered unrelated so
that only the diagonal terms are nonzero. The measurement resolution of the digi-
tized steering angle for the test vehicle VaMoRs was 0.24° or 0.0042 rad. Choos-
ing about one-quarter of this value as standard deviation (o; = 0.001 rad), or the
variance as o,° = 10°%, showed good convergence properties in estimation.

Static edge extraction to subpixel accuracy in images with smooth edges has
standard deviations of considerably less than 1 pixel. However, when the vehicle
drives on slightly uneven ground, minor body motion in both pitch and roll occurs
around the static reference value. Due to active road following based on noisy data
in lateral offset and heading angle, the yaw angle also shows changes not modeled,
since loop closure has a total lumped delay time of several tenths of a second. To
allow a good balance between taking previous smoothed measurements into ac-
count and getting sufficiently good input on changing environmental conditions, an
average pixel variance of csyBiZ = 5 pixel® in the relatively short look-ahead range of
up to about 25 m showed good results, corresponding to a standard deviation of
2.24 pixels. According to Table 7.1 (columns 2 and 3 for L = 20 m) and assuming
the slope of the boundaries in the image to be close to +45° (tan ~ 1), this corre-
sponds to pitch fluctuations of about one-quarter of 1°; this seems quite reasonable.

It maybe surprising that body motion is considered measurement noise; how-
ever, there are good reasons for doing this. First, pitching motion has not been con-
sidered at all up to now and does not affect motion in lateral degrees of freedom; it
comes into play only through the optical measurement process. Second, even
though the optical signal path is not directly affected, the noise in the sensor pose
relative to the ground is what matters. But this motion is not purely noise, since ei-
gen-motion of the vehicle in pitch exists that shows typical oscillations with re-
spect to frequency and damping. This will be treated in Section 9.3.

8.3.2 Elements of the System State Covariance Matrix Q

Here again it is generally assumed that the state variations are uncoupled and thus
only the diagonal elements are nonzero. The values found to yield good results for
the van VaMoRs by iterative experimental filter tuning according to [Maybeck 1979;
Mysliwetz 1990] are (for the corresponding state vector see Equation 9.17)
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Q = Diag(10,10°,107,10*,

107°,10™,10%°,10°,10).
These values have been determined for the favorable observation conditions of
cameras relatively high above the ground in a van (Hx = 1.8 m). For the sedan
VaMP with Hx = 1.3 m (see Table 7.1) but much smoother driving behavior, the
variance of the heading angle has been 2 to 3 - 107 (instead of 107"), while the
variance for the lateral offset y,, was twice as high (~ 2-10™) in normal driving; it
went up by another factor of almost 2 during lane changes [Behringer 1996]. Work-
ing with Q as a constant diagonal matrix with average values for the individual
variances usually suffices. One should always keep in mind that all these models
are approximations (more or less valid) and that the processes are certainly not per-
fectly Gaussian and decoupled. The essential fact is that convergence occurs to
reasonable values for the process to be controlled in common sense judgment of
practical engineering; whether this is optimal or not is secondary. If problems oc-

cur, it is necessary to go back and check the validity of all models involved.

(8.10)

8.3.3 Initial Values of the Error Covariance Matrix P,

In contrast to the covariance matrices Q and R which represent long-term statistical
behavior of the processes involved, the initial error covariance matrix P, deter-
mines the transient behavior after starting recursion. The less certain the initially
guessed values for the state variables, the larger the corresponding entries on the
diagonal of P, should be. On the other hand, when relatively direct measurements
of some states are not available but reasonable initial values can be estimated by
engineering judgment, the corresponding entries in Py should be small (or even
zero) so that these components start being changed by the estimation process only
after a few iterations.
One practically proven set of initial values for road estimation with VaMoRs is
P, = Diag(0.1, 0, 0.1, 01, 01, 0, 0, 01, 0),

corresp.to 4 B v Yy Com Cim Cin Com C

This means that the initial values estimated by the user (zeros) for the slip angle
B and the C; parameters in all curvature terms are trusted more than those derived
from the first measurements. Within the first iterations all values will be affected
by the transition matrix A and the covariance matrices Q and R (according to the
basic relations given in Equations 6.12, 6.16, and 6.17 or the corresponding ex-
pressions in sequential filtering).

From Figure 7.9, it can be seen, that during the initial acceleration phase (chang-
ing V in upper graph) horizontal curvature estimation is rather poor; only after
about 1 km distance traveled are the horizontal curvature parameters estimated in a
reasonable range (R > 1 km according to [RAS-L-1 1984]). This is partly due to us-
ing only 2 windows on one side, relatively close together like shown in Figure 7.7.
The detailed analysis of this nonstationary estimation process is rather involved
and not discussed here. It is one example of the fact that clean academic conditions
are hardly found in steadily changing natural environments. However, the idealized
methods (properly handled) may, nonetheless, be sufficient for achieving useful re-

(8.11)

lvm*
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sults, partly thanks to steady feedback control in a closed-loop action-perception
cycle, which prohibits short-term divergence.

8.4 First Recursive Trials and Monitoring of Convergence

Depending on the quality of the initial hypothesis, short-term divergence may oc-
cur in complex scenes; once a somewhat stable interpretation has been achieved,
the process is likely to continue smoothly. In order not to disturb the rest of the
overall system, the perception process for a certain object class should look at the
convergence behavior internally before the new hypothesis is made public. For ex-
ample, in Figure 8.2, the long shadow
from a tree in winter may be inter-
preted as a road boundary in one hy-
pothesis.

Starting with the vehicle at rest and
assuming that the vehicle is oriented
approximately in the road direction
near the center of the lane, knowledge
about usual lane widths leads to the
hypothesis marked by white line seg-
ments. When nothing can be assumed
about the subject’s position, other road
hypotheses cannot be excluded com-
pletely, e.g., one road side following

erating a good road hypothesis without the _shadow of the tree in front of the

additional measurement data and higher  Vehicle. The road then could be as well

level reasoning or other input on the left-hand as on the right-hand

side of the shadow from the tree; for

the resulting feature positions expected

from this hypothesis, new measurement tasks have to be ordered. Features found or
not found then have to be judged in conjunction with the hypothesis.

Starting initialization under these conditions while the vehicle is being driven by
a human, a few most likely hypotheses should be set up in parallel and started in-
ternally (without giving results to the rest of the system or to the operator). Assum-
ing that the human driver guides the vehicle correctly, the system can prune away
the road models not corresponding to the path driven by observing the convergence
process of the other (parallel) hypotheses; while driving, all features from station-
ary, vertically extended objects in the environment of the road will move in a pre-
dictable way corresponding to ego speed. Those hypothesized objects, having large
prediction errors, a high percentage of rejected features, or that show divergence,
will be eliminated. This can be considered as some kind of learning in the actual
situation.

In the long run, road recognition systems do not have to recognize just the road
surface, possibly with lanes, but a much larger diversity of objects forming the in-
frastructure of different types of roads. During the search for initial scene recogni-

Figure 8.2. Ambiguous situation for gen-
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tion, all objects of potential interest for vehicle guidance should be detected and
correctly perceived. In Section 8.5, the road elements to be initialized in more ad-
vanced vision systems will be discussed; here we look first at some steps for test-
ing hypotheses instantiated.

8.4.1 Jacobian Elements and Hypothesis Checking

The Jacobian matrix contains all essential first-order information, how feature po-
sitions in an image (or derived quantities thereof) depend on the states or parame-
ters of the object descriptions involved. Analyzing the magnitude of these entries
yields valuable information on the mapping and interpretation process, which may
be exploited to control and adapt the process of hypothesis improvement.

8.4.1.1 Task Adjustment and Feature Selection for Observability

The basic underlying equation links the m vector dy of measurements (and thus the
prediction errors) to the n vector of optimal increments for the state variables and
parameters dx to be iterated:
dy =C-dx (8.13)

If one column (index c) of the C matrix is zero (or its entries are very small in
magnitude), this means that all measured features do not (or hardly) depend on the
variable corresponding to index c (see Figure 8.3); therefore one should not try to
determine an update for this component dx, from the actual measurements.

In the case shown, features 1, 3, 6, and m = 8 depend very little on state component
X (fourth column) and the other ones not at all; if prediction error dy; is large, this is

&) (0 >80 ilul<sil>s, O
d | | 1> 0 P& 0 0 0 0 > |(dd
: 0 0 0 ilgl<g,ilPg, 0 ||dx
o | leal<e, 0 fggl<a, i 0 0 ey<ey||.
| >¢, 0 >g 1 O E 0 0 _%_
dy, 0 0 0 E les |<€ i 0 0
0 |pg, O ! 0 10 0 |l
d,) >80 1> flewl<s,i 0 0 )/
mvector 7 Columnindexc Best update
of prediction (m % n) to be found
errors Jacobian matrix C for state components

Figure 8.3. Example of a degenerate Jacobian matrix with respect to measurement
values y,, ye and state component X, (each of the absolute values of ¢, and & is be-
low a specific threshold, see text; || means magnitude of the corresponding value)



238 8 Initialization in Dynamic Scene Understanding

reflected in changes of dx. and especially in the state component (c + 1), here 5, since
this influences y; by a larger factor. However, if prediction error dys is large, the only
way of changing it within the feature set selected is by adjusting x.; since the partial
derivative Jg is small, large changes in x. will achieve some effect in error reduction.
This often has detrimental effects on overall convergence. Very often, it is better to
look for other features with larger values of their Jacobian elements, at least in column
C, to substitute them for ys.

However, since we are dealing with dynamic systems for which dynamic links
between the state variables may be known (integral relationships and cross-feeds), the
system may be observable even though entire columns of C are zero. To check
observability of all n components of a dynamic system, a different test has to be
performed. For systems with single eigenvalues (the case of multiple eigenvalues is
more involved), observability according to Kalman may be checked by using the
matrix of right eigenvectors V (defined by A-V = V-4, where 4 is the diagonal matrix
of eigenvalues of the transition matrix A of the dynamic system). By performing the
linear similarity transformation

x=V-x' (8.14)
the linearized measurement equation becomes
dy=C-V.dx'=C"dx  with C'=C-V. (8.15)

If all elements of a column in the C* matrix are small or zero, this means that all
features positions measured do not depend on this characteristic combination of state
variables or parameters. Therefore, no meaningful innovation update can be done for
this component of the eigenmotions. Maybe, due to other conditions in the future,
some new features will occur which may allow also to have an innovation update for
this component.

The case of almost vanishing columns or rows of the matrix C is shown in Figure
8.3 for row indices r and 6 and for column index c. Here, the &; mean numerically
small values in magnitude compared to the noise level in the system. If all entries in a
matrix row are small or zero, this means that the position in the image of the
corresponding feature does not depend on any of the state variables or parameters of
the object represented by the C matrix, at least under the current conditions. Therefore,
the feature may be discarded altogether without affecting the update results. This
reduces the workload for the numerical computation and may help in stabilizing the
inversion process buried in the recursion algorithm. Due to noise, a prediction error is
likely to occur which will then be interpreted as a large change in the state vector
because of the smallness of the C elements; this will be avoided by removing this
measurement value altogether, if the row vector in C has only very small entries.

The judgment of smallness, of course, has to be made with reference to the
dimension of the corresponding state variable. An angle in radians determining a
feature position at the end of a long lever (say several meters) has to be weighted
correspondingly differently compared to another variable whose the dimension has
been chosen in centimeter (for whatsoever reason). So-called “balancing” by proper
weighting factors for each variable may bring the numerical values into the same
numerical range required for meaningful selection of thresholds for the g to be
considered effectively zero.

To obtain good results, the thresholds of the C element values should be chosen
generously. This is good advice if it can be expected that with time the aspect
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conditions will become more favorable for determining the corresponding variable
and if the prediction model is already sufficiently good for handling the observation
task meanwhile. In summary, checking the conditioning of the Jacobian matrix and
adapting the observation process before things go wrong, is a better way to go than
waiting until interpretation has already gone wrong.

8.4.1.2 Feature Selection for Optimal Estimation Results

If computing power available is limited, however, and the number of features “s”
measurable is large, the question arises which features to choose for tracking to get
best state estimation results. Say, the processor capability allows m features to be ex-
tracted, with m <'s. This problem has been addressed in [Wuensche 1986, 1987]; the fol-
lowing is a condensed version of this solution. Since feature position does not depend
on the speed components of the state vector, this vector is reduced x (all correspond-
ing expressions will be designated by the index R).

To have all state variables in the same numerical range (e.g., angles in radians
and distances in meters), they will be balanced by a properly chosen diagonal scal-
ing matrix S. The equation of the Gauss-Markov estimator for the properly scaled
reduced state vector (of dimension ng) is

8% =5 -8%g =S {(Cx-S)" "R™(C- )" }'(Ce-S) -R7-(y-y»,  (816)
where Cg is the Jacobian matrix, with the zero-columns for speed components re-

moved; R is the diagonal measurement covariance matrix, and S is the scaling ma-
trix for balancing the state variables. With the shorthand notation

C,= R".C,-S, (8.17)
the performance index J = | Cy" Cy | is chosen with the recursive formulation
1=3lcr-cl, (8.18)

where C; is a 2 x ng matrix from Cy corresponding to feature i with two positional
components each in the image plane:

A Al IA-A A A S IALIAL (6.19)
A A
A, is diagonal and A, is symmetrical. This expression may be evaluated with 16
multiplications, 2 divisions, and 9 (m — 1) + 7 additions. For initialization, a com-
plete search with (s over m) possible feature combinations is performed. Later on,
in the real-time phase, a suboptimal but efficient procedure is to find for each fea-
ture tracked another one out of those not tracked that gives the largest increase in J.
Since one cycle is lost by the replacement, which leads to an overall deterioration,
the better feature is accepted only if it yields a new performance measure sensibly
larger than the old one:

‘]new > (X'de )

with a=1+eg.
The best suited value of ¢ is of course problem dependent. Figure 8.4 shows an
experimental result from a different application area: Satellite docking emulated
with an air-cushion vehicle in the laboratory. Three corner features of a known
polyhedral object being docked to are to be selected such that the performance in-

(8.20)
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dex for recognizing the relative egostate is maximized. The maneuver consists of
an initial approach from the right-hand side relative to the plane containing the
docking device (first 40 seconds), an intermediate circumnavigation phase to the
left with view fixation by rotating around the vertical axis, and a final phase of
homing in till mechanical docking by a rod is achieved [Wuensche 1986]. At point 2
(~ 57 s) a self-occlusion of the side to be docked to starts disappearing on the left-
hand side of the body, leading to small spacing between features in the image and
possibly to confusion; therefore, these features should no longer be tracked (lower
left corner starts being discarded). Only at point 4a are the outermost left features
well separable again. In region 5, the features on the right-hand side of the body
are very close to each other, leading again to poor measurement results (confusion
in feature correlation). The performance index improves considerably when at
around 100 s both upper outer corners of the body become very discernible.
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Figure 8.4. Selection of optimal feature combinations of an autonomous air-cushion ve-
hicle with the sense of vision: Approach (first 40 seconds), circumnavigation of the
polyhedral object with view fixation, and homing in for docking (last 20 seconds)
[Wuensche 1986]

In road traffic, similar but — due to rounded corners and unknown dimensions of
cars — more complicated situations occur for changing the aspect conditions of an-
other vehicle. Of course, looking straight from behind, the length of the vehicle
body cannot be determined; looking straight from the side, body width is non-
observable. For aspect conditions in between, the size of the body diagonal can be
estimated rather well, while width and length separately are rather unstable due to
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poor visibility of features on the rounded edges and corners of the body inside the
outer contour [Schmid 1995]. This means that both shape parameters to be estimated
and promising features for recognition and tracking have to be selected in depend-
ence on the aspect conditions.

8.4.2 Monitoring Residues

A very powerful tool for hypothesis checking in the 4-D approach consists of
watching and judging residues of predicted features. If no features corresponding
to predicted ones can be found, apparently the hypothesis is no good. Since it is
normal that a certain percentage of predicted features cannot be found, the number
of features tried should be two to three times the minimum number required for
complete state estimation. More features make the measurement and interpretation
process more robust, in general.

If the percentage of features not found (or found with too large prediction er-
rors) rises above a certain threshold value (e.g., 30%), the hypothesis should be ad-
justed or dropped. The big advantage of an early jump to an object hypothesis is
the fact that now there are many more features available for testing the correctness.
Early starts with several (the most likely) different hypotheses, usually, will lead to
earlier success in finding a fitting one than by trying to accumulate confidence
through elaborate feature combinations (danger of combinatorial explosion).

8.5 Road Elements To Be Initialized

In the long run, road recognition systems do not have to recognize just the road
surface, possibly with lanes, but a much larger diversity of objects forming the in-
frastructure of different types of roads (see Table 8.2 below).

Lane markings do not just define the lanes for driving. Information about ma-
neuvering allowed or forbidden is also given by the type of marking: Solid mark-
ings indicate that this line is not to be crossed by vehicles in normal situations; in
case of a failure, these lines may be crossed, e.g., for parking the vehicle on the
road shoulder. Dashed markings allow lane changes in both directions. A solid and
a dashed line beside each other indicate that crossing this marking is allowed only
from the dashed side while forbidden from the solid side. Two solid lines beside
each other should never be crossed. In some countries, these lines may be painted
in yellow color regularly while in others yellow colors are spared for construction
sites.

Within lanes, arrows may be painted on the surface indicating the allowed driv-
ing directions for vehicles in the lane [Baghdassarian et al. 1994]. Other more com-
plex markings on roads can be found when the number of lanes changes, either
upward or downward; typical examples are exits or entries on high-speed roads or
turnoffs to the opposite direction of driving (left in right-hand traffic and vice
versa).
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Vertical poles at regular spacing along the road (25 or 50 m), sometimes with
reflecting glass inserts, are supposed to mark the road when the surface is covered
with snow, dirt, or leaves in the fall. The reflecting glass may have different colors
(e.g., in Austria) or shapes (in Germany) to allow easier discrimination of left and
right road boundaries further away. Availability of this background knowledge in
vision systems makes road recognition easier.

Guide rails along the road also help affirming a road hypothesis. They have nice
features, usually, with elongated horizontal edges and homogeneous areas (bands
of similar color or texture) in between. Since they stand up about a half meter
above the road surface and at a certain distance to the side, they are separated from
the road surface by irregular texture from vegetation, usually. At sharper bends in
the road, especially at the end of a straight high-speed section, often red and white
arrow heads are painted onto their surface, signaling the driver to slow down.
When no guide rails are there, special signs at the usual location of guide rails with
arrows in the direction of the upcoming curve, or triangular traffic signs with bent
arrows in elevated positions usual for traffic signs may be found for alerting the
driver. Machine vision allows autonomous vehicles to take advantage of all this in-

formation, put up initially for the human driver, without additional cost.

Table 8.2. Objects of road infrastructure to be recognized on or in the vicinity of a road

Name of object | Location rela- Characteristic shape Colors
(class) tive to road (2-D, 3-D
Road markings | On the surface | Lines (0.1to 0.5 m wide; solid, Chite, yellow
dashed - single or in pairs, rec-
tangles, arrows
Vertical poles Beside road Round, triangular cylinders Black, white or-
(spacing every 25 or 50 m) ange
Traffic regula- Beside or Round, triangular, square, rec- White, red and
tion signs above tangular, octagonal black, blue
Arrows On guide Solid arrows, diagonal and White and red,
rails, posts cross-diagonal stripes black
Traffic lights Beside or Round, rectangles Red, yellow,
above (with bars and arrows) green
Signs for Beside or Large rectangular White, blue, green
navigation above
Signs for city Beside Large rectangular (some Yellow, black,
limits with black diagonal bar) white
Signs for con- On, beside or Round, triangular, rectangular | Yellow, black, red
struction sites above with diagonal stripes
Guide rails Above and Curved steel bands Metal, white and
beside road red
Reflecting nails On surface Shallow rounded pyramid Yellow, red
Tar patches On surface Any Black
Turnoff lane At either side Widening lane with arrow White, yellow
Road fork Splitting road Y-shape Different shades
or textures

Traffic sign recognition has been studied for a long time by several groups, e.g.,
[Estable et al. 1994; Priese et al. 1995; Ritter 1997]. The special challenge is, on one
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hand, separating these traffic signs from other postings, and on the other, recogniz-
ing the signs under partial occlusion (from branches in summer and snow in win-
ter). Recognition of traffic and navigational signs will not be followed here since it
can be decoupled from road recognition proper. What cannot be decoupled from
normal road recognition is detecting “reflecting nails” in the road surface and rec-
ognizing that certain patches in the road surface with different visual appearance
are nonetheless smooth surfaces, and it does no harm driving over them. Stereovi-
sion or other range sensing devices will have advantages in these cases.

On the contrary, driving on poorly kept roads requires recognizing potholes and
avoiding them. This is one of the most difficult tasks similar to driving cross-
country. On unmarked roads of low order with almost no restrictions on road cur-
vature and surface quality, visual road (track) recognition of autonomous vehicles
has barely been touched. Mastering this challenge will be required for serious mili-
tary and agricultural applications.

8.6 Exploiting the Idea of Gestalt

Studies of the nature of human perception support the conclusion that perception is
not just to reflect the world in a simple manner. Perceived size is not the same as
physical size, perceived brightness is not the same as physical intensity, perceived
velocity is not physical velocity, and so on for many other perceptual attributes.
Moreover, the perception of composite stimuli often elicits interpretations which
are not present when the components are perceived separately. Or in other words,
“The whole is different from the sum of its parts”. The gestalt laws deal with this
aspect in greater detail. Some remarks on history:

Ernst Mach (1838-1916) introduced the concepts of space forms and time
forms. We see a square as a square, whether it is large or small, red or blue, in out-
line or as textured region. This is space form. Likewise, we hear a melody as rec-
ognizable, even if we alter the key in such a way that none of the notes are the
same. Motion processes are recognized by just looking at dots on the joints of ar-
ticulated bodies, everything else being dark [Johansson 1973].

Christian von Ehrenfels (1859-1932) is the actual originator of the term gestalt
as the gestalt psychologists were to use it. In 1890, he wrote a book On Gestalt
Qualities. One of his students was Max Wertheimer to whom Gestalt Psychology
is largely attributed.

Wolfgang Kohler (1887-1967) received his PhD in 1908 from the University of
Berlin. He then became an assistant at the Psychological Institute in Frankfurt,
where he met and worked with Max Wertheimer. In 1922, he became the chair and
director of the psychology lab at the University of Berlin, where he stayed until
1935. During that time, in 1929, he wrote Gestalt Psychology. The original obser-
vation was Wertheimer’s, when he noted that we perceive motion where there is
nothing more than a rapid sequence of individual sensory events. This is what he
saw in a toy stroboscope he bought by chance at a train station and what he saw in
his laboratory when he experimented with lights flashing in rapid succession (like
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fancy neon signs in advertising that seem to move). The effect is called the phi
phenomenon, and it is actually the basic principle of motion pictures!

If we see what is not there, what is it that we are seeing? One could call it an il-
lusion, but it is not a hallucination. Wertheimer explained that we are seeing an ef-
fect of the whole event, not contained in the sum of the parts. We see a coursing
string of lights, even though only one light lights up at a time, because the whole
event contains relationships among the individual lights that we experience as well.
This is exploited in modern traffic at construction sites to vividly convey the (un-
expected) trajectory to be driven.

In addition, say the gestalt psychologists, we are built to experience the struc-
tured whole as well as the individual sensations. And not only do we have the abil-
ity to do so, we have a strong tendency to do so. We even add structure to events
which do not have gestalt structural qualities.

In perception, there are many organizing principles called gestalt laws. The
most general version is called the law of Praegnanz. It is supposed to suggest being
pregnant with meaning. This law says that we are innately driven to experience
things in as good a gestalt as possible. “Good” can mean many things here, such as
regular, orderly, simplicity, symmetry, and so on, which then refer to specific ge-
stalt laws.

For example, a set of dots outlining the shape of an object is likely to be per-
ceived as the object, not as a set of dots. We tend to complete the figure, make it
the way it ‘should’ be, and finish it in the context of the domain perceived. Typical
in road scenes is the recognition of triangular or circular traffic signs even though
parts of them are obscured by leaves from trees or by snow sticking to them.

Gestalt psychology made important contributions to the study of visual percep-
tion and problem solving. The approach of gestalt psychology has been extended to
research in areas such as thinking, memory, and the nature of aesthetics. The Ge-
stalt approach emphasizes that we perceive objects as well-organized patterns
rather than an aggregation of separate parts. According to this approach, when we
open our eyes, we do not see fractional particles in disorder. Instead, we notice lar-
ger areas with defined shapes and patterns. The "whole™ that we see is something
that is more structured and cohesive than a group of separate particles. That is to
say, humans tend to make an early jump to object hypotheses when they see parts
fitting that hypothesis.

In visual perception, a simple notion would be that to perceive is only to mirror
the objects in the world such that the physical properties of these objects are re-
flected in the mind. But is this really the case? Do we “measure” the scene we
watch? The following examples show that perception is different from this simple
notion and that it is more constructive. The nature of perception fits more with the
notion to provide a useful description of objects in the outside world instead of be-
ing an accurate mirror image of the physical world. This description has to repre-
sent features that are relevant to our behavior.

The focal point of gestalt theory is the idea of "grouping”, or how humans tend
to interpret a visual field or problem in a certain way. The main factors that deter-
mine grouping are
— proximity - how elements tend to be grouped together depending on their spatial

closeness;
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— similarity - items that are similar in some way tend to be grouped together;

— closure - items are grouped together if they tend to complete a shape or pattern;

— simplicity - organization into figures according to symmetry, regularity, and
smoothness.

In psychology, these factors are called the laws of grouping in the context of
perception. Gestalt grouping laws do not seem to act independently. Instead, they
appear to influence each other, so that the final perception is a combination of the
entire gestalt grouping laws acting together. Gestalt theory applies to all aspects of
human learning, although it applies most directly to perception and problem-
solving.

8.6.1 The Extended Gestalt Idea for Dynamic Machine Vision

Not only is spatial appearance of importance but also temporal gestalt (patterns
over time, oscillations, optical flow): Objects are perceived within an environment
according to all of their elements taken together as a global construct. This gestalt
or “whole form” approach has tried to isolate principles of perception: seemingly
innate mental laws that determine the way in which objects are perceived.

This capability of humans, in general, has been exploited in designing roads and
their infrastructure for humans steering vehicles.

Road curvature is recognized from smooth bending of the “pencil tip”, also over
time, as when a road appears in video sequences taken by a camera in a vehicle
guided along the road. The steering angle needed to stay at the center of the lane
(road) is directly proportional to curvature; steering rate is thus linked to speed
driven (see Equations 3.10/3.11). However, continuously seeing the road is not
necessary for perceiving a smoothly curved road. When snow covers both road and
shoulders and there is no vertical surface profile perpendicular to the road
(everything is entirely flat so that there are no surface cues for recognizing the
road), humans are, nonetheless, able to perceive a smoothly curved road from poles
regularly spaced along the side of the road. Introduced standards of spacing are 25
m (on state roads) or every 50 m (on freeways designed for higher speeds). While
driving continuously at constant speed, each pole generates a smoothly curved tra-
jectory in the image; the totality of impressions from all poles seen thus induces in
the human observer the percept of the smoothly curved road. Technical systems
can duplicate this capability by application of sampled data theory in connection
with a proper road model, which is standard state of the art.

Similarly, guide rails or trees along the road can serve the same purpose. Guide
rails usually are elevated above the ground (~ 0.5 m) and allow recognizing curve
initiation at long distances, especially when marked with arrowheads (usually
black or red and white); while driving in a curve, the arrowheads give a nice (opti-
cal) feature flow field which the unstructured continuous guide rail is not able to
provide.

In Gestalt psychology, the mechanism behind these types of percepts is labeled
Principle of Totality. This is to say that conscious experience must be considered
globally (by taking into account all the physical and mental aspects of the
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perceiving individual simultaneously) because the nature of the mind demands that
each component be considered as part of a system of dynamic relationships in a
task context. This is sometimes called the Phenomenon; in experimental analysis,
in relation to the Totality Principle, any psychological research should take
phenomena as a starting point and not be solely focused on sensory qualities.

In terms of the 4-D approach to dynamic machine vision, this means that early
jumps to higher level hypotheses for perception may be enlightening, shedding
new light (richer empirical background knowledge) for solving the vision task
based on impoverished (by perspective mapping) image data.

8.6.1.1 Spatial Components: Shape Characteristics

The semantics of perception are components not directly derived from bottom-up
signal processing; they originate from internal top-down association of relational
structures with derived image structures. Most reliable structures are least varying
based on a wealth of experience. It is claimed that 3-D space in connection with
central projection has to offer many advantages over 2-D image space with respect
to least variations (idealized as “invariance”) in the real world. This is the reason
why in the 4-D approach all internal representations are done in 3-D space directly
(beside continuous temporal embedding to be discussed later). From a collection of
features in the image plane, an immediate jump is made to an object hypothesis in
3-D space for a physical object observed under certain spatial aspect conditions
with the imaging process governed by straight light ray propagation. This may in-
clude mirroring.

Note that in this approach, the (invariant) 3-D shape always has to be associated
with the actual aspect conditions to arrive at its visual appearance; because of the
inertia of objects, these objects tend to move smoothly. Knowing 3-D shape and
motion continuity eliminates so called catastrophic events when in 2-D projection
entire faces appear or disappear from frame to frame.

From the task context under scrutiny, usually, there follows a strong reduction
in meaningful hypotheses for objects under certain aspect conditions from a given
collection of features observed. In order not to be too abstract, the example of
scene interpretation in road traffic will be discussed. Even here, it makes a large
difference whether one looks at and talks about freeway traffic, cross-country traf-
fic or an urban scene with many different traffic participants likely to appear. As
usual in the interpretation of real world dynamic scenes, two different modes of
operation can be distinguished: (1) The initial orientation phase, where the system
has to recognize the situation it is in (discussed here) and (2) the continuous track-
ing and control phase, where the system can exploit knowledge on temporal proc-
esses for single objects to constrain the range of interpretations by prediction-error
feedback (4-D part proper to be discussed later).

Certain Gestalt laws have been formulated by psychologists since humans can-
not but perceive groups of features in a preferred way: The law of proximity states
that objects near each other tend to be seen as a unit. A useful example in road
marking is the following: Parallel, tightly spaced double lines, one solid and the
other broken, are a single perceptual unit indicating that crossing this line is al-
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lowed only from the side of the broken line and not from the other. Two solid lines
mean that crossing is never allowed, not even in critical situations.

The law of closure says that, if something is missing in an otherwise complete
figure, we will tend to add it. A circle or a rectangle, for example, with small parts
of their edges missing, will still be seen as a circle or a rectangle, maybe described
by the words “drawn with interrupted lines”; if these lines are interrupted regularly,
a specification such as “dashed” or “dash-dotted” is immediately understood in a
conversation between individuals if they have the geometric concept of circle or
rectangle at their disposal. For the outer rec-
tangle in Figure 8.5, the gap at the lower left
corner will be “closed” (maybe with a foot-
note like “one corner open”.

The law of similarity says that we will
tend to group similar items together, to see
them as forming a gestalt, within a larger
form. An example in road traffic may be rec- ~ Figure 8.5. The law of closure in
ognizing wheels and vehicle bodies. Recog- ~ Gestalt psychology for completing
nizing the separate subparts may be ambigu-  Dasic shapes (under perturbations?)
ous. When they are assembled in standard
form, tapping knowledge about form and
function can help finding the correct hypotheses more easily. An idealized example
is given in Figure 8.6. Covering up the rest of the figure except the upper left part
(a), the graph could be read as the digit zero or the letter ‘0’ written in a special
form for usage in posters. If the additional hint is given that the figure shows a 3-D
body, most of us (with a multitude of wheeled vehicles around in everyday life)
would tend to see an axially symmetrical ring (tube for a wheel?) under oblique
viewing conditions; whether it is seen from the left or from the right side cannot be
decided from the simple graphic display.

(d)

Figure 8.6. Percepts in road traffic: (a) An elliptically shaped, ring-like figure (could be
an axially symmetrical tube for tires under an oblique angle, seen either from the left or
the right). (b) A pair of shapes like (a) (see text); (c) adding a simple vehicle body ob-
scuring most of the three wheels, the arrangement of (a) and (b) turns into the percept of
a wheeled vehicle clearly seen from the rear left side (or the front right side!). (d) and
(e), adding minor details to (a) resolves ambiguity by spatial interpretation: d) is a twin-
wheel seen from the rear left while (e) is viewed from the rear right. [There is more
background knowledge available affirming the interpretations in (c) to (e), see text.]

Part (b) shows two such objects side by side; they are perceived as separate
units. Only when in part (c) a very simple box-like objects is added, covering most
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of the three objects arranged as in parts a) and b), the percept immediately is that of
a cart seen from above, the left and the rear. The visible parts of the formerly sepa-
rate three objects now fit the two hypotheses of a vehicle with four wheels, seen ei-
ther (1) from the rear left or (2) from the front right; one wheel is self-occluded. In
case (1) it is the front right wheel, while in case (2) it is the rear right one. There is
no doubt that the wheels are both seen from the same side; this is due to the inter-
pretation derived from the rectangular box. In parts d) and e) of the figure, the ob-
ject from (a) has been supplemented with a differently looking surface representing
the contact area of the wheel to the ground. From this additional cue it is apparent
that the “tires” in (d) are seen from the rear left, while the one in (e) is seen from
the rear right (or vice versa, depending on the direction of travelling that is needed
for disambiguation). The twin-tires in (d) immediately induce the percept of a truck
since cars do not have this arrangement of wheels, in general.

The object on the upper surface of the vehicle body is also hypothesized as a
wheel in the perception process because it fits reasonably to the other wheels (size
and appearance). If not mounted on an axle, the pose shown is the most stable one
for isolated wheels. As a spare part, it also fits the functional aspect of standard us-
age. Quite contrary, the ellipses seen on the rear (front) side of the vehicle will not
be perceived as a wheel by humans, normally; at best, it is painted there for what-
ever reason. Note that except size, color, and pose it is identical to the leftmost
wheel of the vehicle seen only partially (the contact area of the tire to the ground is
not shown in both cases); nonetheless, the human percept is unambiguous. It is this
rich background of knowledge on form and function of objects that allows intelli-
gent systems easy visual perception.

Next, there is the law of symmetry. We tend to perceive objects as symmetrical
in 3-D space even though they appear asymmetrical in perspective projection.
Other vehicles tend to be seen as symmetrical since we are biased by previous ex-
perience; only when seen straight from the back or the front are they close to sym-
metrical, usually. Traffic signs of any shape (rectangular, circular, and triangular)
are perceived as symmetrical under any aspect conditions; knowledge about per-
spective distortion forces us to infer the aspect
conditions from the distortions actually seen. B

The law of good continuation states that objects D
arranged in either a straight line or a smooth curve
tend to be seen as a unit. In Figure 8.7, we distin-
guish two lines, one from A to B and another from
C to D, even though this graphic could represent
another set of lines, one from A to D and the other
from C to B. Nevertheless, we are more likely to A c
identify line A to B, which has better continuation  Figure 8.7. The law of good
than the line from A to D, which has an obvious  continuation tends to favor
discontinuity in direction at the corner. If the con-  ‘two lines crossing’ as per-
text in which this arrangement appeared would  cept (A-B crossing C-D) and
have been objects with corners of similar appear- ~ not two corners touching
ance, continuity over time could invoke the other ~ €ach other (AD touches BC)
interpretation as more likely. Bias from context is ~ © (AC touches BD)
known to have considerable influence.
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The idea behind these examples, and much of the gestalt explanation of things,
is that the world of our experiencing is meaningfully organized, to one degree or
another; we receive a better payoff taking these (assumed) facts into account.

The gestalt effect refers to the form—forming capability of our senses,
particularly with respect to the visual recognition of figures and whole forms
instead of just a collection of simple lines and curves. Key properties of gestalt
systems are emergence, reification, multistability, and invariance.

Emergence: Some parts are seen only after the
whole has been hypothesized. Reification is the “
constructive or generative aspect of perception, by
which the experienced percept contains more
explicit spatial information than the sensory
stimulus on which it is based. For instance, based on ‘ ‘
the fact that straight lines can be fit between the
centers of three black circles, the human observer
will see a (“Kaniza”) triangle in Figure 8.8, although  Figure 8.8. The percept of
no triangle has actually been drawn. a white triangle, based on

We have noticed our vehicle perception system in  an obscuration hypothesis
a highway scene overlooking two vehicles driving  for three separate dark cir-
side by side in front at almost constant speed, but  cular disks in triangular ar-
claiming a vehicle (for several cycles) in the space  rangement
between the vehicles; only after several cycles has
this misinterpretation been resolved by the system
through newly hypothesized vehicles at the correct location without intervention of
an operator.

Multi-stability (or Multi-stable perception) is the tendency of ambiguous
perceptual experiences to pop back and forth unstably between two or more
alternative interpretations. This is seen for example in the well-known Necker cube
shown in Figure 8.9. It is even claimed that one cannot suppress this alternation by
conscious attention [Poppel et al. 1991]; this
indicates that hypothesis generation is not fully
dependent on one’s will.

This phenomenon of multiple interpretations
may not only happen in pictorial (snapshot) image
interpretation as shown, but also in image se-
quences with moving light dots. As psychologists
have shown, individuals tend to interpret some of

Figure 8.9. The Necker cube  these sequences differently, depending on the
(wire frame) showing two  context discussed previously or on the personal
stable 3-D interpretations: Ei-  background of experience. A difficult problem
ther from top right above or  arises in interpreting a snapshot from an action by
from left below the cube. just one single frame; the actual pose may occur
in several different action patterns. It is again

likely to find the correct interpretation only by re-

ferring to the context which may be inferred from some other components of the
image or which has to be known from a different source; this problem is often en-
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countered in interpreting pieces of art. Sometimes this type of ambiguity is intro-
duced purposely to stimulate discussion.

Invariance is the property of perception whereby simple geometric objects are
recognized independently of rotation, translation, and scale, as well as several other
variations such as elastic deformations, different lighting, and different component
features. For example, all wheels are immediately recognized as having the same
basic shape. They are recognized despite perspective and elastic deformations as
well as partial occlusion (see Figure 8.4).

Emergence, reification, multistability, and invariance are not separable modules
to be modeled individually, but they are different aspects of a single unified
dynamic mechanism. These examples show that image interpretation often needs
embedding in a temporal and situational framework to yield unique results. For
machine vision, the 4-D approach is capable of providing this background in a
natural way.

8.6.1.2 Temporal Components, Process Characteristics

The law of common fate states that when objects or groups of features move in the
same direction, we tend to see them as a unit. This is the most common reason for
hypothesizing other vehicles or moving subjects in traffic. Biological subjects us-
ing legs for locomotion have swinging leg (and possibly arm) movements super-
imposed on body motion. The location of joints and their motion is characteristic
of the type of living being. Humans moving their arms, possibly with objects in
their hands, can be part of organized traffic signaling in unusual traffic situations.

Depth separation for traffic signs located in front of background texture has al-
ready been mentioned. Vehicles oscillating with decreasing amplitude after a per-
turbation in pitch or bank angle generate typical percepts of temporal gestalt: Os-
cillation frequency and damping ratio.

Blinking lights, when one-sided, signal the intention for lane change or turnoff
of a vehicle, or when both-sided, signal “danger”; blinking lights can only be rec-
ognized after a few cycles as “blinking.” These are percepts of relevance for deci-
sion—-making in traffic. Another use of blinking lights, but now sequentially of
many properly spaced ones on a curved line, can be found at construction sites; the
consecutive flashing of the next light in the row induces in the observer the percept
of an object moving on the curve. This vividly tells the driver the type of steering
he has to do (curvature = steering angle) to follow the trajectory indicated.

The phenomenon of multiple possibilities for interpretation may not only hap-
pen in pictorial (snapshot) image interpretation but also in image sequences with
moving light dots. As psychologists have shown, individuals tend to interpret some
of these sequences differently, depending on the context discussed previously or on
the personal background of experience [Johannson 1973]. These examples show that
image interpretation often needs embedding in a temporal and situational frame-
work to yield unique results.

A Dball bouncing on the road with children playing at the side allows deriving
certain expectations which will require attention focusing for the vision system
(ball and/or children). The trajectory of the ball, when up in the air, is expected to
be close to a sequence of parabolic arcs with decreasing energy due to friction and



8.7 Default Procedure for Objects of Unknown Classes 251

with points of reflection at approximately the same angle relative to the surface
normal each time it hits the ground or another surface. Since humans have been
playing with the ball, usually, it can be expected that someone may run after the
ball or that another may come from a different direction to catch the ball.

A bicyclist in right-hand traffic lifting his left arm (or his right arm in left-hand
traffic) can be expected to cross the lane driven to turn off to the side of the arm
lifted. The temporal sequence of arm lifting and lane crossing can be considered a
temporal gestalt, which in common language we call a maneuver.

If the process observed involves a subject capable of (intelligent) motion control
aimed at some goal, similar predictions for motion processes may be possible by
recognizing stereotypical control sequences, as for lane change maneuvers in road
vehicle guidance. This gestalt idea extended into the temporal domain for typical
motion processes again allows us to concentrate limited computing power onto im-
age regions and to confine parameter variations of the feature extraction methods
to ranges likely to yield most of the information necessary for efficient process
tracking and control. Seen from this point of view, the knowledge of real-world
spatiotemporal processes represented in dynamic models is a powerful means for
reducing the possible danger of combinatorial explosion in feature aggregation
compared to ignoring these temporal constraints.

Audio signals of certain temporal shapes may indicate an ambulance or a fire
brigade vehicle approaching.

8.6.2 Traffic Circle as an Example of Gestalt Perception

Nowadays, a spreading example in traffic of spatiotemporal gestalt perception is
the “roundabout” (traffic circle, in some countries exploited to the extreme as a
circular area with a central dot marked by color). It consists of an extended, very
often partially obscured circular area distorted by perspective projection. Several
roads are linked to the outer lane of the circle, in some regions yielding a star-like
appearance when seen in a bird’s-eye view, due to the density of connections.
Vehicles in the circle usually have the right-of-way; their direction signaling by
blinking eases the decision of entering vehicles whether or not to proceed. Viewing
patterns and the capability of developing proper expectations for the behavior of
other vehicles (maybe not according to the valid rules) are important for handling
this complex traffic situation.
Here an aphorism attributed to the painter Salvador Dali may be most valid:

“To see is to think”.

8.7 Default Procedure for Objects of Unknown Classes

When none of the established object or subject classes is able to provide a suffi-
ciently good model for a detected object since too many predicted features have
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not been found, residues are too large, or no convergence occurred, the following
approach for learning more about the new object is advisable:

1.

2.

Reduce the object to the center of gravity of jointly moving features and a sim-
ple shape encasing all these features.

The envelope for the shape may be composed of a few simple shapes connected
together if the area in the initial convex hull not containing features is too large
(e.g., choose a long cylinder of small diameter on a larger rectangular body,
etc.).

. Assume a standard Newtonian model for motion (see Section 2.2.5.3, translation

separate from rotation); shrinking or expansion of the feature set may allow
depth (range) perception.

. A rotational model is meaningful only if collections of features can be recog-

nized moving relative to each other on top of translation. Appearance and disap-
pearance of certain features on different sides give an indication of the direction
of rotation of the body carrying the features.

. Store statistics on motion behavior and other parameters observed in a list of

“observed but unknown” objects (extended data logging in a DOB).

This may be the starting point for learning about hitherto unknown objects or subjects.
Recognizing this type of object/subject at a later time and continuing collection of
information is the next step toward intelligence. In the long run, expanding the
knowledge base by posing meaningful questions to humans about this object/subject,
maybe together with a replay of the corresponding video sequences stored, may lead
to real machine intelligence. This, however, seems to be off in the far future right now.



9 Recursive Estimation of Road Parameters and
Ego State while Cruising

The goal of real-time vision for road vehicles is to understand the environment
with as little time delay as possible including all relevant processes that are hap-
pening there. For vehicles with large extensions in space (roughly 2 x 2 x 5 m for a
van, ~ 1.8 x 1.5 x 45 m for an average car, and much larger dimensions for a
truck), there are different points of reference for certain subtasks. Cameras and
their projection centers should be elevated as high up as possible above the ground
for best imaging conditions of the surface they are driving on. There has to be a
coordinate system associated with visual mapping with its origin at the projection
center of the camera. On the other hand, motion perception and control are most
easily described for the center of gravity (cg); therefore, the relevant coordinate
system has its origin at the cg. In a closed-loop application like autonomous vehi-
cle guidance by vision, these different reference systems have to be described in a
coherent way and set into relation.

The very general approach presented in Chapter 2 via homogeneous coordinates
will be used in later sections for more complex vision systems. Here, to demon-
strate the early beginnings, the model according to Figure 9.1 is used.

road boundary left I1=0

A

: ;--.vehicle center of gravity

:b /12 sroad center

| * -,

' Yv

]

]

:b /2 f h -

v camera e yR'\--\ ‘I{K .
road boundary right ) e

- >

imagihg plane B

1 ¥ horizontal
1 <25~ aZer 4
* ; Hy
g ; ; % v
i 7

! ' L

Figure 9.1. More detailed process model than Figure 7.5 for visual road vehicle guid-
ance. Top: Bird’s-eye view with variables and parameters for lateral guidance; bottom:
Vertical mapping conditions for vision and center of gravity
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Table 9.1. Collection of results for recursive estimation of road parameters from Chapter 7:
Dynamic models (to be turned into discrete form for sampled data videointerpretation),
measurement model, and relations for determining initial values for starting recursive esti-
mation.

Simple model for lateral dynamics of a road vehicle [Section 7.1.2, Equation 7.4]
(bicycle model, planar, no pitch and bank angle changes, linear system):

A 0 0 0 02 K, 0
3 -1/T, 0 0 0
Pol] & b P, u(t)+ -Cqn
“i’rel Via 0 00 Yrel 0 -V
Y 0 vV VvV 0)ly, 0 0

with a, =1/(2T,)-V/a; T,=Vik,: (Equation 3.30).

Spread-out clothoid model [Section 7.1.4]:

0 Vv 0 Corm 0
X, =A X, +n, =|0 =3V/L V/L| Cy, |+|0 | (7.36a)
0 0 0 C N

Measurement model for lane (simple road) recognition [Section 7.1.4.3]:
Edge features (left and right) as a function of (road or lane) width b,
lateral offset yy, camera heading y = yyv + yiy, Conm and Cypp.

+5-y, L Li3
Vi, = f-k, zLi C -y — Wk +?C0hm +Eclhm:| ) (7.37)
zg = f -k, (Hg L tan6, ) /(L +Hy tan6, ) . (7.40)

From initialization procedure [Section 8.2]:
Camera gaze direction relative to vanishing point for road nearby
(tangents to borderlines intersecting at L; = o0):

\V:\VV+WVK:_yB(Li:°O)/f'ky- (8.5)
For L; = oo [vanishing point P(ygp , Zgp)]

tan®, =z, / f -k, or 0, =arctan(zg, / f -k,). (7.18)
Look-ahead ranges:

L=H[1-tan®, -z5 /(f-k,)]/[zs /(f -k,)+tan 6, ]. (8.8)
Lane (road) width: b, = L; - (yg — Yg; ) /(f -K,). (7.38)
Lateral offset yy from lane center: Y, = L; - (Ygp — Yo ci) /(T -K,) - (7.39)

Road curvature parameter:
Comm =2 Agr 1 L5 = Ay -2/(L; - f k). (8.9)

They were shown sufficient for VaMoRs in the late 1980s. The differential geome-
try model for road representation of Section 7.4.3 now allows interpretation of the
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spatial continuity conditions for the road as temporal continuity constraints in the
form of difference equations for the estimation process while the vehicle moves
along the road.

By this choice, the task of recursive estimation of road parameters and relative
egostate can be transformed into a conventional online estimation task with two
cooperating dynamic submodels. A simple set of equations for planar, undisturbed
motion has been given in Chapter 7. In Chapter 8, the initialization problem has
been discussed. The results for all elements needed for starting recursive estimation
are collected in Table 9.1.

Numerical values for the example in Figure 7.14 extracted from image data have
been given in Table 8.1. The steering angle A and vehicle speed V are taken from
conventional measurements assumed to be correct. The slip angle  cannot be de-
termined from single image interpretation and is initialized with zero. An alterna-
tive would be to resort to the very simple dynamic model of third order in Figure
7.3a and determine the idealized value for infinite tire stiffness, as indicated in the
lower feed-forward loop of the system:

B =[1/2-V?/(2a-ky )] (9.1)
The estimation process with all these models is the subject of the next section.

9.1 Planar Roads with Minor Perturbations in Pitch

When the ground is planar and the vehicle hardly pitches up during acceleration or
pitches down during braking (deceleration), there is no need to explicitly consider
the pitching motion of the vehicle (damped second-order oscillations in the vertical
plane) since the measurement process is affected only a little. However, in the real
world, there almost always are pitch effects on various timescales involved. Accel-
eration and decelerations, usually, do affect the pitch angle time history, but also
the consumption of fuel leads to (very slow) pitch angle changes. Loading condi-
tions, of course, also have an effect on pitch angle as well as uneven surfaces or a
flat tire. So, there is no way around taking the pitch degree of freedom into account
for precise practical applications.

However, the basic properties of vision as a perception process based on coop-
erating spatiotemporal models can be shown for a simple example most easily:
(almost) unperturbed planar environments. The influence of adding other effects
incrementally can be understood much more readily once the basic understanding
of recursive estimation for vision has been developed.

9.1.1 Discrete Models

The dynamic models described in previous sections and summarized in Table 9.1
(page 254) have been given in the form of differential equations describing con-
straints for the further evolution of state variables. They represent in a very effi-
cient way general knowledge about the world as an evolving process that we want
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to use to understand the actual environment observed under noisy conditions and
for decision-making in vehicle guidance.

First, the dynamic model has to be adapted to sampled data measurement by trans-
forming it into a state transition matrix A and the control input matrix B (see Equa-
tion 3.7) for the specific cycle time used in imaging (40 ms for CCIR and 33 1/3
for NTSC). Since speed V enters the elemental expressions at several places, the
elements of the transition and control input matrices have to be computed anew
every cycle. To reduce computing time, the terms have been evaluated analytically
via Laplace transform (see Appendix B.1) and can be computed efficiently at run-
time [Mysliwetz 1990].

The measurement model is given by Equations 7.20 and 7.37:

2y = f -k, (He L tan6, ) /(L +H, tan6, ), (9.2)
0 L L7
Yei, = f-k, e ~Yv —VYw +?|Cohm +€Iclhm ) (9.3)

with 0 as angle of the optical axis relative to the horizontal. None of the lateral
state variables enters the first equation. However, if there are changes in 6y due to
vehicle pitch, with image row zg; evaluated kept constant, the look-ahead distance
L; will change. Since L; enters the imaging model for lateral state variables (lower
equation), these lateral measurement values yg; will be affected by changes in pitch
angle, especially the lateral offset and the curvature parameters. The same is true
for the road parameter ‘lane or road width b’ at certain look-ahead ranges L; (Equa-
tion 7.38):
by=Li - (Ye;, — Yei )I(F-Ky). (9.4)

Since b depends on the difference of two measurements in the same row, it
scales linearly with look-ahead range L; and all other sensitivities cancel out. Note
however, that according to Table 7.1, the effects of changes in the look-ahead
range due to pitch are small in the near range and large further away.

Introducing b as an additional state variable (constant parameter with db/dt = 0)
the state vector to be estimated by visual observation can be written

X' = * By W, Yvs Conms Cinmy Ciny D) (9.5)
Note that these variables are those we humans consider the most compact set to
describ a given simple situation in a road scene. Derivation of control terms for
guiding the vehicle efficiently on the road also uses exactly these variables; they
constitute the set of variables that by multiplication with the feedback gain matrix
yields optimal control for linear systems. There simply is no more efficient cycle
for perception and action in closed-loop form.

9.1.2 Elements of the Jacobian Matrix

These elements are the most important parameters from which the 4-D approach to
dynamic vision gains its superiority over other methods in computational vision.
The prediction component integrates temporal aspects through continuity condi-
tions of the physical process into 3-D spatial interpretation, including sudden
changes in one’s own control behavior. The first-order relationship between states
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and parameters included as augmented states of the model, on one hand, and fea-
ture positions in the image, on the other, contains rich information for scene under-
standing according to the model instantiated; this relationship is represented by the
elements of the Jacobian matrix (partial derivatives). Note that depth is part of the
measurement model through the look-ahead ranges L; which are geared to image
rows by Equation 9.2 for given pitch angle and camera elevation.

Thus, measuring in image stripes around certain rows directly yields road pa-
rameters in coordinates of 3-D space. Since the vehicle moves through this space
and knows about the shift in location from measurements of odometry and steering
angle, motion stereointerpretation results as a byproduct.

The ith row of the Jacobian matrix C (valid for the ith measurement value yg;)
then has the elements

(9.6)

-1 L L2 +1
Ci = 0Ygi [ OX|= T -ky[ol 0] -1f fl ?'l g‘l 0] —}

where +1/(2L;) is valid for edges on the right-hand and —-1/(2L;) for those on the
left-hand border of the lane or road. The zeros indicate that the measurements do
not depend on the steering and the slip angle as well as on the driving term C; for
curvature changes. Lateral offset yy (fourth component of the state vector) and lane
or road width b (last component) go with 1/(range L;) indicating that measurements
nearby are best suited for their update; curvature parameters go with range (C;
even with range squared) telling us that measurements far away are best suited for
iteration of these terms.

With no perturbations in pitch assumed, the Jacobian elements regarding zg; are
all zero. (The small perturbations in pitch actually occurring are reflected into the
noise term of the measurement process by increasing the variance for measuring
lateral positions of edges.)

9.1.3 Data Fusion by Recursive Estimation

The matrix R (see Section 8.3.1) is assumed to be diagonal; this means that the in-
dividual measurements are considered independent, which of course is not exactly
true but has turned out sufficiently good for real-time vision:

R = Diag(r,) = Diag(c?, cf,m 6% 6% . ,G2 9.7

T Ye2 ! T Yes! Yes 7 *

Standard deviations (and variances) for different measurement processes have
been discussed briefly in Section 8.3.1. The type of measurement does not show up
in Equation 9.7; here, only the first component is a conventionally measured quan-
tity; all others come from image processing with complex computations for inter-
pretation. What finally matters in trusting these measurements in EKF processing
is just their standard deviation. (For highly dynamic processes, the delay time in-
curred in processing may also play a role; this will be discussed later when inertial
and visual data have to be fused for large perturbations from a rough surface; angu-
lar motion then leads to motion blur in vision.)

For high-quality lane markings and stabilized gaze in pitch, much smaller values
are more reasonable than the value of standard deviation ¢ = 2.24 pixels selected
here for tolerating small pitch angle variations not modeled. This is acceptable only
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for these short look-ahead ranges on smooth roads; for the influence of larger pitch
angle perturbations, see Section 9.3.

If conventional measurements can yield precise data with little noise for some
state variables, these variables should not be determined from vision; a typical ex-
ample is measurement of one’s own speed (e.g., by optical flow) when odometry
and solid ground contact are available. Visual interpretation typically has a few
tenths of a second delay time, while conventional measurements are close to in-
stantaneous.

9.1.4 Experimental Results

The stabilizing and smoothing effects of recursive estimation including feature se-
lection in the case of rather noisy and ambivalent measurements, as in the lower
right window of Figure 7.17 marked as a white square, can be shown by looking at
some details of the time history of the feature data and of the estimated states in
Figure 9.2.

Figure 9.2. From noise corrupted
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The measured pixel positions of edge candidates vary by ~ 16 (in extreme cases
up to almost 30) pixels (dotted curve in top part). Up to four edge candidates per
window are considered; only the one fitting the predicted location best is selected
and fed into the recursive estimation process if it is within the expected range of
tolerance (~ 3 o) given by the innovation variance according to the denominator in
the second of Equations 6.37.

The solid line in the top curve of Figure 9.2 represents the input into the recur-
sive estimation process [repeated as dotted line in (b)-part of the figure]. The solid
line there shows the result of the smoothing process in the extended Kalman filter;
this curve has some resemblance to the lateral offset time history yy, in Figure 7.18,
right (repeated here as Figure 9.2c—f for direct comparison with the original data).
The dynamic model underlying the estimation process and the characteristics of the
car by Ackermann-steering allow a least-squares error interpretation that distrib-
utes the measurement variations into combinations of road curvature changes (c),
yaw angles relative to the road over time (e), and the lateral offset (d), based also
on the steering rate output [= control time history (f)] in this closed-loop percep-
tion—action cycle. The finite nonzero value of the steering angle in the right-hand
part of the bottom Figure 9.2f confirms that a curve is being driven.

It would be very hard to derive this insight from temporal reasoning in the
quasi-static approaches initially favored by the Al community in the 1980s. In the
next two sections, this approach will be extended to driving on roads in hilly ter-
rain, exploiting the full 4-D capabilities, and to driving on uneven ground with
stronger perturbations in pitch.

9.2 Hilly Terrain, 3-D Road Recognition

The basic appearance of vertically curved
straight roads in images differs from flat
ones in that both boundary lines at con-
stant road width lie either below (for
downward curvature) or above (for up-
ward curvature) the typical triangle for
planar roads (see Figure 9.3).

From Figure 9.4, it can be seen that  Figure 9.3. Basic appearance of roads
upward vertical curvature shortens the  with vertical curvature: Left: Curved
look-ahead range for the same image line  downward (negative); right: curved
and camera angle from L, down to L,  upward (positive curvature)
depending on the elevation of the curved
ground above the tangent plane at the location of the vehicle (flat ground).

Similar to the initial model for horizontal curvature, assuming constant vertical
curvature Cy, , driven by a noise term on its derivative C;, as a model, has turned
out to allow sufficiently good road perception, usually:

Cv :C0v+clv'|’

dc,, /di=C,,  dc,/dl=n,).

(9.8)
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Figure 9.4. Definition of terms for vertical curvature analysis (vertical cut seen from
right-hand side). Note that positive pitch angle 6 and positive curvature C, are upward,
but positive z is downward.

9.2.1 Superposition of Differential Geometry Models

The success in handling vertical curvature independent of the horizontal is due to
the fact that both are dependent on arc length in this differential geometry descrip-
tion. Vertical curvature always takes place in a plane orthogonal to the horizontal
one. Thus, the vertical plane valid in Equation 9.8 is not constant but changing
with the tangent to the curve projected into the horizontal plane. Arc length is
measured on the spatial curve. However, because of the small slope angles on
normal roads, the cosine is approximated by 1, and arc length becomes thus identi-
cal to the horizontal one. Lateral inclination of the road surface is neglected here,
so that this model will not be sufficient for driving in mountainous areas with (usu-
ally inclined) switchback curves (also called “hair pine’ curves). Road surface tor-
sion with small inclination angles has been included in some trials, but the im-
provements turned out to be hardly worth the effort.

A new phenomenon occurs for strong downward curvature (see Figure 9.5) of
the road. The actual look-ahead range is now larger than the corresponding planar
one L. At the point where the road surface becomes tangential to the vision ray (at
L., in the figure), self-occlusion starts for all regions of the road further away. Note
that this look-ahead range for self-occlusion is not well defined because of the tan-
gency condition; small changes in surface inclination may lead to large changes in
look-ahead distance. For this reason, the model will not be applied to image re-
gions close to the cusp which is usually very visible as a horizontal edge (e.g., Fig-
ure 9.3).
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9.2.2 Vertical Mapping Geometry

According to Figure 9.4, vertical mapping geometry is determined mainly by the
camera elevation Hy above the local tangential plane, the radius of curvature R, =
1/Cy, and the pitch angle 0x. The longitudinal axis of the vehicle is assumed to be
always tangential to the road at the vehicle cg, which means that high-frequency
pitch disturbances are neglected. This has proven realistic for stationary driving
states on ‘standard,” i.e., smoothly curved and well-kept roads.

The additional terms used in the vertical mapping geometry are collected in the
following list:

k, camera scaling factor, vertical (pixels/mm)

Hk elevation of the camera above the tangential plane at cg (m)

Ok camera pitch angle relative to vehicle pitch axis (rad)

Zs vertical image coordinate (pixels)

Lo look-ahead distance for planar case (m)

Lev look-ahead distance with vertical curvature (m)

He.,  elevation change due to vertical curvature (m)

Coy  average vertical curvature of road (1/m)

C,,  average vertical curvature rate of road (1/m?).

To each scan line at row zg; in the image, there corresponds a pitch angle relative to
the local tangential plane of
0, =0, +arctan[zg; /(f -k,)]. (9.9
From this angle, the planar look-ahead distance determined by zg; is obtained as
Lo =Hy /tan(0,_ ). (9.10)
Analogous to Equation 7.3, the elevation change due to the vertical curvature
terms at the distance L., + d relative to the vehicle cg (see Figure 9.4) is

H, =C,, (L, +d)*/2+C, - (L, +d)*/6. (9.11)
From Figure 9.4, the following relationship can be read immediately:
H, =Hy - L, -tan(o, ). (9.12)

Combining this with Equation 9.11 yields the following third-order polynomial for
determining the look-ahead distance L., with vertical curvature included:

a3Liv + aZLiv + achv + ao = 01
where
a,=C,,/6; a=d-(C,+d-C,/2)+ ta“(ezB, ); (9.13)

a,=(C, +d-C,)/2;, a,=d*-C,,/2+d>-C,/6)—H,.

This equation is solved numerically via Newton iteration with the nominal cur-
vature parameters of the last cycle; taking the solution of the previous iteration or
the planar solution according to Equation 9.10 as a starting value, the iteration
typically converges in two or three steps, which means only small computational
expense. Neglecting the a; term in Equation 9.13 or the influence of C,, on the
look-ahead range entirely would lead to a second-order equation that is easily solv-
able analytically. Disregarding the C,, term altogether resulted in errors in the
look-ahead range when entering a segment with a change in vertical curvature and
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led to wrong predictions in road width. The lateral tracking behavior of the feature
extraction windows with respect to changes in road width resulting from vertical
curvature could be improved considerably by explicitly taking the Cy, term into ac-
count (see below). (There is, of course, an analytical solution available for a third-
order equation; however, the iteration is more efficient computationally since there
is little change over time from k to k + 1. In addition, this avoids the need for se-
lecting one out of three solutions of the third-order equation).

Beyond a certain combination of look-ahead distance and negative (downward)
vertical curvature, it may happen that the road image is self-occluded. Proceeding
from near to far, this means that the image row zg; chosen for evaluation should no
longer decrease with range (lie above the previous nearer one) but start increasing
again; there is no ex-
tractable road boundary
element above the tan-
gent line to the cusp of
the road (shown by the
Xk vector in Figure 9.5).
The curvature for the
limiting case, in which
the ray through zg; is
tangential to the road
surface at that distance
(and beyond which self-
occlusion occurs), can
be determined approximately by the second-order polynomial which results from
neglecting the C,, influence as mentioned above. In addition, neglecting the d-Cy,
terms, the approximate solution for L, becomes

tan(,, ) / H,C
Ly, ¥ ——25 1 [14+2—K"0 | 9.14
¢ ~Cy, { tan®(6, ) } (9.14)

The limiting tangent for maximal negative curvature is reached when the radi-
cand becomes zero, yielding

Coviim(Z5,) :—tanz(ezm)/(2~ Hy). (9.15)

Because of the neglected terms, a small “safety margin” AC may be added. If
the actually estimated vertical curvature Cy, is smaller than the limiting case corre-
sponding to Equation 9.15 (including the safety margin of, say, AC = 0.0005), no
look-ahead distance will be computed, and the corresponding features will be
eliminated from the measurement vector.

Figure 9.5. Negative vertical curvature analysis including
cusp at L, with self-occlusion; magnitude of L, is ill de-
fined due to the tangency condition of the mapping ray

9.2.3 The Overall 3-D Perception Model for Roads

The dynamic models for vehicle motion (Equation 7.4) and for horizontal curva-
ture perception (Equations 7.36 and 7.37) remain unchanged except that in the lat-
ter the look-ahead distance L, is now determined from Equation 9.13 which in-
cludes the effects of the best estimates of vertical curvature parameters.
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With dC,/dt = dC,/dI-dl/dt and Equation 9.8, the following additional dynamic
model for the development of vertical curvature over time is obtained, which is
completely separate from the other two:

d (Co) (0 V)(Cy) (O
a Clv _(0 0) Clv +[nclvj. (916)

There are now four state variables for the vehicle, three for the horizontal, and
two for the vertical curvature parameters, in total nine without the road width,
which is assumed to be constant here, for simplicity. Allowing arbitrary changes of
road width and vertical curvature may lead to observability problems to be dis-
cussed later. The state vector for 3-D road observation is

X;I;D = ()\'lBVWreI ! yV |C0hm’C1hm’C1h |C0v7clv) ! (917)

which together with Equations 7.4 and 7.34 (see top of table 9.1 or Equation B.1 in
Appendix B) yields the overall dynamic model with a 9 x 9 matrix F

0 0 0 oi 0 0 0 io 0
a, -1/T, 0 0/0 0 0 '0 0
Via 0 0 0l-V 0 0 100
0 v voio o 0100 019
F=| 0 0 000 % 0 {0 0,
0 0 000 -3/L V/LIO O €
0 0 000 0 0 100
0 0 0 oi 0 0 0 io v
0 0 00!0 0 0 /00
the input vector g, and the noise vector n(t);
T=(k
g" =(,,0,0,0,]0,0,0,]0,0) )

n' (t) =[0,0,0,0,10,0, Ny, (t),] 0, Ny, (1)]-
This analogue dynamic model,

X (t)=F-x (t)+g-u(t)+n(t), (9.18)
has to be transformed into a discrete model with the proper sampling period T ac-
cording to the video standard used (see Equation B.4). All coefficients of the A ma-
trix given there remain the same; dropping road width b again, two rows and col-
umns have to be added now with zero entries in the first seven places of rows and
columns, since vertical curvature does not affect the other state components. The
2x2 matrix in the lower right corner has a ‘1’ on the main diagonal, a ‘0’ in the
lower left corner, and the coefficient agg is just agy = VT.

9.2.4 Experimental Results

The spatiotemporal perception process based on two superimposed differential ge-
ometry models for 3-D roads has been tested in two steps: First, in a simulation
loop where the correct results are precisely known, and second, on real roads with
the test vehicle VaMoRs. These tests were so successful that vertical curvature es-
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timation in the meantime has become a standard component for all road vehicles.
Especially for longer look-ahead ranges, it has proven very beneficial with respect
to robustness of perception.

9.2.4.1 Simulation Results for 3-D Roads

Figures 9.6 and 9.7 show results from a hardware-in-the-loop simulation with
video-projected computer-generated imagery interpreted with the advanced first-
generation real-time vision system
BVV2 of UniBWM [Graefe 1984]. This
setup has the advantage over field
tests that the solution is known to high
accuracy beforehand. Figure 9.6 is a
perspective display of the tested road
segment with both horizontal and ver-
tical curvature. Figure 9.7 shows the
Figure 9.6. Simulated spatial road segment ~ corresponding curvatures recovered

with 3-D horizontal and vertical curvature by the estimation process described
(solid) as compared with those used

for image generation (dashed).

Figure 9.7 (top) displays the good correspondence between the horizontal curva-
ture components (Conm , as input: dashed, and as recovered: solid line); the dashed
polygon for simulation contains four clothoid elements and two circular arcs with a
radius of 200 m (Cy, = £ 1/200 = + 0.005). Even though the Cypy, curve is relatively

smooth and differs
COhm [1/m] 10 x Cilhm [1/m2] Strongly from the series of
step functions as deriva-
tives of the dashed polygon
(not shown), Cqn and Copm
as integrals are close to-
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Figure 9.7. Simulation results comparing input model as part of the road bound-
(dashed) with curvatures recovered from real-time vi-  ary. The system recovered
sion (solid lines). Top: horizontal curvature parameters;  from this misinterpretation

bottom: Vertical curvature. all on its own when the



9.2 Hilly Terrain, 3-D Road Recognition 265

pole was approached; the local fit with high vertical curvature became increasingly
contradictory to new measurement data of road boundary candidates in the far
look-ahead range. The parameter Cy, then converged back to the value known to be
correct. Since this approach is often questioned as to whether it yields good results
under stronger perturbations and noise conditions, a few remarks on this point
seem in order. It is readily understood that the interpretation is most reliable when
it is concerned with regions close to the vehicle for several reasons:

1. The resolution in the image is very high; therefore, there are many pixels per
unit area in the real world from which to extract information; this allows achiev-
ing relatively high estimation accuracies for lane (road) width and lateral posi-
tion of the camera on the road.

2. The elevation above the road surface is well known, and the vehicle is assumed
to remain in contact with the road surface due to Earth gravity; because of sur-
face roughness or acceleration/deceleration, there may be a pitching motion,
whose influence on feature position in the image is, again, smallest nearby.
Therefore, predictions through the dynamic model are trusted most in those re-
gions of the image corresponding to a region spatially close to the camera in the
real world; measured features at positions outside the estimated 3c range from
the predicted value are discarded (o is the standard deviation determinable from
the covariance matrix, which in turn is a by-product of recursive estimation).

3. Features actually close to the vehicle have been observed over some period of
time while the vehicle moved through its look-ahead range; this range has been
increased with experience and time up to 40 to 70 m. For a speed of 30 m/s (108
km/h), this corresponds to about 2 s or 50 frames traveling time (at 40 ms inter-
pretation cycle time). If there are some problems with data interpretation in the
far range, the vehicle will have slowed down, yielding more time (number of
frames) for analysis when the trouble area is approached.

4. The gestalt idea of a low curvature road under perspective projection, and the
ego- motion (under normal driving conditions, no skidding) in combination with
the dynamic model for the vehicle including control input yield strong expecta-
tions that allow selection of those feature combinations that best fit the generic
road (lane) model, even if their correlation value from oriented edge templates is
only locally but not globally maximal in the confined search space. In situations
like that shown in Figure 8.2, this is more the rule than the exception.

In the general case of varying road width, an essential gestalt parameter is left open
and has to be determined in addition to the other ones from the same measure-
ments; in this case, the discriminative power of the method is much reduced. It is
easy to imagine that any image from road boundaries of a hilly road can also be
generated by a flat road of varying width (at least in theory and for one snapshot).
Taking temporal invariance of road shape into account and making reasonable as-
sumptions about road width variations, this problem also is resolvable, usually, at
least for the region nearby, when it has been under observation for some time (i.e.,
due to further extended look-ahead ranges). Due to limitations in image resolution
at a far look-ahead distance and in computing power available, this problem had
not been tackled initially; it will be discussed in connection with pitch perturba-
tions in Section 9.3.
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Note that the only low-level image operations used are correlations with local
edge templates of various orientations (covering the full circle at discrete values.
e.g., every 11°). Therefore, there is no problem of prespecifying other feature op-
erators. Those to be applied are selected by the higher system levels depending on
the context. To exploit continuity conditions of real-world roads, sequences of fea-
ture candidates to be measured in the image are defined from near to far (bottom
up in the image plane), taking conditions for adjacency and neighboring orientation
into account.

9.2.4.2 Real-world Experiments

Figure 9.8 shows a narrow, sealed rural road with a cusp in a light curve to the left
followed by an extended positively curved section that has been interpreted while
driving on it with VaMoRs (bottom part). For vertical curvature estimation, road
width is assumed to be constant. Ill-defined or irregular road boundaries as well as
vehicle oscillations in pitch affect the estimation quality correspondingly.
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Figure 9.8. Differential geometry parameter estimation for 3-D rural road while driving on
it with VaMoRs in the late 1980s: Top left: Superimposed horizontal and vertical curvature
derived from recursive estimation. Top right: Estimated vertical curvature Cq, (1/m) over
run length in meters. Bottom (a): View from position A marked in top left-hand subfigure;
(b) view from position B (bottom of the dip, after [Mysliwetz 1990]).

These effects are considered the main causes for the fluctuations in the estimates
of the vertical curvature in the top right part. To improve these results in the
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framework of the 4-D approach geared to dynamic models of physical objects for

the representation of knowledge about the world it is felt that the pitching motion

of the vehicle has to be taken into account. There are several ways of doing this:

1. The viewing direction of the camera may be stabilized by inertial angular rate
feedback. This well-known method has the advantage of reducing motion blur.
There are, however, drift problems if there is no position feedback. Therefore,
the feedback of easily discriminated visual features yields nice complementary
signals for object fixation.

2. The motion in pitch of the egovehicle is internally represented by another dy-
namic model of second order around the pitch axis. Tracking horizontal features
far away (like the horizon) vertically allows estimating pitch rate and angular
position of the vehicle recursively by prediction-error feedback. Again, knowl-
edge about the dynamics in the pitch degree of freedom of the massive inertial
body is exploited for measurement interpretation. Picking features near the lon-
gitudinal axis of the body at large ranges, so that the heave component (in the z-
direction) is hardly affected, decouples this motion component from other ones.

3. Purely visual fixation (image registration from frame to frame) may be imple-
mented. This approach has been developed by Franke (1992).

The first two have been investigated by members of our group; they will be dis-

cussed in the next section. The third one has been studied elsewhere, e.g., [Bergen

1990, Pele, Rom 1990].

Tests to recognize vertical curvatures of unsealed roads with jagged boundaries
of grass spreading onto the road failed with only intensity edges as features and
with small look-ahead ranges. This was one of the reasons to proceed toward multi
focal camera sets and area-based features.

Conclusion: The 4-D approach to real-time 3-D visual scene understanding allows
spatial interpretation of both horizontally and vertically curved roads while driving.
By exploiting recursive estimation techniques that have been well developed in the
engineering sciences, this can be achieved at a high evaluation rate of 25 Hz with a
rather small set of conventional microprocessors. If road width is completely un-
constrained, ill-conditioned situations may occur. In the standard case of parallel
road boundaries, even low curvatures may be recovered reliably with modest look-
ahead ranges.

Adding temporal continuity to the spatial invariance of object shapes allows reduc-
ing image processing requirements by orders of magnitude. Taking physical ob-
jects as units for representing knowledge about the world results in a spatiotempo-
ral internal representation of situations in which the object state is continuously
servoadapted according to the visual input, taking perspective projection and mo-
tion constraints into account for the changing aspect conditions. The object road is
recognized and tracked reliably by exploiting the gestalt idea of feature grouping.
Critical tests have to be performed to avoid “seeing what you want to see.” This
problem is far from being solved; much more computing power is needed to handle
more complex situations with several objects in the scene that introduce fast chang-
ing occlusions over time.
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9.3 Perturbations in Pitch and Changing Lane Widths

As mentioned in previous sections several times, knowledge of the actual camera
pitch angle 6k (t) can improve the robustness of state estimation. The question in
image interpretation is: What are well-suited cues for pitch angle estimation? For
the special case of a completely flat road in a wide plane, a simple cue is the verti-
cal position of the horizon in the image zy,, (in pixel units; see Sections 7.3.4 and
9.2.2). Knowing the vertical calibration factor k, and the focal length f, one can
calculate the camera pitch angle 6 according to Equation 7.18. The pitch angle 6k
is defined positive upward (Figure 9.4).

In most real situations, however, the horizon is rarely visible. Frequently, there
are obstacles occluding the horizon like forests, buildings, or mountains, and often
the road is inclined, making it impossible to identify the horizon line. The only cue
in the image that is always visible while driving is the road itself. Edges of dashed
lane markings are good indicators for a pitch movement, if the speed of the vehicle
is known. But unfortunately, a road sometimes has sections where both lane mark-
ers are solid lines. In this case, only then the mapped lane width b; at a certain ver-
tical scan line z is a measure for the pitch angle 6y, if the lane width b is known.

9.3.1 Mapping of Lane Width and Pitch Angle

In Figure 9.4, the relevant geometric variables for mapping a road into a camera
with pitch angle 6y are illustrated. Since the magnitude of the pitch angle usually is
less than 15°, the following approximations can be made:
Sin 0, =0,; cosf, =1. (9.19)
As discussed in Section 9.2.2, the camera pitch angle 6« determines the look-
ahead distance L; on a flat road, when a fixed vertical scan line z; is considered:;
with Equation 9.19, the approximate relation is:
=K f+20
T -k, 6
This yields the following mapping of lane width by, (assumed constant) into
the image lane width by

(9.20)

k.fo, [z
b, ;VH—'“Q[kZ—'f—eK]. (9.21)
K z

If only measurements in one image row per frame are taken, the influence of
variations in pitch angle and of changing road width cannot be distinguished by
measuring the mapped lane width. But, if more than one measurement b; is ob-
tained from measuring in different image rows z;, the effects can be separated al-
ready in a single static image, as can be seen from Figure 9.9 (left).

The relations are valid only for a flat road without any vertical curvature. Both
pitch and elevation (heave) do change the road image nearby; the elevation effect
vanishes with look-ahead range, while the pitch effect is independent of range. In
the presence of vertical road curvature, the look-ahead distance L; has to be modi-



9.3 Perturbations in Pitch and Changing Lane Widths 269

fied according to the clothoid
model, as discussed in Section 9.2.
Figure 9.3 had shown that curva-
ture effects leave the image of the
road nearby unchanged; deviations
show up only at larger look-ahead
distances. Figure 9.9. Effects of camera pitch angle

Usually, the camera is not (left) and elevation above ground (right) on
mounted at the center of gravity of the image of a straight road in a plane
the vehicle (cg), but at some point
shifted from the cg by a vector Ax; in vehicles with both cg and camera laterally in
the vertical center plane of the vehicle, only the longitudinal shift d and elevation
Ah are nonzero. The axis of vehicle pitch movements goes through the cg. There-
fore, a body pitch angle yields not only the same shift for the camera pitch angle,
but also a new height (elevation) above the ground Hy. This vertical shift is only a
few centimeters and will be neglected here.

From Figure 9.9, it can be seen that the vertical coordinate zy,, of the vanishing
point depends only on the camera pitch angle 6 (Figure 9.9, left), and not on cam-
era elevation or lane width (right). Accordingly, the pitch angle 6« can be com-
puted directly from the image row with zg; = 0 (optical axis) and the location of the
vanishing point. Once the pitch angle is known, the width of the lane b4 can be
computed by Equation 9.21. This approach can be applied to a single image, which
makes it suitable for initialization (see Chapter 8).

In curves, the road appears to widen when looking at a constant image line (zg;-
coordinate). This effect is reduced when the camera pan angle y is turned in the
direction of the curve. The widening effect without camera pan adjustment depends
on the heading (azimuth) angle x(l) of the road. The real lane width is smaller than
the measured one in a single image line approximately by a factor cos(y). Assum-
ing that the road follows a clothoid model, the heading angle y of the road as the
first integral of the curvature function is given by Equation 7.2. The effect of y is
reduced by the camera pan angle vy (see Figure 9.10). Thus, the entire set of meas-
urement equations for lane width estimation is (for each window pair and row z;)

y; =b-k, f /L -cos(yx—w )] (9.22)

Imaging plane

__i _______ _ Direction of
- imaging plane

/ =l T Cross section

Road heading x

Difference between road and camera heading () — W)

Figure 9.10. Mapping with active control gaze of road width for a curved road
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9.3.2 Ambiguity of Road Width in 3-D Interpretation

Problems in interpreting an image occur when the image shows a lane or road with
width changing over a section of run
length. Figure 9.11 illustrates this problem
for an ideally simple case with two pa-
= rameter sets for the road in front of or be-
Or: change off - hing the (unrealistically harsh) transition
road width .
_______________________ at line Lgp.
This isolated (single) image is completely
¢ ambiguous: First it can be interpreted as a
road of constant width with a downward
slope in the near range (going downbhill,
Figure 9.11. Ambiguous road image  sjnce V’ lies below the vanishing point V
if slope and road width are open pa- o the horizon) switching to a flat horizon-
rameters; a change in slope at line Len  t5] road at line L, second, it fits an inter-
has the same effect as a change inthe  etation as a road in the horizontal plane,
parameter linear change rate by of o \yhich the near part has linearly de-
road width (in each single image) creasing width with change rate b accord-
ing to the model (b, < 0)
b=by+bI. (9.23)

Of course, an infinite number of interpretations with different combinations of
values for slope y and change rate of width (b,) is possible.

These ambiguities cannot be resolved from one single image. However, the in-
terpretation of sequences of images allows separating these effects. This can most
easily be achieved if dynamic models are used for the estimation of these mapping
effects. Consider hypothesis A in Figure 9.12 top right, solid lines (two inclined
planes meeting at distance Lch). If the road width is assumed constant as b, , for a
given elevation Hy of the camera above the ground, the road width in the near
range is given by the vanishing point VV* and the slopes of the left and right bound-
ary lines.

Horizon line V = vanishing point

e .

Horizon line ) = vanishing point

Figure 9.12. Two specific interpretations of the image in Figure 9.11: Hypothesis A:
Constant lane width b,, and jump in slope angle y at L, = Ly, (top right). Hypothesis B:
Flat ground and linearly decreasing road width for | < L,: Parameter b; = (b(Ly) —
b(Ly))/(L, — L) [dashed road boundary bottom right]
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However, the elevation of the camera above the plane of the far road depends
linearly on the distance to the line of discontinuity according to the slope angle be-
tween the two planes; when line Lch is approached, the borderlines of the far road
have to widen toward the dash-dotted lines indicated in Figure 9.12, left. Right on
line Lch, the vehicle will experience a step input in pitch angle (smoothed by the
axle distance), shifting the vanishing point from V’ to V. Thus, the distance be-
tween V’ and V corresponds to the slope angle y of the near plane if the far plane is
horizontal. So the conclusion has to be the following.

The discontinuity in slope angles of the borderlines in the image of a road of
constant width can stem only from an inclined near plane if the borderlines in the
near range stay constant while the angle between the borderlines in the far range
increases during the approach to Lch. These lines move toward those formed by the
two rays from the vanishing point V through the points of intersection of the bor-
derlines in the near range with the image boundaries. This optical flow component
thus tells us something about the shape of the vertical terrain. In the 4-D approach,
this shows up in the elements of the Jacobian matrix and allows hypothesis testing
while driving.

Hypothesis B, assuming one single plane for both road sections, yields constant
borderlines in the far range (beyond Lch) and shrinking lane widths at a constant
look-ahead range Lj while driving (lower right, solid lines in Figure 9.12). Here,
the (lateral) optical flow of the borderlines occurs in the near range (shrinking to-
ward the prolongation of the far-range boundary lines; see look-ahead distance L);
again, this hypothesis is reflected in the values of the Jacobian matrix elements for
given look-ahead ranges. These partial derivatives are the basis for monocular mo-
tion stereo in the 4-D approach.

The feedback of prediction errors in feature position from both the near and the
far range thus allows adapting the hypotheses simultaneously. Since the effects are
rather small and in real situations the geometry is much more involved with un-
known radii of curvature (both horizontal and vertical in the worst case), stable
convergence can hardly be expected for all combinations. Luckily, with change
rate constraints for curvature on standard high-speed roads, sufficiently correct
shape recognition can be expected in most of these standard cases, even with pitch
angle perturbations. Pitch perturbation shows up as a vertical shift of the constant
road shape in the image.

9.3.3 Dynamics of Pitch Movements: Damped Oscillations

The suspension system of a vehicle in pitch can be approximated by the model of a
one-dimensional damped harmonic oscillator, which is excited by perturbations
(rough road or accelerations, decelerations). The differential equation for an oscil-
lating pitch angle 6, of the vehicle is

0, +1/7-0, + -0, =n(t), (9.24)
with t = relaxation time, wo = characteristic frequency, and n(t) = perturbation
(noise term). The parameters t and w, can be derived from vehicle mass, its inertial
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momentum around the y-axis, the axle distance, and suspension characteristics.
The solution of the homogeneous part of the differential equation is:
6,(t) = 6,, -exp(-t/(21)) - sin(ot),

9.25
with o= o, -1/(47°)  (0,* > %). (.29

9.3.3.1 Offset-free Motion in Pitch

Equation 9.24 is transformed into the standard form of a linear, second-order sys-
tem by introducing the additional state component q, =#6,. The transition to
time-discrete form with cycle time T yields a set of two difference equations as
motion constraints for the state vectorxgv =[6,.9,]. This dynamic model repre-
sents knowledge about the pitching characteristics of the vehicle; in discrete form,
it can be written as
Xi = D1 (T) X g+ by Uy + 04 Ny (9.26)

This model describes the unperturbed vehicle pitch angle 6, as an oscillation
around zero. The control input u may come from acceleration or deceleration and
acts on the pitching motion through the gain vector b, while noise (e.g., from rough
ground) acts through the coefficient vector g; both may depend on speed V actually
driven.

The transition matrix @, for the discrete second-order model in pitch with sam-
pling time T can be obtained by standard methods from Equation 9.24 as

Bau(T)= eXp(—l) -(cos®T +Lsin oT),
' 2t 201
1 T .
B0 (T)=—exp(——)-sin®T,
® 21
¢6‘,21 (T) = _(DS : ¢gy121

G2 (T) = exp(—l) -(coswT ~ L sin oT).
' 2t 201

(9.27)

Control input effects are not considered here; usually, an acceleration yields
some pitch up response while downward pitching is typical of deceleration. The
latter may be strong and amount to several degrees, depending on the softness of
the suspension system. With vanishing control input, the pitch angle goes back to
zero.

9.3.3.2 Constant or Slowly Varying Pitch Offset

For cameras mounted directly on the vehicle body, the camera pitch angle 6 is the
same as the vehicle pitch angle 6, described above, if the optical axis of the camera
is aligned with the body axis. But mostly, the camera is mounted with a fixed pitch
angle offset Oy toward the ground. Therefore, the dynamic vehicle pitch angle 6,
can be written as
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6, = Ok — Ou- (9.28)
Usually, this offset is constant and can be measured by calibration procedures
in a well-defined environment. But it may happen that due to mechanical perturba-
tions the offset is shifted during operation. In this case, an incorrectly assumed off-
set value yields erroneous results for the estimated state variables gy and 6,. To
achieve self-correction, the pitch offset from the horizontal reference is introduced
as a new state variable and is also estimated in each cycle. The complete state vec-
tor for the pitch angle system then can be written as
Xy =[6¢. 95, O] (9.29)
If the vehicle pitch angle is not known, this formulation allows an even more
versatile interpretation. Due to fuel consumption, the pitch angle of the vehicle
may change slowly by a small amount. Similarly, shifting loads from front to rear
or vice versa in the vehicle may also change the static equilibrium pitch angle. To
separate the slowly varying (long-term) pitch offset from the dynamic pitching mo-
tion (usually in the range of about 1 Hz eigenfrequency), it is necessary to choose
the process noise Qgfts OF this variable small compared to the process noise of 6.
This method of estimating the camera pitch offset provides a further step toward a
fully autonomous, self-gauging system. The system transition matrix ®, now has
five more elements referring to the additional state variable 0s:

Gas3(T)=1-dyy b pa(T) ==y
B a1 ()= b 22 (T)=0; s (T)=1.
The full discrete model for motion in pitch with Equation 9.27 then has the form

(9.30)

% G d 1-Gn O 9 0
Ay =G P2 W || | ] 92| AHN |- (9.31)
Hoffs K+l O 0 1 k eoffs K 0 k noffs K

The longitudinal acceleration/deceleration a, acts as excitation mainly on gy ,
but in the sampled data structure, due to integration over cycle time T, there is also
a small effect on the pitch angle itself. The systems dynamics approach quite natu-
rally yields a better approximation here than quasi-steady Al approaches. The off-
set angle is driven by an appropriately chosen discrete noise term nog(k).

9.3.4 Dynamic Model for Changes in Lane Width

Usually, a road consists of long sections with constant lane width according to
standard road design rules [RAS-L-1 1984]. Between these sections, there is a short
section where the lane width changes from the initial to the final value. In this tran-
sition section, the dynamics of lane width can be modeled under the assumption of
piecewise constant linear change along the run length | according to Equation 9.23,
where b, denotes the lane width at the point of observation (current position of the
vehicle) and b; the lane width change rate (db/dl).

A problem arises at the point of transition between sections of different values
of by, where a jump in by occurs. To obtain a robust model, the unsteady transitions
between segments of b; should be approximated by steady functions. Moreover,
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the precise location where the lane width begins to change cannot be determined
exactly from a single image. A possible way of approximation along the path simi-
lar to that for road curvature may be chosen (Section 7.4). For each moment, the
real road curvature is approximated by a clothoid that yields the same lateral offset
relative to the current vehicle position.

This dynamic approach, when applied to lane width, leads to a straight line ap-
proximation for the lane markings at each moment. In sections of changing lane
width, the lane markings are approximated by straight lines on each side of the lane
that produce the same widening or tapering effect as the real lines. Furthermore, it
must be assumed that within the local look-ahead distance L of the camera, only
one change in lane width change rate b; occurs. With b, as the lane width at the end
of the look-ahead distance L, this assumption leads to

be = bOm +L- blm ) (932)
where by, is the approximate lane width at the current vehicle location and by, =
db,/dl the approximate linear change rate of the lane width within the look-ahead
distance. Also, b,r, can be expressed as

Dy =by+ [ Bydl 9.33)

I; denotes the distance covered after the b;-change began to appear within L; by
is the lane width just before that moment. Thus, the lane width at the end of the
look-ahead distance can be expressed as

b, =ty + [ byl b, L. (9.34)
On the other hand, the lane width at the end of L is given by the real lines for
lane marking. Admitting one change of b, within L results in
b, =by +by; L +byl; (9.35)
where by, by, are the change rates in lane width before and after the step jump, re-
spectively. Combining Equations 9.34 and 9.35 yields

bl +bl, = [ By dl+by, L (9.36)
Differentiating by dl; and replacing d1; by V-dt leads to
db, \Y Vv
n—=h,——b, —. 9.37
dt 2 L blm L ( )
As stipulated above, by, = dbgy, /dt. By replacing dl by V-dt this yields
db,, /dt=v-b,,. (9.38)
Thus, the complete system of differential equations is
bOm :Vblm
. \Y; Vv (9.39)
blm - b12 L - blm L '
The complete state vector using averaged values by, bim can be written as
Xy = [0y, Biy 121 (9.40)

The state variable b, is not deterministic, as the change of lane width along the
path is not predictable without prior knowledge of the overall road course. For the

purpose of Kalman filtering, b, is assumed to have Gaussian noise characteristics
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b, =, (t). (9.41)
Equations 9.39 and 9.41 constitute the third-order analogue model for observing
lane width changes over time while driving at speed V. For the discrete formula-
tion, the transition matrix @, (T) has to be determined,; it is the solution of the sys-

tem of homogenous differential equations for time step T. The result is as follows:
O, (T) =Dy(T) =1; Dy (T) = Dy (T) = Dy, (T) =0;

By (T) = L[l—exp(—‘%)); @, (1) =exp(- T, o)

Bl L(exp“\%”vTT‘lJ; @ (T) =1-exp(—~).

The discrete dynamic model for lane or road width observation, which is com-
pletely separate from the other variables, finally is

b 1 @, ®,) (b

Om om O
Xp o1 = | Bim =0 @,, @y | |b, | +0 |. (9.43)
blZ k+1 0 0 1 k blZ k Ng k

9.3.5 Measurement Model Including Pitch Angle and Width Changes

The dependence of look-ahead range L on pitch angle 6¢ (Equation 9.20) and the
dependence of both curvature and lane (or road) width on look-ahead range L has
to be captured in the measurement model if these variables have to be estimated.
Therefore, Equations 9.22 and 9.23 have to be combined with Equation 9.20, fi-
nally yielding the mapping equation

Kkt bz 2,6,
yi-COS(X_WK){H[ka eK]+b1(<sz+1>j] (0.44)

The elements of rows of the Jacobian matrix C corresponding to this measure-
ment equation for several image rows z; are obtained as partial derivatives with re-
spect to all state variables or parameters to be iterated. With the computing power
available today, these terms are most easily obtained by numerical differencing of
results with slightly perturbed variables and division by the perturbation applied.
To obtain the width of the lane (or road) in the row direction from the video image,
the horizontal positions y; of the right and left lane markings (boundary lines) in
each row are subtracted from each other.

9.4 Experimental Results

Validation of the approach has been achieved in two steps: First, the quality of es-
timation was checked by simulations. Second, experimental results with real test
vehicles in the real world have been performed and some are discussed here.
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9.4.1 Simulations with Ground Truth Available

In simulations, ground truth is known from simulation input; by varying noise pa-
rameters, some experience can be gained on convergence behavior and favorable
parameter selection.

9.4.1.1 Validation of Pitch Estimation

Estimation of the pitch angle state vector has been validated by a simple test with
simulated measurements based on damped oscillations:

Damped negative sine wave, initial amplitude of 6k = 1°;
undamped natural frequency of 1 Hz, that is, wy = 2 = 6.28 rad/s;
relaxation time t = 1 s (damping coefficient of o = 1/(2t) = 0.5 5 });
pitch offset B¢, = —5°.

(9.45)

Random noise has been added to the simulated measurement values. The initial
state vector for the estimation process has been chosen as zero in all components.
The starting value for lane width was the same as the simulated one: 3.75 m and
constant. In Figure 9.13, the estimated pitch angle (crosses) is compared to the
simulated one (solid line). In addition, at each time frame, the vertical position of
the vanishing point (‘horizon’) has been computed from the intersection of the bor-
derlines; for comparison, the pitch angle was extracted according to Equation 7.39.
From the faint dotted graph in Figure 9.13, it can be seen clearly that this pitch an-
gle is much more noise-corrupted than the pitch angle estimated by EKF.

The variance vector Q of the process has been set such that the estimated actual
pitch angle 0k follows the real pitch movement quickly. On the other hand, pitch

0= ;
T : - simulated pitch angle
-115° | . - - estimated pitch angle
. .. pitch angle from horizon
230° 19 - "L - simulated pitch offset
e + estimated pitch:offset
-3.45° } - ’ Hes :

-4.60°
50

-5.75° |

0 1 time/sec. 2 3 4

Figure 9.13. Estimation of pitch angle in simulation: Damped pitch oscillation (1 Hz,
1°) and offset (—5°). Convergence from 0, = 0 occurred in ~ 4 s.
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offset estimation from the wrong initial value converges much more slowly toward
the real offset. This is based on the assumption that the offset, usually, is a slowly
variable quantity or a constant after the camera has been mounted in a fixed pose
(angle and position). However, a mechanical shock may also have perturbed the in-
tended viewing direction. Therefore, a compromise has to be found between a suf-
ficiently quick reaction of the filter and robustness to measurement noise. Of
course, the filter can be tuned such that sudden jumps in 6,5 can also be estimated,
but then there will be a conflict with respect to which part of the measured discrep-
ancy should be assigned to which variable. Separating low- and high-frequency
components is the most stable way to go: stepwise changes in pitch offset angle
(when somebody inadvertently hits the camera mount) will be discovered in due
time since the new orientation remains fixed again and will show up according to
the time constant chosen for the low-frequency part of the estimation process.
Figure 9.14 shows the pitch rate of the test run for motion estimation from a
simulated damped oscillation with superimposed noise. The difference between the
incorrectly assumed pitch offset (0°) and the real one (—5°, see Figure 9.13) to-
gether with the increase in negative magnitude from prediction over one cycle time
of 80 ms in the example (negative sine wave) first gives rise to positive pitch rates
(crosses in Figure 9.14) according to the internal model with large positive predic-
tion errors in this variable. It can be seen that only after the estimated pitch offset
approaches its real value (Figure 9.13, at ~ 1.5 s) the estimated pitch rate g (crosses
in 9.14) comes closer to the simulated value (to the right of the dash-dotted line).
During the initial transient phase of the filter, the estimated pitch rate should not
be used for control pur-
poses. General good ad- o= -

vice with respect to the R Estimated (+++) and simulated

measured pitch rate is to o5} (solid curve) body pitch rate ggin

. . - T radians per second
use inertial angular rate o
sensors which are inex-
pensive and yield good , -l

(high-frequency) ~ results  ~ | /|\# I AR B
with almost no delay time; ; \*,, */’\_ e

results from visual inter- \‘\‘/ I \ 7 K‘/ =

pretation, usually, have _ ..
much larger time delays (2

to 4 video cycles) in addi- _. . I
tion to _the uncertainty 0o — 1 15 > tmels 3

from object hypotheses

chosen. On the other hand,  Figure 9.14. Damped pitch oscillation and initial tran-
inertial data tend to drift  sients from visual perception: it takes about 1% seconds
slowly over time; this can  (about 20 recursive estimation cycles of 80 ms) until
be easily counteracted by  the perceived motion corresponds closely to the simu-
joint visual/inertial inter-  lated one (initial pitch rate estimated excluding offset
pretation. angle = +10°/s)
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9.4.1.2 Validation of Lane Width Estimation

The dynamic system for
lane width estimation
has also been validated =+-=
by simulation; Figure - simulated lane width
9.15 shows an example . estimated lane width
of an arbitrarily changed . -]
lane width from 4 m in b in
both directions (-5 % = meters
short perturbation and AN e
+11 % step input) with §

some disturbances added ==
(solid line). Lag effects \
and dynamic overshoot =*®f
are apparent (dotted line)
in acceptable limits; the
high-frequency perturba-  Figure 9.15. Simulation test for road width estimation:
tions are completely  Imperfect software for lane width simulation generated
smoothed out. The abso-  small peaks and jumps (solid curve), which have not been
lute error of the esti-  removed on purpose to see the response of the estimation
mated width (after tran-  process (dotted curve). Nice smoothing and some over-
sient decay) is only a  shoot occurred.

few centimeters.

4.5

run length in meters

o = 1a] pR=1=] 150 200 250

9.4.2 Evaluation of Video Scenes

The video scenes were taken from a CCD camera mounted behind the front win-
dow of test vehicle VaMP (sedan Mercedes 500 SEL). The data recorded on a
VCR were played into the transputer image processing system in the laboratory for
evaluation in real time.

9.4.2.1 Results from Test Track

Lane width on high-speed road section: Some video scenes were taken on the
test track of UniBwM, the taxiway of the former airport Neubiberg, which is a
straight concrete road 2 km long with standard boundary and lane markings for a
German Autobahn; it includes sections with narrowing lane width. Figure 9.16
shows the results of simultaneous estimation of pitch angle and lane width at the
end of the test track, where the lane width changes first from 3.75 m to 3.5 m (at
around 9 seconds on the timescale) and down to 3.2 m (at 23 seconds). The error of
lane width estimation is less than 5 %. The estimated (negative) pitch angle shows
a slight increase as the lane becomes smaller. This is due to deceleration with the
vehicle slightly pitching down because the lane actually ends there. Figure 3.20
visualizes the forces and moments acting that lead to the downward pitch in a
brake maneuver; the induced damped small oscillations can be recognized in the
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Figure 9.16. Estimation results for lane width and pitch angle components: The pitch
angle is split into a dynamic part (of approximately 1.4 Hz eigenfrequency) and a
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graph. Measuring deceleration directly by inertial sensors and feedback would im-
prove visual perception.

Horizontal curvature on test course: Taking perturbations in pitch angle into ac-
count, good estimation results for curvature over arc length can be obtained. Figure
9.17 shows, on the left side, the test course designed for developing and testing
autonomous vehicles on the former airport Neubiberg. In the upper part, two circu-
lar arcs are directly adjoined to straight sections; this is the way road networks
were built for horse carts. In the lower part, transient clothoid arcs as introduced
for high-speed roads are implemented (dotted polygons). Here, curves are driven
with constant steering rate.

It can be seen that abrupt steps in designed curvature (top right) lead to oscilla-
tions. This is due to the fact that the vehicle cannot perform jumps in steering an-
gle, and that the harsh reaction in steering rate leads also to oscillations in roll and
yaw of the autonomously controlled vehicle. The time delay in the visual control
loop — from image taking to front wheel turn based on this information — was about
a half second; this is similar to normal human performance. This closed-loop per-
ception-and-action cycle leads to almost undamped oscillations of small amplitude
in the two curves; the average radii of curvature are slightly smaller than the design
values of 50 and 40 m (curvatures are slightly higher).

The trajectories perceived as really driven are the solid curves; it can be seen
that these curves are closer to clothoids in the transition phases than to the ideal-
ized straight line to circular-arc junctions (step input for curvature). Due to the
look-ahead range, curve steering is started ahead of the step input on the trajectory.
Driving on the clothoid arcs (lower right), deviations between designed and actual
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trajectories are smaller. There is a strange kink in the first down-going arc between
R3 and R4 (dashed ellipse). To check its validity, this part has been analyzed espe-
cially carefully by driving in both directions. The kink turned out to be stable in in-
terpretation. Talking with the people who realized the lane markings, the following
background was discovered: This clothoid arc had been painted starting from both
sides. When the people approached each other, they noticed the discrepancy and
realized a smooth transition by a short almost circular arc. This is exactly what the
automatic vision system interpreted without knowing the background; it concluded
that the radius is ~ 100 m (Cy, = 0.01).
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Figure 9.17. Test track for autonomous driving at UniBwM Neubiberg, designed with
different radii of curvature R;, which are connected with and without clothoids (left:
bird’s-eye view). The right-hand part shows the design parameters (dotted) and the re-
covered curvatures from vision with test vehicle VaMoRs.

9.4.2.2 Results from Rides on Public Roads

Inclusion of pitch angle estimation has led to an improvement in the robustness of
the autonomous overall system, especially for driving at higher speeds with in-
creased look-ahead ranges. Monocular distance estimation to other vehicles ahead
showed best performance increases due to more stable look-ahead range assign-
ment (see Table 7.1).



9.4 Experimental Results 281

Figure 9.18 shows the results of pitch angle estimation from a ride on Autobahn
A8 (Munich — Salzburg near the intersection Munich-South). Velocity was V = 120
km/h, focal length used was f = 24 mm, and the farthest look-ahead range was Lax
=70 m. Pitch angle perturbations are in the range of + 0.2°, and pitch rates are less
than 1.5 °/s (top curve with large peaks). According to column 8 in Table 7.1, row
2, a pitch angle change of 0.2° corresponds to a shift of 8 pixels for the test data
with VaMP. At a look-ahead range of 60 m (row 5), the correction in look-ahead
range for this pitch angle is 8 pixels - 1.2 m/pixel = 9.6 m, a change of 16%.
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Figure 9.18. Pitch angle estimation (|6] < 0.2°) during a smooth Autobahn ride at V =
120 km/h and look-ahead ranges up to 70 m; 6, of camera estimated from local hori-
zontal as lower graph

These numbers make immediately clear that even a small motion in pitch plays
a role for large look-ahead ranges. As can be seen from Equation 9.44, the pitch
angle enters into many elements of the Jacobian matrix and thus has an effect in in-
terpreting the measured image features and their contribution to state updates. Be-
cause of the low sensitivity for nearby regions, the effects on interpreting images of
wide-angle cameras are small; considering these effects as noise and adjusting the
Q elements correspondingly has worked well (Chapter 7).

However, to interpret tele-images correctly, the pitch effects on the look-ahead
range should be included in any case where even minor perturbations from surface
roughness are present; a fraction of a degree in pitch cannot be neglected if precise
results are looked for. Figure 9.19 shows a result which at first glance looks sur-
prising. Displayed are results for lateral state estimation, especially the heading an-
gle of the vehicle relative to the road, in real time from stored video sequences with
(solid line) and without (dotted line) taking pitch effects into account for interpreta-
tion. The video data base thus was absolutely identical. During this test on the
Autobahn, the pitch angle varied in the range |6] < 0.5° depending on the road sur-
face state.

If both lane markings are well visible, the effects of pitch changes cancel out;
this is the case up to a run length of about 600 m. However, if lane markings are
poorly detectable on one side and very visible on the other side, changes in pitch
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angle have the edge features glide along the well visible borderline also in a lateral
direction not counteracted by the features on the other side. This is partially inter-
preted as yaw motion. From 600 to 1200 m in Figure 9.19, this leads to differences
in yaw angles estimated at more than 1°. During this stretch, some edge feature
measurements on one side of the lane were not successful, so that more emphasis
was put on the data from the well visible lane marking. Vehicle pitch due to per-
turbations not modeled was interpreted partially as measured yaw angle.
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Figure 9.19. The effects of pitch motion modeled (solid line) or neglected (dotted line
for 6 = constant) on other variables not directly involved in this degree of freedom;
here: yaw angle estimation when quality of lane markings on each side differs (see text,
after [Behringer 1996])

Toward the end (run length > 1200 m), the vehicle decelerated and started a lane
change to the left (yaw angle y down to about —3°).

9.4.2.3 Estimation of Lane Width

State road with T-junction on left-hand side: The pitch angle can be estimated
correctly based on lane width only when the real lane width is known. On German
‘Autobahnen’ for a long time, the standard lane width was defined as b = 3.75 m.
On older sections and in mountainous regions, it may be less. The assumption of a
wrong and constant lane width leads to errors in pitch angle estimation, since the
measured residues effect an innovation of the pitch angle even though this pitch
angle adaptation cannot make prediction-errors vanish. In any case, changes of
lane width on normal sections of freeways are relatively small, usually. Strong
variations in lane width occur on construction sites.

Since changes in lane width on standard roads are much more pronounced on
state roads or minor highways, one such case has been taken as a test. Large
changes in road width are sometimes accepted for state roads with low traffic den-
sity when a side road connects to the state road by a T-junction; vehicles turning
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off onto the side road move to the side of the connection and slow down, while
through traffic may continue to the right at normal or slightly reduced speed. In
Figure 9.20, widening of the lane over ~ 100 m (220 to 320, top curve) is about 40
% (1.5 m on top of ~ 3.3 m), built up over a distance of about 60 m. Both inte-
grated terms b; and by are estimated as smooth curves; the smoothing effect of the
artificially introduced variable b; is clearly visible. The closed-loop action-
perception cycle yields an evolving symbolic representation hard to achieve with
quasi-static Al approaches.
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Figure 9.20. Lane widening at a left-turn road junction (in right-hand traffic) on a state
road (top). Two snapshots at different distances from the T-junction: Left: further away;
right: closer to junction seen at left. Bottom: Estimated parameters of lane width model.

With lane width estimation active but pitch estimation inactive, prediction errors
relative to edge positions for constant pitch angle are interpreted as changes in lane
width. With both models active, the same edge features drive both models simulta-
neously. With pitch estimation inactive, two types of errors occur: (1) lane width
estimated is erroneous if pitch angle changes occur, and (2) actually occurring
changes in look-ahead distances are not recognized. To study these effects, test
data from the same run on a stretch of Autobahn have been analyzed with lane
width estimation active twice, once with pitch estimation inactive and once with
pitch estimation active.

Effects of pitching motion on estimation of lane width: Figure 9.21 shows re-
sults from [Behringer 1996] nicely indicating the improvement in stability when mo-
tion in pitch is estimated simultaneously with lane width; the small change in lane
width occurs at around a run length of 150 m. If pitch estimation is not active but
pitching motion occurs, the changes in road width in a certain image row due to ac-
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tually occurring pitching motion are interpreted as changes in width. Estimation of
lane width on a 1 km stretch of Autobahn with (solid curve) and without (dotted
curve) simultaneous pitch angle estimation is shown.Through the corresponding
Jacobian elements and the updates in the feedback gain for the prediction errors in
width, these changes due to pitching motion are interpreted as changes in real road
width. Misinterpretations of up to ~ 40 cm (10 % of lane width) occur around the
real value of 3.75 m.
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Figure 9.21. Estimation of lane width on a 1-km stretch of Autobahn with (solid curve)
and without (dotted curve) simultaneous pitch angle estimation

Without pitch angle estimation, lane width varies with a standard deviation of ~ 0.1
to 0.3 m, depending on the smoothness of the road surface; with simultaneous pitch
angle estimation, this value is reduced to 0.05 m (5 cm) and less. By adapting ele-
ments of the covariance matrix Q correspondingly, estimation quality is improved
further.

9.4.2.4 Estimation of Small Vertical Curvatures

Surprising results have been achieved with respect to motion stereointerpretation of
the height profile of a stretch of Autobahn close to UniBwM, north of the Auto-
bahn intersection Munich South. Figure 9.22 shows five snapshots of the scene and
the vertical curvature profile recovered. The upper left image shows an underpass
under a bridge; the increasing slope behind the bridge is clearly visible from this
image. The center image in the top row was taken shortly before passing the
bridge, whose shadow is seen in the near range. The remaining three images show
the vehicle going uphill (top right), in front of the cusp (lower left), and back to
level driving behind the underpass (lower center). At the lower right, the vertical
curvature profile recovered while traveling this stretch over a distance of a half
kilometer is shown. Note that the unit for curvature is 100 km! The peak value of
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curvature of 7.2:10°° [1/m] corresponds to a radius of curvature of about 14 km.
This means that for 100 m driven the slope change is ~ 0.4°.
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Figure 9.22. Precise estimation of vertical curvature with simultaneous pitch estimation
on underpass of a bridge across Autobahn A8 (Munich — Salzburg) north of Autobahn
crossing Munich-south: Top left: Bridge and bottom of underpass can be recognized; top
center: vehicles shortly before underpass, shadow of bridge is highly visible. Top right
and bottom left: Cusp after underpass is approached; bottom center: leaving the under-
pass area. Bottom right: Estimated vertical curvature over distance driven: The peak
value corresponds to ~ a half degree change in slope over 100 m.

Of course, this information has been collected over a distance driven of several
hundred meters; this shows that motion stereo with the 4-D approach in this case
cannot be beaten by any kind of multiocular stereo. Note, however, that the stereo
base length (a somewhat strange term in this connection) is measured by the
odometer with rather high precision. Without the smoothing effects of the EKF
(double integration over distance driven) this would not be achievable.

The search windows for edge detection are marked in black as parallelepipeds in
the snapshots. When lane markings are found, their lateral positions are marked
with dark-to-bright and bright-to-dark transitions by three black lines looking like a
compressed letter capital H. If no line is found, a black dot marks the predicted po-
sition for the center of the line. When these missing edges occur regularly, the lane
marking is recognized as a broken line (allowing lane changes).

9.4.2.5 Long-distance Test Run

Till the mid-1990s most of the test runs served one or a few specific purposes to
demonstrate that these tasks could be done by machine vision in the future. Road
types investigated were freeways (German Autobahn and French Autoroute), state
roads of all types, and minor roads with and without surface sealing as well as with
and without lane markings. Since 1992, first VaMoRs and since 1994 also VaMP
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continuously did many test runs in public traffic. Both the road with lane markings
(if present) and other vehicles of relevance had to be detected and tracked; the lat-
ter will be discussed in Chapter 11.

After all basic challenges of autonomous driving had been investigated to some
degree for single specific tasks, the next step planned was designing a vision based
system in which all the separate capabilities were integrated into a unified ap-
proach. To improve the solidity of the database on which the design was to be
founded, a long-distance test run with careful monitoring of failures, and the rea-
sons for failures, had been planned. Earlier in 1995, CMU had performed a similar
a test run from the East to the West Coast of the United States; however, only lat-
eral guidance was done autonomously, while a human driver actuated the longitu-
dinal controls. The human was in charge of adjusting speed to curvature and keep-
ing a proper distance from vehicles in front. Our goal was to see how poor or well
our system would do in fully autonomously performing a normal task of long-
distance driving on high-speed roads, mainly (but not exclusively) on Autobahnen.

This also required using the speed ranges typical on German freeways which go
up to and beyond 200 km/h. Figure 9.23 shows a section of about 38 minutes of
this trip to a European project meeting in Denmark in November 1995 according to
[Behringer 1996; Maurer 2000]. The safety driver, always sitting in the driver’s seat,
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Figure 9.23. Speed profile of a section of the long-distance trip (over time in minutes)

or the operator of the computer and vision system selected and prescribed a desired
speed according to regulations by traffic signs or according to their personal inter-
pretation of the situation. The stepwise function in the figure shows this input. De-
viations to lower speeds occurred when there were slower vehicles in front and
lane changes were not possible. It can be seen that three times the vehicle had to
decelerate down to about 60 km/h. At around 7 minutes, the safety driver decided
to take over control (see gap in lower part of the figure), while at around 17 min-



9.4 Experimental Results 287

utes the vehicle performed this maneuver fully autonomously (apparently to the
satisfaction of the safety driver). The third event at around 25 minutes again had
the safety driver intervene. Top speed driven at around 18 minutes was 180 km/h
(50 m/s or 2 m per video cycle of 25 Hz). Two things have to be noted here: (1)
With a look-ahead range of about 80 m, the perception system can observe each
specific section of lane markings up to 36 times before losing sight nearby (L, ~
6 m), and (2) stopping distance at 0.8 g (-8 m/s®) deceleration is ~ 150 m (without
delay time in reaction); this means that these higher speeds could be driven autono-
mously only with the human safety driver assuring that the highway was free of
vehicles and obstacles for at least ~ 200 m.

Figure 9.24 gives some statistical data on accuracy and reliability during this
trip. Part (a) (left) shows distances driven autonomously without interruption (on a
logarithmic scale in kilometers); the longest of these phases was about 160 km.
Almost all of the short sequences (< 5 km) were either due to construction sites
(lowest of three rows top left), or could be handled by an automatic reset (top row);
only one required a manual reset (at ~ 0.7 km).
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Figure 9.24. Some statistical data of the long-distance test drive with VaMP (Mercedes
500 SEL) from Munich to Odense, Denmark, in November 1995. Total distance driven
autonomously was 1678 km (~ 95 % of system in operation).

This figure clearly shows that robustness in perception has to be increased sig-
nificantly over this level, which has been achieved with black-and-white images
from which only edges had been extracted as features. Region—based features in
gray scale and color images as well as textured areas with precisely determinable
corners would improve robustness considerably. The computing power in micro-
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processors is available nowadays to tackle this performance improvement. The fig-
ure also indicates that an autonomous system should be able to recognize and han-
dle construction sites with colored and nonstandard lane markings (or even without
any) if the system is to be of practical use.

Performance in lane keeping is sufficient for most cases; the bulk of lateral off-
sets are in the range £ 0.2 m (Figure 9.24b, lower right). Taking into account that
normal lane width on a standard Autobahn (3.75 m) is almost twice as large as ve-
hicle width, lateral guidance is more than adequate; with humans driving, devia-
tions tend to be less strictly observed every now and then. At construction sites,
however, lane widths of down to 2 m may be encountered; for these situations, the
flat tails of the histogram indicate insufficient performance. Usually, in these cases,
the speed limit is set as low as 60 km/h; there should be a special routine available
for handling these conditions, which is definitely in range with the methods devel-
oped.

Figure 9.25 shows for comparison a typical lateral deviation curve over run
length while a human was driving on a normal stretch of state road [Behringer 1996].
Plus/minus 40 cm lateral
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from sections of high-

speed state roads driven autonomously in Denmark on this trip. Lane width varies
more frequently than on the Autobahn; widths from 2.7 to 3.5 m have been ob-
served over a distance of about 3 km (Figure 9.26). The variance in width estima-
tion is around 5 cm on sections with constant width.
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Figure 9.26. Varying width of a state road can be distinguished from the variance of
width estimation by spatial frequency; standard variation of lane width estimation is
about 5 cm

The left part of Figure 9.27 gives horizontal curvatures estimated for the same
stretch of road as the previous figure. Radii of curvature vary from about 1 km to
250 m. Straight sections with curvature oscillating around zero follow sections
with larger (constant?) curvature values that are typically perceived as oscillating
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(as in Figure 9.17 on our test track). The system interprets the transitions as clot-
hoid arcs with linear curvature change. It may well be that the road was pieced to-
gether from circular arcs and straight sections with step-like transitions in curva-
ture; the perception process with the clothoid model may insist on seeing clothoids
due to the effect of low-pass filtering with smoothing over the look-ahead range
(compare upper part of Figure 9.17).
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Figure 9.27. Perceived horizontal curvature profile on two sections of a high-speed state
road in Denmark while driving autonomously: Radius of curvature comes down to a
minimum of ~ 250 m (at km 6.4). Most radii are between 300 and 1000 m (R = 1/ ¢y).

The results in accuracy of road following are as good as if a human were driving
(deviations of 20 to 40 cm, see Figure 9.28). The fact that lateral offsets occur to
the ‘inner’ side of the curve (compare curvature in Figure 9.27 left with lateral off-
set in Figure 9.28 for same run length) may be an indication that the underlying
road model used here for perception may be wrong (no clothoids); curves seem to
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Figure 9.28. Lateral offset on state road driven autonomously; compare to manual driv-
ing results in Figure 9.25 and curvature perceived in 9.27.

be “cut,’ as is usual for finite steering rates on roads pieced together from arcs with
stepwise changes in curvature. This is the price one has to pay for the stabilizing
effect of filtering over space (range) and time simultaneously. Roads with real
clothoid elements yield better results in precise road following.

[As a historic remark, it may be of interest that in the time period of horse carts,
roads used to be made from exactly these two elements. When high-speed cars
driven with a finite steering rate came along, these systematic ‘cuts’ of turns by the
trajectories actually driven have been noticed by civil engineers who — as a pro-
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gressive step in road engineering — introduced the clothoid model (linear curvature
change over arc length).]

9.5 High-precision Visual Perception

With the capability of perceiving both horizontal and vertical curvatures of roads
and lanes together with their widths and the ego- state including pitch angle, it is
important to exploit precision achievable to the utmost to obtain good results. Sub-
pixel accuracy in edge feature localization on the search path has been used as
standard for a long time (see Section 5.2.2). However, with good models for vehi-
cle pitching and yawing, systematic changes extended edge features in image se-
quences can be perceived more precisely by exploiting knowledge represented in
the elements of Jacobian matrices. This is no longer just visual feature extraction as
treated in Section 5.2.2 but involves higher level knowledge linked to state vari-
ables and shape parameters of objects for handling the aperture problem of edge
features; therefore, it is treated here in a special section.

9.5.1 Edge Feature Extraction to Subpixel Accuracy for Tracking

In real-time tracking involving moving objects, predictions are made for efficient
adjustment of internal representations of the motion process with both models for
shape and for motion of objects or subjects. These predictions are made to subpixel
accuracy; edge locations can also be determined easily to subpixel accuracy by the
methods described in Chapter 5. However, on one hand, these methods are geared
to full pixel size; in CRONOS, the center of the search path always lies at the cen-
ter of a pixel (0.5 in pixel units). On the other hand, there is the aperture problem
on an edge. The edge position in the search path can be located to sub-pixel accu-
racy, but in general, the feature extraction mask will slide along a body-fixed edge
in an unknown manner. Without reference to an overall shape and motion model,
there is no solution to this problem. The 4-D approach discussed in Chapter 6 pro-
vides this information as an integral part of the method. The core of the solution is
the linear approximation of feature positions in the image relative to state changes
of 3-D objects with visual features on their surfaces in the real world. This rela-
tionship is given by concatenated HCTs represented in a scene tree (see Section
2.1.1.6) and by the Jacobian matrices for each object—sensor pair.

For precise handling of subpixel accuracy in combination with the aperture
problem on edges, one first has to note that perspective mapping of a point on an
edge does not yield the complete measurement model. Due to the odd mask sizes
of 2" + 1 pixels normal to the search direction in the method CRONOS, mask loca-
tions for edge extraction are always centered at 0.5 pixel. (For efficiency reasons,
that is, changing of only a single index, search directions are either horizontal or
vertical in most real-time methods). This means that the row or column for feature
search is given by the integer part of the pixel address computed (designated as
‘entier(y or z)’ here). Precise predictions of feature locations according to some
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model have to be projected onto this search line. In Figures 9.29 and 9.30, the two
predicted points, P*;y (upper left) and P*,y (lower right), define the predicted edge
line drawn solid.
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Figure 9.29. Application-specific handling of aperture problem in connection with edge
feature extractor in rows (like UBM1; nominal search path location at center of pixel):
Basic grid corresponds to 1 pixel. Both predictions of feature locations and measure-
ments are performed to subpixel accuracy; Jacobian elements are used for problem spe-
cific interpretation (see text). Horizontal search direction: Offsets in vertical direction
are transformed into horizontal shifts exploiting the slopes of both the predicted and the
measured edges; slopes are determined from results in two neighboring horizontal
search paths.

Depending on the search direction chosen for feature extraction (horizontal h,
Figure 9.29 or vertical v, Figure 9.30), the nominal edge positions (index N) taking
the measurement process into account are my,y and mopy (9.29) respectively myyy
and my,y (9.30, textured circles on solid line).

The slope of the predicted edge is

ay = (ZZN — Iy )/(yZN - le) . (9-46)
For horizontal search directions, the vertical differences Azj,n, Azanx to the cen-
ter of the pixel z;y defining the search path are
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Az, =7, —entier(z,,)—0.5,
Az, =2, —entier(z,,) —0.5;
in conjunction with the slope ay they yield the predicted edge positions on the
search paths as the predicted measurement values
M = Yin —AZpy /8y, 1=1, 2. (9.48)
In Figure 9.29 (upper left), it is seen that the feature location of the predicted
edge on the search path (defined by the integer part of the predicted pixel) actually
is in the neighboring pixel. Note that this procedure eliminates the z-component of
the image feature from further consideration in horizontal search and replaces it by
a corrective y-term for the edge measured. For vertical search directions, the oppo-
site is true.
For vertical search directions, the horizontal differences to the center of the
pixel defining the search path (Ayin, Ayaun) are
Ayin =Yy —entier(y,) +0.5; (9.49)
together with the slope ay, this yields the predicted edge positions on the search
path as the predicted measurement values to subpixel accuracy:
M = Zin — A -8y, 1=1,2. (9.50)
For point 1 this yields the predicted position my,y in the previous vertical pixel
(above), while in the case of point 2 the value my,y lies below the nominal pixel
(lower right of Figure 9.30). Again this procedure eliminates the y-component of
the image feature from further considerations in a vertical search and replaces it by
a corrective z term for the edge measured.

(9.47)

9.5.2 Handling the Aperture Problem in Edge Perception

Applying horizontal search for precise edge feature localization yields the meas-
urement points myn,, for point 1 and mjy,,, for point 2 (dots filled in black in Figure
9.29). Taking knowledge about the 4-D model and the aperture effect into account,
the sum of the squared prediction errors shall be minimized by changing the un-
known state variable xs. However, the sliding effect of the feature extraction masks
along the edges has to be given credit. To do this, the linear approximation of per-
spective projection by the Jacobian matrix is exploited. This requires that devia-
tions from the real situation are not too large.

The Jacobian matrix (abbreviated here as J), as given in Section 2.1.2, approxi-
mates the effects of perspective mapping. It has 2:m rows for m features (y and z
components) and n columns for n unknown state variables xs, , @ = 1, ... n. Each
image point has two variables y and z for describing the feature position. Let us
adopt the convention that all odd indices of the 2:m rows (iy = 2:i — 1, i = 1 to m) of
J refer to the y-component (horizontal) of the feature position, and all following
even indices (i, = 2:i) refer to the corresponding z-component (vertical). All these
couples of rows multiplied by a change vector for the n state variables to be ad-
justed, dXs,, o = 1, ... n yield the changes 8y and 6z of the image points due to &xs:

Ji, - OXs, = (B, 82)]. (9.51)
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Let us consider adjusted image points (yia, Zia) after recursive estimation for lo-
cations 1 and 2 which have been generated by the vector products

Yia=Yin t lea 'SXSa; Lp =2+ i 'SXSa;

Yan = Yan + 0y - OXsy; Zyn =Zpy +Jpp - X,

These two points yield a new edge direction a for the yet unknown adjustments
dXs. However, this slope is measured on the same search paths given by the inte-
ger values of the search row (or column) through measurement values mju, (or
Mivm). The precise location of the image point for a minimum of the sum of the
squared prediction errors depends on the &xs,, o = 1, ... n, to be found, and it has
thus to be kept adaptable.

Analogous to Equation 9.46, one can write for the new slope, taking Equation
9.52 into account,

(9.52)

a, = Zon~hn _ Zon =2y + (Jpp = J120) - X5y
Yon~Yia  Yon Yt (JZya - lea) “OXsq
1+ AJ,,, [ Az - OXq,
1+ Ay | AYy 8%,
For |&| << 1, the following linear approximation is valid for the ratio:
A+e)/A+e)~A+eg) - L-g)=1+e —e,—¢ &, =1+ —¢,.
Applying this to Equation 9.53 yields a linear approximation in 8Xs:

Ay, Al
a, =a, .{1+[ﬁ—ﬁj-5x5a - h.o.t} xay +ay -Cpro - Xg,»

(9.53)

YN

(9.54)
with C oy = 435, [ A2y = 435, 1 AYy.
Horizontal and vertical search paths will be discussed in separate subsections.

9.5.2.1 Horizontal Search Paths

The slope of the edge given by Equation 9.46 can also be expressed by the pre-
dicted measurement values my,y and my,y on the nominal search paths 1 and 2
(dash—dotted lines in Figure 9.29 at a distance Azyy = entier(zyy) - entier(zyy) from
each other); this yields the solid line passing through all four points P*yy, P*,y,
mynn @nd mopy. The new term for the predicted slope then is
ay = AZyy [(Mypy =My ) = AZyy /AM (9.55)
Similarly one obtains for the measured slope a,, from the two measured feature
locations on the same search paths
a, = Azyy [(Mypy =My ) = Az /AN (9.56)
Dividing Equation 9.56 by Equation 9.55 and multiplying the ratio by ay yields
a, =ay 'AmN /Amhm =

(9.57)
ay '(mth — My )/(mth My )
Setting this equal to Equation 9.54 yields the relation
My —M
ay =8, =8y N = a8y Cg X, (9.58)

Amh mod
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Dividing by ay and bringing the resulting 1 in the form (m,,,, —m,,,)/4m,, onto

the left side yields after sorting terms,
Mo~ Miny ~ Manm + Mgy

- = Crnog * s, (9.59)
With the prediction errors 4y, on the nominal search paths
AYipe = My = Mipy (9.60)
Equation 9.59 can be written
(AY1pe =AY, pe) [ AM = Cpy - OXs, - (9.61)

This is the iteration equation for a state update taking the aperture problem and
knowledge about the object motion into account. The position of the feature in the
image corresponding to this innovated state would be (n x n vector product of the
corresponding row in the Jacobian matrix and the change in the state vector):

OY; =43y, - Xsys 02 = Ay, - X, (9.62)

Note, however, that this image point is not needed (except for checking progress
in convergence) since the next feature to be extracted depends on the predicted
state resulting from the updated state ‘now’ and on single step extrapolation in
time. This modified measurement model solves the aperture problem for edge fea-
tures in horizontal search. This result can be interpreted in view of Figure 9.29:
The term on the left-hand side in Equation 9.61 is the difference in the predicted
and the measured position along the (forced) nominal horizontal search paths 1 and
2 at the center of the pixel. If both prediction errors are equal, the slope does not
change and there is no aperture problem; the Jacobian elements in the y-direction at
the z-position can be taken directly for computing 8xs,(3y;). If the edge is close to
vertical (4my, = 0), Equation 9.61 will blow up; however, in this case, Ayy is also
close to zero, and the aperture problem disappears since the search path is orthogo-
nal to the edge. These two cases have to be checked in the code for special treat-
ment by the standard procedure without taking aperture effects into account. The
term on the right-hand side is the modified Jacobian matrix (Equation 9.54). The
terms in the denominator of this equation indicate that for almost vertical edges in
horizontal search and for almost horizontal edges in vertical search, this formula-
tion should be avoided; this is no disadvantage, however, since in these cases the
aperture problem is of no concern.

9.5.2.2 Vertical Search Paths

The predicted image points P*;y and P*,y in Figure 9.30 define both the expected
slope of the edge and the position of the search paths (vertical dash-dotted lines);
the distance of the search paths from each other is Ayyy = entier(y,y) - entier(ysn),
four pixels in the case shown. The intersections of the straight line through points
P*;n and P*,y with the search paths define the predicted measurement values (mivw
and m2w); in the case given, with the predicted image points in the upper right
corner of the pixel labeled with index (1, upper left in the figure) and the lower
left corner of the pixel labeled (2, lower right in the figure), muw lies in the previ-
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ous pixel of the search direction, and mzv in the following pixel of the correspond-
ing search path (top-down search).

Az
N Vertical I

1 i__Y__r search
VAY 1\ I N edge path 2!
1 .

| 1 ]
(Zon= Z1p) I I | ; .
| I Predicted edge | |
_l Ay = [entier(y,y) — entier(y;y)] : | I
| Jamd
y Mo mlvNI I Az,

| R oA

i Vertical I

search ’
. path 1 _{ I

|-~

m2'vm _mlvm = Amm

Figure 9.30. Application-specific handling of the aperture problem in connection with
edge feature extractor in columns: Both predictions of feature locations and measure-
ments are performed to subpixel accuracy; Jacobian elements are used for problem spe-
cific interpretation (see text). Vertical search direction: Offsets in horizontal direction
are transformed into vertical shifts exploiting the slopes of both the predicted and the
measured edges; slopes are determined from results in two neighboring horizontal
search paths.

The exact position is given by Equation 9.50. The predicted slope of the edge ay
(see Equation 9.46) can thus also be written
ay = (Myyy — My )/ Ay =AMy /Ay (9.63)
The edge locations actually found on the search paths are the points mivm and
mavm; the prediction errors on the nominal search paths thus are
AZlpe = My — My

9.64
and ( )
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AZZ pe = Moy — My -
The difference in the measured z-location on the search paths is
Amvm =My = My (965)
in conjunction with Ayyy this yields the slope of the measured edge (dashed line in
Figure 9.30) as
a, =Am,, /Ay. (9.66)
Dividing Equation 9.66 by Equation 9.63 and multiplying the ratio by ay yields
a, =ay 'Amvm /AmN

= ay - (Myy — mlvm)/(mZVN —Myy).
Setting this equal to Equation 9.54 yields the relation (similar to Equation 9.58)
m,, . —m
T, T O (9.68)
Replacing the 1 by Equation 9.65 divided by Am,, and observing Equation 9.64,
the equation for vertical search analogous to Equation 9.61 (horizontal) is
(A7), -AZy 0 ) [ AM,, =C oy - X, - (9.69)

T compute the exact position of the projected, updated point in the image, Equa-
tion 9.62 is equally valid. With respect to singularities, the comments made for the
horizontal case are valid with proper substitution of terms.

Figure 9.31 shows the basic idea
underlying the modified iteration
process. The state update is com-
puted from the prediction errors on
the fixed search paths for two points
on a straight edge (Equations 9.61

(9.67)

i PlA (ylA’ Zl/-\)

J12a'8Xsq for horizontal and Equation 9.69 for

j B \\ vertical search). The corresponding

\ position of the updated (innovated)

CRNay \an feature point P;5 on the edge in the

UL Y N image is given by Equation 9.62.
Vertical;  Jiya¥*sa| ) ) -,

search P*in Vane Zon) Again, computing the position of

path 1i s, this pointy in the image is not

: \ needed for the recursive estimation

process; only if a check of iteration
Figure 9.31. Subpixel edge iteration taking ~ results by visual inspection is
the aperture effects of edge feature extraction ~ wanted, should the point be deter-
with method CRONOS locally into account ~ mined and inserted into the overlay
according to a 3-D shape model of the object ~ of the original video image for
with points 1 and 2 on straight edges monitoring.



10 Perception of Crossroads

For navigation in networks of roads, the capability of recognizing different types of
crossroads and road forks as well as the capability of negotiating them in the direc-
tion desired is a key element. On unidirectional highways with multiple parallel
lanes, selecting the proper lane — supported by navigation signs — is the key to find
the connection to crossroads. On roads of lower order with the same-level connec-
tions between the crossing roads, new performance elements are necessary contain-
ing components of both perception and motion control.

10.1 General Introduction

Making a turn onto a crossroad on the side of standard driving (to the right in con-
tinental Europe and the Americas, to the left in the United Kingdom, etc.) is the
easier of the two possibilities; crossing oncoming traffic lanes, usually, requires
checking the traffic situation in these lanes too, which on high-speed roads means
perception up to a large distance. The
maneuvering capability developed for
turnoffs is currently confined to the case
where there is no interference with any
other vehicles or obstacles, either on
one’s own or on the crossroad. This field
has been pioneered by K. Miiller; the
reader interested in more details is re-
ferred to this dissertation [Miiller 1996].

It is assumed here that the higher lev-
els of mission control in the overall sys-
tem have been able to determine from
odometry (or GPS) and map reading that
the next upcoming crossroad (with cer-
tain visual features) will be the one to
turn onto; the pTECiSE location, width Figure 10.1. General geometry of an in-
and relative orientation, however, are  tersection: The precise location along
unknown (see Figure 10.1). the road driven, the width, and the inter-

These have to be determined while  section angle of the crossroad as well as
approaching the crossroad; therefore, the radii of curvature at the corners are
speed will be reduced to make more  not known in general; these parameters
processing time available per distance  have to be determined by vision during
traveled and for slowing down to the  approach.
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speed allowed for curve driving without exceeding lateral acceleration limits (usu-
ally =~ 2 m/s?).

10.1.1 Geometry of Crossings and Types of Vision Systems Required

To estimate the distance to the intersection of two characteristic lines of crossing
roads precisely, both the point of intersection and a sufficiently long part of the
crossroad for recognizing its width and direction relative to the subject’s road have
to be viewed simultaneously. As a line characteristic of the road driven, the right or
left boundary line is selected; at crossings, there may be no visible boundary line,
so a “virtual” one has to be interpolated by a smooth curve connecting those before
and after the intersection. Two points and two tangents allow deriving the parame-
ters of a clothoid in the image (see Section 5.2.2.3); however, the real-world road
parameters should be available from road-running (see below). As a line character-
istic of the crossroad, the centerline of the lane intended to be turned onto is cho-
sen, yielding the intersection points O, for turning to the right and Oy; for turning
to the left (Figure 10.1).

The angle of intersection is measured relative to a right-angle intersection as the
standard case; it is dubbed . on the right and v; on the left side. For simplicity,
the crossroad is modeled as a straight section in the region viewed. The road driven
is characterized by its curvature parameters (known from methods of Chapter 9)
and the road width (here designated as 2-b); the desired driving state in the sub-
ject’s lane is tangential at the center (b/2) with speed V. This leads to the space to
be crossed on the subject’s road of b/2 for turnoffs to the right and —3b/2 for those
to the left. The actual offset Ay (and Awy) at the location of the cg is assumed to be
known as well from the separate estimation process running for the road driven.

It has to be kept in mind that at larger look-ahead distances (of, say, 100, 60,
and 20 m), a crossroad of limited width (say, 7 m) appears as a small, almost hori-
zontal stripe in the image. Even intersection angles of y,. up to + 50° lead to devia-
tions from the image horizontal of < 10°, usually. A brief computation like that un-
derlying Figure 5.4 yields the number of pixels on the crossroad (vertically) as a
function of camera elevation H above the ground and focal length f (or, equiva-
lently, resolution = number of pixel per degree). Table 10.1 shows results for the
test vehicles VaMoRs and VaMP based on Table 7.1; evaluating only video fields,
the number of rows available is about 240.

Table 10.1. Number of pixels vertically covering a crossroad of width 7 m at different look-
ahead distances on planar ground for two focal lengths f (typical for video fields evaluated
with ~ 240 rows) and two camera elevations above the ground

Vehicle VaMoRs (H = 1.8 m) VaMP (H=1.3m)
Resolution in pixel/degree (f) 8 | 30 8 | 30
Look-ahead distance / m | Number of pixels on crossroad of 7 m width (vert.)
100 v 0.6 2.2 0.4 1.6
60 2.9 11 1.2 4.4
20 14 54 10 39
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The number of pixels on the crossroad in the table increases by about a factor of
2 for evaluation of full video frames. Results for slightly different mapping condi-
tions are shown in Figure 10.2 as a continuous function of range.

It can be seen that for the
conditions of Table 10.1 at 100 25 ] ; ]
m distance the crossroad covers ak i
just one and a half pixel for the
car VaMP and about two for . . 7
the van in the teleimage; in a 2k "\_:.. |r Vertical (z) : L
noisy image from standard fo- A positionin | 1 A5 P
cal length (40° horizontal field WIEE 5T meters  pixed
of view) the crossroad is L] S e e S
mapped onto a half pixel and
cannot be detected. At 60 m 5
diStance, thls |enS yleIdS ~1 1] Wt SN, - ONE:. SRR ‘:'-'_':_'—'“";—-'_f.__\'_' o S
pixel on the crossroad for the 4 : ; i T O | J
car and ~3 for the van. In the 0N okahead range in meteTe
tele-image, with 4.4 pixels on
the crossroad for the car VaMP,  Figure 10.2. Coverage of horizontal distance by a
it may just become robustly single pixel as a function of look-ahead distance
distinguishable, while 11 pixels  for a video image with improved mapping pa-
in the van allow easy recogni-  rameters compared to Table 10.1: f = 2200 pixel
tion and tracking. At 20 m dis- (= 25 mm), H = 2 m, and the camera looking 2°
tance, the standard lens allows  downward in pitch [Miiller 1996]

a similar appearance in the im-

age (10, respectively, 14 pixels on the crossroad). However, at this distance, the
teleimage covers just 3.7 m laterally on the ground, and a camera with standard
lens mounted with its optical axis parallel to the longitudinal axis of the body will
have a lateral range of about 12 m into the crossroad.

These few numbers should make clear that a single camera or a pair of one stan-
dard and one telecamera mounted directly onto the body of the vehicle will not be
sufficient for tight maneuvering at a road crossing. When approaching the crossing,
the cameras have to be turned in the direction of the crossroad so that a sufficiently
large part of it can be seen, allowing precise determination of its relative direction
and width. The resulting “vehicle eye” will be discussed in Chapter 12.

10.1.2 Phases of Crossroad Perception and Turnoff

These considerations had led to active gaze control for a bifocal camera system for
road vehicles from the beginning of these activities at UniBwM [Mysliwetz, Dick-
manns 1986; Mysliwetz 1990; Schiehlen 1995]. Beside “looking into the curve” on
curved roads and “fixation of obstacles on the road” while driving, developing the
“general capability of perceiving crossroads and turning off onto them” was the
major application area in the early 1990s.

K. Muller arrived at the following sequence of activities for this purpose; it was
intended to be so flexible that most situations could be handled by minor adapta-
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tions. Seven phases can be distinguished; the first four are predominated by per-
ception while the last three are strongly intertwined activities of perception, gaze
control, and vehicle control.

The first phase is prepare for crossroad perception according to the mission
plan, which is a slight turn of gaze direction toward the side of the expected cross-
road. In the second phase, visual search for candidate features is performed with
the favorite methods for feature extraction bottom-up. After sets of promising fea-
tures have been found in a few consecutive images, the third phase is hypothesis
generation, in which tracking the crossroad is initiated; now the speed for turning
off is set which, usually, means slowing down so that a lateral acceleration of ay max
is not exceeded. In the fourth phase of increasing precision in perception of pa-
rameters while approaching, more complex gaze control strategies are started and
proper adjustment of methods and tuning parameters is performed.

With the intersection parameters determined, (coarse) planning the behavioral
modes and corresponding parameters is performed, yielding the distance from the
crossing when to start the sequence of maneuver elements for turning off. The fifth
phase then is Start of motion control (steering for turnoff maneuver) with continu-
ing (separate) gaze control and perception; this part is rather involved, and timing
has to be carefully tuned for the feed-forward components used. Well into this
complex maneuver (60 to 70 %), the sixth phase is started by switching to the
crossroad as a (new) reference system; feedback is superimposed both for gaze and
for vehicle control to counteract unpredictable errors and perturbations encoun-
tered. The final phase of the turnoff maneuver is the transition to roadrunning on
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Figure 10.3. Camera heading relative to vehicle, steering angle, and absolute vehicle
heading during a turnoff maneuver with VaMoRs [Miiller, Baten 1995]
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the new road element: Finish feed-forward components and store results observed
during the turnoff maneuver for future evaluation.

Figure 10.3 shows a typical maneuver from real-world test results by displaying
time histories of the camera heading angle, the vehicle heading, and steering angle
as well as the summed angle of camera and vehicle heading. The maneuver lasts
for 27 seconds (s); the last 16 include both gaze and lateral motion control. It starts
with a fast shift of camera yaw angle (~ 8° at t = 0). Over the next 16 s, this angle
continues to increase, initially fully controlled by feed-forward terms. When the
steering angle starts turning the vehicle (noticeable at ~13 s), the sum of both an-
gles determines the gaze direction in absolute space; at about 17 s, this sum reaches
the orientation angle of the crossroad, and gaze has to be turned back at the rate of
vehicle turn (17 to 27 s). Visual fixation of the lane center at a larger look-ahead
range achieves this automatically; the vehicle turns underneath the crossroad-
oriented cameras.

Before discussing these phases in detail, a survey of the hardware base (Section
10.1.3) and the theoretical background is given (Section 10.2).

10.1.3 Hardware Bases and Real-world Effects

Since on one hand the experimental vehicle VaMoRs was very busy in the
EUREKA project Prometheus in the early 1990s, being used by other groups, and
since, on the other hand, it is essential to have fully repeatable conditions available
for testing complex maneuvers and their elements, initial development of curve
steering (CS), as it was called, was done in a vision laboratory.

Hardware-In-the-Loop (HIL) simulation: This at that time unique installation
for the development of autonomous vehicles with the sense of vision, derived from
“hardware-in-the-loop” (HIL) testing for guided missiles with infrared sensors.
Real vision hardware and gaze control was to be part of this advanced simulation
intended to allow easy transfer of integrated hardware to test vehicles afterward
(shaded area in lower center and right corner of Figure 10.4). It shows the HIL-
simulation system developed and used for autonomous visual curve steering at
UniBwM. Before this application, it had been in use for about a decade for devel-
oping the capability of visual autonomous landing approaches of unmanned air ve-
hicles.

A simulation computer (top right) determines the coordinate time histories of all
moving components of the dynamic scene under the differential equation con-
straints valid for them. The angular orientation of the subject vehicle is transferred
to the DBS controller (center left) which translates this information via a three-axis
angular motion simulator (DBS, hydraulic/electric, lower center left) into real
physical angles of a platform onto which the vehicle eye is mounted. On top of the
orientation angles computed for the subject vehicle, stochastic perturbations may
be superimposed representing the effects of roughness of the road surface.

The coordinates describing position and orientation in the environment are sent
to a real-time system for computer-generated images (CGl, center top) which gen-
erates the sequences of images at video rate to be projected onto a curved screen in
front of the cameras (left). Machine vision with the original cluster of Transputers
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now closes the loop by sending the control inputs derived both to gaze control
(center bottom, real feedback) and for control of the subject vehicle to the simula-
tion computer via a special subsystem (center right).
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Figure 10.4. Hardware-in-the-loop simulation facility of UniBwM for the development
of dynamic vision in autonomous vehicles: The shaded area (lower right) shows the
original hardware intended for the test vehicle in a later development stage. The ‘vehicle
eye’ with active gaze control and all computer systems for visual perception are tested
with realistic time delays, disturbances, and nonlinearities. The visual environment (left)
is generated by the simulation computer with CGI and projection.

A lot of the detailed developments of the CS-module have been done with this
simulation loop, very similar to training pilots in simulation loops with visual dis-
plays of the dynamically changing environment. Nonlinear control limits of the
real vehicle like limited steering rate and minimum turn radius possible can easily
be imposed. Also the effects of time delays in measurement, interpretation, and
control (up to several hundred ms) can easily be varied and studied. Surface rough-
ness effects (uneven surface) can be simulated effectively by proper control of the
mechanical unit DBS (capable of realizing fast disturbances with corner frequen-
cies of up to 10 Hz).

There may be some artifacts from image generation and projection which have
to be taken special care of; this was not too difficult. In summary, this simulation
loop has saved quite a bit of development time and cost during the transition from
pure computer simulation of everything to real autonomous driving.

Test vehicle VaMoRs: When the basic challenges of autonomous visual guidance
of road vehicles were solved in the early 1990s, driving in public traffic on high-
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speed roads was emphasized in the second half of the “Prometheus” project; for
this purpose, together with our partner Daimler-Benz AG, two S-class cars were
equipped with new Transputer-based vision systems (vehicles VaMP and
VITA 2). The European development of the communication-oriented processors
(“trans-" instead of com-puter) with easy scalability in larger networks allowed a
big step forward, independent of the massively parallel computer architectures
studied elsewhere.

For this reason, also the second-generation vision system for the older vehicle
VaMoRs was to be based on transputers; this vehicle now had the assignment of
continuing pioneering steps in vision in the framework of driving on networks of
minor roads with and without lane markings and on unsealed surfaces or dirt roads.
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Figure 10.5. Test vehicle VaMoRs (center) with gaze-controlled camera set (upper left
corner, exploded view of center top behind windshield, follow white arrow). The lower
part of the collage is a block diagram of equipment carried onboard in the mid 1990s for
the turnoff experiments on the closed-down airport serving as a test track for autono-
mous driving.
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Tight maneuvering naturally comes into play on these types of roads. Here, it has
to be kept in mind that the vehicle now generates different tracks for each wheel
(refer to Section 3.4.2.2). The outer front wheel shows the largest radius of curva-
ture while the inner rear wheel has the smallest. Both should not leave the intended
lane (danger from curbstones during a left or right turn depending on left- or right-
hand traffic!).

The precise shape of the tracks depends on the axle distance and the width of the
wheel base as well as on the steering angle input and the speed driven. Figure 10.5
shows the test vehicle VaMoRs with its gaze controlled camera system (vehicle
eye) as an exploded view (top left) and a coarse block diagram of the equipment
onboard as the collage below (compare to Figure 10.4).

The upper camera has a telelens with focal length of f = 25 mm; of the two stan-
dard cameras below, just one with f = 7.5 mm has been used in these experiments.
Gaze control can be very fast; 20° shifts can be performed in a fraction of a second.
Camera stabilization in pitch is achieved by feedback from an inertial rate sensor
on the gaze platform [Schiehlen 1995]. The steering rate of the vehicle is limited to
A-dotmax = 15°/s around the pivot axle by power available; the minimal turn radius
of the vehicle is Ry, = 6 m. Time delays of different magnitude occur in most data
paths. Conventional measurements (odometry, inertial data) are so fast that they
can be considered instantaneous without making sensible errors, usually. Video has
40 ms cycle time, and since these data are shifted through the system after specific
processing steps at this rhythm, three to five video cycles may elapse until final in-
terpretation is available for control decision. Control output via a sequence of spe-
cial processors in VaMoRs requires a few tenths of a second; these time delays
cannot be neglected for precise steering.

10.2 Theoretical Background

Before the integrated performance of the maneuver can be discussed, performance
elements for motion control of the vehicle (Section 10.2.1), for gaze control (Sec-
tion 10.2.2), and for recursive estimation (Section 10.2.3) have to be discussed. Ba-
sic material has been covered in Chapters 2 — 6; here, specific items of interest for
curve steering are detailed.

10.2.1 Motion Control and Trajectories

To gain basic insight into dynamic curve steering, some simplifications like driving
at constant speed V and with piecewise constant steering rates A-dot = A are ap-
plied throughout, here. For passenger comfort, maximal lateral acceleration of a,.
max = 2 M/s? is set as an upper limit; the basic relation ay = V2R then fixes the
maximal speed V allowed as a function of radius R. With the minimum turn radius
Rmin fixed by vehicle design, the maximal speed for this tight turn is given by
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V= R-a,.,; Vyielding V. (R;). (10.1)
For VaMoRs with the minimal turn radius of 6 m mentioned, this leads to
Vmax(Rmin):x/E:3.46 m/s, corresponding to = 12.5 km/h. The inverse relation
R=V?/a fixes the minimal radius of turn Ry, allowed as a function of speed

ymax
V driven. The distinction between cg and wheel position will be discussed below;
at these tight turns, outer front wheel, cg position, and inner rear wheel have quite
different radii. Table 10.2 shows a few speeds of interest for tight curve steering
based on cg coordinates. At the minimal turn radius of VaMoRs, the speed maxi-
mally allowed (~ 3.5 m/s) for aymax = 2 m/s? results in a steady turn rate of 33°/s
(from simple relations for a body concentrated at the cg); slower speeds are never
required to satisfy the lateral acceleration limit.

Table 10.2. Minimal turn radius allowed at speed V in order not to exceed the lateral accel-
eration limit aymax = 2 m/s? in tight curve steering (from simple kinematic relations); corre-
sponding turn (yaw) rates. Last but one row gives the time needed at the steering rate of
15°/s to achieve the turn radius in row 3; the distance traveled can be seen in the last row.

Speed V (m/s) 15 2.5 3.5 5.0 7.5
“ (km/h) 5.4 9.0 12.6 18.0 27.0
Rmin (Qymax = 2) (1.125) (3.125) 6.125 12.5 28.0
yaw rate (rad/s) 1.333 0.8 0.57 0.4 0.27
dy/dt  (°/s) 76.0 46.0 33.0 23.0 15.0
telothoid At Amax (time in seconds) 2.0 1.04 0.49
Length (m) (arc length of clothoid) 7.0 5.2 3.67

Higher turn rates can never be achieved for this a,ma. Increasing speed has the
minimal turn radius growing drastically (third row, last two columns); this results
in Ryin = 35 m for V = 30 km/h. With a limit of the steering rate of |A| = 15°/s, the
time needed for achieving the turn radius allowed (A = 30 °) is given in the sec-
ond row from the bottom. The corresponding distance traveled on the clothoid arc
is shown in the last row.

These results have been achieved with the simple dynamic model discussed in
Chapter 3 for the cg. In tight turns of larger vehicles, however, local conditions
change considerably for different parts of the vehicle. The turn radius usually
quoted is the one of the outer wheel track when driving a tight circle. For example,
the van VaMoRs has an axle distance of a = 3.5 m, a track width of by, ~ 1.8 m,
and the minimal radius of turn is around 6 m, measured for the outer front wheel.
From Figure 3.10, it can immediately be seen that if the turn radius of the outer
front wheel is fixed as R¢,: = 6 m, the turn radius of the inner rear wheel is

(R —2%) =by, , (10.2)
which — with the numbers just given — yields R,; = 3.07 m, almost half the value of
Rmin. With the center of gravity at the center between the axles, the turn radius of
the cg is half the sum of both, about 4.5 m for VaMoRs. Since, for a constant turn
rate, circumferential speed goes with R from the turn center, centrifugal accelera-
tion (V4R) increases linearly with R; this is to say that the outer front wheel (about
30% further away than the cg) experiences a centrifugal acceleration correspond-
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ingly higher, while that of the inner rear wheel is as much lower. Limiting lateral
acceleration at the cg thus leads to lower speed bounds; Rey = 4.5 m thus requires
Vimex lowering Viax t0 4.5-2= 3 m/s. The turn rate goes up to 2/3 rad/s ~ 38°/s,
which has the outer front wheel experience 2.67 m/s® and the inner rear wheel only
1.33 m/s? centrifugal acceleration.

The inner rear wheel, of course, is not allowed to leave the road and hit the
curbstones; therefore, its track is critical in curve steering. From these considera-
tions, for lateral accelerations limited to less than ~1/4 g (~ 2.5 m/s?), the speed
range up to about V =5 m/s (18 km/h) is of most practical interest in tight curve
steering.

10.2.1.1 Influence of Speed V Driven

As seen in the previous section, turn rates y-dot of up to 2/3 rad/s around the cg
occur which means there are opposing lateral velocity components at the front and
rear axles. For cg location at I, from the rear and I, from the front axle, I, + I, = a,
(see Figure 3.23) the magnitudes are
AYrearax = _\i] : Ih ; AYfrontax = +\i/ : Iv : (103)
These components, superimposed on the shifted velocity vector V with slip an-
gle B at the cg, yield the actual velocity components Vs and V, at the wheels, which
— through angle of attack and tire stiffness — condition the forces between the
ground and the tires. The point on the vehicle moving in direction of the longitudi-
nal axis is P; it is the one closest to the pivot point M and is located at distance I, in
front of the rear axle. At this point, the following balance holds
VesinB=(l, —1,)v. (10.4)
Assuming that the cg is at I, = |, = a/2 and  remains small so that sin § = B, in
connection with the dynamic model of Section 3.4.5.2, this results in the relation

I, =V T, =V?/ky (10.5)
for the location of point P in front of the rear axle. The outer point of the body on
the line PM is the one coming closest to the vertical line above the curbstone in
tight curves.

For the van VaMoRs the characteristic numbers needed are (Section 3.4.5.2)
m = 4000 kg; I, = 9000 kg m? (yielding iz, =[i,/(al2)]? =0.735); T, = V/60 and T,,
=V/81.7, with V in m/s. At speeds up to V =5 m/s, the two time constants will be <
0.1 seconds (eigenvalues on the negative real axis in the Laplace-transform domain
with magnitude > 12). This means that within 0.3 seconds (the typical human time
delay in visual perception), the stationary value is approached to better than 3%.
For this reason, the dynamic equations for yaw rate \y and slip angle B in Chapter
3.38 can be well approximated by algebraic ones:
y=(1/a)x (10.6)
B=Q/2-T,-V/a)-:. (10.7)
Since these equations contain speed, different trajectories will result for constant
maximal steering rate A.
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10.2.1.2 Maneuver Elements

These are supposed to consist of piecewise constant arcs at constant speed with
steering rate A-dot = £ A, respectively, zero for turnoff. Starting from driving
straight ahead (Ao = 0) or on a circular arc (A, # 0), the steering angle will increase
or decrease linearly with time
A=A A t. (10.8)
Inserting this into Equation 10.6 and integrating the resulting differential equa-
tion with respect to time yields
w(t)=V/a-(h,-t+A-t2/2),
Bt)=(/2-T,-V/a)-A-t.
Since the slip angle B is defined as the angle between the trajectory of the cg
(tangent) and the heading of the vehicle body, for the clothoid arc defined by Equa-
tion 10.9 (with A and V = const.), the trajectory heading y of the cg can now be
written for curve initiation (A, = 0) with Equations 10.7 and 10.9:
VA 1 VT

—tr(E-—LAt
2a (2 a)

(10.9)

X=v+pB=

VA
2a

With V Ty /a = V?/(60-3.5) < 0.119 for
VaMoRs and V < 5 m/s, the second term
in the last bracket is always smaller than
the first one; this means that vehicle
heading lags the trajectory heading dur-
ing curve steering. The slip angle is posi-
tive here (turn right), as can be seen from
Figure 10.6.

The minimum turn radius occurs for

(10.10)

t-[t+(§—2-Tﬁ)].

maximum steering angle Amax. Dividing

Amax Dy the maximally possible steering

rate Amax Yyields the minimal maneuver - ™2tum center

time to the tightest turning. For example, i} | Ri=V(Reu®-(a-1)?—by)

the data for VaMoRs: Aps = 15°/s and  {"itg' — —}7‘ ——————————————— -
hmax = 30° yield the time to the tightest | +f /VR=C=(anN/a

turn Trmin = 2 Seconds irrespective of the ;"_b‘_"

Figure 10.6. Curve initiation at constant speed V with constant steering rate A till Ayax
(minimum turn radius). The critical parts are the outer front wheel (max. radius Rsoy)
and the inner rear wheel (min. radius R;;). At slow speeds for tight curving, the slip an-
gle B is positive, and trajectory heading y is larger than vehicle body heading y. All
wheels run at different speeds because of the different radii. Note that the vehicle does
not turn around a center on the extended rear axle (as assumed from simple considera-
tions, usually).
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speed driven. This is to say that tighter turns are possible at lower speeds; however,
in the limiting case of V = 0, the steered wheels will be turned on the spot and no
distance is covered so that no turn of the vehicle occurs. If the vehicle starts driving
with Ana, the tightest possible turn is obtained: A circular arc with Ry, as turn ra-
dius (higher order dynamic effects are neglected).

Note from Equation 10.5 and Figure 10.7 that for very small speeds, the actual
center for translation and rotation on a circle lies on the extended rear axle. Equa-
tion 10.7 indicates that the speed vector at the cg is not aligned with the body axis
but occurs at an angle proportional to the steering angle.

Driving a curve with V¢4 = 3.5 m/s means that a distance of Vg * Trmin (=7 m in
the example) is traveled until the minimal turn radius is reached. This situation is
sketched in Figure 10.6. Equation 10.6 then yields the turn rate y-dot = 30°/s and
Equation 10.9 the yaw angle y = 30° and the slip angle p = 13.25°. The heading
angle xrmin Of the trajectory thus is 43.25°, almost half a right-angle turn. Since the
second part of a 90°-curve-steering maneuver can be viewed as mirrored at n/2
(45°), the vehicle would have to drive on a circle with minimal turn radius and
constant slip angle for an angle

AX«circle =2 (1'[/4 - XRmin)
or a time span Ate = Mgirete | W
before the inverse control input has to be started. In the example, Ay = 3.5° and A =
0.117 s, during which the vehicle travels about 0.41 m along the circular arc.

The lateral offset of the cg from the initial straight line driven is obtained from
the differential equation for y (last row of Equation 3.38):

y=Vsin(y +),
which with Equation 10.10 can be written as

(10.11)

10.12
y=Vsin (\%[tz +(§—2TB).tD =V sin(k, -[t? +k, -t]). ( :
The approximation sin y = x — x*/6 yields (at n/4 the error is < 1%)
f = k3 [t° 4;3k2t5 + 3k22§4 +6k§t3] 5 y N (10.13)
VIV =k - [t? +k, - t]-k’ -{t° 16+ k,t° [ 2+ k5t* 2+ k;t° / 6},
which can be integrated analytically to give (for V and A = const.)
y(t) =V 'kl(kf ~{i+k2£+ k22£+k23i:|+ﬁ+ K, E] (10.14)
42 12 10 24| 3 2

For the example of VaMoRs with V = 3.5 m/s and A = 15°/s, that is, k; = 0.131
rad/s? and k, = 0.883 s, the lateral offset when reaching Ruin is YVsin = 1.95 m (at t =
Trmin = 2 5); here, A (A-dot) is set back to zero. The distance traveled along the arc
is Trmin 'V = 7 m, of course. At other speeds below 3.5 m/s, A and Trmi, remain the
same; for speeds above 3.5 m/s, Trmin is reduced (see Table 10.2). Table 10.3
shows some results for curve initiation, for the central circular arc to be inserted,
and for the total maneuver time at various constant (slow) speeds. It can be seen
that the shortest maneuver time is achieved when the lateral acceleration limit is
exploited (last row), but then the space needed is largest.
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Table 10.3. Tight 90° curves at various speeds and maximal steering rate till R, (test vehi-
cle VaMoRs): Rows 2 to 9: Values when reaching Ryin; row 8: Circular arc to be driven with
Rmin; row 9: Time on circular arc; row 10: Total time for 90° turn

1 Vinm/s 0.5 1 15 2.5 3 3.5
2 | y-dotin*°/s 4.29 8.57 12.9 21.4 25.7 30
3 | kyinrad/s® | 0.0187 0.374 0.561 0.095 0.112 0.131
4 ky in 1/s 6.98 3.47 2.28 1.32 1.067 0.883
5 yin® 4.29 8.57 12.9 214 25.7 30
6 Bin® 15.0 14.9 14.7 14.1 13.7 13.25
7| x=y+p 19.25 235 27.6 35.5 39.4 43.25
8 AXcircIe 51.5 43 34.8 19 11.2 3.5
9 Atgircle 12 5.0 2.7 0.89 0.44 0.117
10 T INS 16 9 6.7 4.89 4.44 4,12
The other extreme is driving at very N

slow speed so that distance traveled during B ,/ i

steering is minimal. The theoretical limit is T ke L - I —

turning the wheel while the vehicle stands / < / * e

still; but of course then the vehicle has to /7~ *;f'_,*’ R

be accelerated to move at all. It should v § > % e

then stop again when the body axis has i

reached the direction of the crossroad. e ¥

Here, the steering angle has to be turned re

back to zero, and roadrunning in the cross-
road can start with these new conditions.
Figure 10.7 shows this limit case.

Note that the velocity vector turns di-

Figure 10.7. Theoretical limit for
tightest turn possible: (1) Turn steer-
ing angle to maximum at standstill;

rectly with the steering angle; this implies
that the cg moves on the circular arc from
angle B to (90 + ycr + B)°. This is due to
the fact that the axle distance is a large
percentage of the minimal turn radius. In
the real world, accelerating and decelerat-
ing the vehicle with maximal steering an-
gle will lead to different force distributions
at the tires and much more complex behav-
ior including shifts of the actual pivot

(2) Drive circular arc until the direc-
tion of the crossroad is reached (here
90°); stop again. (3) Turn steering
angle back to zero and start road run-
ning. Note that changing the steering
angle A at slow speed immediately
turns the velocity vector; therefore,
the circular arc driven starts at p and
has to be driven till (90 + B)°

point for circular motion. However, Figure 10.7 may give us an idea of what is
really going to happen in this case. From Table 10.3, it can be seen that making the
turn at speed V = 2.5 to 3 m/s (about 10 km/h) does not require too much time for
tight turns at constant speed. The same is true for space needed (not shown in ta-
ble), so that this speed range is a good compromise for driving tight curves.

A different approach when space is tight in the crossroad but not in the road
driven is first to make a partial turn with lateral offset to the opposite direction of
the crossroad and then turn into the crossroad with proper spacing; Figure 10.8
gives a sketch of the maneuver.

Miiller (1996) has studied this case extensively; it will not be covered here.
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Figure 10.8. Curving into a tight crossroad with initial steering in opposite direction;
the circular arc with minimum radius starts at point E

10.2.1.3 Behavioral Capabilities Required

The maneuver elements discussed in the previous section are special cases of feed-
forward control which have to be complemented by feedback components when-
ever perturbations have some influence. The essential point of feed-forward control
is the correct trigger point for initiation. Accuracy for entering the crossroad should
be in the decimeter range. The example quoted from VaMoRs indicates that for a
speed of V = 3.5 m/s, the actual pivot point for turning lies about 2 decimeters in
front of the rear axle. This, as well as the delay time from control decision to actual
movement of the actuator (over 200 ms corresponding to a 7-decimeter distance
traveled at that speed), have to be taken into account in triggering the steering rate.

During the maneuver elements, the actual trajectories have to be observed and
compared to the intended ones; if deviations are too large, either corrective feed-
back components have to be superimposed, or a new feed-forward control law has
to be selected. If, for some reason, a dangerous situation occurs, e.g., the vehicle
starts leaving the intended lane, it should be stopped. (VaMoRs experienced this
case when there was a failure in the power supply for the steering motor, reducing
maximum steering rate achievable to ~ 50% of the nominal value.) As corrective
feedback in standard cases, the usual one with pole assignment and gain scheduling
as a function of speed [Zapp 1988; Briidigam 1994] is sufficient for curve steering
also [Miiller 1996].

Toward the end of the turnoff maneuver, when the vehicle eye is locked stably
onto the crossroad and when the lateral displacement of the vehicle from the center
of the lane is not too large, corrective (additive) control output should be superim-
posed in any case to drive the deviations to zero. For the final part of the maneuver,
the feed-forward control input may be dropped altogether.
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10.2.2 Gaze Control for Efficient Perception

As mentioned in Section 10.1.2, there are at least four phases in gaze control for
crossroad detection and turnoff in the scheme developed; they are discussed in de-
tail here.

10.2.2.1 Attention-controlled Search for Crossroads Detection

In phase 1, additional windows for detection of the crossroad are positioned to that
side of the road to be turned to, and feature search will be started at a trigger point
given from navigation. Both edge- and area-based features are sought; the latter are
more robust under the aspect conditions initially given. With little computing
power available, edge features and adjacent average gray values are efficiently ex-
tracted with ternary masks (templates) as shown in Figure 5.5, since edge direction
can be rather well predicted. The mask parameters have to be intelligently con-
trolled by the interpretation process; they may vary with time of year and day and
with the distance of interpretation (range).

With the computing power usually available nowadays, full sets of area-based
features should not be omitted since they tend to be more robust and easier to in-
terpret. Crossroads may have different gray values or texture; methods like UBM
(Section 5.3) have also been developed with this task in mind. To get a larger part
of the crossroad into the image, gaze direction is biased to the side of the turnoff by
a few degrees, and search

in vertical (column) stripes a_yi — T
is started. b—E“ Teg kg ( U s
In the case that a candi- vk T — N

ate for a crossroad is de- Gaze difection v — !’ I]
tected by a series of consis- 7 [\,{CR
tent feature sets over time, oy \/ B
transition to phase 2 starts. — I
Figure 10.9 shows this o

situation when the distance
to the intersection of the
center line of the crossroad
with the boundary line of
the road driven (Icr) as
well as the intersection an-
gle wycr are known ap-

Figure 10.9. After detection of crossroad candidate
connect the straight lines assumed to be driven on both
roads (lanes) by a circular arc; find point P, where gaze
direction intersects this arc. Distance to P, is fixed,
which for a given speed V determines the yaw rate for
gaze control.

proximately. If ycg is corrupted by noise, starting with an intersection angle of 90°
is sufficient for fast convergence while approaching the intersection, usually.

10.2.2.2 Phase 2: Fixation Point P, on Circular Arc

In this phase, the viewing direction starts turning into the crossroad while ap-
proaching it at an approximately right angle. Speed V determines the yaw rate for
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gaze control if point P, moves on the circular arc given (constant radius rp;) [Muel-
ler 1996]:

Wy, =V cosye /(1 - (Siny g +COSy, -COLQ) - e . (10.15)
Figure 10.10 visualizes the idea for computing the feed-forward yaw rate for gaze
control approaching the junction.

+
— . Wek ETK Vi —~—
H; _“-—.______- \\,‘
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« > e
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Figure 10.10. Determining yaw rate of gaze direction in phase 2 from fixation of point P,
at constant distance from the turning camera but moving on a circular arc connecting the
straight center lines of the roads crossing.

10.2.2.3 Phase 3: View Fixation on Centerline of the Crossroad

Phase 3 of gaze control for turningoff into a crossroad starts where the circular arc
and the following straight section in the crossroad meet. At this point, the fixation
point starts moving at a proper speed Vp, to avoid excessive gaze turn rates. The re-
sulting feed-forward gaze turn rate for phase 3 then becomes
Vs =V 11, -sin(yy =) +Vp, /1, -COS(ye —wep +yy)
—(A+ 1L/, -cosyy ) e
Figure 10.11 shows the ge-
ometry; point P, moves inde-
pendently at speed Vp, that has to
be selected in a certain range for
an appropriate turn rate of the
gaze direction. The increasing
yaw angles steadily improve the
aspect conditions for precisely
determining the two unknown
parameters width and angle of in-
tersection of the crossroad that
determine the turnoff trajectory.
From the side constraint that
look-ahead distance |, should not
grow during this phase, an upper
limit for the speed Vp, can be
given;

(10.16)

Figure 10.11. Gaze control in phase 3 for pre-
cisely determining angle ycr and width b of
the crossroad at an intersection.
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_[__cos(y, -B) ] [ I -siny, j ,
Voomaox =| =————F——— |V +| ———F—— |- V" 10.17
m [Sln(WF7WCR+WK) SIN(We —Wer +Wg) Ve ( )

Point P, moves with constant speed Vp, < Vpy max ON the crossroad until a prede-
fined distance Xsix from the origin (O) is reached; it then fixates this point until the
look-ahead distance is shortened to a predefined minimal value l,,. This limit is
given by a certain image row under the condition of nominal pitch angle and planar
ground using perspective projection by a pinhole model; it thus depends on the fo-
cal length of the camera used.

10.2.2.4 Phase 4: Evaluate Constant Image Row into the Crossroad

For this look-ahead distance I, = const, a yaw rate for gaze control is performed
leading to normal roadrunning on the crossroad. The essential component now is
counteracting the vehicle turn rate [Miiller 1996] (see second term):

:( COS(Ve —Ver +P) j.v
1, -sin(We —Wer + W)

_(1+ L -sin(ye —Wer) J‘V .

L, -sin(ye —Wer + i) "

The vehicle turns underneath the cameras which are not yet locked onto the

crossroad by visual feedback (next phase) but receive a feed-forward signal corre-

sponding to this situation from theory. In Figure 10.3 this corresponds to t > about
17s.

Vka

(10.18)

10.2.2.5 Superimposed Feedback Control

While traveling into the crossroad, the feed-forward component of phase 4 fades
out and a feedback component from centering the gaze on the lane center at lymin
takes over; this also takes care of perturbations and the effects of imprecise percep-
tion and modeling accumulated up to now. Since the viewing direction is fixed into
the crossroad, toward the end, it hardly turns relative to the spine of this road; how-
ever, the vehicle turns underneath the camera.

Here, only the basic considerations for gaze control have been discussed. Feed-
forward control for pitch and feedback components in yaw also in phases 2 to 4
have been studied for making gaze behavior more robust; details may be found in
[Miiller 1996, Section 5.4].

10.2.3 Models for Recursive Estimation

Two sets of data have to be determined while approaching the crossroad: (1) the
shape parameters of the crossing and the crossroad and (2) the vehicle position
relative to the crossroad.



314 10 Perception of Crossroads

10.2.3.1 Shape Parameters of Crossing

The parameters, crossing angle (deviation from 90°) ycr and lane width in the
crossroad, selected as 2-bcs here (see Figure 10.12 below), have to be determined
from visual observation. The radius rcs of the borderline (curbstones) connecting
the two roads in the curve is assumed to be standard and known. The distance to
the crossroad lcs has to be estimated precisely to find the right trigger point for the
initiation of the steering angle feed-forward maneuver. All parameters of, and the
relative egostate to the road actually driven are assumed to be known from applica-
tion of the methods discussed in Chapter 9.

System model: Figure 10.1 has shown the basic geometry of a general crossing in-
cluding the rounded corners assumed to be circular arcs of radius r. The coordinate
X points in the driving direction, y to the right, and z downward (in the direction of
gravity, international standard from air vehicle analysis). Initially, when the yaw
angle for gaze relative to the road driven is small, its cosine is assumed to be 1, and
measurement of features on the crossroad only in the vertical direction of the im-
ages is sufficient. These features in the real world as well as the intersection point
of the two roads then move only in the x-direction. Therefore, for each of the two
intersection parameters, a second-order dynamic model driven by noise is used
here; for sampled data, this is written as

17 T
Xk+1=®k~xk+qk=( Mxk]{ qu(tk)- (10.19)
0 1)(x) L

T is the cycle time of sampling (for CCIR-video = 40 ms), and q.(ty) is the dis-
crete noise term driving estimation.

The distance Icr to the intersection is affected directly by longitudinal control
inputs to the vehicle (throttle and brakes); accelerations and decelerations should
thus be included in the model, increasing the order of the system by one (to three).
Because of the strong dependence on the point of operation and on parameters,
there is no simply computable relationship between actuator input and effective ac-
celeration/deceleration. Therefore, “colored noise” has been chosen as a model, de-
scribed in the following equation by the term —a:

01 0)(ke) (0
Xt)=[0 0 1 ||lg|+]0 | (10.20)
0 0 -a (i, G
a represents the reciprocal correlation time constant of colored noise; based on
experimental results for VaMoRs, the value o« = 1/2 s * has been adopted. Assum-

ing that accelerations/decelerations are constant over one cycle, the following dis-
crete model results:

1T o4 P13
X =[0 1 @ [+ X +| 0 |-G (L), (10.21)
0 0 o5 Os3
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with @, =(aT -1+e™) /o’ ¢, =(1-e"")/a; @, =6 for colored noise; for
white noise, these terms are
(P13:T2/2; @ =T; 93 =1.
In tests, it has been found advantageous not to estimate the shape parameters
and distance separately, but in a single seventh-order system; the symmetry of the

crossroad boundaries measured by edge features tends to stabilize the estimation
process:

1T g, 00 0 0)lk= Pis-
01 ¢ 00 0 0]l 0ys- 0,
00 g3 00 0 0]l P33- 4
X2=/0 0 0 1 T 0 Of|by |+ T-q,] - (10.22)
00 0 010 0|, a
00 0 001 T||y, T-q,
00 0 000 1)y Q).

The last vector (noise term) allows determining the covariance matrix Q of the

system. The variance of the noise signal is
o =E{(q-Tq)}=E{(q)} for g=0. (10.23)

Assuming that the noise processes g, ds, and s, are uncorrelated, the covari-
ance matrix needed for recursive estimation is given by Equation 10.24.

The standard deviations o, o,, and o, have been determined by experiments
with the real vehicle; the values finally adopted for VaMoRs were ¢, = 0.5, oy, =
0.05 and o, = 0.02.

Q=E{g-q'}=
030 P13 0230 Qi3 Qg5-0] 0 0 0 Gy
Py P13 0} 030 9050 0 0 0 0
05791370, P33°9°0f P30 zO , 0 ) 0 0 (10.24)
0 0 0 T%0, T-o, 0 0
0 0 0 T-6. o 0 0
0 0 0 0 0 T’o, T
0 0 0 0 0 T ~ci, Gi

Measurement model: Velocity measured conventionally is used for the vision
process since it determines the shift in vehicle position from frame to frame with
little uncertainty. The vertical edge feature position in the image is measured; the
one-dimensional measurement result thus is the coordinate zg. The vector of meas-
urement data therefore is

YT =V, Zgg Zags Zggsereens Zgjreerens Zgm ) - (10.25)
The predicted image coordinates follow from forward perspective projection
based on the actual best estimates of the state components and parameters. The par-
tial derivatives with respect to the unknown variables yield the elements of the
Jacobian matrix C (see Section 2.1.2):
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C=oylox. (10.26)
The detailed derivation is given in Section 5.3 of [Muller 1996]; here only the re-

sult is quoted. The variable dir has been introduced for the direction of turn-off:

dir =+ 1 for turns to the right

dir =—1 for turns to the left ; (1027)
the meaning of the other variables can be seen from Figure 10.12. The reference
point for perceiving the inter- —
section and handling the v _ ]
turnoff is the point 0 at which 2 b T T, | e

. . A —on - o2
the right borderline of the :9;/ - MD

(curved) road driven and the f',,_-——"""‘"":y e
centerline of the crossroad ¢ opical
(assumed straight) intersect. Sy

The orthogonal line in point 0
and the centerline of the
crossroad define the relative
heading angle ycg of the in-
tersection (relative to 90°).
Since for vertical search

paths in the image, the hori-
zontal coordinate yg is fixed, ~ Figure 10.12. Visual measurement model for cross-

the aspect angle of a feature  road parameters during the approach to the crossing:
in the real world is given by Definition of terms used for the analysis

the angle yp;

/ o
bes / e =+1

b /P" e

tanyg =Yg/ f ok, . (10.28)
In addition, an index for characterizing the road or lane border of the crossroad
is needed. The “line index” iX_ i IS defined as follows:

—1... right border of right lane of crossroad
=< +1...left border of right lane of crossroad . (10.29)
+3...left border of left neighboring lane

With the approximation that lcg is equal to the straight-line distance from the
camera (index K) to the origin of the intersection coordinates (see Figure 10.12),
the following relations hold:

iX

Linie

1, . b,
= COS(Wek + Wpp) X e —=—+ Yo tAN W g,
COS\Vpi CK Pi Linie COS\VCR Pi CR

CR

(10.30)

I . .
=—Y__gjn +wyy; ) +dir-y,,
Ypi cos v, (Wex +Wpi) Yk

Y =l sinye +Aycosy, + Y, —(Ng,, +1/2) b,
with ngp,r = Number of lanes to be crossed on the subject’s road when turning off.
Setting cosy, = 1 allows resolving these equations for the look-ahead range |.;:
_ lo - COSWop — X inie Bcs —dir- Yy SINyp
cos(Wex ~Wer) —LYei /(F-K))]-sin(wey - wer) .
Each Jacobian element gives the sensitivity of a measurement value with respect
to a state variable. Since the vertical coordinate in the image depends solely on the

vi

(10.31)
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look-ahead range l,; directly, the elements of the Jacobian matrix are determined by
applying the chain rule,
0zg 10x; = (0zg 1 0l;) - (0l / OX;). (10.32)
The first multiplicand can be determined from Section 9.2.2; the second one is
obtained with

k, ={cos(yex —wer) — [y /(F - ky)] SIN(Ye — Ver )} (10.33)
as
ol . .
=K, - (Cosy g —dir-y -sinyeg),
Oleg
ol .
=k '(_IX inie)l
obe, v (10.34)
it =Ky {=leg -Sinycg —dir- yg; -cosy g
NVer

—Lalsin(yex —wer) + Ve /(F-k))]-cos(yey —wer)1}

With Equation 10.32, the C-matrix then has a repetitive shape for the measure-
ment data derived from images, starting in row 2; only the proper indices for the
features have to be selected. The full Jacobian matrix is given in Equation 10.35.
The number of image features may vary from frame to frame due to changing envi-
ronmental and aspect conditions; the length of the matrix is adjusted corresponding
to the number of features accepted.

0 -llcosypy O 0O O O O
ot o o o T
Oleg ey OV R
C=| : : : (10.35)
Py o o P P g
Oleg ey OWer

Statistical properties of measurement data: They may be derived from theoreti-
cal considerations or from actual statistical data. Resolution of speed measurement
is about 0.23 m/s; maximal deviation thus is half that value: 0.115 m/s. Using this
value as the standard deviation is pessimistic; however, there are some other ef-
fects not modeled (original measurement data are wheel angles, slip between tires
and ground, etc.). The choice made showed good convergence behavior and has
been kept unchanged.

Edge feature extraction while the vehicle was standing still showed an average
deviation of about 0.6 pixels. While driving, perturbations from uneven ground,
from motion blur, and from minor inaccuracies in gaze control including time lags
increase this value. Since fields have been used in image evaluation (every second
row only), the standard deviation of 2 pixels was adopted.

Assuming that all these measurement disturbances are uncorrelated, the follow-
ing diagonal measurement covariance matrix for recursive estimation results
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R = Diag(c/, Gfa , ....Gfa pees) - (10.36)

The relations described are valid for features on the straight section of the cross-
road; if the radius of the rounded corner is found, more complex relations have to
be taken into account.

Feature correlation between real world and images: Image interpretation in
general has to solve the big challenge of how features in image space correspond to
features in the real world. This difficulty arises especially when distances have to
be recovered from perspective mapping (see Figure 5.4 and Section 7.3.4). There-
fore, in [Miiller 1996] appreciable care was taken in selecting features for the object
of interest in real space.

Each extracted edge feature is evaluated according to several criteria. From im-
age “windows” tracking the same road boundary, an extended straight line is fit to
the edge elements yielding the minimal sum of errors squared. This line is accepted
only if several other side constraints hold. It is then used for positioning of meas-
urement windows and prediction of expected feature locations in the windows for
the next cycle. Evaluation criteria are prediction errors in edge element location,
the magnitude of the correlation maximum in CRONOS, and average gray value
on one side of the edge. For proper scaling of the maximal magnitude of the corre-
lation results in all windows, korra as well as maximal and minimal intensities of
all edge elements found in the image are determined. For each predicted edge ele-
ment of the crossroad boundaries, a “window of acceptance” is defined (dubbed
“basis”) in which the features found have to lie to be accepted. The size of this
window changes with the number of rows covered by the image of the crossroad
(function of range). There is a maximal value basisn.y that has an essential influ-
ence on feature selection.

In preliminary tests, it has turned out to be favorable to prefer such edges that lie
below the predicted value, i.e., which are closer in real space. This results in an
obligue triangle as a weighting function, whose top value lies at the predicted edge
position (see Figure 10.13).

wert,,
1 O<k<1
0™ PR PR S
Basis = k-basis,,, k%dz, | k-dz, basis,,
dz, " d
Z‘BQ . 1 ;.g| zﬂ z.m

Predicted positions of crossroad boundaries

Figure 10.13. Scheme for weighting features as a function of prediction errors
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The weight in window i for a prediction error thus is

| i)
basis

(Zg mess — z;)
basis,,,

for.. 2 <7 <7, +basisy,

wert, ; =41+ for...z >zg,. >7 -basis,, (10.37)

0 else.

Here, basisyes designates the baseline of the triangle in positive zg-direction
(downward) and basis,eg in the negative zg direction. The contribution of the mask
response korr; and the average intensity I; on one side of the CRONOS-mask to the
overall evaluation is done in the following way: Subtraction of the minimal value
of average intensity increases the dynamic range of the intensity signal in non-
dimensional form: (Ii = lnin)/(Imax — Imin). The total weight wert; is formed as the
weighted sum of these three components:

korr, =1
kg, -werty,; +k ' v | —mn- for wert,; >0,

+
Werti = o korrmax max Im|n (1038)
0 for wertg,; =0.

The factors Ky, Keorr, and Kgray have been chosen as functions of the average dis-
tance between the boundaries of the crossroad in the image: dz, (see Figure 10.14).

The following considerations have led to the type of function for the factors k;:
Seen from a large distance, the lines of the crossroad boundaries are very close to-
gether in the image. The most important condition to be satisfied for grouping edge
features is their proximity to the predicted coherent value according to the model
(Kdz > Kior and Kgray). The model thus supports itself; it remains almost rigid.

Approaching the crossroad, the distance between the boundaries of the cross-
road in the image starts growing. The increasingly easier separation of the two
boundary lines alleviates grouping features to the two lines by emphasizing conti-
nuity conditions in the image; this means putting more trust in the image data rela-
tive to the model (increasing kyorr). In this way, the model parameters are adjusted
to the actual situation encountered.

Beside the correlation results, the av- Ar _________ Keorr
erage intensity in one-half of the
CRONOS mask is a good indicator when
the distance to the crossing is small and
several pixels fall on bright lines for lane
or boundary marking. A small distance
means a large value of dz,; in Figure

10.14 this intensity criterion Ky, is used O‘;W’
only when dz, > basisma. Values of ba- max

Sismax in the range of 20 to 30 pixels are  Figure 10.14. Parameters of weighting

satisfactory. Beyond this point, the  scheme for edge selection as function

boundary lines are treated completely  of width of crossroad dzg in the image

separately. (increases with approach to the cross-
The edge features of all windows with  ing)

the highest evaluation results around the
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predicted boundary lines are taken for a new least-squares line fit, which in turn

serves for making new predictions for localization of the image regions to be

evaluated in the next cycle. The fitted lines have to satisfy the following constraints
to be accepted:

1. Due to temporal continuity, the parameters of the line have to be close to the
previous ones.

2. The distance between both boundaries of the crossroad is allowed to grow only
during approach.

3. The slopes of both boundary lines in the image are approximately equal; the
more distant line has to be less inclined relative to the horizontal than the closer
one.

With decreasing distance to the crossroad, bifocal vision shows its merits. In addi-

tion to the teleimage, wide-angle images have the following advantages:

— Because of the reduced resolution motion blur is also reduced, and the images
are more easily interpreted for lateral position control in the near range.

— Because of the wider field of view, the crossroad remains visible as a single ob-
ject down to a very short distance with proper gaze control.

Therefore, as soon as only one boundary in the teleimage can be tracked, image
evaluation in the wide-angle image is started. Now the new challenge is how to
merge feature interpretation from images of both focal lengths. Since the internal
representation is in (real-world) 3-D space and time, the interpretation process need
not be changed. With few adaptations, the methods discussed above are applied to
both data streams. The only changes are the different parameters for forward per-
spective projection of the predicted feature positions and the resulting changes in
the Jacobian matrix for the wide-angle camera (a second measurement model);
there is a specific Jacobian matrix for each object—sensor pair.

The selection algorithm picks the best suited candidates for innovation of the
parameters of the crossroad model. This automatically leads to the fade out of fea-
tures from the telecamera; when this occurs, further evaluation of tele images is
discarded for feedback control. Features in the far range are continued because of
their special value for curvature estimation in roadrunning.

10.2.3.2 Vehicle Position Relative to Crossroad

During the first part of the approach to an intersection, the vehicle is automatically
visually guided relative to the road driven. At a proper distance for initiation of the
vehicle turn maneuver, the feed-forward control time history is started, and the ve-
hicle starts turning; a trajectory depending on environmental factors will result.
The crossroad continues to be tracked by proper gaze control.

When the new side of the road or the lane to be driven into can be recognized in
the wide-angle image, it makes sense immediately to check the trajectory achieved
relative to these goal data. During the turn into the crossroad, its boundary lines
tend to move away from the horizontal and become more and more diagonal or
even closer to vertical (depending on the width of the crossroad). This means that
in the edge extractor CRONOS, there has to be a switch from vertical to horizontal
search paths (performed automatically) for optimal results. Feature interpretation
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(especially the precise one discussed in Section 9.5) has to adapt to this procedure.
The state of the vehicle relative to the new road has to be available to correct errors
accumulated during the maneuver by feedback to steering control. For this pur-
pose, a system model for lateral vehicle guidance has to be chosen.

System model: Since speed is small, the third-order model may be used. Slightly
better results have been achieved when the slip angle also has been estimated; the
resulting fourth-order system model has been given in Figure 7.3b and Equation
7.4 for small trajectory heading angles y (cos y = 1 is sufficient for roadrunning
with x measured relative to the road). When turning off onto a crossroad, of course,
larger angles y have to be considered. In the equation for lateral offsets yy, now the
term V-cos y occurs twice (instead of just V).

After transition to the discrete form for digital processing (cycle time T) with the
state vector Axq" = [Yq, Wq » Bq » Aq ] (here in reverse order of the components com-
pared to Equation 7.4 and with index q for the turnoff maneuver, see Equation
10.40), the dynamic model directly applicable for recursive estimation is, with the
following abbreviations entering the transition matrix @, and the vector by multi-
plying the discrete control input

p, =V -cosy; p, =V /a;
ps = [1/(2Ty) - p,); Py = [1-exp(-T/T)];
AXypy = Dy (T) - A% + B (T) Uy
where
_l plT plpATB p1p2~T2/2+p1p3~TB2(T /Tg_pa)
® ()= g (1) 1 Op pp;TT ’
My 3F4’p
0 o0 o ) (10.39)
_plpz'T3/6+ plpa'Tﬁs[Tz/(Zsz)_T/Tﬁ_p4]
T?/2
b,(T) = "
pa'TB (T /TB_ p4)
T

Since the transition matrix @ is time variable (V, ¥), it is newly computed each
time. Prediction of the state is not done with the linearized model but numerically
with the full nonlinear model. The covariance matrix Q has been assumed to be di-
agonal; the following numerical values have been found empirically for VaMoRs:
Ay = (0.2m)°, dyy, = (20°), gy = (05°)%, and gy, = (0.2°)"

Initialization for this recursive estimation process is done with results from rela-
tive ego-state estimation on the road driven and from the estimation process de-
scribed in Section 10.2.3.1 for the intersection parameters:

Yoo =dir-[leg COSWeg + Yy SINWeg + 1y COS(Ye —eg)],
Voo = Ve —Ver —dir-m/2,

Beo =(1/2-TV /a),

hoo = e

(10.40)
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Measurement model: Variables measured are the steering angle Ar (mechanical
sensor), the yaw rate of the vehicle yy-dot (inertial sensor), vehicle speed V (as a

; 3 £y
e— = = e o
optical _~ :
AN e
. £ L e S
Gl )
: bird’s eye
view
“-image plane

Figure 10.15. Measurement model for relative egostate with active gaze control for
curve steering: Beside visual data from lane (road) boundaries, the gaze direction an-
gles relative to the vehicle body (yk ,0x), the steer angle A, the inertial yaw rate from a
gyro ., and vehicle speed V are available from conventional measurements.

parameter in the system model, derived from measured rotational angles of the left
front wheel of VaMoRs), and the feature coordinates in the images.

Depending on the search direction used, the image coordinates are either yg or
zg. With kg as a generalized image coordinate, the measurement vector y has the
following transposed form

XT =[Ae, Wi Kggs - Kgire - K] - (10.41)
From Figure 10.15, the geometric relations in the measurement model for turn-
ing off onto a crossroad (in a bird’s-eye view) can be recognized:

Y, -COS o =l -Siny g =l -siny, =y, +iX, e - bes. (10.42)
Perspective transformation with a pinhole model (Equations 2.4 and 7.20) yields
Yei _Yi. Zg;  Hg+1,-tan0,
f- ky Ivi ' f. |(Z Ivi — HK -tan eK ’ (1043)

For planar ground, a search in a given image row zg; fixes the look-ahead range
l,i. The measurement value then is the column coordinate

-f-k, [ . lesiny, + Yy, — X, -0
= y sin +K q q Linie CS i 144
Ve COS VY ok [ “ i () (10.44)
The elements of the Jacobian matrix are
Wi _ —fk

ayq Ivi (ZBi ) COS\VqK
10.45
OYgi _ -f ’ky ( )

=————[l,; + 1 -cosy, + (Y, + X, - Des ) SIN .
an Ivi(ZBi)COS\VqK [VI K Wq (Yq Linie CS) \VqK]
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For measurements in a vertical search path yg; (columns), the index in the col-
umn zg; is the measurement result. Its dependence on the look-ahead range l,; has
been given in Equation 10.31. For application of the chain rule, the partial deriva-
tives of |,; with respect to the variables of this estimation process here have to be
determined: With

kZ = [SianK +(yBi /f 'ky)'COSWqK]A!

Z;IV; =—ky; S\I‘:; ==k, [l -cosy, +1,(cosyy — fy~Bli<y siny ). (10.46)
In summary, the following Jacobian matrix results (repetitive in the image part)
0 0 akBo . akBi . aI(Bm
ayq ayq ayq
c-lo o Kgo OKgi Kgpn (10.47)
= oy, oy, oy,
0 0 o - 0 - 0
1v/ia 0 - 0 - 0
The measurement covariance matrix R is assumed to be diagonal:
R =diag[s} .0, 0% ....00 ... ]. (10.48)

From practical experience with the test vehicle VaMoRs, the following standard
deviations showed good convergence behavior

o, =0.05% o, =0.125%s; o, =2 pixels.

The elements of the Jacobian matrix may also be determined by numerical dif-
ferencing. Feature selection is done according to the same scheme as discussed
above. From a straight-line fit to the selected edge candidates, the predictions for
window placement and for computing the prediction errors in the next cycle are
done.

10.3 System Integration and Realization

The components discussed up to now have to be integrated into an overall (distrib-
uted) system, since implementation requires several processors, e.g., for gaze con-
trol, for reading conventional measurement data, for frame grabbing from parallel
video streams, for feature extraction, for recursive estimation (several parallel
processes), for combining these results for decision-making, and finally for imple-
menting the control schemes or signals computed through actuators.

For data communication between these processors, various delay times occur;
some may be small and negligible, others may lump together to yield a few tenths
of a second in total, as in visual interpretation. To structure this communication
process, all actually valid best estimates are collected — stamped with the time of
origination — in the dynamic data base (DDB [or DOB in more recent publications,
an acronym from dynamic object database]). A fast routing network realizes com-
munication between all processors.
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10.3.1 System Structure

Figure 10.16 shows the (sub-) system for curve steering (CS) as part of the overall
system for autonomous perception and vehicle guidance. It interfaces with visual
data input on the one side (bottom) and with other processes and for visual percep-
tion (road tracking RT), for symbolic information exchange (dynamic data base),
for vehicle control (VC), and for gaze control by a two-axis platform (PL) on the
other side (shown at the top). The latter path is shown symbolically in duplicate
form by the dotted double-arrow at the center bottom.

The central part of the figure is a coarse block diagram showing the information
flow with the spatiotemporal knowledge base at the center. It is used for hypothesis
generation and -checking, for recursive estimation as well as for state prediction,
used for forward perspective projection (“imagination™) and for intelligent control
of attention; feature extraction also profits from these predictions.

Features may be selected from images of both the tele- and the wide-angle cam-
era depending on the situation, as previously discussed. Watching delay times and
compensating for them by more than one prediction step, if necessary, is required
for some critical paths. Trigger points for initiation of feed-forward control in
steering are but one class of examples.

Vehicle Control VC ) ) )
¢ Figure 10.16. System integration for

curve steering (CS): The textured area
contains all modules specific for this task.
Image data from a tele- and a wide-angle

| Dynamic Data Base |

transputer system; user-PC

(VC.RT.PL) __ 4 camera on a gaze control platform PL

R (bottom of figure) can be directed to spe-

ggﬁg’;}”; ‘monitor cific processors for (edge) feature extrac-
interprocess interface tion. These features feed the visual recog-

AKX

nition process based on recursive
estimation and prediction (computation of
expectations in 4D, center). These results
are used internally for control of gaze and
attention (top left), and communicated to
other processes via the dynamic database
(DDB, second from top). Through the

1 communication

4-D model
estimation &
prediction

B A

2D feature

| search region |:

2D feature

search region |

! ) same channel, the module CS receives re-
extraction extraction |t f th t d
& control of & control of sults from other measurement and percep-

tion processes (e.g., from RT for road

wide angle tracking during the approach to the inter-
""" — section). The resulting internal “imagina-
frame tion” of the scene as “understood” is dis-
grabber played on a video monitor for control by
wide angle the user. Gaze and vehicle control (VC)

are implemented by special subsystems
with minimal delay times.
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10.3.2 Modes of Operation

The CS module realizes three capabilities: (1) Detection of a crossroad, (2) estima-
tion of crossroad parameters, and (3) perception of egostate relative to the cross-

o -'-"’éDK

——

Figure 10.17. U-Turn maneuvers re-
quiring capabilities for turning off;
the maneuvers A to D require turning
into a crossroad in reverse gear,
while maneuvers E and F just require
backing up in a straight line. [Back-
ing up has not been realized with our
vehicles because of lacking equip-
ment.]

10.4 Experimental Results

road. These capabilities may be used for the
following behavioral modes:
e The mode “ZWEIG-AB” (“turnoff”) uses

all three capabilities in consecution; this
maneuver ends when the vehicle drives in
the direction of the crossroad with small
errors in relative heading (for example
|Ay| < 6° = 0.1 rad) and a small lateral
offset (JAy| < 0.5 m).

The mode “FIND-ABzZW” (“find-
crossroad™) serves for detecting a cross-
road as a landmark. With the distance to
the intersection, the navigational program
can verify the exact position on a map (for
example, when GPS data are poor). Here
only the first two capabilities are used.
The remaining two modes “WENDE-G-
EIN” and “WENDE-G-AUS” may be
used for U-turns at a crossroad. In Figure
10.17 six different realizable maneuvers
are sketched.

Initially, this capability of turning off has been developed as a stand-alone capabil-
ity, first in (HIL) simulation then with the test vehicle VaMoRs in a dissertation
[Mueller 1996], based on the second-generation (“Transputer”) hardware. Because
of the modularity planned from the beginning, it could be transferred to the third-
generation “EMS vision” system with only minor changes and adaptations [Liitze-
ler, Dickmanns 2000; Pellkofer, Dickmanns 2000; Siedersberger 2000].

Here, only some results with the second-generation system will be discussed;
results with the integrated third-generation system EMS vision will be deferred to

Chapter 14.
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10.4.1 Turnoff to the Right

Figure 10.18 gives an impression of the complexity of the turnoff maneuver with
active gaze control for bifocal vision. The upper part shows the distant approach
with the telecamera trying to pick up features of the crossroad [after “mission con-
trol (navigation)” has indicated that a crossroad to the right will show up shortly).
The second to fourth snapshot (b to d, marked in the central column), which are
several frames apart, show how gaze is increasingly turned into the direction of the
crossroad after concatenation of edge features to extended line elements has been
achieved for several lines. For easier monitoring, the lengths of the markings su-
perimposed on the image are proportional to measured gradient intensity.

The upper four images stem from a camera with a telelens during the initial ap-
proach. Top left: Search in window (white rectangle) for horizontal edge features in
the direction of the expected crossroad. Top right: The fixation point starts moving
into the crossroad. Second left: Three white lane markings are tracked at a preset
distance. Second right: With better separation of lines given, only the markings of
the lane to be turned into are continued. The lower four images are from the wide-
angle camera, whose images start belng evaluated in parallel; the vehicle is now
close to the intersection, -
looking to the right and
has started turning off.
The dark bar is a column
of the vehicle structure
separating the front- from
the side windshield). Third
row left: Three lane mark-
ings are found in vertical
search regions at different
distances. Right and bot-
tom left: Only the future
lane to be driven is con-
tinued; bottom right: Ve-
hicle has turned in the di-
rection of the new road
(the bar has disappeared),
feature search has been
switched to horizontal,
and the system performs
the transition to standard
roadrunning [slight errors
in yaw angle and lane
width can be recognized
from the prediction errors
(white dots left)].

The building in the Figure 10.18. Series of snapshots from a curve-
background allows the  steering maneuver to the right on test track Neubiberg
human observer to estab-  (see text)

() (o) 8

@
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lish temporal continuity when proceeding to the wide-angle snapshots in the lower
part of the figure. The vehicle looks “over the shoulder” to the right. In the lower
part of the figure, the borderlines have become close to vertical, and the feature
search with CRONOS is done in rows. Due to a small lateral offset from the center
of the lane in the crossroad, the predicted points for the lane markings show a
slight error (white dots at center of dark lines and vice versa). Especially in the
transition phase, the 4-D model-based approach shows its strengths.

Figure 10.19 shows the time histories of the corresponding estimated crossroad
parameters and vehicle states.

40 T | I 80__ % Ia?ér_a_l offset'
30 leg [M] II dn decimeter_(dm)
20 bt S 1 40 |steer angle _\ i
dm] S I L i
10} Rl L or “slip angle° e e il
s e 40! | AR SN ERRYINLE 1 B S ot R, s
| | _<yaw angle
. e
~V km/h] | } e N A N A
2053 4 6 8 10 i 10 12 14 16 18 20 22 {fg
sum of yaw angles M,,,.._, . .
[;]l,vehlcle + platformw Lo Figure 10.19. Parameter and state esti-
_ Ayaw mation for turning off to the right with
60} ; ". - "'? fangle® VaMoRs (Figure 10.18): Top left: Cross-
™ platform e Veh'_‘fl'f__ road parameters and speed driven; top
/Yd"" -fa“g'er’_‘_ right: Time history of vehicle lateral off-
20 t bl set and yaw angle relative to crossroad.
,_i/ St@e;r-angfe;-;" P Ty Left: State and control variables are
0 N _ given in vehicle coordinates relative to
20 H i H H N initial state.
0 &5 10 15 0 1§

Speed V is still decreasing during the approach (top left, lower curve); the turn is
performed at V = 2.3 m/s. The yaw angle of the gaze platform is turned to 20°
when the crossroad is picked up (at t = 0 in lower left figure); it then increases up
to 80° at around 12 seconds. This is when the estimation process of vehicle state
relative to the crossroad starts (upper right subfigure). The vehicle is still 8 m (= 80
decimeters) away from the center of the right lane of the crossroad, and vehicle
heading relative to the crossroad (yaw angle) is — 80°. It can be nicely seen that the
slip angle B is about half the steering angle A; they all tend toward zero at the end
of the maneuver at about 23 seconds. The lower left figure shows that the sum of
vehicle and platform yaw angle accumulates to 90° finally; between 13 and 20 sec-
onds, the yaw rates of vehicle (dashed curve) and platform (dotted) have about the
same magnitude but opposite sign. This means that gaze is fixated to the crossroad,
and the vehicle turns underneath the platform.

At the end of parameter estimation for the crossroad (top left) the best estimate
for half the lane width bes is = 1.75 m (correct: 1.88 m) and for the heading angle
Wyer IS = -2.6° (correct: +0.9°). Since lateral feedback is added toward the end of
the maneuver, this is of no concern.
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10.4.2 Turn-off to the Left

Figure 10.20 shows how the general procedure developed for the maneuver “turn
off” works for a turn across lanes for oncoming traffic onto a crossroad at an angle
of about —115° (negative yaw angle is defined as left). There is much more space
for turning to the left rather than to the right (in right-hand traffic), therefore, the
maximal platform yaw angle is only about 50° (lower right sub-figure, from ~ 6 to
14 s), despite the larger total turn angle. The initial hypothesis developed for a gaze
angle of ~ —30° at a distance Icg of 17 m was an intersection angle of ~ —98° (top
left, lowest solid curve) and a half-lane width of bcs = 1.2 m (dash-dotted curve).
During the approach to an estimated 12 m, the initial crossroad parameters
change only slightly: ycr decreases from —8 to —11°, and bcs increases to ~1.4 m.
However, gaze direction is turned steadily to over 40°. Under these aspect condi-
tions with increasingly more features becoming visible further into the crossroad,
at around 4.5 to 5 s the sharp turn angle is recognized (top left subfigure), and in a
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Figure 10.20. Turnoff to the left onto a road branching at an angle deviating considera-
bly from 90° (lowest curve, top left, and bird’s-eye view in subfigure bottom left); the
best estimate shows some overshoot at around 7 s. At about 4.3 s, when the platform an-
gle is about 40° (lower right), the higher turnoff angle is discovered (lowest curve, top
left), and the estimated width of the crossroad jumps to over 2 m; at 5 s, control output is
started (dash-dotted line, lower right subfigure). Total turn angle is about 115°; around
20 s, an overshoot in lateral displacement in the new lane of about a half meter occurs
(top right, solid curve). Since the new lane is far more than 3 m wide (2bcs), this looks
quite normal to a human observer.
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transient mode, estimated lane width, intersection angle, and distance to the inter-
section point of the two lanes show transient dynamics (note speed changes also!).

At around 9 s (that is 4 s into the steering rate feed-forward maneuver), the ve-
hicle has turned around —15°, and the estimation process relative to the crossroad
as a new reference is started based on wide-angle image data (top right subfigure).
At around 24 s, all variables tend toward zero again, which is the nominal state for
roadrunning in the new reference frame.

In more general terms, this maneuver should be labeled “Turning off with cross-
ing the lanes of oncoming traffic”. To do this at a crossing without traffic regula-
tion, it is necessary that the oncoming traffic is evaluated up to greater distances.
This has not been possible by vision up to now; only the basic perception and con-
trol steps for handling the geometric part of the turnoff maneuver have been dis-
cussed here.

10.5 Outlook

It has been shown that the mission element “turn off at the next crossroad (right or
left)” is rather involved; it requires activity sequences both in viewing direction
and in feature-extraction control as well as in control outputs for vehicle steering.
These activities have to be coordinated relative to each other, including some feed-
back loops for fixing the viewing direction; all these activities may be symbolized
on a higher level of representation by the symbol “make turn (right/left).”

Table 10.4 shows a summary in coarse granularity for the maneuver “Turn-off
to the left.” The bulk of the work for implementation lies in making the system ro-
bust to perturbations in component performance, including varying delay times and
nonlinearities not modeled. This maneuver element has been ported to the third-
generation vision and autonomous guidance system in which the general capability
network for both visual perception and locomotion control has been implemented
[Liitzeler 2002, Pellkofer 2003, Maurer 2000, Gregor 2002, Siedersberger 2004].

A similar local maneuver element (behavioral capability) has to be available for
handling road forks (see Figure 5.3).
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Table 10.4. Perceptual and behavioral capabilities to be activated with proper timing after
the command from central decision (CD): “Look for crossroad to the left and turn onto it”
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11 Perception of Obstacles and Vehicles

Parallel to road recognition, obstacles on the road have to be detected sufficiently
early for proper reaction. The general problem of object recognition has found
broad attention in computer (machine) vision literature (see, e.g.,
http://iris.usc.edu/Vision-Notes/bibliography/contents.html); this whole subject is
so diverse and has such a volume that a systematic review cannot be given here.

In the present context, the main emphasis in object recognition is on detecting
and tracking stationary and moving objects of rather narrow classes from a moving
platform. This type of dynamic vision has very different side constraints from so-
called “pictorial” vision where the image is constant (one static “snapshot”), and
there are no time constraints with respect to image processing and interpretation. In
our case, in addition to the usually rather slow changes in aspect conditions due to
translation, there are also relatively fast changes due to rotational motion compo-
nents. In automotive applications, uneven ground excites the pitch (tilt) and roll
(bank) degrees of freedom with eigendynamics in the 1-Hz range. Angular rates up
to a few degrees per video cycle time are not unusual.

11.1 Introduction to Detecting and Tracking Obstacles

Under automotive conditions, short evaluation cycle times are mandatory since
from the time of image taking in the sensor till control output taking this informa-
tion into account, no more than about one-third of a second should have passed, if
human-like performance is to be achieved. On the other hand, these interpretations
in a distributed processor system will take several cycles for feature extraction and
object evaluation, broadcasting of results, and computation as well as implementa-
tion of control output. Therefore, the basic image interpretation cycle should not
take more than about 100 ms. This very much reduces the number of operations al-
lowable for object detection, tracking, and relative state estimation as a function of
the limited computing power available.

With the less powerful microprocessor systems of the early 1990s, this has led
to a pipeline concept with special processors devoted to frame-grabbing, edge fea-
ture extraction, hypothesis generation/state estimation, and coordination; the proc-
essors of the mid-1990s allowed some of these stages to run on the same processor.
Because of the superlinear expansion of search space required with an increase in
cycle time due to uncertainties in prediction from possible model errors and to un-
known control inputs for observed vehicles or unknown perturbations, it pays off
to keep cycle time small. In the European video standard, preferably 40 ms (video
frame time) have been chosen. Only when this goal has been met already, addi-
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tional computing power becoming available should be used to increase the com-
plexity of image evaluation.

Experience in real road traffic has shown that crude but fast methods allow rec-
ognizing the most essential aspects of motion of other traffic participants. There
are special classes of cases left for which it is necessary to resort to other methods
to achieve full robust coverage of all situations possible; these have to rely on re-
gion-based features like color and texture in addition. The processing power to do
this in the desired time frame is becoming available now.

Nevertheless, it is advantageous to keep the crude but fast methods in the loop
and to be able to complement them with area-based methods whenever this is re-
quired. In the context of multifocal saccadic vision, the crude methods will use
low-resolution data in set the stage for high-resolution image interpretation with
sufficiently good initial hypotheses. This coarse-to-fine staging is done both in im-
age data evaluation and in modeling: The most simple shape model used for an-
other object is the encasing box which for aspect conditions along one of the axes
of symmetry reduces to a rectangle (see Figure 2.13a/2.14). This, for example, is
the standard model for any type of car, truck, or bus in the same lane nearby where
no road curvature effects yield an oblique view of the object.

11.1.1 What Kinds of Objects Are Obstacles for Road Vehicles?

Before proceeding to the methods for visual obstacle detection, the question posed
in the heading should be answered. Wheels are the essential means for locomotion
of ground vehicles. Depending on the type of vehicle, wheel diameter may vary
from about 20 cm (as on go-carts) to over 2 m (special vehicles used in mining).
The most common diameters on cars and
trucks are between 0.5 and 1 m. Figure 11.1
shows an obstacle of height Hopg. The cir-
cles represent wheels when the edge of the
rectangular obstacle (e.g., a curbstone) is
touched. With the tire taking about one-
third of the wheel radius D/2, obstacles of a
height Hops corresponding to D/H > 6 may
be run over at slow speed so that tire soft-
ness and wheel dynamics can work without
doing any harm to the vehicle. At higher

Figure 11.1. Wheel diameter D rela-  speeds, a maximal obstacle height to D/H >

tive to obstacle height Hop 12 or even higher may be required to avoid

other dynamic effects.

However, an “obstacle” is not just a question only of size. A hard, sharp object
in or on an otherwise smooth surface may puncture the tire and must thus be
avoided, at least within the tracks of the tires. All obstacles above the surface on
which the vehicle drives are classified as “positive” obstacles, but there are also
“negative” obstacles. These are holes in the planar surface into which the wheel
may (partially) fall. Figure 11.2 shows the width of a ditch or pothole relative to
the wheel diameter; in this case, W > D/2 may be a serious obstacle, especially at

10=D/H

Obst
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low speeds. At higher speeds, the in-
ertia of the wheel will keep it from
falling into the hole if this is not too
large; otherwise there is support of
the ground again underneath the tire
before the wheel travels a significant
distance in the wvertical direction.
Holes or ditches of width larger than Figure 11.2. Wheel diameter D relative to
about 60 % of tire diameter and cor-  width W of a negative obstacle
respondingly deep should be avoided

anyway.

Wo,=D/2

11.1.2 At Which Range Do Obstacles Have To Be Detected?

There are two basic ways of dealing with obstacles: (1) Bypassing them, if there is
sufficient free space and (2) stopping in front of them or keeping a safe distance if
the obstacles are moving. In the first case, lateral acceleration should stay within
bounds and safety margins have to be observed on both sides of its own body. The
second case, usually, is the more critical one at higher speeds since the kinetic en-
ergy (~ m-V?) has to be dissipated and the friction coefficient to the ground may be
low. Table 11.1 gives some characteristic numbers for typical speeds driven (a) in
urban areas (15 to 50 km/h), (b) on cross-country highways (80 to 130 km/h), and
(c) for high-speed freeways. [Note that for most premium cars top speed is elec-
tronically limited to 250 km/h; at this speed on a freeway with 1 km radius of cur-
vature, lateral acceleration ay 501 Will be close to 0.5 g! To stop in front of an ob-
stacle with a constant deceleration of 0.6 g, the obstacle has to be detected at a
range of ~ 440 m; initially at this high speed in a curve with C = 0.001 m*, the to-
tal horizontal acceleration will be 0.78 g (vector sum: 0.5 + 0.6% = 0.78°%).]

Table 11.1. Braking distances with a half second reaction time and three deceleration levels
of -3, —6, and -9 m/s?

Speed 05s | ALy with | Lprake | ALy With | Lorake | ALp With | Lorake

km/h Al | ax=0.39g inm a,=06g inm a,=09g inm
15 2.1 2.9 5 15 3.6 1 3.1
30 4.2 11.6 15.8 5.8 10 3.9 8.1
50 6.9 32.2 39.1 16.1 23 10.7 17.6
80 11.1 82.3 93.4 41.2 52.3 274 38.5
100 13.9 128.6 1425 64.3 78.2 42.9 56.8
130 18 217.3 235.3 108.7 126.7 72.4 90.4
180 25 416.7 442.7 208.3 233.3 138.9 163.9
250 34.7 803.8 838.5 401.9 436.6 268 302.6

Even for driving at 180 km/h (50 m/s or 2 m per video frame), the detection
range has to be about 165 m for harsh deceleration (0.9 g) and about 235 m for
medium-harsh deceleration (0.6 g); with pleasant braking at 0.3 g, the look-ahead
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range necessary goes up to ~ 450 m. For countries with maximum speed limits
around 120 to 130 km/h, look-ahead ranges of 100 to 200 m are sufficient for nor-
mal braking conditions (dry ground, not too harsh).

A completely different situation is given for negative obstacles. From Figure
5.4, it can be seen that a camera elevation above the ground of H = 1.3 m (typical
for a car) at a distance of L = 20 -H = 26 m (sixth column) leads to coverage of a
hole in the ground of size H in the gaze direction by just 1.9 pixels. This means
that the distance of one typical wheel diameter (= H/2 = 65 cm) is covered by just
one pixel; of course, under these conditions, no negative obstacle detrimental to the
vehicle can be discovered reliably. Requiring this range of 65 cm to be covered
with a minimum of four pixels for detection leads to an L/H-ratio of 10 (fifth col-
umn, Figure 5.4); this means that the ditch or the pothole can be discovered at
about 13 m distance. To stop in front of it, Table 11.1 indicates that the maximal
speed allowed is around 30 km/h.

Taking local nonplanarity effects or partial coverage with grass in off-road driv-
ing into account (and recalling that half the wheel diameter may be the critical di-
mension to watch for; see Figure 11.2), speeds in these situations should not be
above 20 km/h. This is pretty much in agreement with human cross-country driv-
ing behavior. When the friction coefficient must be expected to be very low (slip-
pery surface), speed has to be reduced correspondingly.

11.1.3 How Can Obstacles Be Detected?

The basic assumption in vehicle guidance is that there is a smooth surface in front
of the vehicle for driving on. Smoothness again is a question of scale. The major
yardsticks for vehicles are their wheel diameter and their axle distance on a local
scale and riding comfort (spectrum of accelerations) for high-speed driving. The
former criteria are of special interest for off-road driving and are not of interest
here. Also, negative obstacles will not be discussed (the interested reader is re-
ferred to [Siedersberger et al. 2001; Pellkofer et al. 2003] for ditch avoidance).

For the rest of the chapter, it is assumed that the radii of vertical curvature Rey,
of the surface to be driven on are at least one order of magnitude larger than the
axle distance of the vehicles (typically Recy > 25 m). Under these conditions, the
perception methods discussed in Section 9.2 yield sufficiently good internal repre-
sentations of the regular surface for driving; larger local deviations from this sur-
face are defined as obstacles. The mapping conditions for cameras in cars have the
favorable property that features on the inner side of the silhouette of obstacles
hardly (or only slowly) change their appearance, while on the adjacent outer side,
features from the background move by and change appearance continuously, in
general. For stationary objects, due to egomotion, texture in the background is cov-
ered and uncovered steadily, so that looking at temporal continuity helps detecting
the obstacle; this may be one of the benefits of “optical flow”. For moving objects,
several features on the surface of the object move in conjunction. Again, local
temporal changes or smooth feature motion give hints on objects standing out of
the surface on which the subject vehicle drives. On the other hand, if there are in-
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homogeneous patches in the road surface, lacking feature flow at the outer side of
their boundaries is an indication that there is no 3-D object causing the appearance.

Stereovision with two or more cameras exploits the same phenomenon, but due
to the stereo baseline, the different mapping conditions appear at one time. In the
near range, this is known to work well in most humans; but people missing the ca-
pability of stereo vision are hardly hampered in road vehicle guidance. This is an
indication in favor of the fact that motion stereo is a powerful tool. In stereovision
using horopter techniques with image warping, those features above the ground
appear at two locations coding the distance between camera and object [Mandel-
baum et al. 1998].

In laser range finding and radar ranging, electromagnetic pulses are sent out
and reflected from surfaces with certain properties. Travel time (or signal phase)
codes the distance to the reflecting surface. While radar has relatively poor angular
resolution, laser ranging is superior from this point of view. Obstacles sticking out
of the road surface will show a shorter range than the regular surface. Above the
horizon, there will be no signals from the regular surface but only those of obsta-
cles. Mostly up to now, laser range finding is done in “slices” originating from a
rotating mirror that shifts the laser beam over time in different directions. In mod-
ern imaging laser range finding devices, beside the “distance image” also an “in-
tensity image” for the reflecting points can be evaluated giving even richer infor-
mation for perception of obstacles. Various devices with fixed multiple laser beams
(up to 160 x 120 image points) are on the market.

However, if laser range finding (LRF) is compared to vision, the angular resolu-
tion is still at least one order of magnitude less than in video imaging, but there is
no direct indication of depth in a single video image. This fact and the enormous
amount of video data in a standard video stream have led the application-oriented
community to prefer LRF over vision. Some references are [Rasmussen 2002; Bos-
telman et al. 2005; PMDTech 2006]. There are recently developed systems on the
market that cover the full circular environment of 360° in 64 layers with 4000
measurement points ten times a second. This yields a data rate of 2.56 million data
points per second and a beam separation of 0.09° or 1.6 mrad in the horizontal di-
rection; in practical terms, this means that at a distance of 63 m two consecutive
beams are 10 cm apart in the circumferential direction. In contrast, the resolution
of telecameras range to values of ~ 0.2 mrad/pixel; the field of view covered is of
course much lower. The question, which way to go for technical perception sys-
tems in road traffic (LRF or video or a combination of both), is wide open today.

On the other hand, humans have no difficulty understanding the 3-D scene from
2-D image sequences (over time). There are many temporal aspects that allow this
understanding despite the fact that direct depth information has been lost in each
single video image. In front of this background, in this book, all devices using di-
rect depth measurements are left aside and interpretation concentrates on spatio-
temporal aspects for visual dynamic scene understanding in the road traffic do-
main. Groups of visual features and their evolution (motion and changes) over time
in conjunction with background knowledge on perspective mapping of moving 3-D
objects are the medium for fully understanding what is happening in “the world”.
Because of the effects of pinhole mapping, several cameras with different focal
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lengths are needed to obtain a set of images with sufficient resolution in the near,
medium, and far ranges.

Before we proceed to this aspect in Chapter 12, the basic methods for detecting
and tracking of stationary and moving objects are treated first. Honoring the initial
developments in the late 1980s and early 1990s with very little computing power
onboard, the historical developments will be discussed as points of entry before the
methods now possible are treated. This evolution uncovers the background of the
system architecture adopted.

11.2 Detecting and Tracking Stationary Obstacles

Depending on the distance viewed, the mask size for feature extraction has to be
adapted correspondingly; to detect stationary objects with the characteristic dimen-
sions of a human standing upright and still, a mask size in CRONQOS of one-half to
one-tenth of the lane width (of ~ 2 to 4 m in the real world) at the distance L ob-
served seems to be reasonable. In road traffic, objects are usually predominantly
convex and close to rectangular in shape (encasing boxes); gravity determines the
preferred directions horizontally and vertically. Therefore, for obstacle detection,
two sets of edge operators are run above the road region in the image: detectors for
vertical edges at different elevations are swept horizontally, and extractors for hori-
zontal edges are swept vertically over the candidate region. A candidate for an ob-
ject is detected by a collection of horizontal or vertical edges with similar average
intensities between them.

For an object, observed from a moving vehicle, to be stationary, the features
from the region where the object touches the ground have to move from one frame
to the next according to the egomotion of the vehicle carrying the camera. Since
translational motion of the vehicle can be measured easily and reliably by conven-
tional means, no attempt is made to determine egomotion from image evaluation.

11.2.1 Odometry as an Essential Component of Dynamic Vision

The translational part of egomotion can be determined rather well from two me-
chanically implemented measurements at the wheels (or for simplicity at just one
wheel) of the vehicle. Pulses from dents on a wheel for measuring angular dis-
placements directly linked to one of the front wheels deliver information on dis-
tance traveled; the steer angle, also measured mechanically, gives the direction of
motion. From the known geometry of the vehicle and camera suspension, transla-
tional motion of the camera can be determined rather precisely. The shift in camera
position is the basis for motion stereointerpretation over time.

Assuming no rotational motion in pitch and roll of the vehicle (nominally), the
known angular orientation of the cameras relative to the vehicle body (also me-
chanically measured) allows predicting the shift of features in the next image.
Small perturbations in pitch and bank angle will average out over time. The pre-
dicted feature locations are checked against measurements in the image sequence.
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In connection with the Jacobian elements, the resulting residues yield information
for systematically improving the estimates of distance and angular orientation of
the subject vehicle relative to the obstacle.

Assuming that the object has a vertical extension above the ground, this body
also will have features on its surface. For a given estimated range, the relative posi-
tions of these local features on the body, geared to the body shape of the obstacle,
can be predicted in the image; prediction-errors from these locations allow adapt-
ing the shape hypothesis for the obstacle and its range.

11.2.2 Attention Focusing on Sets of Features

For stationary obstacles, the first region to be checked is the location where the ob-
ject touches the ground. The object is stationary only when there is no inhomoge-
neous feature flow on the object and in a region directly outside its boundaries at
the ground. (Of course, this disregards obstacles hanging down from above, like
branches of trees or some part from a bridge; these rare cases are not treated here.)

To find the overall dimension of an obstacle, a vertical search directly above the
region where the obstacle touches the ground in the image is performed looking for
homogeneous regions or characteristic sets of edge or corner features. If some
likely upper boundary of the object (its height Ho in the image) can be detected,
the next step is to search in an orthogonal direction (horizontally) for the lateral
boundaries of the object at different elevations (maybe 25, 50, and 75% Hg). This
allows a first rough hypothesis on object shape normal to the optical axis. For the
features determining this shape, the expected shift due to egomotion can also be
computed. Prediction-errors after the next measurement either confirm the hy-
pothesis or give hints how to modify the assumptions underlying the hypothesis in
order to improve scene understanding.

For simple shapes like beams or poles of any shape in cross section, the result-
ing representation will be a cylindrical body of certain width (diameter d) and
height (Ho) appearing as a rectangle in the image, sufficiently characterized by
these two numbers. While these two numbers in the image will change over time,
in general, the corresponding values in the real world will stay constant, at least if
the cross section is axially symmetrical. If it is rectangular or elliptical, the diame-
ter d will depend also on the angular aspect conditions. This is to say that if the
shape of the cross section is unknown, its change in the image is not a direct indi-
cation of range changes. The position changes of features on the object near the
ground are better indicators of range. For simplicity, the obstacle discussed here is
assumed to be a rectangular plate standing upright normal to the road direction (see
Figure 11.3). The detection and recognition procedure is valid for many different
types of objects standing upright.

11.2.3 Monocular Range Estimation (Motion Stereo)

Even though the obstacle is stationary, a dynamic model is needed for egomotion;
this motion leads to changing aspect conditions of the obstacle; it is the base for
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Figure 11.3. Nomenclature adopted for detection and recognition of a stationary obsta-
cle on the road: Left: Perspective camera view on obstacle with rectangular cross section
(Bog, Hog). Top right: Top down (“bird’s-eye”) view with the obstacle as a flat vertical
plane, width Bo. Lower right: View from right-hand side, height Ho.

motion stereointerpretation over time. Especially the constant elevation of the
camera above the ground and the fact that the obstacle is sitting on the ground are
the basis for range detection; the pitch angle for tracking the features where the ob-
stacle touches the ground changes in a systematic way during approach.

11.2.3.1 Geometry (Measurement) Model

In Figure 11.3, the nomenclature used is given. Besides the object dimensions, the
left and right road boundaries at the position of the lower end of the obstacle are

also determined (Ygri, Yerr); their difference ygr = (Yerr — Yeri) Yields the width of
the road by at the look-ahead range r,,.

From Equation 9.9 and 9.10, there follows
r, = h, /tan{6, +arctan[zg,, /(T -k, )]}
andfor 6, =0: r,=h-f-Kk,/zg,.
In Figure 11.3 (bottom) the camera looks horizontally (6x = 0) from an elevation

hk above the ground (the image plane is mirrored at the projection center); for
small azimuthal angles y to all features, the road width then is approximately
b~r-(y -y)I(f- k). (11.2)
A first guess on obstacle width then is
bo 1, - (Yeor = Yea) /(f -Ky) . (11.3)

(11.1)
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Without perspective inversion already performed in the two equations above,
this immediately yields the obstacle size in units of road width be/ bg.

Half the sum of both feature pairs yields the road center and the horizontal posi-
tion of the obstacle center in the image

Yers = (Yeri + Yerr) /25 Yoos = (Yeor + Yeor) /2 - (11.4)

Yeos directly determines the azimuthal angle wyo of the obstacle relative to the
camera. The difference ygor = (Ysos —Ygrs) Yields the initial estimate for the posi-
tion of the obstacle relative to the road center:

Yor =Ty *(Ysos = Yers) /(T -K,). (11.5)

This information is needed for deciding on the reaction of the vehicle for obsta-
cle avoidance: whether it can pass at the left or the right side, or whether it has to
stop. Note that lateral position on the road (or in a lane) cannot be derived from
simple LRF if road and shoulders are planar, since the road (lane) boundaries re-
main unknown in LRF. In the approach using dynamic vision, in addition to lateral
position, the range and range rate can be determined from prediction-error feed-
back exploiting the dynamic model over time and only a sequence of monocular
intensity images.

The bottom part of Figure 11.3 shows perspective mapping of horizontal edge
feature positions found in vertical search [side view (b)]. Only the backplane of the
object, which is assumed to have a shape close to a parallelepiped (rectangular
box), is depicted. Assuming a planar road surface and small angles (as above: cos ~
1, sine ~ argument), all mapping conditions are simple and need not be detailed
here. Half the sum yields the vertical center cg, of the obstacle. The tilt angle be-
tween cg, and the horizontal gaze direction of the camera is 6yo; the difference of
feature positions between top and bottom yields obstacle height.

The elements of the Jacobian matrix needed for recursive estimation are easily
obtained from these relations.

11.2.3.2 The Dynamic Model for Relative State Estimation

Of prime interest are the range r and the range rate I to the obstacle; range is the
integral of the latter. The lateral motion of the object relative to the road vor is zero
for a stationary object. Since iteration of the position is necessary, in general, the
model is driven by a stochastic disturbance variable s;. This yields the dynamic
model (V = speed along the road: index O = object (here Vo = 0); index R = road)
F=V,-V+s V, =
o ° a o™ %o (11.6)
Yor = Vor: Vor = Syor-
In addition, to determine the obstacle size and the viewing direction relative to
its center, the following four state variables are added (index K = camera):
Ho =Si0> By = Sgo»
' (¢] HO ' (0] BO (117)
Yko = Skos Oko = Spkor
where again the s; are assumed to be unknown Gaussian random noise terms. In
shorthand vector notation, these equations are written in the form

X(t) =f [x(t), u(t), s(t)], (11.8)



340 11 Perception of Obstacles and Vehicles

with the state variables
X' = (rOYVOlWKOYHKO’ BO’ Hon yOR’VOR)l [Vo and Vor :O]- (11'9)
After transformation into the discrete state transition form for the cycle time T
used in image processing, standard methods for state estimation, as discussed in
Chapter 6, are applied. Note that nothing special has to be done to achieve motion
stereointerpretation; it is an integral part of the approach.

11.2.3.3 The Estimation Process

Figure 11.3 top shows the window arrangement set up for determining the relative
state of an obstacle. Initially, to detect a relatively large, uniformly gray obstacle, a
horizontal search for close-to-vertical edge features is done in the region above the
road known from the road tracker running separately; some edge features with
similar average intensity values on one side can then be grouped with the center ly-
ing at column positions ygo; and ygor. Their position is shown in the figure by the
textured area indicating similar average gray values [Dickmanns, Christians 1991].

Simultaneously, in a rectangular window above the road and around a nominal
look-ahead distance for safe stopping, a vertical search for horizontal edge features
is performed with the same strategy yielding the row positions zgo, and zgoy.
Again, the textured areas show similar average image intensity. The centers of
these two groups of features (ysos and zgos) are supposed to mark the center of an
obstacle. After this initial hypothesis has been set up, further search for feature col-
lections belonging to the same hypothesized object is done in crosswise orthogonal
search paths centered on ygos and zggs, as indicated in the figure; after each meas-
urement update in the row direction, the search in the column direction is shifted
according to ygos and vice versa, thus keeping attention focused on the obstacle.

At the same time, the position of the road boundary is determined in the row
given by the lower horizontal edge feature of the hypothesized obstacle zgo,. This
information is essential: (1) for scaling obstacle size (Ygor — Ygoir) in terms of road
size (Yerr — Yari) (S€e Equations 11.2 and 11.3) and (2) for initially determining
range to the object when the vertical curvature of the road is known (usually as-
sumed to be zero, that is, the road is planar). The initial guess for distance r to the
obstacle is obtained by inverting the mapping model for a pinhole camera and per-
spective projection with the data for zgo, (see bottom Subfigure 11.3 and Equation
11.1). Similarly, the initial values for the lateral position of the obstacle on the road
Yor, Obstacle width Bo, and height Ho are obtained, all scaled by road width Bg,
for which a best estimate exists from the parallel tracking process for the road
(Chapter 9 and Figure 11.4 right). The bearing angles to the center of the obstacle
(wso in azimuth and 050 in elevation) are given by the offset of this center from the
image center (optical axis). Note that these variables contain redundant information
if the state of the subject vehicle relative to the road (yv, yv and 8y) is estimated
separately (as done in Chapter 9). Of course, the variables ygo and 6z contain all
the perturbation effects of the road on the vehicle carrying the cameras. Measuring
the position of the obstacle relative to the local road (yor) thus is more stable than
relying on bearing information relative to the suject vehicle on roads with a
nonsmooth (noisy) surface.
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Figure 11.4. First-generation system architecture for dynamic vision in road scenes of
the late 1980s [Dickmanns, Christians 1991]; the parallel processors for edge feature ex-
traction (PPi) were 16-bit Intel 8086 microprocessors capable of extracting just a few
edge features per observation cycle of 80 ms

The estimation cycle on processor GPP2, initially in VaMoRs a microprocessor
Intel 80386®, ran at 25 Hz (40 ms) while feature extraction and crosswise tracking,
as mentioned, ran at full video rate (50 H on Intel 8086®) for better performance
under high-frequency perturbations in pitch. This was a clear indication of the fact
that high-frequency image evaluation may be more important than image under-
standing at the same rate; the temporal models are able to bridge the gap if the
quality of the features found is sufficiently good. The initial transient in image in-
terpretation took 10 to 20 cycles until a constant error level had been achieved.

In a prediction step, the expected position of features for the next measurement
is computed by applying forward perspective projection to the object as “imag-
ined” by the interpretation process. Only those feature positions delivered by the
PPs that are sufficiently close to these values (within the 3o range) have been ac-
cepted as candidates; others are rejected as outliers. This contributed considerably
to stabilizing the interpretation in noisy natural environments.

11.2.3.4 Modular Processing Structure

In Figure 11.4, the modular processing structure resulting naturally in the 4D-
approach, oriented toward physical objects, is emphasized. There are four process-
ing layers and two object-oriented groups of processors shown: The pixel-level
(bottom), where 2-D spatial data structures (intensity images and subimages) have
to be handled. Then, at the PP level, edge elements and adjacent intensity features
are extracted with respect to the 2D-position and orientation; any relation to 3-D
space or time is still missing. Only in the third layer, implementing object interpre-
tations on the GPP, spatial and temporal constraints are introduced for associating
objects with groupings of features and their relative change over time. In our case,
objects are the road (with the egovehicle) and the obstacle on the road; it is easily
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seen how this approach can be extended to multiple objects by adding more groups
of processors.

It may be favorable for the initialization phase to insert an additional 2-D object
layer (for feature aggregations) between layers 2 and 3, as given here [Graefe 1989].
All layers have grown in conjunction with more computing power and experience
gained over the years to deal with more complex tasks and situations (see Chapters
13 and 14). The growth rate in performance of general purpose microprocessors
(GPP) of about one order of magnitude every 4 to 5 years has allowed quick devel-
opment of powerful real-time systems; though the distribution of architectural ele-
ments on processor hardware has changed quite a bit over time, the general struc-
ture shown in Figure 11.4 has remained surprisingly stable.

11.2.4 Experimental Results

The three-stage process of obstacle detection, hypothesis generation (recognition),
and relative spatial state estimation has been tested with VaMoRs on an unmarked
two-lane campus road at speeds up to 40 km/h with an obstacle of about 0.5 m?
cross section (a dark trash can = 0.5 m wide and = 1 m high). The detection range
was expected to be about 30 to 40 m. The vehicle had to stop autonomously about
15 m in front of the obstacle. In the example shown, driving speed was about 4 m/s
(15 km/h). As Figure 11.5 shows, range estimation started at r = 33 m (upper right
graph) derived from the bottom feature of the obstacle under the assumption of a
flat surface (known camera elevation above the ground). The transient in relative
speed estimation to the negative value of vehicle speed (-4) took about 1 second
(lower right in Figure 11.5) with two oscillations before stabilizing at the correct
value. In the first ten to fifteen video cycles, i.e., = 0.3 seconds from detection dur-
ing hypothesis generation and -testing (activation of the obstacle-processor group)
the results in spatial interpretation are noise-corrupted and not useful for decision—
making. Allowing about 1 second for stabilization of the interpretation process
seems reasonable (similar to human performance).

During the test sequence shown, the range decreased from 33 to 16 m, and the
speed diminishing toward the end due to braking. Note that vehicle speed for pre-
diction was available from conventional mechanical measurements; the speed
shown in the lower right part is the visually estimated speed based on image data.
The result is rather noisy; this has led to the decision that relative speed was set at
the negative speed of the vehicle (measured by the tachometer) in future tests.

Obstacle height was estimated as very stable (110 cm). The pitch angle in-
creased in magnitude during the approach since the elevation of the camera above
the ground (= 2 m) was higher than the object center. Apparently, a slight curve
was steered since the azimuth angle yyo shows a dip (around 3 seconds). With
these experiments, the 4-D approach to real-time machine vision was shown to be
well suited for monocular depth estimation. Since image sequence evaluation is
done with time explicitly represented in the model underlying the recognition
process, motion stereo is an inherent property of the approach, including odometry.
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Figure 11.5 Historic first experiment on monocular depth perception and collision
avoidance using ‘dynamic vision’ (4-D approach) with test vehicle VaMoRs: A trash
can of approximate size 0.5 x 1 m was placed about 35 m in front of the vehicle. Track-
ing the upper and lower as well as the left and right edge of the can (left part of figure),
the vehicle continuously estimated the distance to the obstacle (top right) as well as the
horizontal and the vertical bearing angles to the center of the object (center right). Bot-
tom right shows the speed profile driven autonomously; the vehicle stopped 16 m from
the obstacle after 8 seconds.

Accuracy in the percent range has been demonstrated; it becomes better the
closer the obstacle is approached, a desirable property in obstacle avoidance. The
approach based on edge features is computationally very economical and has led to
a processor architecture oriented toward physical objects in a modular way. This
has allowed refraining from additional direct measurements of distance by laser
range finders or radar, even for moving obstacles.

11.3 Detecting and Tracking Moving Obstacles on Roads

Since it is not known, in general, where new objects will appear, all relevant image
regions have to be covered by the search for relevant features. In some application
domains such as highway traffic, a new object can enter the image only from well-
defined regions: Overtaking vehicles will at first appear in the leftmost corner of
the image above the road (in right-hand traffic). Vehicles being approached from
the back will at first be seen in the teleimage far ahead. Depending on the lane they
drive in, the feature flow goes either to one side (vehicle in a neighboring lane) or a
looming effect appears, indicating that there may be a collision if no proper action
is taken. For hypothesis generation, this information allows starting with proper
aspect conditions for tracking; these aspect conditions have a strong influence on
feature distribution. The aspect graphs are part of generic object shape representa-
tion (maybe even specialized for multiple scales to be used at different distances).
Figure 11.6 shows six of the eight clearly separable standard aspect conditions
for cars with a typical set of features for each case. The resulting feature distribu-
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tions will, of course, depend on the type of vehicle (van, bus, truck, recreation ve-
hicle, etc.), usually recognizable by their size and the kind of features exposed in
certain relations to each other. For cars, very often the upper part of the body with
glass and shiny surfaces is not well suited for tracking since trees and buildings in
the environment of the road are mirrored by the (usually two-dimensionally
curved) surface yielding very noisy feature distributions.
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Figure 11.6. Cars modeled on different scales for various aspect conditions: Coarse:
Encasing box, with rounded corners omitted; medium: Only lower part of body with
some simple details; fine: Reasonably good silhouette, groups of very visible features
from subparts, => close to real rendering.

For this reason, concentration only on the lower part of the body has been more
stable for visual perception of cars (upper limit of about 1 m above the ground);
this is shown in column two of Figure 11.4. However, for big trucks and tanker ve-
hicles, the situation is exactly the opposite. The lower part is rather complex due to
irregular structural elements, while the upper part is rather simple, usually, like rec-
tangular boxes or cylinders, often with a homogeneous appearance.

So the first step after feature detection and maybe some feature aggregation for
elongated line elements should always be to look for the set of features moving in
conjunction; this gives an indication of the size of the object and of the vehicle
class it may belong to. Three to five images of a sequence are sufficient to arrive at
a stable decision, usually. The second step then is to stabilize the interpretation as a
member of a certain vehicle class by tapping more and more knowledge from the
internal knowledge base and proving its validity in the actual case. Tracking cer-
tain groups of features may already give a good indication of the relative motion of
the object without it being fully “re-cognized”. Partial occlusion by other vehicles
or due to a curved road surface (both horizontally and vertically) will complicate
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the general case. Therefore, it is always recommended to take into account the best
estimates for the road state and for the relative state of other vehicles.

The last three columns in Figure 11.6 will be of interest for the more advanced
vision systems of the future exploiting the full potential of the sense of vision with
high resolution when sufficient computing power will be available.

It is the big advantage of vision over radar and laser range finding that vision al-
lows recognizing the traffic situation with good resolution and up to greater ranges
if multifocal vision with active gaze control is used. This is not yet the general state
of the art since the data rates to be handled are rather high (many gigabytes/second)
and their interpretation requires sophisticated software.

In the case of expectation-based, multi focal, saccadic vision (EMS vision) it
has been demonstrated that from a functional point of view, visual perception as in
humans is possible; until the human performance level is achieved, however, quite
a bit of development has still to be done. We will come back to this point in the fi-
nal outlook.

Due to this situation, industry has decided to pick radar for obstacle detection in
systems already on the market for traffic applications; LRF has also been studied
intensively and is being prepared for market introduction in the near future. Radar-
based systems for driver assistance in cruise control have been available for a few
years by now. Complementing them by vision for road and lane recognition as well
as for reduction of false alarms has been investigated for about the same time.
These combined systems will not be looked at here; the basic goal of this section is
to develop and demonstrate the potential of vertebrate-type vision for use in the
long run. It exploits exactly the same features as human vision does, and should
thus be sufficient for safe driving. Multisensor adaptive cruise control will be dis-
cussed in Section 14.6.3.

11.3.1 Feature Sets for Visual Vehicle Detection

Many different approaches have been tried for solving this problem since the late
1980s. Regensburger (1993) presents a good survey on the task “visual obstacle
recognition in road traffic”. In [Carlson, Eklundh 1990], an object detection method
using prediction and motion parallax is investigated. In [Kuehnle 1991], the use of
symmetries of contours, gray levels and horizontal lines for obstacle detection and
tracking is discussed. [Zielke et al. 1993] investigates a similar approach. Other ap-
proaches are the evaluation of optical flow fields [Enkelmann 1990] and model-
based techniques like the one described below [Koller et al. 1993]. Solder and
Graefe (1990) find road vehicles by extracting the left, right and lower object
boundary using controlled correlation. An up-to-date survey on the topic may be
found in [Masaki 1992++] or in the vision bibliography [http://iris.usc.edu/Vision-
Notes/bibliography/contents.html]. Some more recent papers are [Graefe, Efenberger
1996; Kalinke et al. 1998; Fleischer et al. 2002; Labayarde et al.2002; Broggi et al. 2004].
The main goal of the 4-D approach to dynamic machine vision from the begin-
ning has been to take advantage of the full spatiotemporal framework for internal
representation and to do as little reasoning as possible in the image plane and be-
tween frames. Instead, temporal continuity in physical space according to some
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model for the motion of objects is being exploited in conjunction with spatial shape
rigidity in this “analysis-by-synthesis” approach.

Since high image evaluation rate had proven more beneficial in this approach
than using a wide variety of features, only edge features with adjacent average in-
tensity values in mask regions were used when computing power was very low
(see Section 5.2). With increasing computing power, homogeneously shaded blobs,
corner features, and in the long run, color and texture are being added. In any case,
perturbations both from the motion process and from measurements as well as
from data interpretation tend to change rapidly over time so that a single image in a
sequence should not be given too much weight; instead, filtering likely (maybe not
very precise) results at a high rate using motion models with low eigenfrequencies
has proven to be a good way to go. So, concentration on feature extraction was on
fast available ones with selection of those used guided by expectations and statisti-
cal data of the recursive estimation process running.

For this reason, image evaluation rates of less than about ten per second were
not considered acceptable from the beginning in the early 1980s; the number of
processors in the system and workload sharing had to be adjusted such that the
high evaluation rate was achievable. This was in sharp contrast to the approaches
to machine vision studied by most other groups around the globe at that time. Ac-
cumulated delay times could be handled by exploiting the spatiotemporal models
for compensation by prediction. These short cycle times, of course, left no great
choice of features to be used. On the contrary, even simple edge detection could
not be used all over the image but had to be concentrated (attention controlled!) in
those regions where objects of interest for the task at hand could be expected.

Once the road has been known from the specific perception loop for it, “obsta-
cles” could be only those objects in a certain volume above the road region, strictly
speaking only those within and somewhat to the side of the width of the wheel
tracks.

11.3.1.1 Edge Features and Adjacent Average Gray Values

Edge features are robust to changes in lighting conditions; maybe this is the reason
why their extraction is widespread in biological vision systems (striate cortex).
Edge features on their own have three parameters for specifying them completely:
position, orientation, and the value of the extreme intensity gradient. By associat-
ing the average intensity on one side of the edge as a fourth parameter with each
edge, average intensities on both sides are known since the gradient is the differ-
ence between both sides; this allows coarse area-based information to be included
in the feature.

Mori and Charkari (1993) have shown that the shadow underneath a vehicle is a
significant pattern for detecting vehicles; it usually is the darkest region in the en-
vironment. Combining this feature with knowledge of 3-D geometric models and
4-D dynamic scene understanding leads to a robust method for obstacle detection
and tracking. [Thomanek et al. 1994; Thomanek 1996] developed the first vision sys-
tem capable of tracking a half dozen vehicles on highways in each hemisphere with
bifocal vision based on these facts in closed-loop autonomous driving. This ap-
proach will be taken as a starting point for discussing more modern approaches ex-
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tion 5.2). Due to missing computer performance in the early 1990s, the search
stripes did not cover the whole image below the horizon; evaluation cycle time was
80 ms (every second video field with the same index). Stripe width and spacing as
well as mask parameters had to be adjusted according to the detection range de-
sired. For improved resolution, there was a second camera with a telelens on the
gaze controlled platform (see Figure 1.3) with a viewing range about three times as
far (and a correspondingly narrower field of view) compared to the wide-angle
camera. This allowed using exactly the same feature extraction algorithms for ve-
hicles nearby and further away (see Figure 11.22 further below).

Search
= direction —

Find lower edge of a vehicle: About 30 search stripes of 100 pixels length have
been analyzed by shifting the correlation mask top-down to find close-to-horizontal
edge features at extreme correlation values. Potential candidates for the dark area
underneath the vehicle have to satisfy the criteria:
— The value of the mask response (correlation magnitude) at the edge has to be
above a threshold value (corrminuw)-
— The average gray value of the trailing mask region (upper part) has to be below
a threshold value (darkpin u)-
The first bullet requires a pronounced dark-to-bright transition, and the second one
eliminates areas that are too bright to stem from the shaded region underneath the
vehicle; adapting these threshold values to the situation actually given is the chal-
lenge for good performance. For tanker vehicles and low standing sun, the ap-
proach very likely does not work. In this case, the big volume above the wheels
may require area-based features for robust recognition (homogeneously shaded, for
example).

Generate horizontal contours: Edge elements satisfying certain gestalt conditions

are aggregated applying a known algorithm for chaining. The following steps are

performed, starting from the left window and ending with the right one:

1. For each edge element, search the nearest one in the neighboring stripe and store
the corresponding index if the distance to it is below a threshold value.
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2. Tag each edge element with the number count of previous corresponding ele-
ments (e.g., six, if the contour contains six edge elements up to this point).

Read starting point Py(ys, Z5) and end point Pg(ye, z.) of each extracted contour and

check the slope, whose magnitude |(ze — z5)/(ye — ¥s)| must be below a threshold for

being accepted (close to horizontal, see Figure 11.8).
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Figure 11.8. Contour generation from edge elements observing gestalt ideas of nearness
and colinearity; below an upper limit for total contour length, only the longer one is kept

If lines grow too long, they very likely stem from the shadow of a bridge or
from other buildings in the vicinity; they may be tracked as the hypothesis for a
new stationary object (shadow or discontinuity in surface appearance), but elimi-
nating them altogether will do no harm to tracking moving vehicles with speed al-
ready recognized. Within a few cycles, these elongated lines will have moved out
of the actual image. With knowledge of 3-D geometry (projection equations link
row number to range), the extracted contours are examined to see whether they al-
low association with
certain object classes:
Side constraints con-

extracted edge elements

cerning width must be

satisfied; likely height — M= >, || postion o+**
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(i.e., bumper bar or rear
window) are discarded;
they lie above the lower
shadow region (see Fig-
ure 11.9).

Determine lateral boundaries: Depending on the lateral position relative to the
lane driven in, the vertical object boundaries are extracted additionally. This is
done with an edge detector which exploits the fact that the difference in brightness
on the object and from the background is not constant and can even change sign; in

Figure 11.9. Extracted horizontal edge elements: The rec-
tangular group of features is an indication of a vehicle can-
didate; the lower elements (aggregated shadow region un-
der the car) allow estimation of the range to the vehicle



11.3 Detecting and Tracking Moving Obstacles on Roads 349

Figure 11.10, the wheels and fender
are darker than the light gray of the
road while the white body is brighter
than the road.

For this purpose, the gradient of
brightness is calculated at each posi-
tion in each image row, and its abso-
lute values are summed up over the
lines of interest. The calculated dis-  Histo- 2
tribution of correlation values has oramh 3y
significantly large maxima at the ob-  corre- | '
ject boundaries (lower part of fig-  tr ., | ]
ure). The maxima of the accumu- ima 15 f—- |
lated values yield the width of the Sf;‘;’,‘; A el
obstacle in the image; knowing  rows o L L
range and mapping parameters, ob- —> Pixel position
stacle size in the real world is initial-

ized for recursive estimation and up-

80 80

Figure 11.10. Determination of lateral

e - boundaries of a vehicle by accumulation of
dated until it is stable. With clearly correlation values at each position in each

visible extremes as in the lower part : .
. . . single row of the lower part of the body with
of Figure 11.10 the object width of .\ RONOS-mask (N = 1; ng = large). The

Fhe rea! vehicle is fixed, and changes maxima of the accumulated values yield the
in the image are from now on used \yiqth of the obstacle in the image.

to support range estimation.

For vehicles driving in their own
lanes, the left and right object boundary must be present to accept the extracted
horizontal contour as representing an object. In neighboring lanes, it suffices to
find a vertical boundary on the side of the vehicle adjacent to their own lane to
prove the hypothesis of an object in connection with the lower contour. This means
that in the left lane, a vertical line to the right of the lower contour has to be found,
while in the right lane, one to the left has to be found for acceptance of the hy-
pothesis of a vehicle. This allows recognition of partially occluded objects, too.
The algorithm was able to detect and track up to five objects in parallel with four
INMOS Transputer® 222 (16 bit) for feature extraction and one T805 (32 bit) for
recursive estimation at a cycle time of 80 ms.

Applying these methods is a powerful tool for extracting vehicle boundaries in
monochrome images also for modern high-performance microprocessors. Adding
more features, however, can make the system more versatile with respect to type of
vehicle and more robust under strong perturbations in lighting conditions.

11.3.1.2 Homogeneous Intensity Blobs

Region-based methods, extracting homogeneously shaded or textured areas are of
importance especially for robust recognition of large vehicles. Color recognition
very much alleviates object separation in complex scenes with many objects of dif-
ferent colors. But just regions of homogeneous intensity shading alleviate object
separation considerably (especially in connection with other features).
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In Figure 11.11 the homogeneously shaded areas of the road yield the back-

Figure 11.11. Highway scene with many vehicles, ana-
lyzed with UBM method (see Section 5.3.2.4) in vertical
stripes with coarse resolution (22.42C) and aggregation
of homogeneous intensity blobs (see text).

ground for detecting vehi-
cles with different inten-
sity blobs above a dark
region on the ground,
stemming from vehicle
shade underneath the
body. Though resolution
is poor (32 pixels per mel
and 128 per mask) and
some artifacts normal to
the search direction can
be seen, relatively good
hypotheses for objects are
derivable from this coarse
scale. Five vehicle candi-
dates can be recognized,
three of which are par-
tially occluded. The car
ahead in the same lane

and the bus in the right neighboring lane are clearly visible. The truck further
ahead in the subject’s lane can clearly be recognized by its dark upper body. For
the two cars in the left neighboring lane, resolution is too poor to recognize details;
however, from the shape of the road area, the presence of two cars can be hypothe-
sized. Low resolution allows higher evaluation frequency for limited computing

power.

Performing the search
on the coarse scale for
homogeneously  shaded
regions in both vertical
and horizontal stripes
yields sharp edges in the
search direction; thus,
close to vertical blob
boundaries  should be
taken from horizontal
search results while close
to horizontal boundaries
should be taken from ver-
tical search results.

Figure 11.12 shows re-
sults from a row search
with different parameters
(11.44R) for another im-
age out of the same se-
guence (see bus in right
neighboring lane and the

Reconstructed image:

Coarse (4x4)

Coarse resolution

Figure 11.12. Highway scene similar to Figure 11.11
with more vehicles analyzed with UBM method in hori-
zontal stripes; the outer regions are treated with coarse
resolution (11.44R), while the central region (within the
white box) covering a larger look-ahead range above the
road, is analyzed on a fine scale (11.11R) (reconstructed
images, see text)
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dark truck in the subject’s lane). Here, however, the central part of the image, into
which objects further away on the road are mapped, is analyzed at fine resolution
giving full details (11.11R). This yields many more details and homogeneous in-
tensity blobs; the reconstructed image shown can hardly be distinguished from the
original image. A total of eight vehicle candidates can be recognized, six of which
are partially occluded. It can be easily understood from this image that large vehi-
cles like trucks and buses should be hypothesized from the presence of larger ho-
mogeneous areas well above an elevation of one wheel diameter from the ground.
For humans, it is immediately clear that in neighboring lanes, vehicles are recog-
nized by three wheels if no occlusion is present; the far outer front wheel will be
self-occluded by the vehicle body. All wheels will be only partially visible. This
fact has led to the development of parameterized wheel detectors based on features
defined by regional intensity elements [Hofmann 2004].

Figure 11.13 shows the basic idea and the derivation of templates that can be
adapted to wheel diameter (including range) and aspect angle in pan (small tilt an-
gles are neglected because they enter with a cosine effect (= 1)); since the car body
occludes a large part of the wheels, the lower part of the dark tire contrasting the
road to its sides is especially emphasized. For orthogonal and oblique views of the
near side of the vehicle, usually, the inner part of the wheel contrasts to the tire
around it; ellipticity is continuously adapted according to the best estimate for the
relative yaw (pan) angle.

(a) :f\ﬁtfﬁ Wheel Imertire  (b)

Figure 11.13. Derivation of templates for wheel recognition from coarse shape repre-
sentations (octagon): (a) Basic geometric parameters: width, outer and inner visible ra-
dius of tire; (b) oblique view transforms circle into ellipses as a function of aspect angle;
(c) shape approximation for templates, radii, and aspect angle are parameters; (d) tem-
plate masks for typically visible parts of wheels [seen from left, right, = orthogonal, far
side (underneath body)]. Intelligently controlled 2-D search is done based on the exist-
ing hypothesis for a vehicle body (after [Hofmann 2004]).

The wheels on the near side appear in pairs, usually, separated by the axle dis-
tance in the longitudinal direction which lets the front wheel appear higher up in
the image due to camera elevation above the wheel axle. There is good default
knowledge available on the geometric parameters involved so that initialization
poses no challenge. Again, being overly accurate in a single image does not make
sense, since averaging over time will lead to a stable (maybe a little bit noisier) re-
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sult with the noise doing no harm. To support estimation of the aspect conditions,
taking into account other characteristic subobjects like light groups in relation to
the license plate as regional features will help.

11.3.1.3 Corner Features

This class of features is especially helpful before a good interpretation of the scene
or an object has been achieved. If corner localization can be achieved precisely and
consistently from frame to frame, it allows determining feature flow in both image
dimensions and is thus optimally suited for tracking without image understanding.
However, the challenge is that checking consistency requires some kind of under-
standing of the feature arrangement. Recognition of complex motion patterns of ar-
ticulated bodies is very much alleviated using these features. For this reason, their
extraction has received quite a bit of attention in the literature (see Section 5.3.3).
Even special hardware has been developed for this purpose.

With the computing power nowadays available in general-purpose micro-
processors, corner detection can be afforded as a standard component in image
analysis. The unified blob-edge-corner method (UBM) treated in Section 5.3 first
separates candidate regions for corners in a very simple way from those for homo-
geneously shaded regions and edges. Only a very small percentage of usual road
images qualify as corner candidates depending on the planarity threshold specified
(see Figures 5.23 and 5.26); this allows efficient corner detection in real time to-
gether with blobs and edges. The combination then alleviates detection of joint fea-
ture flow and object candidates: Jointly moving blobs, edges, and corners in the
image plane are the best indicators of a moving object.

11.3.2 Hypothesis Generation and Initialization

The center of gravity of a jointly moving group of features tells us something about
the translational motion of the object normal to the optical axis; expanding or
shrinking similar feature distributions contains information on radial motion.
Changing relative positions of features other than expansion or shrinking carries
information on rotational motion of the object. The crucial point is the jump from
2-D feature distributions observed over a short amount of time to an object hy-
pothesis in 3-D space and time.

11.3.2.1 Influence of Domain and Actual Situation

If one had to start from scratch without any knowledge about the domain of the ac-
tual task, the problem would be hardly solvable. Even within a known domain (like
“road traffic”) the challenge is still large since there are so many types of roads,
lighting-, and weather conditions; the vehicle may be stationary or moving on a
smooth or on a rough surface.

It is assumed here that the human operator has checked the lighting and weather
conditions and has found them acceptable for autonomous perception and opera-
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tion. When observation of other vehicles is started, it is also assumed that road rec-
ognition has been initiated successfully and is working properly; this provides the
system (via DOB, see Chapters 4 and 13) with the number and widths of lanes ac-
tually available. With GPS and digital maps onboard and working, the type of road
being driven is known: unidirectional or two-way traffic, motorway or general
cross-country/urban road.

The type of road determines the classes of obstacles that might be expected with
certain likelihood; the levels of likelihood may be taken into account in hypothesis
generation. Pedestrians are less likely on high-speed than on urban roads. Speed
actually being driven and traffic density also have an influence on this choice; for
example, in a traffic jam on a freeway with very low average speed, pedestrians are
more likely than in normal freeway traffic.

11.3.2.2 Three Components Required for Instantiation

In the 4-D approach, there are always three components necessary for starting per-
ception based on recursive estimation: (1) the generic object type (class and sub-
class with reasonable parameter settings), (2) the aspect conditions (initial values
for state components, and (3) the dynamic model as knowledge (or side constraint)
of evolution over time; for subjects, this includes knowledge of (stereotypical) mo-
tion capabilities and their temporal sequence. This latter component means an indi-
vidual capability for animation based on onsets of maneuvers visually observed;
this component will be needed mainly in tracking (see Section 11.3.3). However, a
passing car cutting into the vehicle’s lane immediately ahead will be perceived
much faster and more robustly if this motion behavior (normally not allowed) is
available also during the initialization phase, which takes about one half to one
second, usually.

Instantiation of a generic object (3-D shape): The first step always is to establish
good range estimation to the object. If stereovision or direct range measurements
are available, this information should be taken from these sources. For monocular
vision, this step is done with the row index zg, of the lowest features that belong
most likely to the object. Then, the first part of the following procedure is, as it is
for static obstacles, to obtain initial values of range and bearing.

With range information and the known camera parameters, the object in the im-
age can be scaled for comparison with models in the knowledge base of 3-D ob-
jects. Homogeneously shaded regions with edges and corners moving in conjunc-
tion give an indication of the vehicle type. For example, in Figure 11.11, the car
upfront, the truck ahead of it (obscured in the lower part), and the bus upfront to
the right are easily classified correctly; the two cars in the lane to the left allow
only uncertain classification due to occlusion of large parts of them. Humans may
feel certain in classifying the car upfront left, since they interpret the intensity
blobs vertically located at the top and the center of the hypothesized car: The
somewhat brighter rectangle at the top may originate from the light of the sky re-
flected from the curved roof of the car. The bright rectangular patch between two
more quadratic ones a little bit darker halfway from the roof to the ground is inter-
preted as a license plate between light groups at each rear side of the car.
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Figure 11.12 (taken a few frames apart from Figure 11.11) shows in the inner
high-resolution part that this interpretation is correct. It also can be seen by the
three bright blobs reasonably distributed over the rear surface that the car immedi-
ately ahead is now braking (in color vision, these blobs would be bright red). The
two cars in the neighboring lane beside the dark truck are also braking. (Note the
different locations and partial obscuration of the braking lights on the three cars
depending on make and traffic situation). Confining image interpretation for obsta-
cle detection to the region marked by the white rectangle (as done in the early
days) would make vehicle classification much more difficult. Therefore, both pe-
ripheral low-resolution and foveal high-resolution images in conjunction allow ef-
ficient and sufficiently precise image interpretation.

Aspect conditions: The vertical aspect angle is determined by the range and eleva-
tion of the camera in the subject vehicle above the ground. It will differ for cars,
vans, and trucks/buses. Therefore, only the aspect angle in yaw has to be derived
from image evaluation. In normal traffic situations with vehicles driving in the di-
rection of the lanes, lane recognition yields the essential input for initializing the
aspect angle in yaw.

On straight roads, lane width and range to the vehicle determine the yaw aspect
angle. It is large for vehicles nearby and decreases with distance. Therefore, in the
right neighboring lane, only the left-hand and the rear side can be seen; in the left
neighboring lane, it is the right-hand and rear side. Tires of vehicles on the left
have their dark contact area to the ground on the left side of the elliptically mapped
vertical wheel surface (and vice versa for the other side; see Figure 11.13d). As-
pects conditions and 3-D shape are closely linked together, of course, since both in
conjunction determine the feature distribution in the image after perspective pro-
jection, which is the only source available for dynamic scene understanding.

Dynamic model: The third essential component for starting recursive estimation is
the process model for motion which implements continuity conditions and knowl-
edge about the evolution of motion over time. This temporal component was the
one that allowed achieving superior performance in image sequence interpretation
and autonomous driving. As mentioned before, there are two big advantages in
temporal embedding:

1. Known state variables in a motion process decouple future evolution from the
past (by definition); so there is no need to store previous images if all objects of
relevance are represented by an individual dynamic process model. Future evo-
lution depends only on (a) the actual state, (b) the control output applied, and (c)
on external perturbations. Items (b) and (c) principally are the unknowns while
best estimates for (a) are derived by visual observation exploiting a knowledge
base of vehicle classes (see Chapter 3).

2. Disturbance statistics can be compiled for both process and measurement noise;
knowing these characteristics allows setting up a temporal filter process that
(under certain constraints) yields optimal estimates for open parameters and for
the state variables in the generic process model.

3. These components together are the means by which “the outside world is trans-
duced into an internal representation in the computer”. (The corresponding
guestion often asked in biological systems is, how does the world get into your
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head?) Quite a bit of background knowledge has to be available for this purpose
in the computer process analyzing the data stream and recognizing “the world”;
features extracted from the image sequence activate the application of proper
parts of this knowledge. In this closed-loop process resulting in control output
for a real vehicle (carrying the sensors), feedback of prediction-errors shows the
validity of the models used and allows adaptation for improved performance.
The dynamic models used in the early days in [Thomanek 1996] were the follow-
ing (separate, decoupled models for longitudinal and lateral translation, no rota-
tional dynamics):

Simplified longitudinal dynamics: The goal was to estimate the range and range
rate sufficiently well for automatic transition into and for convoy driving. Since the
control and perturbation inputs to the vehicle observed are unknown, a third-order
model with colored noise for acceleration as given in Equations 2.34 and 2.35 has
been chosen and proven to be sufficient [Bar-Shalom, Fortmann 1988]. The noise
term n(t) is fed into a first-order system with time constant T, = 1/a. The discrete
model then is (here ® = A)
Xy = P - X + D -1y
with D! = [T?/2, T, 1].

The discrete noise term ny is assumed to be a white, bias-free stochastic process
with normal distribution and expectation zero; its variance is

E[ng]=s;. (11.11)
After [Loffeld 1990] o4 should be chosen as the maximally expected acceleration
of the process observed.

(11.10)

Simplified lateral dynamics: Since the lateral positions of the vehicles observed
have only very minor effects on the subject’s control behavior, a standard second-
order dynamical model with the state variables, lateral position y, relative to the
subject’s (its own) lane center and lateral speed vy, are sufficient. The discrete

model then is
o) D) B
= . . V‘k. .
VYO k+1 01 VY° k 1

Again, the discrete noise term n, is assumed to be a white, bias-free stochastic
process with normal distribution, expectation equal to zero, and variance oq,’.

11.3.2.3 Initial State Variables for Starting Recursive Estimation

Figure 11.14 visualizes the transformation of the feature set marking the lower
bound of a potential vehicle into estimated positions for the vehicles in Cartesian
coordinates. In the left part of the figure, dark-to-bright edges of the dark area un-
derneath the vehicle in a top-down search are shown. For the near range, assuming
a flat surface is sufficient, usually. The tangents to the local lane markings are ex-
trapolated to a common vanishing point of the near range if the road is
curved.Since convergence behavior is good, usually, special care is not necessary
in the general case. From the right part of the figure, the bearing angles ; to the
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vehicle candidates can easily be determined. Initialization and feature selection for
tracking have to take the different aspect conditions in the three lanes into account.

Spatial interpretation

Figure 11.14. Transformation of image row, in which the lower edge of the dark
region underneath the vehicle appears, and of lateral position into Cartesian coordi-
nates, based on camera elevation above the ground assumed to be flat

The aspect graph in Figure 11.15 shows the distribution of characteristic fea-
tures as seen from the rear left (vehicle in front in neighboring lane to the right).
The features detected, for which correspondence can be established most easily at
low computational cost, are the dark area underneath the vehicle and edge features
at the vehicle corners, front left and rear right (marked by bold letters in the fig-
ure). The configuration of rear groups of lights and license plate (dotted rectangle)
and the characteristic set of wheel parts are the features detectable and most easily
recognizable with additional area-based methods.

Single vehicle Aspect hypothesis View from

aspect graph: instantiated: rear left
straight from i
o, sj\ edges edges rear right

left front _ right rear group
left front O~ =~ ~ 3 ~ef lights
group of lights

go right rear

left front wheel

elliptical ~ »
central blob wheel .‘,shcence plate
! i i
1y dark tire below e left rear group of lights
vom 1 AN SB body line leftrear| \group of blob features
right! N\SE L straight wheel e i
""‘ "‘ - \ behind ellipticalr ™ artharea ur& er-
\F5 \SE \R:ﬁ rear central blob neath car, edges

right dark tire below body

Figure 11.15. Aspect conditions determine feature sets to be extracted for tracking. On
the same road in normal traffic, road curvature, distance, and the lane position relative to
the subject’s own lane are the most essential parameters; traffic moving in the same or in
the opposite direction exhibits rear/front parts of vehicles. On crossroads, views from the
side predominate. The situation shown is typical for passing a vehicle in right-hand traffic.

Getting good estimates for the velocity components needed for each second-
order dynamic model is much harder. Again, trusting in good convergence behav-
ior leads to the easy solution, in which all velocity components are initialized with
zeros. Faster convergence may be achieved if an approximate estimation of the
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speed components can be achieved in the initial observation period of a few cycles;
this is especially true if the corresponding elements of measurement covariance are
set large and system covariance is set low (high confidence in the correctness of
the model).

11.3.2.4 Measurement Model and Jacobian Elements

There are two essentially independent motion processes in the models given: “Lon-
gitudinal” (x,, Vo) and “lateral” states (Yo, Vyo) Of the vehicle observed. Pitching mo-
tion of the vehicle has not yet been taken into account. However, if the sensors
(cameras) have no degree of freedom for counteracting vehicle motion in pitch,
this motion will affect visual measurement results appreciably (see Section 7.3.4).
Depending on acceleration and deceleration, pitch angles of several degrees (= 0.05
mrad) are not uncommon; at 70 m distance, this value corresponds to a height
change in the real world of ~ 3.5 m for a point in the same row of the image.

Rough ground may easily introduce pitch vibrations with amplitudes around
0.25° (~ 0.005 mrad); at the same distance of 70 m, this corresponds to a 35 cm
height change or changes in look-ahead distances on flat ground in the range of 10
to 20 m (around 25 %). At shorter look-ahead distances, this sensitivity is much re-
duced; for example, at 20 m, the same vibration amplitude of 0.25° leads to look-
ahead changes of only about 1.3 m (6.5 %) for the test vehicle VaMP with camera
elevation Hx = 1.3 m above the ground; larger elevations reduce this sensitivity.

Of course, this sensitivity enters range estimation directly according to Figure
11.14. A sensitivity analysis of Equation 7.19 (with distance p instead of L) shows
that range changes (0p/00) as a function of pitch angle 6, and (6p/0zg) as a function
of image row zg go essentially with the square of the range:

Ap ~(p° IH)-A0+[p° I(H, - T -k,)]- 4z (11.13)

This emphasizes analytically the numbers quoted above for the test vehicle
VaMP. Therefore, for large look-ahead ranges, one should not rely on average val-
ues for the pitch angle. If no gaze stabilization in pitch is available, it is recom-
mended to measure lane width at the position of the lower dark-to-bright feature
(Equation 11.2) and to evaluate an estimate for range assuming that lane width is
the same as determined nearby at distance L, and to compute the initial value x, us-
ing the pinhole camera model.

The measurement model for the width of the vehicle is given by Equation 11.3;
for each single vertical edge feature, the elements of the Jacobian matrix are

f-k
%zﬂ[ﬁ],f.ky: ;

ayD ayD XD XD

(11.14)
Voo 9 (Yo | 5 =_y_g.f.|( _
K, % \ X Yoo y

It can be seen that changes in lateral feature position in the image depend on
changes of state variables in the real world by
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(ayBo/ayo)'Ayo =f 'ky'AyO/Xo;
(OYgo ! 0%,) - A%y =T K, - Yy - AX, /X

The second equation indicates that changes in range, Ax,, can be approximately
neglected for predicting lateral feature position since y, and Ax, << X,, and range is
not updated from the prediction-error Ayg, (no direct cross-coupling between lon-
gitudinal and lateral model necessary). However, since lateral position y, in the
first equation is updated by inverting the Jacobian element (dyg./dY,), small predic-
tion-errors Ayg, in the feature position in the image will lead to large increments
Ay,. Note that this sensitivity results from taking the camera coordinates only as
reference (X,). Determining y,_ relative to the local road or lane has range x, cancel
out, and the lateral position of the vehicle in its lane can be estimated as much less
noise-corrupted.

(11.15)

11.3.2.5 Statistical Parameters for Recursive Estimation

The covariance matrices Q of the system models are required as knowledge about
the process observed to achieve good convergence in recursive estimation. The co-
variance matrix of the longitudinal model has been given as Equation 2.38. For the
lateral model, one similarly obtains

T T
Q=(T J'a- (11.16)

Optimal values for o,> have been determined in numerous tests with the real ve-
hicle in closed-loop performance driving autonomously. Stable driving with good
passenger comfort has been achieved for values o,° = 0.1 (m/s®) °. A detailed dis-
cussion of this filter design may be found in [Thomanek 1996].

The statistical parameters for image evaluation determine the measurement co-
variance matrix R. Errors in row and column evaluation are assumed to be uncorre-
lated. Since lateral speed is not measured directly but only reconstructed from the
model, the matrix R can be reduced to a scalar r with

r’ =g’ (11.17)
as the variance of the feature extraction process. For the test vehicle VaMP with
transputers performing feature localization to full pixel resolution (no subpixel in-

terpolation) and with only 80 ms cycle time, best estimation results were achieved
with o,” = 2 pixel? [Thomanek 1996].

11.3.2.6 Falsification Strategies for Hypothesis Pruning

Computing power available in the early 1990s allowed putting up just one object
hypothesis for each set of features found as a candidate. The increase in computa-
tional resources by two to three orders of magnitude in the meantime (and even
more in the future) allows putting up several likely object hypotheses in parallel.
This reduces delay time until stable interpretation and a corresponding internal rep-
resentation has been achieved.
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The early jump to full spatiotemporal object hypotheses in connection with
more detailed models for object classes has the advantage that it taps into the
knowledge bases with characteristic image features and motion models without
running the risk of combinatorial feature explosion as in a pure bottom-up ap-
proach putting much emphasis on generating “the most likely single hypothesis”.
Each hypothesis allows predicting new characteristic features which can then be
tested in the next image taking into account temporal changes already predictable.
Those hypotheses with a high rate and good quality of feature matches are pre-
ferred over the others, which will be deleted only after a few cycles. Of course, it is
possible that two (or even more) hypotheses continue to exist in parallel. Increas-
ingly more features considered in parallel will eventually allow a final decision;
otherwise, the object will be published in the DOB with certain parameters recog-
nized but others still open.

An example is a trailer observed from the rear driving at low speed; whether the
vehicle towing is a truck capable of driving at speeds up to say 80 km/h or an agri-
cultural tractor with a maximal speed of say 40 km/h cannot be decided until an
oblique view in a tighter curve or performing a lane change is possible; the length
of the total vehicle is also unknown. This information is essential for planning a
passing maneuver in the future. The oblique view uncovers a host of new features
which easily allow answering the open questions. Moving laterally in one’s own
lane is a maneuver often used for uncovering new features of vehicles ahead or for
discovering the reason for unexpectedly slow moving traffic.

Once the tracking process is running for an object instantiated, the bottom-up
detection process will rediscover its features independent of possible predictions.
Therefore, the main task is to establish correspondence between features predicted
and those newly extracted. A Mahalanobis distance with the matrix A for proper
weighting of the contribution of different features of a contour is one way to go.

Let the predicted contour of a vehicle be c*, the measured one c. Its position in
the image depends on (at least) three physical parameters: distance x, lateral posi-
tion y and vehicle width B. From the best estimates for these parameters, c* is
computed for the predicted states at the time of next measurement taking. The pre-
diction-errors ¢ — c* are taken to evaluate the set of features of a contour minimiz-
ing the distance

d=(c-c*" -4 (c—c*). (11.18)

From the features satisfying threshold values for (¢ — ¢*), those minimizing d
are selected as the corresponding ones. Proper entries for A have to be found in a
heuristic manner by experiments.

It is the combination of robust simple feature extraction and high-level spatio-
temporal models with frequent bottom-up and top-down traversal of the representation
hierarchy that provides the basis for efficient dynamic vision. In this context, time and
motion in conjunction with knowledge about spatiotemporal processes constitute an
efficient hypothesis pruning device.

If both shape and motion state have to be determined simultaneously [Schick 1992]
an interference problem may occur trading shape variations versus aspect conditions;
these problems have just been tackled and it is too early to make general statements on
favorable ways to proceed. But again, observing both spatial rigidity and (dynamic)
time constraints yields the best prospects for solving this difficult task efficiently.
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11.3.2.7 Handling Occlusions

The most promising way to understand the actual traffic situation is to start with
road recognition nearby and track lane markings or road boundaries from near to
far. Since parts of these “objects” may be occluded by other vehicles or self-
occluded by curvatures of the road (both horizontally and vertically), obstacles and
geometric features on the side of the road have to be recognized in parallel for
proper understanding of “the scene”. The different types of occlusions require dif-
ferent procedures as proper behavior. A good general indicator for occlusion is
changing texture to one side of an edge and constant texture on the other side [Gib-
son 1979]; to detect this, high-resolution images are required, in general. This item
will be an important step for developing machine vision in the future with more
computing power available.

In curved and hilly terrain, driving safely until new viewing conditions allow
larger visual ranges is the only way to go. In flat terrain with horizontally curved
roads, there are situations where low vegetation obscures the direct view of the
road, but other vehicles can be recognized by their upper parts; their trajectory over
time marks the road. For example, if driving behind a slow vehicle, behind an on-
coming curve to the left, a vehicle in opposite traffic direction has been observed
over a straight stretch, and no indication of further vehicles is in sight, the vehicle
intending to pass should verify the empty oncoming lane at the corner and start
passing right away if the lane is free over a sufficiently long distance. (Note that
knowledge about one’s own acceleration capabilities as a function of speed and
visual perception capabilities for long ranges have to be available to decide this
maneuver.) In all cases of partial occlusion it is important to know characteristic
subparts and their relative arrangement to hypothesize the right object from the
limited feature set. Humans are very good in this respect, usually; the capability of
reliably recognizing a whole object from only parts of it visible is one important
ingredient of intelligence. Branches of trees or sticking snow partially occluding
traffic signs hardly hamper correct recognition of them. The presence of a car is
correctly assumed if only a small part of it and of one wheel are visible in the right
setting. Driving side by side in neighboring lanes, a proper continuous temporal
change of the gap between the front wheel (only partially visible) and fender of the
car passing will indicate an upcoming sideways motion of the car, probably need-
ing special attention for a while. Knowing the causal chain of events allows rea-
sonable predictions and may save time for proper reactions.

The capability of drawing the right conclusions from a limited set of informa-
tion visually accessible probably is one of the essential points separating good
drivers from normal or poor ones. This may be one of the areas in the long run
where really intelligent assistance systems for car driving will be beneficial for
overall traffic; early counteraction can prevent accidents and damage. (Our present
technical vision systems are far from the level of perception and understanding re-
quired for this purpose; in addition, difficult legal challenges have to be solved be-
fore application is feasible.)
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11.3.3 Recursive Estimation of Open Parameters and Relative State

The basic method has been discussed in Chapter 6 and applied to road recognition
while driving in Chapters 7 to 10. In these applications, the scene observed was
static, but appeared to be dynamic due to relative egomotion, for which the state
has been estimated by prediction-error feedback. The new, additional challenge
here is to detect and track other objects moving to a large extent (but not com-
pletely) independent of egomotion of the vehicle carrying the cameras. For safe
driving in road traffic, at least half a dozen nearest vehicles in each hemisphere of
the environment have to be tracked, with visual range depending on the speed
driven. For each vehicle (or “subject™), a recursive estimation process has to be in-
stantiated for tracking. This means that about a dozen of these have to run in paral-
lel (level 2 of Figure 5.1).

Each of these recursive estimation processes requires the integration of visual
perception. The individual subtasks of feature extraction, feature selection, and
grouping as well as hypothesis generation have been discussed separately up to
here. The integration to spatiotemporal percepts has to be achieved in this step
now. In the 4-D approach, this is done in one demanding large step by directly
jumping to internal representations of 3-D objects moving in 3-D space over time.
Since these objects observed in traffic are themselves capable of perception and
motion control (and are thus “subjects” as introduced in Chapters 2 and 3), the
relevant parts of their internal decision processes leading to actual behavior also
have to be recognized. This
corresponds to an animation - T:;':ﬁieﬁ é[i:f‘fﬁ
process for several subjects in fReal world ’ exactors ’ (methods)
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motion of their bodies. The

scene with
objects and
subjects

cameras
[

2-D features,
objects
tracked

Feature | selection
extraction i grouping

lower part of Figure 11.16 Generc ohectdasses]
H H e Object hypothesis  [“y
symbolizes the individual steps generation (4-D). |31+
. - - shape, motion state N

for establishing a perceived aspet conditors.” |

subject in the internal represen- [ L R st
tation exploiting features and SRS \: IR 1__1_1_1_
feature flow over time (upper e gr——— —
part). The percept comes into [\ - eoing:. :
existence by fusing image data S/ ... i+ Recursive estimation'(4:D animation) . " . " .
measured with generic models
from object classes stored in a

background knowledge base;

Figure 11.16 Integration of visual perception for a
single object: In the upper part the coarsely
. L grained block diagram shows conventional feature
using preQIctlon—error feed- extraction, feature selection, and grouping as well
back, this is a temporally ex- 55 hynothesis generation. The lower part imple-
tended process with adaptation  ments the 4-D approach to dynamic vision, in
of open parameters and of state  \yhjch background knowledge about 3-D shape
variables in the generic models  and motion is exploited for animating the spatio-
describing the geometric rela-  temporal scene observed in the interpretation
tions in the scene. process.
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11.3.3.1 Which Parameters/States Can Be Observed?

Visual information comes from a rather limited set of aspect conditions over a rela-
tively short period of time. Based on these poor conditions for recognition, either a
large knowledge base about the subject class has to be available or uncertainty
about the “object” perceived will be large. After hypothesizing an object/subject
under certain aspect conditions, the features available from image evaluation may
be complemented by additional features which should be visible if the hypothesis
holds. From all possible aspect conditions in road scenes, the dark area underneath
the vehicle and a left as well as a right vertical boundary on the lower part of the
body should always be visible; whether these vertical edges are detectable depends
on the image intensity difference between vehicle body and background. In gen-
eral, this contrast may be too small to be noticed at most over a limited amount of
time, due to changing background when the vehicle is moving. This is the reason
why these features (written bold in Figure 11.15) have been selected as a starting
point for object detection.

When another vehicle is seen from straight behind (SB), the vertical edges seen
are those from the left and right sides of the body; its length is not observable from
this aspect condition and is thus not allowed to be one of the parameters to be iter-
ated. When the vehicle is seen straight from the side (SR or SL), its width is unob-
servable but its length can be estimated (see Figure 11.6). Viewing the vehicle un-
der a sufficiently oblique angle, both length and width should be determinable;
however, the requirement is that the “inner” corner in the image of the vehicle is
very recognizable. This has not turned out to be the case frequently, and oscilla-
tions in the separately estimated values for length L and width B resulted [Schmid
1995]. Much more stable results have been achieved when the length of the diago-
nal (D = (L? + B%)"?) has been chosen as a parameter for these aspect conditions; if
B has been determined before from viewing conditions straight behind, the length
parameter can be separated assuming a rectangular shape and constant width. For
rounded car bodies, the real length will be a little longer than the result obtained
from the diagonal.

The yaw angle of a vehicle observed relative to the road is hard to determine
precisely. The best approach may be to detect the wheels and their individual dis-
tances to the lane marking; dividing the difference by the axle distance yields the
(tangent of the) yaw angle. Of the state variables, only the position components can
be determined directly from image evaluation; the speed components have to be
reconstructed from the underlying dynamic models.

It makes a difference in lateral state estimation whether the correct model with
Ackermann steering is used or whether independent second-order motion models
in both translational degrees of freedom and in yaw are implemented (independent
Newtonian motion components). In the latter case, the vehicle can drift sidewise
and rotate even when it is at rest in the longitudinal direction. With the Ackermann
model, these motion components are linked through the steering angle, which can
thus be reconstructed from temporal image sequences (see Section 14.6.1) [Schick
1992]. If phases of standing still with perturbations on the vehicle body are encoun-
tered (as in stop-and-go traffic), the more specific Ackermann model is recom-
mended.
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As mentioned before, motion of other vehicles can be described relative to the
subjet vehicle or relative to the local road. The latter formulation is less dependent
on perturbations of the vehicle body and thus is preferable.

11.3.3.2 Internal Representations

Each object hypothesis is numbered consecutively and stored with time of installa-
tion marking the observation period in local memory first for checking the stability
of the hypothesis; all parameters and valid state variables actually are stored in
specific slots. These are the same as available for publication to the system after
the hypothesis has become more stable within a few evaluation cycles; in addition,
information on the initial convergence/divergence process is stored such as: per-
centage of predicted features actually found, time history of convergence criteria
including variance, etc. When certain criteria are met, the hypothesis is published
to the overall system in the dynamic database (DDB, renamed later in dynamic ob-
ject database, DOB); all valid parameters and state variables are stored in specific
slots. Special state variables may be designated for entry into a ring buffer of size
nge; this allows access to the ngp latest values of the variable for recognizing time
histories. The higher interpretation levels of advanced systems may be able to rec-
ognize the onset of maneuvers looking at the time history of characteristic vari-
ables.

Other subsystems can specify information on objects they want to receive at the
earliest date possible; these lists are formed by the DOB manager and sent to the
receiver cyclically. (To avoid time delays too large for stable reaction, some pre-
ferred clients receive the information wanted directly from the observation special-
ist in parallel.)

11.3.3.3 Controlling and Monitoring the Estimation Process

Each estimation process is monitored steadily through several goodness criteria.
The first is the count of predicted features for which no corresponding measured
feature could be established. Usually, obtaining a few times (factor of 2 to 4) the
amount of features minimally required for good observation is tried. If less than a
certain percentage (say, 70%) of these features has no corresponding feature meas-
ured, the measurement data are rejected altogether and estimation proceeds with
pure prediction according to the dynamic model. Confidence in the estimation re-
sults is decreased; Figure 11.17 ﬂ‘
shows a time history of the confi- o
dence measure from [Thomanek
1996]. After initialization, confi-
dence level Vg is low for several
cycles until convergence data allow [ | Je. Time ¢
lifting it to full confidence Vy; if

not sufficiently many correspond-  Figure 11.17. Time history of confidence
ing features can be found, confi-  measure in object tracking: Vi full confi-
dence is decreased to level Vp. If  dence, V; confidence from prediction only;
this occurs in several consecutive Vg confidence for initialization.
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cycles, confidence is completely lost and goes to zero (termination of tracking).

Monitoring is done continuously for all tracking processes running. Figure
11.18 shows a schematic diagram implemented in the transputer system of the mid-
1990s. The vision system has two blocks: One for the front hemisphere with two
cameras using different focal lengths (lower left in figure with paths 1 and 2, the
latter not shown in detail) and one for the rear hemisphere (lower right, paths 3 and
4, only the latter is detailed). Objects are sorted and analyzed from near to far for
handling occlusions in a natural way. For each image stream, a local object ad-
ministration is in place. This is the unit communicating estimation results to the
rest of the system, especially to the global object administration process (center
top). Feature occlusion in the teleimage by objects tracked in the wide-angle im-
ages has to be resolved by this agent. It also has to check the consistency of the in-
dividual results; for example, very often the vehicle ahead in the subject’s lane is
the same in the tele- and the wide-angle image. In a more advanced system, this
fact should be detected automatically, and a single estimation process for this vehi-
cle should be fed with features from the two image streams; lacking time has not
allowed realizing this in the “Prometheus” project.

J
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Figure 11.18. Structure and data flow of second-generation dynamic vision system for
ground vehicle perception realized with 14 transputers (see Figure 11.19) in test vehicles
VaMP and VITA_2 [Thomanek 1996]
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All processes work with models from the background data base for generic ob-
ject classes (top left in Figure 11.18) and feed results into the DOB (top right).

This detailed visualization of the obstacle recognition subsystem has to be ab-
stracted on a higher level to show its embedding in the overall automatic visual
control system developed and demonstrated in the Prometheus-project; beside ob-
stacle recognition, other vision components for road recognition [Behringer 1996],
for 3-D shape during motion [Schick 1992], for moving humans [Kinzel 1995], and
for signal lights [Tsinas 1997] were developed. This was the visual perception part
of the system that formed the base for the other components for viewing direction
control [Schiehlen 1995], for situation assessment [Hock 1994], for behavior decision
[Maurer 2000], and for vehicle control [Briidigam 1994].

Figure 11.19 shows the overall system, largely based on transputers, in coarse
resolution; this was the system architecture of the second-generation vision sys-
tems of UniBwM. Here, we just discuss the subsystem for visual perception with
the cameras shown in the upper left, and the road and obstacle perception system
shown in the lower right corners. The upper right part for system integra-
tion/locomotion control will be treated in Chapters 13 and 14.
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Figure 11.19. Overall system architecture of second-generation vision system based
on transputers (about 60 in total) in VaMP: Road with lane markings and up to 12 ve-
hicles, 6 each in front and rear hemisphere, could be tracked at 12.5 Hz (80 ms cycle
time) with four cameras on two yaw platforms (top left). Blinking lights on vehicles
tracked could be detected with the subsystem in the lower left of the figure.

11.3.4 Experimental Results

From a system architecture point of view, the dynamic database (DDB) was intro-
duced as a flexible link and distributor allowing data input from many different de-
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vices. These data were routed to all other subsystems; any type of processor or ex-
ternal computer could communicate with it.

Images used were 320 x 240 pixels from every fourth field (every second frame,
only odd or even fields); for intensity images coded with 1 byte/pixel, this yields a
video data input rate into the computer system of about 1MB/s for each video
stream. A total of 4 MB/s had to be handled on the two video buses for four cam-
eras shown in the bottom of the figure. The fields of view of these cameras looking
to the front and rear hemispheres can be seen for the front hemisphere in Figure
11.20; the ratio of focal lengths of the

cameras was about 3.2 which seemed wide angle
optimal for observing the first two rows /
of vehicles in front. The system was de- = = /

signed for perceiving the environment ) ) )= I=

in three neighboring lanes on high- — — .—. \
speed roads with unidirectional traffic.

A more detailed view of the vision
part of the system with the video busses
at the bottom, realized exclusively on  Figure 11.20. Bifocal vision of test vehi-
about four dozen transputers, can be cle VaMP for high-speed driving and
seen in Figure 11.21. In addition to the  larger look-ahead ranges (see Figure 1.3
intensity images, one color image  for a picture of the ‘vehicle eye’ with
stream from one of the front cameras  two finger cameras on a single axis plat-
could be sent via a separate third bus to ~ form for gaze control in yaw)
the unit for signal light analysis of the
vehicle directly ahead (lower left corner in Figure 11.19 [Tsinas 1997]).

The arrangement of subsystems is slightly different in Figures 11.19 and 11.21.
The latter shows more organizational details of the distributed transputer system of
three different types (T2, T4, T8); the central role of the communication link (CL)
developed as a separate unit [von Holt 1994] is emphasized here. Object detection
and tracking (ODT) has been realized with 14 transputers: Two T4 (VPU) for data
input from the two video buses, for data distribution into the four parallel paths
analyzing one image stream each and for graphic output of results as overlay in the
images (lower right); eight T2 (16-bit processors) performed edge feature extrac-
tion with the software package KRONOS written in the transputer programming
language “Occam” (see Section 5.2 and [Thomanek, DDickmanns 1992]). Four T8
served as “object processors” (OP) on which recursive estimation for each object
tracked and the administrative functions for multiple objects were realized.

The data flow rate from ODT and RDT into the DDB compared to the video rate
is reduced by about two to three orders of magnitude (factor of ~ 300); in absolute
terms it is in the range 10 to 20 KB/s for ten vehicles tracked. With roughly 1 KB/s
data rate per vehicle tracked at 12.5 Hz, time histories of a few state variables can
easily be stored over tens of seconds for maneuver recognition at higher system
levels. (This function was not performed with the transputer system in the mid-
1990s.)
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Figure 11.21. Realization of second-generation vision system with distributed tran-
sputers of various types: 16-bit processors (designated by squares) were used for fea-
ture extraction and communication; 32-bit processors (rectangles) were used for num-
ber crunching. Each transputer has four direct communication links for data exchange,
making it well suited for this type of distributed system.

Local object administration had to detect inconsistencies caused by two proc-
esses working on different images but tracking the same vehicle. It also had to
handle communication with other modules for exchanging relevant data. In addi-
tion, as long as a situation assessment module was not in operation on a higher
level, it determined the relevant object for “vehicle control” to react to.

11.3.4.1 Distance Keeping (Convoy Driving)

Figure 11.22 shows a situation with the test vehicle VVaMP driving in the center
lane of a three-lane Autobahn; the vision system has recognized three vehicles in
each image (wide-angle at left, teleimage on the right). However, the vehicle in the
lane driven is the same in both images, while in the neighboring lanes, the vehicles
picked are different ones. Of course, in the general case, some vehicles in the
neighboring lanes may also be picked in both the wide angle and the teleimage;
these are the cases in which local supervision has to intervene and to direct the re-
cursive estimation loops properly. In the situation shown (left image), if the subject
vehicle passes the truck seen to the right nearby, but the black car in front remains
visible in the teleimage (say by a slight curve to the left), the case mentioned would
occur. The analysis process of the teleimage would have to be directed to track the
white truck (partially occluded here) in front of the black car; this car in turn would
have to be tracked in the wide-angle image.



368 11 Perception of Obstacles and Vehicles

Figure 11.22. Five objects tracked in front hemisphere; in the own lane only the vehi-
cle directly ahead can be seen (by both cameras). In neighboring lanes, the tele camera
sees the second vehicle in front.

It can be seen that the vehicles in front occlude a large part of the road bounda-
ries and of lane markings further away. It does not make sense that the road recog-
nition process tries to find relevant features in the image regions covered by other
vehicles; therefore, these regions are communicated from ODT to RDT and are ex-
cluded in RDT from feature search.

Range estimation by monocular vision has encountered quite a number of skep-
tical remarks from colleagues since direct range information is completely lost in
perspective mapping. However, humans with only one eye functional have no dif-
ficulty in driving a road vehicle correctly and safely.

To quantify precisely the accuracy achievable with monocular technical vision
after the 4-D approach, comparisons with results from laser range finders (LRF) in
real traffic have been performed. An operator pointing a single beam LRF steadily
onto a vehicle also tracked by the vision system was the simplest valid method for
obtaining relevant data.

Figure 11.23 shows a comparison between range estimation results with vision
(ODT as discussed above) and with a single-beam laser range finder pointed at the
object of relevance. It is seen that, except for a short period after the sign change of
relative speed (lower part), the agreement in range estimation is quite good (error
around 2% for ranges of 30 to 40 m). For ranges up to about 80 m, the error in-
creased to about 3%. The lower part in the figure shows that in the initial transient
phase, reconstruction (observation) of relative speed exhibits some large deviations
from reference values measured by a LRF. Speed from a LRF is a derived variable
also, but it is obtained at a higher rate and smoothed by filtering; it is certainly
more accurate than vision. The right subfigure for reconstructed relative speed
(range rate) shows strong deviations during the initial transient phase, starting with
the initial guess “0”, till about 2 seconds after hypothesis generation.

The heavy kinks at the beginning are due to changing feature correspondences
over time until estimation of vehicle width has stabilized. After the transients have
settled, visual estimation of relative speed is close to the LRF-based one. These re-
sults are certainly good enough for guiding vehicles only by machine vision; due to
increasing angles for decreasing range between features separated on the body sur-
face by a constant distance, accuracy of monocular vision becomes better when it
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Figure 11.23. Comparison of results in range estimation between a single-beam, accu-
rately pointed laser range finder and dynamic monocular vision after the 4-D approach
in a real driving situation on a highway

is most needed (before a possible touch or crash). The results shown were achieved
in 1994 with the transputer system described.

Migration to new computer hardware: In 1995, replacing transputers within the
ODT block by PowerPC processors (Motorola 601) with more than ten times the
processing power per unit, evaluation frequency could be doubled (25 Hz) and the
number of processors needed was reduced by a factor of 6. With this system, the
long distance trip to the city of Odense, Denmark, mentioned in Section 9.4.2.5,
was performed in the same year.

Computing power per general-purpose microprocessor kept increasing at a fast
pace in these years. Since high-performance networks for fast data exchange be-
tween these processors also became available and the more powerful transputers
did not materialize, the third-generation vision system was started in 1997 on the
basis of “commercial-off-the-shelf “ (COTS) hardware, Intel Pentium®. One rack-
mounted PC system sufficed for doing the entire road recognition; a second was
used for bifocal obstacle recognition. Taking all pixels digitized in only odd or
even fields (25 Hz) allowed increasing the resolution to about 770 pixels per row
with 40 ms cycle time; vertical resolution was unchanged.

Obiject detection and tracking with COTS-PC systems: Figure 11.24 shows
tracking of two cars in a high-resolution image with edge extraction in intelligently
controlled search windows based on predictions from spatiotemporal models run-
ning at 40 ms cycle time (25 Hz).

The higher tracking frequency in connection with high image resolution allowed
robust tracking performance at moderate cost. For the same performance level, the
COTS system has been purchased for ~ 20% of the cost of a custom-designed sys-
tem used before.
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Figure 11.24. Object tracking with a COTS-PC system at the turn of the century. The
software system applied for intelligently controlled edge extraction was CRONOS.

At about the same time, the first systems for Automatic Cruise Control (ACC)
came on the market based on radar for distance measurement. The radar principle
allows good measurement results for range (and range rate by smoothed differenc-
ing), but poor lateral localization and relatively many false alarms; road and lanes
cannot be recognized by radar, in general. So it was quite natural that a combina-
tion of radar and vision has been investigated to improve results [Hofmann et al.
2003].

Figure 11.25 shows a snapshot of a scene on the Autobahn where the subject
vehicle is laterally controlled by a human driver in the third lane (leftmost); only
longitudinal control is done fully automatically based on the fused evaluation re-
sults of radar and vision. Radar is used for hypothesis generation and range estima-
tion; vision checks all of these hypotheses for objects (vehicles) and eliminates
those that cannot be substantiated by corresponding sets of visual features. For
those confirmed, their precise lateral extension of the lower part and their positions
relative to the lanes are estimated. The reference vehicle for distance keeping is
marked by a red rectangle (at the left in the wide-angle image, left part of figure, at
the center in the teleimage, right part of figure).

Other vehicles recognized are marked by a light blue rectangle (center of left
image). Lane markings recognized are also painted into the image as overlays. The

Figure 11.25. Bifocal lane and object tracking with a COTS-PC system after object can-
didates have been detected by radar, including false alarms which have to be rejected
based on (comparatively high-resolution) vision [Hofmann 2004]
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bright (yellow) line at the center of the image displays the vertical curvature esti-
mated by vision; the outer parts mark the reference “zero”, and the central part
moves up and down for upward or downward curvature. At the moment shown, a
slight negative vertical curvature (downward) has been estimated. This vertical
curvature component is necessary for obtaining consistent range results by vision
and radar; recall that look-ahead range depends strongly on vertical curvature (see
Section 9.2).

When the driver changes lane, the vi-

Error ellipse radar
———— N Error ellipse

sion system automatically switches to the — -—-ssziiiiess e Yvision
new lane and picks it as reference. Figure Tt o s

11.26 schematically sketches the advan-
tage in accuracy of joint radar and vision
evaluation. This development is being
continued in industry towards products for
the automotive market in the near future.

Figure 11.26. Schematic visualization
of advantages in hybrid radar and vi-
sion sensing: Improved accuracy be-
side reduction in false alarm rate

Road scene recognition with region-

based methods added: The computing power of PCs is sufficient nowadays for
analyzing entire road scenes including lane and vehicle recognition in real time. In
Section 5.3, the corresponding methods developed by Hofmann at UniBwM and
the author have been described. Merged results for adjacent edge elements have
been given in Figure 5.44. Merging shaded regions across search stripes yields
homogeneous 2-D blobs. Figure 11.27 shows a typical scene with the sets of blobs
and edges extracted with the Hofmann operator.

Figure 11.27. Example of joint detection of edges (left) and homogeneous regions
(right) in vertical search with ‘Hofmann operator’. The vertical centers of homogeneous
regions are marked with different colors [Hofmann 2004].

Corners becoming available with the UBM-method (Section 5.3.3) at little addi-
tional cost allow making object tracking with the unified feature set much more ro-
bust than achievable up to now in real-time vision.

Vehicles under oblique viewing conditions: Vehicles in neighboring lanes or fur-
ther away on curved roads may appear as rather complex arrangements of simple
features, if all types of road vehicles such as trucks, tractors with trailers, tanker, or
recreation vehicles beside cars are taken into account. The most characteristic set
of subobjects or groups of features for all of these vehicles are the pairs of wheels
they need for stable driving (except the rare tricycles hardly seen in normal traffic).
Recognizing these wheels under partially occluded conditions therefore is essential
for telling vehicles apart from other objects (obstacles like boxes) on the road.
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For this purpose, [Hofmann 2004] has developed a special wheel detection algo-
rithm described in Section 11.3.1.2, (see Figure 11.13). Figure 11.28 shows results
of its application in a highway scene. Since several pixels are lost for template-
based evaluation at the horizontal image boundaries, wheels in these regions are
not detected.

Figure 11.28. Confirming vehicle recognition under oblique viewing conditions
based on characteristic wheel patterns. Area-based feature correlation in a 2-D
search helps finding wheels by characteristic bright-dark patterns.

Even in image sequences with relatively poor resolution, the results look prom-
ising; uncertainties in the wide-angle image may be resolved by directing the tele-
camera toward this region.

11.3.4.2 Lane Change and Passing

Figure 11.29 shows a situation after passing. (The poor quality is to a large part
due to the state of technology available for miniaturized cameras and to the side
constraints on image evaluation in the test vehicle one and a half decade ago.) In-
formation about vehicles in neighboring lanes is essential when running up to a

tele image

Figure 11.29. Rear-looking view of bifocal camera set (VaMP 1994) while changing
back into the old lane after passing. It has to be checked whether the vehicle passed has
accelerated in the meantime and whether the range gained is safe for this maneuver.
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slower vehicle in front and when one does not want to make a transition to convoy
driving at this slow speed. After passing another vehicle, a similar situation exists
for changing back to the right lane (in right-hand traffic). In these cases, not only
other vehicles to the side or ahead in the neighboring lane have to be detected, but
also vehicles behind (approaching or having been passed).

The methods applied for evaluation of image sequences from the rear cameras
are very similar to those from the front for the simple features used. When groups
of light or the license plate are to be detected, specific generic shape models should
be used; the aspect conditions (see Figure 11.15) for hypothesis generation and
wheel patterns have to be adapted correspondingly, of course.

To detect vehicles efficiently in
the neighboring lane nearby, Rieder
(2000) has studied several ap-
proaches. One of the more promising
ones is shown in Figures 11.30 and
11.31. The areas to be monitored are
defined in 3-D space relative to the
subject’s body such that without an- -
other vehicle only lane surface can be

. s Figure 11.30. Definition of regions for de-
seen (Figure 11.30); this lane surface tecting passing vehicles: In the road direc-

is assumed to be approximately ho- tion, extended vertical rectangles of prede-
mogeneous, usually. The threshold  fineq neight are positioned (virtually) side
for homogeneity has to be chosen  py sige in the near range along the
correspondingly. Outside the lane,  neighboring lane just above the ground

the background will be noisy and im-

age content would change at high fre-

quency, in general. The idea is that vehicles with their dark tires and body bright-
ness will differ from the average gray values of the road surface most of the time.
This discrepancy is an indication of their presence.

The height of the rectangles defined determines lateral resolution in position for
the feature detected; however, it should allow sufficiently many pixels within the
rectangle for reliable results. The features checked over time are the sums of pixel
values in the columns of each rectangle sampled. This compromise has to be found
depending on the specific task. In all of the rectangular regions (distorted in the
image by perspective projection), the sum of local pixel intensity is formed. If
these values are approximately constant, this means that the subject vehicle passes
through a region with a homogeneous surface in the neighboring lane. If these val-
ues change over an extended region with consistent motion to the right, a vehicle
can be assumed to pass through this region. In Figure 11.31, these columns are
marked by dashed dark lines.

The number of columns selected for evaluation (ten here) determines total com-
puting load and spatial resolution for detection (lower part). For a homogeneously
looking lane, these individual sums are nearly constant (shown brighter, to the
right). This detection procedure is not claimed to be especially accurate; it is meant
for quick and efficient detection of candidates. Changing gaze direction toward this
region will allow more precise vehicle recognition with the methods discussed pre-
viously, especially wheel detection, which will allow precise observation of the
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lateral motion of the vehicle relative to its lane. This situation is one of the few
where stereointerpretation of binocular images is a big advantage if no range find-
ers (radar or laser) are available.

Figure 11.31. A vehicle moving through the columns in the image most likely will pro-
duce changing values of the sums; these columns are marked as dashed dark lines. Their
vertical extension symbolized distance at the lane boundary. To determine range to a
changing feature, its horizontal distance from the lane marking has to be taken into ac-
count.

11.3.4.3 Stop-and-Go Traffic

Stop-and-go-behavior is a basic maneuvering capability when driving behind a
single vehicle in front. The first fully vision-based demonstrations of this capability
were done in 1991 in the framework of an intermediate demo for the project Pro-
metheus in Turino, Italy, on a separate test track. Performing this maneuver safely
in an urban environment with a multitude of different moving subjects (cars, vans,
trucks, bicycles, humans, and animals of all kinds) is a different challenge not yet
solved. The U.S.-Defense Advanced Research Project Agency (DARPA) has set a
price of $ 2 million for the autonomous vehicle capable of driving a 60-mile dis-
tance in an urban environment in the least amount of time (below 6 hours as addi-
tional constraint); this shall include reacting to other vehicles, also in stop-and-go
traffic. The final test of this “Urban Grand Challenge” with a maximal allowed
speed of 20 mph is planned for the 3" of November 2007 in a mock-up town in the
United States.

Car manufacturers and suppliers to the automotive industry have been consider-
ing the extension of adaptive cruise control (ACC) to stop-and-go-driving for some
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time. Most of these activities are based on two different types of radar (long- and
short range, different frequencies) and on various types of laser range finders
(LRF). Multiple planes in LRF with both scanning and multiple beam designs are
under consideration. Typical angular resolutions for modern LRF designs go down
to about 0.1° (= 2 mrad). This means that at 50 m distance, the resolution is about
10 cm, a reasonable value for slow speeds driven. If interference problems with ac-
tive sensing can be excluded, these modern LRF sensors just being developed and
tested may be sufficient to solve the problem of obstacle recognition.

However, human vision and multifocal, active technical vision can easily ex-
ploit ten times this resolution with systems available today. It will be interesting to
observe, which type of technical vision system will win the race for industrial im-
plementation in the long run. In the past and still now, computing power and
knowledge bases needed for reliable visual perception of complex scenes have
been marginal.

11.3.5 Outlook on Object Recognition

With several orders of magnitude in computing power per processor becoming
available in the next one or two decades (las in the past according to “Moore’s
law”), the prospects are bright for high-resolution vision as developed by verte-
brates. Multifocal eyes and special “glasses”, under favorable atmospheric condi-
tions, will allow passive viewing ranges up to several kilometers. High optical
resolution in connection with “passive” perception of colors and textures will allow
understanding of complex scenes much more easily than with devices relying on
reflected electromagnetic radiation sent out and reflected at far distances.

Generations of researchers and students will compile and structure the knowl-
edge base needed for passive vision based on spatiotemporal models of motion
processes in the world. Probably other physical properties of light like direction of
polarization or other spectral ranges may become available to technical vision sys-
tems as for some animal species. This would favor passive vision in the sense of no
active emission of rays by the sensor. Active gaze control is considered a “must”
for certain (if not most) application areas; Near (NI) or far infrared radiation are
such fields of practical importance for night vision and night driving.

In the approach developed, bifocal vision has become the standard for low to
medium speeds; differences in focal length from three to about ten have been in-
vestigated. It seems that trifocal vision with focal lengths separated by a factor of 3
to 5 is a good way to go for fast driving on highways. If an object has been de-
tected in a wide-angle image and is too small for reliable recognition, attention fo-
cusing by turning the camera with a larger focal length onto the object will yield
the improved resolution required. Special knowledge based algorithms (rules and
inference schemes) are required for recognizing the type of object discovered.
These object recognition specialists may work at lower cycle times and analyze
shape details while relative motion estimation may continue to be done in parallel
at high frequency with low spatial resolution exploiting the “encasing box” model.
This corresponds to two separate paths to the solution of the “where” problem and
of the “what” problem.
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Systematic simultaneous interpretation of image sequences on different pyra-
mid levels of images has not been achieved in our group up to now, though data
processing for correlation uses this approach successfully, e.g., [Burt 1981; Mandel-
baum et al. 1998]. This approach may be promising for robust blob- and corner
tracking and for spatiotemporal interpretation in complex scenes.

For object detection in the wide-angle camera, characteristic features of mini-
mum size are required. Ten to twenty pixels on an object seem to be a good com-
promise between efficiency and accuracy to start with. Control of gaze and atten-
tion can then turn the high-resolution camera to this region yielding one to two
orders of magnitude more pixels on this object depending on the ratio of focal
lengths in use. This is especially important for objects with large relative speed
such as vehicles in opposite traffic direction on bidirectional high-speed roads.

Another point needing special attention is discovery of perturbations: Sudden
disappearance of features predicted to be very visible, usually, is an indication of
occlusion by another object. If this occurs for several neighboring features at the
same time, this is a good hint to start looking for another object which has newly
appeared at a shorter range. It has to be moving in the opposite direction relative to
the side where the features started disappearing. If just one feature has not been
measured once, this may be due to noise effects. If measurements fail to be suc-
cessful at one location over several cycles, there may be some systematic discrep-
ancy between model and reality and, therefore, this region has to be scrutinized by
allocating more attention to it (more and different feature extractors for discovering
the reason). This will be done with a new estimation process (new object hypothe-
sis) so that tracking and state estimation of the known object is not hampered. First
results of systematic investigations for situations with occlusions were obtained in
the late 1980s by M. Schmid and are documented in [Schmid 1992]. This area needs
further attention for the general case.
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In the previous chapters, it has been shown that vision systems have to satisfy cer-
tain lower bounds on requirements to cover all aspects of interest for safe driving if
they shall come close to human visual capabilities on all types of roadways in a
complex network of roads, existing in civilized countries.

Based on experience in equipping seven autonomous road vehicles with dy-
namic machine vision systems, an arrangement of miniature TV cameras on a
pointing platform was proposed in the mid-1990s which will satisfy all major re-
quirements for driving on all types of roads. It has been dubbed multifocal, active,
reflex-like reacting vehicle eye (MarvEye). It encompasses the following proper-
ties:

1. large binocular horizontal field of view (e.g., > 110°),

2. bifocal or multifocal design for region analysis with different resolution in par-
allel,

3. ability of view fixation on moving objects while the platform base also is mov-
ing; this includes high-frequency, inertial stabilization (f > 200 Hz),

4. saccadic control of region of interest with stabilization of spatial perception in
the interpretation algorithms;

5. capability of binocular (trinocular) stereovision in near range (stereo base simi-
lar to the human one, which is 6 — 7 cm);

6. large potential field of view in horizontal range (e.g., 200° with sufficient reso-
lution) such that the two eyes for the front and the rear hemisphere can cover the
full azimuth range (360°); stereovision to the side with a large stereo base be-
comes an option (longitudinal distance between the “vehicle eye” looking for-
ward and backward, both panned by ~ 90° to the same side).

7. high dynamic performance (e.g., a saccade of ~ 20° in a tenth of a second).

In cars, the typical dimension of this “vehicle eye” should not be larger than about
10 cm; two of these units are proposed for road vehicles, one looking forward, lo-
cated in front of the inner rearview mirror (similar to Figure 1.3), the other one
backward; they shall feed a 4-D perception system capable of assessing the situa-
tion around the vehicle by attention control up to several hundred meters in range.

This specification is based on experience from over 5000 km of fully autono-
mous driving of both partners (Daimler-Benz and UniBwM) in normal traffic on
German and French freeways as well as state and country roads since 1992. A hu-
man safety pilot — attentively watching and registering vehicle behavior but other-
wise passive — was always in the driver’s seat, and at least one of the developing
engineers (Ph.D. students with experience) checked the interpretations of the vision
system on computer displays.
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Based on this rich experience in combination with results from aeronautical ap-
plications (onboard autonomous visual landing approaches till touch down with the
same underlying 4-D approach), the design of MarVEye resulted. This chapter first
discusses the requirements underlying the solution proposed; then the basic design
is presented and sensible design parameters are discussed. Finally, steps towards
first realizations are reviewed. Most experimental results are given in Chapter 14.

12.1 Structural Decomposition of the Vision Task

The performance level of the human eye has to be the reference, since most of the
competing vision systems in road vehicle guidance will be human ones. The design
of cars and other vehicles is oriented toward pleasing human users, but also ex-
ploiting their capabilities, for example, look-ahead range, reaction times, and fast
dynamic scene understanding.

12.1.1 Hardware Base

The first design decision may answer the following: Is the human eye with its char-
acteristics also a good guide line for designing technical imaging sensors, or are the
material substrates and the data processing techniques so different that completely
new ways for solving the vision task should be sought? The human eye contains
about 120 million light-sensitive elements, but two orders of magnitude fewer fi-
bers run from one eye to the brain, separated for the left and the right halves of the
field of view. The sensitive elements are not homogeneously distributed in the eye;
the fovea is much more densely packed with sensor elements than the rest of the
retina. The fibers running via “lateral geniculate” (an older cerebral structure) to
the neo-cortex in the back of the head obtain their signals from “receptive fields”
of different types and sizes depending on their location in the retina; so preprocess-
ing for feature extraction is already performed in retinal layers [Handbook of Physi-
ology: Darian-Smith 1984].

Technical imaging sensors with some of the properties observed in biological
vision have been tried [Debusschere et al. 1990; Koch 1995], but have not gained
ground. Homogeneous matrix arrangements over a very wide range of sizes are
state of the art in microelectronic technology; the video standard for a long time
has been about 640 x 480 =~ 307 000 pixels; with 1 byte/pixel resolution and 25 Hz
frame rate, this results in a data rate of = 7.7 MB/s. (Old analogue technology
could be digitized to about 770 x 510 pixels, corresponding to a data rate of about
10MBY/s.) Future high-definition TV intends to move up to 1920 x 1200 pixels with
more than 8-bit intensity coding and a 75 Hz image rate; data rates in the giga-
bit/second-range will be possible. In the beginning of real-time machine vision
(mid-1980s) there was much discussion whether there should be preprocessing
steps near the imaging sensors as in biological vision systems; “massively parallel
processors” with hundreds of thousands of simple computing elements have been
proposed (DARPA: “On Strategic Computing” [Klass 1985; Roland, Shiman 2002].
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With the fast advancement of general-purpose microprocessors (clock rates mov-
ing from MHz to GHz) and communication bandwidths (from MB/s to hundreds of
MBY/s) the need for mimicking carbon-based data processing structures (as in biol-
ogy) disappeared for silicon-based technical systems.

With the advent of high-bandwidth communication networks between multiple
general-purpose processors in the 1990s, high-performance, real-time vision sys-
tems became possible without special developments for vision except frame grab-
bers. The move to digital cameras simplified this step considerably. To develop
methods and software for real-time vision, relatively inexpensive systems are suf-
ficient. The lower end video cameras cost a few dollars nowadays, but reasonably
good cameras for automotive applications with increased dynamic intensity range
have also come down in price and do have advantages over the cheap devices. For
later applications with much more emphasis on reliability in harsh environments,
special “vision hardware” on different levels may be advantageous.

12.1.2 Functional Structure

Contrary to the hardware base, the functional processing steps selected in biologi-
cal evolution have shown big advantages: (1) Gaze control with small units having
low inertia is superior to turning the whole body. (2) Peripheral-foveal differentia-
tion allows reducing maximal data rates by orders of magnitude without sacrificing
much of the basic transducer-based perception capabilities if time delays due to
saccadic gaze control are small. (Eigenfrequencies of eyes are at least one order of
magnitude higher than those for control of body movements.) (3) Inertial gaze sta-
bilization by negative feedback of angular rates, independent of image evaluation,
reduces motion blur and extends the usability of vision from quasi-static applica-
tions for observation to really dynamic performance during perturbed egomotion.
(4) The construction of internal representations of 3-D space over time based on
previous experience (models of motion processes for object classes) triggered by
visual features and their flow over time allows stabilizing perception of “the
world” despite the very complex data input resulting from saccadic gaze control:
Several frames may be completely noninterpretable during saccades.

Note that controllable focal length on one camera is not equivalent to two or
more cameras with different focal lengths: In the latter case, the images with dif-
ferent resolution are available in parallel at the same time, so that interpretation can
rely on features observed simultaneously on different levels of resolution. On the
contrary, changing focal length with a single camera takes time, during which the
gaze direction in dynamic vision may have changed. For easy recognition of the
same groups of features in images with different resolution, a focal length ratio of
three to four experimentally yields the best results; for larger factors, the effort of
searching in a high-resolution image becomes excessive.

The basic functional structure developed for dynamic real-time vision has been
shown in Figure 5.1. On level 1 (bottom), there are feature extraction algorithms
working fully bottom-up without any reference to spatiotemporal models. Features
may be associated over time (for feature flow) or between cameras (for stereointer-
pretation).
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On level 2, single objects are hypothesized and tracked by prediction-error feed-
back; there are parallel data paths for different objects at different ranges, looked at
with cameras and lenses of different focal lengths. But the same object may also be
observed by two cameras with different focal lengths. Staging focal lengths by a
factor of exactly 4 allows easy transformation of image data by pyramid methods.
On all of these levels, physical objects are tracked “here and now”; the results on
the object level (with data volume reduced by several orders of magnitude com-
pared to image pixels and features) are stored in the DOB. Using ring buffers for
several variables of special interest, their recent time history can be stored for
analysis on the third level which does not need access to image data any longer, but
looks at objects on larger spatial and temporal scales for recognition of maneuvers
and possibly cues for hypothesizing intentions of subjects. Knowledge about a sub-
ject’s behavioral capabilities and mission performance need be available only here.

The physical state of the subject body and the environmental conditions are also
monitored here on the third level. Together they provide the background for judg-
ing the quality and trustworthiness of sensor data and interpretations on the lower
levels. Therefore, the lower levels may receive inputs for adapting parameters or
for controlling gaze and attention. (In the long run, maybe this is the starting point
for developing some kind of self-awareness or even consciousness.)

12.2 Vision under Conditions of Perturbations

It is not sufficient to design a vision system for clean conditions and later on take
care of steps for dealing with perturbations. In vision, the perturbation levels toler-
able have to be taken into account in designing the basic structure of the vision sys-
tem from the beginning. One essential point is that due to the large data rates and
the hierarchical processing steps, the interpretation result for complex scenes be-
comes available only after a few hundred milliseconds delay time. For high-
frequency perturbations, this means that reasonable visual feedback for counterac-
tion is nearly impossible.

12.2.1 Delay Time and High-frequency Perturbation

For a time delay of 300 ms (typical of inattentive humans), the resulting phase shift
for an oscillatory 2-Hz motion (typical for arms, legs) is more than 200°; that
means that in a simple feedback loop, there is a sign change in the signal (cos
(180°) = —1). Only through compensation from higher levels with corresponding
methods is this type of motion controllable. In closed-loop technical vision systems
onboard a vehicle with several consecutive processing stages, 3 to = 10 video cy-
cles (of 40 or 33 ms duration) may elapse until the control output derived from vis-
ual features hits the physical device effecting the command. This is especially true
if a perturbation induces motion blur in some images.
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Figure 12.1. Block diagram for joint visual/inertial data collection (stabilized gaze, cen-
ter left) and interpretation; the high-frequency component of a rotational ego-state is de-
termined from integration of angular rates (upper center), while long-term stability is de-
rived from visual information (with time delay, see lower center) from objects further
away (e.g., the horizon). Gravity direction and ground slope are derived from x- and y-
accelerations together with speed measured conventionally.

This is the reason that direct angular rate feedback in pitch and yaw from sen-
sors on the same platform as the cameras is used to command the opposite rate for
the corresponding platform component. Reductions of perturbation amplitudes by
more than a factor of 10 have been achieved with a 2 ms cycle time for this inner
loop (500 Hz). Figure 12.1 shows the block diagram containing this loop: Rota-
tional rates around the y- and z-axes of the gaze platform (center left) are directly
fed back to the corresponding torque motors of the platform at a rate of 500 Hz if
no external commands from active gaze control are received. The other data paths
for determining the inertial egostate of the vehicle body in connection with vision
will be discussed below. The direct inertial feedback loop of the platform guaran-
tees that the signals from the cameras are freed from motion blur due to perturba-
tions. Without this inertial stabilization loop, visual perception capability would be
deteriorated or even lost on rough ground.

If gaze commands are received from the vision system, of course, counteraction
by the stabilization loop has to be suppressed. There have to be specific modes
available for different types of gaze commands (smooth pursuit of saccades); this
will not be treated here. The beneficial effect of gaze stabilization for a braking
maneuver with 3° of perturbation amplitude (min to max) in vehicle pitch angle is
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shown in Figure 12.2. The corresponding reduction in amplitude on the stabilized
platform experienced by the cameras is more than a factor of 10. The strong devia-
tion of the platform base from level, which is identical with vehicle body motion
and can be seen as the lower curve, is hardly reflected in the motion of the camera
sitting on the platform head (upper, almost constant curve).
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Figure 12.2. Gaze stabilization in pitch by negative feedback of angular rate for test
vehicle VaMoRs (4-ton van) during a braking maneuver

The most essential state components of the body to be determined by integration
of angular rate signals with almost no delay time are the angular orientations of the
vehicle. For this purpose, the signals from the inertial rate sensors mounted on the
vehicle body are integrated, shown in the upper left of Figure 12.1; the higher fre-
quency components yield especially good estimates of the angular pose of the
body. Due to low-frequency drift errors of inertial signals, longer term stability in
orientation has to be derived from visual interpretation of (low-pass-filtered) fea-
tures of objects further away; in this data path, the time delay of vision does no
harm. [It is interesting to note that some physiologists claim that sea-sickness of
humans (nausea) occurs when the data from both paths are strongly contradicting.]

Joint inertial/visual interpretation also allows disambiguating relative motion
when only parts of the subject body and a second moving object are in the fields of
view; there have to be accelerations above a certain threshold to be reliable, how-
ever.

12.2.2 Visual Complexity and the Idea of Gestalt

When objects in the scene have to be recognized in environments with strong vis-
ual perturbations like driving through an alley with many shadow boundaries from
branches and twigs, picking “the right” features for detection and tracking is essen-
tial. On large objects such as trucks, coarse-scale features averaging away the fine
details may serve the purpose of tracking better than fine-grained ones. On cars
with polished surfaces, disregarding the upper part and mildly inclined surface ele-
ments of the body altogether may be the best way to go; sometimes single high-
lights or bright spots are good for tracking over some period of time with given as-
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pect conditions. When the aspect or the lighting conditions change drastically,
other combinations of features may be well suited for tracking.

This is to say that image evaluation should be quickly adaptable to situations,
both with respect to single features extracted and to the knowledge base establish-
ing correspondence between groups of features in the images and the internal rep-
resentation of 3-D objects moving over time through an environment affecting the
lighting conditions. This challenge has hardly been tackled in the past but has to be
solved in the future to obtain reliable technical vision systems approaching the per-
formance level of trained humans. The scale of visual features has to be expanded
considerably including color and texture as well as transparency; partial mirroring
mixed with transparency will pose demanding challenges.

12.3 Visual Range and Resolution Required for Road
Traffic Applications

The human eyes have a simultaneous field of view of more than 180°, with coarse
resolution toward the periphery and very high resolution in the foveal central part
of about 1 to 2° aperture; in this region, the grating resolution is about 40 to 60 arc-
seconds or about 2.5 mrad. The latter metric is a nice measure for practical applica-
tions since it can be interpreted as the length dimension normal to the optical axis
per pixel at 1000 times its distance (width in meters at 1 km, in decimeters at 100
m, or in millimeters at 1 m, depending on the problem at hand). Without going into
details about the capability of subpixel resolution with sets of properly arranged
sensor elements and corresponding data processing, let us take 1 mrad as the hu-
man reference value for comparisons.

Both of the human eye and head can be turned rapidly to direct the foveal region
of the eye onto the object of interest (attention control). Despite the fast and fre-
quent viewing direction changes (saccades) which allocate the valuable high-
resolution region of the eye to several objects of interest in a time slicing multiplex
procedure, the world perceived looks stable in a large viewing range. This biologi-
cal system evolved over millennia under real-world environmental conditions: the
technical counterpart to be developed has to face these standards.

It is assumed that the functional design of the biological system is a good start-
ing point for a technical system, too: however, technical realizations have to start
from a hardware base (silicon) quite different from biological wetware. Therefore,
with the excellent experience from the conventional engineering approach to dy-
namic machine vision, our development of a technical eye continued on the well
proven base underlying conventional video sensor arrays and dynamic systems
theory of the engineering community.

The seven properties mentioned in the introduction to this chapter are detailed
here to precise specifications.
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12.3.1 Large Simultaneous Field of View

There are several situations when this is important. First, when starting from stop,
any object or subject within or moving into the area directly ahead of the vehicle
should be detectable; this is also a requirement for stop-and-go traffic or for very
slow motion in urban areas. A horizontal slice of a complete hemisphere should be
covered with gaze changes in azimuth (yaw) of about £ 35°. Second, when looking
tangentially to the road (straight ahead) at high speeds, passing vehicles should be
detected sufficiently early for prompt reaction when they start moving into the sub-
ject lane directly in front. Third, when a lane change or a turnoff is intended, simul-
taneous observation and tracking of objects straight ahead and about 90° to the side
are advantageous; with nominal gaze at 45° and a field of view (f.0.v.) > 100°, this
is achievable.

In the nearby range, a resolution of about 5 mm per pixel at 2.5 m or 2 cm at 10
m distance is sufficient for recognizing and tracking larger subobjects on vehicles
or persons (about 2 mrad/pixel); however, this does not allow reading license
plates at 10 m range. With 640 pixels per row, a single standard camera can cover
about a 70° horizontal f.o.v. at this resolution (= 55° vertically). Mounting two of
these (wide-angle) cameras on a platform with optical axes in the same plane but
turned in yaw to each side by o, ~ 20° (oblique views), a total f.o.v. for both
cameras of 110° results; the difference between half the f.o.v. of a single camera
and the yaw angle v, provides an angular region of central overlap (z 15° in the
example). Separating the two cameras laterally generates a base for binocular ste-
reo evaluation (Section 12.3.4).

The resolution of these cameras is so low that pitch perturbations of about 3°
(accelerations/decelerations) shift features by about 5% of the image vertically.
This means that these cameras need not be vertically stabilized and do not induce
excessively large search ranges; this reduces platform design considerably. The
numerical values given are just examples; they may be adapted to the focal lengths
available for the cameras used. Smaller yaw angles v, Yyield a larger stereo f.o.v.
and lower distortions from lens design in the central region.

12.3.2 Multifocal Design

The region of interest does not grow with range beyond a certain limit value; for
example, in road traffic with lane widths of 2.5 to 4 m, a region of simultaneous in-
terest larger than about 30 to 40 m brings no advantage if good gaze control is
available. With 640 pixels per row in standard cameras, this means that a resolu-
tion of 4 to 6 cm per pixel can be achieved in this region with proper focal lengths.
Considering objects of 10 to 15 cm characteristic length as serious obstacles to be
avoided, this resolution is just sufficient for detection under favorable conditions (2
to 3 pixel on this object with sufficient contrast). But what is the range that has to
be covered? Table 11.1 contains braking distances as a function of speed driven for
three values of deceleration.



12.3 Visual Range and Resolution Required for Road Traffic Applications 385

About a 240-m look-ahead range should be available for stopping in front of an
obstacle from V = 180 km/h (50 m/s) with an average deceleration of 0.6 Earth
gravity (g) or from 130 km/h (36 m/s) with an average deceleration of 0.3 g. To be
on the safe side, a 250 to 300 m look-ahead range is assumed desirable for high-
speed driving. For the region of interest mentioned above, this requires a f.o.v. of 5
to 7° or about 0.2 mrad resolution per pixel. This is one order of magnitude higher
than that for the near range. With the side constraint mentioned for easy feature
correspondence in images of different resolution (ratio of focal lengths no larger
than 4), this means that a trifocal camera arrangement should be chosen. Figure
12.3 visualizes the geometric relations.
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Figure 12.3. Fields of view and viewing ranges for observing a lateral range of 30 m
normal to the road

If lane markings of 12 cm width shall be recognizable at 200 m distance, this
requires about 2.5 pixel on the line, corresponding to an angular resolution of 0.25
mrad per pixel. For landmark recognition at far distances, this resolution is also de-
sirable. For maximal speeds not exceeding 120 km/h, a bifocal camera system may
be sufficient.

12.3.3 View Fixation

Once gaze control is available in a vision system, it may be used for purposes other
than the design goal. Designed initially for increasing the potential f.o.v. or for
counteracting perturbations on the vehicle (inertial stabilization), it can in addition
be used for gaze fixation onto moving objects to reduce motion blur and to keep
one object centered in an image sequence. This is achieved by negative visual
feedback of the deviation of the center of characteristic features from the center of
the image; horizontal and vertical feature search may be done every second image
if computing resources are low. Commanding the next orthogonal search around
the column or row containing the last directional center position has shown good
tracking properties, even without an object model installed. A second-order track-
ing model in the image plane may improve performance for smooth motion.
However, if harsh directional changes occur in the motion pattern of the object,
this approach may deteriorate the level of perturbation tolerable. For example, a
ball or another object being reflected at a surface may be lost if delay times for vis-
ual interpretation are large and/or filter tuning is set to too strong low-pass filter-
ing. Decreasing cycle time may help considerably: In conventional video with two
consecutive fields (half frames), using the fields separately but doubling interpreta-
tion frequency from 25 to 50 Hz has brought about a surprising increase in tracking
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performance when preparing the grasping experiment in orbit onboard the Space
Shuttle Columbia [Fagerer et al. 1994].

View fixation need not always be done in both image dimensions; for motion
along a surface as in ground traffic, just fixation in yaw may be sufficient for im-
proved tracking. It has to be taken into account, however, that reducing motion blur
by tracking one object may deteriorate observability for another object. This is the
case, for example, when driving through a gap between two stationary obstacles
(trees or posts of a gate). Fixation of the object on one side doubles motion blur on
the other side; the solution is reducing speed and alternating gaze fixation to each
side for a few cycles.

12.3.4 Saccadic Control

This alternating attention control with periods of smooth pursuit and fast gaze
changes at high angular rates is called “saccadic” vision. During the periods of fast
gaze changes, the entire images of all cameras are blurred; therefore, a logic bit is
set indicating the periods when image evaluation does not make sense. These gaps
in receiving new image data are bridged by extrapolation based on the spatiotem-
poral models for the motion processes observed. In this way, the 4-D approach
quite naturally lends itself to algorithmic stabilization of space perception, despite
the fast changing images on the sensor chip. Building internal representations in 3-
D space and time allows easy fusion of inertial and other conventional data such as
odometry and gaze angles relative to the vehicle body, measured mechanically.

After a saccadic gaze change, the vision process has to be restarted with initial
values derived from the spatiotemporal models installed and from the steps in gaze
angles. Since gaze changes, usually, take 1 to 3 video cycles, uncertainty has in-
creased and is reflected in the corresponding parameters of the recursive estimation
process. If the goal of the saccade was to bring a certain region of the outside
world into the f.o.v. of a camera with a different focal length (e.g., a telecamera),
the measurement model and computation of the Jacobian elements have to be ex-
changed correspondingly. Since the region of special interest also remains in the
f.o.v. of the wide-angle camera, tracking may be continued here, too, for redun-
dancy until high-resolution interpretation has become stable.

According to the literature, human eyes can achieve turn rates up to several
hundred degrees per second; up to five saccades per second have been observed.
For technical systems in road traffic applications, maximum turn rates of a few
hundred degrees per second and about two saccades per second may be sufficient.
A thorough study of controller design for these types of systems has been done in
[Schiehlen 1995]. The interested reader is referred to this dissertation for all details
in theoretical and practical results including delay time observers. Figure 12.4
shows test results in saccadic gaze control based on this work; note the minimal
overshoot at the goal position. A gaze change of 40° is finished within 350 ms (in-
cluding 67 ms delay time from command till motion onset). Special controller de-
sign minimizes transient time and overshoot.
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Figure 12.4. Saccadic gaze control in tilt (pitch) for the inner axis of a two-axis
platform in the test vehicle VaMoRs (see Figure 14.16)

12.3.5 Stereovision

At medium distances when the surface can be seen where the vehicle or object
touches the ground, spatial interpretation may be achieved relatively easily by tak-
ing into account background knowledge about the scene and integration over time;
in the very near range behind another vehicle, where the region in which the vehi-
cle touches the ground is obscured by the subject’s own motor hood, monocular
range estimation is impossible. Critical situations in traffic may occur when a pass-
ing vehicle cuts into the observer’s lane right in front; in the test vehicle VaMP, the
ground ahead was visible at a range larger than about 6 m (long motor hood, cam-
era behind center top of windshield).

Range estimation from a single, well-recognizable set of features is desirable in
this case. A stereo base like the human one (of about 6 to 7 cm) seems sufficient;
the camera arrangement as shown in Figure 1.4 (one to each side of the tele-
camera(s) satisfies this requirement; multiocular stereo with improved performance
may be achievable also by exploiting the tele-images for stereointerpretation. Us-
ing a stereo camera pair with non-parallel optical axes increases the computing
load somewhat but poses no essential difficulties; epipolar lines have to be adjusted
for efficient evaluation [Rieder 1996].

By its principle, stereovision deteriorates with range (inverse quadratic); so bin-
ocular stereo for the near range and intelligent scene interpretation for larger ranges
are nicely complementary. Figure 12.6 shows images from a trinocular camera set
(see Figure 14.16); the stereo viewing ranges, which might be used for understand-
ing vertical structure on unpaved hilly roads without markings, are shown by
dashed white lines. The stereo base was selected as 30 cm here. Slight misalign-
ments of multiple cameras are typical; their effects have to be compensated by
careful calibration which is of special importance in stereointerpretation. The tele-
camera allows detecting a crossroad from the left, here, which cannot be discov-
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ered in the wide-angle images; trinocular stereo is not possible with the pitch angle
of the telecamera given here.

Trinocular

1Stereo rangei
| Tele-
camera

Wide-angle

Wide-angle
& b right

Binocular stereo range

Figure 12.5. Sample images from MarVEye in VaMoRs with three cameras: Two wide-
angle cameras with relatively little central overlap for binocular stereo evaluation (bot-
tom); image from mild telecamera (top). Trinocular stereointerpretation is possible in
the region marked by the white rectangle with solid horizontal and dashed vertical lines.

12.3.6 Total Range of Fields of View

Large potential f.0.v. in azimuth are needed in traffic; for low-resolution imaging,
about 200° are a must at a T-junction or a road crossing without a traffic light or
round-about. If the crossroad is of higher order and allows high-speed driving, the
potential f.0.v. for high-resolution imaging should also be about 200° for checking
oncoming traffic at larger ranges from both sides. Precise landmark recognition
over time, under partial obscuration from objects being passed in the near vicinity,
will also benefit from large potential f.0.v. However, the simultaneous f.o.v. with
high resolution need not be large, since objects to be viewed with this resolution
are far away, usually; if the bandwidth of gaze control is sufficiently high, the
high-resolution viewing capability can always be turned to the object of interest be-
fore the object comes near, and thus good reactions are required.

The critical variable for gaze control, obstacle detection, and behavior decision
is the “reaction time available” T, for dealing with the newly detected object. The
critical variable is the radial speed component when the components normal to it
are small; in this case, the object is moving almost on a direct collision path. If the



12.3 Visual Range and Resolution Required for Road Traffic Applications 389

object were a point and its environment would show no features, motion would be
visually undetectable. It is the features off the optical line of sight that indicate
range rate. An extended body, whose boundary features move away from each
other with their center remaining constant, thus indicates decreasing range on a
collision trajectory (“looming” effect). Shrinking feature distributions indicate in-
creasing range (moving away). If the feature flow on the entire circumference is
not radial and outward but all features have a flow component to one side of the
line of sight, the object will pass the camera on this side. With looming feature
sets, the momentary time to collision (TTC) is (with r = range and the dot on top
for the time derivative)
TTIC=r/t. (12.1)

Assuming a pinhole camera model and constant object width B, this value can
be determined by measuring the object width in the image (bg; and bg,) at two
times t; and t,, At = t, — t; apart. A simple derivation (see Figure 2.4) with deriva-
tives approximated by differences and bg; = measured object width in the image at
time t; yields

TTC =1/t = 4t-bg, /(bg, —bg,) . (12.2)

The astonishing result is that this physically very meaningful term can be ob-
tained without knowing either object size or actual range. Biological vision sys-
tems (have discovered and) use this phenomenon extensively (e.g., gannets stretch-
ing their wings at a proper time before hitting the water surface in a steep dash to
catch fish).

To achieve accurate results with technical systems, the resolution of the camera
has to be very high. If the objects approaching may come from any direction in the
front hemisphere (like at road junctions or forks), this high resolution should be
available in all directions. If one wants to cover a total viewing cone of 200° by
30° with telecameras having a simultaneous f.o.v. of about 5 to 7° horizontally,
each with a side ratio of 4:3 (see Section 12.3.2), the total number of cameras re-
quired would be 150 to 200 on the vehicle periphery. Of course, this does not make
sense.

Putting a single telecamera on a pan and tilt platform, the only requirement for
achieving the same high resolution (with minor time delays, usually) is to allow a
+97° gaze change from straight ahead in the vehicle. To keep the inertial momen-
tum of the platform small, tilt (pitch) changes can be effected by a mirror which is
rotated around the horizontal axis in front of the telelens.

The other additional (mechanical) requirement is, of course, that the simultane-
ous f.0.v. can be directed to the region of actual interest in a time frame leaving
sufficient time for proper behavior of the vehicle; as in humans, a fraction of a sec-
ond for completing saccades is a reasonable compromise between mechanical and
perceptual requirements. Figure 12.6 shows two of the first realizations of the
“MarVEye”-idea for the two test vehicles.

To the left is an arrangement with three cameras for the van VaMoRs; its
maximal speed does not require very large look-ahead ranges. The stereo base is
rather large (~ 30 cm); a color camera with medium telelens sits at the center. To
the right is the pan platform for VaMP with the camera set according to Figure 1.4.
Since a sedan Mercedes 500 SEL is a comfortable vehicle with smooth riding
qualities, gaze control in pitch has initially been left off for simplicity.
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Figure 12.6. Two of the first ‘MarVEye’ realizations: Left: Two-axis platform for
VaMoRs with three cameras and a relatively large stereo baseline (for images see Figure
12.4); right: Single axis (pan/yaw) platform with four cameras and three different focal
lengths for VaMP.

12.3.7 High Dynamic Performance

With TTC as described in the previous section (Equations 12.1 and 12.2) and with
knowledge about actual reaction times of subsystems for visual perception, for be-
havior decision, as well as for control derivation and implementation, a rather pre-
cise specification for saccadic vision in technical systems can be given.

Assuming one second for stabilizing perceptual interpretation, another two for
situation assessment and behavior decision as well as a few seconds as an addi-
tional safety margin, a time horizon of 5 to 10 seconds, as assumed standard for
human behavior in ground traffic, also seems reasonable for these technical sys-
tems. (In the human driver population, there is a wide variety of reaction times to
be observed, depending on alertness and attention.)

Standing still at a T-junction and checking whether it is safe to move onto the
road, oncoming vehicles with a speed of 108 km/h (30 m/s) have to be detected at
about 150 to 300 m distance to satisfy the specifications; for speeds around 20 m/s
(70 km/h), this range is reduced to 100 to 200 m. This is one of the reasons that in
areas with road junctions, maximal speed allowed on the through -road is reduced.

Relative to these times for reaction, times for gaze control of at most a larger
fraction of a second do not deteriorate performance of the overall perception sys-
tem. Under these conditions, saving over two orders of magnitude in the data flow
rate by selecting saccadic vision instead of arrays of (maybe inexpensive) cameras
mounted (peripherally) on the vehicle body is a very economical and safe choice.

Figure 12.4 showed some test results in performing saccades with one of the
technical eyes studied for road vehicle applications. Due to the relatively old tech-
nology used and heavy load on the platform (see Figure 14.16), reaction times can
be considered as upper limits for systems based on modern technology; in any
case, they are more than sufficient for normal road vehicle guidance. When stop-
ping at T-junctions, time for gaze orientation plays no critical role; horizontal turns
from 90° on one side to 90° on the opposite site are necessary for checking traffic
on the road encountered. With proper design, this can easily be done in less than a
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second. (The example platform given had a gaze range of + 70° in azimuth; optical
distortions by the windscreen of the vehicle have to be checked for larger angles.)

12.4 MarVEye as One of Many Possible Solutions

From the requirements discussed above, the following design parameters for the
“multifocal active, reflex-like reacting vehicle eye” (MarVEye) have been derived.
The principal goals of this arrangement of three to four cameras are sketched in
Figure 12.7 (compare Figure 1.4). Two divergently looking wide-angle cameras
should have their optical axes in one plane for stereo evaluation; the angle & be-
tween these axes is a design parameter determining the simultaneous field of view
(owtar) @and the overlapping region for binocular stereo (og.r). Note that the condi-
tions for stereo interpretation at the boundaries of the images worsen with the aper-
ture angle of the wide-angle cameras (increasingly higher order correction terms
are necessary for good results).

Wide-angle Wide-angle

binocular] mono right
— strong tele
Horizon y mild tele

mono left

Figure 12.7. Sketch of fields of view of each camera and of the total simultaneous
field of view (in azimuth and depth) of the arrangement ‘MarVEye’; all cameras
may have the same pixel count, but three of them have different focal lengths

When trinocular stereo is intended for using the image of the mild telecamera in
addition, it makes sense to specify the angle of central overlap of the wide-angle
cameras (oser) the same as the horizontal f.o.v. of this camera oy, (center of figure).
If the second pyramid level of the mild teleimage shall have the same resolution as
the wide angle images, the teleimage should be one fourth of the wide-angle image
in size.

The actual choice of parameters should depend on the special case at hand and
on the parameters of the dominating task to be performed (maximum speed, ma-
neuvering in tight space, etc.). Experience with the test vehicles VaMoRs (all cam-
eras on a two-axis platform, Figure 12.6 left) and VaMP (yaw platform only, Fig-
ure 12.6 right) has shown that vertical gaze stabilization for reducing the search
range in feature extraction is not necessary for wide-angle images; however, it is of
advantage also for cars with smooth riding qualities if larger focal lengths are re-
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quired for high-speed driving. Therefore, the design shown in Figure 12.8 has
resulted:

Wide-angle cameras Telecamera mounted in
with divergent optical axial direction of yaw
axes on yaw platform gaze control platform

N~ g =
Rotated mirror Stereo baseline

with high-bandwidth pitch angle reﬂécting the lens of the vertically mounted
control for aaze direction tele-camera (fix on platform head)

Figure 12.8. Experimental gaze control platform designed as a compromise between
different mechanical and optical mapping requirements for a large horizontal viewing
range in azimuth (pan). Gaze stabilization and control in tilt (pitch) is done only by a
mirror in front of the telelens. This yields a relatively simple and compact design.

Only the image of the tele-camera is stabilized by a mirror with a horizontal axis
of rotation; the laws of optical reflection result in cutting the amplitude of mirror
angles required in half for the same stabilization effect. Mounting the telecamera
with its main axis vertical minimizes its inertia acting around the yaw axis. Since
the mirror has very little inertia, a small motor suffices for turning it, allowing
high-bandwidth control with low power consumption. Once the basic design pa-
rameters have been validated, more compact designs with smaller stereo base will
be attempted.

Using mirrors also for gaze control in pan is known from pointing devices in
weapon systems. The disadvantage associated with these types of double reflec-
tions is the rotation of the image around the optical axis. For human interpretation,
this is unacceptable and has to be corrected by expensive devices; computers could
be programmed to master this challenge. It will be interesting to see whether these
systems can gain ground in technical vision systems.

12.5 Experimental Result in Saccadic Sign Recognition

Figure 12.9 shows the geometry of an experiment with test the vehicle VaMoRs for
saccadic bifocal detection, tracking, and recognition of a traffic sign while passing
at a speed of 50 km/h. The tele-camera tracks the road at a larger look-ahead dis-
tance; it does not have the task of detecting the traffic sign in this experiment. The
sign is to be detected and initially tracked by the standard near range camera (focal
length f = 8 mm) with the camera platform continuing to track the road far ahead
with the telelens; the road is assumed to be straight, here.

While approaching the traffic sign, its projected image travels to the side in the
wide-angle image due to the increasing bearing angle given as y(t) = arctan (d/s)
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(see Figure 12.9). In the experiment, d .

was 6 m and the vehicle moved with con-

stant speed V = 50 km/h (~ 14 m/s). The

corresponding graphs showing the nomi-

nal aspect conditions of the traffic sign -
are given in Figure 12.10; it shows the s=
bearing angle to the sign in degrees (left),
the pixel position of the center of the sign
(right), the distance between camera and
sign in meters (top), and time till passing y
the sign in seconds (bottom). Cameras

The boundary marking of the triangle
in red is 8 cm wide; it is mapped onto two
pixels at a distance of about 28 m (1.95 s
before passing). The triangle is searched ) .
for in phase 1 (see arrow) and detected at ~ Figure 12.9. Geometry for experi-
time 1.6 s before passing (first vertical ~ mental validation of saccadic bifocal
bar), at an angle of ~ 15°. During phase 2, sign recognition while passing (Hs is
it is tracked in five frames 40 ms apart to normal to plane of road)
learn its trajectory in the image (curve 1
in Figure 12.11, left).

This figure shows measurement results deviating from the nominal trajectory
expected. After the fifth frame, a saccade is commanded to about 20°; this angle is
reached in two video cycles of 40 ms (Figure 12.11, left side).

Now the traffic sign has to be found again and tracked, designated as phase 3.
After about a half second from first tracking (start of phase 2) the sign of 0.9 m
edge length is picked up in an almost centered position (curve 1 at lower center of
Figure 12.11). It is now mapped in the teleimage also, where it covers more than
130 pixels. This is sufficient for detailed analysis. The image is stored and sent to a
specialist process for interpretation.

Traffic}: sign
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Vehicle
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Distance to traffic sign in m /
rd
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Figure 12.10. Nominal evolution of state variables (distance, bearing) and image values
(lateral position) for the approach of a traffic sign and gaze control with saccades



394 12 Sensor Requirements for Road Scenes

}_* 2 * 3 Hi 1 ||1||

phases'of saccade preparation
25 -

Pixel

at point in time of imaging

1 = position of sign in image
1

L

— time in seconds

7 (PR, A 2 = camera angle in degrees

293

o 0.1 0.2 0.3 0.4 0.8 0.6

Figure 12.11. Position of traffic sign in standard image (curves 1) and gaze direction in
yaw of camera platform for detecting, tracking, and high-resolution imaging of the sign

A saccade for returning to the standard viewing direction is commanded which
is started a half second after the first saccade (branch 2 in Figure 12.10, right);
about 0.6 s after initiating the first saccade, gaze direction is back to the initial
conditions. This shows that the design requirements for the eye have been met.

The video film documenting this experiment nicely shows the quickness of the
gaze maneuver with object acquisition, stable mapping during fixation, and com-

plete motion blur during the saccades.

0.7 o8 0.8



13 Integrated Knowledge Representations for
Dynamic Vision

In the previous chapters, the individual components for visual perception of com-
plex scenes in the context of performing some mission elements have been pre-
sented. In this chapter, the intention is to bring together all these components to
achieve goal-directed and effective mission performance. This requires decomposi-
tion of the overall mission into a sequence of mission elements which can be per-
formed satisfactorily exploiting the perceptual and behavioral capabilities of the
subject’s “body and mind”.

Body clearly means sensor and actuator hardware attached to the structural
frame being moved as a whole (the physical body). But what does mind mean? Is it
allowed to talk about “mind” in the context of a technical system? It is claimed
here that when a technical system has a certain degree of complexity with the fol-
lowing components in place, this diction is justified:

1. Measurement devices provide data about the resulting motion after control in-
puts to individual actuators; this motion will have certain “behavioral” charac-
teristics linked to the control time history u(t).

2. A system for perception and temporal extrapolation is in place which allows
correct judgment whether or not a goal state is approached and whether or not
performance is safe.

3. A storage device is available that stores the actual percepts and results and can
make them available later on for comparison with results from other trials with
different parameters.

4. To evaluate and compare results, payoff functions (quality criteria, cost func-
tions) have to be available to find out the more favorable control inputs in spe-
cific situations. Environmental conditions like lighting (for visual perception)
and weather (for wheel-ground contact) can affect appropriate behavior deci-
sions significantly.

5. Knowledge about situational aspects that have to be taken into account for plan-
ning successful actions realizes the feedback of previous experience to actual
decision-making.

6. Knowledge about behavioral capabilities and limitations both with respect to
perception and to locomotion has to be available to handle the challenge given.

7. Capabilities similar to those of the subject vehicle are assumed to be available to
other vehicles observed; this is an “animation capability” that brings deeper un-
derstanding into a scene with several objects/subjects observed.

A useful mind is assumed to exist when, based on the sensor data input, an internal

representation of the situation given is built up that leads to decision-making to

handle the actual real-world task successfully in a dynamically changing scene.
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Just decision-making and control output without reference to “reality” would be
called “idiotic” in common sense terminology.

In this context, it is easily understood why closed-loop perception—action cycles
(pac) in the real world with all its dirty perturbation effects are so important. All
the “mental” input that is necessary to make successful or even good decisions in
connection with a given set of measurement data is termed “knowledge”, either de-
rived from previous experience or transferred from other subjects.

In Figure 13.1, the different components are shown and the main routes through
which they cooperate are indicated by arrows. Only the lower bar represents the
physical body; everything above this level is “mind”, running of course on com-
puter hardware as part of the body, but coming into existence only when the
closed-loop pac is functioning properly. [Note that this system can function with-
out sensory input from the real world if, instead, stored data are fed into the corre-
sponding data paths. Control output to the real world has to be cut; its usual effects
have to be computed and correspondingly substituted (as “real-world feedback™)
by temporal extrapolations using the dynamic models available. In analogy to bio-
logical systems, this could be called “dreaming”. Physical realization in neuronal
networks is, of course, completely different from that in electronic computers.]

The figure tries to visualize the interaction between measurement data and
background knowledge. Measurement data stream upward from the body, proc-
essed on level 1 (number in dark circles at the left side). Background knowledge is
lumped together in the dark area labeled 0 at the top of the figure. Three blocks of
components are shown on this level: (1) Generic classes of objects and subjects
(left), (2) environmental conditions (center), and (3) behavioral capabilities for
both visual perception and locomotion (right).

In the left part of the figure, data and results flow upward; on the evaluation and
decision level 4, the flow goes to the right and then downward on the right-hand
side of the figure. Basic image feature extraction (level 1) is number crunching
without feedback of specific knowledge or temporal coherence on a larger scale.

When it comes to object/subject hypotheses on the recursive estimation level for
single units (level 2), quite a bit of knowledge is needed with respect to 3-D shape,
appearance under certain aspect conditions, continuity in motion and — for subjects
— control modes as well as typical behaviors. The basic framework has been given
in Chapters 2 and 3; the next section summarizes items under the system integra-
tion aspect.

The fusion task for perception is to combine measurement data with back-
ground knowledge such that the situation of the system in the actual envi-
ronment (i.e., the real world) relevant to the task at hand is closely repre-
sented in the “dynamic knowledge base” (level 3) as support for decision—
making.

Recall that an open number of objects/subjects can be treated individually in
parallel on level 2; the results for all units observed are collected in the DOB (left
part on level 3 in the figure). Parallel to (high-frequency) tracking of individual ob-
jects/subjects, *“actual environmental conditions” (AEC) have to be monitored
(center on levels 2 and 3).
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Figure 13.1. Integration of knowledge components in the 4-D approach to dynamic
vision: Background knowledge on object and subject classes, on potential environ-
mental conditions, and on behavioral capabilities (top row) is combined with meas-
urement data from vision (lower left) and conventional sensors (lower right) to yield
the base for intelligent decisions and control output for gaze and locomotion. All ac-
tual states of objects/subjects tracked (DOB), of environmental conditions (AEC), and
of the subject’s activities are stored in the dynamic knowledge base (DKB).
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Since these conditions change only slowly, in general, their evaluation fre-
guency may be one to two orders of magnitude slower (once every 1 to 5 seconds).
Note that this is not true for lighting conditions when driving into or out of a tun-
nel; therefore, these objects influencing perception and action have to be recog-
nized in a way similar to that for other objects, for example, obstacles. But for
weather conditions, it may be sufficient to evaluate these within the rest of the cy-
cle time not needed for performing the main task of the processors. This field of
recognizing environmental conditions has not received sufficient attention in the
past, but will have to for future more advanced assistance or autonomous systems.

For behavior decision in the mission context, the overall task is assumed to be
decomposed into one global nonlinear part with nominal conditions and a superim-
posed linear part dealing with small perturbations only under local aspects. The ba-
sic scheme has been discussed in connection with Figure 3.7. The off-line part of
nonlinear mission planning (upper right corner of level 5 in Figure 13.1, performed
with special optimization methods) results in a nominal plan of sequential mission
elements that can be handled by exploiting behavioral capabilities of the subject
vehicle. Note that mission elements are defined in this way! This means that be-
havioral capabilities available determine mission elements, not the other way
around, starting from abstract, arbitrarily defined mission elements. For local mis-
sion performance, only the actual mission element and maybe the next one need to
be taken into account; therefore, these become part of the “dynamic knowledge
base” (DKB, level 3 in Figure 13.1, center right). Actual mission performance will
be discussed in Section 13.4.

The complex global nonlinear mission plan is assumed to be unaffected by mi-
nor adjustments to local perturbations (like obstacle avoidance or minor detours); if
these perturbations become sufficiently large, strategic replanning of the mission
may be advisable, however. These decisions run on level 4 in Figure 13.1. Local
(“tactical”) decisions for gaze control are grouped together in the unit BDGA (be-
havior decision for gaze and attention); those tactical decisions for locomotion are
lumped into BDL (behavior decision for locomotion).

Sometimes, there may be conflicting requirements between these units. In this
case and when global replanning is necessary, the central decision unit (CD) takes
over which otherwise just monitors all activities and progress in realization of the
plan (right part on level 4). These units are just for decision-making, not for im-
plementing control output (upper level in Figure 3.17). Of course, they have to
know not only which behavioral capabilities are available “in principle”, but which
are available actually “here and now”. If there are minor malfunctions due to fail-
ure of a component which has not necessitated ending the mission, the actually re-
alizable capabilities (maneuvers) have to be posted in the DKB (right part on level
3in Figure 13.1).

Implementation of control output is done on level 2, right, with control engi-
neering methods taking conventional measurements directly into account (minimi-
zation of delay times). This level monitors the correct functioning of all compo-
nents and communicates deviations to the decision level. Representation of
behavioral capabilities on levels 2 to 4 for mission performance is discussed in
Section 13.3. The decisions on these levels are based on both perceptual results



13.1 Generic Object/Subject Classes 399

(left part on level 4) and background knowledge (arrows from top on the right of
Figure 13.1) as well as the actual task to be performed (center level 3).

To judge the situation, it is not sufficient just to look at the actual states of ob-
jects and subjects right “now”. More extended temporal maneuvers and their spa-
tial effects on a larger scale have to be taken into account. Looking at time histories
of state variables may help recognize the onset of new maneuvers (such as a lane
change or turnoff); early recognition of these intentions of other subjects helps de-
veloping a safer style of “defensive driving”. The representational base for recog-
nizing these situations and maneuvers is the “scene tree” (Section 13.2) allowing
fast “imagination” of the evolution of situations in conjunction with spatiotemporal
models for motion. Actual decision-making on this basis will be discussed in Sec-
tion 13.5.

Data logging and monitoring of behavior are touched upon in Section 13.6; in
the long run, this may become the base for more extended learning in several areas.

13.1 Generic Object/Subject Classes

As mentioned in Chapters 2 and 3, humans tend to affix knowledge about the
world to object and subject classes. Class properties such as gross shape and hav-
ing wheels on axles to roll on are common to all members; the lower part of the car
body looks like a rectangular box with rounded edges and corners, in general. The
individual members may differ in size, in shape details, in color, etc. With respect
to behavioral capabilities, maximal acceleration at different speed levels and top
speed are characteristic. All in all, except for top speed of vehicle classes, varia-
tions in performance are so small that one general motion model is sufficient for all
vehicles in normal traffic. Therefore, most characteristic for judgment of behav-
ioral capabilities of vehicles with four or more wheels are size and shape, since
they determine the vehicle class. The number of wheels, especially two, three, or
more is characteristic for lateral control behavior; bicycles may have large bank
angles in normal driving conditions.

Here, only simple objects and ground vehicles with four and more wheels are
considered as simple subjects. Figure 13.2 summarizes the concept of the way the
representation of these vehicles is used in the 4-D approach to dynamic vision. The
lowest three rows are associated with 3-D shape and how it may appear in images.
This description may become rather involved when shape details are taken into ac-
count. Simple discrimination between trucks, on the one hand, and cars/vans/buses,
on the other, keeps shape complexity needed for basic understanding rather low:
They all have wheels touching the ground; trucks have large ones, in general.
Trucks can best be recognized and tracked by following features on the (large) up-
per parts of their bodies [Schmid 1992]. Cars yield more stable recognition when
only their (box-like) lower part is tracked [Thomanek 1996]. A rectangular box has
only three parameters: length, width, and height, the latter of which is hardly of
importance for proper reactions to cars in traffic. A more refined generic model for
cars has been given in Figure 2.15.
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Figure 13.2. Summary of representational framework for objects/subjects in the 4-D
approach to real-time vision (distributed realizations in the overall system, in general).
Legend: black = actual values of dynamic object database (DOB); gray = background
knowledge.

Reduction of the number of vehicle parameters makes vehicle tracking possible
with relatively little computing effort. More detailed shape models, starting from
the box description but taking groups of lights, license plate, and missing body
regions for mounting wheels into account, can be handled with minor additional ef-
fort once the basic aspect conditions have been determined correctly. Default val-
ues for usual body size and relative positions of subobjects are part of the knowl-
edge base (lowest row in Figure 13.2).

The appearance of body features as a function of (coarsely granular) aspect con-
ditions is the next important knowledge item (second row from bottom). In Figure
11.15, one set of features has been shown for one of the eight aspect classes (rear
left). For stabilizing image sequence interpretation, it should be respected, which
ones of the features can be iterated meaningfully and which ones cannot. For ex-
ample, looking straight from behind it does not make sense to try to iterate the
length parameter; looking straight from the side, width estimation should be sus-
pended. The interesting result in [Schmid 1993] was that under oblique viewing con-
ditions, under which both length and width should be observable theoretically, es-
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timating the length of the diagonal was much more stable than estimating both of
its components; this is partly due to the rounded corners of vehicles and to the dif-
ficulty of precisely measuring the position of the vertical inner edge of the vehicle
in the image.

The motion capabilities of objects/subjects (their dynamic models) — in their ba-
sic form — are given by differential equation constraints (in analogue time). De-
pending on the cycle time used for visual estimation, the transition and control in-
put matrices result for sampled data (digital control). The basic frequency in the
system is the field frequency: 50 Hz (20 ms cycle time) for CCIR and 60 Hz (16
2/3 ms) for the American NTSC standard. The factor of 2 for entire frames (40 ms
resp., 33 1/3 ms) yields the cycle time mostly used in the past. However, in some
present and in future digital cameras, cycle time may be more freely selectable; the
transition matrices actually used have to be adjusted correspondingly (fifth row
from bottom in Figure 13.2).

Motion state and shape parameters are determined simultaneously by prediction-
error feedback of visual features. The actual best estimates for both are stored in
the DOB and marked by solid black letters in the figure (left side). For objects and
subjects of special interest, the time history of important variables (last my entries)
may be stored in a frame buffer. This time history is used on level 4 in Figure 13.1
for recognition of trajectories of objects and possibly intentions of subjects. For
situation assessment, there has to be a knowledge component telling the potential
value or danger of the situation observed for mission performance (third row from
top in Figure 13.2). For decision-making, another knowledge component has to
know which behavioral capabilities to use in this situation and when to trigger
them with which set of parameters [Maurer 2000; Siedersberger 2004].

Having observed another subject over some period of time, the individual (same
identity tag) may be given special properties like preferring short distances in con-
voy driving (aggressive style of driving), or reacting rather late (being lazy or inat-
tentive); these properties may be added in special slots for this individual (top left
of figure) and are available as input for later decision—-making. All of these results
written in bold letters have to be taken into account as higher level percepts for de-
cision-making (vertical center, right in Figure 13.2).

13.2 The Scene Tree

For relating spatial distances between objects and subjects (including the egovehi-
cle) to visual measurements in the images, homogeneous coordinates have been
chosen such as those used as standards in computer graphics for forward projec-
tion; there, all objects and their coordinates are given. In vision, the tricky chal-
lenge is that the unknowns of the task are the entries into the transformation matri-
ces; due to the sine and cosine relations for rotation and due to perspective
projection, the feature positions in the image depend on the entries in a nonlinear
way. For this reason, the transformation relations have to be iterated, as discussed
in Chapters 2 and 6, leading to the Jacobian matrices as key elements for knowl-
edge representation in this recursive approach.
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Figure 13.3. Scene tree for visual Stop and Go with EMS-vision on a yaw platform

A simple scene tree for representing the concatenated transformations has been
given in Section 2.1.1.6 and Figure 2.7. The general scheme for proceeding with
the vision task, once the scene tree has been defined, has been developed by D.
Dickmanns (1997) and was given in Figure 2.10. Figure 13.3 gives a scene tree for
the task of stop-and-go driving in a traffic jam based on EMS vision with three
cameras on a yaw platform (see Chapter 12). The root node of the scene tree is the
subject vehicle (top); the rest of the objects involved are lumped into three groups:

(1) At the left is the yaw platform with three cameras feeding three framegrab-
bers, which transport the images into computer storage. These images are the
source of any derived information. The yaw platform is mounted behind the front
windshield a certain distance away from the cg, around which rotations are de-
fined. The platform base moves rigidly with the vehicle; the platform head is free
to rotate around its vertical axis (one degree of freedom). The cameras are mounted
at different locations on the head, away from the axis of rotation and with different
orientations; this is represented in Figure 13.3 by the three edges linking platform,
head, and cameras K. [For the telecamera, there may be an additional transforma-
tion necessary if the view to the outside world is gaze stabilized by a mirror (see
Figure 12.7).]
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(2) On the right-hand side in Figure 13.3, the road from the actual cg position
(0) to the look-ahead range is represented. The geodetic representation to the right
is not needed if no reference is made to these coordinates (either through maps or
GPS signals); in this case, the aspects of road infrastructure given by the eight
small nodes below may be shifted to the node at left. The parameters of the road
observed in the look-ahead range are shown in the rectangular box: horizontal and
vertical curvatures, number of lanes nj, and lane widths b,.

(3) Other vehicles (center stripe in Figure 13.3) may be represented in two
ways: Their positions may either be linked (a) directly to the subject vehicle (ego-
centric with azimuth (bearing), range, and range rate to each vehicle), or (b) to the
local road or lane at its present position. The former approach is represented in the
vertical column marked; it has the disadvantage that perturbations on one’s own
body directly affect the estimation process if no gaze stabilization is active; in the
latter approach, for which the dotted double-arrows show the correspondence, only
local information from the vicinity of the other vehicle is used, and egomation is
canceled out beforehand (see Figure 11.4, left). It is therefore more stable, espe-
cially at larger ranges. To avoid collision in the very near range, approach (a) has
the advantage of immediate usability of the data [Thomanek et al. 1994].

13.3 Total Network of Behavioral Capabilities

Networks for representing special capabilities have been discussed in various sec-
tions of the book: Section 3.3 has dealt with perceptual capabilities, and Figure 3.6
showed the capability network for gaze control as one subtask. In Section 3.4, ca-
pabilities for locomotion have been considered for the special case of a ground ve-
hicle; Table 3.3 showed a typical set of frequently needed “skills” in mission per-
formance based on control engineering methods. A capability network for
locomotion of a road vehicle has been shown as Figure 3.28. In this chapter, the
goal is to fit these components together to achieve an overall system capable of
goal-oriented action in the framework of a complex mission to be performed.

The entire Chapter 5 has been devoted to the capability of extracting visual fea-
tures from image sequences, even though only a very small fraction of methods
known has been treated; the selection has been made with respect to another basic
perceptual capability treated in Chapter 6: Given a temporal sequence of groups of
features, find a 4-D interpretation for a motion process in the real world (3-D ob-
jects moving in 3-D space over time) that has generated the feature set, taking the
mapping process (lighting and aspect conditions as well as a pinhole camera
model) into account. This “animation process” based on a temporal sequence of
sets of visual features, maybe, is the most advanced “mental” capability of a tech-
nical system yet. Stored background knowledge on generic object/subject classes
allows the association of mental representations of moving objects in the real world
with the feature sets arriving from the cameras. Open parameters to be adapted for
matching the measurement data allow the specification of individual members of
the object/subject class. In this way, doing this n-fold in parallel for n ob-
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jects/subjects of interest, the outside scene is reconstructed as an “imagined dy-
namically changing world” in the interpretation process.

Each interpretation is checked and adapted (stabilized or discarded) by predic-
tion-error feedback exploiting first-order derivative matrices (so called “Jacobians”
of the optical mapping process). Gaps in measurement data can be bridged by pure
prediction over some cycles if the models installed (hypothesized) are adequate. In
part, the visually determined interpretations can be supported by conventional
measurements such as odometry or inertial sensing. The cross-feed of data and per-
cepts allows, for example, monocular motion stereointerpretation while driving.
Separating high-frequency and low-frequency signal contents helps achieve a sta-
ble and fast overall interpretation of dynamic scenes with each separate loop re-
maining unstable: On the one hand, due to motion blur in images and relatively
large delay times in image understanding, vision cannot handle harsh perturbations
on the body carrying the cameras; on the other hand, integrating inertial signals
without optical (low-frequency) feedback will suffer from drift problems. Only the
combined use of properly selected data can stabilize the overall percept.

The next essential capability for autonomous systems is to gain deeper under-
standing of the scene and the motion processes observed to arrive at “reasonable”
or even optimal behavior decisions with respect to control output. Recall that con-
trol output is the only way the system can influence the future development of the
scenario. However, it is not just the actual (isolated) control output that matters, but
the sequence in which it is embedded, known to lead to desired changes or favor-
able trajectories. Therefore, there have to be representations of typical maneuvers
that allow the realization of transitions from a given initial state to a desired (new
intermediate or) final state. In other parts of the mission, as in roadrunning, it is not
a desired transition that has to be achieved but a desired reference state has to be
kept, such as “driving at a set speed in the center of the lane”, whatever the curva-
ture of the road. There may even be an additional side constraint like: “If road cur-
vature becomes too large so that — at the speed set — a limit value for allowed lat-
eral acceleration (a,max) Would be exceeded, reduce speed correspondingly as long
as necessary”.

All these behavioral capabilities (driving skills) are coded in the conventional
procedural way of control engineering. Some examples have been discussed in
Section 3.4.3; Table 3.3 indicates which of these skills are realized by feed-forward
(left column) or feedback control (right column). Figure 3.17 has shown the dual
scheme for representation: On the top level for decision-making and triggering,
rather abstract representations suffice. The detailed procedural methods and deci-
sions depending on vehicle state actually measured conventionally reside on the
lower level of the figure; they are usually implemented on different processor hard-
ware close to the actuators to achieve minimal time delays.

The task of decision level 4 in Figure 13.1 then is to monitor whether mission
performance is proceeding as planned and to trigger the transition between mission
elements that can be performed with the same set of capabilities activated. The de-
tailed organization of which component is in charge of which decision depends on
the actual realization of the components and on their performance characteristics.
In the structure shown, the list of mission elements determines the regular proce-
dure for mission performance. However, since safety aspects predominate over
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mission performance, the central decision unit (CD) has to monitor these aspects
and eventually has to make the decision to abandon the planned mission sequence
to improve safety aspects; this may even result in stopping the mission and calling
for inspection by an operator.

13.4 Task To Be Performed, Mission Decomposition

The knowledge needed for mission performance depends on the task domain and
on the environmental conditions most likely to be encountered. The satisfaction of
these requirements has to be taken care of by the human operator today; learning
may be an important component for the future. Assuming that the capabilities
available meet the requirements of the mission, the question then is, “How is the
mission plan generated taking both sides (overall mission requirements and special
behavioral capabilities) into account?”

First, it is analyzed for all consecutive parts of the mission, whose perceptual
and behavioral capabilities have to be available to perform the mission safely. The
side constraints regarding both perception and locomotion have to be checked;
both lighting and weather conditions play a certain role. For example, the same
route to be taken may be acceptable during daytime and when the surface is dry.
Driving autonomously during nighttime when there are puddles of water on the
road reflecting lights from different urban sources or from oncoming vehicles is
not possible with today’s technology. The result of this step is a first list of mission
elements with all individual capabilities needed, disregarding how they are organ-
ized in the system.

As an example, let us look at a mission starting at a parking lot in a courtyard
which has an exit onto a minor urban road with two-way traffic (mission element
MEL). After a certain distance traveled on this road (ME2), a major urban road
(three lanes) has to be entered to the right (ME3). From this road, a left turn has to
be made at a traffic light with a separate turn-off lane (MES5) onto a feeder road for
a unidirectional highway. Mission element ME4 contains the challenge to cross
two lanes to the left to enter the turnoff lane in front of the traffic light (three lane
change maneuvers). Turning off to the left when the traffic light turns green is
MES6. Merging into highway traffic after a phase of roadrunning is ME7. Driving
on this highway (MES8), at the next intersection with another highway, the lane
leading to the desired driving direction is one of the center ones (neither the left
nor the right one). The correct information, which one to take, has to be read from
bridges with large navigation signs posted right above the lanes (ME9); this im-
plies that on unidirectional highways, navigation is performed by proper lane selec-
tion and change into it. On the new highway, merging traffic from the right has to
be observed (ME10); changing lane is one option for keeping traffic flowing (ma-
neuver “lane change” again). Since most behavioral capabilities necessary for per-
forming extended missions have been encountered up to here, let us end the exam-
ple at this state of “roadrunning”.

As a second step, merging of the original mission elements into larger ones,
with some basic and some extra activities added if required, reduces the number of
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elements; for example, ME1 to ME6 may be lumped together under the label “driv-
ing in urban areas”; this part of the mission requires not just one maneuver capabil-
ity but a bunch of similar ones and seems thus reasonable. In the context of these
larger mission elements all coherent short activities for making a state transition
will be called “maneuvers”. Stop-and-go driving in heavy traffic is part of these ex-
tended mission elements. Maneuvers like turning onto a road from a private site,
turning onto a crossroad, performing lane changes and in between: “roadrunning
with convoy driving” are activated as they come, and need not (frequently cannot)
be planned beforehand.

Highway driving between connection points may also be lumped together as one
of the larger mission elements. At connection points (intersections), attention
needed is much higher than just for roadrunning, usually; therefore, these points
mark boundaries of larger mission elements. Figure 13.4 shows a graphical sketch
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tical bars mark the
boundaries). On the next
scale of resolution (15
minutes = 900 seconds
shown here, say, for driv-
ing on a three-lane road as
mentioned above), the be-
haviors running are the
same; however, when the
traffic situation yields an
opportunity  for  lane
change, this maneuver
lasting about 9 seconds
shall be performed. Note,
that in this case (other
than shown in the figure),
it is not a fixed time for
triggering the maneuver,
but a favorable opportu-
nity, which developed by
chance, was used.

For monitoring maneu-
vers and maneuver ele-
ments (lower part in Fig-
ure 13.4), again special
scales are used. Normaliz-
ing the temporal range of
each maneuver or mission
element to the range from
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0 to 1 allows, for each time, a quick survey, how much of the unit has been per-
formed and what the actual state is (percentage accomplished) in the mission ele-
ment or maneuver. This may be of interest for behavior decision, for example,
when some failure in the system was discovered and reported during this maneu-
ver, say, a lane change. The reaction has to be different, when the maneuver was
just started, from the case when it was just before being finished or right at the cen-
ter.

The upper two scales are of more interest for the navigation and mission per-
formance level; the lower two are of special interest for the implementation level
when the dynamic state of the vehicle depends on the time into the maneuver. In
this case, energy off the equilibrium state may be stored in the body or the suspen-
sion system (including tires) which may couple with new control inputs and thus
limit the types of safe reactions applicable; the infamous “moose test” for avoiding
an obstacle suddenly appearing on the road by driving two maneuvers similar to
fast lane changes right after each other in opposite directions is most critical in one
of the later phases of the maneuver. Therefore, knowing the exact phase of the ma-
neuver can be important for the lower implementation levels; keeping track of the
maneuver, as shown on the lowest scale in Figure 13.4, helps avoid these situa-
tions.

The introduction of semantic terms for maneuvers in connection with corre-
sponding knowledge representation of dynamic effects and of control activities to
be avoided in certain phases (represented by rules) allows handling rather complex
situations with this approach. Much of this development is still open for future ac-
tivities.

13.5 Situations and Adequate Behavior Decision

The term situation is used here to designate the collection of all aspects that are
important for making good behavior decisions. So it encompasses (1) The state of
egomotion, absolute and relative to the road (lane), road parameters like actual
curvatures of the road, and lane width (this is state of the art); (2) the surface state
of the road, especially the friction coefficient at all wheels (only rough estimates
are possible here); (3) other objects/vehicles of relevance in the environment: (a)
Relative motion state to vehicle directly ahead in the same lane; this vehicle is the
reference for convoy driving. Observation of blinking lights for turnoff and of
stoplights when braking is required for safe and defensive driving; (b) vehicles
nearby in neighboring lanes and their state of driving (roadrunning, relative speed,
starting a lane change, etc.) should be tracked. Depending on the type of road
(freeway, state road cross country, urban road or minor rural road), other traffic
participants such as humans on bicycles, pedestrians, or a large variety of animals
have to be detected and tracked; (c) to gain reaction time and deeper understanding
of the evolving situation, vehicles in front of those tracked under (a) and (b) should
be observed; (d) stationary obstacles on the road have to be detected early; look-
ahead ranges necessary depend on speed driven (see Table 11.1); (4) extraordinary
weather situations like heavy rain or snowfall, thunderstorms with hail, or dense
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fog have to be recognized; (5) lighting conditions have to be monitored to judge
how much visual perceptions can be trusted; (6) the subject’s intentions or goals
are important for assessing a situation, since different emphasis on certain aspects
of the payoff function may shift behavior decision. For example, if transport time
is of importance and each second gained is valuable (thereby accepting a somewhat
higher risk level), the decision will be different from a leisurely mission where risk
minimization may be of highest importance.

Situation assessment, therefore, is a complex mixture of evaluations on different
temporal scales. General environmental conditions will change most slowly, in
general; they will enter short-time decision processes as quasi-static parameters
without causing any harm due to some time delay (e.g., weather conditions, in gen-
eral). Maximal road curvatures and their onsets, on the other hand, require reaction
time and thus limit maximal speed allowed. Because of the difficulty for humans in
recognizing these situations sufficiently early, warning signs have been introduced,
for example, in hilly terrain with large values of curvature ahead. Similar warnings
are given ahead of transition points from long stretches of straight road into a tight
curve, or when smoke or dust is to be expected due to activities on the side of the
road (industrial installations), etc. These signs are posted such that at least several
seconds up to minutes are available for adjusting driving behavior.

The shortest reaction times in traffic stem from other vehicles in one’s own and
neighboring lanes nearby. For this reason, these vehicles have to be watched with
high attention all the time. In convoy driving, special rules are recommended for
keeping distance from the vehicle in front depending on the speed driven: “half the
tachometer reading” is an example in the “metric world”. It means that the distance
to be kept (measured in meters) should be at least half the speed value shown on
the tachometer (in km/h). Substituting these numbers in the same dimensions [me-
ter m and seconds s] and dividing the distance recommended by the speed driven,
the result will be Trg = 1.8 s, a constant “reaction time gap” independent of speed.

When we let our test vehicles drive autonomously according to this rule in Ger-
man public traffic, the result was that other vehicles driven by humans passed the
vehicle and “closed the gap” which of course had the test vehicle decelerate to ad-
just its behavior to the new vehicle in front. In denser traffic, this leads to an unac-
ceptable situation. So the result was to reduce Trg to the value which had only a
few “aggressive” drivers still performing the gap-closing maneuver; the values
yielding acceptable results (depending on the mood of the safety driver) were
around Trg = 0.8 to 1.2 s. Note that a value of 0.9 (half that recommended!) still
means a distance to the vehicle in front of 25 m at a speed 100 km/h! This shows
that in the realization developed, simple parameters can be used in connection with
measured relative state variables to achieve rather complex-looking behavior in a
simple way (in connection with underlying feedback loops from conventional con-
trol engineering): Only the parameter Trg has to be specified on the upper (Al-
oriented) level (4 in Figure 13.1); the implementation is done on level 2 (lower
right).

Figure 3.17 has shown an example of how this cooperation is realized in ex-
tended state charts; a few “Al states” for longitudinal control are shown on the up-
per level. Semantic terms designate special “behavioral elements” realized on the
lower level either by parameterized feed-forward time histories or feedback loops.
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Possible transitions from one of these states to another are designated by arrows.
These transitions are constrained by rules in which complex terms such as “reac-
tion time gap” or “relative speed” and “distance in the same lane”, etc., may enter.
(References are given in the figure.)

The collection of all these capabilities for vehicle control yields the capability
network for locomotion (Figure 3.28). It shows which complex maneuvers or driv-
ing states depend on which underlying “skills”, and how these skills are linked to
the actuators (lowest layer). The challenge in this concept is proper activation both
with respect to temporal triggering (taking specific delay times into account) and
with respect to selecting optimal parameters (on which system level?). Once the
basic characteristics have been understood and parameters correspondingly
adapted, the system is very flexible for modifications, which opens up an avenue
for learning.

Explicitly specifying the interdependencies in the code of the overall system al-
lows checking the actual availability of components before they are activated. This
has proven valuable for failure detection before things go wrong.

13.6 Performance Criteria and Monitoring of Actual
Behavior

Proper operation of complex systems depends on correct functioning of the com-
ponents involved on many different levels. Since these systems never will function
flawlessly over longer periods of time, failures should be detected before the com-
ponent is activated or before its output is being used after a mode change. If a com-
ponent is in use and the failure occurs while running, the failure should be noticed
as early as possible. If measures for safe behavior can be taken immediately on the
lower levels, this should be initiated while the higher levels are informed about the
new situation with respect to hardware or processes available.

Correct functioning of basic hardware can be indicated by “valid”-bits (status);
all essential hardware components should have these outputs for checking system
readiness. Polling these bits is standard practice. More hidden failures, for exam-
ple, in signal output from sensors, can often be detected by redundant sensing and
cross-checking signals. In inertial sensing, this is common practice, for example,
by adding a single sensor, mounted skewed to the orthogonal axes of the three
other ones; this allows immediate checking of all three components by this single
additional measurement.

If diverse sensors, such as inertial sensors and vision (cameras) are being used,
cross-checks become possible by more involved computations. For example, inte-
grating inertial signals (accelerations, turn rates) yields pose components; these
pose angles and positional shifts are (relatively directly) measurable from features
known to be stationary in the outside world (such as the horizon line or edges of
buildings). These types of consistency checks should be used as much as afford-
able to prevent critical situations from developing.

Other inputs for system monitoring are statistical data from different processing
paths. For example, if it is known that for devices functioning normally, the stan-
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dard deviation of an output variable does not exceed a certain limit, sudden viola-
tions of this limit indicate that something strange has happened. It has to be
checked then, whether environmental conditions have changed suddenly or
whether a component failure is about to develop. In recursive estimation for dy-
namic vision, standard deviations for all state variables estimated are part of the
regular computation. This information should be looked at for monitoring proper
functioning of this perception loop. [In connection with feature extraction (Chap-
ters 5 and 8), the use of this information for feature rejection has been mentioned.]
When the vehicle performs maneuvers in locomotion, there correspond certain
characteristic time histories of state variables to each feed-forward control time

history as input. For example, performing a turnoff onto a crossroad, triggering a

steer rate time history at a certain distance away from the new centerline at a given

forward speed of the vehicle should bring the vehicle tangential to the new road di-

rection in the right lane. If this worked well many times, and suddenly in the next

trial the maneuver has to be stopped for safety reasons before the vehicle runs off
the road, some failure must have occurred. VaMoRs experienced this situation;
analysis of the system turned out that the motor actuating the steering column had
lost a larger part of its power (failure in an electronic circuit). The remaining power
was sufficient for roadrunning toward the crossroad (nothing unusual could be ob-
served), but insufficient for achieving the normal turn rate during curve steering.

This critical self-monitoring of behaviors (comparison to expected trajectories)

should be part of an intelligent system. Of course, this could have been detected by

watching the time history of the steer angle on the lower level; however, this has
not been done online. So this failure was detected by (in this case human) vision
seeing the vehicle moving toward the edge of the road at a certain angle. In future
systems, this performance monitoring should also be done by the autonomous ve-
hicle itself.

Other performance criteria for ground vehicles of importance for behavior deci-
sion and mission performance are the following (not exhaustive):

1. Standard deviations in roadrunning: Figure 9.24b gave a histogram of lateral
offsets of the test vehicle VaMP driving on the Autobahn (lane width of 3.75 m
usually) over a very long distance. It can be seen that a maximal deviation of 0.6
m occurred which is secure for a vehicle having a width of less than 2 m. How-
ever, at construction sites, reduced lane widths on the leftmost lane may go
down to 2.2 or even 2 m; so, with the parameter settings given, the vehicle could
not use these lanes. Whether there is a different system tuning (perception and
control) guaranteeing the small deviations maximally allowed under the circum-
stances given there (a well-marked lane) has not been tried.

2. Total travel time: If this has to be minimal for some reason, always the maxi-
mally possible safe speed has to be selected; fuel consumption is of no concern
in this case.

3. Minimal fuel consumption for the mission: If this point of view is of dominant
importance, quite a different behavior from point 2 results. The dependence of
momentary fuel flow on the speed and gear selected determines the evolution of
the mission. Actual fuel flow measured and low-pass filtered is available in
most vehicles today. However, it is not the absolute value of temporal flow
which is of interest, but — since a given distance has to be traveled during the
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mission — the ratio of actual fuel flow (m-dot) divided by present vehicle speed
V (m-spec = m-dot/V) has to be minimal. In modern cars, this value is displayed
to the human driver. A problem for low-speed driving or halting is the division
by speed (close to or equal to zero!). When the percentage of time spent in this
state is small, these effects may be neglected; in inner city traffic with jams,
they play a certain role (if the engine is kept running) and overall fuel consump-
tion is hard to predict as a function of route selection.

4. More practical than the theoretical extremes mentioned above is a weighted mix
as a payoff function: ® = Ky-(total time) + K,:(fuel used). The verbal description
is: “Drive with relatively low fuel consumption but also look at the time
needed”. When a larger gain in time can be achieved at the expense of a little
more fuel, choose this driving style. This means that as input data for optimiza-
tion not just the value m-spec is sufficient, but also its sensitivity to speed
changes and throttle setting. Due to finite gear ratios and specific engine charac-
teristics, these values are hard to determine; simple rules for selecting speed and
throttle settings yield practically satisfying solutions.

5. Safety first: In the extreme, this may lead to overly cautious driving. When
safety margins are selected too generously for the subject’s style of driving in
the nominal case, the reactions of less patient drivers may lead to less safe traf-
fic in the real world, also for the cautious driver. (One example mentioned is the
safety distance in convoys inducing other vehicles to pass, maybe in a daring
maneuver.)

13.7 Visualization of Hardware/Software Integration

Because of the complexity of autonomous mobile robots with the sense of vision,
the local distribution and functional cooperation of the parts can be visualized dif-
ferently depending on the aspect angle preferred. Figures 1.6, 5.1, 6.1, 6.2, 11.19,
11.21 and 13.1 are examples of different stages of development of UniBwM vision
systems.

Figure 13.5 gives an unconventional survey on the third-generation vision sys-
tem and the turnoff example as one special mission element (right-hand side). The
scene representation (broad column, center right) changes depending on the envi-
ronment encountered and the mission element being performed. On the left side of
the figure, the computers in the system and the main processes running on them are
listed and linked by arrows indicating which processes run on which processor and
which sensor hardware is connected to which processor. The object classes treated
by the processes are also indicated by arrows into the scene tree.

The figure is not intended to give a complete introduction to or an overview of
the system at one glance; it rather intends to visualize the central importance of the
scene tree and how the rest of the closed-loop perception—action cycles are grouped
around it. The Jacobian matrices as core devices for recursive estimation in dy-
namic vision are first-order relationships between couples of nodes in the scene
tree: Image features on the one side (delivered in raw pixel form by the cameras C;
and the framegrabbers FG, lower center), and object states or parameters on the
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roadways

object models carrying
visual features, a full
spatio-temporal  recon-
struction takes place in
model fitting, thereby
avoiding the loss of the

depth information critical in snapshot-interpretation with motion understanding as

a second (separate) step derived from sequential images.

In our approach, the motion models, with prediction-error feedback for under-
standing, are used directly for reconstructing an “animated spatiotemporal world”
in the form of symbolic descriptions based on background knowledge shown in
Figure 13.1, top. However, for arriving at “imagined scenes” the conventional
computer graphics approach developed in the last quarter of the last century is suf-
ficient; no image evaluation is needed if objects and transformations in the HCT
are “dreamed-up”. In accordance with what some psychologists claim for humans,

one might say that

— also for EMS vision —

vision is (feedback-) controlled hallucination.




14 Mission Performance, Experimental Results

The goal of all previous chapters has been to lay the foundations for mission per-
formance by autonomous vehicles. Some preliminary results, which have helped
find the solution presented, have been mentioned in previous sections. After all
structural elements of the system developed have been introduced, now their joint
use for performing mission elements and entire missions autonomously will be dis-
cussed.

Before this is done, some words about the term “autonomous” seem in order. It
originally does not mean just “no human onboard” or “without actual (including
remote) human intervention”. The linguistic meaning of “auto” is that the system
does not have to rely on any external input during mission performance but has all
resources needed onboard. Looked at from this (purist) point of view, a system
that, for example, has to rely on steady input of GPS data during the mission can-
not be called autonomous. At most, it is autonomous in the sense of unmanned ve-
hicles driving along a local electric field generated by wires buried in the ground
(“cable guided™); the only difference for a dense map of GPS waypoints is that bur-
ied wires give continuous analogue input to sensors onboard the vehicle, while
GPS provides sampled data representations (mesh points of a polygon) into which
a smooth curve for determining control output has to be interpreted by digital proc-
essing onboard. If the external GPS system fails, “autonomy” is lost, which is in
contrast to the definition of the term.

Using GPS very sparsely, similar to infrequent landmark navigation with con-
ventional technology would change the picture, since large fractions of the mission
have to be driven really autonomously. In commonsense language, “autonomous”
would mean that the system is able to generate all the information on its own that
conventionally is provided by the human driver. This includes finding the precise
path to drive and checking for obstacles of any kind (including negative ones such
as ditches or large potholes) as well as finding detours for avoiding collisions. If
the path to be driven and marked by many GPS waypoints is even prepared to
guarantee the lack of obstacles of certain kinds, mission performance can hardly be
termed autonomous. This would only be a relatively easy to achieve step in the di-
rection of full autonomy.

On the other hand, if GPS signals could be guaranteed to be available like
sunlight, the situation would change. The big challenge then would be to have the
actual state of the environment correctly available for planning the positioning of
the waypoints for the mission in an optimal (or at least sufficiently good) way.

This part of off line mission analysis for decomposition of a global mission into
a sequence of mission elements, stored in a list for execution one after the other, is
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not discussed here; it is assumed to have been done correctly, satisfying the behav-
ioral capabilities of the vehicle.

14.1 Situational Aspects for Subtasks

To perform a mission autonomously, several classes of subtasks should be distin-
guished. The initialization for starting an autonomous mission is different from
continuously performing the mission after the start. In both subareas again, differ-
ent situations and classes of other subtasks have to be distinguished. Once in opera-
tion, the subtasks are grouped into classes geared to certain subsystems for percep-
tion, situation assessment, behavior decision, and implementation of behaviors
including fast first reactions to failures in the performance of components.

14.1.1 Initialization

For initialization, the major difference is whether the vehicle is at rest (fully
autonomous start) or whether it has been operated till now by a human driver who
has kept it in a reasonable driving state; this is the standard starting condition for
an assistance system.

14.1.1.1 Starting from Normal Driving State

The manufacturer of an assistance system for normal driving will require that the
vehicle is in a safe driving state, achieved by the human driver, when the system is
switched on. Those assistance systems that are meant to help prevent or reduce the
severity of accidents in dangerous situations are included (like the “Electronic Sta-
bility Program”, ESP or similar acronym); they only become “active in control out-
put” in a dangerous state but have been observing vehicle motion and checking the
situation before.

A normal driving state alleviates the initialization process since positions of es-
sential features with approximately known parameters can be found in relatively
small search regions. However, some uncertainty will always be there so that it is
advisable to collect as much information as possible from conventional sensors
first: Speed from a tachometer (or derived from an odometer) is a “must”; in con-
nection with accelerometer readings in the horizontal plane (a, a,, vehicle body
oriented), after a short time, both the orientation of the vehicle body relative to the
gravity vector (surface slope) and vehicle accelerations (longitudinal and lateral)
can be perceived. Angular rate sensors inform the system about the smoothness of
the ground and, in connection with the steering angle, about the curvature of the
trajectory actually driven. The variance of the vertical acceleration component also
contains information on surface smoothness (vertical vibrations).

While this evaluation of conventional sensor signals is done, image processing
should collect general information on lighting and weather conditions to find
proper threshold values to be used in feature extraction algorithms. Then, initializa-
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tion of the vision system for road detection and recognition, as discussed in Chap-
ter 8, should be done.

14.1.1.2 Fully Autonomous Start from Rest

For a really autonomous vehicle, it is also important first to collect all information
it can get from conventional sensors before higher level vision is tried; it is even
more important here that the imaging sensors should first be used for collecting in-
formation on general environmental conditions.

Background information from conventional sensors: With little computational
effort, a large amount of important information for visual perception can be ob-
tained from the following sensors:

1. Odometer/tachometer: Is the vehicle stationary or moving? If moving, at what
speed and with which steering angle (turn rate)?

2. Inclinometer, accelerometers in the horizontal plane: What is the inclination of
the vertical axis of the vehicle relative to the gravity vector? If the vehicle is at
rest, the sensor readings determine the inclination of the surface on which the
vehicle stands. If the vehicle is moving, observation of acceleration in the longi-
tudinal direction and of the speed history over time also allows determining sur-
face slope.

3. A thermometer (outside) tells us about the state in which water on the surface or
as precipitation will appear likely.

4. Inertial sensors for translation and rotation give an indication of surface rough-
ness (vibration levels).

Background information from imaging sensors: Before visual perception of ob-
jects is started, here too, the general visual situation with respect to lighting and
weather conditions should be checked. If the vehicle is at rest, the surface state of
the environment (smoothness, vegetation, etc.) should be checked. Precise percep-
tion cannot be expected with state-of-the-art sensors and algorithms; quite a bit of
effort has to go into this field to achieve close-to-human performance. For exam-
ple, smooth ground with tall grass or other vegetation moving due to wind, which
would allow crossing the region with no danger to the vehicle, cannot be judged
correctly today neither by laser range finders (LRF) nor by vision. While LRF
show a solid obstacle or a surface at the elevation of the tips of the grass, vision
could have sufficient resolution for recognizing single plants, but computing power
and algorithms are still missing for the spatiotemporal recognition process required
for correct perception.

To recognize drivability of the terrain on which the vehicle is standing, the tan-
gential plane defined by the vehicle body at rest, but at the elevation of the lower
parts of the wheels, should be determined first. Modeling the vertical deviations
from a horizontal plane (surface structure) is just about to be developed, both with
LRF and with stereovision; robust real-time performance has yet to be achieved.

Recognizing the state of illumination can be done by looking at average image
intensities and the distributions of contrast. Recognizing weather conditions is
much harder for the general case; fog recognition has been looked at but is not
solved for the general case. Diminishing contrasts in the image for areas further
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away are the key feature to look at. Recognizing different kinds of rain and snow-
fall still has to be achieved, but should be in range in the near future.

The hardest challenge both for human drivers and for autonomous systems is the
question whether or not the ground is conditioned (sufficiently hard) to support the
vehicle. This problem will remain to be decided by a human operator walking into
these regions and checking by using his legs and corresponding pressure tests on
the surface. Observing other vehicles driving through these regions is the other
way to go (but may take longer).

Once the decision for a certain behavior in locomotion has been taken, the
methods for prediction-error feedback are activated and the continuous perception-
and-action loop is entered (see Chapter 8).

14.1.2 Classes of Capabilities

For efficient mission performance, there has to be a close interaction between the
three classes of capabilities: Situation assessment, behavior decision for gaze and
attention (BDGA), and behavior decision for locomotion (BDL). One might reason
that because of the tight interactions these three should be performed in one single
process. However, both BDGA and BDL have to rely on situation assessment for
selecting objects and subjects of high relevance for the task to be performed. On
one hand, BDGA has to concentrate on short-term aspects for collecting the right
information on these objects and subjects most efficiently and precisely, based on
image features. On the other hand, BDL has to understand the semantics of the
situation to arrive at good decisions in the maneuver or mission context; this re-
quires looking at larger scales in both space and time.

So the situation is the common part, but BDGA has to ensure its correct percep-
tion by providing rich selections of image features to the visual tracking processes
with the least delay time, while BDL (or alternatively BDASs in the assistance
mode) gives the essential input for defining and judging the situation in the mission
context and then decides which of the locomotion capabilities (or of the assistance
functions) is best suited for handling the actual situation and for achieving the goal
of the mission most efficiently and safely. To stay in the performance range of hu-
mans, a few tenths of a second delay time are acceptable here.

This interplay is schematically shown in Figure 14.1: All evaluation processes
(shown as rectangles) have access to the situational aspects derived previously and
to the state time histories of visual perception (stored in the DOB by the individual
tracking processes). The arrows E symbolize this basis for actual evaluation of
changes in the situation. The arrows A indicate that new aspects of general rele-
vance are added to the common description of the situation (including deletion of
old aspects no longer relevant). Certain special results will be kept local to avoid
communication overload.

Each tracking process and the object detection system can request a certain gaze
direction for achieving their actual tasks; in addition, an intended maneuver such as
a turnoff has to be taken into account by BDGA. If contradicting requests are re-
ceived and cannot be reconciled by saccadic time-slicing of attention, the “central
decision” unit (CD, center top) in charge of overall mission performance has to be
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Figure 14.1. Organizational structure of interactions between special processes for
situation assessment: “Behavior decision for gaze and attention” (BDGA, center bottom)
and one of the two alternative processes “Behavior decision for locomotion” (BDL, left,
for the autonomous driving mode) or “Behavior decision for driver assistance” (BDAs
right, if used as an assistance system). (Note that only one of the two can be active at a
time.) In case of conflict between BDGA and BDL, “central decision” (CD, center top)
may be invoked for coordination and possibly adaptation of the mission plan or other
behavioral parameters.

invoked and has to come up with a specific maneuver, if necessary; for example,
slowing down or shifting the lateral offset parameter from the center of the lane for
“roadrunning” by feedback control may solve the problem. These are the cases
where control of gaze and locomotion are no longer independent of each other.

14.1.2.1 Visual Perception Capabilities

Basic aspects have been discussed in Section 3.3.2.3 (see Figure 3.6). It is essential
that an autonomous system has a knowledge base telling it when to use which ca-
pability with which parameters in given situations. For example, when tight ma-
neuvering is performed, it makes sense to link gaze direction to the steering angle
selected for forward driving (see Figure 14.2). The correct gaze angle to be com-
manded is not the intended steering angle but the one actually reached because this
is the angle to which changes of the body direction actually correspond in normal
driving (no slip). Therefore, the command signal for gaze control in yaw should be
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Figure 14.2. Linking gaze direction to
steering angle for maneuvering

proportional to the steering angle ac-
tually measured (and maybe smoothed
by a low-pass filter). Figure 14.2
shows two viewing regions of atten-
tion (RoA) by different shades which
correspond to the fields of view of two
cameras with different focal lengths
(here a factor of 2 apart) [Pellkofer
2003]. So, intelligent gaze behavior
may be simply realized by internal
cross-feed of measurement data.
Triggering these behaviors is done
by rules checking the preconditions
for activation. Once in operation, the
decision level is no longer involved in
determining the actual control outputs.

Other rules depending on situation parameters are then checked for finishing this
type of behavior and for switching to a new one; transitions to feed-forward ma-
neuvers or to other feedback modes are possible (such as tracking a certain object

in the DOB).

Other modes in gaze control for driving cross-country and avoiding ditches
(negative obstacles) are shown in Figure 14.3. For interpreting the size of the ditch,
the perception system has to look alternatively to the right and the left border of the
ditch (P1 and P2), while internally the encasing box for the entire ditch has to be
determined, covering the region PO containing all of the ditch (last row of the ta-
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Left border PO || P2 Evasion to left
Part in front of vehicle PO || P3 Stop in front
Left and right borders PO || (P1 & P2) Interpretation

Figure 14.3. Regions of attention (RoA) for saccadic gaze control approaching a ditch

of size larger than the field of view
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ble). A complete internal representation of the ditch is constructed even though it is
never seen as a whole at the same time; the changes in gaze direction together with
the positions of features in the images are jointly used for reconstruction of the 3-D
geometry [Pellkofer 2002, Pellkofer et al. 2003].

When a decision for behavior has been achieved, the vision system will continue
with one of three possible modes: (a) fixation of the right corner (keeping the entire
ditch “in mind”) for evasion to the right (first row of table), (b) fixation of the left
corner (keeping the entire ditch “in mind”) for evasion to the left (second row of
table), or with (c) looking straight ahead when stopping in front of the ditch (third
row of table). Different feedback strategies of specific image features help realize
the modes.

A third example, perceiving a crossroad and turning onto it has been discussed
in Chapter 10; in Section 14.6.3, the same maneuver will be discussed, now inte-
grated in the capability concept of saccadic vision.

14.1.2.2 Situation Assessment Capabilities

The discussion has not really been settled within our team whether it is advanta-
geous to have situation assessment as a separate process beside BDGA for gaze
and BDL for locomotion control. There are many aspects of situations specific to
perception and others specific to locomotion, so these processes will do large parts
of the overall situation assessment work on their own, especially when these tasks
are developed by different persons. Maybe experience is not yet sufficiently large
to find a stable structure of task distribution; in the long run, combining experience
from the different domains in a unified approach seems advantageous (at least from
an abstract architectural point of view). As shown in Figure 14.1 (center), represen-
tation of the results of situation assessment, the situation aspects, should be acces-
sible to all processes involved in decision-making on a higher level.

For today’s assistance systems, this part is rather small, usually; most effort
goes into finding solutions satisfying the user from an ergonomic point of view.
Realizations are mostly procedural statements. Only with an advanced sense of vi-
sion in the future will behavior decision for assistance (BDAs) become more de-
manding.

14.1.2.3 Locomotion Capabilities

This topic has been treated to some extent in Section 3.4 (see Figure 3.28 for the
corresponding capability network summarizing results). Here, the overall task is
broken down into two layers: A representational (abstract) one for decision—
making in the strategic task or mission context on one hand, and a procedural one
for efficient implementation with minimal time delays taking most recent meas-
urement values into account, on the other. Figure 3.17 shows just one example of
behavior decision for longitudinal control; it contains the conditions for transitions
possible between the different modes on the upper level. These are coded in rules
with decisions depending on parameters evaluated in situation assessment.

Table 3.3 shows a typical collection of behavioral capabilities of road vehicles
and their way of realization by either feed-forward or feedback control. Section
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14.6.4 will discuss the joint use of different capabilities for deciding on and per-
forming lane change maneuvers in normal highway traffic.

The detailed codes for realization will not be discussed here. Quite a bit of effort
is expended in this field by car manufacturers or suppliers for developing systems
to come on the market soon. The next section gives a short survey of the general
concept.

14.2 Applying Decision Rules Based on Behavioral
Capabilities

A behavioral capability results from matching general algorithms for the field con-
sidered with specific hardware of a vehicle (or vehicle class) through adaptation of
parameters and specification of the range of applicability. There are sets of rules
specific to each of the three classes of capabilities mentioned in the previous sec-
tion plus the set for central decision (CD).

CD is the first unit addressed when a new mission is to be performed (“Task as-
signment”, arrow ‘I-1" in Figure 14.4, center top). It first initiates off line “Mission
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Figure 14.4. Coarse block diagram of the system architecture for performing entire mis-
sions: Arrows ‘I-1’ to ‘I-4’ point out mission initialization before the recursive loops are
started. The inner light-gray loop represents expectation-based, multifocal, saccadic
(EMS) vision, while the outer dark loop represents conventional automotive control with
a separated decision level shown above the horizontal bar for “dynamic knowledge rep-
resentation” (DKR).
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planning” (‘1-2°) to analyze the mission and to come up with one or several alterna-
tive mission plans taking the nominal capabilities of the system into account (arrow
‘1-3°, upper right). For each plan consisting of: (1) a list of mission elements, (2) a
list of performance criteria with expected values, and (3) a list of the subsystems
needed, CD evaluates which plan is best suited for the subsystems actually avail-
able. This “valid mission plan” is stored as a guideline for actually performing and
monitoring the mission (arrows ‘1-4°, top left) [Hock 1994; Gregor 2002]. The list of
mission elements of this validated plan is then consecutively activated by copying
one piece after the other into “dynamic knowledge representation” [(DKR, center
of the horizontal bar shown in Figure 14.4 separating the decision level (top) from
the procedural evaluation level (lower part; see also Figure 13.5 right)]. The per-
ceptual capabilities actually needed are initiated via BDGA,; each path knows its
own initiation procedures and will try to represent stable interpretations in the
DOB. Now, “situation assessment” (SA) can start its evaluation taking the re-
quirements of the first mission element into account (top left corner).

The evaluation results are first used for checking the perception mode by
BDGA, and second for starting locomotion activities through BDL (initiate physi-
cal mission performance) by triggering behavioral skills for locomotion on the
lower (procedural) level (bottom right corner of Figure 14.4). The progress of mis-
sion performance is monitored on several levels. If situations occur that do not al-
low planned mission progress, as, for example, in roadrunning on a multilane
highway with a slower vehicle in the same lane ahead, BDL has to come up with a
decision whether a transition into convoy driving or a lane change maneuver with
passing should be performed. Before the latter decision can be made, perception to
the rear and to the side and corresponding evaluations of “situation assessment”
have to ensure that this maneuver is possible safely; this evaluation will take some
time. If the gap to the vehicle in front closes too rapidly, a safety mode on the
lower level for vehicle control may start a transition to convoy driving in the same
lane.

This example shows that the coordination of decisions in the different modes
and on the time line have to be done carefully; this is by no means an easy task and
has taken quite a bit of effort in developing this approach for practical applications
with the test vehicles in standard traffic scenes. Once the parameter ranges for safe
operation are known, it is very flexible, and it is easy to make improvements by
new modular units for perception and control.

14.3 Decision Levels and Competencies, Coordination
Challenges

As mentioned in Section 14.1.2 and shown in Figure 14.1, there are several deci-
sion levels emphasizing different aspects of the overall task. The mission and the
actual state of the vehicle as well as of the environment including other ob-
jects/subjects define the situation for the system. BDGA has to ensure that percep-
tion of this situation is performed as well as possible and is sufficient for the task.
If the situation deteriorates, it has to warn CD and BDL to adapt to the new envi-
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ronmental conditions. If the perturbations are sufficiently severe, CD has to adapt
parameter settings or may even have to start “mission replanning” to adapt the fu-
ture list of mission elements to the new conditions.

To a certain extent, the procedural implementation levels can react directly to
perturbations noticed. It is an engineering standard to keep the system in a safe or
agreeable operational state by adapting gain factors in feedback control, for exam-
ple. The challenge is to keep all system components informed about the actual per-
formance level; therefore, the “explicit representation of capabilities” has to be up-
dated each time a capability running has been adapted for whatever reason.

For example, if it has been noted that during the last braking action, the effec-
tive friction coefficient was lower than expected (due to wet soil or slush or what-
ever), the updated friction coefficient should be used for planning and for realizing
the next braking maneuver. Engineers will tend to keep the details of these deci-
sions on the procedural level with direct access to the most recent measurement
data (minimal delay time); they expect the decision level to trigger transitions or
new behaviors sufficiently early so that implementation can be performed opti-
mally, directly based on the latest data; conventional measurement data may be
available at a higher rate than video evaluations (the maximum update rate for the
higher system levels). [In our test vehicles, inertial data come at 100 Hz with al-
most no delay time, while video yields new results at 25 Hz (every 40 ms) with at
least an 80 to 120 ms time delay.]

For this reason, in critical situations, both the fast lower level and the more in-
telligent higher levels will contribute to safety: First reactions with the goal to in-
crease safety margins are immediately performed on the lower level, and the rest of
the system is informed about facts leading to this decision and to the adaptations
made. A more thorough analysis and assessment of the new situation is then per-
formed on the higher level which then may trigger new behavioral modes or even
abandon the mission. This is an area where much development work remains to be
done for systems more complex than those up to now.

Some aspects of this integration task have been performed for several mission
elements and a small mission as a final demo of the development project; this will
be described in the remaining sections.

14.4 Control Flow in Object-oriented Programming

The first two generations of vision systems realized and experimentally tested have
been programmed in procedural languages (FORTRAN, Occam, and C). The dif-
ferent subtasks have been treated as self-contained units, and the main goal of the
tests has been to demonstrate the fitness of the approach to handle the well-defined
task domains. In the mid-1990s with the final demo of the “Prometheus” project
and the long distance drive from Munich to Odense, Denmark, (see Section
9.4.2.5) successfully performed, it was felt that the next-generation system should
be designed as an integrated entity right from the beginning. As a programming
style, object-oriented coding in C++ has been selected for practical reasons of
availability and trained personnel. A strong tendency toward the language Ada for
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more reliable code for the complex system to be expected did not find majority ap-
proval of the group.

Figure 14.4 has shown the basic structure of the system designed and the gen-
eral flow of activities in the perception—action cycle. Multiple feedback loops real-
ized in the system have been given in Figure 6.1; all of this implements the “4-D”
approach to dynamic vision, the basic idea of which has been graphically summa-
rized in Figure 6.2. A more detailed explication of what has to be organized and
what is going on in the overall system can be seen from Figure 14.5 concentrating
on visual perception.
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Figure 14.5. Visualization of parallel activities in dynamic vision according to the 4-D ap-
proach on four distinct levels: “Feature level” for bottom-up feature extraction and top-
down “imagination”; “Object (subject) level” for recognition and extrapolation in time as
well as computation in 3-D space; “Situation level” for fusing individual results on ob-
jects/subjects in the context of the mission to be performed and goals to be achieved,;
“Mental framework level” providing the knowledge background for the other levels.
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This figure is a somewhat unconventional arrangement of terms, arrows for ac-
tivity and information flow as well as some elements for knowledge representation
like the dynamic scene tree on the right, which is the core element for scene under-
standing [D.Dickmanns 1997]. The homogeneous coordinate transformations
(HCTs) represented by the edges of the graph link image features to internally rep-
resented 3-D objects moving over time according to some motion constraints (in-
cluding the effects of control activity). The recursive estimation process with pre-
diction-error feedback iterates the entries in the HCTs such that the sum of
prediction errors squared is minimized. When egomotion (conventionally meas-
ured) is involved, this approach realizes motion stereointerpretation in a natural
way. Unknown shape parameters can be iterated for each object observed by prop-
erly incrementing the number of state variables.

The tree as a whole — besides representing the individual object-to-feature map-
ping — thus also codes the geometric and shape aspects of the entire situation. Note
that since motion constraints for mechanical systems are of second order, the ve-
locity components of the objects observed may also be reconstructed. By determin-
ing the sensitivity (first-order derivative or “Jacobian”) matrix between features
measured and changes in object states, perspective inversion can be bypassed in
this approach by a least-squares fit. All these aspects have been discussed in previ-
ous chapters down to implementation details; here, they are just recalled to show
the interplay among the different components.

Bottom-up detection of single features is the starting point for vision (bottom of
Figure 14.5). Combinations of features in a single image, from several images
taken in parallel or from image sequences, allow coming up with object hypotheses
represented directly in 3-D space and time. Looking at convergence properties and
error statistics for each of the n parallel processes that track a single object, each al-
lows perceiving “objects and their motion in 3-D space” (shaded area in center of
the figure with object nodes at the end of branches of the scene tree). For each of
these objects, the DOB contains the variables of the HCTSs that link the object node
with the features in the images (= nodes at bottom right). These variables together
with the code for computing HCT and for generating 3-D shape from a few pa-
rameters allow “imagination”, the process of generating virtual images from ab-
stract mathematical representations (as in computer graphics). In connection with
the models for dynamic motion, the evolution of scenes with several ob-
jects/subjects can be predicted, which is the process of forming expectations. Time
histories of expectations generate representations of maneuvers needed for deeper
understanding of motion processes. These temporally more extended elements of
knowledge representation on a timescale different from “state reconstruction here
and now” have been missing in many approaches in the past.

Keeping track of the evolution of trajectories of other objects/subjects stored al-
lows recognizing their direction of motion; if parts of stereotypical maneuvers can
be identified, such as the onset of a lane change or preparation for a turnoff ma-
neuver, this is considered recognition of an intention of the other subject, and pre-
dictions of this maneuver allow computing expectations for deeper understanding
of what is happening in the environment. This is part of situation assessment, pre-
ceding behavior decision and control output. The results of situation assessment
can be stored in the DOB and logged for later (off-line) evaluation.
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This part of the system (at the top of Figure 14.5) needs further expansion in the
direction of learning, now that the actually needed parts for basic mission perform-
ance seem to be in place. Off line analysis of logged maneuvers and mission ele-
ments performed should allow adaptation and improvement of quality criteria and
of developing adjustments in the subject’s behavior (parameter selection and tim-
ing) taking time delays observed and other perturbations into account.

Figure 14.6 shows yet another visualization of the same scheme emphasizing
the modularity developed with the network of capabilities, realized in object-
oriented coding (see also Figures 3.6 and 3.28). In the top row, central decision or-
ders a mission plan to be generated (top left) which is returned as a list of sequen-
tial mission elements. CD now activates the complex behavioral capabilities
needed to perform the first mission element. Three of them are shown: “Follow
road/lane”, “Turnoff onto cross road”, and “Follow sequence of (GPS) waypoints”.
Depending on the task of the first mission element, the proper mode is selected,
probably with some priority parameters for the implementation level. The arrows
emanating from each complex behavioral capability indicate which basic stereo-
typical capabilities (shown on the broad arrow between BDGA and BDL) have to
be available to start the complex behavior. Their availability is checked each time
before intended activation, so that actual malfunctions are detected and availability
of this behavior is modified (adjusted) or even negated.

“Follow road/lane” thus needs “optimization of viewing behavior” (OVB) for
gaze control, “road detection and tracking” (RDT) for road recognition, and
“Road/lane running” (RLR) for vehicle guidance (dark solid arrows from top left
of shaded area). “Turnoff onto crossroad” would need, beside the ones mentioned
before, also “Crossroad detection and tracking” (CRDT). For “Following a se-
quence of waypoints” a second visual perception capability for “3-D surface rec-
ognition” (3-DS) is needed to avoid falling into ditches or other negative obstacles.
(Results will be discussed briefly in Section 14.6.6.) A special capability for “Ob-
stacle detection and tracking” (ODT) is shown necessary for going cross-country
(fallen trees or sufficiently big rocks, etc.). As a new capability for locomotion (ve-
hicle control), “Waypoint navigation” (WPN) is shown.

All these stereotypical capabilities have to rely more or less on “basic skills”
(lower row of circles shown). This is again indicated by arrows (not exhaustive).
Their availability is checked before the stereotypical capabilities can signal their
availability to the next higher level. This is part of the safety concept introduced
for the third-generation EMS vision system. The local “behavior decision” units
BDGA and BDL (see darkened rectangles left and right) work with the rules for
mode transition between behaviors. They also monitor the progress of behavior ini-
tiated and have to recognize irregularities from failures or perturbations. (This is
another area needing more attention in future more reliable systems for practical
applications of this new technology.)

The interested reader may find more details in [Maurer 2000, Gregor et al. 2002,
Pellkofer et al. 2001, 2003; Pellkofer 2003; Siedersberger 2004]. The introduction and
implementation of networks of capabilities is a rather late development, whose full
potential has by far not yet been exploited. We will come back to this point in the
Outlook at the end of the book.
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Figure 14.6. Control flow for realizing behaviors according to the approach developed
with networks of capabilities for visual perception and motion control in object-oriented
programming (see text for explanation) [Gregor et al. 2002, Pellkofer 2003, Siedersber-
ger 2004]

14.5 Hardware Realization of Third-generation EMS Vision

Since progress in hardware development for computing and communication is still
huge, not much space will be devoted to this point here; the latest hardware used
was from the end of last century and is outdated by now. Figure 14.7 gives a sum-
mary of the system built from up to four Dual-Pentium® processors with clock
rates of less than 1 GHz [Rieder 2000]. Synchronization and data exchange have
been performed using an off-the-shelf communication network (Scalable Coherent
Interface: SCI®) together with Fast Ethernet® (for initialization). Dynamic knowl-
edge representation (DKR) via scene tree makes the latest estimated states of all
processes available to all units (DOB as part of it, see Figure 14.4) via SCI (top
row in Figure 14.7).

Three of the four Dual-Pentium PCs were devoted to image feature extraction
and visual perception (PC 1 to 3, top left); the fourth one, dubbed *“Behavior PC”
had two subsystems connected to it as interfaces to measurement and actuator
hardware. The “gaze subsystem” for gaze control (GC) receives data from me-
chanical angle and inertial angular rate measurements of the gaze platform at high
frequencies; it commands the actual output to the torque actuators in pan and tilt,
which can work at update rates up to 500 Hz (2 ms cycle time for smooth pursuit).

The “vehicle subsystem” for vehicle control (VC, lower right in Figure 14.7) re-
ceives all conventional measurement data from the sensors on the vehicle at least at
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Figure 14.7. Realization of EMS vision on a cluster of four dual-processor PCs plus two
subsystems as interfaces to hardware for gaze and vehicle control [Rieder 2000] (see text)

video rate. It also forms the interface to the actuators of the vehicle for steering,
throttle position, and braking. The process VC, running on the Behavior PC, im-
plements the basic behavioral skills. The decision processes CD, BDGA, and BDL
perform situation assessment based on the data in the DOB, the conventional
measurement data, and on data from the Global Positioning System (GPS) arriving
once a second for navigation (see corresponding blocks displayed at right in Figure
14.7). MP stands for mission planning (running off-line, usually), and HMI real-
izes the “human—machine interface” through which the operator can communicate
with the system. An embedded demon process (EPC) allows programming and
controlling the overall system via fast Ethernet from one external resource.

14.6 Experimental Results of Mission Performance

Before we start discussing results achieved with the third-generation vision system,
an early test made with hardware-in-the-loop simulation for preparing these ad-
vanced perception processes will be discussed.

14.6.1 Observing a Maneuver of Another Car

The challenge is not just to get a best estimate for the actual state of another vehi-
cle observed, but to find out how much deeper understanding of motion and control
processes can be gained by the 4-D approach to dynamic vision. To keep things
simple in this first step, the camera observing the other vehicle was stationary with
an elevation of 3 m above the ground; it followed the center of the projected mov-
ing vehicle without errors (ideal fixation, see Figure 2.17). Vehicle motion and
projected shape, according to a shape model as given in Figure 2.15, were simu-
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lated on a separate computer, and feature positions were superimposed with noise.
The vehicle started straight ahead from rest at the position labeled 0 in Figure 2.17
with an acceleration of 2 m/s2 until a speed of 5 m/s (18 km/h) was reached (dotted
gray pulse at the extreme left in Figure 14.8); this maneuver lasted 2.5 s, which at
an estimation rate of 20 times per second yields 50 steps (dimension of the hori-
zontal coordinate in the figure). The solid curves shown in the left graph give the
speed and acceleration of the vehicle reconstructed from feature data taking not
only the translational degrees of freedom but also the rotational ones as variables to
be observed (not shown here). As shown at the top of Figure 2.17, due to changing
aspect conditions, some features disappear and others newly appear during this ac-
celeration period. It can be clearly seen that there is a time lag of several cycles un-
til the start of the motion is perceived. Acceleration is reconstructed rather noisy,
but “perceived” speed increases almost linearly, although with constant time delay
compared to motion generation (this would be the diagonal line from (0, 0) to (50,
5). The instantaneous drop in simulated acceleration at coordinate 50 is, of course,
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Figure 14.8. Maneuver recognition on an oval track (see Figure 2.17) in HIL-simulation
with a real camera in front of a monitor. The image displayed was computer generated
with the optical axis from a fixed location 3 m above the ground always fixated on the
cg of the car displayed in the center of the image (ideal tracking; see text).

also perceived only with a corresponding time delay; keep in mind that in percep-
tual reconstruction from vision data, speed is derived from position changes and
acceleration from speed changes (buried in the recursive estimation process)!

The vehicle then drives the oval track at constant speed V =5 m/s [0.25 m/(time
step)] and with two double pulses in steering rate (lateral control) as shown by the
dotted gray polygon in the right-hand part of the figure. The first pulse extends
over 40 time steps (50 to 90, = 2 s) with a magnitude of curvature change rate per
arc length of dC/dl = + =/20; it will ideally turn vehicle orientation from 0 to 90°
(neglecting the difference between trajectory and vehicle heading changes, see
Figure 10.6). The maximal curvature at this point is Cpax = 0.25-40- 7/20 = n/10
m* (corresponding to a turn radius of a little more than 3 m). The second part of
the double pulse then immediately starts decreasing curvature back to zero
(achieved at time point 130, see Figure 2.17). There it is seen that during this turn
the aspect conditions of the vehicle have changed completely; it was visible from
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the right side initially, right from the front at point 100, and for the new straight
section (130 to 157), it is seen from the left. When looking at the vehicle from the
front (around 105) or from the rear (around 190), it can be seen from the left sub-
figure of 14.8 that longitudinal motion is poorly conditioned for tracking; only the
change in size and vertical position of the cg in the image contain information de-
pending on range. Correspondingly, estimated values of speed and longitudinal ac-
celeration show large perturbations resulting from noise in measured feature posi-
tions in these phases. Reconstruction of the curvature of the trajectory driven is not
too bad, though. The dashed triangular shapes in gray are the integrals of the dot-
ted input curve, i.e., they represent the “ideal” curvature at the reference location of
the vehicle; the solid lines representing the estimated curvatures from recursive es-
timation are not too far off in both turns; the second turn runs from time point 157
to 237. Keeping the relation between curvature and steering angle in mind (see
Figure 10.6, lower equation), a constant steering rate of the vehicle can easily be
concluded, at least for the second turn which started with all initial transients set-
tled.

These results from around 1990 showed rather early that the 4-D approach had
its merits both in estimating actual states and in recognizing maneuver elements at
the same time but on different timescales.

14.6.2 Mode Transitions Including Harsh Braking

The maneuver tested here is one that is not, usually, part of a regular mission plan,
but may occur every now and then during mission performance on high-speed
roads. The test vehicle VaMP had received a request to cruise at a set speed of 140
km/h; driving at 40 km/h when registration started (second graph from top), the se-
lected driving mode was “acceleration” (V1, top graph left, Figure 14.9). Due to
increasing speed and air drag, the acceleration level decreased with time from
about 2 to less than 1 m/s? (second graph from bottom). Shortly after 20 s, a vehi-
cle had been detected in the same lane at about 130 m ahead (center graph). Its
speed seemed to be rather low and, of course, unreliable due to the usual transients
in state estimation after detection.

The system reacted with a rather harsh initial braking impulse at around 23 s
(lower two graphs). It was initiated by a mode change on the situation assessment
level (top curve), which resulted from brake pressure in the feed-forward compo-
nent (dash-dotted in lower graph). The actual pressure buildup shows the usual lag.
The resulting deceleration of the vehicle went up to a magnitude of - 8 m/s? (sec-
ond from bottom), reducing speed to about 80 km/h (second from top).

Due to the resulting pitching motion from braking, speed estimation for the ve-
hicle in front showed a strong transient with overshoot (second from top, lower
curve). The commanded pressure in the brake system went down to zero for a short
time. However, with the transient motion of the subject vehicle vanishing, the dif-
ference in the subject’s speed and the speed of the vehicle ahead was perceived,
and the system decided to regulate this (relatively small) difference by feedback
control which also had to realize the intended distance for convoy driving [Bruedi-
gam 1994; Maurer 2000; Siedersberger 2004]. The bottom graph shows the brake pres-
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Figure 14.9. Braking maneuvers of test vehicle VaMP (Mercedes 500 SEL) in two
phases for smooth transition from v = 120 km/h to convoy driving at V = 35 km/h and
about 20 m longitudinal distance with three mode changes (top): (1) from acceleration
to harsh braking at time 23 s (second graph from bottom and from top showing decel-
eration and speed), (2) from harsh to moderate braking at around 24 s, and (3) to con-
voy driving at about 33 s. The control variable is brake pressure (bottom graph); the
controlled state is the distance to the vehicle in front (center graph) [Maurer 2000].

sure as a control output thus determined, and the graph above it shows the com-
manded (dash-dotted) and the realized deceleration (around — 0.2 g).

During this smooth driving phase (mode V4, top graph), the estimated speed of
the vehicle ahead becomes stable (lower curve, second graph from top); this speed
determines the distance to be kept from the vehicle in front for convoy driving.The
transition into this mode V3 (top) occurs at about 33 s. Note that the remaining er-
ror in distance for convoy driving is eliminated in this new mode. At around 37 s,
the stationary new driving state is reached with braking activities vanishing (accel-
eration zero for t > 37 s, second graph from bottom).
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14.6.3 Multisensor Adaptive Cruise Control

This function is not for fully autonomous driving but for extending and improving
an assistance system for distance keeping in convoy driving. These types of sys-
tems are on the market under various names for certain premium cars (class name
“ACC”). They, usually, rely on radar as the distance sensor. The human driver has
to control the vehicle in the lateral degrees of freedom all the time; as an extension
to conventional automatic “cruise control” (CC) at constant speed on a free stretch
of road, these systems allow braking at soft levels for distance keeping from a ve-
hicle in front.

Though this capability has been demonstrated with the vision system of
UniBwM in the framework of the Prometheus project in 1991 (on separate test
track, demo in Torino) and since 1993 (in public traffic) already, industry had de-
cided to base the system for market introduction on radar measurements. This ap-
proach has all-weather capability, it requires less computing power onboard, and
less software development for interpretation. At that time, a single, specially de-
veloped vision system for realizing this function reliably would have cost about as
much as a premium car. Therefore, the disadvantages of radar: low resolution,
small field of view, relatively many false alarms, and problems with multipath
propagation, had been accepted initially. To people believing in vision systems, it
has always been only a question of time until vision would be added to these sys-
tems for more reliable performance. Above all, radar is not capable of recognizing
the road, in general. Figure 14.10 shows a concept studied with industry in the late
1990s. Figure 11.26 had schematically shown the advantage of object tracking by a
joint radar and vision system. The role of the vision part has already been dis-
cussed in Section 11.3.4.1. Here, a survey of the overall system and of system inte-
gration will be given. Radar was installed underneath the front license plate (center
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Figure 14.10. Hybrid adaptive cruise control with radar (center bottom) and bifocal vi-
sion (top left): System survey with hardware components and condensed scene tree
(center, multiple cameras, framegrabbers, and other vehicles)
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bottom of Figure 14.10); its range of operation was 2 to 130 m, its viewing angle =
4°. The position and orientation relative to the car body was represented in the
scene tree by three translations and three rotations [six degrees of freedom (DOF)]
as for all other objects of relevance (cameras, other vehicles, and the road; see cen-
ter of Figure 14.10). The two cameras used (top left) had fields of view of 5.5° and
22°; their position was in front of the rearview mirror behind the top center of the
windshield. Figure 11.25 shows a typical pair of images analyzed by the 4-D ap-
proach.

Vehicle detection was performed by radar; in all regions of special interest, vi-
sion looked for features indicative of vehicle candidates. At the same time, lanes
were tracked, and both horizontal and vertical curvatures of the road were deter-
mined. It turned out that for larger ranges covered by radar, recognition of even
small vertical curvatures was important for good tracking results. It has been dem-
onstrated that vision was able to eliminate all candidates based on false alarms
from radar and that lateral positions relative to the lanes could be determined pre-
cisely. The system automatically switched the reference lane when the driver
crossed the lane boundary during lane change. It marked the lower part of the ref-
erence vehicle for distance keeping by a red rectangle and of other vehicles tracked
by blue ones.

Lane markings recognized were marked by short line elements according to the
horizontal curvature model estimated. Vertical curvature was displayed by three
yellow bars, the outer two of which showed the perceived horizon, and the center
one indicating the actual vertical surface position above or below the planar value.
Snapshots (such as Figure 11.25) and figures are hardly able to give a vivid im-
pression of the results achieved. Video films of tests during daylight and night
driving are available for demonstration [Siedersberger 2003; Hofmann 2004].

14.6.4 Lane Changes with Preceding Checks

This maneuver is a standard one for driving on multilane high-speed roads. The
nominal control time history for applying the skill “lane change” has been dis-
cussed in Section 3.4.5.2. Figure 3.27 shows the effect of maneuver time on the
evolving trajectory in simulation. An actual lane change with test vehicle VaMP is
shown in Figure 14.11 with standard feed-forward and superimposed feedback
control for a nominal maneuver time of 8 s. The top left graph allows recognizing
the nominal lane change maneuver without a phase of driving straight ahead at the
center. Feedback control has been kept running all the time; at the start of the ma-
neuver, the reference for feedback control was modified by adding the values ac-
cording to the nominal trajectory of the (feed-forward) maneuver to the position of
the lane center (which is usually the reference).

It can be seen that the additive corrective commands deform the rectangular
pulse-shape considerably (top left). The yaw errors at the beginning and at the end
of the maneuver (lower left in Figure 14.11) lead to especially larger increments.
The lateral offsets (lower right) from the nominal trajectory never exceed about 25
cm, which is considered good performance for a lane width of 3.75 m and a vehicle
width of less than 2 m.
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Figure 14.11. Real lane change maneuver with test vehicle VaMP: The actual control
output (top left) was the result of both a feed-forward component according to the nomi-
nal maneuver and a feedback component trying to drive the difference between actual
and nominal trajectory to zero. These differences are displayed in the bottom part: Left
the yaw angle and right the lateral offset from the center of the reference lane.

Before such a maneuver can be initiated, it has to be checked by perception that
the neighboring lane to be changed to is free in the rear, to the side, and in front.
This is part of situation assessment when a lane change is intended. Vehicles with
higher speed AVg coming from behind will close the gap dg in the time span AT, =
dr/AVR. If this time is larger than the maneuver time for lane change (possibly plus
some safety margin), the maneuver is safe from the rear. Checking whether there is
another vehicle to the side in the intended lane is a more involved challenge: Either
there are special sensors for this purpose, such as laser range finders or special ra-
dar, or gaze direction (of the front and the rear cameras) can be changed suffi-
ciently to check the lane briefly by a quick saccade, if required. Another possibility
is to keep track of all vehicles leaving the rear field of view and to check whether
all these vehicles have reappeared in the front field of view. However, this yields
100% correct results only for a single neighboring lane in the direction of the in-
tended change; otherwise, a vehicle might have changed from the second neighbor-
ing lane to the immediate one in the meantime. This approach for situation assess-
ment, minimizing sensor hardware needed, has been successfully tested when
driving in the center lane of a three-lane highway in the final demonstration of the
Prometheus project on Autoroute 1 (Paris) in 1994 in public traffic [Kujawski 1995].

During the long-distance test drive Munich-Odense in 1995, more than 400 lane
changes were performed autonomously after the safety driver triggered the maneu-
ver. Figure 14.12 shows the statistics of a period of about half an hour, displayed
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14.6.5 Turning Off on Network of Minor Unsealed Roads

Based on the results of [Mueller 1995] discussed in Chapter 10, the capability of
turning off in the new concept of capability networks has been developed by Luet-
zeler (2002), Gregor (2002), Pellkofer (2003), and Siedersberger (2004). It has
been demonstrated with the test vehicle VaMoRs in various environments. The ex-
ample discussed here is from a proving ground in the southern part of Germany.
The roads are all unsealed and have a gravel surface. Edge detection has been done
with CRONOS-software. Figure 14.13 shows three snapshots from the telecamera
several frames apart containing a saccade.

Since the turnoff is intended to the left, the crossroad on the left-hand side (left
image) and at the crossing (right image) are viewed alternately by saccadic vision.
Search regions for edge feature extraction are marked by horizontal and vertical
line elements. They cannot be seen in the center image indicating that feature ex-

Figure 14.13. Tele-images during saccadic vision while approaching a crossroad; the
center image during a saccade is not evaluated (missing indicated search paths)
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traction is suppressed during saccadic motion. [In this case, the saccade was per-
formed rather slowly and lighting conditions were excellent so that almost no mo-
tion blur occurred in the image (small shutter times), and feature extraction could
well have been done.] The white curve at the left side of the road indicates that the
internal model fits reality well.

The sequence of saccades performed during the approach to the crossing can be
seen from the sequence of graphs in Figure 14.14 (a) and (b): The saccades are
started at time ~ 91 s; at this time, the crossroad hypothesis has been inserted in the
scene tree by mission control expecting it from coarse navigation data (object ID
for the crossroad was 2358, subfigure (e). At that time, it had not yet been visually
detected. Gaze control computed visibility ranges for the crossroad [see graphs (g)
and (h)], in addition to those for the road driven [graphs (i) and (j), lower right].
Since these visibility ranges do not overlap, saccades were started.

Eleven saccades are made within 20s (till time 111). The “saccade bit” (b) sig-
nals to the rest of the system that all processes should not use images when it is
“1”; so they continue their operation based only on predictions with the dynamic
models and the last best estimates of the state variables. Which objects receive at-
tention can be seen from graph [(e) bottom left]: Initially, it is only the road driven;
the wide-angle cameras look in the near (local, object ID = 2355) and the tele-
camera in the far range (distant, ID number 2356). When the object crossroad is in-
serted into the scene tree (ID number 2358) with unknown parameters width and
angle (but with default values to be iterated), determination of their precise values
and of the distance to the intersection is the goal of performing saccades.

At around t = 103 s, the distance to the crossroad starts being published in the
DOB [graph (f), top right]. During the period of performing saccades (91 — 111),
the decision process for gaze control BDGA continuously determines “best view-
ing ranges” (VR) for all objects of interest [graphs (@) to (j), lower right in Figure
14.14]. Figure 14.14 (g) and (h) indicate, under which pan (platform yaw) angles
the crossroad can be seen [(g) for optimal, (h) for still acceptable mapping]. Graph
(i) shows the allowable range for gaze direction so that the road being driven can
be seen in the far look-ahead range (+2° to —4°), while (j) does the same for the
wide-angle cameras (x 40°). During he approach to the intersection the amplitude
of the saccades increases from 10 to 60° [Figure 14.14 (a), (9), (h)].

For decision-making in the gaze control process, a quality criterion “information
gain” has been defined in [Pellkofer 2003]; the total information gain by a visual
mode takes into account the number of objects observed, the individual informa-
tion gain through each object, and the need of attention for each object. The proce-
dure is too involved to be discussed in detail here; the interested reader is referred
to the original work well worth reading (in German, however). The evolution of
this criterion “information input” is shown in graphs (c) and (d). Gaze object 0
(road nearby) contributes a value of 0.5 (60 to 90 s) in roadrunning, while gaze ob-
ject 1 (distant road) contributes only about 0.09 [Figure 14.14 (d)]. When an inter-
section for turning off is to be detected, the information input of the tele-camera
jumps by about a factor of 4, while that of the wide-angle cameras (road nearby) is
reduced by ~ 20% (at t = 91 s). When the crossroad is approached closely, the road
driven loses significance for larger look-ahead distances and gaze direction for
crossroad tracking becomes turned so much that the amplitudes of saccades would
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Figure 14.14. Complex viewing behavior for performing a turnoff after recognizing the
crossroad including its parameters: width and relative orientation to the road section
driven (see text)

have to be very large. At the same time, fewer boundary sections of the road driven
in front of the crossing will be visible (because of approaching the crossing) so that
the information input for the turnoff maneuver comes predominantly from the
crossroad and from the wide-angle cameras in the near range (gaze object 0). At
around 113 s, therefore, the scene tree is rearranged, and the former crossroad with
ID 2358 becomes two objects for gaze control and attention: ID 2360 is the new
local road in the near range, and 1D 2361 stands for the distant road perceived by
the telecamera, Figure 14.14 (e). This re-arrangement takes some time (graphs
lower right), and the best viewing ranges to the former crossroad (now the refer-
ence road) make a jump according to the intersection angle. While the vehicle turns
into the crossroad, the small field of view of the telecamera forces gaze direction to
be close to the new road direction; correspondingly, the pan angle of the cameras
relative to the vehicle decreases while staying almost constant relative to the new
reference road, i.e., the vehicle turns underneath the platform head [Figure 14.14
(i) and (a)]. On the new road, the information input from the near range is com-
puted as 0.8 [Figure 14.14 (c)] and that from the distant road as 0.4 [Figure 14.14
(d)]. Since the best visibility ranges for the new reference road overlap [Figure
14.14 (i) and (j)], no saccades have to be performed any longer.

Note that these gaze maneuvers are not programmed as a fixed sequence of pro-
cedures, but that parameters in the knowledge base for behavioral capabilities as
well as the actual state variables and road parameters perceived determine how the
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maneuver will evolve. The actual performance with test vehicle VaMoRs can be
seen from the corresponding video film.

14.6.6 On- and Off-road Demonstration with Complex
Mission Elements

While the former sections have shown single, though complex behavioral capabili-
ties to be used as maneuvers or mission elements, in this section, finally, a short
mission for demonstration is discussed that requires some of these capabilities. The
mission includes some other capabilities in addition, too complex to be detailed
here in the framework of driv-
ing on networks of roads. The
mission was the final demon-
stration in front of an interna-
tional audience in 2001 for the
projects in which expectation-
based, multifocal, saccadic
(EMS) vision has been devel-
oped over 5 years with a half

visitors'

dozen PhD students involved. Taxiways and parking areas area
Figure 14.15 shows the mis- o former airport Neubiberg:

sion schedule to be performed Test site ,Robotik"

on the taxiways and adjacent  of UniBwM.

grass surfaces of the former air- - ﬁ Start /

port Neubiberg, on which

UniBwM is located. The startis  Figure 14.15. Schedule of the mission to be per-

from rest with the vehicle casu-
ally parked by a human on a
single-track road with no lane
markings. This means that no

formed in the final demonstration of the project,
in which the third-generation visual perception
system according to the 4-D approach, EMS vi-
sion, has been implemented (see text)

special care has been taken in

positioning and aligning the vehicle on the road. Part of this road is visible in Fig-
ure 14.16 (right, vertical center). The inserted picture has been taken from the posi-
tion of the ditch in Figure 14.15 (top right); the lower gray stripe in Figure 14.16 is
from the road between labels 8 and 9.

In phase 1 (see digit with dot at lower right), the vehicle had to approach the in-
tersection in the standard roadrunning mode. On purpose, no digital model of the
environment has been stored in the system; the mission was to be performed rely-
ing on information such as given to a human driver. At a certain distance in front
of the intersection (specified by an imprecise GPS waypoint), the mission plan or-
dered taking the next turnoff to the left. The vehicle then had to follow this road
across the T-junction (2); the widening of the road after some distance should not
interfere with driving behavior. At point 3, a section of cross-country driving,
guided by widely spaced GPS waypoints was initiated. The final leg of this route
(5) would intersect with a road (not specified by a GPS waypoint!). This road had
to be recognized by vision and had to be turned onto to the left through a (drivable)
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shallow ditch to its side. This per-
turbed maneuver turned out to be
a big challenge for the vehicle.

In the following mission ele-
ment, the vehicle had to follow
this road through the tightening
section (near 2) and across the
two junctions (one on the left and
one on the right). At point 9, the
vehicle had to turnoff to the left
onto another grass surface on
which again a waypoint-guided
mission part had to be demon-
Figure 14.16. VaMoRs ready for mission dem-  strated. However, on the nominal
onstration 2001. The vehicle and road sections 1 path, there was a steep deep ditch
and 8 (Figure 14.15) can be seen in the inserted g5 g negative obstacle, which the
picture. Above this picture, the gaze control  yehicle was not able to traverse.
platform is seen with five cameras mounted; This ditch had to be detected and
there was a special pair of parallel stereo cam- bypassed in a proper manner, and
eras in the top row for using hard- and software the vehicle was to return onto the

of Sarnoff Corporation in a joint project : .
‘Autonav’ between Germany and the USA. \I/C;G;/T)((j)?gt Spa(t)f]l %L\;eno%irtlg‘la CSIZ‘E
(10).

Except for bypassing the ditch, the mission was successfully demonstrated in
2001; the ditch was detected and the vehicle stopped correctly in front of it. In
2003, a shortened demo was performed with mission elements (1, 8, 9, and 10) and
a sharp right turn from 1 to 8. In the meantime, the volume of the special processor
system (Pyramid Vision Technology) for full frame-rate and real-time stereo per-
ception had shrunk from a volume of about 30 liters in 2001 to a plug-in board for
a standard PC (board size about 160 x 100 mm). Early ditch detection was
achieved, even with taller grass in front of the ditch partially obscuring the small
image region of the ditch, by combining the 4-D approach with stereovision.
Photometric obstacle detection with our vision system turned out to be advanta-
geous for early detection; keep in mind that even a ditch 1 m wide covers a very
small image region from larger distances for the aspect conditions given (relatively
low elevation above the ground). When closing in, stereovision delivered the most
valuable information. The video “Mission performance” fully covers this abbrevi-
ated mission with saccadic perception of the ditch (Figure 14.3) and avoiding it
around the right-hand corner, which is view-fixated during the initial part of the
maneuver [Pellkofer 2003; Siedersberger 2004, Hofmann 2004]. Later on, while return-
ing onto the trajectory given by given by GPS waypoints, the gaze direction is con-
trolled according to Figure 14.2.
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Developing the sense of vision for (semi-) autonomous systems is considered an
animation process driven by the analysis of image sequences. This is of special im-
portance for systems capable of locomotion which have to deal with the real world,
including animals, humans, and other subjects. These subjects are defined as capa-
ble of some kind of perception, decision-making, and performing some actions.
Starting from bottom-up feature extraction, tapping knowledge bases in which ge-
neric knowledge about ‘the world’ is available leads to the ‘mental’ construction of
an internal spatiotemporal (4-D) representation of a framework that is intended to
duplicate the essential aspects of the world sensed.

This internal (re-)construction is then projected into images with the parameters
that the perception and hypothesis generation system have come up with. A model
of perspective projection underlies this “imagination” process. With the initial in-
ternal model of the world installed, a large part of future visual perception relies on
feedback of prediction errors for adapting model parameters so that discrepancies
between prediction and image analysis are reduced, at best to zero. Especially in
this case, but also for small prediction-errors the process observed is supposed to
be understood.

Bottom-up feature analysis is continued in image regions not covered by the
tracking processes with prediction-error feedback. There may be a variable number
N of these tracking processes running in parallel. The best estimates for the relative
(3-D) state and open parameters of the objects/subjects hypothesized for the point
in time “now” are written into a “dynamic object database” (DOB) updated at the
video rate (the short-term memory of the system). These object descriptions in
physical terms require several orders of magnitude less data than the images from
which they have been derived. Since the state variables have been defined in the
sense of the natural sciences/engineering so that they fully decouple the future evo-
lution of the system from past time history, no image data need be stored for un-
derstanding temporal processes. The knowledge elements in the background data-
base contain the temporal aspects from the beginning through dynamic models
(differential equation constraints for temporal evolution).

These models make a distinction between state and control variables. State vari-
ables cannot change at one time, they have to evolve over time, and thus they are
the elements for continuity. This temporal continuity alleviates image sequence
understanding as compared to the differencing approach, after having analyzed
consecutive single images bottom-up first, favored initially in computer science
and Al.

Control variables, on the contrary, are those components in a dynamic system
that can be changed at any time; they allow influencing the future development of
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the system. (However, there may be other system parameters that can be adjusted
under special conditions: For example, at rest, engine or suspension system pa-
rameters may be tuned; but they are not control variables steadily available for sys-
tem control.) The control variables thus defined are the central hub for intelligence.
The claim is that all “mental” activities are geared to the challenge of finding the
right control decisions. This is not confined to the actual time or a small temporal
window around it. With the knowledge base playing such an important role in (es-
pecially visual) perception, expanding and improving the knowledge base should
be a side aspect for any control decision. In the extreme, this can be condensed into
the formulation that intelligence is the mental framework developed for arriving at
the best control decisions in any situation.

Putting control time histories as novel units into the center of natural and techni-
cal (not “artificial™) intelligence also allows easy access to events in and maneu-
vers on an extended timescale. Maneuvers are characterized by specific control
time histories leading to finite state transitions. Knowledge about them allows de-
coupling behavior decision from control implementation without losing the advan-
tages possible at both ends. Minimal delay time and direct feedback control based
on special sensor data are essential for good control actuation. On the other hand,
knowledge about larger entities in space and time (like maneuvers) are essential for
good decision-making taking environmental conditions, including possible actions
from several subjects, into account. Since these maneuvers have a typical timescale
of seconds to minutes, the time delays of several tenths of a second for grasping
and understanding complex situations are tolerable on this level. So, the approach
developed allows a synthesis between the conceptual worlds of “Cybernetics”
[Wiener 1948] and “Artificial Intelligence” of the last quarter of last century.

Figure 15.1 shows the two fields in a caricaturized form as separate entities.
Systems dynamics at the bottom is con-
centrated on control input to actuators,

High level

planning either feed-forward control time histories
goals actions from previous experience or feedback
evaluations with direct coupling of control to meas-

ured values; there is a large gap to the ar-
tificial intelligence world on top. In the
top part of the figure, arrows have been
omitted for immediate reuse in the next
figure; filling these in mentally should
pose no problem to the reader. The es-
sential part of the gap stems from ne-

numerical computations glecting temporal processes grasped by
/ F—\Be"’“"ors N\ differential equations (or transition ma-
primitive; trices as their equivalent in discrete

Sensors [~~~ "% Actuators time). This had the fundamental differ-
ence between control and state variables
Figure 15.1. Caricature of the separate 1N the real world be mediated away by
worlds of system dynamics (bottom) ~ COMputer states, where the difference is
and Artificial Intelligence (top) absent. Strictly speakl_ng,_ |t_ is hidden in
the control effect matrix (if in use).

symbolic
representations
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Figure 15.2 is intended to show that much of the techniques developed in the
two separate fields can be used in the unified approach; some may even need no or
very little change. However, an interface in common terminology has to be devel-
oped. In the activities described in this book, some of the methods needed for the
synthesis of the two fields mentioned have been developed, and their usability has
been demonstrated for autonomous guidance of ground vehicles. However, very
much remains to be done in the future; fortunately, the constraints encountered in
our work due to limited computing power and communication bandwidth are about
to vanish, so that prospects for this technology look bright.
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Figure 15.2. The internal 4-D representation of ‘the world’ (central blob) provides links
between the ‘systems dynamics’ and the Al approach to intelligence in a natural way.
The fact that all ‘measurement values’ derived from vision have no direct physical links
to the objects observed (no wires, only light rays) enforces the creation of an ‘internal
world’.

Taking into account that about 50 million ground vehicles are built every year
and that more than 1 million human individuals are killed by ground vehicles every
year worldwide, it seems mandatory that these vehicles be provided with a sense of
vision allowing them to contribute to reducing the latter number. The ideal goal of
zero death-toll seems unreachable (at least in the near future) and is unrealistic for
open-minded individuals; however, this should not be taken as an excuse for not
developing what can be achieved with these new types of vehicles with a sense of
vision, on any sensor basis what-ever.

Providing these vehicles with real capabilities for perceiving and understanding
motion processes of several objects and subjects in parallel and under perturbed
conditions will put them in a better position to achieve the goal of a minimal acci-
dent rate. This includes recognition of intentions through observation of onsets of
maneuvering, such as sudden lane changes without signaling by blinking. In this
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case, a continuous buildup of lateral speed in direction of one’s own lane is the
critical observation. To achieve this “animation capability”, the knowledge base
has to include “maneuvers” with stereotypical trajectories and time histories. On
the other hand, the system also has to understand what typical standard perturba-
tions due to disturbances are, reacting to it with feedback control. This allows first,
making distinctions in visual observations and second, noticing environmental
conditions by their effects on other objects/subjects.

Developing all these necessary capabilities is a wide field of activities with
work for generations to come. The recent evolution of the capability network in our
approach [Siedersberger 2004; Pellkofer 2003] may constitute a starting point for more
general developments. Figure 15.3 shows a proposal as an outlook; the part real-
ized is a small fraction on the lower levels confined to ground vehicles. Especially
the higher levels with proper coupling down to the engineering levels of automo-
tive technology (or other specific fields) need much more attention.
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Figure 15.3. Differentiation of capability levels (vertical at left side) and categories of
capabilities (horizontal at top): Planning happens at the higher levels only in internal
representations. In all other categories, both hardware available (lowest level) and ways
of using it by the individual play an important role. The uppermost levels of social inter-
action and learning need more attention in the future.



Appendix A
Contributions to Ontology for Ground Vehicles

A.1 General Environmental Conditions

A.1.1. Distribution of ground on Earth to drive on (global map)
Continents and Islands on the globe
Geodetic reference system, databases
Specially prepared roadways: road maps
Cross-country driving, types of ground
Geometric description (3-D)
Support qualities for tires and tracks
Ferries linking continents and islands
National Traffic Rules and Regulations
Global navigation system availability

A.1.2. Lighting conditions as a function of time

Natural lighting by sun (and moon)
Sun angle relative to the ground for a given location and time
Moon angle relative to the ground for a given location and time

Headlights of vehicles

Lights for signaling intentions/special conditions

Urban lighting conditions

Special lights at construction sites (incl. flashs)

Blinking blue lights

A.1.3 Weather conditions
Temperatures (Effects on friction of tires)
Winds
Bright sunshine/Fully overcast/Partially cloudy
Rain/Hail/Snow
Fog (visibility ranges)
Combinations of items above
Road surface conditions (weather dependent)
Dry/Wet/Slush/Snow (thin, heavy, deep tracks) /Ice
Leaf cover (dry — wet)/Dirt cover (partial — full)

A.2 Roadways

A.2.1.Freeways, Motorways, Autobahnen etc.
Defining parameters, lane markings
Limited access parameters
Behavioral rules for specific vehicle types
Traffic and navigation signs
Special environmental conditions

A.2.2. Highways (State-), high-speed roads
Defining parameters, lane markings (like above)
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A.2.3. Ordinary state roads (two-way traffic) (like above)
A.2.4. Unmarked country roads (sealed)
A.2.5. Unsealed roads
A.2.6. Tracks
A.2.7. Infrastructure along roadways
Line markers on the ground, Parking strip, Arrows,
Pedestrian crossings
Road shoulder, Guide rails
Regular poles (reflecting, ~1 m high) and markers for snow conditions

A.3 Vehicles

(as objects without driver/autonomous system; wheeled vehicles, vehicles
with tracks, mixed wheels and tracks)

A.3.1. Wheeled vehicles
Bicycle: Motorbike, Scooter;
Bicycle without a motor: Different sizes for grown-ups and children
Tricycle
Multiple (even) number of wheels
Cars, Vans/microbuses, Pickups/Sports utility vehicles, Trucks,
Buses, Recreation vehicles, Tractors, Trailers

A.3.2. Vehicles with tracks
A.3.3. Vehicles with mixed tracks and wheels

A.4 Form, Appearance, and Function of Vehicles

(shown here for cars as one example; similar for all classes of vehicles)

A.4.1. Geometric size and 3-D shape (generic with parameters)
A.4.2. Subpart hierarchy
Lower body, Wheels, Upper body part, Windshields (front and rear)
Doors (side and rear), Motor hood, Lighting groups (front and rear)
Outside mirrors
A.4.3. Variability over time, shape boundaries (aspect conditions)
A.4.4. Photometric appearance (function of aspect and lighting
conditions)
Edges and shading, Color, Texture
A.4.5. Functionality (performance with human or autonomous driver)
Factors determining size and shape
Performance parameters (as in test reports of automotive journals; en-
gine power, power train)
Controls available [throttle, brakes, steering (e.g., “Ackermann”)]
Tank size and maximum range
Range of capabilities for standard locomotion:
Acceleration from standstill
Moving into lane with flowing traffic
Lane keeping (accuracy)
Observing traffic regulations (max. speed, passing interdiction)
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Distance keeping from vehicle ahead
(standard, average values, fluctuations)
Lane changing [range of maneuver times as f(speed)]
Overtaking behavior [safety margins as f(speed)]
Braking behavior (moderate, reasonably early onset)
Proper setting of turn lights before start of maneuver
Turning off onto crossroad
Entering and leaving a circle
Handling of road forks
Observing right of way at intersections
Negotiating “hair-pin” curves (switchbacks)
Proper reaction to static obstacle detected in your lane
Proper reaction to animals detected on or near the driveway
Emergency stops
Parking alongside the road
Parking in bay
U-turns
Safety features (ABS, ESP ...)
Self-check capabilities
Tire pressure
Engine performance (a few easy standard tests like “gas pulses™)
Brake performance
A.4.6. Visually observable behaviors of others
(driven by a human or autonomously)
Standard behavioral modes (like list of capabilities above)
Unusual behavioral modes
Reckless entrance into your lane from parking position or neighbor-
ing lane at much lower speed
Oscillations over entire lane width (even passing lane markings)
Unusually slow speeds with no noticeable external reason
Disregarding traffic regulations [max. speed (average amount), pass-
ing interdiction, traffic lights]
Very short distance to vehicle ahead
Hectic lane change behavior, high acceleration levels (very short
maneuver times, large vehicle pitch and bank angles, “slalom”
driving)
Overtaking behavior (daring, frequent attempts, questionable safety
margins, cutting into your lane at short distance)
Braking behavior (sudden and harsh?)
Start of lateral maneuvers before or without proper setting of turn
lights.
Speed not adapted to actual environmental conditions (uncertainties
and likely fluctuations taken into account)
Disregarding right of way at intersections.
Pedestrians disregarding standard traffic regulations
Bicyclists disregarding standard traffic regulations
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Recognizing unusual behavior of other traffic participants due to un-
expected or sudden malfunctions (perturbations).
Reaction to animals on the driveway (f(type of animal))
Other vehicles slipping due to local environmental conditions (like
ice)
A.4.7. Perceptual capabilities
A.4.8 .Planning and decision making capabilities

A.5 Form, Appearance, and Function of Humans

(Similar structure as above for cars plus modes of locomotion)

A.6 Form, Appearance, and Likely Behavior of Animals

(relevant in road traffic: Four-legged, birds, snakes)

A.7 General Terms for Acting “Subjects” in Traffic
Subijects: Contrary to “objects” (proper), having passive bodies and no capability

of self-controlled acting, “subjects” are defined as objects with the capability
of sensing and self-decided control actuation. Between sensing and control ac-
tuation, there may be rather simple or quite complicated data processing avail-
able taking stored data up to large knowledge bases into account. From a vehi-
cle guidance point of view, both human drivers and autonomous perception
and control systems are subsumed under this term. It designates a superclass
encompassing all living beings and corresponding technical systems (e.g., ro-
bots) as members.

These systems can be characterized by their type of equipment and per-
formance levels achieved in different categories. Table 3.1 shows an example
for road vehicles.

The capabilities in the shaded last three rows are barely available in today’s
experimental intelligent road vehicles. Most of the terms are used for humans
in common language. The terms “behavior” and “learning” should be defined
more precisely since they are used with different meanings in different profes-
sional areas (e.g., in biology, psychology, artificial intelligence, engineering).

Behavior (as proposed here) is an all-encompassing class term subsuming any

kind and type of ‘action over time’ by subjects.

Action means using any kind of control variable available to the subject, leading to

changes in the state variables of the problem domain.

State variables are the set of variables allowing decoupling future developments

of a dynamic system from the past (all the history of the system with respect to
body motion is stored in the present state); state variables cannot be changed at
one moment. (Note two things: (1) This is quite the opposite of the definition
of “state” in computer science; (2) accelerations are in general not (direct)
state variables in this systems-dynamics sense since changes in control vari-
ables will affect them directly.)

Control variables are the leverage points for influencing the future development

of dynamic systems. In general, there are two components of control activation
involved in intelligent systems. If a payoff function is to be optimized by a
“maneuver”, previous experience will have shown that certain control time
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histories perform better than others. It is essential knowledge for good or even
optimal control of dynamic systems, to know in which situations to perform
what type of maneuver with which set of parameters; usually, the maneuver is
defined by certain time histories of (coordinated) control input. The unper-
turbed trajectory corresponding to this nominal feed-forward control is also
known, either stored or computed in parallel by numerical integration of the
dynamic model exploiting the given initial conditions and the nominal control
input. If perturbations occur, another important knowledge component is
knowing how to link additional control inputs to the deviations from the nomi-
nal (optimal) trajectory to counteract the perturbations effectively. This has led
to the classes of feed-forward and feedback control in systems dynamics and
control engineering:

Feed-forward control components Ug are derived from a deeper understanding
of the process controlled and the maneuver to be performed. They are part
of the knowledge base of autonomous dynamic systems (derived from
systems engineering and optimal control theory). They are stored in ge-
neric form for classes of ‘“maneuvers’. Actual application is triggered from
an instance for behavior decision and implemented by an embedded proc-
essor close to the actuator, taking the parameters recommended and the
actual initial and desired final conditions (states) into account.

Feedback control components ug, link actual (additional) control output to sys-
tem state or (easily measurable) output variables to force the trajectory
toward the desired one despite perturbations or poor models underlying
step 1. The technical field of ‘control engineering’ has developed a host of
methods also for automotive applications. For linear (linearized) systems,
linking the control output to the entire set of state variables allows speci-
fying the “eigenmodes” ‘at will’ (in the range of validity of the linear
models). In output feedback, adding components proportional to the de-
rivative (D) and/or integral (1) of the signal allows improving speed of re-
sponse (PD) and long-term accuracy (P, PID).

Combined feed-forward and feedback control: For counteracting at least small
perturbations during maneuvers, an additional feedback control compo-
nent ug, may be superimposed on the feed-forward one (Ug) yielding a ro-
bust implementation of maneuvers.

Longitudinal control: In relatively simple, but very often sufficiently precise
models of vehicle dynamics, a set of state variables affected by throttle and
(homogeneous) braking actions with all wheels forms an (almost) isolated sub-
system. It consists of the translational degrees of freedom in the vertical plane
containing the plane of symmetry of the vehicle and the rotational motion in
pitch, normal to this plane. The effects of gravity on sloping surfaces and the
resulting performance limits are included.

Lateral control: Lateral translation (y direction), rotations around the vertical (z)
and the longitudinal (x) axes form the lateral degrees of freedom, controlled
essentially by the steer angle. Lateral motion of larger amplitude does have an
influence also on longitudinal forces and pitching moment.

Maneuvers are stereotypical control output time histories (feed-forward control)
known to transform (in the nominal case) the initial system state x(t,) into a fi-
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nal one Xx(t) in a given time (range) with boundary conditions (limits) on state
variables observed. Certain ranges of perturbations during the maneuver can
be counteracted by superimposed feedback control.

Maneuvers may be triggered by higher level decisions for implementing
strategic ‘mission elements’ (e.g., turning off onto a crossroad) or in the con-
text of a behavioral mission element running, due to the actual situation en-
countered (e.g., lane change for passing slower traffic or an evasive maneuver
with respect to a static obstacle during ‘roadrunning’).

Table 3.3 gives a collection of road vehicle behavioral capabilities realized by
feed-forward (left column) and feedback control (right column).

Mission elements are those parts of an entire mission that can be performed with
the same subset of behavioral capabilities and parameters. Note that mission
elements are defined by sets of compatible behavioral capabilities of the sub-
ject actually performing the mission.

Situation is the collection of environmental and all other facts that have an influ-
ence on making proper (if possible ‘optimal’) behavior decisions in the mis-
sion context. This also includes the state within a maneuver being performed
(percentage of total maneuver performed, actual dynamic loads, etc.) and all
safety aspects.

General comment:

Dimension: There are only four dimensions in our (mesoscale) physical world:
Three space components and time. Rotational rates and velocities are compo-
nents of the physical state, due to the nature of mechanical motion described
by second-order differential equations (Newton’s law). These velocity compo-
nents are additional degrees of freedom (d.o.f.), but not dimensions as claimed
in some recent publications. Recursive estimation with physically meaningful
models delivers these variables together with the pose variables.

Dimensions from discretization: In search problems it is a habit to call the possi-
ble states of a variable the dimension of the search space; this has nothing to
do with physical dimensions.
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Lateral Dynamics

B.1 Transition Matrix for Fourth-Order Lateral Dynamics

The linear process model for lateral road vehicle guidance derived in Chapters 3
and 7 (see Table 9.1) can be written as a seventh order system in analogue form
[Mysliwetz 1990]:

X()=Fx+g'u+v'(t) (Equation 3.6 with one control variable) (B.1)

i 0 0 00/0 O 0 Y ) (k 0
B f, -UT, 00/0 0 0 |Bp ||O 0
Y | |[V/@ 0 001V 0 0 | we | [O 0
% |5l 0 VvV V0,0 0 0 % [+0 |ut)+o0
G| | O 0 00i0 VvV 0 |Gl |O 0
Cm || 0 0 0010 -3V/L 3V/L|G,, | |0 0
(oN 0 0 000 0 0 g, ) (o N,

with f,, =1/(2T,)-V/a; T,=V/ k; Equation 3.30.

With T as cycle time for sampling (video frequency), the Laplace transform for the
transition matrix is (see, e.g., [Kailath 1980]):

AT)=L(sl -F)™". (B.2)
For the discrete input gain vector g, one obtains from F and g’
T
g= L A(t)g'dt . (B.3)

The noise term also has to be adjusted properly in correspondence with T. The re-
sulting difference equation is B.4. The matrix A and the input gain vector g have
the entries given below (note that g has many more entries than g’; this is due to
the buildup of state components from constant control input over one cycle!):

X(k+1)=A-x(k)+g-u(k)+v(k). (B.4)
1 0 0 O O 0 O O,
ay a, 0 0 0 0 O g,
ay 0 1 a, ay a, ay 95
A=la, a, a; 1 a a, a,|andg=|g,| (@)
0 0 0 0 1 a a, 0
0 0 0 0 0 a; ag 0
0 0 0 0 0 0 1 0

With the following abbreviations:
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ce =V/a; ar =2k /V;
be =Ky IV +C¢; a, =-3vI/L;

the non-vanishing elements a; of the transition matrix are

8, = b /a; -(e™" ~1); a,, =™’

ay =CT;  au=-VT; a,=V?/a’-(aT+1-e*");

a, =-V[(1-e*")/a’+T/a +T/2];

a, = (bV /ag)-[(e*" —1)/a. —T1+cVT?/2;

a, =(e*" -1)V/a; 8, =VT; a,=-VT2/2;

a,,=V°[Q-e*")/a’+T/a,+T/2]/a,;

a, =-V[-(1-e*")/al+T/a’+T/(2a,)+T%/6];

ag =-V(1-e*")/a,; a;, =V(aT+1-e*")/a,;

g, =e*'; ag, =1-e*'.
The entries in the input gain vector are

6 =T, g,=b:/a. {(e*" -1/a. -T} gs=c.T?/2
9, =-b.V /a2 [T +a.T?/2—(e*" —1)/a.]-c.VT/6.

The rows in matrix A are given by the first index; this corresponds to the sequen-
tial innovation scheme in square root filtering using row vectors of A. Note that out
of the 49 elements of A, 26 are zero (53%); explicit use of this structure can help
making vector multiplication very economical: for rows 1 and 7 (first and last), the
result has the same value as the multiplicand. For row index 2, multiplication of
elements can stop at this row index 2, while for indices 5 and 6, starting multiplica-
tion at these indices is sufficient. Efficiently coded, many multiplications may be
saved in this inner loop that is always running. Since several multiplications with

these vectors occur in recursive computation of the expected error covariance (step
7.2 in Table 6.1), being efficient here really pays off in real-time vision.

B.2 Transfer Functions and Time Responses to an Idealized Doublet
in Fifth-order Lateral Dynamics

From Equations 3.38 and 3.45, the analytical solution for the state vector in the
‘Laplace s-realm’ is obtained. The former equation yields for the ‘system matrix’

S 0 0 0 0
-V/@T,) s+1/T, 0 0 0
sl —®=| -1/(2T;) 1 s+1/T, 0 Of (B.5)
0 -1 0 s 0
0 0 -V -V s

By multiplication of Equation 3.45 from the left by (sl — ®)*, there follows
Xa(8) =(sl =®)"- b-u(s) + (sl - ®)*-x,(0). (B.6)
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The first term defines the five transfer functions of a control input u(s) while the
second term gives the response to initial values in the state variables. All these ex-
pressions have a common denominator, the characteristic polynomial D(s) of the
determinant det (sl — @)

D =s°(s+1/T,)(s+1/T). (B.7)

The numerator polynomials of the transfer functions are obtained by the deter-
minants in which the column corresponding to the state variable of interest has
been replaced by the coefficient vector b for control input. This yields the numera-
tor terms for the heading angle y and the lateral position y

N,=[V/(aT,)]s-(s+1/T;)

N, =Va/(2T,)-[s* +s/T, + 2V /(a-T,)]

With the doublet input of Equation 3.44, ujg(s) = A-s, the resulting state vari-
ables yaw angle y(s) and the lateral acceleration in the y direction s2 - y(s) are in
the Laplace-domain

v(s)=[N, /D]-A-s

= AsV/@T)]s (s +1/T)/[s°-(s +1/T,)(s+1/T,)]

(B.8)

= AV/@T,) /s (s +1/T,)] (B9
= AV/@T,)-[L/s-1/s +1/T,)].
a,(s)=s"-y(s)=N,-A-s*/D
= AV/T,-s* [s*+s/T,+2V /(a-T,)]/D
sl v (a-T,)l (B.10)

=Val(2T,)-[Us)+ B/(s+1/T,) (B + L/T,) (s +1/T,)],
with B = 2V/[a-(T,/T,-1)].

The expression 1/s in Equation B.9 corresponds in the time domain to a unit step
function, and the second term in Equation B.9: c/(s +1/T;) to: ¢ - exp[— (t/T;)]. This
yields with Equation 3.36 after back-transformation into the time domain

\V(t)doublet = A kItf /(a ' IzzB) : [1—exp(— t/T\,,)] . (Bll)

1(s) in Equation B.10 corresponds to a ‘Dirac impulse’ 6(0) at time 0 with an in-
tegral value of 1 (a step function in the integrated variable, the lateral velocity

v, = Iaydt experiences a jump from 0 to 1 at t = 0). Introducing this and the rela-

tions given in Equation 3.37 into Equation B.10 yields for the time functions
_[e—t/Tﬁ _e—t/TW J_ 0.5 knf et/TB} (B.12)

a,(t) = Ak -{0.5-5(0)+

%

a(l-is) Vv (a)

= A k, -5(0) + e M. VA kg .[1_e4/Tﬁm J_ A kﬁf (b)
2 " a(l-i%) [

where T, o =T, -i% /(1- i%).
The value T, /T, =i /(1-i%)is 2.77 for VaMoRs and 5.67 for VaMP. Figure
B.1 shows the principal time histories of the exponential functions in scaled form
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for VaMoRs. The yaw angle goes from zero to [A-kys /(a-i,g2)] with time constant
T,. According to Equation 3.37, T, increases linearly with speed.

AS(0) W)/ (Aky/ (@ig?)) =1-exp(-tTy)

1.0 s — W —
. ™ -
- /—
0.8 -~ - -
0.6 ==
/ R //// {1 - exp(- t|/ Tgpoa)}t
oafl— L > | o~
/ ety exp(-it/ Tg)
0.2 - S
0ol” L T —— — ___2.77/f0r VAMORS
o L1 tL2 S8 —tT,
;i Tyl tTgforay . = Tomoa ! Tp = ig%/(1-1,67)

a;(t) ~ product of dashed expohentials

Figure B.1. Scaled dynamic response in yaw angle (dash-dotted) and lateral accelera-
tion (solid curve) to doublet input in steering rate (see Equations B.11/B.12); the time
axis is scaled by Ty
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Recursive Least-squares Line Fit

Through a set of measurement points (Yms --. Ymn).

equidistantly spaced on the abscissa (x; = 0.5, 1.5 A——%—%

.... N=0.5), a straight line shall be fit recursively

o ; - I 1 0 1
with interpolated measurement points (y; ... yn), if o> o
the standard deviation remains below a threshold (hifted otigin)
value oman and the new measurement point to be | Xeg= 1.5

added is within a 3c band around the existing fit. yl” ;-»--.:uﬁz v

A
The resulting set of smoothed measurement data Ymi
will be called a segment or a 1-D blob. The result  pixel e
shall be represented by the average value y. in the ~ number] 1__. 2 1 3 |
segment, with the origin at the segment center X, 2
and the (linear) slope ‘a’ around this center (see
Figure C.1). A deviation from the usual terminology =~ Figure C.1. Nomenclature
occurs because image evaluation with symmetric  used with integer basic
masks has its origin right between pixel boundaries; ~ scale for pixels; origin of
the reference pixel for mask evaluation has been se-  centered scale at N/2
lected at position (0.5, 0.5) of the mask (see Figure
5.19).

This definition leads to the fact that X, is either an integer or lies exactly at the
center between two integers (i — 0.5). Due to the integer values for the pixels and
because a new segment is always started with the reference coordinate jys for xo =
0, the center of N values is located at

Xc,abs = jref +N/2= jref X (Cl)

C.1 Basic Approach

Since two measurement points can always be connected by a straight line, interpo-
lation starts at the third point into a new segment. The general form of the interpo-
lating straight line with x; as the center of all x; is

Yi =Y, +a-dx
. C.2
with  Ax, =X, —X,. (©2)
Y. is always taken at the center of the data set, and ‘a’ is the slope of the line. This
yields for the residues e; = y; — Ymi (see Figure C.1) the set of equations:

€ =Y. +(Xl_ Xc)'a_ Yiis
& =Y+ (X =X) @ Yy, (C3)
€ =Y, +(X3 - Xc)'a_ Y-

For easy generalization, this is written in matrix form with the two unknown vari-

ables: average value y, of the interpolating straight line and slope a. The measure-
ment vector y,, has length N, with the original running index i linearly increasing
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from 1 to N; measurement values of the pixels then are located at x-position [(pixel
index i) — 0.5]; the initial value for N is 3 (Figure C.1). The running index for the
shifted scale with x, = 0 then goes from — N/2 to + N/2. With the model of Equa-
tion C.2, the errors are

(1 % =%, |
o Ye
[e]: I X=X | a _[ym]N:A'p_[ym]N' (C.3a)
11 Xy =X |
The sum J of the squared errors can now be written
J=Ye=ee=(Ap-y,) (A p-y,). (C.4)
i=1

The same procedure as in Section 5.3.2.1, setting the derivative dJ/dp = 0, leads to
the optimal parameters pey, for minimal J:

Ye -
( ] = Pexe = (ATA)TATY,, (C.5)
a LS
With x; = i — 0.5 from 0.5 to N — 0.5, and with Equation C.3a the product A'A can
be written
1 05-x, |
T 1 . 1 . 1 N
A A= . 41 i1-05-x,
05-x, .. i=05-x, .. N-05-x,
. . (C.6)
11 N-05-x |

23
aZl aZZ

By always choosing the center of gravity of the abscissa values X, as reference and
by shifting the indices correspondingly (see lower part of Figures C.1 and C.2),
there follows

8y =a, = (i-05-x%)=0. (C7)

For each positive index in the shifted coordinates (lower part of figures), there is a
corresponding negative one, yielding Equation C.7. This means that ATA is zero off
the main diagonal. For a,, in Equation C.6 one obtains

N N
3, = (i-05-x)" =) (i*~2:i-x,+ X +0.25+ X, —i). (C.8)
i=1 i=1
Introducing the well-known relations

ii:N(N +1)/2, (C.9)

i=1



Appendix C 455

N
D iE=N(N+1)(2N +1)/6, (C.10)
i=1
the following result for a,; is obtained with x, = N/2 after several steps
a,, = N(N?-1)/12. (C.11)
With Equations C.7 and C.11 the inverse of ATA (Equation C.6) becomes
1/N 0
ATA) = .
(A"A) [ 0 1/a22j (C.12)
measured pixel values
OTX=1T2T3T4 x:OITlTZ 3?4—?»5'
I I Txc4:2l NI:4 l xC5I:2,5 N=5
-2 -1 0 1 2 25 -15 05| 05 15 25
| i —X. P 0 (shifted origin) | | i = X5 P 0 (shifted origin)

Figure C.2. Centered coordinates for even and odd numbers of equidistant grid points;
this choice reduces the numerical workload

To obtain the optimal parameters for a least squares fit according to Equation C.6,
the factor A'y,, has yet to be determined:

yml
; 1 . 1 . 1 '
A Y = . | Yo
|1-05-%x, .. i-05-x, .. N-05-x (C.13)
Yimn N
_[Sym
| Siym-0.5-Sym—x_ - Sym |’
N N
with Sym=>"y, and Siym=> (i-y,). (a)
= =

Inserting this, the relation x, = N/2, and Equation C.11 into C.5, the following op-
timal parameters y. and a are finally obtained:

) (UN o (o -
a ) L0 1la, Siym—N2+18ym (€14
or
[yj Sym/N i Sym/N
o) _ B . (C.14)
=1 N+1 =| 6 2 Siym Sym)|.
Siym———Sym |/a . - a
& s ( y 2 y) 2 | N—l(N+1 N N] @

y. is nothing but the average value of all measurements y,,;; to obtain the opti-
mal slope a, the product i-yy,; has to be summed, too (Equation C.13a). It is seen
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that for this least-squares fit with a cg-centered coordinate system (y(0) = y.),
where this origin moves in steps by 0.5 with N increasing by 1, just four numbers
have to be stored: The number of data points N, the averaged sum of all measured
values y. = Sym/N, the averaged sum of all products (i-ym): Siym/N, and, of course,
the reference for i =1 where the data set started; this yields the optimal parameters:
‘Y. = average value at the segment center’ and ‘a = slope’ for the best interpolat-
ing straight line by just a few mathematical operations independent of segment
length n.

C.2 Extension of Segment by One Data Point

Let the existing segment have length N; the averaged sums Sym/N and Siym/N
(Equation C.13) have been stored. If one new measurement value arrives, its ex-
pected magnitude according to the existing model can be computed. The humber of
measurements increases by 1, and the new segment center . shifts to

N,=N+1 x,=N.,/2=x+0.5. (C.15)
The predicted measurement value according to the linear model is
ympr:yc—‘ra'(N +1_Xc):ycpr+a(Ne_xce . (C16)

Since the new origin x. is shifted to the right by 0.5, the expected average value
Yeor Will be shifted by a/2, yielding the rightmost part of Equation C.16. The new
measurement value yn,ne Will be accepted as extension of the segment only if

| Yine — ympr |S 3'0-!

or (ymNe - ympr)2 <9 '62!
with o° as variance of all previous measurements; otherwise, the segment is con-
cluded with the original value for N.

If the segment is extended, the new parameters for best fit are, according to
Equation C.14a

o, = Ime (Sy_mj,£+ Yo |.
N N N N

e e e

a6 [Sym/N,
e Ne—l X ce (Cl8)

ce

__6 )1 (Siymj.£+ -
_Ne—l Xce N Ne ymNe yce *

The terms in rounded brackets are the stored (original) values, while the terms
in squared brackets are the new values for N, = N+1 to be stored. The definition of
the variance is

(C.17)

N
Var(e), :=ﬁ2ef =J/N (with Equation C.4). (C.19)
=l

Inserting the result C.14a for p in J, and exploiting the relations C.1 and C.6 to
C.13, one obtains, with 'y = ZL y2; = Sy2m as shorthand notation,
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Sy2m

Var(e), = N —f(Siym, N, a, x;, ¥.). (C.19a)

To be able to compute the variance recursively, the sum of the squared meas-
urement values Sy2m (divided by N—1) also has to be stored as an entry into Equa-
tion C.19a. The recursive update from N to N+1 is given below (on the right side)

sy2m 1<, Sy2m, | N (Syij Ve
=== poor 2o | T g Jmie )
TN Zly NN N Y (C.20)

e e
This shows that the new stored value (in square brackets) results from the old
one (in rounded brackets) weighted by the factor N/N, and the squared new meas-
urement value weighted by 1/N.. Since the rather complex expressions for the vari-
ance are not used in the real-time algorithm, they are not discussed in detail here
(see next section).

C.3 Stripe Segmentation with Linear Homogeneity Model

Instead of comparing the magnitude of the prediction error with the 3c-value of the
existing fit, as a criterion for acceptance of the next measurement point, the less
computer-intensive criterion in the lower part of Equation C.17 is used:

(Ve = Vo) <9-03, =9-(Var(e) ),
or even (C.21)
(Yo = Yane)® < variance limit (VarLim) .

VarLim is a fixed threshold parameter of the method; for typical intensity values of
video signals (8 to 10 bit, 256 to 1k levels) and the sensitivity of the human eye (~
60 levels), threshold values 4 < VarLim < 225 seem reasonable. With Equation
C.21, acceptance can be decided without computing the new fit and the new vari-
ance. The influence of the new measurement point on the parameters for optimal fit
is neglected.

The second method is to compute all new parameters including the new vari-
ance and to compare the residue

€ne = Yene TANe (Ne - Xce) ~ Yone (C22)
squared of the new measurement point N, with the newly determined variance
el%le <9 Gf\le =9 (Var(e) INe) . (C23)

When the new value is accepted, store all updated values:
NN - Sym Sym,  Siym Siym, ~ Sy2m Sy2m,
® N N, N N, © N N, ’ (C.24)

e e e
Ye=VYe: X =X+05 —a=a,; Var(e)|,=Var(e)|y -
Now the next value can be tested with the same procedure.
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C.4 Dropping Initial Data Point

This segment reduction at the start may sometimes have beneficial effects on the
quality of the linear fit. After several data points have been interpolated by a
straight line, the variance of the whole set may be reduced by dropping the first
point or a few initial points from the segment. An indication for this situation is
given when the first residue on the left side is larger than the standard deviation of
the segment. To check this, the interpolated value at location i = 1 has to be com-
puted with the parameter set (y.n and ay) after N data points

En = Yon t 3y '(l_ Xen ) ~ Y- (C-25)
For computational efficiency again the variance is taken as a base for decision: If
(e)n =Var(e) |y, (C.26)

dropping the first data point will decrease the variance of the remaining data set.
The even simpler check with a fixed threshold

(&,)% >VarLim (C.26a)

has proven well suited for efficient real-time computation.

With the stored values of Equation C.24 and always working with locally cen-
tered representations, the reduction at the left is directly analogous to the extension
at the right-hand side. The problematic point is the sum Siym of the products (local
index times measurement value) (Equation C.13a and C.18). The new starting
point of the segment will become (s + 1), but the length N4 of the segment will
be reduced by 1, while the position of its center is reduced by —0.5 for symmetry; i
in Siym has to be decremented

Kref = Xre +1 Nred =N-1 Xered = X¢ -0.5;
. N o N, N (C.27)
Slymred = NZ(J _1) : ymj = Z leg - ymired = Z ] ymj _Z ymj'
j=2 ireg =1 =2 =2

By noting that
N N
SiymN =Ymt ZI “Ymis SymN =Ymt z Vi s (C28)
i=2 i=2
adding 0 = (Ym1 — Ymu) to the lower Equation C.27 immediately yields

N N
Siymre =Ymt J “Yimj — (ym + ym) = Slym - Sym ;
d 1 ; j 1 J:ZZ j N N (ng)

Symred = SymN - yml'
This leads to the recursive procedure that is to be executed as long as the initial
residue squared is larger than the threshold ‘variance limit’:

N =N-1 Xrer = Xer 71, Xereg = X —0.5;

Siym,g = Siymy —Symy;  Sy2m,, =Sy2my - y7,;

Symred = SymN ~ Y Yered = Symred IN red » (CBO)

6 2 Siym,,
Ay = . - .
red N _1[ Nred +1 N ycred

red red

ref
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The maximum number k of points to be dropped will not be large, in general,
since otherwise the segment would have been ended during normal extension.

After reducing the segment length at the side of low indices i, increasing the
segment at the other end should be tried again. Figure 5.32 has been interpolated
without dropping terms at the left side of the segment, from which the line fit was
started. The first longer segment from ~ row = 90 to 115 (upper left center in the
figure, designated as ‘blob 1”) could profit from dropping the leftmost data point
since a steeper negative value for a4 can fit several following data points better.
(dotted line, Figure C.3 shows a blown up
view of blob 1 of Figure 5.32. The solid line
is the least-squares line fit resulting without a

~—a

check of the residue of the ‘first’ data point %

after each update; interpolation is stopped at S

the solid black dots (lower right) because the =

variance exceeds the threshold set. _| pixel number |
Dropping the “first” data point (top left) al- 90 100 110

lows a much better fit to the remaining points;
it even allows an extension of the segment to  Figure C.3. Large threshold val-
larger values Lgq (two more data points) The  ues for starting a line fit (upper
dotted line in Figure C.3 shows an improved left corner) may lead to subopti-
fit with reduced total variance. mal results (see text)

Figure 5.35 shows several cases of this
type of blob data fit, with the method de-
scribed here, for a number of columns of a video field. In the top left subfigure, the
white lines mark the cross sections selected. Some correspondences between object
regions in the scene and blob parameters are given. The task of hypothesis genera-
tion in vision is to come up with most reasonable object hypotheses given a collec-
tion of features (blobs, edges and corners); homogeneous areas with center of grav-
ity, shape as well as shading parameters are a big step forward compared to just
edge features with adjacent average gray values available in real-time evaluation
about fifteen years ago.

Figure C.4 (next page) shows the flowchart of the segmentation algorithm in-
cluding size adaptation at both ends for an optimal fit of shaded stripe segments.



460  Appendix C

| Initialization of function ’ SingleLSBIlobFit’

f c
<::Z&; | < IEND) & (SegFin-=1 >
yes 4
Initialize segment Return .
' variables; Blob result in
increment iseg BlobFeatArray

Increment yes
4 segment variables
(connecting line)

A
/
D

(=]
1]
I
N
Qy

Compute all actual variables

v
e,.2 < VarLim) & ((j, +

yes
) = =NA

seg

Accept extension at right-hand
side (update valid variables)

s _
v yes
<2 > VarLim) & (iseq > >no_ v
yes l Finish segment: LSeg Isegs
SegFin =
Remove leftmost data point
adjust variables; N g =Neq+1 | | 3
2 ‘| initialize segment:
Lseg =iseg | Jrer = Jref seg; lseg = 1
iseg = iseg +1 nred! = seg =0

same segment, reference shifted; region is considered as textured

Figure C.4. Flowchart of segmentation method for linearly shaded regions including
boundary adaptation at both ends (Matlab®-terminology)
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Index

acceleration, 76, 93, 95

aperture problem, 290 ff

articulated motion, 108 ff

aspect conditions, 48 ff, 344, 351, 356

attention 337, 391

azimuth, 377, 391

bank angle, 83

behavioral capabilities, 87, 106, 403,
417, 420, 425, 442

bicycle model, 97

bifocal, 12, 366, 370

binocular, 377

blobs, linearly shaded, 161 ff, 165, 453

box shape, 24, 47

braking, 94, 333, 429

capabilities, 60, 62, 71, 416

capability network, 70, 106

circularity, 168, 170

clothoid model, 206, 219

concatenation, 30, 35 ff

confidence, 363

control flow, 422, 425

control variable, 59, 73 ff, 100 ff, 446

convoy driving, 367, 369, 430

coordinate systems, 23, 33

corner features, 167 ff

covariance matrix Q, 53, 195, 234, 358

covariance matrix R, 195, 234

CRONOS, 131 ff, 346

crossroad perception, 131, (Chap.10)
297 ff, 314, 434

curvature of an edge, 139

curvature of a trajectory, 77

data fusion, 257

deceleration, 94, 430

decision-making, 62, 89, 107, 417

degree of freedom (dof), 448

delay time, 380

doublet, 81, 100

dual representation, 88

dynamic model, 73, 97, 191

edges: orientation-selective, 132, 246

orientation-sensitive, 150, 158

eigenfrequency, 21, 271, 276

eigenvalue (time constant), 99

EMS vision, 3, 124, 402, 465 (1V’00)

error covariance matrix, 193, 235

extended presence, 17

extended pulse, 82

features (Chap.5) 123 ff

feature correlation, 318

feature selection, optimal, 239

feedback control, 86, 185, 447

feed-forward control, 78, 84, 87, 447

field of view (f.0.v.), 66, 128, 384, 388

fixation, 50, 385

foveal—peripheral, 12, 167

gaze control, 68, 311

gaze stabilization, 382

geodetic coordinates, 25, 28, 402

gestalt idea, 243

grouping of features, 178

heading angle, 207

‘here and now’, 8, 17

high-frequency, 380

high-resolution, 385

hilly terrain, 259

homogeneous coordinates, 25

hypothesis generation, 228, 352

imagination, 412, 424

inertial sensing, 67, 381

information in image, 126

intelligence, 15

Jacobian elements, 36 ff, 192, 237, 292

Jacobian matrix, 35, 57, 237, 256, 323

Kalman filter, 195

knowledge representation, 72, 395 ff
also throughout Chapters 2, 3, 5, 6,
and 8

lane change, 82, 85, 102, 372, 432

lane keeping, 87, 99

lane width, 273, 282 ff

laser range finder, 369

lateral acceleration, 78

lateral road vehicle guidance, 96

least-squares, 153, 453



474 Index

linearization, 73

long-distance test, 285 ff

look-ahead range, 12, 130, 217, 261,
333, 383 ff

low-frequency pitch changes, 272

maneuver, 77 ff, 102, 307, 427, 447

masks for feature extraction:
CRONOS (ternary), 132, 136, 143
UBM (two half-stripes), 144-151

mission, 111, 405, 413 ff, 437

mission elements, 121, 406, 448

monitoring, 363, 409

monocular range estimation, 337, 342,
352 ff

motion representation, 49, 52, 73, 208,
254, 339, 449

multifocal, 12, 65, 384, 388, 391

multiple interpretation scales, 8, 41, 46,
350

multisensor, 381, 415

negative obstacles, 233, 438

nonholonomic, 65

nonhomogeneous, 75

nonplanar (intensity distribution), 153 ff
weak nonplanarity, 154, 161

obstacles, 332 ff

ontology for ground vehicles 443

parameter, 73, 314, 362

pay off function, 411

peripheral, 12, 167

perspective mapping, 27 ff

photometric properties, 176 ff

pitch angle (tilt -), 28, 33, 94, 268

pitch perturbations, 255, 268 ff

prediction-error, 190, 192 ff

PROMETHEUS, 205

radar, 370, 431

reaction time gap, 408

recursive estimation, 191

region-based, 151

road curvature, 104, 206 ff, 230, 258

road fork, 129

roadrunning, 87, 99, 106

root node, 34

saccadic gaze control, 386, 392 ff

scene tree, 31, 34, 402

sequential innovation, 198

shape representation, 45 ff

situation, 11, 61, 107, 118, 407, 414,
419

slip angle, 97, 103, 208

slope effects, 92

spatiotemporal, 8, 54, 184, 203 ff

square root filter, 199

state estimation, Chapter 6, 340

state variables, 51, 59, 73

step response, 93, 95

stereointerpretation, 391

stereovision, 66, 387

stop-and-go, 374

structural matrix 167

subject, 7, 59 Chapter 3, 62, 446

subpixel accuracy, 137, 158

system integration, 190, 340, 361 ff,
367, 391, 421, 427, 441

telecamera, 12, 390

teleimage, 13, 391

time delay, 380

time representation, 39

time to collision, 389

traceN, 169

transition matrix, 75, 192

trifocal, 12, 391

turnoff (Chap.10), 326, 343, 434 ff

types of vision systems 1, 12, 65

unified blob-edge-corner method
(UBM), 143 ff

UDUT factorization, 200

U-turn, 325

vehicle recognition, Chapter 11, 331 ff,
372

vertical curvature, 91, 259 ff, 266, 285

visual features 123 ff

wheel template, 351

width estimation, 270

yaw angle (pan-), 25, 67/68, 327

4-D approach, 8, 15, 17, 184 ff, 205
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