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PREFACE

We humans are good at moving around in this world of ours. If we are serious
about the ubiquity of robots’ help to humankind, we must pass this skill to our
robots. It also turns out that in some tasks, robots can find their way better than
humans. This suggests that it is time for humans and robots to join forces.

Imagine you arrive at a party. You are a bit late. The big room is teeming with
voices and movement. People talk, drink, dance, walk. As you look around, you
notice a friend waving to you from the opposite side of the room. You fill two
glasses with wine, glance quickly across the room, and start on your journey. You
maneuver between people, bend your body this way and that way to avoid colli-
sion or when shoved from the side, you raise your hands and squeeze your shoul-
ders, you step over objects on the floor. A scientifically minded observer would
say that you react to minute disruptions on your path while also keeping in mind
your global goal; that you probably make dozens of decisions per second, and a
great many sensors are likely involved in this process; that you react not only to
what you see, but also to what you sense at your sides, your back, your feet. In
a minute’s time you happily greet your friend and hand him a glass of wine.

You may be surprised to hear that in your trip across the room you planned
and executed a complex motion planning strategy whose emulation in technology
is a yet unachieved dream of scientists and engineers. Providing a robot with a
seemingly modest skill that you just demonstrated, an ability to move safely
among surrounding objects using incomplete sensing information about them
would be a breakthrough in science and technology whose consequences for
society is hard to overestimate. This would be the beginning of a new era,
with a great number of machines of unimaginable variety moving quietly and
productively in the world around us.

The main reason that we desire such technology is not, of course, the conve-
nience of a wine-serving automatic maid. A machine’s ability to safely operate
in a reasonably arbitrary environment will lead to our automating a wide span of
tasks that have eluded automation so far—from the delivery of drugs and food
to patients in hospitals and nursing homes, to a robot “nurse” in the homes of
elderly people, and to such indispensable tasks as cleaning chemical and nuclear
waste sites, demining of old and new mine fields, planetary exploration, repair of
faraway space satellites, and a great number of other tasks in agriculture, under-
sea, deep space, and so on. Equipped with this skill, the recent Mars rovers Spirit
and Opportunity would have accomplished in hours what took them weeks.

xiii
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We do not have such automation today. Today, humans are not even allowed to
share space with serious robots, though a good number of the tasks above would
require this. The only reason for this constraint is that today’s robot bodies are
too insensitive, too oblivious to their surroundings, and hence too dangerous to
themselves and to objects and people around them.

Looking ahead to the near future, however, there are at least three good reasons
for optimism. One is social: The problem will not go away and so the pressure
on scientists and engineers will stay strong. The need for machines capable of
working in our midst or far away with little or no supervision will only grow with
time. The value of human life and the increasing costs of human labor combined
with ever riskier undertakings in space, undersea, and in rough places on Earth
will continue the push for more automation. A very good example of this trend is
the recent unique “attempt for on attempt” for a robot mission to save the ailing
Hubble Telescope.

One may say that having a painful problem is not enough to find a solution.
True, but then there are the other two reasons. The second reason for optimism is
the successes of robot systems in recent years. Almost 1,000,000 highly reliable
industrial robots are doing useful, sometimes quite complex, work worldwide.
True, almost none of these robots can operate outside of their highly specialized
man-made environment, and those few that do are too simplistic to be taken
seriously. Hence the third reason for optimism: Research laboratories around the
world report more and more sophistication in robot systems operating outside the
“sanitized” factory environment. Robots have been shown to be as good as or bet-
ter than humans in some tasks that require spatial reasoning and motion planning.
Systems have been demonstrated where synergistic human–robot teams operate
better, even smarter, than each of them separately. This trend is bound to continue.

It is the ability to plan its own motion that makes a robot qualitatively different
from other machines. After all, the mechanical parts, electronics, computers,
some functional abilities, and sophistication that robots possess are present in
many other digitally controlled machines. Thus the half-humorous debates of the
1960s and 1970s when designers of digitally controlled factory machinery were
accusing specialists in robotics of inflating the prestige of their field by calling
their machines robots—aren’t these just slightly modified digitally controlled
machines? There is truth to it. Now we are approaching a time when the field
of robotics will be able to say that it is the ability to plan its own motion that
makes a robot a robot.

Doesn’t such technology already exist? Haven’t we read about robots that paint
and weld and do assembly in automotive and computer manufacturing factories?
For factories, yes, but for tasks outside the factory floor—hospitals and outer
space and mine fields—no, not really, except perhaps in a few simplistic cases.
What is the difference?

For you and me, the success of, say, returning a bottle to the refrigerator
depends little on whether at this very instant the arrangement of objects in the
refrigerator differs from what it was half hour ago when the bottle was taken out.
This is not so for today’s robots.
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If the required motion is to be repeated over and over again and if all the
objects in the robot workspace can be described precisely—as they are, for
example, on the car assembly line or in an automatic painting booth—using
robots to automate the task presents no principal difficulties today. Designing
the required trajectories for the tool in the robot hand is a purely geometric
problem, fully solvable by computer. (Depending on the task specifics, it may
of course require an unrealistically large amount of computation time, but this
is another matter.) Once the car model changes next year, the new data are fed
into the computer, and the required motion is recalculated. This is an example
of a structured task, and it takes place in a structured environment. The word
“structured” is roughly equivalent to “well-organized,” “known precisely,” “man-
made.” Objects in a structured environment can be safely assumed fully known
in space and time.

As a rule, a structured environment is designed, carefully and often at great
cost, by highly qualified professionals. From the standpoint of motion planning,
the input information that the robot needs in order to generate the desired motion
is available before the motion starts. What is needed is appropriate algorithms
for transforming this information into proper motion trajectories. Today there are
plenty of such algorithms. This setup represents the Intelligence–Motion planning
paradigm.

This algorithmic paradigm was formulated right at the beginning of robotics
as a field of science and technology, around the mid-1960s. Today the Intelli-
gence–Motion paradigm boasts a large literature, appearing under such names
as motion planning with complete information, or model-based motion planning,
or the Piano Mover’s model. The symbolism behind the latter term is that when
movers set out to move a piano, they can first sit down and figure out the whole
sequence of moves and turns and raisings and lowerings, before they start the
actual motion. After all, the physical setting that encompasses this information is
right there before them. (Except, one might comment, “Who in this world would
ever do it this way?” More likely the movers just say, “Let’s do it!”, and they
discuss every move as they get to it—thereby losing an opportunity to contribute
to a great theory.)

On the theoretical level, the problem of motion planning with complete infor-
mation is more or less closed: remarkably complete and enlightening studies of
the problem have provided computational complexity bounds, motion planning
algorithms, and deep insights into the problem. Which is not to say that all prob-
lems in this area are solved. Most of today’s work in this area is devoted to
special cases and to struggling with computational issues in realistic settings.
Somewhat ironically, applications where such techniques are used today relate
not so much to robotics as to other areas: computer-aided design (CAD, e.g., to
design an aircraft engine such as to allow quick removal or replacement of a
given unit), models of protein folding in biology, and a few others. The major
property of such tasks is that the required motion is designed in a database rather
than in a physical setting. Given the wealth of published work in this area, this
book reviews the Piano Mover’s paradigm only cursorily.
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The focus of this book is on unstructured tasks—tasks that unfold in an
unstructured environment, an environment that is not predesigned and has to be
taken as is. Most of the motion planning examples above (homes, outdoors, deep
space, etc.) refer to unstructured tasks. Until recently, robotics practitioners have
either ignored this area or have limited their efforts to grossly simplified tasks with
robot hands or with mobile robots. Even in the latter cases the operation is mostly
limited to a tight human teleoperation, with a minimum of robot autonomy (as in
the case of recent Mars rovers). All kinds of helpful “artificial” measures—for
example, an extremely slow operation—are taken to allow the operator to precede
commands with a careful analysis.

Automating motion planning for mobile robots will be considered in the first
sections of this text. We will also see later that teaching a robot arm manipulator
to safely move in an unstructured environment is a much taller order than the
same request for a mobile robot. This is unfortunate because a large number of
pressing applications require manipulators. Today people use a great deal more
arm manipulators than mobile robot vehicles. An arm manipulator is a device
similar to a human arm. If the task is to just move around and sense data or
take pictures, that is a job for a mobile robot. But if the task requires “doing
things”—welding, painting, putting things together or taking them apart—one
needs an arm manipulator. Interestingly, while collision avoidance is a major
bottleneck in the use of robot manipulators, there is minuscule literature on the
subject. This book attempts to fill the gap.

Objects in an unstructured robot workspace cannot be described fully—either
because of their unyielding shape, or because of lack of knowledge about them,
or because one doesn’t know which object is going to be where and when, or
because of all three. In dealing with an environment that has to be taken as is,
our robots have a good example to follow: The evolution has taught us humans
how to move around in our messy unstructured world. We want our robots to
leap-frog this process.

And then there are tasks—especially, as we will see, with motion planning
for arm manipulators—where human skills and intuition are not as enviable. In
fact, not enviable at all. Then not only do we need to enter unchartered terri-
tories and synthesize new robot motion planning strategies that are way beyond
human spatial reasoning skills, but also we must built a solid theoretical founda-
tion behind them, because human experience and heuristics cannot help ascertain
their validity.

If the input information about one’s surroundings is not available beforehand,
one cannot of course calculate the whole motion at once, or even in large pieces.
What do we humans and animals do in such cases? We compensate by real-time
sensing and sensor data processing: We look, touch, listen, smell, and continu-
ously use the sensing information to plan, execute, and replan our motion. Even
when one thinks one knows by heart how to move from point A to point B—say,
to drive from home to one’s office—the actual execution still involves a large
amount of continuous sensor-based motion planning.
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Hence the names of approaches to motion planning in an unstructured envi-
ronment that one finds in the literature are: motion planning with incomplete
information, or sensor-based motion planning. Another good name comes from
the crucial role that this paradigm assigns to sensing: Similar to the phrase Intel-
ligence–Motion for motion planning with complete information, we will use the
name Sensing–Intelligence–Motion (SIM) for motion planning with incomplete
information. The SIM approach will help open the door for robotics into automa-
tion of unstructured tasks. (Recall “Open door, Simsim!” in the Arabian tale “Ali
Baba and the Forty Thieves.”)

The described differences in how input information appears in the Piano
Mover’s and SIM paradigms affect their approach to motion planning in cru-
cial ways—so much so that attempted symbiosis of some useful features of
“structured” and “unstructured” approaches have been so far of little theoretical
interest and little practical use.

While techniques for motion planning with complete information started in
earnest in the first years of robotics, sometime in early 1960s, the work on
SIM approaches started later, in the late 1980s, and has proceeded more slowly.
The slow pace is partly due to the fact that the field of robotics in general
and the area of motion planning in particular have been initiated primarily by
computer scientists. The combinatoric–computational professional inclinations
of these visionaries made them more enthusiastic about geometric and compu-
tational issues in robotics than about real-time control and the algorithmic role
of sensing. Another important reason is the tight connection between algorithms
and hardware that the SIM approach espouses. As we will see later, some of this
(sensing) hardware has only started appearing recently. Finally, a quick look at
this book’s table of contents will show that the work on SIM approaches requires
from its practitioners a somewhat unusual combination of background: topology,
computational complexity, control theory, and a rather strange sensing hardware.

Whatever the reasons, in spite of its great theoretical interest and an immense
practical potential, the literature on the sensor-based motion planning paradigm
is small, especially for arm manipulators. In fact, today there are no textbooks
devoted to it.

Our goals in this book are as follows:

(a) Formulate the problem of sensor-based motion planning. We want to
explore why the relevant issues are so hard—so much so that in spite
of hard work and some glorious successes of robotics, there is no robot
today that can be left to its own devices, without supervision, outdoors
or in one’s home. Build a theoretical foundation for sensor-based motion
planning strategies.

(b) Study in depth a variety of particular algorithmic strategies for mobile
robots and robot arm manipulators, and try to identify promising directions
for conquering the general problem.

(c) Given the similarity of underlying tasks and requirements, compare robot
performance and human performance in sensor-based motion planning.



xviii PREFACE

The hope is that by doing so we can get a better insight into the nature
of the problem, and can help build synergistic human–robot teams for
tele-operation tasks.

(d) Review sensing hardware that is necessary to realize the SIM paradigm.

The book is intended to serve three purposes: (1) as a course textbook; (2) as
a research text covering in depth one particular area of robotics; (3) as a program
of research and development in robotic automation of unstructured tasks.

As a Textbook. A good portion of this book grew out of graduate and senior
undergraduate courses on robot motion planning taught by the author at Yale
University and the University of Wisconsin—Madison. As often happens with
research-oriented courses, the course kept changing as more research material
appeared and our knowledge of the subject expanded.

The text assumes a basic college background in mathematics and computer
science. A prior introductory course in robotics and some knowledge in topology
will be helpful but are not required. Some more exposure to topology is advised
for mastering the analysis that appears in Section 5.8 (Chapter 5) and the first two
pages of Section 6.2.4 (Chapter 6). Conclusions from this analysis, in particular
the formulation of algorithms, are written at the level compatible with the rest
of the book, though. The instructor is advised to glance through the chapters
beforehand to decide which level of what background a given chapter or section
requires.

Homework examples are provided as needed. In my view, a good home-
work structure for an advanced course like this one includes two components:
(a) ordinary homework assignments that dig deeper in the student’s knowledge,
are modest in number, and require a week or two to complete each assignment;
and (b) a course project that is initiated in the course’s first few weeks, goes in
parallel with it, and is defended at the end of the course, with the defense treated
as the final exam. The weights of those components in the student final grade can
be, say, 50% for the homework, 20% for the midterm assessment of the project,
and 30% for the final text-plus-presentation-before-class of the project. A list of
ideas for course projects is provided in Chapter 9.

Assuming a conventional two-semester school year, this book has about two
semesters worth of material. A one-semester course hence calls for choices. A
typical structure that covers ideas and computational schemes of the sensor-
based motion planning paradigm will include Chapters 1, 2, 3, 5, and 6 (Motion
Planning—Introduction, A Quick Sketch of Major Issues in Robotics, Motion
Planning for a Mobile Robot, Motion Planning for Two-Dimensional Arm Manip-
ulators, Motion Planning for Three-Dimensional Arm Manipulators). Let us call
this sequence the core course. The sequence contains no control theory or elec-
tronics, and it allows for the widest audience in terms of students’ majors.

For a strictly engineering class where students have already had courses in
controls and electronics, the instructor may want to sharply contract the time
for Chapter 2 and provide instead a deeper understanding of the effects of robot
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dynamics on motion planning, covered in Chapter 4, plus a cursorial review
of principles of design of sensing devices necessary for realizing sensor-based
motion planning strategies, Chapter 8. Any group can benefit from Chapter 7,
which is devoted to human performance in motion planning and spatial reason-
ing tasks. A two-semester sequence will comfortably cover all those chapters
(with the danger of one’s noticing some repetitions necessitated by the foreseen
different uses of the book).

The decision to include in the course the topics covered in Chapters 4, 7, and
8, as well as the time devoted to the introductory Chapters 1 and 2 will depend
much on the mixture of students in class, in particular their prior exposure to
robotics, control theory, and electronics. Mandating prior courses on these topics
may introduce interesting difficulties. In my experience, a significant percent-
age of graduate students attracted to this course come from disciplines outside
of engineering, computer science, physics, and mathematics—such as business
administration, psychology, and even medicine. This is not surprising since the
course material touches upon the future of their disciplines rather deeply. Stu-
dents from some areas, especially the latter three above, are usually interested
in ideas and cognitive underpinnings of the subject. These students are often
extremely good, quick, and knowledgeable and have a reasonably good back-
ground in mathematics. Often such students do well in homework assignments,
bring in new ideas, and come up with wonderful course projects in their appro-
priate areas. Denying their participation would be a pity, in my view—after all,
robotics is a wide and widely connected field.

With such students in class, the instructor may choose to spend a bit more
time on the introductory sections, in order to bring up to speed students who
have had no past exposure to the robotics field. The instructor may also want to
complement introductory material with a relevant textbook (some such textbooks
are mentioned in Chapters 1 and 2). Students’ grades in the homework at the end
of Chapter 2 will give the instructor a good indication of how prepared they are
for the core course.

As a Research Text. This book is targeted to people who are interested in
or are directly involved in research and development of robot and human–robot
interaction systems. If one’s goal is to understand the underlying issues or design
a system capable of purposeful motion in an unstructured environment while
protecting the robot’s whole body—in streets, homes, undersea, deep space,
agriculture, and so on—today SIM is the only consistent approach one can count
on. This is not to say that the book contains answers to all questions. It provides
some constructive answers, and it calls for continuation.

The book should also be of interest to people working in areas that are
tangentially connected to robotics, such as sensor development and design of
tele-operated systems. And finally, the book will hopefully appeal to people
interested in the wide complex of underlying issues in robotics and human–robot
interaction, from mathematical and algorithmic questions to cognitive science to
advanced robot applications.
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As a Program for Continued Research and Development. To repeat the
statement above, today the Sensing–Intelligence–Motion (SIM) approach seems
to be the only paradigm that holds promise to bring about robot automation of
unstructured tasks. This is not because of some special sophistication of SIM
techniques, but simply because only SIM techniques take care of the necessary
whole body awareness of the robot and do it “on the fly,” in real time, making it
possible to handle a high level of uncertainty. And only this approach guarantees
results in this area when human intuition breaks down.

And yet, as one will see later, only a limited number of SIM algorithms and
sensing schemes for real-world robot systems have been explored so far. Much
of the theory and of algorithmic and hardware machinery that is necessary to
bring the SIM approach to full fruition lies ahead of us. The book starts on the
misty route that lies ahead and that has to be traversed if we are serious about
bringing automation into unstructured tasks. With the risk of being seen less than
balanced, I suggest that not many areas of computer science and engineering
can compete with the excitement, the required breadth of knowledge, and the
potential impact on society of the topics covered in this book.

Professional and commercial importance of robotics aside, robots have been
always of immense interest to the general public. Isaac Asimov’s robot heros are
household names. Crowds invariably surround fake robots (controlled by humans
from nearby buildings) on the Disneyland streets. Robot exploits on Mars or on
the Space Shuttle or in a minefield disarming operation make front pages of
newspapers. What excites laymen is a human-like behavior potential of a robot.
This book takes the reader further in this same direction by providing a solid
foundation behind one human-like ability of robots that was so far assumed to
be an inherent monopoly of humans—namely, the ability to think of and plan
one’s motion in an unstructured world.

Robots are often referred to derisively: “He moves like a robot,” “Yours is
a robot reaction,” “Hey, don’t behave like a robot.” What is meant is crude,
unintelligent, and mechanical; even the word “mechanical” signifies here crude
and unintelligent. Many mimes entertain the crowd on the street corners by
moving “like a robot”—that is, switching sharply from one movement to the
other and being oblivious to the surroundings.

That is not what robots should be and even are today. Examples in Chapter 8
will show that when equipped with means for self-awareness and with strategies
to use it, robots become sensitive to their surroundings, “pensive,” and even
gentle in how they “mind” their movement.1 A nonprofessional reader curious
about the possibilities of intelligent robots will find long layman-level passages in

1Sharp “robot-like” movements have been a persistent science fiction-maintained myth. Many robot
applications—car painting is a good example—require smooth motion and simply cannot tolerate
sharp turns. Today’s industrial robots can generate a motion that is so smooth and delicate that it
may be the envy of “Swan Lake” ballerinas. For those who know calculus, what dancer can promise,
for example, a motion so smooth that both its derivatives have guaranteed continuity!
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the Introduction, introductory sections to other chapters, discussions, examples,
and simplified explanations of the underlying ideas throughout the text.

Designing a whole-sensitive robot is almost like designing a friend. One day
you move your hand in a stroking movement along the robot’s skin, and it
responds with a gentle appreciative movement. This gives you a strange feeling:
We humans are totally unprepared to see a machine exhibit a behavior that we
fully expect from a cat or a dog. I hope that both professional and layman readers
will share this gratifying feeling. And, of course, I hope the book will further our
attempts toward populating our environment with helpful and loyal robot friends.

Vladimir J. Lumelsky

Madison, Wisconsin
Washington D.C.
April 2005
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CHAPTER 1

Motion Planning—Introduction

Midway along the journey . . . I woke to find myself in a dark wood, for I had
wandered off from the straight path.

—Dante Alighieri, The Divine Comedy, ‘‘Inferno’’

1.1 INTRODUCTION

In a number of Slavic languages the noun “robota” means “work”; its derivative
“robotnik” means a worker. The equivalent of “I go to robota” is a standard morn-
ing sentence in many East European homes. When in 1921 the Czech writer Karel
Capek needed a new noun for his play R.U.R. (Rossum’s Universal Robots),
which featured a machine that could work like a human, though in a some-
what mechanical manner, he needed only to follow Slavic grammar: Chopping
off “a” at the end of “robota” not only produced a new noun with a similar
meaning but moved it from feminine to masculine. It was just what he wanted
for his aggressive machines that eventually rebelled against the humankind and
ran amok. The word robot has stuck far beyond Capek’s wildest expectations—
while, interestingly, still keeping his original narrow meaning.

Among the misconceptions that society attaches to different technologies,
robotics is perhaps the most unlucky one. It is universally believed that a robot
is almost like a human but not quite, with the extent of “not quite” being the pet
project of science fiction writers and philosophers alike. The pictures of real-life
robots in the media, in which they look as close to a human as, say, a refrigerator,
seem to only insult the public’s insistence on how a robot should look.

How much of “not quite”-ness is or ever will be there is the subject of some-
times fierce arguments. It is usually agreed upon that high intelligence is a must
for a robot, as is a somewhat wooden personality. And, of course, the public
refuses to take into account the tender age of the robotics field. One standard
way of expressing the “not quite”-ness is a jerky motion sold as robot motion
in Hollywood movies and by young people imitating a robot on street corners.
Whatever future improvements the public is willing to grant the field, a smooth
motion and a less-than- wooden personality are not among them. A robotics
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professional will likely give up when hearing from friends or school audiences
that the best robots are found in Disneyworld. (“What do you mean? Last week
I myself talked to one in Disneyworld in Orlando.” Don’t try to tell him he
actually spoke to an operator in the nearby building.)

It would not be fair to blame Karel Capek, or Disney, or Hollywood for
the one-dimensional view of robotics. The notion of a robotic machine goes far
back in time. People have always dreamt of robots, seeing them as human-like
machines that can serve, fascinate, protect, or scare them. In Egyptian temples,
large figurines moved when touched by the morning sun rays. In medieval Euro-
pean cities, bronze figures in large tower clocks moved (and some still move) on
the hour, with bells ringing.

Calling on human imagination has been even easier and more effective than
relying on physical impersonation. Jewish mysticism, with its Cabbala teachings
and literary imagery, has also favored robots. Hence the image of Golem in
Cabbala, a form that is given life through magic. In the Hebrew Bible (Psalms
139:16) and in the Talmud, Golem is a substance without form. Later in the
Middle Ages the idea took the form; it was said that a wise man can instill life
in an effigy, thus creating a Golem with legs and arms and a head and mighty
muscles. A “typical” Golem became a human-like automaton, a robot.

Perhaps the best-known such story is of Rabbi Loew of sixteenth-century
Prague, in Czechia. (The Rabbi’s somewhat scary gravestone still greets the
visitor in the Jewish cemetery at Prague’s center.) Rabbi Loew created his Golem
from clay, to serve as his servant and to help protect the Jews of Prague. Though
the creature was doing just that, saving Jews of Prague from many calamities by
using its great strength and other supernatural skills, with time it became clear
that it was getting out of hand and becoming dangerous to its creator and to other
Jews. Rabbi Loew thus decided to return the Golem back to its clay immobility,
which he achieved using a secret Cabbalistic formula. He then exiled the figure to
the attic of his Prague synagogue, where it presumably still is, within two blocks
from Loew’s grave. This story became popular through the well-written 1915
novel called Der Golem, by a German writer Gustav Meyrink, and the 1920 movie
under the same title by the German director Paul Wegener (one can still find it
in some video shops). The Golem, played by Wegener himself, is an impressive
figure complete with stiff “robotic” movement and scary square-cut hairdo.

We still want the helpful version of that robot—in fact, we never wanted
it more. The last 40 years have seen billions of dollars, poured by the United
States, European, Japanese, and other governments, universities, and giant com-
panies into development of robots. As it often happens with new technologies,
slow progress would breed frustration and gaps in funding; companies would
lose faith in quick return and switch loyalties to other technologies. Overall,
however, since 1960 the amount of resources poured by the international com-
munity into robotics has been steadily going up. For what it’s worth, even the
dream of an anthropomorphic likeness is well and alive, even among professionals
and not only for toy robots. Justifications given—like “people feel comfortable
with a human-looking robot,” as if people would feel less comfortable with a
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dishwasher-shaped robot—may sound somewhat slim; nevertheless, the work on
anthropomorphic robots still goes on, especially in Japan and from time to time
in the United States and Europe.

The reasons behind the strong interest in robotics technology have little to do
with Hollywood dreams. Producing a machine that can operate in a reasonably
arbitrary environment will allow us to automate a wide span of tasks.

If some of us feel that we have more than enough automation already, this
feeling is not necessarily due to our ambivalence about machines. It is hard to feel
a need for something that does not exist. Think, for example, of such modern-day
necessities as paper towels and paper napkins. Who would think of “needing”
them back in the nineteenth century, before they became available?

To have a sense of what is the “right” amount of automation, consider the
extent of automation in today’s industrialized world, and then consider the kind
of automation we may have if the right technology becomes available. Wouldn’t
we welcome it if our dishwashers knew how to collect dirty dishes from the
table, drop the solid waste into the waste basket, slightly rinse the dishes under
the faucet, put them into the dishwashing basin—and only then proceed to what
today’s dishwashers do—and later of course put the clean dishes and silverware
where they belong? More seriously, wouldn’t we embrace a machine capable of
helping an old person prolong her independent living by assisting with simple
household chores such as answering the doorbell, serving food, and bringing
from the closet clothing to wear? How about a driverless security car patrolling
the streets and passing along information to the police control room; automatic
waste collection and mail delivery trucks; driverless tractors and crops picking
machines in farms? There is no end to this list.

Then there are tasks in which human presence is not feasible or highly unde-
sired, and for which no expense would be too big: demining of minefields in
countries after war (there is no shortage of these in recent years); deep-sea oil
exploration; automatic “repairmen” of satellites and planet exploration vehicles;
and so on. For example, unlike the spectacular repairs of the Hubble Space Tele-
scope by astronauts, no human help will be feasible to its one-million-miles-away
replacement, the James Webb Space Telescope—only because the right robots
do not exist today. Continuing our list in this fashion and safely assuming the
related automation will be feasible at some point, observe that only a small
fraction, perhaps 5% or so, of tasks that could and should be automated have
been automated today. Robotics is the field we turn to when thinking about such
missing automation. So, why don’t we have it? What has been preventing this
automation from becoming a reality?

It may sound surprising, but by and large the technology of today is already
functionally ready for many of the applications mentioned above. After all, many
factory automation machines have more complex actuators—which translates into
an ability to generate complex motion—than some applications above require.
They boast complex digital control schemes and complex software that guides
their operation, among other things. There is no reason why the same or similar
schemes could not be successful in designing, say, a robot helper for the homes of
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elderly individuals. So, why don’t we have it? What is missing? The answer is, yes,
something is missing, but often it is not sophistication and not functional abilities.

What is missing are two skills. One absolutely mandatory, is a local nature
and is a seemingly trivial “secondary” ability in a machine not to bump into
unexpected objects while performing its main task—be it walking toward a
person in a room with people and furniture, helping someone to dress, replacing
a book on the shelf, or “scuba-diving” in an undersea cave. Without this ability
the robot is dangerous to the environment and the environment is dangerous to
the robot—which for an engineer simply means that the robot cannot perform
tasks that require this ability. We can call this ability collision avoidance in an
uncertain environment.

The other skill, which we can call motion planning, or navigation, is of a global
nature and refers to the robot ability to guarantee arrival at the destination. The
importance of this skill may vary depending on a number of circumstances.

For humans and animals, passing successfully around a chair or a rock does
not depend on whether the chair or the rock is in a position that we “agreed”
upon before we started. The same should be true for a robot—but it is not.

Let us call the space in which the robot operates the robot workspace, or the
robot environment. If all objects present in the robot workspace could be described
precisely, to the smallest detail, automating the necessary motion would present
no principal difficulties. We would then be in the realm of what we call the
paradigm of motion planning with complete information. Though, depending on
details, the problem may require an inordinate computation time, this is a purely
geometric problem, and the relevant software tools are already there. Algorithmic
solutions for this problem started appearing in the late 1970s and were perfected
in the following decades.

A right application for such a strategy is, for example, one where the motion
has to be repeated over and over again in exactly the same workspace, precisely as
it happens on the car assembly line or in a car body painting booth. Here complete
information about all objects in the robot environment is collected beforehand
and passed to the motion planning software. The computed motion is then tried
and optimized via special software or/and via many trial-and-error improvements,
and only then used. Operators daily make sure that nothing on the line changes;
if it does purposely, the machine’s software is updated accordingly. Advantages
of this strategy are obvious: It delivers high accuracy and repeatability, consistent
quality, with no coffee breaks. If the product changes, say, in the next model
year, a similar “retraining” procedure is applied.

We will call tasks and environments where this approach is feasible structured
tasks and structured environments, which signifies the fact that objects in the
robot environment are fully known and predictable in space and time. Such
environments are, as a rule, man-made.

An automotive assembly line is a perfect example of a structured environment:
Its work cells are designed with great care, and usually at a great cost, so as to
respect the design constraints of robots and other machinery. A robot in such
a line always “knows” beforehand what to expect and when. Today the use of
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robotics on such lines is an extremely successful and cost-effective proposition,
in spite of their high cost.

Unfortunately, some tasks—in fact, the great majority of tasks we face every
day—differ in some fundamental ways from those on the automotive assembly
line. We live in the world of uncertainty. We deal with unstructured tasks, tasks
that take place in an unstructured environment. Because of unpredictable or
changing nature of this environment, motions that are needed to do the job
are not amenable to once-and-for-all calculation or to honing via direct iterative
improvement. Although some robots in the structured automotive environment
are of great complexity, and functionally could be of much use in unstructured
tasks, their use in an unstructured environment is out of the question without
profound changes in their design and abilities. Analyzing this fact and finding
ways of dealing with it is the topic of this book.

Sometime in the late 1950s John McCarthy, from Stanford University [who
is often cited as father of the field of artificial intelligence (AI)], was quoted as
saying that if the AI researchers had as much funding as NASA was given at
the time to put a man on the moon, then within 10 years robot taxi cabs would
roam the streets of San Francisco. McCarthy continued talking about “auto-
matic chauffeurs” until at least the late 1990s. Such loyalty to the topic should
certainly pay off eventually because the automatic cab drivers will someday
surely appear.

Today, over 40 years since the first pronouncement, we know that such a robot
cannot be built yet—at any cost. This statement is far from trivial—so it is not
surprising that many professional and nonprofessional optimists disagree with
it. Not only it is hard to quantify the difficulties that prevent us from building
such machines, but these difficulties have been consistently underestimated. As
another example, in 1987, when preparing an editorial article for the special issue
on robot motion planning for the IEEE Transactions on Robotics and Automation,
this author was suggested to take off from the Foreword a small paragraph saying
that in the next 10 years—that is, between 1987 and 1997—we should not expect
a robot capable of, say, tying one’s shoelaces or a necktie. The text went on to
suggest that the main bottleneck had less to do with lacking finger kinematics
and more with required continuous sensing and accompanying continuous sensor
data processing. “This sounds too pessimistic; ten years is a long time; science
and technology move fast these days,” the author was told. Today, almost two
decades later, we still don’t have robots of this level of sophistication—and not
for a lack of trying or research funding. In fact, we can confidently move the
arrival of such robots by at least another decade.

One way to avoid the issue is to say that a task should be “well engineered.”
This is fine except that no task can be likely “well engineered” unless a technician
has a physical access to it once or twice a day, as in any automotive assembly
line. Go use this recipe with a robot designed to build a large telescope way out
in deep space!

Is the situation equally bleak in other areas of robotics? Not at all. In recent
years robotics has claimed many inroads in factory automation, including tasks
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that require motion planning. Robots in automotive industry are today among the
most successful, most cost-effective, and most reliable machines. Robot motion
planning algorithms have penetrated areas far from robotics, from designing
quick-to-disassemble aircraft engines (for part replacement at the airport gate)
to studies of folding mechanisms of DNA molecules.

It is the unstructured environment where our success stops. We have difficulty
moving robots into our messy world with its unending uncertainty. That is where
the situation is bleak indeed—and that is where robotics is needed badly.

The situation is not black and white but rather continuous. The closer a task
is to that in a fully structured environment, the better the chance that today’s
approaches with complete information will apply to it. This is good news. When
considering a robot mission to replace the batteries, gyroscopes, and some sci-
entific instruments of the aging Hubble Space Telescope, NASA engineers were
gratified to know that, with the telescope being a fully man-made creature, its
repair presents an almost fully structured task. The word “almost” is not to be
overlooked here—once in a while, things may not be exactly as planned: The
robot may encounter an unscrewed or bent bolt, a broken cover, or a shifted cable.
Unlike an automotive plant, where operators check out the setup once or twice
a day, no such luxury would exist for the Hubble ground operators. Although,
luckily, the amount of “unstructuredness” is small in the Hubble repair task, it
calls for serious attention to sensing hardware and to its intimate relation to robot
motion planning. Remarkably, even the “unstructuredness” that small led to the
project’s cancellation.

A one-dimensional picture showing the effect of increase in uncertainty on
the task difficulty, as one moves from a fully structured environment to a fully
unstructured environment, is shown in Figure 1.1. An automotive assembly line
(the extreme left in the figure) is an example of a fully structured environment:
Line operators make sure that nothing unexpected happens; today’s motion plan-
ning strategies with complete information can be confidently used for tasks like
robot welding or car body painting.

As explained above, the robot repair of the Hubble Telescope is slightly to
the right of this extreme. Just about all information that the robot will need
is known beforehand. But surprises—including some that may be hard to see
from the ground—cannot be ruled out and must be built in the mission system

Automotive
assembly line

Repair of
Hubble

Telescope
Robot taxi-driver,

robot mail delivery...

Mountain climbing,
cave exploration,

robot nurse

Figure 1.1 An increase in uncertainty, from a fully structured environment to a fully
unstructured environment, spells an increase in difficulty when attempting to automate a
task using robots.
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design. In comparison with this task, designing a robot taxi driver carries much
more uncertainty and hence more difficulty. Though the robot driver will have
electronic maps of the city, and frequent remote updates of the map will help
decrease the uncertainty due to construction sites or street accidents, there will
still be a tremendous amount of uncertainty caused by less than ideally care-
ful human car drivers, bicyclists, children running after balls, cats and dogs
and squirrels crossing the road, potholes, slippery road, and so on. These will
require millions of motion planning decisions done on the fly. Still, a great
many objects that surround the robot are man-made and well known and can be
preprocessed.

Not so with mountain climbing—this task seems to present the extreme in
unstructured environment. While the robot climber would know exactly where its
goal is, its every step is unlike the step before, and every spike driven in the wall may
be the last one—solely due to the lack of complete input information. A tremendous
amount of sensing and appropriate intelligence would be needed to compensate for
this uncertainty. While seemingly a world apart and certainly not as dangerous, the
job of a robot nurse would carry no less uncertainty. Similar examples can be easily
found for automating tasks in agriculture, undersea exploration, at a construction
site on Earth or on the moon, in a kindergarten, and so on.1

In terms of Figure 1.1, this book can be seen as an attempt to push the envelope
of what is possible in robotics further to the right along the uncertainty line. We
will see, in particular, that the technology that we will consider allows the robot to
operate at the extreme right in Figure 1.1 in one specific sense—it makes a robot
safe to itself and to its environment under a very high level of uncertainty. Given
the importance of this feature and the fact that practically all robots today operate at
the line’s extreme left, this is no small progress. Much, but certainly not everything,
will also become possible for robot motion planning under uncertainty.

What kind of input information and what kind of reasoning do we humans use
to plan our motion? Is this an easy or is it a difficult skill to formalize and pass
along to robots? What is the role of sensing—seeing, touching, hearing—in this
process? There must be some role for it—we know, for instance, that when a
myopic person takes off his glasses, his movement becomes more tentative and
careful. What is the role of dynamics, of our mass and speed and accelerations
relative to the surrounding objects? Again, there must be some role for it—we
slow down and plan a round cornering when approaching a street corner. Are
we humans universally good in motion planning tasks, or are some tasks more
difficult for us than others? How is it for robots? For human–robot teams?

Understanding the issues behind those questions took time, and not everything
is clear today. For a long time, researchers thought that the difficulties with motion
planning are solely about good algorithms. After all, if any not-so-smart animal
can successfully move in the unstructured world, we got to be able to teach our
robots to do the same. True, we use our eyes and ears and skin to sense the

1The last example brings in still another important dimension: The allowed uncertainty depends much
on what is at stake.
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environment around us—but with today’s technology, don’t we have more than
enough sensor gadgetry to do the job?

The purpose of this book is to identify those difficulties, see why they are so
hard, attempt solutions, and try to identify directions that will lead us to con-
quering the general problem. A few points that will be at the center of our work
should be noted. First, we will spend much effort designing motion planning
algorithms. This being the area that humans deal with all the time, it is tempting
to try to use human strategies. Unfortunately, as often happens with attempts for
intelligent automation, asking humans how they do it is not a gratifying experi-
ence. Similar to some other tasks that humans do well (say, medical diagnostics),
we humans cannot explain well how we do it. Why did I decide to walk around a
table this way and not some other way, and how did this decision fit into my plan
to get to the door? I can hardly answer. This means that robot motion planning
strategies will not likely come from learning and analysis of human strategies.
The other side of it is, as we will see, that often humans are not as good in
motion planning as one may think.

Second, the above example with moving in the dark underlines the impor-
tance of sensing hardware. Strategies that humans and animals use to realize
safe motion in an unstructured environment are intimately tied to the sensing
machinery a species possesses. When coming from the outside into a dark room,
your movement suddenly changes from brisk and confident to slow and hesitant.
Your eyes are of no use now: Touching and listening are suddenly at the center
of the motor control chain. Your whole posture and gait change. If audio sources
disappear, your gait and behavior may change again. This points to a strong con-
nection between motion planning algorithms and sensing hardware. The same
has to be true for robots.

We will see that today’s sensing technology is far from being adequate for the
task in hand. In an unstructured environment, a trouble may come from any direc-
tion and affect any point of the robot body. Robot sensing thus has to be adequate
to protect the robot’s whole body. This calls for a special sensing hardware and
specialized sensor data processing. One side effect of this circumstance is that
algorithms and sensing hardware are to be addressed in the same book—which
is not how a typical textbook in robotics is structured. Hence we hope that a
reader knowledgeable in the theory of algorithms will be tolerant of the material
on electronics, and we also hope that a reader comfortable with electronics will
be willing to delve into algorithms.

Third, human and animals’ motion planning is tied to the individual’s kine-
matics. When bending to avoid hitting a low door opening, one invokes multiple
sequences of commands to dozens of muscles and joints, all realized in a com-
plex sequence that unfolds in real time. Someone with a different kinematics due
to an impaired leg will negotiate the same door as skillfully though perhaps very
differently. Expect the same in robots: Sensor-based motion planning algorithms
will differ depending on the robot kinematics.

Aside from raising the level of robot functional sophistication, providing a
robot with an ability to operate in an unstructured world amounts to a jump in its
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universality. This is not to say that a robot capable of moving dirty dishes from
the table to a dishwasher will be as skillful in cutting dead limbs from trees.
The higher universality applies only to the fact that the problem of handling
uncertainty is quite generic in different applications. That is, different robots will
likely use very similar mechanisms for collision avoidance. A robot that collects
dishes from the table can use the same basic mechanism for collision avoidance
as a robot that cuts dead limbs from trees.

As said above, we are not there yet with commercial machines of this kind.
The last 40 years of robotics witnessed a slow and rather painful progress—much
slower, for example, than the progress in computers. Things turned out to be much
harder than many of us expected. Still, today’s robots in automation-intensive
industries are highly sophisticated. What is needed is supplying them with an
ability to survive in an unstructured world. There are obvious examples show-
ing what this can give. We would not doubt, for example, that, other issues
aside, a robot can move a scalpel inside a patient’s skull with more precision
than a human surgeon, thus allowing a smaller hole in the skull compared to a
conventional operation. But, an operating room is a highly unstructured environ-
ment. To be useful rather than to be a nuisance or a danger, the robot has to be
“environment-hardened.”

There is another interesting side to robot motion planning. Some intriguing
examples suggest that it is not always true that robots are worse than people
in space reasoning and motion planning. Observations show that human opera-
tors whose task is to plan and control complex motion—for example, guide the
Space Shuttle arm manipulator—make mistakes that translate into costly repairs.
Attempts to avoid such mistakes lead to a very slow, for some tasks unacceptably
slow, operation. Difficulties grow when three-dimensional motion and whole-
body collision avoidance are required. Operators are confused with simultaneous
choices—say, taking care of the arm’s end effector motion while avoiding colli-
sion at the arm’s elbow. Or, when moving a complex-shaped body in a crowded
space, especially if facing simultaneous potential collisions at different points of
the body, operators miss good options. It is known that losing a sense of direction
is detrimental to humans; for example, during deep dives the so-called Diver’s
Anxiety Syndrome interferes with the ability of professional divers to distinguish
up from down, leading to psychological stress and loss in performance.

Furthermore, training helps little: As discussed in much detail in Chapter 7,
humans are not particularly good in learning complex spatial reasoning tasks.
These problems, which tend to be explained away as artifacts of poor teleoper-
ation system design or insufficient training or inadequate input information, can
now be traced to the human’s inherent relatively poor ability for spatial reasoning.

We will learn in Chapter 7 that in some tasks that involve space reasoning,
robots can think better than humans. Note the emphasis: We are not saying that
robots can think faster or compute more accurately or memorize more data than
humans—we are saying that robots can think better under the same conditions.

This suggests a good potential for a synergism: In tasks that require exten-
sive spatial reasoning and where human and robot thinking/planning abilities are
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complementary, human–robot teams may be more successful than each of them
separately and more successful than today’s typical master–slave human–robot
teleoperation systems are. When contributing skills that the other partner lacks,
each partner in the team will fully rely on the other. For example, a surgeon may
pass to a robot the subtask of inserting the cutting instrument and bringing it to
a specific location in the brain.

There are a number of generic tasks that require motion planning. Here we
are interested in a class of tasks that is perhaps the most common for people and
animals, as well as for robots: One is simply requested to go from location A to
location B, typically in an environment filled with obstacles. Positions A and B
can be points in space, as in mobile robot applications, or, in the case of robot
manipulators, they may include positions of every limb.

Limiting our attention to the go-from-A-to-B task leaves out a number of
other motion planning problems—for example, terrain coverage, map-making,
lawn mowing [1]; manipulation of objects, such as using the fingers of one’s hand
to turn a page or to move a fork between fingers; so-called power grips, as when
holding an apple in one’s hand; tasks that require a compressed representation
of space, such as constructing a Voronoi diagram of a given terrain [2]; and so
on. These are more specialized though by no means less interesting problems.

The above division of approaches to the go-from-A-to-B problem into two
complementary groups—(1) motion planning with complete information and
(2) motion planning with incomplete information—is tied in a one-to-one fashion
to still another classification, along the scientific tools in the foundation of those
approaches. Namely, strategies for motion planning with complete information
rely exclusively on geometric tools, whereas strategies for motion planning with
incomplete information rely exclusively on topological tools. Without going into
details, let us summarize both briefly.

1. Geometric Approaches. These rely, first, on geometric properties of space
and, second, on complete knowledge about the robot itself and obstacles in the
robot workspace. All those objects are first represented in some kind of database,
typically each object presented by the set of its simpler components, such as a
number of edges and sides in a polyhedral object. According to this approach,
then, passing around a hexagonal table is easier than passing around an octagonal
table, and much easier than passing around a curved table, because of these three
the curved table’s description is the most complex.

Then there is an issue of information completeness. We can hear sometimes,
“I can do it with my eyes shut.” Note that this feat is possible only if the objects
involved are fully known beforehand and the task in hand has been tried many
times. A factory assembly line or the list of disassembly of an aircraft engine are
examples of such structured tasks. Objects can be represented fully only if they
allow a final size (practical) description. If an object is an arbitrary rock, then
only its finite approximation will do—which not only introduces an error, but is
in itself a nontrivial computational task.
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If the task warrants a geometric approach to motion planning, this will likely
offer distinctive advantages. One big advantage is that since everything is known,
one should be able to execute the task in an optimal way. Also, while an increased
dimensionality raises computational difficulties—say, when going from two-
dimensional to three-dimensional space or increasing the robot or its workspace
complexity—in principle the solution is still feasible using the same motion
planning algorithm.

On the negative side, realizing a geometric approach typically carries a high,
not rarely unrealistic, computational cost. Since we don’t know beforehand what
information is important and what is not for motion planning, everything should
be in. As we humans never ask for “complete knowledge” when moving around,
it is not obvious how big that knowledge can be even in simple cases. For
example, to move in a room, the database will have to include literally every nut
and bolt in the room walls, every screw holding a seat in every chair in the room,
small indentations and extensions on the robot surface etc. Usually this comes
to a staggering amount of information. The number of those details becomes a
measure of complexity of the task in hand.

Attempts have been made to connect geometric approaches with incomplete
sources of information, such as sensing. The inherent need of this class of
approaches in a full representation of geometric data results in somewhat arti-
ficial constructs (such as “continuous” or “X-ray” or “seeing-through” sensors)
and often leads to specialized and hard-to-ascertain heuristics (see some such
ideas in Ref. 3).

With even the most economical computational procedures in this class, many
tasks of practical interest remain beyond the reach of today’s fastest computers.
Then the only way to keep the problem manageable is to sacrifice the guarantee
of solution. One can, for example, reduce the computational effort by approxi-
mating original objects with “artificial” objects of lower complexity. Or one can
try to use some beforehand knowledge to prune nonpromising path options on
the connectivity graph. Or one can attempt a random or pseudorandom search,
checking only a fraction of the connectivity graph edges. Such simplification
schemes leave little room for directed decision-making or for human intuition.
If it works, it works. Otherwise, a path that has been left out in an attempt to
simplify the problem may have been the only feasible path. The ever-increasing
power of today’s computer make manageable more and more applications where
having complete information is feasible.

The properties of geometric approaches can be summarized as follows (see
also Section 2.8):

(a) They are applicable primarily to situations where complete information
about the task is available.

(b) They rely on geometric properties (dimensions and shapes) of objects.
(c) They can, in principle, deliver the best (optimal) solution.
(d) They can, in principle, handle tasks of arbitrary dimensionality.
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(e) They are exceedingly complex computationally in more or less complex
practical tasks.

2. Topological Approaches. Humans and animals rarely face situations where
one can approach the motion planning problem based on complete informa-
tion about the scene. Our world is messy: It includes shapeless hard-to-describe
objects, previously unseen settings, and continuously changing scenes. Even if
faced with a “geometric”-looking problem, say, finding a path from point A to
point B in a room with 10 octagonal tables, we would never think of com-
puting first the whole path. We take a look at the room, and off we go. We
are tuned to dealing with partial information coming from our sensors. If we
want our robots to handle unstructured tasks, they will be thrown in a similar
situation.

In a number of ways, topological approaches are an exact opposite of the
geometrical approaches. What is difficult for one will be likely easy for the other.

Consider the above example of finding a path from point A to point B in a
room with a few tables. The tables may be of the same or of differing shapes; we
do not know their number, dimensions, and locations. A common human strategy
may look something like this: While at A, you glance at the room layout in the
direction of point B and start walking toward it. If a table appears on your way,
you walk around it and continue toward point B. The words “walking around”
mean that during this operation the table is on the same side from you (say, on
the left). The table’s shape is of no importance: While your path may repeat the
table’s shape, “algorithmically” it is immaterial for your walk around it whether
the table is circular or rectangular or altogether highly nonconvex. Why does
this strategy represent a topological, rather than geometric, approach? Because it
relies implicitly on the topological properties of the table—for example, the fact
that the table’s boundary is a simple closed curve—rather than on its geometric
properties, such as the table’s dimensions and geometry.

We will see in Chapter 3 that the aforementioned rather simplistic strategy is
not that bad—especially given how little information about the scene it requires
and how elegantly simple is the connection between sensing and decision-making.
We will see that with a few details added, this strategy can guarantee success in
an arbitrarily complex scene; using this strategy, the robot will find a path if one
exists, or will conclude “there is no path” if such is the case.

On the negative side, since no full information is available in this process, no
optimality of the resulting path can be guaranteed. Another minus, as we will see,
is that generalizations of such strategies to arm manipulators are dependent on
the robot kinematics. Let us summarize the properties of topological approaches
to motion planning:

(a) They are suited to unstructured tasks, where information about the robot
surroundings appears in time, usually from sensors, and is never complete.

(b) They rely on topological, rather than geometrical, properties of space.
(c) They cannot in principle deliver an optimal solution.
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(d) They cannot in principle handle tasks of arbitrary dimensionality, and they
require specialized algorithms for each type of robot kinematics.

(e) They are usually simple computationally: If a technique is applicable to
the problem in hand, it will likely be computationally easy.

1.2 BASIC CONCEPTS

This section summarizes terminology, definitions, and basic concepts that are
common to the field of robotics. While some of these are outside of this book’s
scope, they do relate to it in one way or another, and knowing this relation
is useful. In the next chapter this material will be used to expand on common
technical issues in robotics.

1.2.1 Robot? What Robot?

Defining what a robot is is not an easy job. As mentioned above, not only
scientists and engineers have labored here, but also Hollywood and fiction writers
and professionals in humanities have helped much in diffusing the concept. While
this fact will not stand in our way when dealing with our topic, starting with a
decent definition is an old tradition, so let us try.

There exist numerous definitions of a robot. Webster’s Dictionary defines it
as follows:

A robot is an automatic apparatus or device that performs functions ordinarily
ascribed to humans, or operates with what appears to be almost human intelligence.

Half of the definition by Encyclopaedia Britannica is devoted to stressing that a
robot does not have to look like a human:

Robot: Any automatically operated machine that replaces human effort, though it
may not resemble human beings in appearance or perform functions in a humanlike
manner.

These definitions are a bit vague, and they are a bit presumptuous as to what is and
is not “almost human intelligence” or “a humanlike manner.” One senses that a
chess-playing machine may likely qualify, but a machine that automatically digs a
trench in the street may not. As if the latter does not require a serious intelligence.
(By the way, we do already have champion-level chess-playing machines, but
are still far from having an automatic trench-digging machine.) And what about a
laundry washing machine? This function has been certainly “ordinarily ascribed
to humans” for centuries. The emphatic “automatic” is also bothersome: Isn’t
what is usually called an operator-guided teleoperation robot system a robot in
spite of not being fully automatic?
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The Robotics Institute of America adds some engineering jargon and empha-
sizes the robot’s ability to shift from one task to another:

A robot is a reprogrammable multifunctional manipulator designed to move mate-
rial, parts, tools, or specialized devices through variable programmed motions for
the performance of a variety of tasks.

Somehow this definition also leaves a sense of dissatisfaction. Insisting solely on
“manipulators” is probably an omission: Who doubts that mobile vehicles like
Mars rovers are robots? But “multifunctional”? Can’t a robot be designed solely
for welding of automobile parts? And then, is it good that the definition easily
qualifies our familiar home dishwasher as a robot? It “moves material” “through
variable programmed motions,” and the user reprograms it when choosing an
appropriate cycle.

These and other definitions of a robot point to dangers that the business of
definitions entails: Appealing definition candidates will likely invite undesired
corollaries.

In desperation, some robotics professionals have embraced the following def-
inition:

I don’t know what a robot is but will recognize it when I see one.

This one is certainly crisp and stops further discussion, but it suffers from the lack
of specificity. (Try, for example, to replace “robot” by “grizzly bear”—it works.)

A good definition tends to avoid explicitly citing material components neces-
sary to make the device work. That should be implicit and should leave enough
room for innovation within the defined function. Implicit in the definitions above
is that a robot must include mechanics (body and motors) and a computing device.
Combining mechanics and computing helps distinguish a robot from a computer:
Both carry out large amounts of calculations, but a computer has information
at its input and information at its output, whereas a robot has information at its
input and motion at its output.

Explicitly or implicitly, it is clear that sensing should be added as the third
necessary component. Here one may want to distinguish external sensing that the
machine uses to acquire information about the surrounding world (say, vision,
touch, proximity sensing, force sensing) from internal sensing used to acquire
information about the machine’s own well-being (temperature sensors, pressure
sensors, etc.). This addition would help disqualify automobiles and dishwashers
as robots (though even that is not entirely foolproof).

Perhaps more ominously, adding “external” sensing as a necessary component
may cause devastation in the ranks of robots. If the robot uses sensing to obtain
information about its surroundings, it would be logical to suggest that it must
be using it to react to changes in the surrounding world. The trouble is that this
innocent logic disqualifies a good 95–98% of today’s robots as robots, for the
simple reason that all those robots are designed to work in a highly structured
environment of a factory floor, which assumes no unpredictable changes.
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With an eye on the primary subject of this book—robots capable of handling
tasks in an unstructured environment—we accept that reacting to sensing data is
essential for a robot’s being a robot. The definition of a robot accepted in this
text is as follows:

A robot is an automatic or semiautomatic machine capable of purposeful motion
in response to its surroundings in an unstructured environment.

Added in parentheses or seen as unavoidably tied to the defined ability is a clause
that a robot must include mechanical, computing, and sensing components.

While this definition disqualifies many of today’s robots as robots, it satisfies
what for centuries people intuitively meant by robots—which is not a bad thing.
Purists may still point to the vagueness of some concepts, like “purposeful”
(intelligent) and “unstructured.” This is true of all other attempts above and of
human definitions in general. Be it as it may, for the purpose of this book this is
a working definition, and we will leave it at that.

1.2.2 Space. Objects

A robot operates in its environment (workspace, work cell). The real-world robot
environment appears either in two-dimensional space (2D), as, for example, with
a mobile robot moving on the hospital floor, or in three-dimensional space (3D),
as with an arm manipulator doing car body painting.

Robot workspace is physical continuous space. Depending on approaches to
motion planning, one can model the robot workspace as continuous or discrete.
Robotics deals with moving or still objects. Each object may be

• A point—for example, an abstract robot automaton used for algorithm
development

• A rigid body—for example, boxes in a warehouse, autonomous vehicles,
arm links

• A hinged body made of rigid bodies—for example, a robot arm manipulator

The robot environment may includes obstacles. Obstacles are objects; depend-
ing on the model used and space dimensionality, obstacles can be

• Points
• Polygonal (polyhedral) objects, which can be rigid or hinged bodies
• Other analytically described objects
• Arbitrarily shaped (physically realizable) objects

1.2.3 Input Information. Sensing

Similar to humans and animals, robots need input information in order to plan
their motion. As discussed above, there may be two situations: (a) Complete
information about all objects in the robot environment is available. (b) There is
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uncertainty involved; then the input information is, by definition, incomplete and
is likely obtained in real time from robot’s sensors.

Note the algorithmic consequences of this distinction. If complete information
about the workspace is available, a reasonable method to proceed is to build a
model of the robot and its workspace and use this model for motion planning. The
significant effort that is likely needed to build the model will be fully justified
by the path computed from this model. If, however, nothing or little is known
beforehand, it makes little sense to spend an effort on building a model that is
of doubtful relevance to reality.

In the above situation (b), the robot hence needs to “think” differently. From
its limited sensing data, it may be able to infer some topological properties of
space. It may be able to infer, for example, whether what it sees from its current
position as two objects are actually parts of the same object. If the conclusion
is “yes,” the robot will not be trying to pass between these two “objects.” If the
conclusion is “no,” the robot will know that it deals with separate objects and
may choose to pass between them. The objects’ actual shapes will be of little
concern to the robot.

What type of sensing is suitable for a competent motion planning? It turns
out that just about any sensing is fine: tactile, sonar, vision, laser ranger, infrared
proximity, and so on. We will learn a remarkable result that says that even the
simplest tactile sensing, when used with proper motion planning algorithms, can
guarantee that the robot will reach its target (provided that the target is reachable).
In fact, we will consistently prefer tactile sensing when developing algorithms,
before attempting to use some richer sensing media; this will allow us to clarify
the issues involved. This is not to say that one should prefer tactile sensors in
real tasks: As a blind person will likely produce a more circuitous route than a
person with vision, the same will be true for a robot.

Being serious about collision avoidance means that robot motion planning
algorithms must protect the whole robot body, every one of its points. Accord-
ingly, robot sensors must provide sufficient input information. Intuitively, this
requirement is not hard to understand for mobile robots. Existing mobile robots
typically have a camera or a range finder that rotates as needed, or sonar sensors
that cover the whole robot’s circumference.

Intuition is less helpful when talking about arm manipulators. Again, sensors
can be of any type: tactile, proximal, vision, and so on. What is harder to grasp
but is absolutely necessary is a guarantee that the arm has sensing data regarding
all points of its body. No blind spots are allowed.

We tend not to notice how strictly this requirement is followed in humans and
animals. We often tie our ability to move around solely with our vision. True,
when I walk, my vision is typically the sole source of input information. I may
not be aware of, and not interested in, objects on my sides or behind me. If
something worthwhile appears on the sides, I can turn my head and look there.

However, if I attempt to sit down and the seat will happen to have a nail
sticking out of it, I will be quickly made aware of this fact and will plan my
ensuing motions quickly and efficiently. If a small rock finds its way into my
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shoe, I will react equally efficiently. The sensor that I use in these cases is not
vision, but is the great many tactile sensors that cover my whole skin. Vision
alone would never be able to become a whole-body sensor.

Think of this: If among millions and millions of spots inside and outside of our
bodies at least one point would not be “protected” by sensing, in our unstructured
messy world sooner or later that very point would be assaulted by some hostile
object. Evolution has worked hard on making sure that such situations do not
occur. Those of our forbears millions of years ago who did not have a whole-body
sensing have no offspring among us.

The fact that losing some type of sensing is a heavy blow to one’s lifestyle is a
witness to how important all our sensing systems are. Blind people have to make
special precautions and go through special training to be able to lead a productive
life. People suffering from diabetes may incur a loss of tactile facilities, and then
they are warned by their doctors to be extra careful when handling objects: A
small cut may become a life-threatening wound if one’s sensors sound no alarm.

People tend to think that vision is more essential for one’s survival than tactile
sensing. Surprisingly, the reality is the other way around. While many blind
people around us have productive lives, the human ability to function decreases
much more dramatically if their tactile system is seriously damaged. This has been
shown experimentally [4]. Today’s knowledge suggests that a person losing his
or her tactile facilities completely will not be able to survive, period.

Animals are similarly vulnerable. Some are able to overcome the deficit, but
only at a high cost. If a cat loses its tactile sensing (say, if the nerve channel
that brings tactile information to the brain is severed), the cat can relearn some
operational skills, but its locomotion, gait, behavior, and interaction with the
surrounding world will change dramatically [5].2

One can speculate that the reason for a higher importance of tactile sensing
over vision for one’s survival is that tactile sensing tends to have no “blind
spots” whereas vision does by definition have blind spots. Vision improves the
efficiency of one’s interaction with the environment; tactile sensing is important
for one’s very survival. In other words, our requirement of a whole-body robot
sensing is much in line with live nature.

Similarly, it is not uncommon to hear that for robot arm manipulators “vision
should be enough.” Vision is not enough. Sooner or later, some object occluded
from the arm’s cameras by its own links or by power cables will succeed in
coming through, and a painful collision will occur. Whole-body sensing will
prevent this from happening. This suggests that our robots need a sensitive skin
similar to human skin, densely populated with many sensors.

Whether those sensors are tactile or proximal, like infrared sensors, is a matter
of efficiency, not survival. Be it as it may, motion planning algorithms developed
for simpler sensing can then be expanded to more sophisticated sensing. This
point is worth repeating, because misunderstanding is not uncommon:

2To be sure, nature has developed means to substitute for an incomplete sensing system. A turtle’s
shell makes tactile sensing at its back unnecessary. Such examples are rare, and they look more like
exceptions confirming the rule.
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When we develop our motion planning algorithms based on tactile sensing, this
does not mean we suggest tactile sensing as a preferable sensing media, nor does
it mean that the algorithms are applicable solely to tactile sensing. As we will
see, expanding algorithms to more complex sensing is usually relatively easy, and
usually results in higher efficiency.

1.2.4 Degrees of Freedom. Coordinate Systems

It is known from mechanics that depending on space dimensionality and object
complexity, there is a minimum number of independent variables one needs to
define the object’s position and orientation in a unique way. These variables are
called the object’s degrees of freedom (DOF). The reference (coordinate) system
expressed in terms of object’s DOF is called the configuration space (C-space).
C-space is hence a special representation of the robot workspace (W -space).
From a textbook on mechanics, the minimum number of DOF that a rigid body
needs for an arbitrary motion is

In 2D, if only translation is allowed: 2
In 2D, translation plus orientation allowed: 3
In 3D, if only translation is allowed: 3
In 3D, translation plus orientation allowed: 6

For example, for a planar (2D) case with a rigid object free to translate and
rotate, the object is defined by three DOF (x, y, θ): two Cartesian coordinates
(x, y) that define the object’s position, plus its orientation angle θ .

A robot arm manipulator’s DOF also determine its ability to move around.
Specific values of all robot’s DOF signify the specific arm configuration of its
links and joints. Shown in Figure 1.2a is a revolute planar (2D) arm with two
links. Its two DOF, two rotation angles, allow an arbitrary position of its endpoint
in the robot workspace, but not an arbitrary orientation. The 3-link 3-DOF planar
arm manipulator shown in Figure 1.2b can provide an arbitrary position and an
arbitrary orientation at its endpoint.

The DOF that a robot arm possesses are usually realized via independent
control means, such as actuators (motors), located in the arm’s joints. Joints
connect together the arm’s links. Links and joints can be designed in different
configurations: The most common are the sequential linkage, which is similar to
the kinematics of a human arm, like in Figure 1.2, and the parallel linkage, where
links form a parallel structure. The latter is used in some spatial applications,
such as a universal positioner for various platforms. We will be interested in
only sequential linkages.

The most popular types of joints are revolute joints, where one link rotates
relative to the other (like in the human elbow joint), and sliding joints (also called
prismatic joints), where one link slides relative to the other. The arm shown in
Figure 1.2a has two revolute joints, of which the first joint is located in the arm’s
fixed base. The freely moving distal link or links on a typical arm manipulator
is called the end effector. The end effector can carry a tool for doing the robot’s
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Figure 1.2 (a) A simple planar arm manipulator with two links (l1, l2), and two revolute
joints (J0, J1). The robot base coincides with joint J0 and is fixed in 2D space. This 2
DOF manipulator can bring its end effector to any point P(x, y) within its workspace;
the end effector’s orientation at each such point will then be defined by the orientation of
link l2. (b) Same arm with added third revolute link (hand), l3; now the end effector can
be put in any arbitrary position of workspace with arbitrary orientation, P(x, y, θ3).

job; this can be some kind of a gripper, a screwdriver, a paint or welding gun,
and so on. The arm end effector may have its own DOF.

To use tools, the end effector needs to be put not only in a particular position
but also at a particular orientation: For example, not only the screwdriver’s blade
has to be in the screw’s slot, but its axis has to be perpendicular to the surface
into which a screw is driven. In the human arm, it is of course the hand that
handles the tool orientation, a relatively compact device, compared with the rest
of the arm, with its own (many) DOF.

A similar organization of kinematics is common to robot arm manipulators:
The robot’s DOF are divided into the major linkage, relatively long links whose
function is to bring the end effector to the vicinity of the job to be done,
and the more compact minor linkage (called the wrist or hand), which is the
end effector proper. Although from the theoretical standpoint such division is
not necessary, it is useful from the design considerations. Often a real arm’s
major linkage consists of three DOF, and its minor linkage presents a 3-DOF
hand.

The values of all robot arm DOF define its coordinates in physical space. A
given position plus orientation can be described via two coordinate (reference)
systems: Cartesian coordinates and joint (joint space) coordinates. The latter are
also called configuration space coordinates. As long as both systems describe the
robot configuration—that is, position plus orientation—in a unique way, they
are equivalent. For the 3-link 3-DOF arm manipulator shown in Figure 1.2b, its
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Cartesian coordinates are (x, y, θ3), and its configuration space coordinates are
(θ1, θ2, θ3).

Typically, the user is interested in defining the robot’s paths in terms of Carte-
sian coordinates. Robot’s motors are controlled, however, in terms of joint values
(that is, configuration space coordinates). Hence a standard task in robot motion
planning and control is translation from one reference system to the other. This
process gives rise to two problems: (a) direct kinematics—given joint values, find
the corresponding Cartesian coordinates—and (b) inverse kinematics—given the
robot’s Cartesian coordinates, find the corresponding joint values. As we will see
in the next chapter, calculation of inverse kinematics is usually significantly more
difficult than the calculation of direct kinematics.

1.2.5 Motion Control

The robot’s path is a curve that the robot’s end effector (or possibly its some
other part) moves along in the robot workspace. To be physically realizable, each
point of the path must be associated with the joint values that fully describe the
robot position and orientation in the respective configuration. The term trajec-
tory is used sometimes to designate a path geometry plus timing, velocity, and
acceleration information along the path.3

As used in robotics, the term motion control or motion control system refers to
the lower-level control functions, such as algorithmic and electronic and mechan-
ical means that direct individual motors, as opposed to motion planning, which
signifies the upper-level control—that is, control that requires some intelligence.
This is not to say that motion control is a simple matter—robot controllers are
often quite sophisticated. The control means are used to realize a given path or
trajectory with required fidelity. While control means are beyond the scope of
this book, for completeness we will review them briefly in the next chapter.

Depending on the number of DOF available for motion planning, we distin-
guish between three types of systems:

• Holonomic Systems. These have enough DOF for an arbitrary motion. The
minimum number of those is equal to the dimensionality of the correspond-
ing C-space: For example, 6 is the minimum number of DOF a 3D arm
manipulator needs to realize an arbitrary motion in space without obstacles.

• Nonholonomic Systems. These are systems with constraints on their motion.
For example, a car is a nonholonomic system: with its 2-DOF con-
trol—forward motion and steering—it cannot execute a lateral motion; this
creates a well-known difficulty in parallel car parking. Note that a car’s
C-space is 3D, with its axes being two position variables (x, y) plus the
orientation angle.

• Redundant Systems. Those with the number of DOF well above the mini-
mum necessary for holonomic motion. Humans, animals, and some complex
robots present redundant systems.

3In some books, and also here, terms “trajectory” and “path” are used interchangeably.
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A serious analysis of holonomic and nonholonomic systems requires more
rigorous mathematical definitions. These will be introduced later as needed.

1.2.6 Robot Programming

A robot executes a given motion because it is programmed to do so. The meaning
of the words robot motion programming is not dissimilar to what an adult does
when teaching a child how to walk.

One can distinguish between two basic approaches to robot motion pro-
gramming:

• Explicit robot motion programming—when every robot configuration along
the path is prescribed explicitly. One variation of this is when a set of
configurations is given explicitly beforehand, and the robot interpolates con-
figurations between the set points using some rule.

• Task-level robot motion programming—in which contents-based subtasks
are given, such as “Grasp a part” or “Insert a peg in a hole,” and the robot
figures out further details on its own.

The “subtask” above can be a complex motion or procedure that has been pro-
grammed separately beforehand. For example, details of the task “Grasp a part”
may differ from one task instantiation to the other, depending on the sensing
data. Clearly, task-level programming is, in general, preferable to explicit pro-
gramming. It is also significantly more difficult to realize because it requires
much beforehand knowledge on the part of the robot.

The “programming” of a dancer or a gymnast is clearly closer to the task-level
approach than to the explicit programming. The choreographer can, for example,
say to the ballerina, “Here you do a pirouette followed by an arabesque.” A
pirouette is a rather complex combination of little motions that the ballerina
learned while at school. The motions have been “programmed” into her, so just
naming it is sufficient for her to know what to do. The same is so for an arabesque.
On the other hand, this does not mean the pirouette will be exactly the same at
all times: For instance, the ballerina may slightly deviate from her usual pirouette
when seeing another dancer backing up toward her.

Another classification of robot motion programming is given by different types
of robot teaching systems. A robot teaching system is a specific technique for
robot programming. The following list applies primarily to robot arm manipu-
lators; the corresponding analogues for mobile robots are simpler and present a
subset of this list:

• Manually guiding a robot through the path in real time
• Point-to-point guidance, with an automatic generation of the time pattern
• Teach pendant
• Off-line programming, procedural languages
• Automatic programming using the task database
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In manual guidance systems, a specially trained technician grabs the end tool
of the robot and performs the actual operation by moving it along the required
motion. The system automatically records all robot configurations along the path,
which can then be reproduced faithfully. The arm may be specially mechanically
balanced for easier motion, or be even completely replaced by a mockup arm that
includes all electronic means to document the motion in system’s memory. This
is similar to the situation when the choreographer physically moves a dancer’s
arm through the air, “That’s how you do it.” For example, in preparation for a
robot painting of a car body, an experienced human painter moves the arm with
the attached painting gun through the necessary motion, actually painting a car
body; the recorded motion is then used to paint a batch of car bodies.

While looking attractively simple, manual guidance systems are hard to real-
ize. For example, during actual job execution the robot must produce a perfectly
painted surface after a single motion, whereas a human painter can usually
use his powerful visual feedback to detect mistakes along the way and then
touch the paint here and there if needed. Various techniques have been designed
to mathematically “massage” the technician-taught motion to perfection—for
example, to assure the path curve smoothness or the robot end effector uni-
form speed.

The point-to-point teaching is a variation of the previous technique that dis-
poses with the real-time teaching. Here the human “teacher” brings the robot
end tool into the right position, pushes a button to save the corresponding robot
configuration in the robot memory, and goes to the next point, and so on, until
a set of points representing the whole path is accumulated. The set must then
be “massaged” in the above fashion, which is more difficult than in a manual
guidance system because the teaching session was removed from the real-time
operation and hence likely misses some important dynamic characteristics.

The teach pendant is a hardware accessory for point-to-point teaching. The
pendant is a small box connected with the robot by a cable, with a variety of
buttons for the operator to generate robot configurations. By intermittently giv-
ing increments in robot joint values—or alternatively, in Cartesian positions and
orientations of the robot tool—the operator brings the end effector to the desired
position, pushes a button to save it, and goes to the next position. This is a
tedious process: A reasonably complex path—say, painting a car engine com-
partment—may require 150–200 or more points, each requiring 40–60 button
pushes to produce it. The resulting path will likely need a considerable prepro-
cessing by a special software before being ready for actual use. Most of today’s
industrial robot programming systems are of this kind.

The off-line programming method is a logical and rather dramatic departure
from the techniques above, in that it tries to address their shortcomings by del-
egating the whole robot programming work to software. After all, each robot
configuration along the path is a function of the required path, which is in turn
a function of the task to which the motion applies. This motion can in principle
be coded in some specialized programming language, the way we write com-
puter programs. Hundreds of robot programming languages have been developed
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in the last three decades. For a while, some of them became “widely known
in narrow circles” of robotics engineers; today almost none of them are remem-
bered. Why so, especially given the remarkable success of computer programming
languages?

The main reason for this is, one might say, a linguistic inadequacy of such
languages to the problem of describing a motion. The product of a human oral
or written speech, or of a computer programming language, is a linear, one-
dimensional, discreet set of signals—sounds if spoken and symbols if written. A
motion, on the other hand, happens in two- or three-dimensional space and is a
continuous phenomenon. It is very difficult to describe in words, or in terms of a
computer program, a reasonably complex two- or three-dimensional curve (unless
it has a mathematical representation). Try to show your friend a motion—say, try
to wave your hand goodbye. Then ask your friend to repeat this motion; he will
likely do it quite close to your original motion. Now try to describe this same
motion on paper with words. Take your time. Once ready, give your description
to another friend, who did not see your motion, and ask him to reproduce the
motion from this description. (Writing “Please wave your hand goodbye” is, of
course, not allowed). The result will likely be far from the original.

This is undoubtedly the reason why we will never know how people danced in
ancient Egypt and Greece and Rome, and even in Europe at the end of the XIX
century, until the appearance of moving motion cameras. Unlike the millennia-
old alphabets for recording human speech, alphabets for describing motion have
been slow to come. Labanotation, the first system for recording an arbitrary (but
only human) motion, appeared only in the mid-1920s and is rather clumsy and
far from perfect.

The automatic programming technique is a further development in robot teach-
ing techniques, and it is even further removed from using real motion in teaching.
Take an example of painting the car engine compartment for a given car model.
The argument goes as follows. By the time the robot painting operation is being
designed, complete description of the car body is usually in a special database, as
a result of the prior design process. Using this database and the painting system
parameters (such as dimensions of the paint spray), a special software package
can develop a path for the painting gun, and hence for the robot that holds the
gun, such that playing that path would result in a complete and uniform paint
coverage of the engine compartment. There is no need to involve humans in the
actual motion teaching. Only a sufficiently sophisticated manufacturing environ-
ment can benefit from this system: Even with the right robot, one will have hard
time producing a database necessary to paint one’s backyard fence.

While showing an increasing sophistication from the first to the last robot
teaching techniques above, from manual guidance to automatic programming of
robot motion, each of these techniques has its advantages and its shortcomings.
For example, no other techniques can match the ingenious teaching-by-showing
ability of the first, manual guidance, method. This has led some researchers to
attempt combination techniques from the list above. For example, first a vision
system would record the human manually guided motion, and then a special
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software would try to reproduce it. In conclusion, in spite of a long history (in
relative terms of the robotics field), the robot teaching methods can still be said
to be in their infancy.

The data “massaging” techniques mentioned above are widely used in manu-
facturing robot systems. These include, for example,

• Path smoothing
• Straight line interpolation
• Achieving a uniform velocity path
• Manipulating velocity/acceleration profiles along the path

Path smoothing is usually done to improve the system performance. Smoothing
the first and second derivatives of the robot path will help avoid jerky motion
and sharp turns.

Straight-line interpolation is something different. Many applications—for
example, welding two straight line beams along their length—require a straight-
line path. Arms with revolute joints, such as in Figure 1.2, tend to move along
curved path segments, so approximating a straight-line path takes special care.
This is a tedious job, and we will consider it further in the next chapter. The
human arm has a similar problem, though we often are not aware of this: Humans
are not good in producing straight lines, even with the powerful feedback control
help of one’s vision.

A uniform velocity path may be needed for various purposes. For a quality
weld in continuous welding, the robot has to move the gun with the uniform
speed. In the example above with the painting robot, a nonuniform velocity of
the painting gun will produce streaks of thinner and thicker paint on the surface
that is being painted. Furthermore, note that the meaning of “uniform velocity”
in this example must refer not to the velocity at the painting gun endpoint, but to
the velocity at an imaginary point in space where paint meets the painted surface.
That is the gun aiming point (say, 20 cm away from the gun’s endpoint) that has
to move with the uniform velocity. This may coincide with the gun endpoint
moving sometimes faster and sometimes slower, and sometimes even stopping,
with the gun rotating in space.

Manipulating velocity/acceleration profiles presents an extension of the veloc-
ity control. Some tasks may require control of the robot linear or angular accel-
eration—for example, to ascertain a certain pattern of starting and finishing a
motion. A good robot system will likely include software that allows creating
various profiles of robot velocity and acceleration.

1.2.7 Motion Planning

Motion planning is the single unique defining core of the field of robotics—same
as computation is the single unique defining core of the field of computers. Many
components and disciplines contribute to producing a good robot—the same is
true for a good computer—but it is motion planning that makes a robot a robot.
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There are different criteria of quality of robot paths. We may want the robot
to do one or more of these:

• Execute a predefined path.
• Find an optimal path (the shortest, or fastest, or one requiring a minimum

energy, etc.).
• Plan a “reasonable” path.
• Plan a path that respects some constraints—say, a path that would not make

the robot bang into the walls of an automotive painting booth.

Robots in the factory environment tend to follow predefined paths, sometimes
with deviations allowed by their programs. Robot car painting operation is a good
example. Such tasks often put a premium on path optimization: After all, in a
mass production environment, shaving 1–2 sec out of a 50-sec cycle can translate
into large savings. On the other hand, for a robot operating in an environment with
uncertainty, optimality is ruled out and more often than not is of little concern
anyway. For instance, a mobile robot that is used for food and drug delivery in a
hospital is expected to go along more or less reasonable, not necessarily optimal,
paths. Either of these systems can also be subject to additional constraints: For
example, an arm manipulator may need to work in a narrow space between
two walls.





CHAPTER 2

A Quick Sketch of Major Issues
in Robotics

Personally I’m always ready to learn, although I do not always like being taught.

—Winston Churchill

The material in this chapter is given primarily as a review and is structured quite
similar to such reviews elsewhere (see, for example, Ref. 6). Some sections—in
particular, Sections 2.5 and 2.6—are only tangentially relevant to our main topic
of sensor-based motion planning, so they can be just glanced through or skipped
by those who have had some introductory course in robotics. Those who have
not are suggested to go through this chapter more carefully.

Robotics is a multidisciplinary field. It deals with a multiplicity of issues, and
its tools relate to various disciplines, from mechanical engineering to computer
science to mathematics to human factors. The issues covered in this chapter relate
to generating a desired motion—that is, motion that would bring the robot to
the right destination, with acceptable dynamics and collision-free. Addressing the
reader who knows little about robotics, our goal is to give at least a perfunctory
understanding of areas that relate to motion planning. Besides those, other areas
may be as essential to a designer of robotic systems: object manipulation (e.g.,
design of hands and appropriate intelligence); grasping, which in turn divides into
precision grasping and power grasping (think of the difference between holding
a pen or an apple); robot (computer) vision, and so on. The list of issues that we
are about to review is as follows:

• Kinematics
• Statics
• Dynamics
• Feedback control
• Compliant motion
• Trajectory modification
• Motion planning and collision avoidance; navigation

Sensing, Intelligence, Motion, by Vladimir J. Lumelsky
Copyright  2006 John Wiley & Sons, Inc.
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Of these and other issues mentioned above, the last one, motion planning and
collision avoidance, is the central problem in robotics—first, because it appears
in just about any robotic task and application, and, second, because it appears
to be the most “robotic” issue in robotics. Indeed, the other areas above have
been developed in, and are of importance to, other engineering fields, not only
to robotics, whereas the subject of motion planning and collision avoidance is
unique to robotics. For example, kinematics, statics, and dynamics are central
to the design of an immense variety of machines (of which robots are only a
small part); feedback control is the central issue in control theory and control
engineering; and so on.

Readers interested in deeper understanding of those and other issues are
referred to other sources; some such will be cited in the sequel.

Consider a simple planar two-link arm (shown in Figure 2.1) that we will use
in a few sections of this chapter. Here is some notation that we will use:

θ1 —shoulder angle
θ2 —elbow angle
J0, J1 —arm joints
l1, l2 —arm links
m1, m2 —link masses
R—link radius

We will assume that link masses are distributed uniformly within each link.
Besides axes x and y shown in the figure, imagine also an axis z perpendicular
to the plane of the figure. Assume that axes of joints J0 and J1 are parallel to
the axis z. (In this chapter we will not need axis z; it is mentioned here only to
define the joint axes.)

The workspace of the arm in Figure 2.1 is a disk of radius (l1 + l2). Because
link l1 is longer than link l2, centered at the arm’s base J0 there is a dead zone
of radius |l1 − l2|, no point of which can be reached by the arm endpoint b. Note
that if l1 happened to be shorter than link l2, there would still be a dead zone
of exactly the same radius |l1 − l2|. The arm’s workspace is therefore the area
sandwiched between the circles of radii (l1 + l2) and |l1 − l2|. In case the arm
links are of equal lengths, the arm’s workspace is a circle of radius (l1 + l2). If
one or both arm joints are subject to constraints on their values, the workspace
will change accordingly. This does happen with real arms; for example, the arm’s
joint angle θ1 may be limited to the range ±120◦.

The arm’s endpoint b can occupy any point in the arm’s workspace. When the
arm is fully outstretched, its endpoint b is at the workspace outer circle boundary;
when it is fully folded, its endpoint b is at the workspace inner circle boundary.
Only one arm configuration corresponds to any such point. Any other position
of endpoint b in the arm workspace corresponds to two arm configurations. The
second arm configuration is shown by dashed lines in Figure 2.1. If l1 = l2, an
infinite number of configurations can place the arm endpoint b at the base J0,
with θ2 = π .
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Figure 2.1 A planar two-link arm manipulator: l1 and l2 are links, with their respective
endpoints a and b; J0 and J1 are two revolute joints; θ1 and θ2 are joint angles. Both links
are of the same thickness 2R. The robot’s base coincides with the joint J0 and is fixed.

Position of the endpoint b can be defined in the arm workspace either by two
coordinates x and y in the Cartesian plane (x, y) or by two joint angles θ1 and θ1.
Hence we distinguish two representations of an arm configuration, in Cartesian
space (x, y) and in joint space (θ1, θ1).

An arm with more degrees of freedom or a three-dimensional arm will result
in a higher complexity of those representations.

2.1 KINEMATICS

Kinematics describes the relationship between positions, velocities, and acceler-
ations of a set of bodies—in our case, of the robot arm links.

While we are at it, let us also define the concepts of statics and dynamics,
which often go together with kinematics when describing a body’s motion, and
which we will address in the following sections:

Statics describes (a) the relationship between forces and torques that, say,
an arm manipulator exerts on the surrounding objects and (b) the relationship
between internal forces and torques at the arm links.

Dynamics describes the relationship between kinematics and statics. For
example, the relationship between torques at the arm joints and link positions
represents the arm’s dynamics.

For trajectory planning of robot arm manipulators, kinematics is especially
important. Here is one reason for that. More often than not, people prefer to
command arm’s positions in terms of Cartesian coordinates—in our case the
two coordinates (x, y)—whereas the arm control system expects them in terms
of arm’s joint values—in our case the angular joint values (θ1, θ1). Inversely, if
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the arm somehow—say, acting upon the sensor data—arrives at some position,
from the arm’s joints we obtain its joint angles, and we would like to know
which position (x, y) in Cartesian space they correspond to (Figure 2.1). Hence
there is a need to translate from one coordinate system to the other.

Accordingly, there are two relationships between these two coordinate repre-
sentations:

Direct Kinematics. Given the values (θ1, θ1), find the corresponding Cartesian
coordinates (x, y) of the arm endpoint.

Inverse Kinematics. Given Cartesian coordinates (x, y) of the arm endpoint,
find the corresponding joint values (θ1, θ1).

Note that if p∗
i is the vector from the proximal to the distal joint of link i

(Figure 2.2), i = 1, 2, then

p∗
1 = l1

[
cos θ1

sin θ1

]

p∗
2 = l2

[
cos(θ1 + θ2)

sin(θ1 + θ2)

] (2.1)

Direct Transformation (Direct Kinematics). From Figure 2.2, it is not hard
to derive equations for the joint position, and by taking their derivatives to find
equations for velocity and accelerations of the arm endpoint in terms of the arm
joint angles:

Position:

X =
[
x

y

]
=
[
l1 cos θ1 + l2 cos(θ1 + θ2)

l1 sin θ1 + l2 sin(θ1 + θ2)

]
(2.2)

p∗
2

p∗
1

l1

q2

y

x

l2

(x, y)

p

q1

(x2 + y2)

Figure 2.2 A sketch for deriving the two-link arm’s kinematic transformations.
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Velocity:

Ẋ =
[
ẋ

ẏ

]
=
[−l1 sin θ1 − l2 sin(θ1 + θ2) − l2 sin(θ1 + θ2)

l1 cos θ1 + l2 cos(θ1 + θ2) l2 cos(θ1 + θ2)

] [
θ̇1

θ̇2

]
(2.3)

or, in vector form, Ẋ = J θ̇ , where the 2 × 2 matrix J is called the system’s
Jacobian (see, e.g., Refs. 6 and 7).

Acceleration:

[
ẍ

ÿ

]
=
[−l1 sin θ1 − l2 sin(θ1 + θ2)

l1 cos θ1 l2 cos(θ1 + θ2)

][
θ̈1

θ̈1 + θ̈2

]

−
[
l1 cos θ1 l2 cos(θ1 + θ2)

l1 sin θ1 l2 sin(θ1 + θ2)

][
θ̇1

2

(θ̇1 + θ̇2)
2

]
(2.4)

Inverse Transformation (Inverse Kinematics). From Figure 2.2, obtain the
position and velocity of the arm joints as a function of the arm endpoint Cartesian
coordinates:

Position:

cos θ2 = x2 + y2 − l2
1 − l2

2

2l1l2

θ1 = tan−1 y

x
− tan−1 l2 sin θ2

l1 + l2 cos θ2
(2.5)

Velocity:

[
θ̇1

θ̇2

]
= 1

l1l2 sin θ2

[
l2 cos(θ1 + θ2) l2 sin(θ1 + θ2)

−l1 cos θ1 − l2 cos(θ1 + θ2) −l1 sin θ1 − l2 sin(θ1 + θ2)

]

×
[
ẋ

ẏ

]
(2.6)

Obtaining equations for acceleration takes a bit more effort; for these and
for other details on equations above, one is referred, for example, to Ref. 8.
In general, for each point (x, y) in the arm workspace there are two (θ1, θ2)

solutions: One can be called “elbow up,” while the other can be called “elbow
down” (Figure 2.3a). This is not always so—one should remember special cases
and degeneracies:

• Any point on the workspace boundaries—that is, when θ2 = 0 or θ2 =
π —has only one solution (Figure 2.3b).



32 A QUICK SKETCH OF MAJOR ISSUES IN ROBOTICS

y

x

a1

a2

(x, y)b

(a) (b)

b

y

x

a

q1

q2

Figure 2.3 (a) In general, for each (x, y) point in the arm workspace there are two
(θ1, θ2) solutions: One can be called “elbow up,” and the other can be called “elbow
down.” (b) The arm’s degeneracies.

• If the given coordinates (x, y) of the arm endpoint happen to lie outside of
the arm workspace, then the inverse kinematics will have no solution for
(θ1, θ2).

• If the arm links are of equal length, l1 = l2, then, when θ2 = π , the arm
endpoint b falls into the arm origin, x = y = 0, and tan−1(y/x) is undefined,
resulting in an infinite number of solutions for the angle θ1 (Figure 2.3b).

For an arbitrary rigid object in two-dimensional space, such as the rectan-
gular object in Figure 2.4, the set of three values (x, y, θ) describe fully its
configuration. The object’s configuration information includes its position and its
orientation. These three values are the object’s three degrees of freedom (DOF),
each of which can be manipulated independently. All such sets form the object’s
three-dimensional configuration space, or C-space.

Our two-link arm of Figure 2.1 consists of two bodies, two links, and so
in principle it should have (3 + 3) = 6 DOF. But, since the arm is bound in its
motion by kinematic constraints–its fixed base and the connection at its joints—it

y

x

p (x, y)

q

Figure 2.4 To describe the configuration of this rectangular object, an arbitrary point p

is chosen on it first. Now the object’s configuration is described by three values: x, y,
and θ , where x and y are the Cartesian coordinates of point p.
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has only two degrees of freedom, angles θ1 and θ2, two DOF that fully define its
configuration in space. All such sets (θ1, θ2) define the arm’s two-dimensional
C-space.

2.2 STATICS

As formulated in Section 2.1, statics describes (a) the relationships between
forces and torques that the arm exerts on the surrounding objects and (b) the
relationships between internal forces and torques at the links. Statics analysis is
done on an isolated link, taking into account the forces and torques contributed
by neighboring links. For link i, the result of analysis is the net force fi , net
torque ni , and

mig Force of gravity
fi−1,i Force exerted on link i by link i − 1
ni−1,i Torque exerted on link i by link i − 1

The force balance is

fi = fi−1,i − fi,i+1 + mig (2.7)

The minus in front of the second term above is due to the changed direction of
the exerted force. In Figure 2.5, we have

p∗
i − r∗

i Vector from the link i center of gravity to the joint i

r∗
i Vector from the link i center of gravity to the joint i + 1

The torque balance is (see Figure 2.5)

ni = ni−1,i − ni,i+1 − (p∗
i + r∗

i ) × fi−1,i + r∗
i × fi,i+1 (2.8)

2.3 DYNAMICS

As defined above, dynamics describes relationships between kinematics and stat-
ics. For example, the relation between torques at the arm joints and link positions
represents the arm’s dynamics. Dynamics is typically a final step in deriving joint
torques. Given various forces acting on the arm, one needs joint torques to realize
the desired trajectory. Then by Newton–Euler equations we relate the D’Alamber
force fi and torque ni (from the static equations) to the acceleration of link i [7].

Let ri be the vector from the arm base to the center of mass of link i

(Figure 2.5). Take two links, link 1 and link 2, of masses m1 and m2, respec-
tively. Then the net forces f1 and f2 acting upon the links 1 and 2 relate to
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Figure 2.5 Balance of forces and torques acting on a single link.

the accelerations r̈1 and r̈2 of the links’ centers of mass by Newton’s sec-
ond law,

f1 = m1r̈1

f2 = m2r̈2
(2.9)

From these equations, accelerations r̈i of the centers of mass can be derived.

Let ωi be the angular velocity vector of the center of mass of link i.
Let ω̇i be the corresponding angular acceleration.
Let Ii be the inertia matrix of link i.

Then torques are related to angular velocities and accelerations by Euler’s
equations,

n1 = I1ω̇1 + ω1 × I1ω1

n2 = I2ω̇2 + ω2 × I2ω2
(2.10)

For our planar two-link manipulator shown in Figure 2.1, the torque is normal
to the arm’s plane. Rotary inertia through the centers of mass of links 1 and 2
are [7]

I1 = m1l
2
1/12 + m1R

2/4

I2 = m2l
2
2/12 + m2R

2/4
(2.11)
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Angular velocities and accelerations are

ω1 = θ̇1

ω2 = θ̇1 + θ̇2

ω̇1 = θ̈1

ω̇2 = θ̈1 + θ̈2

(2.12)

Substituting those into Euler’s equations (and taking into the account that ωi ×
Iiωi = 0), we obtain

n1 = I1θ̈1

n2 = I2(θ̈1 + θ̈2)
(2.13)

Finally, Newton–Euler equations are combined with static equations [Eq. (2.8)]
to produce the torques at arm joints—that is, to do inverse dynamics. After
simplifications, these become (details can be found in Refs. 7 and 8)

n1,2 = θ̈1

(
I2 + m2l1l2

2
cos θ2 + m2l

2
2

4

)
+ θ̈2

(
I2 + m2l

2
2

4

)

+ m2l1l2

2
θ̇2

1 sin θ2 + m2l2g2

2
cos (θ1 + θ2)

− l2 sin (θ1 + θ2)f2,3x − l2 cos (θ1 + θ2)f2,3y + n2,3 (2.14)

n0,1 = θ̈1

(
I1 + I2 + m2l1l2 cos θ2 + m1l

2
1 + m2l

2
2

4
+ m2l

2
1

)

+ θ̈2

(
I2 + m2l

2
2

4
+ m2l1l2

2
cos θ2

)

− m2l1l2

2
θ̇2

2 sin θ2 − m2l1l2θ̇1θ̇2 sin θ2

+
(

m2l2

2
cos (θ1 + θ2) + l1

(m1

2
+ m2

)
cos θ1

)
g2

− (l1 sin θ1 + l2 sin(θ1 + θ2))f2,3y + n2,3

There are three types of terms that appear in such equations. Taking as an example
the above equation for n1,2, these are:

Dynamic Torques (Terms 1, 2, and 3). These arise from the arm movement,
and depend on velocities and accelerations.

Gravity Torques (Term 4). These are due to the (vertical) gravity force.
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External Torques (Terms 5, 6, and 7). These are due to external forces and
torques that come from the arm’s interaction with other objects; they appear
when the arm physically touches objects, such as in assembly or cleaning.
During a free arm motion these torques are zeros.

Then there is another classification of dynamic torques, also with three types:

Inertial Torques. These are proportional to accelerations in the arm joints, and
they arise from normal action/reaction forces of an accelerating body.

Centripetal Torques. These torques arise from a constrained rotation about a
point, and they are proportional to the squares of joints’ velocities. For
example, the arm’s forearm must rotate about the arm’s shoulder joint, and
so the centripetal acceleration is aimed at the shoulder joint along link l1
(Figure 2.1).

Coriolis Torques. These torques arise from vortical forces, as a result of inter-
action between two rotating systems (in our case two arm links), and they
are proportional to the product of joint velocities of two different links.

Notice the remarkable growth in the complexity of equations as we proceed
from kinematics to statics to dynamics equations. Then there is another natural
source of complexity—the arm complexity, measured by the number of robot
degrees of freedom. The reader is reminded that in our example, Figure 2.1, we
are dealing with the simplest two-link planar manipulator: In its analysis we
started with modest kinematic equations (2.2) and (2.3) and arrived at rather
complex dynamic equations in (2.14). Will the equations complexity grow as
quickly with the growth in the number of robot DOF?

Indeed they will. As an example, if we write only the acceleration-related
coefficients for an arm with six DOF, they form this 6 × 6 matrix (note that a
great many of today’s industrial robot arm manipulators have six or more DOF):

D =




D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66

∣∣∣∣∣∣∣∣∣∣∣
(2.15)

The diagonal terms in this matrix represent uncoupled terms—that is, terms
caused by a single joint—and off-diagonal terms represent pairwise interaction
effects for all six joints. Each such term is itself a rather complex relationship.
Out of curiosity, if the very first term in the matrix above, D11, is written in full,
it looks as shown in Figure 2.6 [9]. As you glance at this formula, try to imagine
what the whole matrix D must look like, and imagine what kind of complexity a
control system based on such expressions must involve. Consequently, all kind
of simplifications are done in real-world systems when designing robot control
schemes. Simplifications in equations bring, of course, imprecision, and so the
design process involves carefully studied trade-offs.
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D11 = m1k2
122

+ m2

[
k2

211s2θ2 + k2
233c2θ2 + r2(2y2 + r2)

]

+ m3

[
k2

322s2θ2 + k2
333c2θ2 + r3(2z3 + r3)s2θ2 + r2

2

]

+ m4

{
1
2 k2

411

[
s2θ2(2s2θ4 − 1) + s2θ4

]
+ 1

2 k2
422(1 + c2θ2 + s2θ4)

+ 1
2 k2

433

[
s2θ2(1 − 2 s2θ4) − s2θ4

]
+ r23s2θ2 + r2

2 − 2y4r3s2θ2 + 2z4(r2sθ4 + r3sθ2cθ2cθ4)
}

+ m5

{
1
2 (−k2

511 + k2
522 + k2

533)
[
(sθ2sθ5 − cθ2sθ4cθ5)2 + c2θ4c2θ5

]

+ 1
2 (k2

511 − k2
522 + k2

533)(s2θ4 + c2θ2c2θ4)

+ 1
2 (k2

511 + k2
522 − k2

533)
[
(sθ2cθ5 + cθ2sθ4sθ5)2 + c2θ4s2θ5

]
+ r23s2θ2 − r2

2

+ 2z5

[
r3(s2θ2cθ5 + sθ2sθ4cθ4sθ5) − r2cθ4sθ5

]}

+ m6

{
1
2 (−k2

611 + k2
622 + k2

633)
[
(sθ2sθ5cθ6 − cθ2sθ4cθ5cθ6 − cθ2cθ4sθ6)2 + (cθ4cθ5cθ6 − sθ4sθ5)2

]

+ 1
2 (k2

611 − k2
622 + k2

633)
[
(cθ2sθ4cθ5sθ6 − sθ2sθ5sθ6 − cθ2cθ4cθ6)2 + (cθ4cθ5sθ6 + sθ4cθ6)2

]

+ 1
2 (k2

611 + k2
622 − k2

633)
[
(cθ2sθ4sθ5 + sθ2cθ5)2 + c2θ4s2θ5

]

−
[
r6cθ2sθ4sθ5 + (r6cθ5 + r3)sθ2

]2 + (r6cθ4sθ5 − r2)2

+ 2z6

[
r6(s2θ2c2θ5 + c2θ4s2θ5 − c2θ2s2θ4s2θ5 + 2 sθ2cθ2sθ4sθ5cθ5)

− r3(sθ2cθ2sθ4sθ5 + s2θ2cθ5) − r2cθ4sθ5

]}

Figure 2.6 The full expression for one term, D11, of the matrix (2.15).

2.4 FEEDBACK CONTROL

In the jargon of control theory, the system under control is called a plant. In
our case the plant is a robot arm manipulator. In doing its job of controlling
the motion of arm motors, the robot control system realizes an appropriate
control law, which is the relationship between the system’s input and output.
For the arm control, the input is the arm’s desired position(s), and the output
is the arm’s corresponding actual position. One can distinguish three types of
control:
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• Open-loop control, where the control action is applied regardless the system
errors

• Linear control, in which the control law is a linear relationship
• Nonlinear control, in which the control law is a nonlinear relationship

Because there are a great number of nonlinear relationships, the term “nonlinear
control” calls for further precision. Typically, the nonlinear control is more com-
plex to realize than linear control, so a need for nonlinear control suggests that the
system in question is quite complex. One finds in literature many terms related
to different methods of nonlinear control: switching controls (which are further
divided into a bang-bang control, duty-cycle modulation, logic control), globally
nonlinear feedback mapping (e.g., saturating controls), adaptive control (with its
own division into, for example, model-based reference control and self-tuning
control), and so on. Both linear and nonlinear control are typically realized as
a feedback-based control, as opposed to open-loop control. In a feedback con-
trol system the control law becomes a feedback control law, and is calculated
based on the desired system behavior and the contemplated error (i.e. difference
between the system’s input and output), forming a feedback loop (Figure 2.7).

Assume that each of the two joints of our arm (Figure 2.1) has a torque motor
with a unity input-to-torque conversion coefficient. As before, denote the motor
torques at links l1 and l2 as n0,1 and n1,2, respectively. To demonstrate how the
control system is synthesized, we will use an independent joint controller, called
also a linear decentralized feedback law. Assume that the desired joint angles
are given.

The control law we choose is of proportional-integral-derivative (PID) type,
a widely used type of controller. In Figure 2.8, K is position (error) gain, L

is integral (error) gain, and H is derivative (error) gain. In simple terms, the
controller’s position feedback component improves the speed of response of the
control system; the integral feedback component ensures a steady-state tracking

Feedback
law

Desired
output

Actual
output

Disturbances

Plant

Figure 2.7 A sketch of a feedback-based control system.
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Figure 2.8 A PID control system.

of the desired output; and the derivative feedback component enhances the system
stability and reduces oscillation due to control.

Equations characterizing the control law here will come out as (see Ref. 7),

n0,1 = K01(θ1 − θ1d) + L01e1 + H01θ1

ė1 = θ1 − θ1d

(2.16)

and

n1,2 = K12(θ2 − θ2d) + L12e2 + H12θ2

ė2 = θ2 − θ2d

(2.17)

Steady-State Analysis. Assume that the commanded angles (θ1d, θ2d) are con-
stant, the disturbances are constant, and the control system is stable. System
stability implies that eventually all time derivatives approach zero, which, using
Eq. (2.14), gives

θ1 = θ1d

θ2 = θ2d

e2 = 1

L12

[
1

2
m2l2g2 cos(θ1d + θ2d) + n2,3

]

+ 1

L12

[
l2 cos(θ1d + θ2d) f2,3y − l2 sin(θ1d + θ2d)f2,3x

]
e1 = 1

L01

[
L12e2 +

(
1

2
m1 + m2

)
l1g2 cos θ1d

]

+ 1

L01

[
l1 cos θ1d f2,3y − l1 sin θ1df2,3x

]

(2.18)

Analysis of these equations shows that steady-state tracking will occur regardless
of disturbances. Note that the value of error e1 must compensate for the value
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of e2 but not vice versa, which is understandable given the links’ sequential
connection. It can be shown that if the gains L01 and L12 are zeroes, then joint
values θ1 and θ2 differ from their desired values by amounts proportional to the
disturbance values and inversely proportional to the feedback gains K01 and K12.
If, in turn, both gains K are zero, then the system’s steady state is independent
of the commands and reflects only the balance of gravitational and disturbance
forces. This of course indicates the importance of the feedback.

Dynamic Stability Analysis. This is done to verify the stability hypothesis.
Suppose that n2,3 = 0, f2,3x = 0, and f2,3y = 0. Assume a small initial error
δθ1(t),

δθ1(0) = θ1 − θ1d

δθ1(0) = θ1 − θ1d

and constant θ1d and θ2d for t > 0. Then, assuming that stability can be achieved
via feedback, linearized equations in terms of δθ1(t) and δθ2(t) are written.
Stability of those equations can be assessed by applying to them the Laplace
transform and studying the characteristic polynomial [7]. Tests for stability are
in general difficult to apply, so simpler necessary conditions are used, followed
by a detail experimental verification.

2.5 COMPLIANT MOTION

When the robot is expected to physically interact with other objects, additional
care has to be taken to ensure a smooth operation. Imagine, for example, that
the robot has to move its hand along a straight line, on a flat surface, say a
table. It is easy to program such motion, but what if the table has a tiny bump
right along the robot’s path? The robot will attempt to produce a straight line,
effectively trying to cut through the bump. Serious forces will develop, with a
likely unfortunate outcome. What is needed is some mechanism for the robot to
“comply” with deviations of the table’s surface from the expected surface. Two
types of motion are considered in such cases:

• Guarded motion, when the arm is still moving in free space, before it con-
tacts an object. Position control similar to the one above is used.

• Compliant motion, when the arm is in continuous contact with the object’s
surface. Position control and force control are then used simultaneously.

Consider an example: Let us say that our task requires the robot to grasp an
object A (see Figure 2.9) that is initially positioned on top of object B1, move
it first into contact with the surface of table T , then slide it along T until it
contacts an object B2, and stop there. Let us assume that the grasping operation
itself presents no difficulty and that the grasp is a rigid grasp; that is, for all
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Figure 2.9 In this task, as object A is moved by the robot arm along the surface of table
T , between positions (c) and (d), the control system has to maintain a compliant contact
between A and T .

practical purposes the grasped object A becomes the rigid continuation of the
robot hand. The contact relation between object A and objects B1, T , and B2 is
each a point relation and easy to accomplish. Our primary concern is the contact
relation between object A and surface T during the motion of A along T . This
contact relation is an external constraint on the arm’s position control during
this part of the path. The PID controller in our example in Figure 2.8 realizes
positioning control; that is, it concerns itself only with the robot arm endpoint
position (θ1, θ2) [or, equivalently, (x, y)]. In the example in Figure 2.9, such
a controller would work as long as the arm moves in free space. But when
the arm attempts to move its endpoint along the surface of table T , a contact
constraint comes in, affecting the y component of the arm motion and acting as
another “control.” With two simultaneous constraints affecting the same motion
components, one from the control system and the other from a contact constraint,
the system is overspecified.

In other words, we have a potential conflict. Imagine that at some moment
a little bump on the table will require the arm to move for an instant up and
then down again. As the robot control will “insist” on moving along the straight
line, the arm’s positioning system will likely fail because of inconsistency of the
simultaneous constraints. Besides deviations of surface T from its model, there
may be a conflict due to modeling uncertainty, controller errors, and so on. We
need to resolve this conflict.

The solution is to (a) add a force control at this part of the path and (b) limit
the force and positioning controls so that each type never creates an overspecified
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system. In the task in Figure 2.9 the motion will be planned in two stages:

1. A guarded motion in the y direction will be used for the part of the path in
free space, namely from the arm initial position (Figure 2.9a) to grasping
the object A (Figure 2.9b) to the position when object A contacts surface
T (Figure 2.9c). Only position control will be used at this stage. (Since
object A is immobile during the grasping operation, let us assume that
such control will suffice for grasping.)

2. Compliant motion control will be done during the part of motion where
object A is in continuous contact with table T , between positions shown in
Figures 2.9c and 2.9d. Both position and force control will be used at this
stage: position control in the direction x and force control in direction y.

Here is why this control is called compliant. During this part of the path the
control system will only attempt to maintain a set force pressure in the y direction.
If a little bump is encountered on the table, the arm’s attempt to maintain the
same y coordinate as before will instantaneously develop a stronger reaction
force from the table. As the arm’s control measures and reacts to forces in this
y direction, it will then comply, gently raising the arm enough to keep the same
action/reaction forces in the y direction. As the bump is passed, the reaction force
will quickly decrease, and the arm’s control will move the arm endpoint a notch
down, just to maintain the force at the set value.

This hybrid controller therefore has two feedback loops (see Figure 2.10): one
for position control and one for force control. (Each loop may of course have its
own complications; for example, each can be built as a PID controller shown in
Figure 2.8.)

Remember that the controller shown in Figure 2.10 can provide a successful
compliance control only specifically along the y axis, which is what is needed for
the task in Figure 2.9. In reality the direction of the compliance line may differ
from case to case, so for the general case a more general scheme is needed.
The controller shown in Figure 2.11 can handle such cases. Its main difference
from the controller in Figure 2.10 is that instead of specific matrices M1 and M2

in Figure 2.10, a generalized constraint frame 2 × 2 rotation matrix Q is used.
Matrix Q describes orientation of the constraint axes. Other inputs in the scheme
are as follows:

Axis s specifies the position versus control differentiation of axes,

si =
{

1, where
0, where

si = 1 if axis i of constraint frame is position-controlled
si = 0 if axis i of constraint frame is force-controlled

pd = (xd, yd) is the desired position vector.
fd = (fxd , fyd) is the desired force vector.
R is the coordinate transformation of the force control loop.
T is the coordinate transformation of the position control loop.
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Figure 2.10 In the task shown in Figure 2.9, this compliance control scheme will pro-
vide position control during the motion between the positions shown in Figures 2.9a and
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Figure 2.11 This scheme generalizes the scheme in Figure 2.10 to any orientation of
the compliance line.
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Suppose that the line of compliant motion forms an angle δ with the horizontal.
Define a unit vector along that line as u(δ). Then:

• The position loop projection becomes u(δ)(pe · u(δ)).
• The force loop projection becomes u(δ + π

2 )(fe · u(δ + π
2 )).

These operations will be implemented properly if matrix Q is defined to align
the constraint frame with the known compliance line, and vector s differentiates
the directions of control loop actions:

Q =
[

cos δ − sin δ

sin δ − cos δ

]

s =
[

1
0

] (2.19)

2.6 TRAJECTORY MODIFICATION

Robot trajectories (equivalently, robot paths) are generated in many ways. For
example, as explained in Section 1.2, not rarely a path is obtained manually: A
technician brings the arm manipulator to one point at the time, he or she presses
a button, and the point goes into the trajectory database. A sufficient number of
those points makes for a path. Or, the path can be obtained automatically via some
application-specific software. Either way, if the robot goes through the obtained
path, it is very possible that the motion would be less than perfect; for example,
it may be jerky or make corners that are too sharp. For some applications, path
smoothness may be very critical. Then, the set of collected path points has to
be further processed into a path that satisfies additional requirements, such as
smoothness.

Depending on the application, more requirements to the path quality may
appear: a continuity of its second and even third derivatives (which relates to
the path smoothness), precision of its straight line segments, and so on. That
is, techniques used for modifying the robot path often emphasize appropriate
mathematical properties of the path curves. The path preprocessing will likely
include both position and orientation information of the path. If, for example,
such work is to be done for a six-DOF arm manipulator, the desired properties
of the path are expected from all DOF curve components.

Common trajectory modification techniques are polynomial trajectories, which
amount to the satisfaction of appropriate constraints, and straight-line interpola-
tion.

Polynomial Trajectories (Satisfaction of Constraints). Consider an example in
Figure 2.12. We want to obtain a mathematical expression for a simple path that
would bring this two-link planar arm from its initial point (position) pa to the
destination point pb. Positional constraints are defined by the joint angle vectors
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Figure 2.12 By constraining the path to only starting and finishing points (pa, pb), a
simple straight-line path between pa and pb can be used. Adding additional constraints
on velocities along the path requires going to more complex path shapes.

θa and θb at positions pa and pb, respectively. Here and below, θ , ω, and so on,
are vectors whose dimensionality is equal to the number of system DOF; for a
two-DOF robot arm, θ = (θ1, θ2), and so on. The constraints can be met by a
trajectory

θ(t) = (1 − f (t))θ a + f (t)θ b

where function f is defined on the segment [0,1] and converts the arm’s path into
a trajectory; f (a) = 0, f (b) = 1. In its simplest, the function f (t) = t produces
a linear trajectory,

θ(t) = (1 − t)θa + tθb (2.20)

While geometrically a straight line is a nice trajectory, it has drawbacks: (a) A
simple differentiation shows that the angular velocity of this trajectory is a con-
stant, which means that if we want to connect together two such path segments,
large (formally, infinite) accelerations will develop at the joint point of those
segments. (b) From our path expression it is hard to know if the whole trajectory
lies in the robot workspace. Recall that the workspace of our arm may have a
circular dead zone around its base (Figure 2.1): If our straight line passes through
that zone, it would mean that the path is not physically realizable.

This suggests that we may want to add other constraints to the path. Let us
add constraints on velocity, θ̇(a) = ωa , θ̇(b) = ωb. Two constraints can be met
by a cubic trajectory,

θ(t) = (1 − t)2 [θa + (2θa + ωa)t] + t2 [θb + (2θb − ωb)(1 − t)] (2.21)

In terms of its execution, this trajectory is significantly more realistic than the one
in (2.20). But, it still has drawbacks: (a) The trajectory does not take into account
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the fact of maximum attainable velocity. (b) Accelerations (and hence torques)
cannot be independently specified at the ends of the trajectory. This significantly
limits our freedom in specifying the pattern of robot motion. The problem can
be fixed via additional constraints, namely by specifying accelerations α at the
path’s beginning and end, α(a) and α(b). Now we have a total of six constraints;
to meet them, a minimum of fifth-order polynomial is needed:

θ(t) = (1 − t)3
[
θa + (3θa + ωa)t + (αa + 6ωa + 12θa)

t2

2

]

+ t3
[
θb + (3θb − ωb)(1 − t) + (αb − 6ωb + 12θb)

(1 − t)2

2

]
(2.22)

Straight-Line Interpolation. Achieving a straight-line motion with the arm shown
in Figure 2.12 may be tricky. The reason for that is that the arm’s rotating joints
move links’ endpoints on circular curves. This means that we cannot have an ideal
straight line, and so we need to synthesize it from curves. The more those curves
and the shorter they are, the better our straight-line approximation. To accomplish
this, we will calculate a number of points along the desired straight line, and will
force the arm endpoint through those points. Between those guaranteed points, the
arm will move as it pleases; more precisely, the arm’s own control will be linearly
interpolating points between our specified points. The interpolation is done in terms
of joint angles, or, as we call it, in the arm’s joint space (or configuration space).

To summarize, the straight-line interpolation of added points is to be done in
Cartesian space, and the arm’s own interpolation between those given points takes
place in joint space. Assume, for example, that the θ1 and θ2 angles of points
pa and pb in Figure 2.12 are pa = (0, π

6 ) and pb = (π
3 , π

2 ). This corresponds,
respectively, to these Cartesian coordinates:

pa =
((

l1 +
√

3

2
l2

)
,

1

2
l2

)

pb =
((

1

2
l1 −

√
3

2
l2

)
,

(√
3

2
l1 +

√
3

2
l2

))

If we provide the robot with only starting and ending points (pa, pb) of the
desired straight-line path (pa , pc, pb) (Figure 2.13), then, given the robot’s joint
space linear interpolation procedure, it will produce instead the curve (pa , pj , pb).
The midpoints of the joint and Cartesian paths indicate the extent of deviation of
the actual path from the desired path: in Cartesian terms, pj = (

√
3

2 l1, (
1
2 l1 + l2))

and pc = ( 3
4 l1, (

√
3

4 l1 + 1
2 l2)).

A reasonable idea then is to further approximate the desired straight-line path
by forcing the robot endpoint through more intermediate points along the straight
line. This is called the bounded deviation paths technique [10]; the added points
are called knots. The process starts with two knots, the initial and ending points.
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Figure 2.13 Straight-line interpolation. If only starting and ending points (pa , pb) are
given, the arm’s control will do the rest by interpolating points in between in joint space,
producing as a result the dotted curve signified by a position pj . To obtain a trajectory
closer to a straight line, a set of points interpolated along the straight line, like point pc,
should be given.

1
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3

Figure 2.14 Forcing the robot to pass not only through the path endpoints, but also
through the midpoint knot pc, decreases the deviation from the straight-line path (path
2). Adding more knots further improves the path (path 3).

If the resulting deviation is too big compared to the specified threshold, more
knot points are contemplated. Intuitively, adding the path midpoint (Figure 2.14)
should decrease the deviation. Hence the robot will be guaranteed to pass through
three points on the straight line: the initial point, the added midpoint knot, and
the ending point. Between the knots, the path is interpolated in joint space,
as shown. The resulting path consists of two curves. In the bounded deviation
method, the deviation resulting from each added knot is calculated, and extra
knots are iteratively added to each subsegment of the path until the resulting
deviation from the straight line is below the specified threshold (see paths 1, 2,
and 3 in Figure 2.14).
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The reality is more complex than this simple scheme may suggest. First,
depending on the path’s initial and ending points, in general the deviation is
not necessarily symmetrical on both sides of the midpoint knot. This means that
obtaining the same deviation on both sides of the path midpoint may require
uneven distribution of knot points. In fact, minimizing the number of knot points
that satisfy a given threshold is a complex computational problem, and so is
the optimal choice of locations for knot points. Second, as Figure 2.14 demon-
strates, the tangents at endpoints of two curves that meet at a knot are not equal,
causing unhealthy accelerations and jerky motion when the arm manipulator is
passing through knot points. Third, every arm has degenerate points where var-
ious control and computational difficulties arise [7]. For example, as discussed
above (Figure 2.3), if the arm links are of the same length, l1 = l2, the arm’s
joint values are ill-defined when its endpoint is at the arm base. If a knot point
happened to be located in the base, the inverse kinematics procedure that turns
out joint angles for every proposed knot point may give solutions that are in
sharp contrast with the arm’s prior and future motion.

Various schemes have been considered to address those complications, such
as splines between the path curve segments or approximation of the curves with
more complex polynomials featuring desired characteristics.

2.7 COLLISION AVOIDANCE

Whatever robot application is considered—assembly, welding, cleaning, explor-
ing a new planet—for the robot’s own sake and for its environment, it is
paramount that the robot does not bump into surrounding objects. Of the issues
in robotics that we set out to review in this chapter, motion planning and col-
lision avoidance is perhaps the most universal robotic problem. It is also the
most “robotic” robotic problem: Whereas other issues and techniques considered
above are common to other areas of sciences and engineering, collision avoid-
ance—especially its branch that deals with partial input information (such as
from sensors)—is the monopoly of robotics. This is true for all robots and all
variations of the collision avoidance problem, from mobile robots operating in
a two-dimensional surface to multilink robot arm manipulators moving in three-
dimensional space among three-dimensional objects. This monopoly does not
imply, of course, that the problem of motion planning is harder or easier than
those other issues, but it does imply two things: (a) that robotics is a distinct
discipline, with its own problems and its own methodological apparatus, and
(b) that solving this problem is our full responsibility—there will be no help
from other disciplines.

To avoid collisions, the robot must know something about objects that it tries
to avoid. Knowledge carries a price, either in terms of sensing that is necessary
to acquire it, or in terms of the amount and speed of memory the robot needs to
store it, or in terms of computational power it needs to process this knowledge. In
fact, a complete information about the robot workspace is usually of tremendous
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volume and tremendous complexity and can tax the most advanced computers.
The less knowledge about its surroundings the robot needs for successful collision
avoidance, the more attractive the corresponding strategy. In this sense, collision
avoidance is an information-theoretical problem.

Once the robot knows enough about objects in its surroundings, it has to figure
out how to avoid those objects, while not jeopardizing its primary task. If moving
my hand to replace a book on the shelf is about to cause my elbow to bump into
a nearby file cabinet, there are great many ways to avoid the collision—I just
need to think about this. I may think hard and slowly, or I may react instantly
based on my instincts and experience; either way, I am using my intelligence to
avoid collision. This example suggests that collision avoidance is a problem of
artificial intelligence.

Collision avoidance relates to moving in space among objects; hence it is not
surprising that collision avoidance is heavily tied to concepts and techniques from
geometry and topology. Objects in the robot workspace that are to be avoided
may be static, or they may be moving. Moving obstacles add to complexity of the
collision avoidance problem. Some techniques are amenable to moving obstacles
and some are not. While this book addresses static obstacles, we will stress the
applicability of some strategies to moving obstacles. Most of the time we will
limit the discussion to the effects of kinematics, leaving out the robot dynamics.
Some collision avoidance problems with dynamics are considered in Chapter 4.

The information-theoretical base of the collision avoidance problem gives rise
to one classification of motion planning strategies that turns out to be very pro-
ductive. The classification divides all approaches into two groups, each presenting
a distinct paradigm:

• Motion planning with complete information, also called in literature the
Piano Mover’s model or off-line planning approach. Here the path is com-
puted all at once before the motion starts; in principle, an optimal path can
be found in this way.

• Motion planning with incomplete information, also called sensor-based
motion planning or on-line motion planning, or path planning with uncer-
tainty, or the Sensing–Intelligence–Motion (SIM) paradigm. Here the
decision-making is done continuously as the robot moves along, based on
on-line information, such as from sensors. By its very nature, an optimal
solution is ruled out in this formulation.1

A simple relation governs the choice of one or the other approach in robot
applications. If all the information necessary to produce the desired path is avail-
able beforehand one would want to produce the path beforehand and would
hence choose the Piano Movers approach. On the other hand, if the information

1The term “reactive planning” that is used sometimes in literature in reference to sensor-based motion
planning is unfortunate: It emphasizes the operation’s local nature, suggests that intelligence is not
necessary, and hides the global component of motion planning, with its algorithmic connections to
convergence and computational complexity.
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happens to be coming in real time from robot sensors, and thus there is always
uncertainty about the robot’s surroundings, one is forced to turn to the second
approach, SIM.

In other words, as a rule, only one approach applies to a given task. Consider,
for example, a maze-searching task (called also a mouse-in-the-labyrinth prob-
lem). One starts at some starting point S inside the labyrinth and attempts to reach
some target point T , also in the labyrinth.2 Imagine we have in our possession
complete information about the labyrinth. We can feed these data into the com-
puter, produce the bird’s-eye view of the maze, and study the problem in great
detail using this map. We can investigate different paths between points S and T ,
figure out the optimal (shortest) path, and so on. This is planning with complete
information, and the Piano Mover’s model should be the preferred approach.

On the other hand, if all of a sudden you find yourself in a maze, at any given
moment you would see only the surrounding walls of the maze and perhaps
remember a few corridors that you have just passed. You do not know what is
ahead; input information is scant; what you learn comes from your sensors. Any
movement, including the unfortunate deviations into dead end corridor appen-
dices, becomes a part of the path. Doing anything approaching an optimal path
is of course out of the question. Here you deal with incomplete information and
produce the path as you go. This is planning with incomplete information, and
so you need to turn to the SIM techniques.

Since robot motion planning is the topic of this book, in Sections 2.8 and 2.9
we will further explore differences between these two paradigms for motion
planning, the Piano Mover’s model and the Sensing–Intelligence–Motion model.

Provable Versus Heuristic Algorithms. Another important distinction between
algorithms is between provable (other terms: nonheuristic, exact, algorithmic)
and heuristic approaches.

A provable motion planning algorithm is one for which there is a guarantee
that if a path between the starting and target points exist, the algorithm will
find one in finite time and without an exhaustive search—or else will conclude
in finite time that there is no path if such is the case. We then say that the
algorithm converges. To obtain such a guarantee, people go through the trouble
of proving the algorithm convergence. An algorithm itself should allow such
a proof; for example, the so-called “common sense” strategies—we call them
heuristic algorithms—do not allow a proof of convergence and are not likely to
be convergent.

Whereas for some applications, having a guarantee of convergence may be
a moot point—as, for example, when the user’s knowledge or intuition pretty
much replaces it—for more complex cases, seeking convergence reflects more
than a love for academic purity. As we will see in Chapter 7, in complex prob-
lems—most motion planning problems with robot arm manipulators fit this

2In other variations of this problem, one starts inside the maze and tries to find an exit from it; or,
one starts outside the maze and tries to reach the location with a hidden treasure somewhere inside
the labyrinth.
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category—human intuition is not a good advisor. If, while operating under some
reasonably sounding algorithm with unproven convergence, the robot fails to
find a path, the failure may simply mean that feasible paths do exist but the
algorithm has missed them. A guarantee of convergence then becomes a very
practical issue.

2.8 MOTION PLANNING WITH COMPLETE INFORMATION

In this type of motion planning, input information is processed before the actual
motion starts. This means that the input information must exist beforehand.

The model with complete information is formulated as follows.3 Given a solid
object (robot), or a combination of solid objects, in two- or three-dimensional
space, whose size, shape, and initial and target position and orientation are fully
described, and given a set of obstacles whose shapes, positions, and orientations
in space are likewise known, the task is to find a continuous path for the object
from the initial to the target position while avoiding collisions with obstacles
along the way. An important assumption used in the model is that the surfaces
of the moving object and the obstacles are algebraic or semialgebraic. This guar-
antees a final description of the input data. In some works a stricter requirement
of planar surfaces is imposed.

Because complete information about the problem is assumed, the whole oper-
ation of path planning is a one-time, off-line operation. The main difficulty is
not in proving existence of algorithms that would guarantee a solution (they
obviously exist), but in assessing the problem complexity and obtaining a com-
putationally efficient procedure. Reaching a solution means either finding a path
or concluding in finite time that no path exists. Since a solution is always feasible,
cases of arbitrary complexity can in principle be considered. Another apparent
advantage of dealing with complete information is that various optimization cri-
teria—finding the shortest path, or the minimum-time path, or the safest path,
and so on—can be introduced easily.

Historically, Piano Mover’s approach strategies were the first to come, starting
in late 1960s. Most of the people who formulated the problem of robot collision
avoidance were computer scientists. For them, collision avoidance was a purely
computational problem, and the question of handling input information boiled
down to a search in the database that contained that information. They often
perceived sensing, partial information, uncertainty, control, and all such issues
as small conceptual bumps that only interfered with the beautiful computational
problem in hand. By the late 1980s, the area became one of the richest and popular
areas in computational geometry. Hundreds of planning algorithms with complete
information have been published; the problem’s computational complexity has
been studied in depth, and ingenuous ways of dealing with it were reported [11].

3A good survey of the work on provable algorithms for the Piano Mover’s problem can be found in
Ref. 11; specialized maze search algorithms are considered in Ref. 12.
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By the late 1980s and early 1990s, it was slowly becoming clear that the
domains to benefit from the Piano Mover’s approach related not so much to
robotics as to some other specialized areas where “clean” information would be
available. One would read less about robots and more about a strategy for a
quick extraction of an assembly unit from an aircraft engine without disassembly
of the whole engine; or of optimizing the design of a car door opening so as
to simplify the installation of car seats; or of finding the route that a protein
molecule follows when folding into a complex shape during the DNA mapping
of proteins. Note that in these cases the complete aircraft engine database, or
a complete car body database, or a complete database of the protein geometry
would be available beforehand.

The way the Piano Movers strategies proceed is as follows. Before the motion
planning proper is attempted, the task’s configuration space (C-space) is cal-
culated. Assume for now that the robot—or, in general, an object for which
the motion planning task is contemplated—is a rigid body moving in two-
dimensional (2D) space (see object A, Figure 2.15a). In C-space the robot shrinks
to a point, whereas the surrounding objects—we call them obstacles—are grown
accordingly, to compensate for the shrinking robot.

Free subspace of C-space is the complement to the grown obstacles. Any path
that lies in a continuous subset of free space is a physically realizable path for
object A. In order to decide which areas of free space are connected and which
are disconnected, and whether and how two patches of free space can be passed
from one to another, an additional intermediate structure is built, the connectivity
graph of C-space. A path is then declared to exist if the start and the destination
nodes on the connectivity graph are connected [11, 13].
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Figure 2.15 (a) The task is to move object A from its starting position S to the target
position T , while keeping its orientation constant. (b) The C-space of task (a): Object A

shrinks to a point, and obstacles O1 and O2 grow accordingly. Notice a simple fact: For
A to be able to pass between O1 and O2 in the physical space (a), the grown obstacles
in (b) must not overlap.
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If the robot’s orientation in space is maintained constant for the duration
of its motion, the computation of C-space is relatively easy. If, in addition, the
robot and obstacles are 2D polygons, then the grown obstacles are also polygons,
though not necessarily with the same number of edges as in the original polygons
(Figure 2.15b).

If, however, the robot orientation is allowed to change during the motion then,
the C-space for a 2D workspace becomes a 3D space of parameters (x, y, θ),
where θ is the robot orientation angle (Figure 2.16a). In this case, even the
original polygonal robot and/or obstacles produce nonpolygonal and, in general,
nonlinear grown 3D obstacles in C-space (Figure 2.16b). As complexity of the
robot and obstacles increases—for example, in cases with 3D multilink arm
manipulators and nonpolygonal obstacles—computation and proper representa-
tion of the C-space becomes an exceedingly difficult task.

The computational complexity of the problem is measured in the Piano Movers
model in terms of the connectivity graph’s structure. Overall, the computational
price for dealing with perfect information and for the said advantages—optimal
paths and, in principle, solutions for cases of arbitrary dimensionality—is high.
Today many reasonable-size problems still cannot be approached.

From the application standpoint, unless there is a reason to believe that obsta-
cle boundaries are algebraic (which would squarely mean that we are dealing with
man-made objects), an appropriate approximation of the robot workspace has to
be performed before the connectivity graph can be calculated. The approximation
itself necessarily depends on considerations that are secondary to the path plan-
ning problem. One may specify, for example, the accuracy of presenting actual
obstacles with polygons, or—a different criterion—one may put a limit on the
computational cost of processing the resulting connectivity graph.

The approximation process can introduce significant computational costs of
its own. John Reif has shown that approximation of nonlinear surfaces with
linear constraints itself requires time exponential in the prescribed accuracy of
approximation [14]. Also, the space of possible approximations is not continuous
in the approximation accuracy; that is, a slight change in the specified accuracy
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Figure 2.16 (a) When robot orientation is added to a 2D task, the (b) resulting 3D
C-space of parameters (x, y, θ) is nonlinear, even if the original robot and obstacles are
polygons. Here the “robot” A is a line segment of length l, and the obstacle is a horizontal
“table” line.
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A B C

Figure 2.17 Which of the three obstacles, A, B, or C, would be easier to pass around?

of approximation can cause a dramatic change in the number and positions of
nodes of the approximated surfaces and eventually in the generated paths.

Measuring the computational burden in terms of complexity of the connec-
tivity graph may create peculiar situations where the derived computational
complexity of a given task contradicts our intuitive notion of problem com-
plexity. Consider, for example, a circular obstacle A in Figure 2.17. Assume that
the motion planning algorithm that we plan to use requires polygonal obstacles.
Then, obstacle A is first approximated—say, by one of the polygons B or C in
Figure 2.17.

Now, according to Piano Mover’s algorithms, planning a path around obstacle
C is computationally more difficult than planning a path around the obstacle B,
because of the greater number of nodes in C. Moreover, in the limit, increas-
ing the accuracy of polygon approximation takes the computational burden to
infinity. But, from the human and from the robotics control viewpoints, walk-
ing around the circle A is actually easier than walking around obstacles B or
C, because the latter require special decisions at the corners of the obstacle.
Also, from the dynamics standpoint, there is an undesirable sharp change in
the velocity vector at the corners of obstacles B and C. One can, of course,
solve this specific example by including circular objects in the list of those
allowed by the algorithm, but this will only shift this discussion to some other
shapes.

For more detail on the Piano Mover’s model, the reader is referred to the liter-
ature. The model’s computational complexity for cases of rigid or hinged bodies
has been studied extensively. The problem was shown to be computationally
prohibitive [15–17]. A 2D case has been studied in Refs. 18–20. Cases where
objects to be moved are polygons (polyhedra) or discs (spheres) moving amidst
polygonal (polyhedral) obstacles are considered in [15, 18, 19, 21–23]. The first
attempt to study the case of moving an object with a number of free-hinged
links was initiated in 1968 by Pieper [24], in the context of motion planning for
robot arm manipulators. Exact algorithms for this problem have been described
[15, 16, 20], as have various heuristics (e.g., see Refs. 25 and 26).

The computational complexity of the problem was first reported by Reif [15],
who showed that the general Piano Mover’s problem is PSPACE-hard. He also
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sketched a possible solution for moving a solid object in polynomial time, by
direct computation of the “forbidden” volumes in spaces of higher dimensions.4

Reif also demonstrated that even the preliminary operation of approximating the
robot workspace with a specified accuracy carries a high computational cost.
Schwartz and Sharir [18] presented a polynomial-time algorithm for a 2D Piano
Mover’s problem with convex polygonal obstacles. It has been shown in a number
of works (e.g., Lozano-Perez and Wesley [27]) that the process of moving in the
task’s configuration space carries additional computational costs. In general, even
if the original obstacles are polyhedral, obstacles in the configuration space have
nonplanar walls. In order to keep the problem manageable, various constraints
are typically imposed.

Moravec [28] considered a path planning algorithm for a mobile robot moving
in two dimensions, with the robot presented as a circle. In his treatment of a 2D
path planning problem with a convex polygonal robot and convex polygonal
obstacles, Brooks and Binford [29, 30] used a generalized cylinder presentation
to reduce the planning problem to a graph search. A generalized cylinder is
formed by a volume swept by a cross section (in general, of varying shape and
size) moving along the cylinder axis, which in turn can be some spine curve.

The version of the Piano Movers problem where the robot can consist of a
number of free-hinged links is more difficult. On the heuristic level this ver-
sion was started by Pieper [24] and further investigated by Paul [31]. Both were
attracted to the problem’s obvious relation to control of robot arms with multiple
degrees of freedom. Later, new approaches for this version have been considered
in Refs. 16 and 20. The most general (although very expensive computationally)
algorithm for moving a free-hinged body was given by Schwartz and Sharir [16].
The technique is based on the general method of cell decomposition; the robot
and obstacles are assumed to be limited by algebraic surfaces. A more economi-
cal (but still prohibitive for many practical tasks) algorithm for the general case
was reported by Canny [32]. A variety of special cases shown to lead to simpler
algorithms were described by Hopcroft et al. [20].

2.9 MOTION PLANNING WITH INCOMPLETE INFORMATION

By the mid-1980s it became clear that the inherent uncertainty of a realistic robot
environment and the subsequent need for real-time sensing called for a paradigm
of motion planning that would fundamentally differ from the Piano Mover’s
paradigm. It was further realized that uncertainty and sensing were not some small
irritating “engineering details” but major factors in the theoretical foundation of
motion planning algorithms. As it turned out, uncertainty and sensing became
the very center around which the new paradigm would be built. The result was
the theory and practice of robot motion planning with incomplete information, or
the SIM (Sensing–Intelligence–Motion) paradigm.

4Higher dimensions d appear when one takes into account the moving rigid object’s orientation
along its way; d = 3 for the 2D case, and d = 6 for the 3D case.
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The information-theoretical (or uncertainty) aspect of the problem at hand
points to connections with other fields. In general terms the problem of sensor-
based motion planning can be seen as one of reaching a global goal using local
means. Thus presented, it becomes a fundamental problem, various formulations
of which have been studied in a number of areas. For example, in game the-
ory (differential games and macroeconomics; see, e.g., Ref. 33) one is interested
in conditions under which individualistic interests of many agents can result
in predictable behavior of the whole group. In works on collective behavior,
algorithms are designed whereby a group of individuals can organize a unified
action at a specific moment based on local interaction only, without central-
ized control. In the Firing Squad Problem [34], soldiers are requested, using
only pairwise communication, to agree on a moment when they fire all at once.
In computer science, local operations are used to study database searches with
uncertainty [35]. In geometry, attempts have been made to prove theorems of
Euclidean geometry using local input information [36]. The difficult question of
the relationship between uncertainty and algorithm complexity has been tackled
in Ref. 37.

While some considerations, such as the importance of computational proper-
ties of their methods, still served as a bridge between the Piano Mover’s and
SIM paradigms, with time many divergent issues made them harder and harder
to compare. One such issue is of course the SIM’s favoring continuous com-
putation over the Piano Mover’s one-time computation. The other issue is the
option of optimal solutions inherent in the Piano Mover’s model but inherently
impossible in the SIM model—not because of inferior algorithms, one should
add hastily, but because of the inherent lack of relevant input information. Still
another issue, as we shall see, is the difference in how both models deal with
algorithm complexity (again, not because of algorithms’ specifics but because
of the nature of uncertainty). What counts in the Piano Mover’s model is the
complexity of the whole robot scene. In contrast, what counts in the SIM model
is the amounts of robot’s “wandering” in the scene and visits to some previ-
ously visited places in the scene. Let us consider these and other factors in
more detail.

The SIM paradigm formulation includes an assumption that information about
the robot’s surroundings comes in real time, usually from its sensors. Except
perhaps for some exotic sensors (“X-ray” vision and the like), sensory information
is of local, rather than global, nature—sensors tell one something about their
surroundings. In the SIM algorithms that will be developed in the following
chapters, the only input information available to the robot at all times is its own
coordinates and those of the target location. As the robot starts moving, new
information appears from its sensors.

To exhaust the extreme case and demonstrate the algorithm completeness, we
will start the algorithm development with the “ultra-local” tactile sensor. That is,
the robot learns about an obstacle’s presence only when it touches it physically.
Later we will extend the resulting strategies to the case of proximal sensing, such
as vision.
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In motion planning with uncertainty, the guarantee of a solution—which is
predicated on the algorithm convergence—should be distinguished from the guar-
antee of the solution optimality. As we will see, the former is feasible even in
a very complex environment, whereas the latter is not feasible with the best of
algorithms. No optimality of the solution can be promised even if only a small
piece of information about the environment is missing. One’s path that may look
ill-conceived with hindsight may not have been planned any better with the infor-
mation available at the time. A person visiting a big building for the first time
should not be blamed for wandering around in search of a desired office. We are
also familiar with similar patterns taking place in time, rather than in space. If a
stock market investor had tomorrow’s information, he would have become rich
quickly. Given that he doesn’t, his actual behavior may look less than optimal a
few days or weeks later.

If the path optimality is not a good criterion, how does one judge the per-
formance of a motion planning algorithm with uncertainty? Given the real-time
nature of SIM algorithms, they are expected to allow reasonably fast process-
ing and to produce “reasonable quality” paths. The first requirement is easier
to grasp: It is clear that a robot cannot afford to spend a minute on calculation
of a step of a continuous path that takes 20 ms to execute. For the algorithm
performance, standard complexity theory performance estimates call for lower
and upper bounds on the problem itself and on specific algorithms, as a function
of the problem complexity.5

What is a “reasonable” path? In general, how do we assess algorithms’ perfor-
mance? The problem complexity is presented in complexity theory as a function
of the number of elements in the problem at hand. In our case the scene complex-
ity cannot be assessed in these terms because it may never be known, and even
the notion itself of the scene complexity is very unclear. Unstructured environ-
ments typically include “shapeless” objects: Representing them with analytical
entities is difficult because, again, objects are not known in advance.

Doing this would be also pointless because this representation is unrelated to
what is easy or difficult for SIM algorithms. What we may think of as a complex
shape may be as easy or difficult for a SIM algorithm as a simple shape. As
another option, one might argue that because in any realistic system the robot
moves in discrete steps, those steps might be used to build a real-time objects’
approximation. This choice is also hard to defend because the size and number
of those steps may differ from one robot control system to the other. What is left
is to estimate the quality of the path itself that the algorithm generates.

A better measurement of algorithm efficiency in the case with uncertainty is a
function tied to the length of paths that the algorithm generates. More precisely,
the criterion measures the extent of the robot’s “wandering” under a given algo-
rithm: It assesses the maximum number of times, n, of the robot’s retracing some
segments of its path. When comparing algorithms, this upper bound will actually

5Less rigorous ways may include, for example, a direct comparison of an algorithm’s results with
those of other existing algorithms, or with the performance of an “average” human traveler.
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be independent of the length of paths, in the following sense. We can say, for
example, that the algorithm A is better than the algorithm B because their n

numbers are 2 and 3.5, respectively. That is, under algorithm A the robot will
visit the same piece of its path at most twice, whereas under algorithm B it can
visit a piece of its path at most 3.5 times.

One inherent weakness in algorithms with incomplete information is that the
problem dimensionality cannot be made arbitrarily high. This drawback, again,
comes from the nature of dealing with uncertainty, not from the lack of good algo-
rithms. Consider, for example, a point robot flying in the three-dimensional space,
like a fly. If the robot meets an obstacle, it has an infinite number of possibilities
for passing around it. Given the robot’s limited knowledge about the scene, its
difficulty is unsurmountable: While good sensing will often help, in the worst
case the robot may have to search an infinite number of paths to find one accept-
able path. Luckily, for the cases of practical interest—mobile robots moving on
a 2D surface and 3D arm manipulators—the situation is inherently easier.

The lack of information about the robot environment dictates a shift of empha-
sis in the SIM paradigm from objects’ geometry to their topology. Relying on
geometric properties of objects, as in the Piano Mover’s model, would make
SIM algorithms too brittle. We will see that a more sensible approach is to rely
on the scene’s topological properties; this allows one to tolerate uncertainty in
objects’ geometry. Hence there is a corresponding shift in the SIM paradigm
from computational geometry tools to those from topology.

There are two other factors that have not been mentioned yet and that are
often neglected in both the Piano Mover’s and SIM algorithms. One is the robot
dynamics. If the robot is heavy and moves relatively fast, no strategy in the
world will prevent it from collisions unless this strategy is capable of handling
the relation between the robot dynamics, its speed, its sensing, and of course the
robot’s goal. A submarine cannot stop on a dime: Its motion control system has
to process an impending collision in advance; how it avoids collision will also
depend on what it plans to do next. In other words, a realistic motion planning
system may well need to account for the system dynamics. This factor will be
considered in Chapter 4.

The second factor relates to the robot’s shape and dimensions. There is always
a question of how an algorithm that assumes a point robot will work for a real
robot with blood and flesh. A small robot can pass where a big robot will not.
One can pass a narrow corridor with folded arms, but won’t be able to do it
with outstretched arms. Besides accounting for the robot dimensions, this also
suggests the effect of robot kinematics on motion planning.

We will see in the next section that the first serious approaches to the motion
planning problem started with an abstract problem of searching a graph. The
major actors in the events had no idea that their work would be a contribution
to robotics. Some formulated it as a maze-searching problem, in a rather narrow
way, where a maze is defined as something that would be practically equivalent
to a graph. We will see in the sequel that something is lost when replacing a
scene by a graph: A graph may lose some information from the original problem.
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Below we first review those first graph-searching approaches, switching then to
the proper prior work on robot motion planning.

2.9.1 The Beginnings

Leonhard Euler, perhaps the most famous mathematician of all time, was born
on April 15, 1707, in Basel, Switzerland, and spent most of his career, between
1727 and 1741 and then from 1766 until his death on September 18, 1783, in
St. Petersburg, Russia, holding a prestigious position of academician—that is,
a full member of Russian Academy of Sciences. As his fame grew, in 1733 he
succeeded Daniel Bernoulli to the chair of mathematics in the Academy. It was
at this first period of his St. Petersburg career, in 1736, that Euler proposed and
solved a problem that was to become famous under the name Köenigsberg Bridge
Problem . This work marked the beginning of two new mathematical disciplines,
graph theory and topology. It also gives an important insight into the robot motion
planning problem.

The city of Köenigsberg (called today Kaliningrad and being a part of Russia)
was divided into two parts by the Pregel River, with the Island of Kneiphof
in the middle. Seven bridges connected the island with the rest of the city (see
Figure 2.18a). The question posed to Euler by the city’s residents was this: Can a
pedestrian, starting at some point, pass all seven bridges and return to the starting
point so that he will traverse each bridge exactly once?

To find the solution for the puzzled residents of Köenigsberg, Euler decided
to first reduce the problem to an equivalent abstract problem. In a leap of imag-
ination, he said that the shapes and dimensions of the masses of lands that the
bridges connect (A, B, C, D, Figure 2.18a) are immaterial for the problem. What
matters are the connectivity properties of the scene, what today we would call
the topological properties of space. This argument became the beginning of the
discipline of topology. Euler denoted the land masses as vertices of a diagram,
and he denoted the bridges as edges connecting the vertices (Figure 2.18b); hence
the graph theory was born.
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Figure 2.18 The Köenigsberg Bridge Problem.



60 A QUICK SKETCH OF MAJOR ISSUES IN ROBOTICS

The path that the Köenigsberg citizens wanted is called today a Euler path,
and the graph it corresponds to is called a Euler graph. Define the number of
edges incident to a graph vertex as the vertex degree. In today’s formulation the
related theorem sounds as follows:

Theorem 2.9.1 (Euler [38]). A finite graph G is an Euler graph if and only if
(a) G is connected and (b) every vertex of G is of an even degree.

In the case of distinct starting and final points (which is the situation typical
for the robot motion planning problems), exactly two vertices must be of an odd
degree. For the Köenigsberg Bridge Problem the answer to the question posed to
Euler is therefore “no” because all the vertices on the corresponding graph are
of an odd degree.

As we saw above in the role of connectivity graphs in the Piano Mover’s
model, graph theory became an important tool in designing motion planning
strategies with complete information. We will see in Chapters 3, 5, and 6 that
topology became a no less important tool in sensor-based motion planning.

Neither Euler nor many of his followers asked explicitly what information
about the scene was available to the traveler in the Köenigsberg Bridge Problem.6

It was implicitly assumed that the traveler had complete information.7 What if he
didn’t? What if at any moment of the trip the traveler’s knowledge was limited
by what he could see around him plus whatever he remembered from the path
he had traversed already? What if this more realistic situation took place?

No live creature counts on knowing in advance all the objects on its journey, or
calculates the precise path in advance. Algorithmically, the question about avail-
able input information puts the problem squarely into the domain of sensor-based
motion planning, presenting it as a maze-searching problem . Clearly, even if the
Köenigsberg bridges made a Euler graph, and if the traveler had no picture as in
Figure 2.18, we can doubt that he would pass every bridge exactly once, except
perhaps by sheer chance. If not, what would be the traveler’s performance—say,
with the best algorithm possible? Can a strategy be designed that will guarantee
at least passing the whole graph when one starts with a zero knowledge about it?
If so, how about doing it in some reasonably efficient manner? We will return to
these questions later in this chapter.

This branch of motion planning—which can be formulated as moving in a
graph without prior information about it—started long before Euler. Since the
times of Theseus of Athens, people had great interest in labyrinths (mazes). After
Theseus slew the Minotaur, he used the thread of glittering jewels given to him
by Ariadne to find his way in the passages of the Labyrinth of Knossos. Many

6Eventually this question did appear in graph theory, though much later, as a question of existence
of local algorithms [39].
7Interestingly, when in the 1960s and 1970s researchers turned to the problem of robot motion
planning, the question of input information was not raised either. There seems to be something in
human psychology that, unless told otherwise, between two choices—minimum and maximum of
input information—we implicitly assume the latter.
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medieval churches and castles in Europe had mazes in their gardens or as inside
mosaics on the floor. Many mazes are built even today for public amusement and
contemplation. Some labyrinth builders tried to emulate the famous labyrinth of
the Chartres cathedral in France; one Chartres-type labyrinth appears in the Grace
Cathedral in San Francisco. Even Washington, D.C., the United States capital,
has its own tiny labyrinth in the small pretty St. Thomas Parish Park located in
the heart of Dupont Circle.

Most collections of puzzles contain labyrinth problems. A “Bible” of labyrinths
that is monumental in coverage, unique, and marvelously written is the book by
Hermann Kern, Through the Labyrinth: Designs and Meanings over 5000 Years
(originally published in Germany in 1983 [40] and translated into English in
2000 [41]).

A simple labyrinth is a set of corridors lying in the plane and connected
in intricate ways. A labyrinth can be described by a graph whose edges rep-
resent corridors and vertices (vertices are the points where the corridors meet).
Figure 2.19a shows the famous labyrinth in the garden at Hampton Court in
London; the corresponding graph is shown in Figure 2.19b.

The problem is as follows: Given two points in a labyrinth, start S and target T ,
can a method be designed that would guarantee a path from S to T ? It is usually
assumed that the traveler has no beforehand knowledge about the labyrinth and
has a way to mark the corridors and corridor intersections. In graph terms, this is
a graph-searching problem: Given two graph vertices S and T , design a method
to generate a path from S to T if one exists.

A general maze does not have to have explicit corridors and intersections.
An arbitrary scene with obstacles presents a kind of maze. Any motion planning
task for a robot in the plane can therefore be seen as a maze search. Such tasks
can be naturally reduced to a graph search. Consider the scene in Figure 2.20a.
Suppose a point robot plans to start at point S and reach point T . Suppose the
robot knows its own location and that of T but has no beforehand knowledge
about obstacles on its way. Then, it would be reasonable for the robot to take the
shortest route to T , a straight line. Let us call this line the Main line, or M-line.
If M-line happens to be free, the robot reckons, this would be the fastest route
to T ; if there are obstacles on the way, it will deal with them somehow. (The
notion of Main line will appear often in the following chapters.)

Together with the scene, this strategy defines a graph that, although unknown
to the robot, relates to the physical reality. Vertices of the graph are points S

and T , as well as intersection points between M-line and obstacle boundaries;
its edges are segments of M-line outside the obstacles and segments of obstacle
boundaries (Figure 2.20b). The graph is called the connectivity graph of the
maze. It has a simple structure: Vertices S and T are of degree one, and all other
vertices are of degree three. Note that since each vertex has an odd number of
edges incident to it, this is not a Euler graph, and so traversing the whole graph
will result in at least some edges being traversed more than once. The graph can
be easily transformed into a Euler graph—for example, by replacing with two
segments each M-line segment that connects two obstacles.
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Figure 2.19 (a) The Hampton Court labyrinth; (b) the corresponding graph.

If all mazes can produce connectivity graphs of this particular structure, one
may wonder if this property can warrant algorithms with better performance than
algorithms for a general graph —that is, one with an arbitrary degrees of vertices.
This raises still another question: Can mazes produce graphs with an arbitrary
degrees of vertices? At first glance, the answer is yes: Many corridors in a maze
can meet in the same spot, so connectivity graphs produced by realistic mazes
must be general graphs.

Notice, however, that this argument ignores the fact that mazes appear in a
continuous plane, not in some discrete domain where only one path exists in a
limited space such as a corridor. Spaces between obstacles leave many options
for moving in them. Even a corridor has a finite space between its walls: One
can walk, for example, in one direction along one wall and walk back along
the other wall; or one can move in a zigzag manner between walls. That is
not what we represent by a graph; instead we want a “minimum” graph that
describes the maze, and hence graph edges are maze walls and M-line segments,
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Figure 2.20 (a) A typical motion planning task. (b) The corresponding graph.
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Figure 2.21 (a) In spite of the four-way corridor around points b, c, each vertex b, c in
the corresponding connectivity graph (b) is of degree three.

and vertices are points where those segments meet. This means that all physical
mazes can be reduced to a graph with the maximum vertex degree three (see
Figure 2.21). Hence we are back to our first question: Does this special graph
structure promise algorithms whose performance is better than that of algorithms
for general graphs?

Denote the length of M-line as D, denote its segments outside the M-line
as di , and denote the segments of obstacle boundaries cut by the M-line as pi

(Figure 2.20a). Those lengths can signify weights on the graph edges. Then the
total “length” of the graph is no more than D +∑i pi .
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The first systematic procedure for solving maze problems—in fact, for cov-
ering a general graph—seems to be the one suggested by Wiener in 1873. His
algorithm is as follows:

Wiener’s Algorithm: Starting at point S, proceed along the graph edges as far as
possible, selecting at each vertex an edge that has not been traversed before. At
a vertex where such motion is no longer possible, retrace the sequence of edges
until you arrive at a vertex with some unused edges.

Clearly, Wiener’s method presents a version of what is called today an exhaus-
tive search. One will also recognize in this algorithm a geometric version of the
“width-first” procedure that appears in many textbooks in computer science. The
procedure does guarantee covering all edges of the graph, but it will produce
many repetitive visits to the same vertices.

Does an algorithm have to be that inefficient? For example, how about the
following simple algorithm found in children stories? “Keep your left hand on
the wall as you walk, and you will eventually get out of the labyrinth.” This
naive procedure will only work if all the walls in the labyrinth are connected.
Clearly, if one keeps the hand on the wall that is a part of an island inside the
labyrinth, one will walk in the labyrinth forever.

To understand the limits of achievable performance of algorithms with incom-
plete information, let us see first what that limit is for algorithms with complete
information, for a general graph.

Theorem 2.9.2 (Ore [42]). In a finite connected graph, it is always possible to
construct a cyclic directed path passing through each edge once and only once in
each direction.

This promises a much better performance than in Wiener’s algorithm, but is such
performance feasible for an algorithm with incomplete information? The positive
answer was given in the method by Tremaux (reported by Lucas in 1892 [43]).
It was shown in 1895 by Tarry [42, 44] that the same result can be obtained in
a more economical way. In Tarry’s algorithm, called Tarry’s rule, for a given
graph, when the point robot arrives at a vertex v, the following input information
is assumed: (i) the subset of those edges incident to v that the robot traversed
before when leaving v—that is, those edges that were traversed in the direction
pointing away from v; (ii) the entrance edge via which the robot first arrived at
v. The procedure is very simple:

Tarry’s Rule:

1. Upon arrival at v, continue via an edge (v, v′) that was not yet traversed
in the direction of v to v′.

2. Choose the entrance edge as a last resort.
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Under Tarry’s algorithm, assuming that the start and target vertices are distinct
and there exists a path between them, the target vertex is guaranteed to be reached,
and every edge will be traversed exactly twice, once in each direction, with the
exception of the two edges incident to the start and target vertices, which will
be traversed once each. Using our terminology, the upper bound on the length
of paths generated by the algorithm is as follows:

Theorem 2.9.3. For any finite maze, Tarry’s algorithm will generate a path of
length P such that

P ≤ 2D + 2
∑

i

pi (2.23)

where D is the length of M-line, and pi are perimeters of obstacles in the maze.

Finally this gives us an answer to our question above: What performance can be
expected for an unknown Euler graph.

It took a long time, over 70 years, for the next improvement to come. In
1970, Fraenkel proposed a more economical algorithm [45, 46]. Though it has
the same performance as Tarry’s in the worst case, it performs better if the robot
is lucky with the maze; then, some or even all graph edges may be traversed
just once. Fraenkel’s algorithm is more complex that Tarry’s. It makes use of
a counter, which is set to zero at the start vertex. The algorithm operates as
follows:

Fraenkel’s Algorithm:

1. Whenever one arrives at a vertex not visited before, increase the counter
by 1.

2. When arriving at a vertex v such that before entering it there was at least
one edge incident to it that was not traversed before, and upon arrival at v

there remains at most one such edge, decrease the counter by 1.
3. As long as the counter is positive, the tour is conducted according to the

Tarry’s algorithm, except, whenever possible, an edge not traversed before
is preferred to an edge already traversed.

4. As soon as the counter contains zero, leave all edges via their entrance
edges.

The accompanying theorem, whose proof is relatively involved, is derived for
the case when the start and target vertices coincide. The theorem states that
under Fraenkel’s algorithm the target vertex is guaranteed to be reached if
reachable, and every edge will be traversed at least once but never more than
twice, once in each direction. Using our terminology and the M-line concept, the
upper bound on the length of paths generated by the Fraenkel’s algorithm is as
follows:
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Theorem 2.9.4. For any finite maze, Fraenkel’s algorithm generates a path of
length P such that

P ≤ 2D + 2
∑

i

pi (2.24)

where D is the length of M-line, and pi are perimeters of obstacles in the maze.

In other words, the worst-case estimates of the length of generated paths for
Trumaux’s, Tarry’s, and Fraenkel’s algorithms are identical. The performance of
Fraenkel’s algorithm can be better, and never worse, than that of the two other
algorithms. As an example, if the graph presents a Euler graph, Fraenkel’s robot
will traverse each edge only once.

2.9.2 Maze-to-Graph Transition

It is interesting to note that until the advent of robotics, all work on labyrinth
search methods was limited to graphs. Each of the strategies above is based solely
on graph-theoretical considerations, irrespective of the geometry and topology of
mazes that produce those connectivity graphs. That is why constructs like the
M-line are foreign to those methods. (M-line was not of course a part of the
works above; it was introduced here to make this material consistent with the
algorithmic work that will follow.) One can only speculate with regard to the
reasons: Perhaps it might be the power of Euler’s ideas and the appeal of models
of graph theory.

Whatever the reason, the universal substitution of mazes by graphs made the
researchers overlook some additional information and some rich problems and
formulations that are relevant to physical mazes but are easily lost in the transition
to general graphs. These are, for example: (a) the fact that any physical obstacle
boundary must present a closed curve, and this fact can be used for motion
planning; (b) the fact that the continuous space between obstacles present an
infinite number of options for moving in free space between obstacles; and (c)
the fact that in space there is a sense of direction (one can use, for example, a
compass) which disappears in a graph. (See more on this later in this and next
chapter.)

Strategies that take into account such considerations stay somewhat separate
from the algorithms cited above that deal directly with graph processing. As input
information is assumed in these algorithms to come from on-line sensing, we will
call them sensor-based algorithms and consider them in the next section, before
embarking on development and analysis of such algorithms in the following
chapters.

2.9.3 Sensor-Based Motion Planning

The problem of robot path planning in an uncertain environment has been first
considered in the context of heuristic approaches and as applied to autonomous
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vehicle navigation. Although robot arm manipulators are very important for
theory and practice, little has been done for them until later, when the underlying
issues became clearer. An incomplete list of path planning heuristics includes
Refs. 28 and 47–52.

Not rarely, attempts for planning with incomplete information have their start-
ing point in the Piano Mover’s model and in planning with complete information.
For example, in heuristic algorithms considered in Refs. 47, 48 and 50, a piece
of the path is formed from the edges of a connectivity graph resulting from
modeling the robot’s surrounding area for which information is available at
the moment (for example, from the robot’s vision sensor). As the robot moves
to the next area, the process repeats. This means that little can be said about
the procedures’ chances for reaching the goal. Obstacles are usually approxi-
mated with polygons; the corresponding connectivity graph is formed by straight-
line segments that connect obstacle vertices, the robot starting point, and its
target point, with a constraint on nonintersection of graph edges with
obstacles.

In these works, path planning is limited to the robot’s immediate surround-
ings, the area for which sensing information on the scene is available from robot
sensors. Within this limited area, the problem is actually treated as one with com-
plete information. Sometimes the navigation problem is treated as a hierarchical
problem [48, 53], where the upper level is concerned with global navigation for
which the information is assumed available, while the lower level is doing local
navigation based on sensory feedback. A heuristic procedure for moving a robot
arm manipulator among unknown obstacles is described in Ref. 54.

Because the above heuristic algorithms have no theoretical assurance of con-
vergence, it is hard to judge how complete they are. Their explicit or implicit
reliance on the so-called common sense is founded on the assumption that humans
are good at orienting and navigation in space and at solving geometrical search
problems. This assumption is questionable, however, especially in the case of
arm manipulators. As we will see in Chapter 7, when lacking global input infor-
mation and directional clues, human operators are confused, lose their sense of
orientation, and exhibit inferior performance. Nevertheless, in relatively simple
scenes, such heuristic procedures have been shown to produce an acceptable
performance.

More recently, algorithms have been reported that do not have the above
limitations—they treat obstacles as they come, have a proof of convergence,
and so on—and are closer to the SIM model. All these works deal with motion
planning for mobile robots; the strategies they propose are in many ways close to
the algorithms studied further in Chapter 3. These works will be reviewed later,
in Section 3.8, once we are ready to discuss the underlying issues.

With time the SIM paradigm acquired popularity and found a way to applica-
tions. Algorithms with guaranteed convergence appeared, along with a plethora
of heuristic schemes. Since knowing the robot location is important for motion
planning, some approaches attempted to address robot localization and motion
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planning within the same framework.8 Other approaches assume that, similar to
human and animals’ motion planning, the robot’s location in space should come
from sensors or from some separate sensor processing software, and so they
concentrate on motion planning and collision-avoidance strategies.

Consider the scene shown in Figure 2.22. A point robot starts at point S and
attempts to reach the target point T . Since the robot knows at all times where
point T is, a simple strategy would be to walk toward T whenever possible. Once
the robot’s sensor informs it about the obstacle O1 on its way, it will start passing
around it, for only as long as it takes to clear the direction toward T , and then
continue toward T . Note that the efficiency of this strategy is independent of the
complexity of obstacles in the scene: No matter how complex (say, fiord-like)
an obstacle boundary is, the robot will simply walk along this boundary.

One can easily build examples where this simple idea will not work, but we
shall see in the sequel that slightly more complex ideas of this kind can work and
even guarantee a solution in an arbitrary scene, in spite of the high uncertainty and
scant knowledge about the scene. Even more interesting, despite the fact that arm
manipulators present a much more complex case for navigation than do mobile
robots, such strategies are feasible for robot arm manipulators as well. To repeat,
in these strategies, (a) the robot can start with zero information about the scene,

S

T

O1

O2

Figure 2.22 A point robot starts at point S and attempts to reach the target location T .
No knowledge about the scene is available beforehand, and no computations are done
prior to the motion. As the robot encounters an obstacle, it passes it around and then
continues toward T . If feasible, such a strategy would allow real-time motion planning,
and its complexity would be a constant function of the scene complexity.

8One name for procedures that combine localization and motion planning is SLAM, which stands
for Simultaneous Localization and Motion Planning (see, e.g., Ref. 55).
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(b) the robot uses only a small amount of local information about obstacles
delivered by its sensors, and (c) the complexity of motion planning is a constant
function of the complexity of obstacles (interpreted as above, as the maximum
number of times the robot visits some pieces of its path). We will build these
algorithms in the following chapters. For now, it is clear that, if feasible, such
procedures will likely save the robot a tremendous amount of data processing
compared to models with complete information.

The only complete (nonheuristic) algorithm for path planning in an uncertain
environment that was produced in this earlier period seems to be the Pledge
algorithm described by Abelson and diSessa [36]. The algorithm is shown to
converge; no performance bounds are given (its performance was assessed later
in Ref. 56). However, the algorithm addresses a problem different from ours:
The robot’s task is to escape from an arbitrary maze. It can be shown that the
Pledge algorithm cannot be used for the common mobile robot task of reaching
a specific point inside or outside the maze.

That the convergence of motion planning algorithms with uncertainty cannot
be left to one’s intuition is underscored by the following example, where a
seemingly reasonable strategy can produce disappointing results. Consider this
algorithm; let us call it Optimist9:

1. Walk directly toward the target until one of these occurs:
(a) The target is reached. The procedure stops.
(b) An obstacle is encountered. Go to Step 2.

2. Turn left and follow the obstacle boundary until one of these occurs:
(a) The target is reached. The procedure stops.
(b) The direction toward the target clears. Go to Step 1.

Common sense suggests that this procedure should behave reasonably well, at
least in simpler scenes. Indeed, even complex-looking examples can be readily
designed where the algorithm Optimist will successfully bring the robot to the
target location. Unfortunately, it is equally easy to produce simple scenes in
which the algorithm will fail. In the scene shown in Figure 2.23a, for example,
the algorithm would take the robot to infinity instead of the target, and in the scene
of Figure 2.23b the algorithm forces the robot into infinite looping. (Depending
on the scheme’s details, it may produce the loop 1 or the loop 2.) Attempts
to fix this scheme with other common-sense modifications—for example, by
alternating the left and right direction of turns in Step 2 of the algorithm—will
likely only shift the problem: the algorithm will perhaps succeed in the scenes
in Figure 2.23 but fail in some other scenes.

This example suggests that unless convergence of an algorithm is proven
formally, the danger of the robot going astray under its guidance is real. As
we will see later, the problem becomes even more unintuitive in the case of

9The procedure has been frequently suggested to me at various meetings.
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Figure 2.23 In scene (a) algorithm Optimist will take the robot arbitrarily far from the
target T . In scene (b) depending on its small details, it will go into one of infinite loops
shown.

arm manipulators. Hence, from now on, we will concentrate on the SIM (sens-
ing–intelligence–motion) paradigm, and in particular on provable sensor-based
motion planning algorithms.

As said above, instead of focusing on geometry of space, as in the Piano
Mover’s model, SIM procedures exploit topological properties of space. Limiting
ourselves for now to the 2D plane, notice that an obstacle in a 2D scene is a simple
closed curve. If one starts at some point outside the obstacle and walks around
it—say, clockwise—eventually one will arrive at the starting point. This is true,
independent of the direction of motion: If one walks instead counterclockwise,
one will still arrive at the same starting point. This property does not depend on
whether the obstacle is a square or a triangle or a circle or an arbitrary object of
complex shape.

However complex the robot workspace is—and it will become even more
complex in the case of 3D arm manipulators—the said property still holds. If
we manage to design algorithms that can exploit this property, they will likely
be very stable to the uncertainties of a real-world scenes. We can then turn to
other complications that a real-world algorithm has to respect: finite dimensions
of the robot itself, improving the algorithm performance with sensors like vision,
the effect of robot dynamics on motion planning, and so on. We are now ready
to tackle those issues in the following chapters.
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2.10 EXERCISES

1. Develop direct and inverse kinematics equations, for both position and veloc-
ity, for a two-link planar arm manipulator, the so-called RP arm, where
R means “revolute joint” and P means “prismatic” (or sliding) joint (see
Figure 2.E.1). The sliding link l2 is perpendicular to the revolute link l1, and
has the front and rear ends; the front end holds the arm’s end effector (the
hand). Draw a sketch. Analyze degeneracies, if any. Notation: θ1 = [0, 2π],
l2 = [l2 min, l2 max]; ranges of both joints, respectively: l2 = (l2 max − l2 min);
l1 = const > 0 − lengths of links.

l1

Jo

J1

q1

l2

Figure 2.E.1

2. Design a straight-line path of bounded accuracy for a planar RR (revo-
lute–revolute) arm manipulator, given the starting S and target T positions,
(θ1S, θ2S) and (θ1T , θ2T ):

θ1S = π/4, θ2S = π/2, θ1T = 0, θ2T = π/6

3. The lengths of arm links are l1 = 50 and l2 = 70. Angles θ1 and θ2 are mea-
sured counterclockwise, as shown in Figure 2.E.2.
Find the minimum number of knot points for the path that will guarantee that
the deviation of the actual path from the straight line (S, T ) will be within
the error δ = 2. The knot points are not constrained to lie on the line (S, T )

or to be spread uniformly between points S and T . Discuss significance of
these conditions. Draw a sketch. Explain why your knot number is minimum.

4. Consider the best- and worst-case performance of Tarry’s algorithm in a planar
graph. The algorithm’s objective is to traverse the whole graph and return
to the starting vertex. Design a planar graph that would provide to Tarry
algorithm different options for motion, and such that the algorithm would
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Figure 2.E.2

achieve in it its best-case performance if it were “lucky” with its choices of
directions of motion, and its worst-case performance if it were “unlucky.”
Explain your reasoning.

5. Assuming two C-shaped obstacles in the plane, along with an M-line that
connects two distinct points S and T and intersects both obstacles, design
two examples that would result in the best-case and worst-case performance,
respectively, of Tarry’s algorithm. An obstacle can be mirror image reversed
if desired. Obstacles can touch each other, in which case the point robot
would not be able to pass between them at the contact point(s). Evaluate the
algorithm’s performance in each case.



CHAPTER 3

Motion Planning for a Mobile Robot

Thou mayst not wander in that labyrinth; There Minotaurs and ugly treasons lurk.

—William Shakespeare, King Henry the Sixth

What is the difference between exploring and being lost?

—Dan Eldon, photojournalist

As discussed in Chapter 1, to plan a path for a mobile robot means to find a
continuous trajectory leading from its initial position to its target position. In
this chapter we consider a case where the robot is a point and where the scene
in which the robot travels is the two-dimensional plane. The scene is populated
with unknown obstacles of arbitrary shapes and dimensions. The robot knows
its own position at all times, and it also knows the position of the target that it
attempts to reach. Other than that, the only source of robot’s information about
the surroundings is its sensor. This means that the input information is of a local
character and that it is always partial and incomplete. In fact, the sensor is a
simple tactile sensor: It will detect an obstacle only when the robot touches it.
“Finding a trajectory” is therefore a process that goes on in parallel with the
journey: The robot will finish finding the path only when it arrives at the target
location.

We will need this model simplicity and the assumption of a point robot only
at the beginning, to develop the basic concepts and algorithms and to produce
the upper and lower bound estimates on the robot performance. Later we will
extend our algorithmic machinery to more complex and more practical cases,
such as nonpoint (physical) mobile robots and robot arm manipulators, as well
as to more complex sensing, such as vision or proximity sensing. To reflect the
abstract nature of a point robot, we will interchangeably use for it the term
moving automaton (MA, for brevity), following some literature cited in this
chapter.

Other than those above, no further simplifications will be necessary. We will
not need, for example, the simplifying assumptions typical of approaches that
deal with complete input information such as approximation of obstacles with
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algebraic and semialgebraic sets; representation of the scene with intermediate
structures such as connectivity graphs; reduction of the scene to a discrete space;
and so on. Our robot will treat obstacles as they are, as they are sensed by its
sensor. It will deal with the real continuous space—which means that all points
of the scene are available to the robot for the purpose of motion planning.

The approach based on this model (which will be more carefully formalized
later) forms the sensor-based motion planning paradigm, or, as we called it above,
SIM (Sensing–Intelligence–Motion). Using algorithms that come out of this
paradigm, the robot is continuously analyzing the incoming sensing information
about its current surroundings and is continuously planning its path. The emphasis
on strictly local input information is somewhat similar to the approach used
by Abelson and diSessa [36] for treating geometric phenomena based on local
information: They ask, for example, if a turtle walking along the sides of a
triangle and seeing only a small area around it at every instant would have
enough information to prove triangle-related theorems of Euclidean geometry. In
general terms, the question being posed is, Can one make global inferences based
solely on local information? Our question is very similar: Can one guarantee a
global solution—that is, a path between the start and target locations of the
robot—based solely on local sensing?

Algorithms that we will develop here are deterministic. That is, by running
the same algorithm a few times in the same scene and with the same start and
target points, the robot should produce identical paths. This point is crucial: One
confusion in some works on robot motion planning comes from a view that the
uncertainty that is inherent in the problem of motion planning with incomplete
information necessarily calls for probabilistic approaches. This is not so.

As discussed in Chapter 1, the sensor-based motion planning paradigm is dis-
tinct from the paradigm where complete information about the scene is known
to the robot beforehand—the so-called Piano Mover’s model [16] or motion
planning with complete information. The main question we ask in this and the
following chapters is whether, under our model of sensor-based motion plan-
ning, provable (complete and convergent are equivalent terms) path planning
algorithms can be designed. If the answer is yes, this will mean that no matter
how complex the scene is, under our algorithms the robot will find a path from
start to target, or else will conclude in a finite time that no such path exists if
that is the case.

Sometimes, approaches that can be classified as sensor-based planning are
referred to in literature as reactive planning. This term is somewhat unfortunate:
While it acknowledges the local nature of robot sensing and control, it implicitly
suggests that a sensor-based algorithm has no way of inferring any global char-
acteristics of space from local sensing data (“the robot just reacts”), and hence
cannot guarantee anything in global terms. As we will see, the sensor-based
planning paradigm can very well account for space global properties and can
guarantee algorithms’ global convergence.

Recall that by judiciously using the limited information they managed to get
about their surroundings, our ancestors were able to reach faraway lands while
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avoiding many obstacles, literally and figuratively, on their way. They had no
maps. Sometimes along the way they created maps, and sometimes maps were
created by those who followed them. This suggests that one does not have to
know everything about the scene in order to solve the go-from-A-to-B motion
planning problem. By always knowing one’s position in space (recall the careful
triangulation of stars the seaman have done), by keeping in mind where the
target position is relative to one’s position, and by remembering two or three key
locations along the way, one should be able to infer some important properties
of the space in which one travels, which will be sufficient for getting there. Our
goal is to develop strategies that make this possible.

Note that the task we pose to the robot does not include producing a map of
the scene in which it travels. All we ask the robot to do is go from point A to
point B, from its current position to some target position. This is an important
distinction. If all I need to do is find a specific room in an unfamiliar building, I
have no reason to go into an expensive effort of creating a map of the building.
If I start visiting the same room in that same building often enough, eventually I
will likely work out a more or less optimal route to the room—though even then
I will likely not know of many nooks and crannies of the building (which would
have to appear in the map). In other words, map making is a different task that
arises from a different objective. A map may perhaps appear as a by-product of
some path planning algorithm; this would be a rather expensive way to do path
planning, but this may happen. We thus emphasize that one should distinguish
between path planning and map making.

Assuming for now that sensor-based planning algorithms are viable and com-
putationally simple enough for real-time operation and also assuming that they
can be extended to more complex cases—nonpoint (physical) robots, arm manip-
ulators, and complex nontactile sensing—the SIM paradigm is clearly very
attractive. It is attractive, first of all, from the practical standpoint:

1. Sensors are a standard fare in engineering and robot technology.
2. The SIM paradigm captures much of what we observe in nature. Humans

and animals solve complex motion planning tasks all the time, day in
and day out, while operating with local sensing information. It would be
wonderful to teach robots to do the same.

3. The paradigm does away with complex gathering of information about the
robot’s surroundings, replacing it with a continuous processing of incoming
sensor information. This, in turn, allows one not to worry about the shapes
and locations of obstacles in the scene, and perhaps even handle scenes
with moving or shape-changing obstacles.

4. From the control standpoint, sensor-based motion planning introduces the
powerful notion of sensor feedback control, thus transforming path plan-
ning into a continuous on-line control process. The fact that local sensing
information is sufficient to solve the global task (which we still need to
prove) is good news: Local information is likely to be simple and easy to
process.
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These attractive points of sensor-based planning stands out when comparing it
with the paradigm of motion planning with complete information (the Piano
Mover’s model). The latter requires the complete information about the scene,
and it requires it up front. Except in very simple cases, it also requires formidable
calculations; this rules out a real-time operation and, of course, handling moving
or shape-changing obstacles.

From the standpoint of theory, the main attraction of sensor-based planning
is the surprising fact that in spite of the local character of robot sensing and the
high level of uncertainly—after all, practically nothing may be known about the
environment at any given moment—SIM algorithms can guarantee reaching a
global goal, even in the most complex environment.

As mentioned before, those positive sides of the SIM paradigm come at a price.
Because of the dynamic character of incoming sensor information—namely, at
any given moment of the planning process the future is not known, and every new
step brings in new information—the path cannot be preplanned, and so its global
optimality is ruled out. In contrast, the Piano Mover’s approach can in principle
produce an optimal solution, simply because it knows everything there is to
know.1 In sensor-based planning, one looks for a “reasonable path,” a path that
looks acceptable compared to what a human or other algorithms would produce
under similar conditions. For a more formal assessment of performance of sensor-
based algorithms, we will develop some bounds on the length of paths generated
by the algorithms. In Chapter 7 we will try to assess human performance in
motion planning.

Given our continuous model, we will not be able to use the discrete cri-
teria typically used for evaluating algorithms of computational geometry—for
example, assessing a task complexity as a function of the number of vertices
of (polygonal or otherwise algebraically defined) obstacles. Instead, a new path-
length performance criterion based on the length of generated paths as a function
of obstacle perimeters will be developed.

To generalize performance assessment of our path planning algorithms, we
will develop the lower bound on paths generated by any sensor-based planning
algorithm, expressed as the length of path that the best algorithm would produce
in the worst case. As known in complexity theory, the difficulty of this task lies
in “fighting an unknown enemy”—we do not know how that best algorithm may
look like.

This lower bound will give us a yardstick for assessing individual path plan-
ning algorithms. For each of those we will be interested in the upper bound on the
algorithm performance—the worst-case scenario for a specific algorithm. Such
results will allow us to compare different algorithms and to see how far are they
from an “ideal” algorithm.

All sensor-based planning algorithms can be divided into these two nonover-
lapping intuitively transparent classes:

1In practice, while obtaining the optimal solution is often too computationally expensive, the ever-
increasing computer speeds make this feasible for more and more problems.
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Class 1. Algorithms in which the robot explores each obstacle that it encounters
completely before it goes to the next obstacle or to the target.

Class 2. Algorithms where the robot can leave an obstacle that it encounters
without exploring it completely.

The distinction is important. Algorithms of Class 1 are quite “thorough”—one may
say, quite conservative. Often this irritating thoroughness carries the price: From the
human standpoint, paths generated by a Class 1 algorithm may seem unnecessarily
long and perhaps a bit silly. We will see, however, that this same thoroughness
brings big benefits in more difficult cases. Class 2 algorithms, on the other hand,
are more adventurous—they are “more human”, they “take risks.” When meeting
an obstacle, the robot operating under a Class 2 algorithm will have no way of
knowing if it has met it before. More often than not, a Class 2 algorithm will win
in real-life scenes, though it may lose badly in an unlucky scene.

As we will see, the sensor-based motion planning paradigm exploits two
essential topological properties of space and objects in it—the orientability and
continuity of manifolds. These are expressed in topology by the Jordan Curve
Theorem [57], which states:

Any closed curve homeomorphic to a circle drawn around and in the vicinity of a
given point on an orientable surface divides the surface into two separate domains,
for which the curve is their common boundary.

The threateningly sounding “orientable surface” clause is not a real constraint. For
our two-dimensional case, the Moebius strip and Klein bottle are the only examples
of nonorientable surfaces. Sensor-based planning algorithms would not work on
these surfaces. Luckily, the world of real-life robotics never deals with such objects.

In physical terms, the Jordan Curve Theorem means the following: (a) If our
mobile robot starts walking around an obstacle, it can safely assume that at some
moment it will come back to the point where it started. (b) There is no way for
the robot, while walking around an obstacle, to find itself “inside” the obsta-
cle. (c) If a straight line—for example, the robot’s intended path from start to
target—crosses an obstacle, there is a point where the straight line enters the
obstacle and a point where it comes out of it. If, because of the obstacle’s com-
plex shape, the line crosses it a number of times, there will be an equal number of
entering and leaving points. (The special case where the straight line touches the
obstacle without crossing it is easy to handle separately—the robot can simply
ignore the obstacle.)

These are corollaries of the Jordan Curve Theorem. They will be very explic-
itly used in the sensor-based algorithms, and they are the basis of the algorithms’
convergence. One positive side effect of our reliance on topology is that geome-
try of space is of little importance. An obstacle can be polygonal or circular, or
of a shape that for all practical purposes is impossible to define in mathematical
terms; for our algorithm it is only a closed curve, and so handling one is as easy
as the other. In practice, reliance on space topology helps us tremendously in
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computational savings: There is no need to know objects’ shapes and dimensions
in advance, and there is no need to describe and store object descriptions once
they have been visited.

In Section 3.1 below, the formal model for the sensor-based motion planning
paradigm is introduced. The universal lower bound on paths generated by any
algorithm operating under this model is then produced in Section 3.2. One can see
the bound as the length of a path that the best algorithm in the world will gener-
ate in the most “uncooperating” scene. In Sections 3.3.1 and 3.3.2, two provably
correct path planning algorithms are described, called Bug1 and Bug2, one from
Class 1 and the other from Class 2, and their convergence properties and perfor-
mance upper bounds are derived. Together the two are called basic algorithms,
to indicate that they are the base for later strategies in more complex cases. They
also seem to be the first and simplest provable sensor-based planning algorithms
known. We will formulate tests for target reachability for both algorithms and
will establish the (worst-case) upper bounds on the length of paths they generate.

Analysis of the two algorithms will demonstrate that a better upper bound on
an algorithm’s path length does not guarantee shorter paths. Depending on the
scene, one algorithm can produce a shorter path than the other. In fact, though
Bug2’s upper bound is much worse than that of Bug1, Bug2 will be likely
preferred in real-life tasks.

In Sections 3.4 and 3.5 we will look at further ways to obtain better algorithms
and, importantly, to obtain tighter performance bounds. In Section 3.6 we will
expand the basic algorithms—which, remember, deal with tactile sensing—to
richer sensing, such as vision. Sections 3.7 to 3.10 deal with further extensions
to real-world (nonpoint) robots, and compare different algorithms. Exercises for
this chapter appear in Section 3.11.

3.1 THE MODEL

The model includes two parts: One is related to geometry of the robot (automaton)
environment, and the other is related to characteristics and capabilities of the
automaton. To save on multiple uses of words “robot” and “automaton,” we will
call it MA, for “moving automaton.”

Environment. The scene in which MA operates is a plane. The scene may be
populated with obstacles, and it has two given points in it: the MA starting
location, S, and the target location, T . Each obstacle’s boundary is a sim-
ple closed curve of finite length, such that a straight line will cross it in
only finitely many points. The case when the straight line is tangential to an
obstacle at a point or coincides with a finite segment of the obstacle is not a
“crossing.” Obstacles do not touch each other; that is, a point on an obstacle
belongs to one and only one obstacle (if two obstacles do touch, they will be
considered one obstacle). The scene can contain only a locally finite number
of obstacles. This means that any disc of finite radius intersects a finite set of
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obstacles. Note that the model does not require that the scene or the overall
set of obstacles be finite.

Robot. MA is a point. This means that an opening of any size between two dis-
tinct obstacles can be passed by MA. MA’s motion skills include three actions:
It knows how to move toward point T on a straight line, how to move along
the obstacle boundary, and how to start moving and how to stop. The only
input information that MA is provided with is (1) coordinates of points S and
T as well as MA’s current locations and (2) the fact of contacting an obstacle.
The latter means that MA has a tactile sensor. With this information, MA can
thus calculate, for example, its direction toward point T and its distance from
it. MA’s memory for storing data or intermediate results is limited to a few
computer words.

Definition 3.1.1. A local direction is a once-and-for-all decided direction for
passing around an obstacle. For the two-dimensional problem, it can be either
left or right.

That is, if the robot encounters an obstacle and intends to pass it around, it
will walk around the obstacle clockwise if the chosen local direction is “left,”
and walk around it counterclockwise if the local direction is “right.” Because of
the inherent uncertainty involved, every time MA meets an obstacle, there is no
information or criteria it can use to decide whether it should turn left or right to
go around the obstacle. For the sake of consistency and without losing generality,
unless stated otherwise, let us assume that the local direction is always left, as
in Figure 3.5.

Definition 3.1.2. MA is said to define a hit point on the obstacle, denoted H ,
when, while moving along a straight line toward point T , it contacts the obstacle
at the point H . It defines a leave point, L, on the obstacle when it leaves the
obstacle at point L in order to continue its walk toward point T . (See Figure 3.5.)

In case MA moves along a straight line toward point T and the line touches
some obstacle tangentially, there is no need to invoke the procedure for walking
around the obstacle—MA will simply continue its straight-line walk toward point
T . This means that no H or L points will be defined in this case. Consequently,
no point of an obstacle can be defined as both an H and an L point. In order
to define an H or an L point, the corresponding straight line has to produce a
“real” crossing of the obstacle; that is, in the vicinity of the crossing, a finite
segment of the line will lie inside the obstacle and a finite segment of the line
will lie outside the obstacle.

Below we will need the following notation:

D is Euclidean distance between points S and T .
d(A, B) is Euclidean distance between points A and B in the scene;

d(S, T ) = D.
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d(A) is used as a shorthand notation for d(A, T ).
d(Ai) signifies the fact that point A is located on the boundary of the ith

obstacle met by MA on its way to point T .
P is the total length of the path generated by MA on its way from S to T .
pi is the perimeter of ith obstacle encountered by MA.∑

i pi is the sum of perimeters of obstacles met by MA on its way to T , or
of obstacles contained in a specific area of the scene; this quantity will be
used to assess performance of a path planning algorithm or to compare path
planning algorithms.

3.2 UNIVERSAL LOWER BOUND FOR THE PATH
PLANNING PROBLEM

This lower bound, formulated in Theorem 3.2.1 below, informs us what per-
formance can be expected in the worst case from any path planning algorithm
operating within our model. The bound is formulated in terms of the length of
paths generated by MA on its way from point S to point T . We will see later
that the bound is a powerful means for measuring performance of different path
planning procedures.

Theorem 3.2.1 ([58]). For any path planning algorithm satisfying the assump-
tions of our model, any (however large) P > 0, any (however small) D > 0, and
any (however small) δ > 0, there exists a scene in which the algorithm will gen-
erate a path of length no less than P ,

P ≥ D +
∑

i

pi − δ (3.1)

where D is the distance between points S and T , and pi are perimeters of obstacles
intersecting the disk of radius D centered at point T .

Proof: We want to prove that for any known or unknown algorithm X a scene
can be designed such that the length of the path generated by X in it will satisfy
(3.1).2 Algorithm X can be of any type: It can be deterministic or random; its
intermediate steps may or may not depend on intermediate results; and so on.
The only thing we know about X is that it operates within the framework of
our model above. The proof consists of designing a scene with a special set of
obstacles and then proving that this scene will force X to generate a path not
shorter than P in (3.1).

2In Section 3.5 we will learn of a lower bound that is better and tighter: P ≥ D + 1.5
∑

i pi − δ.
The proof of that bound is somewhat involved, so in order to demonstrate the underlying ideas we
prefer to consider in detail the easier proof of the bound (3.1).
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We will use the following scheme to design the required scene (called the
resultant scene). The scene is built in two stages. At the first stage, a virtual
obstacle is introduced. Parts of this obstacle or the whole of it, but not more, will
eventually become, when the second stage is completed, the actual obstacle(s)
of the resultant scene.

Consider a virtual obstacle shown in Figure 3.1a. It presents a corridor of
finite width 2W > δ and of finite length L. The top end of the corridor is closed.
The corridor is positioned such that the point S is located at the middle point of
its closed end; the corridor opens in the direction opposite to the line (S, T ). The
thickness of the corridor walls is negligible compared to its other dimensions. Still
in the first stage, MA is allowed to walk from S to T along the path prescribed
by the algorithm X. Depending on the X’s procedure, MA may or may not touch
the virtual obstacle.

When the path is complete, the second stage starts. A segment of the virtual
obstacle is said to be actualized if all points of the inside wall of the segment
have been touched by MA. If MA has contiguously touched the inside wall of
the virtual obstacle at some length l, then the actualized segment is exactly of
length l. If MA touched the virtual obstacle at a point and then bounced back,
the corresponding actualized area is considered to be a wall segment of length δ

around the point of contact. If two segments of the MA’s path along the virtual
obstacle are separated by an area of the virtual obstacle that MA has not touched,
then MA is said to have actualized two separate segments of the virtual obstacle.

We produce the resultant scene by designating as actual obstacles only those
areas of the virtual obstacle that have been actualized. Thus, if an actualized
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Figure 3.1 Illustration for Theorem 3.2.1. Actualized segments of the virtual obstacle
are shown in solid black. S, start point; T , target point.
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segment is of length l, then the perimeter of the corresponding actual obstacle is
equal to 2l; this takes into account the inside and outside walls of the segment
and also the fact that the thickness of the wall is negligible (see Figure 3.1).

This method of producing the resultant scene is justified by the fact that, under
the accepted model, the behavior of MA is affected only by those obstacles that
it touches along its way. Indeed, under algorithm X the very same path would
have been produced in two different scenes: in the scene with the virtual obstacle
and in the resultant scene. One can therefore argue that the areas of the virtual
obstacle that MA has not touched along its way might have never existed, and
that algorithm X produced its path not in the scene with the virtual obstacle
but in the resultant scene. This means the performance of MA in the resultant
scene can be judged against (3.1). This completes the design of the scene. Note
that depending on the MA’s behavior under algorithm X, zero, one, or more
actualized obstacles can appear in the scene (Figure 3.1b).

We now have to prove that the MA’s path in the resultant scene satisfies
inequality (3.1). Since MA starts at a distance D = d(S, T ) from point T , it
obviously cannot avoid the term D in (3.1). Hence we concentrate on the second
term in (3.1). One can see by now that the main idea behind the described
process of designing the resultant scene is to force MA to generate, for each
actual obstacle, a segment of the path at least as long as the total length of that
obstacle’s boundary. Note that this characteristic of the path is independent of
the algorithm X.

The MA’s path in the scene can be divided into two parts, P 1 and P 2; P 1
corresponds to the MA’s traveling inside the corridor, and P 2 corresponds to its
traveling outside the corridor. We use the same notation to indicate the length
of the corresponding part. Both parts can become intermixed since, after having
left the corridor, MA can temporarily return into it. Since part P 2 starts at the
exit point of the corridor, then

P 2 ≥ L + C (3.2)

where C = √
D2 + W 2 is the hypotenuse AT of the triangle ATS (Figure 3.1a).

As for part P 1 of the path inside the corridor, it will be, depending on the
algorithm X, some curve. Observe that in order to defeat the bound—that is,
produce a path shorter than the bound (3.1)—algorithm X has to decrease the
“path per obstacle” ratio as much as possible. What is important for the proof
is that, from the “path per obstacle” standpoint, every segment of P 1 that does
not result in creating an equivalent segment of the actualized obstacle makes the
path worse. All possible alternatives for P 1 can be clustered into three groups.
We now consider these groups separately.

1. Part P 1 of the path never touches walls of the virtual obstacle (Figure 3.1a).
As a result, no actual obstacles will be created in this case,

∑
i pi = 0. Then

the resulting path is P > D, and so for an algorithm X that produces this
kind of path the theorem holds. Moreover, at the final evaluation, where
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only actual obstacles count, the algorithm X will not be judged as efficient:
It creates an additional path component at least equal to (2 · L + (C − D)),
in a scene with no obstacles!

2. MA touches more than once one or both inside walls of the virtual obsta-
cle (Figure 3.1b). That is, between consecutive touches of walls, MA is
temporarily “out of touch” with the virtual obstacle. As a result, part P 1
of the path will produce a number of disconnected actual obstacles. The
smallest of these, of length δ, corresponds to point touches. Observe that
in terms of the “path per obstacle” assessment, this kind of strategy is
not very wise either. First, for each actual obstacle, a segment of the path
at least as long as the obstacle perimeter is created. Second, additional
segments of P 1, those due to traveling between the actual obstacles, are
produced. Each of these additional segments is at least not smaller than
2W , if the two consecutive touches correspond to the opposite walls of
the virtual obstacle, or at least not smaller than the distance between two
sequentially visited disconnected actual obstacles on the same wall. There-
fore, the length P of the path exceeds the right side in (3.1), and so the
theorem holds.

3. MA touches the inside walls of the virtual obstacle at most once. This
case includes various possibilities, from a point touching, which creates a
single actual obstacle of length δ, to the case when MA closely follows the
inside wall of the virtual obstacle. As one can see in Figure 3.1c, this case
contains interesting paths. The shortest possible path would be created if
MA goes directly from point S to the furthest point of the virtual obstacle
and then directly to point T (path Pa , Figure 3.1c). (Given the fact that
MA knows nothing about the obstacles, a path that good can be generated
only by an accident.) The total perimeter of the obstacle(s) here is 2δ, and
the theorem clearly holds.
Finally, the most efficient path, from the “path per obstacle” standpoint,
is produced if MA closely follows the inside wall of the virtual obstacle
and then goes directly to point T (path Pb, Figure 3.1c). Here MA is
doing its best in trying to compensate each segment of the path with an
equivalent segment of the actual obstacle. In this case, the generated path
P is equal to

P =
∑

i

pi +
√

D2 + W 2 − W (3.3)

(In the path Pb in Figure 3.1c, there is only one term in
∑

i pi .) Since no
constraints have been imposed on the choice of lengths D and W , take
them such that

δ ≥ D + W −
√

D2 + W 2 (3.4)

which is always possible because the right side in (3.4) is nonnegative for
any D and W . Reverse both the sign and the inequality in (3.4), and add
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(D +∑i pi) to its both sides. With a little manipulation, we obtain

∑
i

pi +
√

D2 + W 2 − W ≥ D +
∑

i

pi − δ (3.5)

Comparing (3.3) and (3.5), observe that (3.1) is satisfied.

This exhausts all possible cases of path generation by the algorithm X. Q.E.D.

We conclude this section with two remarks. First, by appropriately select-
ing multiple virtual obstacles, Theorem 3.2.1 can be extended to an arbitrary
number of obstacles. Second, for the lower bound (3.1) to hold, the constraints
on the information available to MA can be relaxed significantly. Namely, the
only required constraint is that at any time moment MA does not have complete
information about the scene.

We are now ready to consider specific sensor-based path planning algorithms.
In the following sections we will introduce three algorithms, analyze their per-
formance, and derive the upper bounds on the length of the paths they generate.

3.3 BASIC ALGORITHMS

3.3.1 First Basic Algorithm: Bug1

This procedure is executed at every point of the MA’s (continuous) path [17,
58]. Before describing it formally, consider the behavior of MA when operating
under this procedure (Figure 3.2). According to the definitions above, when on
its way from point S (Start) to point T (Target), MA encounters an ith obstacle, it
defines on it a hit point Hi, i = 1, 2, . . . . When leaving the ith obstacle in order
to continue toward T , MA defines a leave point Li . Initially i = 1, L0 = S.
The procedure will use three registers—R1, R2, and R3 —to store intermediate
information. All three are reset to zero when a new hit point is defined. The use
of the registers is as follows:

• R1 is used to store coordinates of the latest point, Qm, of the minimum
distance between the obstacle boundary and point T ; this takes one com-
parison at each path point. (In case of many choices for Qm, any one of
them can be taken.)

• R2 integrates the length of the ith obstacle boundary starting at Hi .
• R3 integrates the length of the ith obstacle boundary starting at Qm.

We are now ready to describe the algorithm’s procedure. The test for target
reachability mentioned in Step 3 of the procedure will be explained further in
this section.
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Figure 3.2 The path of the robot (dashed lines) under algorithm Bug1. ob1 and ob2 are
obstacles, H1 and H2 are hit points, L1 and L2 are leave points.

Bug1 Procedure

1. From point Li−1, move toward point T (Target) along the straight line until
one of these occurs:
(a) Point T is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hi , is defined. Go to Step 2.

2. Using the local direction, follow the obstacle boundary. If point T is
reached, stop. Otherwise, after having traversed the whole boundary and
having returned to Hi , define a new leave point Li = Qm. Go to Step 3.

3. Based on the contents of registers R2 and R3, determine the shorter way
along the boundary to point Li , and use it to reach Li . Apply the test
for target reachability. If point T is not reachable, the procedure stops.
Otherwise, set i = i + 1 and go to Step 1.

Analysis of Algorithm Bug1

Lemma 3.3.1. Under Bug1 algorithm, when MA leaves a leave point of an obsta-
cle in order to continue toward point T , it will never return to this obstacle again.

Proof: Assume that on its way from point S to point T , MA does meet some
obstacles. We number those obstacles in the order in which MA encounters them.
Then the following sequence of distances appears:

D, d(H1), d(L1), d(H2), d(L2), d(H3), d(L3), . . .
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If point S happens to be on an obstacle boundary and the line (S, T ) crosses that
obstacle, then D = d(H1).

According to our model, if MA’s path touches an obstacle tangentially, then
MA needs not walk around it; it will simply continue its straight-line walk toward
point T . In all other cases of meeting an ith obstacle, unless point T lies on
an obstacle boundary, a relation d(Hi) > d(Li) holds. This is because, on the
one hand, according to the model, any straight line (except a line that touches
the obstacle tangentially) crosses the obstacle at least in two distinct points.
This is simply a reflection of the finite “thickness” of obstacles. On the other
hand, according to algorithm Bug1, point Li is the closest point from obstacle
i to point T . Starting from Li , MA walks straight to point T until (if ever) it
meets the (i + 1)th obstacle. Since, by the model, obstacles do not touch one
another, then d(Li) > d(Hi+1). Our sequence of distances, therefore, satisfies
the relation

d(H1) > d(L1) > d(H2) > d(L2) > d(H3) > d(L3) . . . (3.6)

where d(H1) is or is not equal to D. Since d(Li) is the shortest distance from the
ith obstacle to point T , and since (3.6) guarantees that algorithm Bug1 monoton-
ically decreases the distances d(Hi) and d(Li) to point T , Lemma 3.3.1 follows.
Q.E.D.

The important conclusion from Lemma 3.3.1 is that algorithm Bug1 guarantees
to never create cycles.

Corollary 3.3.1. Under Bug1, independent of the geometry of an obstacle, MA
defines on it no more than one hit and no more than one leave point.

To assess the algorithm’s performance—in particular, we will be interested
in the upper bound on the length of paths that it generates—an assurance is
needed that on its way to point T , MA can encounter only a finite number
of obstacles. This is not obvious: While following the algorithm, MA may be
“looking” at the target not only from different distances but also from different
directions. That is, besides moving toward point T , it may also rotate around it
(see Figure 3.3). Depending on the scene, this rotation may go first, say, clock-
wise, then counterclockwise, then again clockwise, and so on. Hence we have
the following lemma.

Lemma 3.3.2. Under Bug1, on its way to the Target, MA can meet only a finite
number of obstacles.

Proof: Although, while walking around an obstacle, MA may sometimes be
at distances much larger than D from point T (see Figure 3.3), the straight-
line segments of its path toward the point T are always within the same circle
of radius D centered at point T . This is guaranteed by inequality (3.6). Since,
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Figure 3.3 Algorithm Bug1. Arrows indicate straight-line segments of the robot’s path.
Path segments around obstacles are not shown; they are similar to those in Figure 3.2.

according to our model, any disc of finite radius can intersect only a finite number
of obstacles, the lemma follows. Q.E.D.

Corollary 3.3.2. The only obstacles that MA can be meet under algorithm Bug1
are those that intersect the disk of radius D centered at target T .

Together, Lemma 3.3.1, Lemma 3.3.2, and Corollary 3.3.2 guarantee conver-
gence of the algorithm Bug1.

Theorem 3.3.1. Algorithm Bug1 is convergent.

We are now ready to tackle the performance of algorithm Bug1. As discussed, it
will be established in terms of the length of paths that the algorithm generates. The
following theorem gives an upper bound on the path lengths produced by Bug1.

Theorem 3.3.2. The length of paths produced by algorithm Bug1 obeys the limit,

P ≤ D + 1.5 ·
∑

i

pi (3.7)

where D is the distance (Start, Target), and
∑

i pi includes perimeters of obstacles
intersecting the disk of radius D centered at the Target.
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Proof: Any path generated by algorithm Bug1 can be looked at as consisting
of two parts: (a) straight-line segments of the path while walking in free space
between obstacles and (b) path segments when walking around obstacles. Due
to inequality (3.6), the sum of the straight-line segments will never exceed D.
As to path segments around obstacles, algorithm Bug1 requires that in order to
define a leave point on the ith obstacle, MA has to first make a “full circle”
along its boundary. This produces a path segment equal to one perimeter, pi , of
the ith obstacle, with its end at the hit point. By the time MA has completed
this circle and is ready to walk again around the ith obstacles from the hit to the
leave point, in order to then depart for point T , the procedure prescribes it to go
along the shortest path. By then, MA knows the direction (going left or going
right) of the shorter path to the leave point. Therefore, its path segment between
the hit and leave points along the ith obstacle boundary will not exceed 0.5 · pi .
Summing up the estimates for straight-line segments of the path and segments
around the obstacles met by MA on its way to point T , obtain (3.7). Q.E.D.

Further analysis of algorithm Bug1 shows that our model’s requirement that
MA knows its own coordinates at all times can be eased. It suffices if MA knows
only its distance to and direction toward the target T . This information would
allow it to position itself at the circle of a given radius centered at T . Assume
that instead of coordinates of the current point Qm of minimum distance between
the obstacle and T , we store in register R1 the minimum distance itself. Then
in Step 3 of the algorithm, MA can reach point Qm by comparing its current
distance to the target with the content of register R1. If more than one point of
the current obstacle lie at the minimum distance from point T , any one of them
can be used as the leave point, without affecting the algorithm’s convergence.

In practice, this reformulated requirement may widen the variety of sensors the
robot can use. For example, if the target sends out, equally in all directions, a low-
frequency radio signal, a radio detector on the robot can (a) determine the direc-
tion on the target as one from which the signal is maximum and (b) determine
the distance to it from the signal amplitude.

Test for Target Reachability. The test for target reachability used in algorithm
Big1 is designed as follows. Every time MA completes its exploration of a new
obstacle i, it defines on it a leave point Li . Then MA leaves the ith obstacle at
Li and starts toward the target T along the straight line (Li, T ). According to
Lemma 3.3.1, MA will never return again to the ith obstacle. Since point Li is
by definition the closest point of obstacle i to point T , there will be no parts of
the obstacle i between points Li and T . Because, by the model, obstacles do not
touch each other, point Li cannot belong to any other obstacle but i. Therefore,
if, after having arrived at Li in Step 3 of the algorithm, MA discovers that the
straight line (Li, T ) crosses some obstacle at the leave point Li , this can only
mean that this is the ith obstacle and hence target T is not reachable—either
point S or point T is trapped inside the ith obstacle.

To show that this is true, let O be a simple closed curve; let X be some point
in the scene that does not belong to O; let L be the point on O closest to X;
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and let (L, X) be the straight-line segment connecting L and X. All these are
in the plane. Segment (L, X) is said to be directed outward if a finite part of it
in the vicinity of point L is located outside of curve O. Otherwise, if segment
(L, X) penetrates inside the curve O in the vicinity of L, it is said to be directed
inward.

The following statement holds: If segment (L, X) is directed inward, then
X is inside curve O. This condition is necessary because if X were outside
curve O, then some other point of O that would be closer to X than to L

would appear in the intersection of (L, X) and O. By definition of the point L,
this is impossible. The condition is also sufficient because if segment (L, X) is
directed inward and L is the point on curve O that is the closest to X, then
segment (L, X) cannot cross any other point of O, and therefore X must lie
inside O. This fact is used in the following test that appears as a part in Step 3
of algorithm Bug1:

Test for Target Reachability. If, while using algorithm Bug1, after having
defined a point L on an obstacle, MA discovers that the straight line segment
(L, Target) crosses the obstacle at point L, then the target is not reachable.

One can check the test on the example shown in Figure 3.4. Starting at point T ,
the robot encounters an obstacle and establishes on it a hit point H . Using the
local direction “left,” it then does a full exploration of the (accessible) boundary
of the obstacle. Once it arrives back at point H , its register R1 will contain the
location of the point on the boundary that is the closest to T . This happens to be

S

T

L

H

Figure 3.4 Algorithm Bug1. An example with an unreachable target (a trap).
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point L. The robot then walks to L by the shortest route (which it knows from
the information it now has) and establishes on it the leave point L. At this point,
algorithm Bug1 prescribes it to move toward T . While performing the test for
target reachability, however, the robot will note that the line (L, T ) enters the
obstacle at L and hence will conclude that the target is not reachable.

3.3.2 Second Basic Algorithm: Bug2

Similar to the algorithm Bug1, the procedure Bug2 is executed at every point of
the robot’s (continuous) path. As before, the goal is to generate a path from the
start to the target position. As will be evident later, three important properties
distinguish algorithm Bug2 from Bug1: Under Bug2, (a) MA can encounter the
same obstacle more than once, (b) algorithm Bug2 has no way of distinguishing
between different obstacles, and (c) the straight line (S, T ) that connects the
starting and target points plays a crucial role in the algorithm’s workings. The
latter line is called M-line (for Main line). In imprecise words, the reason M-line
is so important is that the procedure uses it to index its progress toward the target
and to ensure that the robot does not get lost.

Because of these differences, we need to change the notation slightly: Subscript
i will be used only when referring to more than one obstacle, and superscript j

will be used to indicate the j th occurrence of a hit or leave points on the same
or on a different obstacle. Initially, j = 1; L0 = Start. Similar to Bug1, the Bug2
procedure includes a test for target reachability, which is built into Steps 2b and
2c of the procedure. The test is explained later in this section. The reader may
find it helpful to follow the procedure using an example in Figure 3.5.

S

T

ob1

H2

ob2

L2

H1

L1

Figure 3.5 Robot’s path (dashed line) under Algorithm Bug2.
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Bug2 Procedure

1. From point Lj−1, move along the M-line (straight line (S, T )) until one of
these occurs:
(a) Target T is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj , is defined. Go to Step 2.

2. Using the accepted local direction, follow the obstacle boundary until one
of these occurs:
(a) Target T is reached. The procedure stops.
(b) M-line is met at a point Q such that distance d(Q) < d(Hj ), and

straight line (Q, T ) does not cross the current obstacle at point Q.
Define the leave point Lj = Q. Set j = j + 1. Go to Step 1.

(c) MA returns to Hj and thus completes a closed curve along the obstacle
boundary, without having defined the next hit point, Hj+1. Then, the
target point T is trapped and cannot be reached. The procedure stops.

Unlike with algorithm Bug1, more than one hit and more than one leave point
can be generated on a single obstacle under algorithm Bug2 (see the example in
Figure 3.6). Note also that the relationship between perimeters of the obstacles
and the length of paths generated by Bug2 is not as clear as in the case of
algorithm Bug1. In Bug1, the perimeter of an obstacle met by MA is traversed
at least once and never more than 1.5 times. In Bug2, more options appear. A
path segment around an obstacle generated by MA is sometimes shorter than the
obstacle perimeter (Figure 3.5), which is good news: We finally see something
“intelligent.” Or, when a straight-line path segment of the path meets an obstacle
almost tangentially and MA happened to be walking around the obstacle in an
“unfortunate” direction, the path can become equal to the obstacle’s full perimeter
(Figure 3.7). Finally, as Figure 3.6a demonstrates, the situation can get even
worse: MA may have to pass along some segments of a maze-like obstacle more
than once and more than twice. (We will return to this case later in this section.)

Analysis of Algorithm Bug2

Lemma 3.3.3. Under Bug2, on its way to the target, MA can meet only a finite
number of obstacles.

Proof: Although, while walking around an obstacle, MA may at times find itself
at distances much larger than D from point T (Target), its straight-line path
segments toward T are always within the same circle of radius D centered at T .
This is guaranteed by the algorithm’s condition that d(Lj , T ) > d(Hj , T ) (see
Step 2 of Bug2 procedure). Since, by the model, any disc of finite radius can
intersect with only a finite number of obstacles, the lemma follows. Q.E.D.

Corollary 3.3.3. The only obstacles that MA can meet while operating under
algorithm Bug2 are those that intersect the disc of radius D centered at the target.
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S

T

H1

L1

H2

L2

H3

L3

S

T

L3

H3

L2

H2

L1

H1

(a) (b)

Figure 3.6 (a, b) Robot’s path around a maze-like obstacle under Algorithm Bug2 (in-
position case). Both obstacles (a) and (b) are similar, except in (a) the M-line (straight line
(S, T )) crosses the obstacle 10 times, and in (b) it crosses 14 times. MA passes through
the same path segment(s) at most three times (here, through segment (H1, L1)). Thus, at
most two local cycles are created in this examples.

S

T

ob1

Figure 3.7 In this example, under Algorithm Bug2 the robot will make almost a full
circle around this convex obstacle.
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S

T

H1

L1

H2

L2

H3

L3

Figure 3.8 Robot’s path in an in-position case; here point S is outside of the obstacle,
and T is inside.

Moreover, the only obstacles that can be met by MA are those that intersect the
M-line (straight line (Start, Target)).

Definition 3.3.1. For the given local direction, a local cycle is created when MA
has to pass some point of its path more than once.

In the example in Figure 3.5, no local cycles are created; in Figures 3.6 and 3.8
there are local cycles.

Definition 3.3.2. The term in-position refers to a mutual position of points (Start,
Target) and a given obstacle, such that (1) the M-line crosses the obstacle bound-
ary at least once, and (2) either Start or Target lie inside the convex hull of the
obstacle. The term out-position refers to a mutual position of points (Start, Target)
and a given obstacle, such that both points Start and Target lie outside the convex
hull of the obstacle. A given scene is referred to as an in-position case if at least
one obstacle in the scene creates an in-position situation; otherwise, the scene
presents an out-position case.

For example, the scene in Figure 3.3 is an in-position case. Without obstacle
ob3, the scene would have been an out-position case.

We denote ni to be the number of intersections between the M-line (straight
line (S, T )) and the ith obstacle; ni is thus a characteristic of the set (scene, Start,
Target) and not of the algorithm. Obviously, for any convex obstacle, ni = 2.
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If an obstacle is not convex but still ni = 2, the path generated by Bug2 can
be as simple as that for a convex obstacle (see, e.g., Figure 3.5, obstacle ob2).
Even with more complex obstacles, such as that in Figure 3.6, the situation and
the resulting path can be quite simple. For example, in this same scene, if the
M-line happened to be horizontal, we would have ni = 2 and a very simple path.

The path can become more complicated if ni > 2 and we are dealing with
an in-position case. In Figure 3.6a, the segment of the boundary from point H1
to point L1, (H1, L1), will be traversed three times: segments (L1, L2) and
(H2, H1), twice each; and segments (L2, L3) and (H3, H2), once each. On the
other hand, if in this example the M-line line extends below, so that point S is
under the whole obstacle (that is, this becomes an out-position case), the path
will again become very simple, with no local cycles (in spite of high ni number).

Lemma 3.3.4. Under Bug2, MA will pass any point of the ith obstacle boundary
at most ni/2 times.

Proof: As one can see, procedure Bug2 does not distinguish whether two con-
secutive obstacle crossings by the M-line (straight line (S, T )) correspond to the
same or to different obstacles. Without loss of generality, assume that only one
obstacle is present; then we can drop the index i. For each hit point Hj , the
procedure will make MA walk around the obstacle until it reaches the cor-
responding leave point, Lj . Therefore, all H and L points appear in pairs,
(Hj , Lj ). Because, by the model, all obstacles are of finite “thickness,” for each
pair (Hj , Lj ) an inequality holds, d(Hj ) > d(Lj ). After leaving Lj , MA walks
along a straight line to the next hit point, Hj+1. Since, according to the model,
the distance between two crossings of the obstacle by a straight line is finite, we
have d(Lj ) > d(Hj+1). This produces a chain of inequalities for all H and L

points,

d(H 1) > d(L1) > d(H 2) > d(L2) > d(H 3) > d(L3) > · · · (3.8)

Therefore, although any H or L point may be passed more than once, it will
be defined as an H (correspondingly, L) point only once. That point can hence
generate only one new passing of the same segment of the obstacle perimeter. In
other words, each pair (Hj , Lj ) can give rise to only one passing of a segment
of the obstacle boundary. This means that ni crossings will produce at most ni/2
passings of the same path segment. Q.E.D.

The lemma guarantees that the procedure terminates, and it gives a limit on
the number of generated local cycles. Using the lemma, we can now produce an
upper bound on the length of paths generated by algorithm Bug2.

Theorem 3.3.3. The length of a path generated by algorithm Bug2 will never
exceed the limit

P = D +
∑

i

nipi

2
(3.9)
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where D is the distance (Start, Target), and pi refers to perimeters of obstacles
that intersect the M-line (straight line segment (Start, Target)). This means Bug2
is convergent.

Proof: Any path can be looked at as consisting of two parts: (a) straight-line
segments of the M-line between the obstacles that intersect it and (b) path seg-
ments that relate to walking around obstacle boundaries. Because of inequality
(3.8), the sum of the straight line segments will never exceed D. As to path
segments around obstacles, there is an upper bound guaranteed by Lemma 3.3.4
for each obstacle met by MA on its path: No more than ni/2 passings along the
same segment of the obstacle boundary will take place. Because of Lemma 3.3.3
(see its proof), only those obstacles that intersect the M-line should be counted.
Summing up the straight-line segments and segments that correspond to walking
around obstacles, obtain (3.9). Q.E.D.

Theorem 3.3.3 suggests that in some “bad” scenes, under algorithm Bug2, MA
may be forced to go around obstacles any large, albeit finite, number of times.
An important question, therefore, is how typical such “bad” scenes are.

In particular, other things being equal, what characteristics of the scene influ-
ence the length of the path? Theorem 3.3.4 and its corollary below address this
question. They suggest that the mutual position of point S, point T , and obstacles
in the scene can affect the path length rather dramatically. Together, they signif-
icantly improve the upper bound on the length of paths generated by Bug2—in
out-position scenes in general and in scenes with convex obstacles in particular.

Theorem 3.3.4. Under algorithm Bug2, in the case of an out-position scene, MA
will pass any point of an obstacle boundary at most once.

In other words, if the mutual position of the obstacle and of points S and T sat-
isfies the out-position definition, the estimate on the length of paths generated by
Bug2 reaches the universal lower bound (3.1). That is a very good news indeed.
Out-position situations are rather common for mobile robots.3 We know already
that in some situations, algorithm Bug2 is extremely efficient and traverses only
a fraction of obstacle boundaries. Now the theorem tells us that as long as the
robot deals with an out-position situation, even in the most unlucky case it will
not traverse more than 1.5 times the obstacle boundaries involved.

Proof: Figure 3.9 is used to illustrate the proof. Shaded areas in the figure cor-
respond to one or many obstacles. Dashed boundaries indicate that obstacle
boundaries in these areas can be of any shape.

Consider an obstacle met by MA on its way to the Target, and consider an
arbitrary point Q on the obstacle boundary (not shown in the figure). Assume
that Q is not a hit point. Because the obstacle boundary is a simple closed curve,
the only way that MA can reach point Q is to come to it from a previously

3We will see later that out-position situations are a rarity for arm manipulators.
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S

T

Figure 3.9 Illustration for Theorem 3.3.4.

defined hit point. Now, move from Q along the already generated path segment
in the direction opposite to the accepted local direction, until the closest hit point
on the path is encountered; say, that point is Hj . We are interested only in those
cases where Q is involved in at least one local cycle—that is, when MA passes
point Q more than once. For this event to occur, MA has to pass point Hj at
least as many times. In other words, if MA does not pass Hj more than once, it
cannot pass Q more than once.

According to the Bug2 procedure, the first time MA reaches point Hj it
approaches it along the M-line (straight line (Start, Target))—or, more precisely,
along the straight line segment (Lj−1, T ). MA then turns left and starts walking
around the obstacle. To form a local cycle on this path segment, MA has to
return to point Hj again. Since a point can become a hit point only once (see the
proof for Lemma 3.3.4), the next time MA returns to point Hj it must approach
it from the right (see Figure 3.9), along the obstacle boundary. Therefore, after
having defined Hj , in order to reach it again, this time from the right, MA must
somehow cross the M-line and enter its right semiplane. This can take place in
one of only two ways: outside or inside the interval (S, T ). Consider both cases.

1. The crossing occurs outside the interval (S, T ). This case can correspond
only to an in-position configuration (see Definition 3.3.2). Theorem 3.3.4,
therefore, does not apply.

2. The crossing occurs inside the interval (S, T ). We want to prove now
that such a crossing of the path with the interval (S, T ) cannot produce
local cycles. Notice that the crossing cannot occur anywhere within the
interval (S, Hj ) because otherwise at least a part of the straight-line seg-
ment (Lj−1, Hj ) would be included inside the obstacle. This is impossible
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because MA is known to have walked along the whole segment (Lj−1, Hj ).
If the crossing occurs within the interval (Hj, T ), then at the crossing point
MA would define the corresponding leave point, Lj , and start moving along
the line (S, T ) toward the target T until it defined the next hit point, Hj+1,
or reached the target. Therefore, between points Hj and Lj , MA could not
have reached into the right semiplane of the M-line (see Figure 3.9).

Since the above argument holds for any Q and the corresponding Hj , we con-
clude that in an out-position case MA will never cross the interval (Start, Target)
into the right semiplane, which prevents it from producing local cycles. Q.E.D.

So far, no constraints on the shape of the obstacles have been imposed. In
a special case when all the obstacles in the scene are convex, no in-position
configurations can appear, and the upper bound on the length of paths generated
by Bug2 can be improved:

Corollary 3.3.4. If all obstacles in the scene are convex, then in the worst case
the length of the path produced by algorithm Bug2 is

P = D +
∑

i

pi (3.10)

and, on the average,

P = D + 0.5 ·
∑

i

pi (3.11)

where D is distance (Start, Target), and pi refer to perimeters of the obstacles
that intersect the straight line segment (Start, Target).

Consider a statistically representative number of scenes with a random distri-
bution of convex obstacles in each scene, a random distribution of points Start
and Target over the set of scenes, and a fixed local direction as defined above.
The M-line will cross obstacles that it intersects in many different ways. Then,
for some obstacles, MA will be forced to cover the bigger part of their perimeters
(as in the case of obstacle ob1, Figure 3.5); for some other obstacles, MA will
cover only a smaller part of their perimeters (as with obstacle ob2, Figure 3.5).

On the average, one would expect a path that satisfies (3.11). As for (3.10),
Figure 3.7 presents an example of such a “noncooperating” obstacle. Corol-
lary 3.3.4 thus ensures that for a wide range of scenes the length of paths
generated by algorithm Bug2 will not exceed the universal lower bound (3.1).

Test for Target Reachability. As suggested by Lemma 3.3.4, under Bug2 MA
may pass the same point Hj of a given obstacle more than once, producing a
finite number p of local cycles, p = 0, 1, 2, . . . . The proof of the lemma indicates
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that after having defined a point Hj , MA will never define this point again as
an H or an L point. Therefore, on each of the subsequent local cycles (if any),
point Hj will be passed not along the M-line but along the obstacle boundary.
After having left point Hj , MA can expect one of the following to occur:

MA will never return again to Hj ; this happens, for example, if it leaves the
current obstacle altogether or reaches the Target T .

MA will define at least the first pair of points (Lj ,Hj+1), . . . , and will then
return to point Hj , to start a new local cycle.

MA will come back to point Hj without having defined a point Lj on the
previous cycle. This means that MA could find no other intersection point
Q of the line (Hj, T ) with the current obstacle such that Q would be
closer to the point T than Hj , and the line (Q, T ) would not cross the
current obstacle at Q. This can happen only if either MA or point T are
trapped inside the current obstacle (see Figure 3.10). The condition is both
necessary and sufficient, which can be shown similar to the proof in the
target reachability test for algorithm Bug1 (Section 3.3.1).

Based on this observation, we now formulate the test for target reachability for
algorithm Bug2.

S

T

(a)

S

T

(b)

Figure 3.10 Examples where no path between points S and T is possible (traps), algo-
rithm Bug2. The path is the dashed line. After having defined the hit point H2, the robot
returns to it before it defines any new leave point. Therefore, the target is not reachable.
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Test for Target Reachability. If, on the pth local cycle, p = 0, 1, . . . , after
having defined a hit point Hj , MA returns to this point before it defines at least
the first two out of the possible set of points Lj , Hj+1, . . . , Hk , this means that
MA has been trapped and hence the target is not reachable.

We have learned that in in-position situations algorithm Bug2 may become
inefficient and create local cycles, visiting some areas of its path more than
once. How can we characterize those situations? Does starting or ending “inside”
the obstacle—that is, having an in-position situation—necessarily lead to such
inefficiency? This is clearly not so, as one can see from the following example of
Bug2 operating in a maze (labyrinth). Consider a version of the labyrinth problem
where the robot, starting at one point inside the labyrinth, must reach some
other point inside the labyrinth. The well-known mice-in-the-labyrinth problem
is sometimes formulated this way. Consider an example4 shown in Figure 3.11.

S

T

Figure 3.11 Example of a walk (dashed line) in a maze under algorithm Bug2. S, Start;
T , Target.

4To fit the common convention of maze search literature, we present a discrete version of the
continuous path planning problem: The maze is a rectangular cell structure, with each cell being a
little square; any cell crossed by the M-line (straight line (S, T )) is considered to be lying on the
line. This same discussion can be carried out using an arbitrary curvilinear maze.
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Given the fact that no bird’s-eye view of the maze is available to MA (at each
moment it can see only the small cell that it is passing), the MA’s path looks
remarkably efficient and purposeful. (It would look even better if MA’s sensing
was something better than simple tactile sensing; see Figure 3.20 and more on
this topic in Section 3.6.) One reason for this is, of course, that no local cycles
are produced here. In spite of its seeming complexity, this maze is actually an
easy scene for the Bug2 algorithm.

Let’s return to our question, How can we classify in-position situations, so as to
recognize which one would cause troubles to the algorithm Bug2? This question is
not clear at the present time. The answer, likely tied to the topological properties
of the combination (scene, Start, Target), is still awaiting a probing researcher.

3.4 COMBINING GOOD FEATURES OF BASIC ALGORITHMS

Each of the algorithms Bug1 and Bug2 has a clear and simple, and quite distinct,
underlying idea: Bug1 “sticks” to every obstacle it meets until it explores it
fully; Bug2 sticks to the M-line (line (Start, Target)). Each has its pluses and
minuses. Algorithm Bug1 never creates local cycles; its worse-case performance
looks remarkably good, but it tends to be “overcautious” and will never cover
less than the full perimeter of an obstacle on its way. Algorithm Bug2, on the
other hand, is more “human” in that it can “take a risk.” It takes advantage of
simpler situations; it can do quite well even in complex scenes in spite of its
frighteningly high worst-case performance—but it may become quite inefficient,
much more so than Bug1, in some “unlucky” cases.

The difficulties that algorithm Bug2 may face are tied to local cycles—
situations when the robot must make circles, visiting the same points of the
obstacle boundaries more than once. The source of these difficulties lies in what
we called in-position situations (see the Bug2 analysis above). The problem is
of topological nature. As the above estimates of Bug2 “average” behavior show,
its performance in out-positions situations may be remarkably good; these are
situations that mobile robots will likely encounter in real-life scenes.

On the other hand, fixing the procedure so as to handle in-position situations
well would be an important improvement. One simple idea for doing this is to
attempt a procedure that combines the better features of both basic algorithms.
(As always, when attempting to combine very distinct ideas, the punishment will
be the loss of simplicity and elegance of both algorithms.) We will call this
procedure BugM1 (for “modified”) [59]. The procedure combines the efficiency
of algorithm Bug2 in simpler scenes (where MA will pass only portions, instead
of full perimeters, of obstacles, as in Figure 3.5) with the more conservative,
but in the limit the more economical, strategy of algorithm Bug1 (see the bound
(3.7)). The idea is simple: Since Bug2 is quite good except in cases with local
cycles, let us try to switch to Bug1 whenever MA concludes that it is in a local
cycle. As a result, for a given point on a BugM1 path, the number of local cycles
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containing this point will never be larger than two; in other words, MA will never
pass the same point of the obstacle boundary more than three times, producing
the upper bound

P ≥ D + 3 ·
∑

i

pi (3.12)

Algorithm BugM1 is executed at every point of the continuous path. Instead of
using the fixed M-line (straight line (S, T )), as in Bug2, BugM1 uses a straight-
line segment (L

j

i , T ) with a changing point L
j

i ; here, L
j

i indicates the j th leave
point on obstacle i. The procedure uses three registers, R1, R2, and R3, to store
intermediate information. All three are reset to zero when a new hit point H

j

i is
defined:

• Register R1 stores coordinates of the current point, Qm, of minimum dis-
tance between the obstacle boundary and the Target.

• R2 integrates the length of the obstacle boundary starting at H
j

i .
• R3 integrates the length of the obstacle boundary starting at Qm. (In case

of many choices for Qm, any one of them can be taken.)

The test for target reachability that appears in Step 2d of the procedure is
explained lower in this section. Initially, i = 1, j = 1; Lo

o = Start. The BugM1
procedure includes these steps:

1. From point L
j−1
i−1 , move along the line (L

j−1
o , Target) toward Target until

one of these occurs:
(a) Target is reached. The procedure stops.

(b) An ith obstacle is encountered and a hit point, H
j

i , is defined. Go to
Step 2.

2. Using the accepted local direction, follow the obstacle boundary until one
of these occurs:
(a) Target is reached. The procedure stops.

(b) Line (L
j−1
o , Target) is met inside the interval (L

j−1
o , Target), at a point

Q such that distance d(Q) < d(Hj ), and the line (Q, Target) does not
cross the current obstacle at point Q. Define the leave point L

j

i = Q.
Set j = j + 1. Go to Step 1.

(c) Line (L
j−1
o , Target) is met outside the interval (L

j−1
o , Target). Go to

Step 3.

(d) The robot returns to H
j

i and thus completes a closed curve (of the
obstacle boundary) without having defined the next hit point. The target
cannot be reached. The procedure stops.
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3. Continue following the obstacle boundary. If the target is reached, stop.
Otherwise, after having traversed the whole boundary and having returned
to point H

j

i , define a new leave point L
j

i = Qm. Go to Step 4.
4. Using the contents of registers R2 and R3, determine the shorter way along

the obstacle boundary to point L
j

i , and use it to get to L
j

i . Apply the
test for Target reachability (see below). If the target is not reachable, the
procedure stops. Otherwise, designate Lo

i = L
j

i , set i = i + 1, j = 1, and
go to Step 1.

As mentioned above, the procedure itself BugM1 is obviously longer and
“messier” compared to the elegantly simple procedures Bug1 and Bug2. That
is the price for combining two algorithms governed by very different principles.
Note also that since at times BugM1 may leave an obstacle before it fully explores
it, according to our classification above it falls into the Class 2.

What is the mechanism of algorithm BugM1 convergence? Depending on the
scene, the algorithm’s flow fits one of the following two cases.

Case 1. If the condition in Step 2c of the procedure is never satisfied, then
the algorithm flow follows that of Bug2—for which convergence has been
already established. In this case, the straight lines (Lj

i , Target) always coin-
cide with the M-line (straight line (Start, Target)), and no local cycles
appear.

Case 2. If, on the other hand, the scene presents an in-position case, then
the condition in Step 2c is satisfied at least once; that is, MA crosses the
straight line (L

j−1
o , Target) outside the interval (L

j−1
o , Target). This indi-

cates that there is a danger of multiple local cycles, and so MA switches
to a more conservative procedure Bug1, instead of risking an uncertain
number of local cycles it might now expect from the procedure Bug2 (see
Lemma 3.3.4). MA does this by executing Steps 3 and 4 of BugM1, which
are identical to Steps 2 and 3 of Bug1.

After one execution of Steps 3 and 4 of the BugM1 procedure, the last leave point
on the ith obstacle is defined, L

j

i , which is guaranteed to be closer to point T

than the corresponding hit point, H
j

i [see inequality (3.7), Lemma 3.3.1]. Then
MA leaves the ith obstacle, never to return to it again (Lemma 3.3.1). From
now on, the algorithm (in its Steps 1 and 2) will be using the straight line (Lo

i ,
Target) as the “leading thread.” [Note that, in general, the line (Lo

i , Target) does
not coincide with the straight lines (Lo

i−1, T ) or (S, T )]. One execution of the
sequence of Steps 3 and 4 of BugM1 is equivalent to one execution of Steps 2
and 3 of Bug1, which guarantees the reduction by one of the number of obstacles
that MA will meet on its way. Therefore, as in Bug1, the convergence of this case
is guaranteed by Lemma 3.3.1, Lemma 3.3.2, and Corollary 3.3.2. Since Case 1
and Case 2 above are independent and together exhaust all possible cases, the
procedure BugM1 converges.
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3.5 GOING AFTER TIGHTER BOUNDS

The above analysis raises two questions:

1. There is a gap between the bound given by (3.1), P ≥ D +∑i pi − δ (the
universal lower bound for the planning problem), and the bound given by
(3.7), P ≤ D + 1.5 ·∑i pi (the upper bound for Bug1 algorithm).
What is there in the gap? Can the lower bound (3.1) be tightened
upwards—or, inversely, are there algorithms that can reach it?

2. How big and diverse are Classes 1 and 2?

To remind the reader, Class 1 combines algorithms in which the robot never
leaves an obstacle unless and until it explores it completely. Class 2 combines
algorithms that are complementary to those in Class 1: In them the robot can
leave an obstacle and walk further, and even return to this obstacle again at
some future time, without exploring it in full.

A decisive step toward answering the above questions was made in 1991 by
A. Sankaranarayanan and M. Vidyasagar [60]. They proposed to (a) analyze the
complexity of Classes 1 and 2 of sensor-based planning algorithms separately and
(b) obtain the lower bounds on the lengths of generated paths for each of them.
This promised tighter bounds compared to (3.1). Then, since together both classes
cover all possible algorithms, the lower of the obtained bounds would become
the universal lower bound. Proceeding in this direction, Sankaranarayanan and
Vidyasagar obtained the lower bound for Class 1 algorithms as

P ≥ D + 1.5
∑

i

pi (3.13)

and the lower bound for Class 2 algorithms as

P ≥ D + 2 ·
∑

i

pi (3.14)

As before, P is the length of a generated path, D is the distance (Start, Target),
and pi refers to perimeters of obstacles met by the robot on its way to the target.

There are three important conclusions from these results:

• It is the bound (3.13), and not (3.1), that is today the universal lower bound:
in the worst case no sensor-based motion planning algorithm can produce a
path shorter than P in (3.13).

• According to the bound (3.13), algorithm Bug1 reaches the universal lower
bound. That is, no algorithm in Class 1 will be able to do better than Bug1
in the worst case.

• According to bounds (3.13) and (3.14), in the worst case no algorithm from
either of the two classes can do better than Bug1.
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How much variety and how many algorithms are there in Classes 1 and 2?
For Class 1, the answer is simple: At this time, algorithm Bug1 is the only
representative of Class 1. The future will tell whether this represents just the
lack of interest in the research community to such algorithms or something else.
One can surmise that it is both: The underlying mechanism of this class of
algorithms does not promise much richness or unusual algorithms, and this gives
little incentive for active research.

In contrast, a lively innovation and variety has characterized the development
in Class 2 algorithms. At least a dozen or so algorithms have appeared in literature
since the problem was first formulated and the basic algorithms were reported.
Since some such algorithms make use of the types of sensing that are more
elaborate than basic tactile sensing used in this section, we defer a survey in
this area until Section 3.8, after we discuss in the next section the effect of more
complex sensing on sensor-based motion planning.

3.6 VISION AND MOTION PLANNING

In the previous section we developed the framework for designing sensor-based
path planning algorithms with proven convergence. We designed some algorithms
and studied their properties and performance. For clarity, we limited the sensing
that the robot possesses to (the most simple) tactile sensing. While tactile sens-
ing plays an important role in real-world robotics—in particular in short-range
motion planning for object manipulation and for escaping from tight places—for
general collision avoidance, richer remote sensing such as computer vision or
range sensing present more promising options.

The term “range” here refers to devices that directly provide distance informa-
tion, such as a laser ranger. A stereo vision device would be another option. In
order to successfully negotiate a scene with obstacles, a mobile robot can make
a good use of distance information to objects it is passing.

Here we are interested in exploring how path planning algorithms would be
affected by the sensing input that is richer and more complex than tactile sensing.
In particular, can algorithms that operate with richer sensory data take advantage
of additional sensor information and deliver better path length performance —to
put it simply, shorter paths—than when using tactile sensing? Does proximal
or distant sensing really help in motion planning compared to tactile sensing,
and, if so, in what way and under what conditions? Although this question is far
from trivial and is important for both theory and practice (this is manifested by a
recent continuous flow of experimental works with “seeing” robots), there have
been little attempts to address this question on the algorithmic level.

We are thus interested in algorithms that can make use of a range finder or
stereo vision and that, on the one hand, are provably correct and, on the other
hand, would let, say, a mobile robot deliver a reasonable performance in nontriv-
ial scenes. It turns out that the answers to the above question are not trivial as
well. First, yes, algorithms can be modified so as to take advantage of better sens-
ing. Second, extensive modifications of “tactile” motion planning algorithms are



VISION AND MOTION PLANNING 105

needed in order to fully utilize additional sensing capabilities. We will consider
in detail two principles for provably correct motion planning with vision. As we
will see, the resulting algorithms exhibit different “styles” of behavior and are
not, in general, superior to each other. Third and very interestingly, while one
can expect great improvements in real-world tasks, in general richer sensing has
no effect on algorithm path length performance bounds.

Algorithms that we are about to consider will demonstrate an ability that is
often referred to in the literature as active vision [61, 62]. This ability goes deeply
into the nature of interaction between sensing and control. As experimentalists
well know, scanning the scene and making sense of acquired information is a
time-consuming operation. As a rule, the robot’s “eye” sees a bewildering amount
of details, almost all of which are irrelevant for the robot’s goal of finding its way
around. One needs a powerful mechanism that would reject what is irrelevant
and immediately use what is relevant so that one can continue the motion and
continue gathering more visual data. We humans, and of course all other species
in nature that use vision, have such mechanisms.

As one will see in this section, motion planning algorithms with vision that we
will develop will provide the robot with such mechanisms. As a rule, the robot
will not scan the whole scene; it will behave much as a human when walking
along the street, looking for relevant information and making decisions when the
right information is gathered. While the process is continuous, for the sake of
this discussion it helps to consider it as a quasi-discrete.

Consider a moment when the robot is about to pass some location. A moment
earlier, the robot was at some prior location. It knows the direction toward the
target location of its journey (or, sometimes, some intermediate target in the
visible part of the scene). The first thing it does is look in that direction, to see
if this brings new information about the scene that was not available at the prior
position. Perhaps it will look in the direction of its target location. If it sees an
obstacle in that direction, it may widen its “scan,” to see how it can pass around
this obstacle. There may be some point on the obstacle that the robot will decide
to head to, with the idea that more information may appear along the way and
the plan may be modified accordingly.

Similar to how any of us behaves when walking, it makes no sense for the
robot to do a 360◦ scan at every step—or ever. Based on what the robot sees
ahead at any moment, it decides on the next step, executes it, and looks again for
more information. In other words, robot’s sensing dictates the next step motion,
and the next step dictates where to look for new relevant information. It is this
sensing-planning control loop that guides the robot’s active vision, and it is
executed continuously.

The first algorithm that we will consider, called VisBug-21, is a rather simple-
minded and conservative procedure. (The number “2” in its name refers to the
Bug2 algorithm that is used as its base, and “1” refers to the first vision algo-
rithm.) It uses range data to “cut corners” that would have been produced by
a “tactile” algorithm Bug2 operating in the same scene. The advantage of this
modification is clear. Envision the behavior of two people, one with sight and the
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other blindfolded. Envision each of them walking in the same direction around
the perimeter of a complex-shaped building. The path of the person with sight
will be (at least, often enough) a shorter approximation of the path of the blind-
folded person.

The second algorithm, called VisBug-22, is more opportunistic in nature: it
tries to use every chance to get closer to the target. (The number in its name
signifies that it is the vision algorithm 2 based on the Bug2 procedure.)

Section 3.6.1 is devoted to the algorithms’ underlying model and basic ideas.
The algorithms themselves, related analysis, and examples demonstrating the
algorithms’ performance appear in Sections 3.6.2 and 3.6.3.

3.6.1 The Model

Our assumptions about the scene in which the robot travels and about the robot
itself are very much the same as for the basic algorithms (Section 3.1). The avail-
able input information includes knowing at all times the robot’s current location,
C, and the locations of starting and target points, S and T . We also assume that
a very limited memory does not allow the robot more than remembering a few
“interesting” points.

The difference in the two models relates to the robot sensing ability. In the case
at hand the robot has a capability, referred to as vision, to detect an obstacle, and
the distance to any visible point of it, along any direction from point C, within the
sensor’s field of vision. The field of vision presents a disc of radius rv , called radius
of vision , centered at C. A point Q in the scene is visible if it is located within the
field of vision and if the straight-line segment CQ does not cross any obstacles.

The robot is capable of using its vision to scan its surroundings during which
it identifies obstacles, or the lack of thereof, that intersect its field of vision. We
will see that the robot will use this capability rather sparingly; the particular use
of scanning will depend on the algorithm. Ideally the robot will scan a part of
the scene only in those specific directions that make sense from the standpoint of
motion planning. The robot may, for example, identify some intermediate target
point within its field of vision and walk straight toward that point. Or, in an
“unfortunate” (for its vision) case when the robot walks along the boundary of a
convex obstacle, its effective radius of vision in the direction of intended motion
(that is, around the obstacle) will shrink to zero.

As before, the straight-line segment (S, T ) between the start S and target T

points—it is called the Main line or M-line —is the desirable path. Given its
current position Ci , at moment i the robot will execute an elementary operation
that includes scanning some minimum sector of its current field of vision in the
direction it is following, enough to define its next intermediate target , point Ti .
Then the robot makes a little step in the direction of Ti , and the process repeats. Ti

is thus a moving target; its choice will somehow relate to the robot’s global goal.
In the algorithms, every Ti will lie on the M-line or on an obstacle boundary.

For a path segment whose point Ti moves along the M-line, the firstly defined
Ti that lies at the intersection of M-line and an obstacle is a special point called
the hit point, H . Recall that in algorithms Bug1 or Bug2 a hit point would be
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reached physically. In algorithms with vision a hit point may be defined from
a distance, thanks to the robot’s vision, and the robot will not necessarily pass
through this location. For a path segment whose point Ti moves along an obstacle
boundary, the firstly defined Ti that lies on the M-line is a special point called
the leave point , L. Again, the robot may or may not pass physically through that
point. As we will see, the main difference between the two algorithms VisBug-21
and VisBug-22 is in how they define intermediate targets Ti . Their resulting paths
will likely be quite different. Naturally, the current Ti is always at a distance from
the robot no more than rv .

While scanning its field of vision, the robot may be detecting some contiguous
sets of visible points—for example, a segment of the obstacle boundary. A point
Q is contiguous to another point S over the set {P }, if three conditions are
met: (i) S ∈ {P }, (ii) Q and {P } are visible, and (iii) Q can be continuously
connected with S using only points of {P }. A set is contiguous if any pair of its
points are contiguous to each other over the set. We will see that no memorization
of contiguous sets will be needed; that is, while “watching” a contiguous set, the
robot’s only concern will be whether two points that it is currently interested in
are contiguous to each other.

A local direction is a once-and-for-all determined direction for passing around
an obstacle; facing the obstacle, it can be either left or right. Because of incom-
plete information, neither local direction can be judged better than the other. For
the sake of clarity, assume the local direction is always left.

The M-line divides the environment into two half-planes. The half-plane that
lies to the local direction’s side of M-line is called the main semiplane. The
other half-plane is called the secondary semiplane. Thus, with the local direction
“left,” the left half-plane when looking from S toward T is the main semiplane.

Figure 3.12 exemplifies the defined terms. Shaded areas represent obstacles;
the straight-line segment ST is the M-line; the robot’s current location, C, is
in the secondary (right) semiplane; its field of vision is of radius rv . If, while
standing at C, the robot were to perform a complete scan, it would identify three
contiguous segments of obstacle boundaries, a1a2a3, a4a5a6a7a8, and a9a10a11,
and two contiguous segments of M-line, b1b2 and b3b4.

A Sketch of Algorithmic Ideas. To understand how vision sensing can be
incorporated in the algorithms, consider first how the “pure” basic algorithm
Bug2 would behave in the scene shown in Figure 3.12. Assuming a local direction
“left,” Bug2 would generate the path shown in Figure 3.13. Intuitively, replacing
tactile sensing with vision should smooth sharp corners in the path and perhaps
allow the robot to cut corners in appropriate places.

However, because of concern for algorithms’ convergence, we cannot intro-
duce vision in a direct way. One intuitively appealing idea is, for example, to
make the robot always walk toward the farthest visible “corner” of an obstacle in
the robot’s preferred direction. An example can be easily constructed showing that
this idea cannot work—it will ruin the algorithm convergence. (We have already
seen examples of treachery of intuitively appealing ideas; see Figure 2.23—it
applies to the use of vision as well.)
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Figure 3.12 Shaded areas are obstacles. At its current location C, the robot will see
within its radius of vision rv segments of obstacle boundaries a1a2a3, a4a5a6a7a8, and
a9a10a11. It will also conclude that segments b1b2 and b3b4 of the M-line are visible.
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Figure 3.13 Scene 1: Path generated by the algorithm Bug2.
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Since algorithm Bug2 is known to converge, one way to incorporate vision
is to instruct the robot at each step of its path to “mentally” reconstruct in its
current field of vision the path segment that would have been produced by Bug2
(let us call it the Bug2 path). The farthest point of that segment can then be
made the current intermediate target point, and the robot would make a step
toward that point. And then the process repeats. To be meaningful, this would
require an assurance of continuity of the considered Bug2 path segment; that is,
unless we know for sure that every point of the segment is on the Bug2 path,
we cannot take a risk of using this segment. Just knowing the fact of segment
continuity is sufficient; there is no need to remember the segment itself. As it
turns out, deciding whether a given point lies on the Bug2 path—in which case
we will call it a Bug2 point —is not a trivial task. The resulting algorithm is
called VisBug-21, and the path it generates is referred to as the VisBug-21 path.

The other algorithm, called VisBug-22, is also tied to the mechanism of
Bug2 procedure, but more loosely. The algorithm behaves more opportunisti-
cally compared to VisBug-21. Instead of the VisBug-21 process of replacing some
“mentally” reconstructed Bug2 path segments with straight-line shortcuts afforded
by vision, under VisBug-22 the robot can deviate from Bug2 path segments if
this looks more promising and if this is not in conflict with the convergence
conditions. As we will see, this makes VisBug-22 a rather radical departure from
the Bug2 procedure—with one result being that Bug2 cannot serve any longer as
a source of convergence. Hence convergence conditions in VisBug-22 will have
to be established independently.

In case one wonders why we are not interested here in producing a vision-
laden algorithm extension for the Bug1 algorithm, it is because savings in path
length similar to the VisBug-21 and VisBug-22 algorithms are less likely in this
direction. Also, as mentioned above, exploring every obstacle completely does
not present an attractive algorithm for mobile robot navigation.

Combining Bug1 with vision can be a viable idea in other motion planning
tasks, though. One problem in computer vision is recognizing an object or finding
a specific item on the object’s surface. One may want, for example, to automati-
cally detect a bar code on an item in a supermarket, by rotating the object to view
it completely. Alternatively, depending on the object’s dimensions, it may be the
viewer who moves around the object. How do we plan this rotating motion?
Holding the camera at some distance from the object gives the viewer some
advantages. For example, since from a distance the camera will see a bigger part
of the object, a smaller number of images will be needed to obtain the complete
description of the object [63].

Given the same initial conditions, algorithms VisBug-21 and VisBug-22 will
likely produce different paths in the same scene. Depending on the scene, one of
them will produce a shorter path than the other, and this may reverse in the next
scene. Both algorithms hence present viable options. Each algorithm includes a
test for target reachability that can be traced to the Bug2 algorithm and is based
on the following necessary and sufficient condition:
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Test for Target Reachability. If, after having defined the last hit point as its
intermediate target, the robot returns to it before it defines the next hit point,
then either the robot or the target point is trapped and hence the target is not
reachable. (For more detail, see the corresponding text for algorithm Bug2.)

The following notation is used in the rest of this section:

• Ci and Ti are the robot’s position and intermediate target at step i.
• |AB| is the straight-line segment whose endpoints are A and B; it may also

designate the length of this segment.
• (AB) is the obstacle boundary segment whose endpoints are A and B, or

the length of this segment.
• [AB] is the path segment between points A and B that would be generated

by algorithm Bug2, or the length of this path segment.
• {AB} is the path segment between points A and B that would be generated

by algorithm VisBug-21 or VisBug-22, or the length of this path segment.

It will be evident from the context whether a given notation is referring to a
segment or its length. When more than one segment appears between points A

and B, the context will resolve the ambiguity.

3.6.2 Algorithm VisBug-21

The algorithm consists of the Main body, which does the motion planning proper,
and a procedure called Compute Ti-21 , which produces the next intermediate
target Ti and includes the test for target reachability. As we will see, typically the
flow of action in the main body is confined to its step S1. Step S2 is executed only
in the special case when the robot is moving along a (locally) convex obstacle
boundary and so it cannot use its vision to define the next intermediate target Ti .
For reasons that will become clear later, the algorithm distinguishes between the
case when point Ti lies in the main semiplane and the case when Ti lies in the
secondary semiplane. Initially, C = Ti = S.

Main Body. The procedure is executed at each point of the continuous path. It
includes the following steps:

• S1: Move toward point Ti while executing Compute Ti-21 and performing
the following test:
If C = T the procedure stops.
Else if Target is unreachable the procedure stops.
Else if C = Ti go to step S2.

• S2: Move along the obstacle boundary while executing Compute Ti-21 and
performing the following test:
If C = T the procedure stops.
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Else if Target is unreachable the procedure stops.
Else if C �= Ti go to step S1.

Procedure Compute Ti-21 includes the following steps:

• Step 1: If T is visible, define Ti = T ; procedure stops.
Else if Ti is on an obstacle boundary go to Step 3.
Else go to Step 2.

• Step 2: Define point Q as the endpoint of the maximum length contiguous
segment |TiQ| of M-line that extends from point Ti in the direction of
point T .
If an obstacle has been identified crossing the M-line at point Q, then define
a hit point, H = Q; assign X = Q, define Ti = Q; go to Step 3.
Else define Ti = Q; go to Step 4.

• Step 3: Define point Q as the endpoint of the maximum length contigu-
ous segment of obstacle boundary, (TiQ), extending from Ti in the local
direction.
If an obstacle has been identified crossing M-line at a point P ∈ (TiQ),
|PT| < |HT|, assign X = P ; if, in addition, |PT| does not cross the obstacle
at P , define a leave point, L = P , define Ti = P , and go to Step 2.
If the lastly defined hit point, H , is identified again and H ∈ (TiQ), then
Target is not reachable; procedure stops.
Else define Ti = Q; go to Step 4.

• Step 4: If Ti is on the M-line define Q = Ti , otherwise define Q = X.
If some points {P } on the M-line are identified such that |S′T | < |QT|,
S′ ∈ {P }, and C is in the main semiplane, then find the point S ′ ∈ {P } that
produces the shortest distance |S′T |; define Ti = S′; go to Step 2.
Else procedure stops.

In brief, procedure Compute Ti-21 operates as follows. Step 1 is executed
at the last stage, when target T becomes visible (as at point A, Figure 3.15).
A special case in which points of the M-line noncontiguous to the previously
considered sets of points are tested as candidates for the next intermediate Target
Ti is handled in Step 4. All the remaining situations relate to choosing the next
point Ti among the Bug2 path points contiguous to the previously defined point
Ti ; these are treated in Steps 2 and 3. Specifically, in Step 2 candidate points
along the M-line are processed, and hit points are defined. In Step 3, candidate
points along obstacle boundaries are processed, and leave points are defined. The
test for target reachability is also performed in Step 3. It is conceivable that at
some locations C of the robot the procedure will execute, perhaps even more than
once, some combinations of Steps 2, 3, and 4. While doing this, contiguous and
noncontiguous segments of the Bug2 path along the M-line and along obstacle
boundaries may be considered before the next intermediate target Ti is defined.
Then the robot makes a physical step toward Ti .
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Figure 3.14 Scene 1: Path generated by algorithms VisBug-21 or VisBug-22. The radius
of vision is rv .

Analysis of VisBug-21. Examples shown in Figures 3.14 and 3.15 demonstrate
the effect of radius of vision rv on performance of algorithm VisBug-21. (Com-
pare this with the Bug2 performance in the same environment, Figure 3.13). In
the analysis that follows, we first look at the algorithm performance and then
address the issue of convergence. Since the path generated by VisBug-21 can
diverge significantly from the path that would be produced under the same con-
ditions by algorithm Bug2, it is to be shown that the path-length performance of
VisBug-21 is never worse than that of Bug2. One would expect this to be true,
and it is ensured by the following lemma.

Lemma 3.6.1. For a given scene and a given set of Start and Target points,
the path produced by algorithm VisBug-21 is never longer than that produced by
algorithm Bug2.

Proof: Assume the scene and start S and target T points are fixed. Consider the
robot’s position, Ci , and its corresponding intermediate target, Ti , at step i of the
path, i = 0, 1, . . . . We wish to show that the lemma holds not only for the whole
path from S to T , but also for an arbitrary step i of the path. This amounts to
showing that the inequality

{SCi} + |CiTi | ≤ [STi] (3.15)
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Figure 3.15 Scene 1: Path generated by VisBug-21. The radius of vision rv is larger
than that in Figure 3.14.

holds for any i. The proof is by induction. Consider the initial stage, i = 0; it
corresponds to C0 = S. Clearly, |ST0| ≤ [ST0]. This can be written as {SC0} +
|C0T0| ≤ [ST0], which corresponds to the inequality (3.15) when i = 0. To pro-
ceed by induction, assume that inequality (3.15) holds for step (i − 1) of the
path, i > 1:

{SCi−1} + |Ci−1Ti−1| ≤ [STi−1] (3.16)

Each step of the robot’s path takes place in one of two ways: either Ci−1 �= Ti−1

or Ci−1 = Ti−1. The latter case takes place when the robot moves along the
locally convex part of an obstacle boundary; the former case comprises all the
remaining situations. Consider the first case, Ci−1 �= Ti−1. Here the robot will
take a step of length |Ci−1Ci | along a straight line toward Ti−1; Eq. (3.16) can
thus be rewritten as

{SCi−1} + |Ci−1Ci | + |CiTi−1| ≤ [STi−1] (3.17)

In (3.17), the first two terms form {SCi}, and so

{SCi} + |CiTi−1| ≤ [STi−1] (3.18)
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At point Ci the robot will define the next intermediate target, Ti . Now add to
(3.18) the obvious inequality |Ti−1Ti | ≤ [Ti−1Ti]:

{SCi} + |CiTi−1| + |Ti−1Ti | ≤ [STi−1] + [Ti−1Ti] = [STi] (3.19)

By the Triangle Inequality, we have

|CiTi | ≤ |CiTi−1| + |Ti−1Ti | (3.20)

Therefore, it follows from (3.19) and (3.20) that

{SCi} + |CiTi | ≤ [STi] (3.21)

which proves (3.15).
Consider now the second case, Ci−1 = Ti−1. Here the robot takes a step of

length (Ci−1Ci) along the obstacle boundary (the Bug2 path, [Ci−1Ci]). Equation
(3.16) becomes

{SCi−1} + [Ci−1Ci] ≤ [SCi−1] + [Ci−1Ci] (3.22)

where the left-hand side amounts to {SCi} and the right-hand side to [SCi]. At
point Ci , the robot will define the next intermediate target, Ti . Since |CiTi | ≤
[CiTi], inequality (3.22) can be written as

{SCi} + |CiTi | ≤ [SCi] + [CiTi] = [STi] (3.23)

which, again, produces (3.15). Since, by the algorithm’s design, at some finite i,
Ci = T , then

{ST } ≤ [ST ] (3.24)

which completes the proof. Q.E.D.

One can also see from Figure 3.15 that when rv goes to infinity, algorithm
VisBug-21 will generate locally optimal paths, in the following sense. Take two
obstacles or two parts of the same obstacle, k and k + 1, that are visited by the
robot, in this order. During the robot’s passing around obstacle k, once a point
on obstacle k + 1 is identified as the next intermediate target, the gap between
k and k + 1 will be traversed along the straight line, which presents the locally
shortest path.

When defining its intermediate targets, algorithm VisBug-21 could sometimes
use points on the M-line that are not necessarily contiguous to the prior intermedi-
ate targets. This would result in a more efficient use of robot’s vision: By “cutting
corners,” the robot would be able to skip some obstacles that intersect the M-line
and that it would otherwise have to traverse. However, from the standpoint of
algorithm convergence, this is not an innocent operation: It is important to make
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sure that in such cases the candidate points on the M-line that are “approved” by
the algorithm do indeed lie on the Bug2 path.

This is assured by Step 4 of the procedure Compute Ti-21, where a noncontigu-
ous point Q on the M-line is considered a possible candidate for an intermediate
target only if the robot’s current location C is in the main semiplane. The pur-
pose of this condition is to preserve convergence. We will now show that this
arrangement always produces intermediate targets that lie on the Bug2 path.

Consider a current location C of the robot along the VisBug-21 path, a current
intermediate target Ti , and some visible point Q on the M-line that is being
considered as a candidate for the next intermediate target, Ti+1. Apparently, Q

can be accepted as the intermediate target Ti+1 only if it lies further along the
Bug2 path than Ti .

Recall that in order to ensure convergence, algorithm Bug2 organizes the set
of hit and leave points, Hj and Lj , along the M-line so as to form a sequence
of segments

|ST | > |H1T | > |L1T | > |H2T | > |L2T | > · · · (3.25)

that shrinks to T . This inequality dictates two conditions that candidate points
for Q must satisfy in order for VisBug-21 to converge: (i) When the current
intermediate target Ti lies on the M-line, then only those points Q should be
considered for which |QT| < |TiT |. (ii) When Ti is not on the M-line, it lies on
the obstacle boundary, in which case there must be the latest crossing point X

between M-line and the obstacle boundary, such that the boundary segment (XTi )

is a part of the Bug2 path. In this case, only those points Q should be considered
for which |QT| < |XT|. Since points Q, Ti , and X are already known, both of
these conditions can be easily checked. Let us assume that these conditions are
satisfied. Note that the crossing point X does not necessarily correspond to a hit
point for either Bug2 or VisBug-21 algorithms. The following statement holds.

Lemma 3.6.2. For point Q to be further along the Bug2 path than the interme-
diate target Ti , it is sufficient that the current robot position C lies in the main
semiplane.

Proof: Assume that C lies in the main semiplane; this includes a special case
when C lies on the M-line. Then, all possible situations can be classified into
three cases:

(1) Both Ti and C lie on the M-line.
(2) Ti lies on the M-line, whereas C does not.
(3) Ti does not lie on the M-line. Let us consider each of these cases.

1. Here the robot is moving along the M-line toward T ; thus, Ti is between
C and T (Figure 3.16a). Since Ti is by definition on the Bug2 path, and both Ti

and Q are visible from point C, then point Q must be on the Bug2 path. And,
because of condition (i) above, Q must be further along the Bug2 path than Ti .
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Figure 3.16 Illustration for Lemma 3.6.2: (a) Case 1. (b) Case 2.

2. This case is shown in Figure 3.16b. If no obstacles are crossing the M-line
between points Ti and Q, then the lemma obviously holds. If, however, there is at
least one such obstacle, then a hit point, Hj , would be defined. By design of the
Bug2 algorithm, the line segment TiHj lies on the Bug2 path. At Hj the Bug2
path would turn left and proceed along the obstacle boundary as shown. For each
hit point, there must be a matching leave point. Where does the corresponding
leave point, Lj , lie?

Consider the triangle TiCQ. Because of the visibility condition, the obstacle
cannot cross line segments CTi or CQ. Also, the obstacle cannot cross the line
segment TiHj , because otherwise some other hit point would have been defined
between Ti and Hj . Therefore, the obstacle boundary and the corresponding
segment of the Bug2 path must cross the M-line somewhere between Hj and Q.
This produces the leave point Lj . Thereafter, because of condition (i) above, the
Bug2 path either goes directly to Q, or meets another obstacle, in which case the
same argument applies. Therefore, Q is on the Bug2 path and it is further along
this path than Ti .

3. Before considering this case in detail, we make two observations.
Observation 1. Within the assumptions of the lemma, if Ti is not on the M-

line, then the current position C of the robot is not on the M-line either. Indeed,
if Ti is not on the M-line, then there must exist an obstacle that is responsible for
the latest hit point, Hj , and thereafter the intermediate target Ti . This obstacle
prevents the robot from seeing any point Q on the M-line that would satisfy the
requirement (ii) above.

Observation 2. If point C is not on the M-line, then the line segment |CTi |
will never cross the open line segment |HjT | (“open” here means that the
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Figure 3.17 Illustration for Lemma 3.6.2: Observation 2.

segment’s endpoints are not included). Here Hj is the lastly defined hit point.
Indeed, for such a crossing to take place, Ti must lie in the secondary semiplane
(Figure 3.17). For this to happen, the Bug2 path would have to proceed from
Hj first into the main semiplane and then enter the secondary semiplane some-
where outside of the line segment |HjT |; otherwise, the leave point, Lj , would
be established and the Bug2 path would stay in the main semiplane at least until
the next hit point, Hj+1, is defined. Note, however, that any such way of entering
the secondary semiplane would produce segments of the Bug2 path that are not
contiguous (because of the visibility condition) to the rest of the Bug2 path. By
the algorithm, no points on such segments can be chosen as intermediate targets
Ti —which means that if the point C is in the main semiplane, then the line
segments |CTi | and |HjT | never intersect.

Situations that fall into the case in question can in turn be divided into three
groups:

3a. Point C is located on the obstacle boundary, and C = Ti . This hap-
pens when the robot walks along a locally convex obstacle boundary (point C′,
Figure 3.18). Consider the curvilinear triangle XjC

′Q. Continuing the boundary
segment (XjC

′) after the point C′, the obstacle (and the corresponding seg-
ment of the Bug2 path) will either curve inside the triangle, with |QT| lying
outside the triangle (Figure 3.18a), or curve outside the triangle, leaving |QT|
inside (Figure 3.18b). Since the obstacle can cross neither the line |C′Q| nor
the boundary segment (XjC

′), it (and the corresponding segment of the Bug2
path) must eventually intersect the M-line somewhere between Xj and Q before
intersecting |QT|. The rest of the argument is identical to case 2 above.

3b. Point C is on the obstacle boundary, and C �= Ti (Figure 3.18). Consider
the curvilinear triangle Xj CQ. Again, the obstacle can cross neither the line of
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Figure 3.18 Illustration for Lemma 3.6.2: Cases 3a and 3b.

visibility |CQ| nor the boundary segment (XjC), and so the obstacle (and the
corresponding segment of the Bug2 path) will either curve inside the triangle,
with |QT| left outside of it, or curve outside the triangle, with |QT| lying inside.
The rest is identical to case 2.

3c. Point C is not on the obstacle boundary. Then, a curvilinear quadrangle is
formed, XjTiCQ (Figure 3.19). Again, the obstacle will either curve inside the
quadrangle, with |QT| outside of it, or curve outside the quadrangle, with |QT|
lying inside. Since neither the lines of visibility |CTi | and |CQ| nor the boundary
segment (XjTi) can be crossed, the obstacle (and the corresponding segment of
the Bug2 path) will eventually cross |XjQ| before intersecting |QT| and form
the leave point Lj . The rest of the argument is identical to case 2. Q.E.D.

If the robot is currently located in the secondary semiplane, then it is indeed
possible that a point that lies on the M-line and seems otherwise a good candidate
for the next intermediate target Ti does not lie on the Bug2 path. This means
that point should not even be considered as a candidate for Ti . Such an example
is shown in Figure 3.15: While at location C, the robot will reject the seemingly
attractive point Q (Step 2 of the algorithm) because it does not lie on the Bug2
path. We are now ready to establish convergence of algorithm VisBug-21.
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Figure 3.19 Illustration for Lemma 3.6.2: Case 3c.

Theorem 3.6.1. Algorithm VisBug-21 is convergent.

Proof: By the definition of intermediate target point Ti , for any Ti that cor-
responds to the robot’s location C, Ti is reachable from C. According to the
algorithm, the robot’s next step is always in the direction of Ti . This means
that if the locus of points Ti is converging to T , so will the locus of points C.
In turn, we know that if the locus of points Ti lies on the Bug2 path, then it
indeed converges to T . The question now is whether all the points Ti generated
by VisBug-21 lie on the Bug2 path.

All steps of the procedure Compute Ti-21, except Step 4, explicitly test each
candidate for the next Ti for being contiguous to the previous Ti and belonging
to the Bug2 path. The only questionable points are points Ti on the M-line that
are produced in Step 4 of the procedure: They are not required to be contiguous
to the previous Ti . In such cases, points in question are chosen as Ti points only
if the robot’s location C lies in the main semiplane, in which case the conditions
of Lemma 3.6.2 apply. This means that all the intermediate targets Ti generated
by algorithm VisBug-21 path lie on the Bug2 path, and therefore converge to T.
Q.E.D.

Compared to a tactile sensing-based algorithm, the advantage of using vision is
of course in the extra information due to the scene visibility. If the robot is thrown
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S

T

Figure 3.20 Example of a walk (dashed line) in a maze under Algorithm VisBug-21
(compare with Figure 3.11). S, Start; T , Target.

in a crowded scene where at any given moment it can see only a small part of the
scene, the efficacy of vision will be obviously limited. Nevertheless, unless the
scene is artificially made impossible for vision, one can expect gains from it. This
can be seen in performance of VisBug-21 algorithm in the maze borrowed from
Section 3.3.2 (see Figure 3.20). For simplicity, assume that the robot’s radius of
vision goes to infinity. While this ability would be mostly defeated here, the path
still looks significantly better than it does under the “tactile” algorithm Bug2
(compare with Figure 3.11).

3.6.3 Algorithm VisBug-22

The structure of this algorithm is somewhat similar to VisBug-21. The difference
is that here the robot makes no attempt to ensure that intermediate targets Ti lie
on the Bug2 path. Instead, it tries “to shoot as far as possible”; that is, it chooses
as intermediate targets those points that lie on the M-line and are as close to
the target T as possible. The resulting behavior is different from the algorithm
VisBug-21, and so is the mechanism of convergence.
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Consider a scene with given Start S and Target T points, and consider a
third point, S′, that lies on the M-line somewhere between S and T . Following
the term Bug2 path that we used before, we define a quasi-Bug2 path segment
as a contiguous segment that starts at S′ and produces a part of the path that
algorithm Bug2 would have generated if points S′ and T were its starting and
target points, respectively. Because point S′ does not need to be on the Bug2
path, a quasi-Bug2 path segment may or may not be a part of the Bug2 path.

The algorithm VisBug-22 will check points along the Bug2 path or a quasi-
Bug2 path segment until the best point on the M-line—that is, one that is the
closest to T —is identified. This point S′ then becomes the starting point of
another quasi-Bug2 path segment. Then the process repeats. As a result, unlike
algorithms Bug2 and VisBug-21, where each hit point has its matching leave
point, in VisBug-22 no such matching needs to occur. To be chosen as the
starting point S′ of the next quasi-Bug2 path segment, a point must satisfy certain
requirements that ensure convergence. These will be considered later, after we
describe the whole procedure.

The algorithm includes the Main body, which is identical to that of algorithm
VisBug-21 (refer to Section 3.6.2), and the procedure Compute Ti-22 . The pur-
pose of the latter is to produce the next intermediate target Ti for a given current
position C; it is also responsible for the test for target reachability. Initially,
C = S = Ti .

Procedure Compute T i-22:

• Step 1: If Target T is visible, define Ti = T ; procedure stops.
Else if Ti is on an obstacle boundary, go to Step 3.
Else go to Step 2.

• Step 2: Define point Q as the endpoint of the maximum-length contiguous
segment of the M-line, |TiQ|, extending from Ti in the direction of T .
If an obstacle has been identified crossing the M-line at point Q, then define
a hit point, H = Q; define Ti = Q; go to Step 3.
Else define Ti = Q; go to Step 4.

• Step 3: Define point Q as the endpoint of the maximum length contiguous
segment of the obstacle boundary, (TiQ), extending from Ti in the local
direction.
If an obstacle has been identified crossing the M-line at a point P ∈ (TiQ),
|P, T | < |HT |, and line |PT | does not cross the obstacle at P , then define
a leave point, L = P , define Ti = P , and go to Step 2.
If the lastly defined hit point H is identified again and H ∈ (TiQ), then the
target is not reachable; procedure stops.
Else define Ti = Q; go to Step 4.

• Step 4: If Ti is on the M-line, define Q = Ti ; otherwise define Q = H .
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If points {P } on the M-line are identified such that |S′T | < |QT|, S′ ∈ {P },
then find the point S′ ∈ {P } that produces the shortest distance |S′T |; define
Ti = S′; go to Step 2.
Else the procedure stops.

Performance and Convergence of VisBug-22. The algorithm’s performance
is demonstrated in Figures 3.14 and 3.21; the values of radius of vision rv used are
the same as in examples for VisBug-21 (Figures 3.14 and 3.15). Compare these
with the performance of algorithm Bug2 in the same scene (Figure 3.13). As one
can see from Figure 3.14, algorithms VisBug-21 and VisBug-22 can sometimes
generate identical paths. This is not so in general. Also, neither algorithm can be
said to be superior to the other in all scenes. For example, in one scene algorithm
VisBug-21 performs better (Figure 3.15) than algorithm VisBug-22 (Figure 3.21),
but luck switches to VisBug-22 in another scene shown in Figure 3.23.

Convergence of algorithm VisBug-22 follows simply from the fact that all the
starting points, S′, of the successive quasi-Bug2 path segments lie on the M-line,
and they are organized in such a way as to produce a finite sequence of distances
shrinking to T :

|S′
1T | > |S′

2T | > |S′
3T | > · · · (3.26)

where points S′ are numbered in the order of their appearance.

T

S

ru

Figure 3.21 Scene 1. The path generated by algorithm VisBug-22. The radius of vision
rv here is larger than that in Figure 3.14, and is equal to that in Figure 3.15.
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3.7 FROM A POINT ROBOT TO A PHYSICAL ROBOT

So far our mobile robot has been a point. What changes if we try to extend the
motion planning algorithms considered in this chapter to real mobile robots with
flesh and finite dimensions?5 A theoretically correct way to address this question
is to replace the original problem of guiding the robot in the two-dimensional
workspace (W -space) with its reflection in the corresponding configuration space
(C-space). (This will be done systematically in Chapter 5 when considering the
motion planning problem for robot arm manipulators.) C-space is the space of the
robot’s control variables, its degrees of freedom. In C-space the robot becomes
a point. Since our robot has two degrees of freedom, which correspond to its
coordinates X and Y in the planar W -space, its C-space is also a plane.6 Obstacles
will change accordingly.

If the robot is of a simple convex shape—for example, circular or rectan-
gular, as most mobile robots are, or can be satisfactorily approximated by such
shapes—the corresponding C-space can be obtained simply by “growing” the
obstacles to compensate for the robot’s “shrinking” to a point. This well-known
approach has been used already in the earlier works on motion planning (see
Section 2.7). For simple robot shapes the C-space is “almost the same” as the
W -space, and motion planning can be done in W -space, keeping in mind this
transformation. One can see, for example, that asking whether the circular robot
R of diameter D shown in Figure 3.22 can pass between two obstacles, O1 and
O2, is equivalent to asking if the minimum distance between the grown obstacles,
each grown by D/2, is more than zero.

Recall that explicitly building the C-space is possible only in the paradigm
of motion planning with complete information (the Piano Mover’s model). Since

T

O1 O2

0
R

B

A

Figure 3.22 Effect of robot shape and geometry on motion planning.

5A related question is, What kind of sensing does such a robot need in order to protect its whole
body from potential collisions? This will be considered in more detail in Chapters 5 and 8.
6Including other control variables—for example, the robot orientation—would make C-space three-
or even higher-dimensional and will complicate the problem accordingly. In practice, the effect of
orientation can be often considered independent from the translation controls in X and Y directions.
Then the said complication can be avoided. These more special questions are not pursued in this
text. Some of these are discussed in Ref. 64.
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in the SIM paradigm input information is never complete and appears as the
robot moves, there is no information to calculate the C-space. One can, however,
design algorithms based on C-space properties, and this is what will happen in
the following chapters.

For the practical side of our question, What changes for the algorithms con-
sidered in this chapter when applying them to real mobile robots with finite
dimensions? the answer is, nothing changes. Recall that the algorithms VisBug
make decisions “on the fly,” in real time. They make the robot either (a) move
in free space by following the M-line or (b) follow obstacle boundaries. For
example, when following an obstacle boundary, if the robot arrives at a gap
between two obstacles, it may or may not be able to pass it. If the gap is too
narrow for the robot to pass through, it will perceive both obstacles as one. When
following the obstacle boundaries, the robot will switch from one obstacle to the
other without even noticing this fact.

Additional heuristics can be added to improve the algorithm efficiency, as long
as care is taken not to imperil the algorithm convergence. For example, if the
robot sees its target T through a gap between two obstacles, it may attempt to
measure the width of the gap to make sure that it will be able to pass it, before
it actually moves to the gap. Or, if the robot’s shape is more complex than a
circle, it may try to move through the gap by varying its orientation.

An interesting question appears when studying the effect of location of sen-
sor(s) on the robot body on motion planning. Assume the robot R shown in
Figure 3.22 has a range sensor. If the sensor is located at the robot’s center then,
as the dotted line of vision OT shows, the robot will see the gap between two
obstacles and will act accordingly. But, if the sensor happened to be attached
to the point A on the robot periphery, then the dotted line AB shows that the
robot will not be able to see if the gap is real. The situation can be even more
complex: For example, it is not uncommon for real-world mobile robots to have
a battery of sonar sensors attached along the circumference of the robot body.
Then different sensors may see different objects, the robot’s intelligence needs to
reconcile those different readings, and a more careful scheme is needed to model
the C-space sensing. Little work has been done in this area; some such schemes
have been explored by Skewis [64].

3.8 OTHER APPROACHES

Recall the division of all sensor-based motion planning algorithms into two
classes (Section 3.5). Class 1 combines algorithms in which the robot never
leaves an obstacle unless and until it explores it completely. Class 2 combines
algorithms that are complementary to those in Class 1: In them the robot can
leave an obstacle and walk further, and even return to this obstacle again at
some future time, without exploring it in full.

As mentioned above, today Class 1 includes only one algorithm, Bug1. The
reason for this paucity likely lies in the inherent conservatism of algorithms in
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this Class. Their dogmatically reaching the upper performance bound in the most
simple scenes, where a more agile strategy would likely do much better, does not
leave much room for creativity. Besides, Bug1 does already reach the universal
lower bound (3.13) of the sensor-based motion planning problem, so there is not
much one can expect in advancing theory.

Performance aside, one may wonder how much variety there is in Class 1.
Most likely not much, but we do not know for sure.

This makes Bug1 an unrivaled champion among “tactile” algorithms—a some-
what ironic title, given that Bug1 is not a likely candidate for real-world robots,
except perhaps in special applications. One such application is generation of the
outline of a scene in question, which is producing contours of obstacles present
in the scene. You supply the robot with a few pairs of S and T points to ensure
that it will visit all obstacles of interest, make sure that it stores the files of coor-
dinates while walking around obstacles, and let it go. As a side product of those
trips, the robot will bring back a map of the scene. The technique is especially
good for obtaining such outlines and contours in a database, with an imaginary
point robot. This method of obtaining the map, while not theoretically sound, is
quite competitive compared to other techniques.7 With this technique the robot
cannot, of course, uncover pieces of free space trapped inside obstacles, unless
the robot explicitly starts there.

The situation is more interesting with Class 2 algorithms, including extensions
to vision and range sensing. If the Bug family (as some researchers started calling
these procedures) is to grow, this will likely be happening in Class 2. Between
1984 and now (1984 being the year of first publications on sensor-based motion
planning), over a dozen provable algorithms from this class have been reported
in the literature. Besides, many heuristic procedures relying on the “engineering
approach” have been described; their convergence and performance properties in
arbitrary scenes is anybody’s guess.

The following brief review of significant work on provable Class 2 sensor-
based algorithms is admittedly incomplete. Ideas similar to those explored in
this book—that is, with a focus on topological rather than geometrical prop-
erties of space—has been considered by a number of researchers. Algorithms
Alg1 and Alg2 by Sankaranarayanan and Vidyasagar [65] successfully fight the
unpleasant tendency of the Bug2 algorithm to produce multiple local cycles in
some special scenes (see Section 3.5). Whereas local cycles can be stopped via
a straightforward combination of Bug1 and Bug2 procedures (see the BugM1
algorithm, Section 3.5), Alg1 and Alg2 do it better and they do it more econom-
ically. Importantly, they reach the path length lower bound (3.14) for the Class 2
algorithms, and by doing so they “close” the Class 2 of sensor-based planning
algorithms, similar to how Bug1 closes Class 1.

Also in this group are elegant provable algorithms TangentBug [66] by Kamon,
Rivlin, and Rimon, and DistBug [67, 68] by Kamon and Rivlin. Algorithm

7This is not to suggest that Bug1 is an algorithm for map-making. Map-making (terrain acquisition
and terrain coverage are other terms one finds in literature) is a different problem. See, for example,
Ref. 1.
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TangentBug, in turn, has inspired procedures WedgeBug and RoverBug [69, 70]
by Laubach, Burdick, and Matthies, which try to take into account issues spe-
cific for NASA planet rover exploration. A number of schemes with and without
proven convergence have been reported by Noborio [71].

Given the practical needs, it is not surprising that many attempts in sensor-
based planning strategies focus on distance sensing—stereo vision, laser range
sensing, and the like. Some earlier attempts in this area tend to stick to more
familiar graph-theoretical approaches of computer science, and consequently treat
space in a discrete rather than continuous manner. A good example of this
approach is the visibility-graph based approach by Rao et al. [72].

Standing apart is the approach described by Choset et al. [73, 74], which
can be seen as an attempt to fill the gap between the two paradigms, motion
planning with complete information (Piano Mover’s model) and motion planning
with incomplete information [other names are sensor-based planning, or Sens-
ing–Intelligence–Motion (SIM)]. The idea is to use sensor-based planning to
first build the map and then the Voronoi diagram of the scene, so that the future
robot trips in this same area could be along shorter paths—for example, along
links of the acquired Voronoi diagram. These ideas, and applications that inspire
them, are different from the go-from-A-to-B problem considered in this book and
thus beyond our scope. They are closer to the systematic space exploration and
map-making. The latter, called in the literature terrain acquisition or terrain cov-
erage, might be of use in tasks like robot-assisted map-making, floor vacuuming,
lawn mowing, and so on (see, e.g., Refs. 1 and 75).

While most of the above works provide careful analysis of performance and
convergence, the “engineering approach” heuristics to sensor-based motion plan-
ning procedures usually discuss their performance in terms of “consistently better
than” or “better in our experiments,” and so on. Since idiosyncracies of these
algorithms are rarely analyzed, their utility is hard to assess. There have been
examples when an algorithm published as provable turned out to be ruefully
divergent even in simple scenes.8

Related to the area of two-dimensional motion planning are also works directed
toward motion planning for a “point robot” moving in three-dimensional space.
Note that the increase in dimensionality changes rather dramatically the formal
foundation of the sensor-based paradigm. When moving in the (two-dimensional)
plane, if the point robot encounters an obstacle, it has a choice of only two ways
to pass around it: from the left or from the right, clockwise or counterclockwise.
When a point robot encounters an object in the three-dimensional space, it is
faced with an infinite number of directions for passing around the object. This
means that unlike in the two-dimensional case, the topological properties of three-
dimensional space cannot be used directly anymore when seeking guarantees of
algorithm completeness.

8As the principles of design of motion planning algorithms have become clearer, in the last 10–15
years the level of sophistication has gone up significantly. Today the homework in a graduate course
on motion planning can include an assignment to design a new provable sensor-based algorithm, or
to decide if some published algorithm is or is not convergent.
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Accordingly, objectives of works in this area are usually toward complete
exploration of objects. One such application is visual exploration of objects (see,
e.g., Refs. 63 and 76): One attempts, for example, to come up with an economical
way of automatically manipulating an object on the supermarket counter in order
to locate on it the bar code.

Extending our go-from-A-to-B problem to the mobile robot navigation in
three-dimensional space will likely necessitate “artificial” constraints on the robot
environment (which we were lucky not to need in the two-dimensional case), such
as constraints on the shapes of objects, the robot’s shape, some recognizable
properties of objects’ surfaces, and so on. One area where constraints appear
naturally, as part of the system kinematic design, is motion planning for three-
dimensional arm manipulators. The very fact that the arm links are tied into
some kinematic structure and that the arm’s base is bolted to its base provide
additional constraints that can be exploited in three-dimensional sensor-based
motion planning algorithms. This is an exciting area, with much theoretical insight
and much importance to practice. We will consider such schemes in Chapter 6.

3.9 WHICH ALGORITHM TO CHOOSE?

With the variety of existing sensor-based approaches and algorithms, one is enti-
tled to ask a question: How do I choose the right sensor-based planning algorithm
for my job? When addressing this question, we can safely exclude the Class 1
algorithms: For the reasons mentioned above, except in very special cases, they
are of little use in practice.

As to Class 2, while usually different algorithms from this group produce dif-
ferent paths, one would be hard-pressed to recommend one of them over the
others. As we have seen above, if in a given scene algorithm A performs bet-
ter than algorithm B, their luck may reverse in the next scene. For example, in
the scene shown in Figures 3.15 and 3.21, algorithm VisBug-21 outperforms
algorithm VisBug-22, and then the opposite happens in the scene shown in
Figure 3.23. One is left with an impression that when used with more advanced
sensing, like vision and range finders, in terms of their motion planning skills
just about any algorithm will do, as long as it guarantees convergence.

Some people like the concept of a benchmark example for comparing differ-
ent algorithms. In our case this would be, say, a fixed benchmark scene with a
fixed pair of start and target points. Today there is no such benchmark scene, and
it is doubtful that a meaningful benchmark could be established. For example,
the elaborate labyrinth in Figure 3.11 turns out to be very easy for the Bug2
algorithm, whereas the seemingly simpler scene in Figure 3.6 makes the same
algorithm produce a torturous path. It is conceivable that some other algorithm
would have demonstrated an exemplary performance in the scene of Figure 3.6,
only to look less brave in another scene. Adding vision tends to smooth algo-
rithms’ idiosyncracies and to make different algorithms behave more similarly,
especially in real-life scenes with relatively simple obstacles, but the said rela-
tionship stays.
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Figure 3.23 Scene 2. Paths generated (a) by algorithm VisBug-21 and (b) by algorithm
VisBug-22.

Furthermore, even seemingly simple questions—(1) Does using vision sensing
guarantee a shorter path compared to using tactile sensing? or (2) Does a better
(that is, farther) vision buy us better performance compared to an inferior (that is,
more myopic) vision?—have no simple answers. Let us consider these questions
in more detail.

1. Does using vision sensing guarantee a shorter path compared to using tac-
tile sensing? The answer is no. Consider the simple example in Figure 3.24. The
robot’s start S and target T points are very close to and on the opposite sides of
the convex obstacle that lies between them. By far the main part of the robot path
will involve walking around the obstacle. During this time the robot will have
little opportunity to use its vision because at every step it will see only a tiny
piece of the obstacle boundary; the rest of it will be curving “around the corner.”

So, in this example, robot vision will behave much like tactile sensing. As a
result, the path generated by algorithm VisBug-21 or VisBug-22 or by some other
“seeing” algorithm will be roughly no shorter than a path generated by a “tactile”
algorithm, no matter what the robot’s radius of vision rv is. If points S and T are
further away from the obstacle, the value of rv will matter more in the initial and
final phases of the path but still not when walking along the obstacle boundary.

When comparing “tactile” and “seeing” algorithms, the comparative perfor-
mance is easier to analyze for less opportunistic algorithms, such as VisBug-21:
Since the latter emulates a specific “tactile” algorithm by continuously short-
cutting toward the furthest visible point on that algorithm’s path, the resulting
path will usually be shorter, and never longer, than that of the emulated “tactile”
algorithm (see, e.g., Figure 3.14).
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Figure 3.24 In this scene, the path generated by an algorithm with vision would be
almost identical to the path generated by a “tactile” planning algorithm.

With more opportunistic algorithms, like VisBig-22, even this property breaks
down: While paths that algorithm VisBig-22 generates are often significantly
shorter than paths produced by algorithm Bug2, this cannot be guaranteed (com-
pare Figures 3.13 and 3.21).

2. Does better vision (a larger radius of vision, rv) guarantee better perfor-
mance compared to an inferior vision (a smaller radius of vision)? We know
already that for VisBug-22 this is definitely not so—a larger radius of vision
does not guarantee shorter paths (compare Figures 3.21 and 3.14). Interestingly,
even for a more stable VisBug-21, it is not so. The example in Figure 3.25 shows
that, while VisBug-21 always does better with vision than with tactile sensing,
more vision—that is, a larger rv —does not necessarily buy better performance.
In this scene the robot will produce a shorter path when equipped with a smaller
radius of vision (Figures 3.25a) than when equipped with a larger radius of vision
(Figures 3.25b).

The problem lies, of course, in the fundamental properties of uncertainty. As
long as some, even a small piece, of relevant information is missing, anything
may happen. A more experienced hiker will often find a shorter path, but once in a
while a beginner hiker will outperform an experienced hiker. In the stock market,
an experienced stock broker will usually outperform an amateur investor, but once
in a while their luck will reverse.9 In situations with uncertainty, more experience
certainly helps, but it helps only on the average, not in every single case.

9On a quick glance, the same principle seems to apply to the game of chess, but it does not. Unlike
in other examples above, in chess the uncertainty comes not from the lack of information—complete
information is right there on the table, available to both players—but from the limited amount of
information that one can process in limited time. In a given time an experienced player will check
more candidate moves than will a novice.
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Figure 3.25 Performance of algorithm VisBug-21 in the same scene (a) with a smaller
radius of vision and (b) with a larger radius of vision. The smaller (worse) vision results
in a shorter path!

These examples demonstrate the variety of types of uncertainty. Notice another
interesting fact: While the experienced hiker and experienced stock broker can
make use of a probabilistic analysis, it is of no use in the problem of motion
planning with incomplete information. A direction to pass around an obstacle
that seems to promise a shorter path to the target may offer unpleasant surprises
around the corner, compared to a direction that seemed less attractive before
but is objectively the winner. It is far from clear how (and whether) one can
impose probabilities on this process in any meaningful way. That is one reason
why, in spite of high uncertainty, sensor-based motion planning is essentially a
deterministic process.

3.10 DISCUSSION

The somewhat surprising examples above (see the last few figures in the previous
section) suggest that further theoretical analysis of general properties of Class 2
algorithms may be of more benefit to science and engineering than proliferation of
algorithms that make little difference in real-world tasks. One interesting possibil-
ity would be to attempt a meaningful classification of scenes, with a predictive
power over the performance of various algorithmic schemes. Our conclusions
from the worst-case bounds on algorithm performance also beg for a similar
analysis in terms of some other, perhaps richer than the worst-case, criteria.
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This said, the material in this chapter demonstrates a remarkable success in
the last 10–15 years in the state of the art in sensor-based robot motion plan-
ning. In spite of the formidable uncertainty and an immense diversity of possible
obstacles and scenes, a good number of algorithms discussed above guarantee
convergence: That is, a mobile robot equipped with one of these procedures is
guaranteed to reach the target position if the target can in principle be reached;
if the target is not reachable, the robot will make this conclusion in finite time.
The algorithms guarantee that the paths they produce will not circle in one area
an indefinite number of times, or even a large number of times (say, no more
than two or three).

Twenty years ago, most specialists would doubt that such results were even
possible. On the theoretical level, today’s results mean, to much surprise from
the standpoint of earlier views on the subject, that purely local input information
is not an obstacle to obtaining global solutions, even in cases of formidable
complexity.

Interesting results raise our appetite for more results. Answers bring more
questions, and this is certainly true for the area at hand. Below we discuss a
number of issues and questions for which today we do not have answers.

Bounds on Performance of Algorithms with Vision. Unlike with “tactile”
algorithms, today there are no upper bounds on performance of motion planning
algorithms with vision, such as VisBug-21 or VisBug-22 (Section 3.6). While
from the standpoint of theory it would be of interest to obtain bounds similar
to the bound (3.13) for “tactile” algorithms, they would likely be of limited
generality, for the following reasons.

First, to make such bounds informative, we would likely want to incorporate
into them characteristics of the robot’s vision—at least the radius of vision
rv , and perhaps the resolution, accuracy, and so on. After all, the reason for
developing these bounds would be to know how vision affects robot performance
compared to the primitive tactile sensing. One would expect, in particular, that
vision improves performance. As explained above, this cannot be expected in
general. Vision does improve performance, but only “on the average,” where the
meaning of “average” is not clear. Recall some examples in the previous section:
In some scenes a robot with a larger radius of vision rv will perform worse than
a robot with a smaller rv . Making the upper bound reflect such idiosyncrasies
would be desirable but also difficult.

Second, how far the robot can see depends not only on its vision but also
on the scene it operates in. As the example in Figure 3.24 demonstrates, some
scenes can bring the efficiency of vision to almost that of tactile sensing. This
suggests that characteristics of the scene, or of classes of scenes, should be part
of the upper bounds as well. But, as geometry does not like probabilities, the
latter is not a likely tool: It is very hard to generalize on distributions of locations
and shapes of obstacles in the scene.

Third, given a scene and a radius of vision rv , a vastly different path perfor-
mance will be produced for different pairs of start and target points in that same
scene.
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Moving Obstacles. The model of motion planning considered in this chapter
(Section 3.1) assumes that obstacles in the robot’s environment are all static—that
is, do not move. But obstacles in the real world may move. Let us call an envi-
ronment where obstacles may be moving the dynamic (changing, time-sensitive)
environment. Can sensor-based planning strategies be developed capable of han-
dling a dynamic environment? Even more specifically, can strategies that we
developed in this chapter be used in, or modified to account for, a dynamic
environment?

The answer is a qualified yes. Since our model and algorithms do not include
any assumptions about specifics of the geometry and dimensions of obstacles
(or the robot itself), they are in principle ideally suited for handling a dynamic
environment. In fact, one can use the Bug and VisBug family algorithms in a
dynamic environment without any changes. Will they always work? The answer
is, “it depends,” and the reason for the qualified answer is easy to understand.

Assume that our robot moves with its maximum speed. Imagine that while
operating under one of our algorithms—it does not matter which one—the robot
starts passing around an obstacle that happens to be of more or less complex
shape. Imagine also that the obstacle itself moves. Clearly, if the obstacle’s
speed is higher than the speed of the robot, the robot’s chance to pass around
the obstacle and ever reach the target is in doubt. If on top of that the obstacle
happens to also be rotating, so that it basically cancels the robot’s attempts
to pass around it, the answer is not even in doubt: The robot’s situation is
hopeless.

In other words, the motion parameters of obstacles matter a great deal. We
now have two options to choose from. One is to use algorithms as they are,
but drop the promise of convergence. If the obstacles’ speeds are low enough
compared to the robot, or if obstacles move more or less in one place, like a
tree in the wind, then the robot will likely get where it intends. Even if obstacles
move faster than the robot, but their shapes or directions of motion do not create
situations as in the example above, the algorithms will still work well. But, if
the situation is like the one above, there will be no convergence.

Or we can choose another option. We can guarantee convergence of an algo-
rithm, but impose some additional constraints on the motion of objects in the
robot workspace. If a specific environment satisfies our constraints, convergence
is guaranteed. The softer those constraints, the more universal the resulting algo-
rithms. There has been very little research in this area.

For those who need a real-world incentive for such work, here is an example.
Today there are hundreds of human-made dead satellites in the space around
Earth. One can bet that all of them have been designed, built, and launched at
high cost. Some of them are beyond repair and should be hauled to a satellite
cemetery. Some others could be revived after a relatively simple repair—for
example, by replacing their batteries. For long time, NASA (National Aeronautics
and Space Administration) and other agencies have been thinking of designing a
robot space vehicle capable of doing such jobs.
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Imagine we designed such a system: It is agile and compact; it is capable of
docking, repair, and hauling of space objects; and, to allow maneuvering around
space objects, it is equipped with a provable sensor-based motion planning algo-
rithm. Our robot—call it R-SAT—arrives to some old satellite “in a coma”—call
it X. The satellite X is not only moving along its orbit around the Earth, it is
also tumbling in space in some arbitrary ways. Before R-SAT starts on its repair
job, it will have to fly around X, to review its condition and its useability. It may
need to attach itself to the satellite for a more involved analysis. To do this—fly
around or attach to the satellite surface—the robot needs to be capable of speeds
that would allow these operations.

If the robot arrives at the site without any prior analysis of the satellite X
condition, this amounts to our choosing the first option above: No convergence
of R-SAT motion planning around X is guaranteed. On the other hand, a decision
to send R-SAT to satellite X might have been made after some serious remote
analysis of the X’s rate of tumbling. The analysis might have concluded that the
rate of tumbling of satellite X was well within the abilities of the R-SAT robot. In
our terms, this corresponds to adhering to the second option and to satisfying the
right constraints—and then the R-SAT’s motion planning will have a guaranteed
convergence.

Multirobot Groups. One area where the said constraints on obstacles’ motion
come naturally is multirobot systems. Imagine a group of mobile robots operating
in a planar scene. In line with our usual assumption of a high level of uncer-
tainty, assume that the robots are of different shapes and the system is highly
decentralized. That is, each robot makes its own motion planning decisions with-
out informing other robots, and so each robot knows nothing about the motion
planning intentions of other robots. When feasible, this type of control is very
reliable and well protected against communication and other errors.

A decentralized control in multirobot groups is desirable in many settings. For
example, it would be of much value in a “robotic” battlefield, where a continuous
centralized control from a single commander would amount to sacrificing the sys-
tem reliability and fault tolerance. The commander may give general commands
from time to time—for instance, on changing goals for the whole group or for
specific robots (which is an equivalent of prescribing each robot’s next target
position)—but most of the time the robots will be making their own motion
planning decisions.

Each robot presents a moving obstacle to other robots. (Then there may also
be static obstacles in the workspace.) There is, however, an important difference
between this situation and the situation above with arbitrary moving obstacles.
You cannot have any beforehand agreement with an arbitrary obstacle, but you
can have one with other robots. What kind of agreement would be unconstraining
enough and would not depend on shapes and dimensions and locations? The
system designers may prescribe, for example, that if two robots meet, each robot
will attempt to pass around the other only clockwise. This effectively eliminates
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the above difficulty with the algorithm convergence in the situation with moving
obstacles.10 (More details on this model can be found in Ref. 77.)

Needs for More Complex Algorithms. One area where good analysis of algo-
rithms is extremely important for theory and practice is sensor-based motion
planning for robot arm manipulators. Robot manipulators operate sometimes in
a two-dimensional space, but more often they operate in the three-dimensional
space. They have complex kinematics, and they have parts that change their rel-
ative positions in complex ways during the motion. Not rarely, their workspace
is filled with obstacles and with other machinery (which is also obstacles).

Careful motion planning is essential. Unlike with mobile robots, which usually
have simple shapes and can be controlled in an intuitively clear fashion, intuition
helps little in designing new algorithms or even predicting the behavior of existing
algorithms for robot arm manipulators.

As mentioned above, performance of Bug2 algorithm deteriorates when deal-
ing with situations that we called in-position. In fact, this will be likely so for all
Class 2 motion planning algorithms. Paths tend to become longer, and the robot
may produce local cycles that keep “circling” in some segments of the path.
The chance of in-position situations becomes very persistent, almost guaranteed,
with arm manipulators. This puts a premium on good planning algorithms. This
area is very interesting and very unintuitive. Recall that today about 1,000,000
industrial arms manipulators are busy fueling the world economy. Two chapters
of this book, Chapters 5 and 6, are devoted to the topic of sensor-based motion
planning for arm manipulators.

The importance of motion planning algorithms for robot arm manipulators is
also reinforced by its connection to teleoperation systems. Space-operator-guided
robots (such as arm manipulators on the Space Shuttle and International Space
Station), robot systems for cleaning nuclear reactors, robot systems for detonating
mines, and robot systems for helping in safety operations are all examples of
teleoperation systems. Human operators are known to make mistakes in such
tasks. They have difficulty learning necessary skills, and they tend to compensate
difficulties by slowing the operation down to crawling. (Some such problems will
be discussed in Chapter 7.) This rules out tasks where at least a “normal” human
speed is a necessity.

One potential way out of this difficulty is to divide responsibilities between
the operator and the robot’s own intelligence, whereby the operator is responsible
for higher-level tasks—planning the overall task, changing the plan on the fly
if needed, or calling the task off if needed—whereas the lower-level tasks like
obstacle collision avoidance would be the robot’s responsibility. The two types
of intelligence, human and robot intelligence, would then be combined in one
control system in a synergistic manner. Designing the robot’s part of the system
would require (a) the type of algorithms that will be considered in Chapters 5
and 6 and (b) sensing hardware of the kind that we will explore in Chapter 8.

10Note that this is the spirit of the automobile traffic rules.
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Turning back to motion planning algorithms for mobile robots, note that
nowhere until now have we talked about the effect of robot dynamics on motion
planning. This implicitly assumed, for example, that any sharp turn in the robot’s
path dictated by the planning algorithm was deemed feasible. For a robot with
flesh and reasonable mass and speed, this is of course not so. In the next chapter
we will turn to the connection between robot dynamics and motion planning.

3.11 EXERCISES

1. Recall that in the so-called out-position situations (Section 3.3.2) the algo-
rithm Bug2 has a very favorable performance: The robot is guaranteed to
have no cycles in the path (i.e., to never pass a path segment more than
once). On the other hand, the in-position situations can sometimes produce
long paths with local cycles. For a given scene, the in-position was defined
in Section 3.3.2 as a situation when either Start or Target points, or both,
lie inside the convex hull of obstacles that the line (Start, Target) intersects.
Note that the in-position situation is only a sufficient condition for trouble:
Simple examples can be designed where no cycles are produced in spite of
the in-position condition being satisfied.

Try to come up with a necessary and sufficient condition—call it GOOD-
CON—that would guarantee a no-cycle performance by Bug2 algorithm. Your
statement would say: “Algorithm Bug2 will produce no cycles in the path if
and only if condition GOODCON is satisfied.”

2. The following sensor-based motion planning algorithm, called AlgX (see the
procedure below), has been suggested for moving a mobile point automaton
(MA) in a planar environment with unknown arbitrarily shaped obstacles. MA
knows its own position and that of the target location T , and it has tactile
sensing; that is, it learns about an obstacle only when it touches it. AlgX makes
use of the straight lines that connect MA with point T and are tangential to
the obstacle(s) at the MA’s current position.

The questions being asked are:
• Does AlgX converge?
• If the answer is “yes,” estimate the performance of AlgX.
• If the answer is “no,” why not? Explain and give a counterexample. Using

the same idea of the tangential lines connecting MA and T , try to fix the
algorithm. Your procedure must operate with finite memory. Estimate its
performance.

• Develop a test for target reachability.

Just like the Bug1 and Bug2 algorithms, the AlgX procedure also uses the
notions of (a) hit points, Hj , and leave points, Lj , on the obstacle boundaries
and (b) local directions. Given the start S and target T points, here are some
necessary details:
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• Point P becomes a hit point when MA, while moving along the ST line,
encounters an obstacle at P .

• Point P can become a leave point if and only if (1) it is possible for MA
to move from P toward T and (2) there is a straight line that is tangential
to the obstacle boundary at P and passes through T . When a leave point is
encountered for the first time, it is called open; it may be closed by MA
later (see the procedure).

• A local direction is the direction of following an obstacle boundary; it can be
either left or right. In AlgX the current local direction is inverted whenever
MA passes through an open leave point; it does not change when passing
through a closed leave point.

• A local cycle is formed when MA visits some points of its path more
than once.

The idea behind the algorithm AlgX is as follows. MA starts by moving
straight toward point T . Every time it encounters an obstacle, it inverts its
local direction, the idea being that this will keep it reasonably close to the
straight line (S, T ). If a local cycle is formed, MA blames it on the latest turn
it made at a hit point. Then MA retraces back to the latest visited leave point,
closes it, and whence takes the opposite turn at the next hit point. If that turn
leads again to a local cycle, then the turn that led to the current leave point
is to be blamed. And so on. The procedure operates as follows:
Initialization. Set the current local direction to “right”; set j = 0,

Lj = S.

Step 1. Move along a straight line from the current leave point toward point
T until one of the following occurs:

a. Target T is reached; the procedure terminates.
b. An obstacle is encountered; go to Step 2.

Step 2. Define a hit point Hj . Turn in the current local direction and move
along the obstacle boundary until one of the following occurs:

a. Target T is reached; the procedure terminates.
b. The current velocity vector (line tangential to the obstacle at the current

MA position) passes through T , and this point has not been defined
previously as a leave point; then, go to Step 3.

c. MA comes to a previously defined leave point Li , i ≤ j (i.e., a local
cycle has been formed). Go to Step 4.

Step 3. Set j = j + 1; define the current point as a new open leave point;
invert the current local direction; go to Step 1.

Step 4. Close the open leave point Lk visited immediately before Li . Invert
the local direction. Retrace the path between Li and Lk . (During retracing,
invert the local direction when passing through an open leave point, but
do not close those points; ignore closed leave points.) Now MA is at the
closed leave point Lk . If Li is open, go to Step 1. If Li is closed, execute
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the second part of Step 2, “. . . move along . . . until . . . ,” using the current
local direction.

In Figure 3.E.2, L1 is self-closed because when it is passed for the second
time, the latest visited open leave point is L1 itself; L4 is closed when L3 is
passed for the second time; no other leave points are closed. When retracing
from L3 to L4, the leave point L3 causes inversion of the local direction, but
does not close any leave points.

3. Design two examples that would result in the best-case and the worst-case
performance, respectively, of the Bug2 algorithm. In both examples the same
three C-shaped obstacles should be used, and an M-line that connects two
distinct points S and T and intersects all three obstacles. An obstacle can be
mirror image reversed or rotated if desired. Obstacles can touch each other,
in which case they become one obstacle; that is, a point robot will not be
able to pass between them at the contact point(s). Evaluate the algorithm’s
performance in each case.





CHAPTER 4

Accounting for Body Dynamics:
The Jogger’s Problem

Let me first explain to you how the motions of different kinds of matter depend
on a property called inertia.

—Sir William Thomson (Lord Kelvin), The Tides

4.1 PROBLEM STATEMENT

As discussed before, motion planning algorithms usually adhere to one of the
two paradigms that differ primarily by their assumptions about input informa-
tion: motion planning with complete information (Piano Mover’s problem) and
motion planning with incomplete information (sensor-based motion planning, SIM
paradigm, see Chapter 1). Strategies that come out of the two paradigms can be
also classified into two groups: kinematic approaches, which consider only kine-
matic and geometric issues, and dynamic approaches, which take into account
the system dynamics. This classification is independent from the classification
into the two paradigms. In Chapter 3 we studied kinematic sensor-based motion
planning algorithms. In this chapter we will study dynamic sensor-based motion
planning algorithms.

What is so dynamic about dynamic approaches? In strategies that we consid-
ered in Chapter 3, it was implicitly assumed that whatever direction of motion
is good for the robot’s next step from the standpoint of its goal, the robot will
be able to accomplish it. If this is true, in the terminology of control theory such
a system is called a holonomic system [78]. In a holonomic system the number
of control variables available is no less that the problem dimensionality. The
system will also work as intended in situations where the above condition is not
satisfied, but for some reason the robot dynamics can be ignored. For example,
a very slowly moving robot can turn on a dime and hence can execute any sharp
turn if prescribed by its motion planning software.

Most of existing approaches to motion planning (including those within the
Piano Mover’s model) assume, first, that the system is holonomic and, second,

Sensing, Intelligence, Motion, by Vladimir J. Lumelsky
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139



140 ACCOUNTING FOR BODY DYNAMICS: THE JOGGER’S PROBLEM

that it will behave as a holonomic system. Consequently, they deal solely with
the system kinematics and ignore its dynamic properties. One reason for this
state of affairs is that the methods of motion planning tend to rely on tools from
geometry and topology, which are not easily connected to the tools common to
control theory. Although system dynamics and sensor-based motion control are
clearly tightly coupled in many, if not most, real-world systems, little attention
has been paid to this connection in the literature.

The robot is a body; it has a mass and dimensions. Once it starts moving,
it acquires velocity and acceleration. Its dynamics may now prevent it from
making sharp, and sometimes even relatively shallow, turns prescribed by the
planning algorithm. A sharp turn reasonable from the standpoint of reaching the
target position may not be physically realizable because of the robot’s inertia.
In control theory terminology, this is a nonholonomic system [78]. A classical
example of a nonholonomic control problem is the car parallel parking task:
Because the driver does not have enough control means to execute the parking
in one simple translational motion, he has to wiggle the car back and force to
bring it to the desired position.

Given the insufficient information about the surroundings, which is central to
the sensor-based motion planning paradigm, the lack of control means to execute
any desired motion translates into a safety issue: One needs a guarantee of a
stopping path at any time, in case a sudden obstacle makes it impossible to
continue on the intended path.

Theoretically, there is a simple way out: We can make the robot stop every
time it intends to turn, let it turn, and resume the motion as needed. Not many
applications will like such a stop-and-go motion pattern. For a realistic control we
want the robot to make turns on the move, and not stop unless “absolutely neces-
sary,” whatever this means. That is, in addition to the usual problem of “where to
go” and how to guarantee the algorithm convergence in view of incomplete infor-
mation, the robot’s mass and velocity bring about another component of motion
planning, body dynamics. Furthermore, we will see that it will be important to
incorporate the constraints of robot dynamics into the very motion planning algo-
rithm, together with the constraints dictated by collision avoidance and algorithm
convergence requirements.

We call the problem thus formulated the Jogger’s Problem, because it is not
unlike the task a human jogger faces in an urban setting when going for a morn-
ing run. Taking a run involves continuous on-line control and decision-making.
Many decisions will be made during the run; in fact, many decisions are made
within each second of the run. The decision-making apparatus requires a smooth
collaboration of a few mechanisms. First, a global planning mechanism will work
on ensuring arrival at the target location in spite of all deviations and detours
that the environment may require. Unless a “grand plan” is followed, arrival at
the target location—what we like to call convergence—may not be guaranteed.

Second, since an instantaneous stop is impossible due to the jogger’s iner-
tia, in order to maintain a reasonable speed the jogger needs at any moment
an “insurance” option of a safe stopping path. This mechanism will relate the
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jogger’s mass and speed to the visible field of view. It is better to slow down at
the corner—who knows what is behind the corner?

Third, when the jogger starts turning the street corner and suddenly sees a pile
of sand right on the path that he contemplated (it was not there last time), some
quick local planning must occur to take care of collision avoidance. The jogger’s
speed may temporarily decrease and the path will smoothly divert from the object.
The jogger will likely want to locally optimize this path segment, in order to come
back to his preplanned path quicker or along a shorter path. Other options not
being feasible, the jogger may choose to “brake” to a halt and start a detour path.

As we see, the jogger’s speed, mass, and quality of vision, as well as the
speed of reaction to sudden changes—which represents the quality of his control
system—are all tied together in a certain relationship, affecting the real-time
decision-making process. The process will go on nonstop, all the time; the jog-
ger cannot afford to take his eyes off the route for more than a fraction of a
second. Sensing, local planning, global planning, and actual movement are in
this process taking place simultaneously and continuously. Locally, unless the
right relationship is maintained between the velocity when noticing an object,
the distance to it, and the jogger’s mass, collision may occur. A bigger mass
may dictate better (farther) sensing to maintain the same velocity. Myopic vision
may require reducing the speed.

Another interesting detail is that in the motion planning strategies considered
in Chapter 3, each step of the path could be decided independently from other
steps. The control scheme that takes into account robot dynamics cannot afford
such luxury anymore. Often a decision will likely affect more than calculation
of the current step. Consider this: Instead of turning on the dime as in our prior
algorithms, the robot will be likely moving along relatively smooth curves. How
do we know that the smooth path curve dictated by robot dynamics at the current
step will not be in conflict with collision considerations at the next step? Perhaps
at the current step we need to think of the next step as well. Or perhaps we need
to think of more than one step ahead. Worse yet, what if a part of that path curve
cannot be checked because it is bending around the corner of a nearby obstacle
and hence is invisible?

These questions suggest that in a planning/control system with included
dynamics a path step cannot be planned separately from at least a few steps
that will follow it. The robot must make sure that the step it now contemplates
will not result in some future steps where the collision is inevitable. How many
steps look-ahead is enough? This is one thing that we need to figure out.

Below we will study the said effects, with the same objective as before—to
design provably correct sensor-based motion planning algorithms. As before, the
presence of uncertainty implies that no global optimality of the path is feasible.
Notice, however, that given the need to plan for a few steps ahead, we can attempt
local optimization. While improving the overall path, sometimes dramatically, in
general a path segment that is optimal within the robot’s field of vision says
nothing about the path global optimality.
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By the way, which optimization criterion is to be used? We will consider two
criteria. The salient feature of one criterion is that, while maintaining the maximum
velocity allowed by its dynamics, the robot will attempt to maximize its instanta-
neous turning angle toward the required direction of motion. This will allow it to
finish every turning maneuver in minimum time. In a path with many turns, this
should save a good deal of time. In the second strategy (which also assumes the
maximum velocity compatible with collision avoidance), the robot will attempt
a time-optimal arrival at its (constantly shifting) intermediate target. Intermediate
targets will typically be on the boundary of the robot’s field of vision.

Similar to the model used in Chapter 3, our mobile robot operates in two-
dimensional physical space filled with a locally finite number of unknown sta-
tionary obstacles of arbitrary shapes. Planning is done in small steps (say, 30
or 50 times per second, which is typical for real-world robotics), resulting in
continuous motion. The robot is equipped with sensors, such as vision or range
finders, which allow it to detect and measure distances to surrounding objects
within its sensing range. Robot vision works within some limited or unlimited
radius of vision, which allows some steps look-ahead (say, 20 or 30 or more).
Unless obstacles occlude one another, the robot will see them and use this infor-
mation to plan appropriate actions. Occlusions effectively limit a robot’s input
information and call for more careful planning.

Control of body dynamics fits very well into the feedback nature of the SIM
(Sensing–Intelligence–Motion) paradigm. To be sure, such control can in princi-
ple be incorporated in the Piano Mover’s paradigm as well. One way to do this is,
for example, to divide the motion planning process into two stages: First, a path
is produced that satisfies the geometric constraints, and then this path is modified
to fit the dynamic constraints [79], possibly in a time-optimal fashion [80–82].

Among the first attempts to explicitly incorporate body dynamics into robot
motion planning were those by O’Dunlaing [83] for the one-dimensional case
and by Canny et al. [84] in their kinodynamic planning approach for the two-
dimensional case. In the latter work the proposed algorithm was shown to run in
exponential time and to require space that is polynomial in the input. While the
approach operates in the context of the Piano Mover’s paradigm, it is somewhat
akin to the approach considered in this chapter, in that the control strategy adheres
to the L∞-norm; that is, the velocity and acceleration components are assumed
bounded with respect to a fixed (absolute) reference system. This allows one to
decouple the equations of robot motion and treat the two-dimensional problem
as two one-dimensional problems.1

1Though comparisons between algorithms belonging to the two paradigms are difficult, one com-
parison seems to apply here. Using the L∞-norm will result, both in Ref. 84 and in the strategy
described here, in a less efficient use of control resources and a “less optimal” time of path execu-
tion. Since planning with complete information is a one-time computation, this loss in efficiency is
likely to be significant, due to a large deviation over the whole path of the robot’s moving reference
system from the absolute (world) system. In contrast, in the sensor-based approaches the decoupling
of controls occurs again and again, at every step of the motion: The reference system is fixed only
for the duration of one step, and so the resulting loss in efficiency should be less.
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Within the Piano Mover’s paradigm, a number of kinematic holonomic strate-
gies make use of the artificial potential field. They usually require complete
information and analytical presentation of obstacles; the robot’s motion is affected
by (a) the “repulsive forces” created by a potential field associated with obstacles
and (b) “attractive forces” associated with the goal position [85]. A typical con-
vergence issue here is how to avoid possible local minima in the potential field.
Modifications that attempt to solve this problem include the use of repulsive
fields with elliptic isocontours [86], introduction of special global fields [87],
and generation of a numerical field [88]. The vortex field method [89] allows
one to avoid undesirable attraction points, while using only local information;
the repulsive actions are replaced by the velocity flows tangent to the isocontours,
so that the robot is forced to move around obstacles. An approach called active
reflex control [90] attempts to combine the potential field method with handling
the robot dynamics; the emphasis is on local collision avoidance and on filtering
out infeasible control commands generated by the motion planner.

Among the approaches that deal with incomplete information, a good number
of holonomic techniques originate in maze-search strategies (see the previous
chapters). When applicable, they are usually fast, can be used in real time, and
guarantee convergence; obstacles in the scene may be of arbitrary shape.

There is also a group of nonholonomic motion planning approaches that ignore
the system dynamics. These also require analytical representation of obstacles
and assume complete [91–93] or partial input information [94]. The schemes are
essentially open-loop, do not guarantee convergence, and attempt to solve the
planning problem by taking into account the effect of nonholonomic constraints
on obstacle avoidance. In Refs. 91 and 92 a two-stage scheme is considered:
First, a holonomic planner generates a complete collision-free path, and then this
path is modified to account for nonholonomic constraints. In Ref. 93 the problem
is reduced to searching a graph representing the discretized configuration space.
In Ref. 94, planning is done incrementally, with partial information: First, a
desirable path is defined and then a control is found that minimizes the error in
a least-squares sense.

To design a provably correct dynamic algorithm for sensor-based motion plan-
ning, we need a single control mechanism: Separating it into stages is likely to
destroy convergence. Convergence has two faces: Globally, we have to guarantee
finding a path to the target if one exists. Locally, we need an assurance of col-
lision avoidance in view of the robot inertia. The former can be borrowed from
kinematic algorithms; the latter requires an explicit consideration of dynamics.

Notice an interesting detail: In spite of sufficient knowledge about the piece
of the scene that is currently within the robot’s sensing range, even in this area it
would make little sense at a given step to address the planning task as one with
complete information, as well as to try to compute the whole subpath within the
sensing range. Why not? Computing this subpath would require solving a rather
difficult optimal motion control problem—a computationally expensive task. On
the other hand, this would be largely computational waste, because only the first
step of this subpath would be executed: As new sensing data appears at the next
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step, in general a path adjustment would be required. We will therefore attempt
to plan only as many steps that immediately follow the current one as is needed
to guarantee nonstop collision-free motion.

The general approach will be as follows: At its current position Ci , the robot
will identify a visible intermediate target point, Ti , that is guaranteed to lie on
a convergent path and is far enough from the robot—normally at the boundary
of the sensing range. If the direction toward Ti differs from the current velocity
vector Vi , moving toward Ti may require a turn, which may or may not be
possible due to system dynamics.

In the first strategy that we will consider, if the angle between Vi and the
direction toward Ti is larger than the maximum turn the robot can make in one
step, the robot will attempt a fast smooth maneuver by turning at the maximum
rate until the directions align; hence the name Maximum Turn Strategy. Once a
step is executed, new sensing data appear, a new point Ti+1 is sought, and the
process repeats. That is, the actual path and the path that contains points Ti will
likely be different paths: With the new sensory data at the next step, the robot
may or may not be passing through point Ti .

In the second strategy, at each step, a canonical solution is found which, if no
obstacles are present, would bring the robot from its current position Ci to the
intermediate target Ti with zero velocity and in minimum time. Hence the name
Minimum Time Strategy. (The minimum time refers of course to the current local
piece of scene.) If the canonical path crosses an obstacle and is thus not feasible, a
near-canonical solution path is found which is collision-free and satisfies the con-
trol constraints. We will see that in this latter case only a small number of options
needs be considered, at least one of which is guaranteed to be collision-free.

The fact that no information is available beyond the sensing range dictates
caution. To guarantee safety, the whole stopping path must not only lie inside
the sensing range, it must also lie in its visible part. No parts of the stopping
path can be occluded by obstacles. Moreover, since the intermediate target Ti

is chosen as the farthest point based on the information currently available, the
robot needs a guarantee of stopping at Ti , even if it does not intend to do so.
Otherwise, what if an obstacle lurks right beyond the vision range? That is, each
step is to be planned as the first step of a trajectory which, given the current
position, velocity, and control constraints, would bring the robot to a halt at
Ti . Within one step, the time to acquire sensory data and to calculate necessary
controls must fit into the step cycle.

4.2 MAXIMUM TURN STRATEGY

4.2.1 The Model

The robot is a point mass, of mass m. It operates in the plane; the scene may
include a locally finite number of static obstacles. Each obstacle is bounded by
a simple closed curve of arbitrary shape and of finite length, such that a straight
line will cross it in only a finite number of points. Obstacles do not touch each
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other; if they do, they are considered one obstacle. The total number of obstacles
in the scene need not be finite.

The robot’s sensors provide it with information about its surroundings within
the sensing range (radius of vision), a disc of radius rv centered at its current
location Ci . The sensor can assess the distance to the nearest obstacle in any
direction within the sensing range. The robot input information at moment ti
includes its current velocity vector Vi , coordinates of point Ci and of the target
point T , and possibly few other points of interest that will be discussed later.

The task is to move, collision-free, from point S (start) to point T (target)
(see Figure 4.1). The robot’s control means include two components (p, q) of
the acceleration vector u = f

m
= (p, q), where m is the robot mass and f is the

force applied. Though the units of (p, q) are those of acceleration, by normalizing
to m = 1 we can refer to p and q as control forces, each within its fixed range
|p| ≤ pmax, |q| ≤ qmax. Force p controls forward (or backward when braking)
motion; its positive direction coincides with the velocity vector V. Force q is
perpendicular to p, forming a right pair of vectors, and is equivalent to the
steering control (rotation of vector V) (Figure 4.2). Constraints on p and q imply
a constraint on the path curvature. The point mass assumption implies that the
robot’s rotation with respect to its “center of mass” has no effect on the system
dynamics. There are no external forces acting on the robot except p and q.
There is no friction; for example, values p = q = 0 and V �= 0 will result in a
straight-line constant velocity motion.2

Robot motion is controlled in steps i, i = 0, 1, 2, . . . . Each step takes time
δt = ti+1 − ti = const . The step’s length depends on the robot’s velocity within

ru

T

L

H

M-lineS

Robot’s path

Obstacle

C

P

Q

Figure 4.1 An example of a conflict between the performance of a kinematic algorithm
(e.g., VisBug-21, the solid line path) and the effects of dynamics (the dotted piece of
trajectory at P).

2If needed, other external forces and constraints can be handled within this model, using for example
the technique described in Ref. 95.
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Figure 4.2 The path coordinate frame (t, n) is used in the analysis of dynamic effects
of robot motion. The world frame (x, y), with its origin at the start point S, is used in the
obstacle detection and path planning analysis.

the step. Steps i and i + 1 start at times ti and ti+1, respectively; C0 = S. While
moving toward location Ci+1, the robot computes necessary controls for step
i + 1 using the current sensory data, and it executes them at Ci+1. The finite time
necessary within one step for acquiring sensory data, calculating the controls, and
executing the step must fit into the step cycle (more details on this can be found
in Ref. 96). We define two coordinate systems (follow Figure 4.2):

• The world coordinate frame, (x, y), fixed at point S.
• The path coordinate frame, (t, n), which describes the motion of point mass

at any moment τ ∈ [ti , ti+1) within step i. The frame’s origin is attached
to the robot; axis t is aligned with the current velocity vector V; axis n is
normal to t; that is, when V = 0, the frame is undefined. One may note that
together with axis b = t × n, the triple (t, n, b) forms the known Frenet
trihedron, with the plane of t and n being the osculating plane [97].

4.2.2 Sketching the Approach

Some terms and definitions here are the same as in Chapter 3; material in
Section 3.1 can be used for more rigorous definitions. Define M-line (Main line)
as the straight-line segment (S, T ) (Figure 4.1). The M-line is the robot’s desired
path. When, while moving along the M-line, the robot senses an obstacle cross-
ing the M-line, the crossing point on the obstacle boundary is called a hit point,
H . The corresponding M-line point “on the other side” of the obstacle is a leave
point, L.

The planning procedure is to be executed at each step of the robot’s path.
Any provable maze-searching algorithm can be used for the kinematic part of
the algorithm that we are about to build, as long as it allows distant sensing.
For specificity only, we use here the VisBug algorithm (see Section 3.6; either
VisBug-21 or VisBug-22 will do). VisBug algorithms alternate between these
two operations (see Figure 4.1):

1. Walk from point S toward point T along the M-line until, at some point
C, you detect an obstacle crossing the M-line, say at point H .
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2. Using sensing data, define the farthest visible intermediate target Ti on the
obstacle boundary and on a convergent path; make a step toward Ti ; iterate
Step 2 until you detect the M-line; go to Step 1.

To this process we add a control procedure for handling dynamics. It is clear
already that from time to time dynamics will prevent the robot from carefully
following an obstacle boundary. For example, in Figure 4.1, while trying to pass
the obstacle from the left, under a VisBug procedure the robot would make a
sharp turn at point P . Such motion is not possible in a system with dynamics.

At times the current intermediate target Ti may go out of the robot’s sight,
because of the robot inertia or because of occluding obstacles. In such cases the
robot will be designating temporary intermediate targets and use them until it
can spot the point Ti again. The final algorithm will also include mechanisms for
checking the target reachability and for local path optimization.

Safety Considerations. Dynamics affects safety. Given the uncertainty beyond
the distance rv from the robot (or even closer to it in case of occluding obstacles),
a guaranteed stopping path is the only way to ensure collision-free motion. Unless
this last resort path is available, new obstacles may appear in the sensing range
at the next step, and collision may be imminent. A stopping path implies a
safe direction of motion and a safe velocity value. We choose the stopping path
as a straight-line segment along the step’s velocity vector. A candidate for the
next step is “approved” by the algorithm only if its execution would guarantee
a stopping path. In this sense our planning procedure is based on a one-step
analysis.3

As one will see, the procedure for a detour around a suddenly appearing
obstacle operates in a similar fashion. We emphasize that the stopping path does
not mean stopping. While moving along, at every step the robot just makes sure
that if a stop is suddenly necessary, there is always a guarantee for it.

Allowing for a straight-line stopping path with the stop at the sensing range
boundary implies the following relationship between the velocity V, mass m, and
controls u = (p, q):

V ≤
√

2pd (4.1)

where d is the distance from the current position C to the stop point. So, for
example, an increase in the radius of vision rv would allow the robot to raise
the maximum velocity, by the virtue of providing more information farther along
the path. Some control ramifications of this relationship will be analyzed in
Section 4.2.3.

Convergence. Because of the effect of dynamics, the convergence mechanism
borrowed from a kinematic algorithm—here VisBug—needs some modification.

3A deeper multistep analysis can in principle produce locally shorter paths. It would not add to
safety, however, and is not likely to justify the steep rise in computational expenses.
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VisBug assumes that the intermediate target point is either on the obstacle bound-
ary or on the M-line and is visible. However, the robot’s inertia may cause it to
move so that the intermediate target Ti will become invisible, either because it
goes outside the sensing range rv (as after point P , Figure 4.1) or due to occlud-
ing obstacles (as in Figure 4.6). The danger of this is that the robot may lose
from its sight point Ti —and the path convergence with it. One possible solution
is to keep the velocity low enough to avoid such overshoots—a high price in
efficiency to pay. The solution we choose is to keep the velocity high and, if the
intermediate target Ti does go out of sight, modify the motion locally until Ti is
found again (Section 4.2.6).

4.2.3 Velocity Constraints. Minimum Time Braking

By substituting pmax for p and rv for d into (4.1), one obtains the maxi-
mum velocity, Vmax. Since the maximum distance for which sensing informa-
tion is available is rv , the sensing range boundary, an emergency stop should
be planned for that distance. We will show that moving with the maximum
speed—certainly a desired feature—actually guarantees a minimum-time arrival
at the sensing range boundary. The suggested braking procedure, developed fully
in Section 4.2.4, makes use of an optimization scheme that is sketched briefly in
Section 4.2.4.

Velocity Constraints. It is easy to see (follow an example in Figure 4.3) that
in order to guarantee a safe stopping path, under discrete control the maximum
velocity must be less than Vmax. This velocity, called permitted maximum velocity,
Vp max, can be found from the following condition: If V = Vp max at point C2 (and
thus also at C1), we can guarantee the stop at the sensing range boundary (point
B1, Figure 4.3). Recall that velocity V is generated at C1 by the control force p.
Let |C1C2| = δx; then

δx = Vp max · δt
VB1 = Vp max − pmaxt

Since we require VB1 = 0, then t = Vp max/pmax. For the segment |C2B1| = rv −
δx, we have

rv − δx = Vp max · t − pmaxt
2

2

From these equations, the expression for the maximum permitted velocity Vp max

can be obtained:

Vp max =
√

p2
maxδt

2 + 2pmaxrv − pmaxδt

As expected, Vp max < Vmax and converges to Vmax with δt → 0.
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Figure 4.3 With the sensing radius equal to rv , obstacle O1 is not visible from point
C1. Because of the discrete control, velocity V1 commanded at C1 will be constant during
the step interval (C1, C2). Then, if V1 = Vmax at C1, then also V2 = Vmax, and the robot
will not be able to stop at B1, causing collision with obstacle O1. The permitted velocity
thus must be Vp max < Vmax.

4.2.4 Optimal Straight-Line Motion

We now sketch the optimization scheme that will later be used in the development
of the braking procedure. Consider a dynamic system, a moving body whose
behavior is described by a second-order differential equation ẍ = p(t), where
‖p(t)‖ ≤ pmax and p(t) is a scalar control function. Assume that the system
moves along a straight line. By introducing state variables x and V , the system
equations can be rewritten as ẋ = V and V̇ = p(t). It is convenient to analyze
the system behavior in the phase space (V , x).

The goal of control is to move the system from its initial position (x(t0), V (t0))

to its final position (x(tf ), V (tf )). For convenience, choose x(tf ) = 0. We are
interested in an optimal control strategy that would execute the motion in min-
imum time tf , arriving at x(tf ) with zero velocity, V (tf ) = 0. This optimal
solution can be obtained in closed form; it depends upon the above/below rela-
tion of the initial position with respect to two parabolas that define the switch
curves in the phase plane (V , x):

x = − V 2

2pmax
, V ≥ 0 (4.2)

x = V 2

2pmax
, V ≤ 0 (4.3)

This simple result in optimal control (see, e.g., Ref. 98) is summarized in the con-
trol law that follows, and it is used in the next section in the development of the
braking procedure for emergency stopping. The procedure will guarantee robot
safety while allowing it to cruise with the maximum velocity (see Figure 4.4):
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Figure 4.4 Depending on whether the initial position (V0, x0) in the phase space (V , x)

is above or below the switch curves, there are two cases to consider. The optimal solution
corresponds to moving first from point (V0, x0) to the switching point (Vs, xs) and then
along the switch line to the origin.

Control Law: If in the phase space the initial position (V0, x0) is above the switch
curve (4.2), first move along the parabola defined by control p̂ = −pmax toward
curve (4.2), and then with control p̂ = pmax move along the curve to the origin. If
point (V0, x0) is below the switch curve, move first with control p̂ = pmax toward
the switch curve (4.3), and then move with control p̂ = −pmax along the curve to
the origin.

The Braking Procedure. We now turn to the calculation of time it will take
the robot to stop when it moves along the stopping path. It follows from the
argument above that if at the moment when the robot decides to stop its velocity
is V = Vp max, then it will need to apply maximum braking all the way until the
stop. This will define uniquely the time to stop. But, if V < Vp max, then there
are a variety of braking strategies and hence of different times to stop.

Consider again the example in Figure 4.3; assume that at point C2, V2 <

Vp max. What is the optimal braking strategy, the one that guarantees safety while
bringing the robot in minimum time to a stop at the sensing range boundary?
While this strategy is not necessarily the one we would want to implement, it is
of interest because it defines the limit velocity profile the robot can maintain for
safe braking. The answer is given by the solution of an optimization problem for
a single-degree-of-freedom system. It follows from the Control Law above that
the optimal solution corresponds to at most two curves, I and II , in the phase
space (V, x) (Figure 4.5a) and to at most one control switch, from p̂ = pmax on
line I to p̂ = −pmax on line II , given by (4.2) and (4.3). For example, if braking
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Figure 4.5 (a) Optimal braking strategy requires at most one switch of control. (b) The
corresponding time–velocity relation.

starts with the initial values x = −rv and 0 ≤ V0 < Vmax, the system will first
move, with control p̂ = pmax, along parabola I to parabola II (Figure 4.5a),

x(V ) = V 2 − V 2
0

2pmax
− r

and then, with control p̂ = −pmax, toward the origin, along parabola II ,

x(V ) = V 2

2pmax

The optimal time tb of braking is a function of the initial velocity V0, radius of
vision rv , and the control limit pmax,

tb(V0) =
√

2V 2
0 + 4pmaxrv − V0

pmax
(4.4)

Function tb(V0) has a minimum at V0 = Vmax = √
2pmaxrv , which is exactly

the upper bound on the velocity given by (4.1); it is decreasing on the interval
V0 ∈ [0, Vmax] and increasing when V0 > Vmax (see Figure 4.5b). For the interval
V0 ∈ [0, Vmax], which is of interest to us, the above analysis leads to a somewhat
counterintuitive conclusion:

Proposition 1. For the initial velocity V0 in the range V0 ∈ [0, Vmax], the time
necessary for stopping at the boundary of the sensing range is a monotonically
decreasing function of V0, with its minimum at V0 = Vmax.

Notice that this result (see also Figure 4.5) leaves a comfortable margin of safety:
Even if at the moment when the robot sees an obstacle on its way it moves with
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the maximum velocity, it can still stop safely before it reaches the obstacle. If the
robot’s velocity is below the maximum, it has more control options for braking,
including even one of speeding up before actual braking. Assume, for example,
that we want the robot to stop in minimum time at the sensing range boundary
(the origin in Figure 4.5a); consider two initial positions: (i) x = −rv , V = V 1

0
and (ii) x = −rv , V = V 2

0 ; V 2
0 > V 1

0 . Then, according to Proposition 1, in case
(i) this time is bigger than in case (ii). Note that because of the discrete control it
is the permitted maximum velocity, Vp max, that is to be substituted into (4.4) to
obtain the minimum time. (More details on the braking procedure can be found
in Ref. 99).

4.2.5 Dynamics and Collision Avoidance

The analysis in this section consists of two parts. First we incorporate the control
constraints into the model of our mobile robot and develop a transformation
from the moving path coordinate frame to the world frame (see Section 4.2.1).
Then the Maximum Turn Strategy is produced, an incremental decision-making
mechanism that determines forces p and q at each step.

Transformation from Path Frame to World Frame. The remainder of this
section refers to the time interval [ti , ti+1), and so index i can be dropped.
Let (x, y) ∈ R2 be the robot’s position in the world frame, and let θ be the
(slope) angle between the velocity vector V = (Vx, Vy) = (ẋ, ẏ) and x axis of
the world frame (see Figure 4.2). The planning process involves computation of
controls u = (p, q), which for every step defines the velocity vector and even-
tually the path, x = (x, y), as a function of time. The normalized equations of
motion are

ẍ = p cos θ − q sin θ

ÿ = p sin θ + q cos θ

The angle θ between vector V and x axis of the world frame is found as

θ =




arctan
(

Vy

Vx

)
, Vx ≥ 0

arctan
(

Vy

Vx

)
+ π, Vx < 0

To find the transformation from path frame to the world frame (x, y), present the
velocity in the path frame as V = V t. Angle θ is defined as the angle between t
and the positive direction of x axis. Given that control forces p and q act along
the t and n directions, respectively, the equations of motion with respect to the
path frame are

V̇ = p

θ̇ = q/V
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Since the control forces are constant over time interval [ti , ti+1), within this
interval the solution for V (t) and θ(t) becomes

V (t) = V0 + pt

θ(t) = θ0 +
q log(1 + tp

Vi
)

p
(4.5)

where θ0 and V0 are constants of integration and are equal to the values of θ(ti )

and V (ti), respectively. By parameterizing the path by the value and direction
of the velocity vector, the path can be mapped onto the world frame using the
vector integral equation

r(t) =
∫ ti+1

ti

V · dt (4.6)

Here r(t) = (x(t), y(t)) and V = (V · cos(θ), V · sin(θ)) are the projections of
vector V onto the world frame (x, y). After integrating Eq. (4.6), we obtain a set
of solutions in the form

x(t) = 2p cos θ(t) + q sin θ(t)

4p2 + q2
V 2(t) + A

y(t) = − q cos θ(t) − 2p sin θ(t)

4p2 + q2
V 2(t) + B (4.7)

where terms A and B are

A = x0 − V0
2(2p cos(θ0 ) + q sin(θ0 ))

4p2 + q2

B = y0 + V0
2(q cos(θ0) − 2p sin(θ0 ))

4p2 + q2

Equations (4.7) are directly defined by the control variables p and q; V (t) and
θ(t) therein are given by Eq. (4.5).

In general, Eqs. (4.7) describe a spiral curve. Note two special cases: When
p �= 0, q = 0, Eqs. (4.7) describe a straight-line motion along the vector of veloc-
ity; when p = 0 and q �= 0, Eqs. (4.7) produce a circle of radius V 2

0 /|q| centered
at the point (A, B).

Selection of Control Forces. We now turn to the control law that guides the
selection of forces p and q at each step i, for the time interval [ti , ti+1). To
ensure a reasonably fast convergence to the intermediate target Ti , those forces
are chosen such as to align, as fast as possible, the direction of the robot’s
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motion with the direction toward Ti . First, find a solution among the controls
(p, q) such that

(p, q) ∈ {(p, q) : p ∈ [−pmax, +pmax], q = ±qmax} (4.8)

where q = +qmax if the intermediate target Ti lies in the left semiplane, and
q = −qmax if Ti lies in the right semiplane with respect to the vector of velocity.
That is, force p is chosen so as to keep the maximum velocity allowed by the
surrounding obstacles. To this end, a discrete set of values p is tried until a step
that guarantees a collision-free stopping path is found. At a minimum, the set
should include values −pmax, 0, and +pmax. The greater the number of values
that are tried, the closer the resulting velocity is to the maximum sought. Force
q is chosen on the boundary, to produce a maximum turn in the appropriate
direction. On the other hand, if because of obstacles no adequate controls in the
range (4.8) can be chosen, this means that maximum braking should be applied.
Then the controls are chosen from the set

(p, q) ∈ {(p, q) : p = −pmax, q ∈ (±qmax, 0]} (4.9)

where q is found from a discrete set similar to p in (4.8). Note that sets (4.8)
and (4.9) always include at least one safe solution: By the algorithm design,
the straight-line motion with maximum braking, (p, q) = (−pmax, 0), is always
collision-free (for more detail, see Ref. 96).

4.2.6 The Algorithm

The resulting algorithm consists of three procedures:

• Main Body. This defines the motion within the time interval [ti , ti+1) toward
the intermediate target Ti .

• Define Next Step. This chooses the forces p and q.
• Find Lost Target. This handles the case when the intermediate target goes

out of the robot’s sight.

Also used in the algorithm is a procedure called Compute Ti , from the VisBug
algorithms (Section 3.6), which computes the next intermediate target Ti+1 and
includes a test for target reachability. Vector Vi is the current vector of velocity,
and T is the robot’s target location. The term “safe motion” below refers to the
mechanism for determining the next robot’s position Ci+1 such as to guarantee
a stopping path (Section 4.2.2).

Main Body . The procedure is executed at each step’s time interval [ti , ti+1) and
makes use of two procedures, Define Next Step and Find Lost Target (see further
below):
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• M1: Move in the direction specified by Define Next Step, while executing
Compute Ti . If Ti is visible, do the following: If Ci = T , the procedure
stops; else if T is unreachable, the procedure stops; else if Ci = Ti , go to
M2. Otherwise, use Find Lost Target to make Ti visible. Iterate M1.

• M2: Make a step along vector Vi while executing Compute Ti : If Ci = T ,
the procedure stops; else if the target is unreachable, the procedure stops;
else if Ci �= Ti , go to M1.

Define Next Step. This procedure covers all cases of generation of a single motion
step. Its part D1 corresponds to motion along the M-line; D2 corresponds to a
simple turn when the directions of vectors Vi and (Ci, Ti) can be aligned in
one step; D3 is invoked when the turn requires multiple steps and can be done
with the maximum speed; D4 is invoked when turning must be accompanied by
braking:

• D1: If vector Vi coincides with the direction toward Ti , do the following:
If Ti = T , make a step toward T ; else make a step toward Ti .

• D2: If vector Vi does not coincide with the direction toward Ti , do the
following: If the directions of Vi+1 and (Ci, Ti) can be aligned within one
step, choose this step. Else go to D3.

• D3: If a step with the maximum turn toward Ti and with maximum velocity
is safe, choose it. Else go to D4.

• D4: If a step with the maximum turn toward Ti and some braking is pos-
sible, choose it. Else, choose a step along Vi , with maximum braking,
p = −pmax, q = 0.

Find Lost Target . This procedure is executed when the intermediate target Ti

becomes invisible. The last position Ci where Ti was visible is kept in the
memory until Ti becomes visible again. A very simple fix would be this: Once
Ti becomes occluded by an obstacle, in order to immediately initiate a stopping
path, move back to Ci , and then move directly toward Ti . This would be quite
inefficient, however. Instead, the procedure operates as follows: Once the robot
loses Ti , it keeps moving ahead while defining temporary intermediate targets on
the visible part of the line segment (Ci, Ti), and continuing looking for Ti . If
it finds Ti , the procedure terminates, the control returns to the Main Body, and
the robot moves directly toward Ti (see Figure 4.6a). Otherwise, if the whole
segment (Ci, Ti) becomes invisible, the robot brakes to a stop, returns to Ci ,
the procedure terminates, and so on (see Figure 4.6b). Together these two pieces
ensure that the intermediate target Ti will not be lost. The procedure is as follows:

• F1: If segment (Ci, Ti) is visible, define on it a temporary intermediate
target T t

i and move toward it while looking for Ti . If the current position is
at T , exit; else if Ci lies in the segment (Ci, Ti), exit. Else go to F2.

• F2: If segment (Ci, Ti) is invisible, initiate a stopping path and move back
to Ci ; exit.
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Figure 4.6 Because of its inertia, immediately after its position Ci the robot temporarily
“loses” the intermediate target Ti . (a) The robot keeps moving around the obstacle until
it spots Ti , and then it continues toward Ti . (b) When because of an obstacle the whole
segment (Ci, Ti) becomes invisible at point Ck+1, the robot stops, returns back to Ci , and
then moves toward Ti along the line (Ci, Ti).

Convergence. To prove convergence of the described procedure, we need to
show the following:

(i) At every step of the path the algorithm guarantees collision-free motion.
(ii) The set of intermediate targets Ti is guaranteed to lie on the convergent

path.
(iii) The planning strategy guarantees that the current intermediate target will

not be lost.

Together, (ii) and (iii) assure that a path to the target position T will be found
if one exists. Condition (i) can be shown by induction; condition (ii) is provided
by the VisBug procedure (see Section 3.6), which also includes the test for target
reachability. Condition (iii) is satisfied by the procedure Find Lost Target of the
Maximum Turn Strategy. The following two propositions hold:

Proposition 2. Under the Maximum Turn Strategy algorithm, assuming zero
velocity, VS = 0, at the start position S, at each step of the path there exists
at least one stopping path.

By design, the stopping path is a straight-line segment. Choosing the next step
so as to guarantee existence of a stopping path implies two requirements: There
should be at least one safe direction of motion and the value of velocity that
would allow stopping within the visible area. The latter is ensured by the choice
of system parameters [see Eq. (4.1) and the safety conditions, Section 4.2.2]. As
to the existence of safe directions, proceed by induction: We need to show that
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if a safe direction exists at the start point and at an arbitrary step i, then there is
a safe direction at the step (i + 1).

Since at the start point S the velocity is zero, VS = 0, then any direction
of motion at S will be a safe direction; this gives the basis of induction. The
induction proceeds as follows. Under the algorithm, a candidate step is accepted
for execution if only its direction guarantees a safe stop for the robot if needed.
Namely, at point Ci , step i is executed only if the resulting vector Vi+1 at Ci+1

will point in a safe direction. Therefore, at step (i + 1), at the least this very
direction presents a safe stopping path.

Remark: Proposition 2 will hold for VS �= 0 as well if the start point S is known
to possess at least one stopping path originating in it.

Proposition 3. The Maximum Turn Strategy is convergent.

To see this, note that by design of the VisBug algorithm (see Section 3.6.3), each
intermediate target Ti lies on a convergent path and is visible at the moment
when it is generated.

That is, the only way the robot can get lost is if at the following step(s)
point Ti becomes invisible due to the robot’s inertia or an obstacle occlusion:
This would make it impossible to generate the next intermediate target, Ti+1, as
required by VisBug. However, if point Ti does become invisible, the procedure
Find Lost Target is invoked, a set of temporary intermediate targets T t

i+1 are
defined, each with a guaranteed stopping path, and more steps are executed until
point Ti becomes visible again (see Figure 4.6). The set T t

i+1 is finite because of
finite distances between every pair of points in it and because the set must lie
within the sensing range of radius rv . Therefore, the robot always moves toward
a point which lies on a path that is convergent to the target T .

4.2.7 Examples

Examples shown in Figures 4.7a to 4.7d demonstrate performance of the Max-
imum Turn Strategy in a computer simulated environment. Generated paths are
shown by thicker lines. For comparison, also shown by thin lines are paths pro-
duced under the same conditions by the VisBug algorithm. Polygonal shapes are
chosen for obstacles in the examples only for the convenience of generating the
scene; the algorithms are oblivious to the obstacle shapes.

To understand the examples, consider a simplified version of the relationship
that appears in Section 4.2.3, Vmax = √

2rvpmax = √
2rv · fmax/m. In the simu-

lations, the robot’s mass m and control force fmax are kept constant; for example,
an increase in sensing radius rv would “raise” the velocity Vmax. Radius rv is
the same in Figures 4.7a and 4.7b. In the more complex scene (b), because of
three additional obstacles (three small squares) the robot’s path cannot curve as
freely as in scene (a). Consequently, the robot moves more “cautiously,” that is,
slower; the path becomes tighter and closer to the obstacles, allowing the robot
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Figure 4.7 In each of the four examples shown, one path (indicated by the thin line)
is produced by the VisBug algorithm, and the other path (a thicker line) is produced by
the Maximum Turn Strategy, which takes into account the robot dynamics. The circle at
point S indicates the radius of vision rv .

to squeeze between obstacles. Accordingly, the time to complete the path is 221
units (steps) in (a) and 232 units in (b), whereas the path in (a) is longer than
that in (b).

Figures 4.7c and 4.7d refer to a more complex environment. The difference
between these two situations is that in (d) the radius of vision rv is 1.5 times
larger than that in (c). Note that in (d) the path produced by the Maximum Turn
Strategy is noticeably shorter than the path generated by the VisBug algorithm.
This has happened by sheer chance: Unable to make a sharp turn (because of its
inertia) at the last piece of its path, the robot “jumped out” around the corner
and hence happened to be close enough to T to see it, and this eliminated a need
for more obstacle following.

Note the stops along the path generated by the Maximum Turn Strategy; they
are indicated by sharp turns. These might have been caused by various reasons:
For example, in Figure 4.7a the robot stopped because its small sensing radius
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rv was insufficient to see the obstacle far enough to initiate a smooth turn. In
Figure 4.7d, the stop at point P was probably caused by the robot’s temporarily
losing its current intermediate target.

4.3 MINIMUM TIME STRATEGY

We will now consider the second strategy for solving the Jogger’s Problem. The
same model of the robot, its environment, and its control means will be used as
in the Maximum Turn Strategy (see Section 4.2.1).

The general strategy will be as follows: At the given step i, the kinematic
motion planning procedure chosen—we will use again VisBug algorithms—
identifies an intermediate target point, Ti , which is the farthest visible point on
a convergent path. Normally, though not always, Ti is defined at the boundary
of the sensing range rv . Then a single step that lies on a time-optimal trajectory
to Ti is calculated and executed; the robot moves from its current position Ci to
the next position Ci+1, and the process repeats.

Similar to the Maximum Turn Strategy, the fact that no information is available
beyond the robot’s sensing range dictates a number of requirements. There must
be an emergency stopping path, and it must lie inside the current sensing area.
Since parts of the sensing range may be occupied or occluded by obstacles, the
stopping path must lie in its visible part. Next, the robot needs a guarantee of
stopping at the intermediate target Ti , even if it does not intend to do so. That
is, each step is to be planned as the first step of a trajectory which, given the
robot’s current position, velocity, and control constraints, would bring it to a halt
at Ti (though, again, this will be happening only rarely).

The step-planning task is formulated as an optimization problem. It is the
optimization criterion and procedure that will make this algorithm quite different
from the Maximum Turn Strategy. At each step, a canonical solution is found
which, if no obstacles are present, would bring the robot from its current position
Ci to its current intermediate target Ti with zero velocity and in minimum time.
If the canonical path happens to be infeasible because it crosses an obstacle, a
collision-free near-canonical solution path is found. We will show that in this
case only a small number of path options need be considered, at least one of
which is guaranteed to be collision-free.

By making use of the L∞-norm within the duration of a single step, we decou-
ple the two-dimensional problem into two one-dimensional control problems and
reduce the task to the bang-bang control strategy. This results in an extremely
fast procedure for finding the time-optimal subpath within the sensing range. The
procedure is easily implementable in real time. Since only the first step of this
subpath is actually executed—the following step will be calculated when new
sensor information appears after this (first) step is executed—this decreases the
error due to the control decoupling. Then the process repeats. One special case
will have to be analyzed and incorporated into the procedure—the case when
the intermediate target goes out of the robot’s sight either because of the robot
inertia or because of occluding obstacles.
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4.3.1 The Model

To a large extent the model that we will use in this section is similar to the model
used by the Maximum Turn Strategy above. There are also some differences. For
convenience we hence give a complete model description here.

As before, the scene is two-dimensional physical space W ≡ (x, y) ⊂ �2; it
may include a finite set of locally finite static obstacles O ∈ W. Each obstacle
Ok ∈ O is a simple closed curve of arbitrary shape and of finite length, such that
a straight line will cross it in only a finite number of points. Obstacles do not
touch each other; if they do, they are considered one obstacle.

The robot is a point mass , of mass m. Its vision sensor allows it to detect any
obstacles and the distance to them within its sensing range (radius of vision)—a
disk D(Ci, rv) of radius rv centered at its current location Ci . At moment ti , the
robot’s input information includes its current velocity vector Vi and coordinates
of Ci and of target location T .

The robot’s means to control its motion are two components of the accel-
eration vector u = f/m = (p, q), where m is the robot mass and f the force
applied. Controls u come from a set u(·) ∈ U of measurable, piecewise continu-
ous bounded functions in �2, U = {u(·) = (p(·), q(·))/p ∈ [−pmax, pmax], q ∈
[−qmax, qmax]}. By taking mass m = 1, we can refer to components p and q as
control forces, each within a fixed range |p| ≤ pmax, |q| ≤ qmax; pmax, qmax > 0.
Force p controls the forward (or backward when braking) motion; its positive
direction coincides with the robot’s velocity vector V. Force q, the steering con-
trol, is perpendicular to p, forming a right pair of vectors (Figure 4.8). There is
no friction: For example, given velocity V, the control values p = q = 0 will
result in a constant-velocity straight-line motion along the vector V.

Without loss of generality, assume that no external forces except p and q act
on the system. Note that with this assumption our model and approach can still
handle other external forces and constraints using, for example, the technique
suggested in Ref. 95, whereby various dynamic constraints such as curvature,
engine force, sliding, and velocity appear in the inequality describing the limi-
tations on the components of acceleration. The set of such inequalities defines a
convex region of the ẍÿ space. In our case the control forces act within the inter-
section of the box [−pmax, pmax] × [−qmax, qmax], with the half-planes defined
by those inequalities.

The task is to move in W from point S (start) to point T (target) (see
Figure 4.1). The control of robot motion is done in steps i, i = 0, 1, 2, . . . . Each
step i takes time δt = ti+1 − ti = const; the path length within time interval
δt depends on the robot velocity Vi . Steps i and i + 1 start at times ti and
ti+1, respectively; C0 = S. Control forces u(·) = (p, q) ∈ U are constant within
the step.

We define three coordinate systems (follow Figure 4.8):

• The world frame, (x, y), is fixed at point S.
• The primary path frame, (t, n), is a moving (inertial) coordinate frame. Its

origin is attached to the robot; axis t is aligned with the current velocity
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vector V, axis n is normal to t. Together with axis b, which is a cross
product b = t × n, the triple (t, n, b) forms the Frenet trihedron , with the
plane of t and n forming the osculating plane [97].

• The secondary path frame, (ξi, ηi), is a coordinate frame that is fixed during
the time interval of step i. The frame’s origin is at the intermediate target
Ti ; axis ξi is aligned with the velocity vector Vi at time ti , and axis ηi is
normal to ξi .

For convenience we combine the requirements and constraints that affect the
control strategy into a set, called �. A solution (a path, a step, or a set of
control values) is said to be �-acceptable if, given the current position Ci and
velocity Vi ,

(i) it satisfies the constraints |p| ≤ pmax, |q| ≤ qmax on the control forces,
(ii) it guarantees a stopping path,

(iii) it results in a collision-free motion.

4.3.2 Sketching the Approach

The algorithm that we will now present is executed at each step of the robot path.
The procedure combines the convergence mechanism of a kinematic sensor-based
motion planning algorithm with a control mechanism for handling dynamics,
resulting in a single operation. As in the previous section, during the step time
interval i the robot will maintain within its sensing range an intermediate target
point Ti , usually on an obstacle boundary or on the desired path. At its current
position Ci the robot will plan and execute its next step toward Ti . Then at Ci+1

it will analyze new sensory data and define a new intermediate target Ti+1, and so
on. At times the current Ti may go out of the robot’s sight because of its inertia
or due to occluding obstacles. In such cases the robot will rely on temporary
intermediate targets until it can locate point Ti again.

The Kinematic Part. In principle, any maze-searching procedure can be uti-
lized here, so long as it allows an extension to distant sensing. For the sake of
specificity, we use here a VisBug algorithm (see Section 3.6; either VisBug-21
or VisBug-22 will do). Below, M-line (Main line) is the straight-line connect-
ing points S and T ; it is the robot’s desired path. When, while moving along
the M-line, the robot encounters an obstacle, the M-line, the intersection point
between M-line and the obstacle boundary is called a hit point, denoted as H .
The corresponding complementary intersection point between the M-line and the
obstacle “on the other side” of the obstacle is a leave point, denoted L. Roughly,
the algorithm revolves around two steps (see Figure 4.1):

1. Walk from S toward T along the M-line until detect an obstacle crossing
the M-line, say at point H . Go to Step 2.
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2. Define a farthest visible intermediate target Ti on the obstacle boundary in
the direction of motion; make a step toward Ti . Iterate Step 2 until detect
M-line. Go to Step 1.

The actual algorithm will include additional mechanisms, such as a finite-time
target reachability test and local path optimization. In the example shown in
Figure 4.1, note that if the robot walked under a kinematic algorithm, at point
P it would make a sharp turn (recall that the algorithm assumes holonomic
motion). In our case, however, such motion is not possible because of the robot
inertia, and so the actual motion beyond point P would be something closer to
the dotted path.

The Effect of Dynamics. Dynamics affects three algorithmic issues: safety
considerations, step planning, and convergence. Consider those separately.

Safety Considerations. Safety considerations refer to collision-free motion. The
robot is not supposed to hit obstacles. Safety considerations appear in a number
of ways. Since at the robot’s current position no information about the scene
is available beyond the distance rv from it, guaranteeing collision-free motion
means guaranteeing at any moment at least one “last resort” stopping path. Oth-
erwise in the following steps new obstacles may appear in the sensing range, and
collision will be imminent no matter what control is used. This dictates a certain
relationship between the velocity V, mass m, radius rv , and controls u = (p, q).
Under a straight-line motion, the range of safe velocities must satisfy

V ≤
√

2pd (4.10)

where d is the distance from the robot to the stop point. That is, if the robot
moves with the maximum velocity, the stop point of the stopping path must be
no further than rv from the current position C. In practice, Eq. (4.10) can be
interpreted in a number of ways. Note that the maximum velocity is proportional
to the acceleration due to control, which is in turn directly proportional to the
force applied and inversely proportional to the robot mass m. For example, if mass
m is made larger and other parameters stay the same, the maximum velocity will
decrease. Conversely, if the limits on (p, q) increase (say, due to more powerful
motors), the maximum velocity will increase as well. Or, an increase in the radius
rv (say, due to better sensors) will allow the robot to increase its maximum
velocity, by the virtue of utilizing more information about the environment.

Consider the example in Figure 4.1. When approaching point P along its path,
the robot will see it at distance rv and will designate it as its next intermediate
target Ti . Along this path segment, point Ti happens to stay at P because no
further point on the obstacle boundary will be visible until the robot arrives at
P . Though there may be an obstacle right around the corner P , the robot needs
not to slow down since at any point of this segment there is a possibility of a
stopping path ending somewhere around point Q. That is, in order to proceed with
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maximum velocity, the availability of a stopping path has to be ascertained at
every step i. Our stopping path will be a straight-line path along the corresponding
vector Vi . If a candidate step cannot guarantee a stopping path, it is discarded.4

Step Planning. Normally the stopping path is not used; it is only an “insurance”
option. The actual step is based on the canonical solution, a path which, if
fully executed, would bring the robot from Ci to Ti with zero velocity and
in minimum time, assuming no obstacles. The optimization problem is set up
based on Pontryagin’s optimality principle. We assume that within a step time
interval [ti , ti+1) the system’s controls (p, q) are bounded in the L∞-norm, and
apply it with respect to the secondary coordinate frame (ξi, ηi). The result is
a fast computational scheme easily implementable in real time. Of course only
the very first step of the canonical path is explicitly calculated and used in the
actual motion. At the next step, a new solution is calculated based on the new
sensory information that arrived during the previous step, and so on. With such a
step-by-step execution of the optimization scheme, a good approximation of the
globally time-optimal path from Ci to Ti is achieved. On the other hand, little
computation is wasted on the part of the path solution that will not be utilized.

If the step suggested by the canonical solution is not feasible due to obstacles,
a close approximation, called the near-canonical solution, is found that is both
feasible and �-acceptable. For this case we show, first, that only a finite number
of path options need be considered and, second, that there exists at least one path
solution that is �-acceptable. A special case here is when the intermediate target
goes out of the robot’s sight either because of the robot’s inertia or because of
occluding obstacles.

Convergence. Once a step is physically executed, new sensing information
appears and the process repeats. If an obstacle suddenly appears on the robot’s
intended path, a detour is arranged, which may or may not require the robot to
stop. The detour procedure is tied to the issue of convergence, and it is built
similar to the case of normal motion. Because of the effect of dynamics, the con-
vergence mechanism borrowed from a kinematic algorithm—here VisBug—will
need some modification. The intermediate target points Ti produced by VisBug
lie either on the boundaries of obstacles or on the M-line, and they are visible
from the corresponding robot’s positions.

However, the robot’s inertia may cause it to move so that Ti will become
invisible, either because it goes outside of the sensing range rv (as after point P ,
Figure 4.1) or due to occluding obstacles (as in Figure 4.11). This may endanger
path convergence. A safe but inefficient solution would be to slow down or to
keep the speed small at all times to avoid such overshoots. The solution chosen
(Section 4.3.6) is to keep the velocity high and, if the intermediate target Ti goes
out of sight, modify the motion locally until Ti is found again.

4A deeper, multistep analysis would be hardly justifiable here because of high computational costs,
though occasionally it could produce locally shorter paths.
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4.3.3 Dynamics and Collision Avoidance

Consider a time sequence σt = {t0, t1, t2, . . . , } of the starting moments of steps.
Step i takes place within the interval [ti , ti+1), (ti+1 − ti ) = δt . At moment ti the
robot is at the position Ci , with the velocity vector Vi . Within this interval, based
on the sensing data, intermediate target Ti (supplied by the kinematic planning
algorithm), and vector Vi , the control system will calculate the values of control
forces p and q. The forces are then applied to the robot, and the robot executes
step i, finishing it at point Ci+1 at moment ti+1, with the velocity vector Vi+1.
Then the process repeats.

Analysis that leads to the procedure for handling dynamics consists of three
parts. First, in the remainder of this section we incorporate the control constraints
into the robot’s model and develop transformations between the primary path
frame and world frame and between the secondary path frame and world frame.
Then in Section 4.3.4 we develop the canonical solution. Finally, in Section 4.3.5
we develop the near-canonical solution, for the case when the canonical solution
would result in a collision. The resulting algorithm operates incrementally; forces
p and q are computed at each step. The remainder of this section refers to the
time interval [ti , ti+1) and its intermediate target Ti , and so index i is often
dropped.

Denote (x, y) ∈ �2 the robot’s position in the world frame, and denote θ the
(slope) angle between the velocity vector V = (Vx, Vy) = (ẋ, ẏ) and x axis of
the world frame (Figure 4.8). The planning process involves computation of the
controls u = (p, q), which for every step define the velocity vector and eventually
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Figure 4.8 The coordinate frame (x, y) is the world frame, with its origin at S; (t, n) is
the primary path frame, and (ξi , ηi) is the secondary path frame for the current robot
position Ci .
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the path, (x(t), y(t)), as a function of time. Taking mass m = 1, the equations
of motion become

ẍ = p cos θ − q sin θ

ÿ = p sin θ + q cos θ

The angle θ between vector V = (Vx, Vy) and x axis of the world frame is
found as

θ =




arctan
(

Vy

Vx

)
, Vx ≥ 0

arctan
(

Vy

Vx

)
+ π, Vx < 0

The transformations between the world frame and secondary path frame, from
(x, y) to (ξ, η) and from (ξ, η) to (x, y), are given by

(
ξ

η

)
= R

(
x − xT

y − yT

)
(4.11)

and (
x

y

)
= R′

(
ξ

η

)
+
(

xT

yT

)
(4.12)

where

R =
(

cos θ sin θ

− sin θ cos θ

)

R′ is the transpose matrix of the rotation matrix between the frames (ξ, η) and
(x, y), and (xT , yT ) are the coordinates of the (intermediate) target in the world
frame (x, y).

To define the transformations between the world frame (x, y) and the primary
path frame (t, n), write the velocity in the primary path frame as V = V t. To
find the time derivative of vector V with respect to the world frame (x, y), note
that the time derivative of vector t in the primary path frame (see Section 4.3.1)
is not equal to zero. It can be defined as the cross product of angular velocity
ω = θ̇b of the primary path frame and vector t itself: ṫ = ω × t, where angle θ

is between the unit vector t and the positive direction of x axis. Given that the
control forces p and q act along the t and n directions, respectively, the equations
of motion with respect to the primary path frame are

V̇ = p

θ̇ = q/V
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Since p and q are constant over the time interval t ∈ [ti , ti+1), the solution for
V (t) and θ(t) within the interval becomes

V (t) = pt + V0

θ(t) = θ0 + q log(1 + tp/Vi)

p
(4.13)

where θ0 and V0 are constants of integration and are equal to the values of θ(ti )

and V (ti), respectively. By parameterizing the path by the value and direction
of the velocity vector, the path can be mapped into the world frame (x, y) using
the vector integral equation

r(t) =
∫ ti+1

ti

V · t · dt (4.14)

Here r(t) = (x(t), y(t)), and t is a unit vector of direction V, with the projections
t = (cos(θ), sin(θ)) onto the world frame (x, y). After integrating Eq. (4.14),
obtain the set of solutions

x(t) = 2p cos θ(t) + q sin θ(t)

4p2 + q2
V 2(t) + A

y(t) = −q cos θ(t) − 2p sin θ(t)

4p2 + q2
V 2(t) + B (4.15)

where terms A and B are

A = x0 − V0
2 (2 p cos(θ0 ) + q sin(θ0 ))

4 p2 + q2

B = y0 + V0
2 (q cos(θ0 ) − 2 p sin(θ0 ))

4 p2 + q2

and V (t) and θ(t) are given by (4.13).
Equations (4.15) describe a spiral curve. Note two special cases: When p �= 0

and q = 0, Eqs. (4.15) describe a straight-line motion under the force along the
vector of velocity; when p = 0 and q �= 0, the force acts perpendicular to the
vector of velocity, and Eqs. (4.15) produce a circle of radius V 2

0 /|q| centered at
the point (A, B).

4.3.4 Canonical Solution

Given the current position Ci = (xi, yi), the intermediate target Ti , and the veloc-
ity vector Vi = (ẋi , ẏi), the canonical solution presents a path that, assuming no
obstacles, would bring the robot from Ci to Ti with zero velocity and in minimum
time. The L∞-norm assumption allows us to decouple the bounds on accelera-
tions in ξ and η directions, and thus treat the two-dimensional problem as a set
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of two one-dimensional problems, one for control p and the other for control q.
For details on obtaining such a solution and the proof of its sufficiency, refer to
Ref. 99.

The optimization problem is formulated based on the Pontryagin’s optimality
principle [100], with respect to the secondary frame (ξ, η). We seek to optimize
a criterion F , which signifies time. Assume that the trajectory being sought starts
at time t = 0 and ends at time t = tf (for “final”). Then, the problem at hand is

F(ξ(·), η(·), tf ) = tf → inf
ξ̈ = p, ‖p‖ ≤ pmax

η̈ = q, ‖q‖ ≤ qmax

ξ(0) = ξ0, η(0) = η0, ξ̇ (0) = ξ̇0, η̇(0) = η̇0

η(tf ) = η(tf ) = ξ̇ (tf ) = η̇(tf ) = 0

Analysis shows (see details in the Appendix in Ref. 99) that the optimal solu-
tion of each one-dimensional problem corresponds to the “bang-bang” control,
with at most one switching along each of the directions ξ and η, at times ts,ξ and
ts,η (“s” stands for “switch”), respectively.

The switch curves for control switchings are two connected parabolas in the
phase space (ξ, ξ̇ ),

ξ = − ξ̇ 2

2pmax
, ξ̇ > 0

ξ = ξ̇ 2

2pmax
, ξ̇ < 0 (4.16)

and in the phase space (η, η̇), respectively (see Figure 4.9),

η = − η̇2

2qmax
, η̇ > 0

η = η̇2

2qmax
, η̇ < 0 (4.17)

The time-optimal solution is then obtained using the bang-bang strategy for ξ

and η, depending on whether the starting points, (ξ, ξ̇ ) and (η, η̇), are above or
below their corresponding switch curves, as follows:

p̂(t) =
{

α1 · pmax, 0 ≤ t ≤ ts,ξ

α2 · pmax, ts,ξ < t ≤ tf

q̂(t) =
{

α1 · qmax, 0 ≤ t ≤ ts,η

α2 · qmax, ts,η < t ≤ tf
(4.18)

where α1 = −1, α2 = 1 if the starting point, (ξ, ξ̇ )s or (η, η̇)s , respectively, is
above its switch curves, and α1 = 1, α2 = −1 if the starting point is below its
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Figure 4.9 (a) The start position in the phase space (ξ, ξ̇ ) is above the switch curves.
(b) The start position in the phase space (η, η̇) is under the switch curves.

switch curves. For example, if the initial conditions for ξ and η are as shown in
Figure 4.9, then

p̂(t) =
{ −pmax, 0 ≤ t ≤ ts,ξ

+pmax, ts,ξ < t ≤ tf

q̂(t) =
{ +qmax, 0 ≤ t ≤ ts,η

−qmax, ts,η < t ≤ tf
(4.19)

where the caret sign (ˆ) refers to the parameters under optimal control. The
time, position, and velocity of the control switching for the ξ components are
described by

ts,ξ =
√

(ξ̇0)2

2 + ξ0pmax + ξ̇0

pmax

ξs = ξ̇ 2
0

4pmax
+ ξ0

2

ξ̇s = −
√

ξ̇ 2
0

2pmax
+ ξ0pmax

and those for the η components are described by

ts,η =
√

(η̇0)2

2 − η0qmax − η̇0

qmax
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ηs = − η̇2
0

4qmax
+ η0

2

η̇s =
√

η̇2
0

2qmax
− η0qmax

The number, time, and locations of switchings can be uniquely defined from the
initial and final conditions. It can be shown (see Appendix in Ref. 99) that for
every position of the robot in the �4 (ξ, η, ξ̇ , η̇) the control law obtained guaran-
tees time-optimal motion in both ξ and η directions, as long as the time interval
considered is sufficiently small. Substituting this control law in the equations of
motion (4.15) produces the canonical solution.

To summarize, the procedure for obtaining the first step of the canonical
solution is as follows:

1. Substitute the current position/velocity (ξ, η, ξ̇ , η̇) into the equations (4.16)
and (4.17) and see if the starting point is above or below the switch curves.

2. Depending on the above/below information, take one of the four possible
bang-bang control pairs p, q from (4.18).

3. With this pair (p, q), find from (4.15) the position Ci+1 and from (4.13)
the velocity Vi+1 and angle θi+1 at the end of the step. If this step to Ci+1

crosses no obstacles and if there exists a stopping path in the direction
Vi+1, the step is accepted; otherwise, a near-canonical solution is sought
(Section 4.3.5).

Note that though the canonical solution defines a fairly complex multistep path
from Ci to Ti , only one—the very first—step of that path is calculated explicitly.
The switch curves (4.16) and (4.17), as well as the position and velocity equations
(4.15) and (4.13), are quite simple. The whole computation is therefore very fast.

4.3.5 Near-Canonical Solution

As discussed above, unless a step that is being considered for the next moment
guarantees a stopping path along its velocity vector, it will be rejected. This
step will be always the very first step of the canonical solution. If the stopping
path of the candidate step happens to cross an obstacle within the distance found
from (4.10), the controls are modified into a near-canonical solution that is both
�-acceptable and reasonably close to the canonical solution. The near-canonical
solution is one of the nine possible combinations of the bang-bang control pairs
(k1 · pmax, k2 · qmax), where k1 and k2 are chosen from the set {−1, 0, 1} (see
Figure 4.10).

Since the canonical solution takes one of those nine control pairs, the near-
canonical solution is to be chosen from the remaining eight pairs. This set is
guaranteed to contain an �-acceptable solution: Since the current position has
been chosen so as to guarantee a stopping path, this means that if everything
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Figure 4.10 Near-canonical solution. Controls (p, q) are assumed to be L∞-norm
bounded on the small interval of time. The choice of (p, q) is among the eight “bang-bang”
solutions shown.

else fails, there is always the last resort path back to the current position—for
example, under control (−pmax, 0).

Furthermore, the position of the intermediate target Ti relative to vector Vi —in
its left or right semiplane—suggests an ordered and thus shorter search among the
control pairs. For step i, denote the nine control pairs uj

i , j = 0, 1, 2, . . . , 8, as
shown in Figure 4.10. If, for example, the canonical solution is u2

i , then the near-
canonical solution will be the first �-acceptable control pair uj = (p, q) from
the sequence (u3, u1, u4, u0, u8, u5, u7, u6). Note that u5 is always �-acceptable.

4.3.6 The Algorithm

The complete motion planning algorithm is executed at every step of the path,
and it generates motion by computing canonical or near-canonical solutions at
each step. It includes four procedures:

(i) The Main Body procedure monitors the general control of motion toward
the intermediate target Ti . In turn, Main Body makes use of three proce-
dures:

(ii) Procedure Define Next Step chooses the controls (p, q) for the next step.
(iii) Procedure Find Lost Target deals with the special case when the inter-

mediate target Ti goes out of the robot’s sight.
(iv) Main Body also uses the procedure called Compute Ti , taken directly

from the kinematic algorithm (for example, VisBug-21 or VisBug-22,
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Section 3.6), which computes the next intermediate target Ti+1 so as to
guarantee the global convergence, and also performs the test for target
reachability.

As before, S is the starting point, T —the robot target position; at step i, Ci

is the robot’s current position, vector Vi —the current velocity vector. Initially,
i = 0, Ci = Ti = S.

Procedure Main Body . At each step i:

If Ci = T , stop.
Find Ti from Compute Ti .
If T is found unreachable, stop.
If Ti is visible, find Ci+1 from Define Next Step; make a step toward Ci+1;

iterate; else,
Use Find Lost Target to produce Ti visible; iterate.

Procedure Define Next Step. This procedure consists of two steps:

S1: Find the canonical solution (the switch curves and controls (p, q)) using
Eqs. (4.16), (4.17), and (4.18). If it is �-acceptable, exit; else go to S2.

S2: Find the near-canonical solution as in Section 4.3.5; exit.

Procedure Find Lost Target . This procedure is executed when Ti becomes invis-
ible. The last position Ci where Ti was visible is then stored until Ti becomes
visible again. Various heuristics can be used here as long as convergence is pre-
served. One simple strategy would be to come to a halt using a stopping path,
then come back to Ci with zero velocity, and then move directly toward Ti . This
may add stops that could be avoided. The procedure chosen below is somewhat
smarter in that the robot does not stop unnecessarily: If the robot loses Ti , it
keeps moving ahead while defining temporary intermediate targets T t

i on the vis-
ible part of the line segment (Ci, Ti) and continues looking for Ti . If it locates
Ti , it turns directly toward it without stopping (Figure 4.11a). Otherwise, if the
whole segment (Ci, Ti) becomes invisible, the robot brakes to a stop, returns to
Ci with zero velocity, and then moves directly toward Ti (Figure 4.11b). Find
Lost Target operates as follows:

S1: While at Ck, k > i, find on the segment (Ci, Ti) the visible point closest
to Ti ; denote it T t

k . If there is no such point [i.e., the whole segment
(Ci, Ti) is not visible], go to S2. Else, using Define Next Step, compute
and execute the next step using T t

k as the temporary intermediate target;
iterate.

S2: Initiate a stopping path, then go back to Ci ; exit.
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Figure 4.11 In these examples, because of the system inertia the robot temporarily
“loses” the intermediate target point Ti . (a) The robot keeps moving forward until at Ck

it sees Ti . (b) At Ck the robot initiates a stopping path, stops at Ck+1, returns back to Ci ,
and moves toward Ti along the line (Ci, Ti).

4.3.7 Convergence. Computational Complexity

Convergence. The collision-free motion along the path is guaranteed by the
design of the canonical and near-canonical solutions. To prove convergence, we
need to show that the algorithm will find a path to the target position T if one
exists, or will infer in finite time that T is not reachable if true. This is guaran-
teed by the convergence properties of the kinematic algorithm (Section 3.6). The
following two statements, Claim 1 and Claim 2, hold:

Claim 1. Under the Minimum Time Strategy, assuming zero velocity VS = 0 at
the starting position S, at each step of the path there exists at least one stop-
ping path.

To see this, recall that according to our model the stopping path lies along
a straight line. Guaranteeing a stopping path implies two requirements: a safe
direction and the velocity value that will allow a stop within the visible area.
Because the latter is ensured by the choice of the system parameters in (4.10),
we focus now on the existence of safe directions. Proceed by induction: We have
to show that if a safe direction exists at the start point and on an arbitrary step
i, then there is a safe direction on the step (i + 1).

Since at the start point S the velocity is zero, any direction of motion at S

will be a safe direction. This gives the basis of induction. The induction step is
as follows. Under the algorithm, a candidate step is accepted for execution only
if its direction guarantees a safe stop for the robot if needed. Namely, at point
Ci , step i is executed only if the resulting vector Vi+1 at Ci+1 will point in a
safe direction. Therefore, at step (i + 1), at the least this very direction can be
used for a stopping path.
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Remark: Claim 1 will hold for VS �= 0 as well if there exists at least one stopping
path originating at the start point S.

In practical terms, this is a reasonable condition. If for some reason the robot
did not start at S and was passing through it on the fly—which is already strange
enough—it is hard to imagine that point S happened to be so bad that it could
not even provide a stopping path.

Claim 2. The Minimum Time Strategy guarantees convergence.

To see this, note that at each step i at its current position Ci , the robot uses
its sensing to generate the next intermediate target point Ti . That point Ti is
known to lie on a convergent path of the kinematic algorithm (Section 3.6.3).
At the moment when Ti is generated, it is visible. Hence, the only way that
the robot can get lost is if at the next step Ci+1 point Ti becomes invisible
due to the robot inertia or obstacle occlusion: This would make it impossible to
generate the intermediate target Ti+1 as required by the kinematic algorithm. But,
if indeed point Ti becomes invisible, the Find Lost Target procedure is invoked
and a set of temporary intermediate targets T t

i+1 and associated steps are executed
until point Ti becomes visible again (see Figure 4.11a). Thus the robot always
moves toward a point that lies on a convergent path and itself converges to the
target T .

Computational Complexity. As with other on-line sensor-based algorithms, it
would not be very informative to try to assess the algorithm complexity the way
it is usually done for algorithms with complete information, as a function of the
number of vertices of approximated obstacles (see Chapter 1). As one reason,
algorithms with complete information deal with one-time computation, whereas
in sensor-based algorithms the important complexity measure is the amount of
computations at each step; the total computation time is simply a linear function
of the path length.

As shown in Section 4.3.4, though the canonical solution found by the algo-
rithm at each path step is the solution of a fairly complex time-optimal problem,
its computational cost is remarkably low, thanks to the (optimal) bang-bang con-
trol. This computation includes (a) substituting the initial conditions (ξ, η, ξ̈ , η̈)

into the equations for parabolas [Eqs. (4.16) and (4.17)] to see if the start point is
above or below the corresponding parabola and (b) simply taking the correspond-
ing control pair (p̂, q̂) from the four choices in (4.18). The parabola equations
themselves are found beforehand, only once. The near-canonical solution, when
needed, is similar and as fast. Note that a single-step computation is of constant
time: Though the canonical solution represents the whole multistep trajectory
within the sensing range of radius rv , the computation time is independent of the
value rv and of the length of path within the sensing range.
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Figure 4.12 Examples of performance of the Minimum Time Strategy. Parts (a) and
(b) differ in that more obstacles are added in (b). Parts (c) and (d) relate to the same
scenes, respectively, and have a larger radius of vision rv . The radius of vision in (f) is
significantly larger than that in (e). Note the stopping points along the paths.
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4.3.8 Examples

The performance of Minimum Time Strategy algorithm is illustrated in
Figure 4.12. The examples shown are computer simulations. The robot mass
m and constraints on control parameters p and q are the same for all examples:
pmax = qmax, pmax/m = 1. The generated paths are shown in thicker lines. For
the purpose of comparison, also shown (in a thin line) are paths produced under
the same conditions by a kinematic algorithm VisBug.

The radius of vision rv is the same in both Figures 4.12a and 4.12b. The
difference is in the environment: In Figure 4.12b there are additional obstacles;
that is, the robot suddenly uncovers them at a close distance when turning around
a corner. Note that in Figure 4.12b the path becomes tighter and shorter, though
it takes longer: Measured in the number of steps, the path in Figure 4.12a takes
242 steps, and the path in Figure 4.12b takes 278 steps. One can say the robot
becomes more cautious in Figure 4.12b.

A similar pair of examples shown in Figures 4.12c and 4.12d illustrates the
effect of the radius of vision rv: Here it is twice as big as the radius of vision
in Figures 4.12a and 4.12b. The times to execute the path here are 214 and 244
steps, respectively, shorter than in the corresponding examples in Figures 4.12a
and 4.12b. The examples thus demonstrate that better sensing (larger rv) results
in shorter time to complete the task: More crowded space results in longer time,
though possibly in shorter paths.

Note that in some points the algorithm found it necessary to make use of
the stopping path; those points are usually easy to recognize from the sharp
turns in the path. For example, in Figure 4.12a the robot came to a halt at
points A and D, and in Figure 4.12b it stopped at points A–F. The algorithm’s
performance in a more complicated environment is shown in Figures 4.12e and
4.12f. In Figure 4.12f the radius of vision rv is significantly larger than that

in Figure 4.12e. Note again that richer input information provided by a larger
sensing range is likely to translate into shorter paths.





CHAPTER 5

Motion Planning for Two-Dimensional
Arm Manipulators

If we imagine constructions to be made with rigid rods . . . we should find that
different laws hold for these from those resulting on the basis of Euclidean plane
geometry. The surface is not a Euclidean continuum with respect to the rods,
and we cannot define Cartesian co-ordinates in the surface.

—Albert Einstein,
Relativity: The Special and General Theory

5.1 INTRODUCTION

In Chapter 3 we have developed the foundations of the SIM (Sensing–Intelli-
gence–Motion) paradigm (called also sensor-based robot motion planning). Basic
algorithms were developed for the simplest case of a point robot that possesses
tactile sensing and operates in a two-dimensional scene populated with obstacles
of arbitrary shapes. The algorithms were then extended to richer sensing such as
vision, as well as to algorithm versions that take into account robot dynamics.
When the robot starts on its journey, it knows nothing about the shapes, locations,
and number of individual obstacles in the scene. It acquires information about
its surroundings from its sensors—much the way we humans see and listen and
smell when moving in the physical world. The robot’s only goal is to arrive at
its target location. This means that when it arrives there, it may still know very
little about the scene. In other words, knowing more about the scene is not the
objective. In a way, the less the robot knows about the scene at the end—that is,
the less it wonders around trying to locate its target—the better its performance.

This chapter is devoted to developing sensor-based motion planning for robot
arm manipulators. This work will be heavily based on the developments in
Chapter 3. While the basic strategies developed there can be used for real-
world mobile robots, their one very important use is to serve as a foundation
for motion planning strategies for robot arm manipulators. The importance of
this area for practice is underscored by today’s situation in the field of robotics:
In terms of actual utilization, overall investment, and engineering complexity

Sensing, Intelligence, Motion, by Vladimir J. Lumelsky
Copyright  2006 John Wiley & Sons, Inc.
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robot arm manipulators are way more important than mobile robots. According
to the UNECE (United Nations Economic Commission for Europe) report “World
Robotics 2003” [101], by 2003 about 1,000,000 industrial robots had been used
worldwide. By far most of these robots are arm manipulators.

And yet, while at least some commercial mobile robots come today with
rudimental means for sensor-based motion planning, by and large no such means
exist for arm manipulators. Exceptions do exist, but as a rule they relate to motion
planning of the robot end effector, the tool, rather than the whole robot. This is
certainly not because of lack of interest. If available, such systems would find an
immediate and wide use—even in the same industries where arm manipulators
are used today—by helping decrease the cost of systems. In a typical industrial
system, the cost of the robot is a fraction—perhaps 20% or so—of the total
cost of the work cell. Much of the rest are means to compensate for the robot’s
inability to avoid collisions with its surroundings on its own.

Motion planning systems would also allow robot manufacturers to move their
products into new domains—agriculture (to pick op fruits and berries and other
crops), nursing homes (to help move and feed patients), homes of the elderly (to
help them handle various home chores), outer space (to assemble large structures,
such as telescopes and space stations)—in short, to a whole slew of applications
that are good candidates for automation but could not be automated so far because
of the high level of uncertainly characteristic of such tasks.

There are two major reasons as to why commercial robots intended for a high
level of uncertainty are not here yet. First, appropriate theory and algorithms are
just beginning to appear. Second, the sensing technology that is required for such
algorithms to operate is also at the development stage. (The issues of sensing
hardware is addressed in Chapter 8.)

Whatever research has been done on motion planning for arm manipulators,
its lion share relates to motion planning for arm hands and grippers. Collision
avoidance for the rest of the robot body has been largely left out. Again, this is not
because of the lack of need. A quick glance at a layout of a typical robot cell with
a robot arm manipulator will show how crowded those cells are. The problem of
handling potential collisions for the whole body of an arm manipulator is acute.

Works that focus on robot hands’ collision avoidance do of course advance the
general progress in robotics. One can imagine applications where the designer
makes sure that potential collisions can occur only near the arm hand. On a robot
welding line in an automotive plant, the operation can be designed and scheduled
so that no objects would endanger (or would be endangered by) the robot body.
Because the robot tool must be close to the parts to be welded, this cannot be
avoided, and so the robot hand will be the only part of the robot body that can
come close to other objects. This way, unpredictable events can happen only at
the tool: Parts to be welded may be positioned slightly off, their dimensions may
deviate slightly, one part may be slightly bent, and so on.

Hence the designer of such a system will seek collision avoidance procedures
that will take care of the arm’s hand only. In our example, such algorithms would
lead the gun of a welding robot arm clear of the parts being welded. Providing the
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assurance that only the arm hand can be in danger of collisions is expensive and
can be justified only in a well-controlled environment, of which an automotive
factory floor is a good example. In general the practical use of such algorithms
is limited. They would not be of much use in tasks with a reasonable level of
uncertainty—as for example, outdoors.

As in the case of mobile robots, both exact (provable) and heuristic motion
planning algorithms have been explored for arm manipulators. It is important to note
that while good human intuition can sometimes justify the use of heuristic motion-
planning procedures for mobile robots, no such intuition exists for arm manipulators.
As we will see in Chapter 7, more often than not human intuition fails in motion
planning tasks for arm manipulators. One can read these results as a promise that a
heuristic automatic procedure will likely produce unpleasant surprises. Theoretical
assurances of algorithms’ convergence becomes a sheer necessity.

Similar to the situation with mobile robots (see Chapter 3), historically motion
planning for arm manipulators has received most attention in the context of the
paradigm with complete information (Piano Mover’s model). Both exact and
heuristic approaches have been explored [15, 16, 18, 20–22, 24, 25, 102]. Little
work has been done on motion planning with uncertainty [54].

In this and the next chapters, sensor-based motion planning will be applied to
the whole robot body. No point of the robot body should be in danger of a collision.
But bodies of robot arm manipulators are very complex. Parts move relative to
each other, and shapes are elaborate; it would not be feasible in practice to supply
a collision avoidance algorithm with an exact description of the robot body. Our
objective will be to make the algorithms immune to specifics of arm geometry.

Similar to how we approached the problem in Chapter 3, we will first consider
simple systems, namely, planar arm manipulators. These results may already
have some limited use in applications; for example, in terms of programming
and motion planning, a class of arm manipulators called SCARA (which stands
for Selective Compliant Articulated Robot Arm) consists of essentially plane-
oriented devices; they are used widely in tasks where the “main action” takes
place in a plane (such as assembly on a conveyer belt), and the third dimension
plays a secondary role. However, the main motivation behind the simpler cases
considered in this chapter is to develop a theoretical framework that will be used
in the next chapter to develop motion planning strategies for three-dimensional
(3D) robot arms of various kinematics.

The same as with mobile robots, the uncertainty of the robot surroundings
precludes a sensor-based algorithm from promising an optimal path for an arm
manipulator. Instead, the objective is to generate a “reasonable” path for the
arm (if one exists), or to conclude that the target position cannot be reached if
that happen to be so. We will discover that for the arm manipulators considered
here a purely local sensory feedback is sufficient to guarantee reaching a global
objective—that is, to guarantee algorithm convergence.

We will do the necessary analysis using the simplest tactile sensing and sim-
plified shapes for the robot. Since such simplifications often cause confusion as
to algorithms’ applicability, it is worthwhile to repeat these points:
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Types of Sensing and Robot Geometry Versus Algorithms. Here and else-
where in this text, when we develop motion planning algorithms based on tactile
sensing and on a simplified shapes of robots (say, a point mobile robot or a stick
line arm manipulator links), this does not imply that tactile sensors or simplified
shapes are the only, or the recommended, modalities for an algorithm at hand:
(a) Any type of sensing (tactile, proximal, vision, etc.) can be used with such
algorithms, either directly or with small easily realizable modifications, provided
that sensing covers every point of the robot body. (b) The algorithm will work
with the robots or arm manipulator links of any shapes. See Section 1.2 and later
in Section 5.1.1.

Major and Minor Linkage. Following Ref. 103, we use the notion of a separable
arm, which is an arm manipulator that can be naturally divided into (a) the major
linkage responsible for the arm’s position planning (or gross motion) and (b) the
minor linkage responsible for the orientation of the arm’s end effector (its hand)
in the arm workspace. As a rule, existing arm manipulators are separable, and so
are the limbs of humans and animals (although theoretically this does not have
to be so).

The notions of major and minor linkages are tied to the notion of a minimal
configuration. For the major linkage a minimal configuration is the minimum
number of links (and joints) that the arm needs to be able to reach any point in its
workspace. For the two-dimensional (2D) case the minimal configuration includes
two links (and two joints). Looking ahead, in the three-dimensional (3D) case the
minimal configuration for the major linkage includes three links (and three joints).
In the algorithmic approach considered here, motion planning is limited to the
gross motion—that is, to the major linkage. The implicit assumption is that the
motion of the end effector (i.e., the minor linkage) can be planned separately, after
the arm’s major linkage arrives in the vicinity of the target position. For all but
very unusual applications, this is a plausible assumption. Although theoretically
this does not have to be so, providing orientation for the minor linkage is usually
significantly simpler than for the major linkage, simply because the hand is small.

Types of Two-Link Arm Manipulators. These kinematic pairs are called two-
dimensional (2D) arms, to reflect the fact that the end effector of any such
arm moves on a two-dimensional surface—or, in topological terms, in a surface
homeomorphic to a plane. With this understanding, we can call these arms planar
arms, as they are often called, although the said surface may or may not be a
plane. Only revolute and sliding joints will be considered, the two types that are
primary joints used in practical manipulators. Other types of joints appear very
rarely and are procedurally reducible to these two [103].

A revolute joint between two links is similar to the human elbow: One link
rotates about the other, and the angle between the links describes the joint value
at any given moment (see Figure 5.1a). In a sliding joint the link slides relative to
the other link; the linear displacement of sliding is the corresponding joint value
(see Figure 5.1b). Sliding joints are also known in the literature on kinematics
as prismatic joints.
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Figure 5.1 Five kinematically distinct two-link planar robot arms manipulators: (a)
RR arm (revolute–revolute, or articulated); (b) PP arm (prismatic–prismatic, or Carte-
sian); (c) RP parallel arm (revolute–prismatic parallel); (d) RP perpendicular arm (revo-
lute–prismatic perpendicular); (e) PR arm (prismatic–revolute).

In this chapter, no constraints will be imposed on the shapes of arm links (see
below). This is very helpful: It means, for example, that the minor linkage can
be “frozen” during the gross motion, thus effectively making the minor linkage a
part of the outer link of the major linkage. It also means that the robot does not
have to worry about its own shape when planning collision avoidance motion.

We obtain the list of distinct planar arm configurations with revolute and
prismatic joints from the classification of kinematic configurations of three-
dimensional major linkages with revolute and prismatic joints. Out of 36 possible
configurations described in Ref. 103, 12 are listed as kinematically useful and
distinct. (We will return to those when considering three-dimensional arms in
Chapter 6.) The rest are not admissible, either because they degenerate into
one- or two-dimensional cases or because they are equivalent to some other
configurations. Of these 12 types, only five are meaningful for the case of a
planar major linkage. These are as follows:

• Arm manipulator with two revolute joints; it is often called an articulated
arm or revolute–revolute arm, or RR arm for short (Figure 5.1a).
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• Arm with two prismatic joints, typically referred to as a Cartesian arm or
a PP arm (Figure 5.1b).

• RP (revolute–prismatic) arm, which has a revolute joint followed by a par-
allel prismatic link (Figure 5.1c).

• Another RP arm—a revolute link followed by a perpendicular prismatic
link (Figure 5.1d).

• PR (prismatic–revolute) arm—prismatic joint followed by a revolute joint
(Figure 5.1e).

In the next section, a general model of the arm manipulator and of the envi-
ronment in which it operates will be outlined, along with necessary definitions.
Any modifications that the model may require for a specific arm configuration
will appear in the corresponding sections. Next we will consider in detail the first
of the five two-link arms, the RR (revolute–revolute) arm (Figure 5.1a). We will
study interactions between the arm and the obstacles in the arm’s workspace,
eventually deriving a path planning algorithm with guaranteed convergence.

In the sections that follow the RR arm study, we will study in a similar
fashion, except in a more brisk pace, each of the remaining four arms depicted
in Figure 5.1. When developing the corresponding motion planning procedures,
we will observe that the algorithmic issues for these arms turn out to be simpler
compared to the RR arm.

For a reader familiar with the Piano Mover’s techniques, it will come perhaps
as a surprise that in principle each of the two-link arms shown in Figure 5.1 will
require its own version of the sensor-based motion planning algorithm. While a
detailed reasoning as to why that is so will come later, here the reader is invited
to accept this fact as a law of nature. Indeed, nature operates in a similar fashion:
Constraints imposed on animals’ motion by the kinematics of their limbs and
bodies make each species move differently from others. Each species’ “algorithm”
for obstacle avoidance differs from other species’ algorithms. Humans are no
exception: A person who lost his leg in an accident will have to re-learn the use
of legs. He will learn to walk around or step over objects in ways dramatically
different from how he handled this task before the accident.

On the other hand, there will be much in common between motion plan-
ning algorithms for different arm manipulators. Based on this observation, in
Section 5.8.4 we will attempt to build a unified theory of planar manipulators.
This will allow us to derive planar arm algorithms as a special case of one gen-
eral strategy. We will see, in particular, that the arm configurations b, c, d, and e
in Figure 5.1 are in some sense special cases of the RR (revolute–revolute) arm.

As a concluding remark in this introductory section, one should keep in mind
that the planar two-link arms shown in Figure 5.1 can be arranged in more
kinematic arrangements, and hence more geometries, beyond those shown in the
figure. Note, for example, that in the RR arm planar arm shown in Figure 5.1a
the axes of both joints are parallel. A number of other configurations of RR arms
can be obtained by manipulating the mutual arrangement of those axes. We will
consider this variety and its effect on motion planning later, in Section 5.3. It
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suffices to say here that the workspace of what we call “planar arms” is not
necessarily planar, but it remains two-dimensional.

5.1.1 Model and Definitions

The Robot Arm. The arm body consists of two links, l1 and l2, and two joints,
J0 and J1. Joint J0 is fixed and is the origin of the reference system. See different
arm configurations in Figures 5.1a to 5.1e. Solely for presentation purposes we
represent the links as straight-line segments, of lengths l1 and l2, respectively.

The arm’s configuration is defined by its kinematics—that is, by the way its
joints connect the links together. In the arms in Figure 5.1 a link may be rotating
about its joint, in which case the joint is a revolute joint, or it may be sliding in
it, in which case the joint is a prismatic joint.

Accordingly, in the case of a revolute joint the corresponding link is of a
constant length, and in case of a prismatic joint the corresponding link is of a
variable length. An arm solution for a given point P in the arm workspace (W -
space)—equivalent terms that we may use are arm position, arm coordinates, and
link positions—is defined by a pair of variables called joint values. Joint values
are either angles (as in Figure 5.1a) or linear translations (as in Figure 5.1b), or a
combination of both (as in Figures 5.1c, 5.1d, 5.1e). An equivalent presentation
for the same solution P is given, for example, by Cartesian coordinates (x, y) of
the link endpoints, ap and bp; bp also designates the arm endpoint position at
point P . Positive directions and zero positions for joint values of the five arms
are shown in Figures 5.1a to 5.1e.

As said above, for the considered class of path planning algorithms, the shape
of arm links and of obstacles—for example, the fact of their convexity or con-
cavity—is of no importance. Without loss of generality, and solely for better
visualization and material presentation, line segment links and circular obstacles
are used in most figures of this section.

The arm is capable of performing the following actions:

1. Moving the arm endpoint through a prescribed simple curve (called main
line or M-line) that connects the arm’s start (S) and target (T ) positions.

2. When the arm body hits an obstacle, identifying the point(s) of the arm
body that is in contact with the obstacle.

3. Following the obstacle boundary.

The first of these operations implies that the arm is capable of computing coordi-
nates of consecutive points along the M-line and, if necessary, transforming them
into the corresponding joint values (using, for example, appropriate procedures
of inverse kinematics [8]).

The sole purpose of the second operation is to provide the local information
needed to pass around the obstacle. At any moment, when at least one point of
the arm body is in contact with an obstacle, the arm identifies coordinates of
the points of contact on the arm body relative to the arm’s internal reference



184 MOTION PLANNING FOR TWO-DIMENSIONAL ARM MANIPULATORS

system. Note that such identification is a local operation that does not require
global information about the environment. (As an example of this ability, recall
that a blindfolded person can easily indicate a point of his body that touches an
object). We do not discuss here specific ways in which this capability can be
realized. For our purposes, assume that the arm body is covered with sensors
such that when one sensor contacts an obstacle, the point of contact on the arm
body is known.

For the third operation, following the obstacle boundary, imagine that while
being in contact with an obstacle, the arm follows the obstacle boundary while
a weak constant force pushes it against the obstacle. (This situation is simi-
lar to a blindfolded person walking around a building while keeping his finger
on the wall.) At any given moment during the motion, there is a variable
point of contact between the obstacle boundary and the arm body. In the algo-
rithm, the arm will plan its next step along the obstacle boundary in such a
way that, after the step has been made, the arm is still in contact with the
obstacle. Again, we will not discuss here how this important capability can
be realized in the physical system. Note that if the arm endpoint follows an
obstacle boundary up to the W -space boundary—for example, the arm is fully
outstretched—it is not clear whether on the boundary the arm is still in con-
tact with the obstacle. To avoid this limit case, we assume that no point of the
W -space boundary may be a point of contact between an obstacle and the arm
endpoint.

Passing around an obstacle is a continuous motion of the arm during which the
arm is in constant contact with some obstacle. Because of the arm and obstacle
interaction, some areas of the W -space not occupied by the actual obstacle may
be inaccessible by the arm endpoint. Such areas create a shadow of the obstacle;
for the arm endpoint, a shadow presents as real an obstacle as points of the actual
obstacle. The actual obstacle and its shadow(s) constitute the virtual obstacle of
a given obstacle. When the arm is passing around an actual obstacle, the arm
endpoint follows the virtual line, which is the boundary of the virtual obstacle.
Below we will study this phenomenon in more detail.

Input Information. Sensing. At the start, the only information available to the
arm are coordinates of its current position S and its target position T .

When moving, the arm obtains its information about the surrounding world
from its sensors. Sensors can be of any type—tactile, proximal, vision, range
sensing, and so on—as long as they provide sufficient input information. As
explained in Section 1.2.3, richer sensing will often result in better efficiency
(for example, shorter paths), but will not guarantee algorithm convergence or
produce better performance bounds. A property of robot sensing that is abso-
lutely necessary for the planning algorithms to operate successfully is that sensing
should encompass the whole robot body; that is, it should allow the robot arm to
detect a potential collision at any point of its body. No blind spots are allowed.
To develop motion planning algorithms, we will first assume whole-body tactile
sensing.
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W-Space. The arm operates in its workspace (W -space), which is defined in the
plane. The W -space boundaries depend on the arm configuration and dimensions
of its links. The arm’s position in W -space is defined by positions of its joints
and links.

W -space may contain obstacles. Each obstacle is a simple closed curve of
finite size. There may be only a finite number of obstacles present in W -space.
Formally, this means that the boundary of any obstacle is homeomorphic to a
circle and that any circle of a limited radius or a straight line passing through
W -space will intersect with a finite set of obstacles. Being rigid bodies, obstacles
cannot intersect one another. Two or more obstacles may touch each other, in
which case for the arm they effectively present one obstacle. At any position of
the arm with respect to a set of obstacles, at least some arm motion is assumed
to be feasible.

The Task. Our objective for the arm is to move it from the starting position S

to the target position T , or to (correctly) conclude in finite time that no path from
S to T exists. Only continuous motion of the links is allowed. Both positions
S and T lie within the W -space. A position of the arm is said to be feasible if,
when the arm’s endpoint is in this position, the arm’s links and joints intersect no
obstacles. Position S is known to be feasible. Because of obstacles in the scene,
position T may or may not be feasible. Even if position T is feasible, it may or
may not be reachable from position S.

C-Space. The configuration space (C-space) is a representation space in which
the arm is shrunk to a point. In our case, C-space is the space of arm joint vari-
ables, which happen to be the arm’s independent control variables. Every path
and every virtual obstacle has its corresponding image in C-space. A combination
of the virtual line with the corresponding arm solutions defines the virtual bound-
ary of the obstacle. The virtual boundary is a curve that forms the boundary of
the obstacle image in C-space. The transformation from C-space to W -space is
unique. As we will discuss later, depending on the arm configuration, the trans-
formation from W -space to C-space may or may not be unique. We will soon
see that for all the arms shown in Figure 5.1 the corresponding C-space presents
a two-dimensional manifold.

One should not confuse the dimensionality of the manifold in question with the
dimensionality of space in which the manifold appears. For example, later in this
text we will deal with the surfaces of a common torus or a sphere. While each of
these is a two-dimensional manifold, they appear in the three-dimensional space.
In general, C-space is a k-dimensional manifold in a Euclidean space whose
dimension is higher than k. Accordingly, the metric in a manifold in question
may or may not be Euclidean. We will see later, for instance, that unlike what
occurs in a Euclidean space, up to four distinct shortest routes between two points
may appear on the surface of the torus.

Sketching the Approach. To develop a path planning procedure, the problem
of motion planning for a planar arm will be first reduced to that of moving a point
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(robot) around simple closed curves. The key property will then be deduced: For
a two-link arm, no matter how complex the arm motion around an actual physical
obstacle in W -space, the corresponding virtual boundary in C-space presents a
simple curve—that is, a curve with no self-intersections and double points. This
will be shown to be true for each of the arms in Figure 5.1.

With this property in hand, by transforming the motion planning problem from
W -space to C-space, we will effectively make our problem similar to the one
that was tackled in Chapter 3 for mobile robots. In fact, on a certain level of
generalization, both problems look identical. The actual algorithms will differ
due to a number of new issues that need to be worked out. Still, understanding
the Bug family algorithms from Chapter 3 will help one grasp the algorithms for
robot arms that we are about to develop.

We can now sketch the idea behind a motion planning algorithm for a planar
robot arm manipulator. It is easier to describe the operation in C-space; the
actual operation in W -space proceeds accordingly. As one will notice, the sketch
sounds much like the algorithm Bug2; deviations and complexities will be added
later.

At the beginning, the C-space arm image point moves along a simple M-line,
which is a desired path from point S to point T , an equivalent of the straight-line
M-line for the mobile robot (Section 3.3). During this motion, when (in W -space)
some point of the arm body meets an obstacle, in C-space this corresponds
to the image of M-line intersecting the obstacle’s virtual boundary. The point
of intersection is said to define a hit point , Hj , where j is the running index
enumerating such points.

We will show below that the virtual boundary is a simple curve, a curve with
no self-intersections or double points. This being so, at the hit point the arm has a
simple choice: to walk along the virtual boundary in one or the opposite direction
along the curve. Since no information is available beforehand as to which of the
two directions is better, one direction, called the local direction , will be chosen
once and for all.

While following the obstacle virtual boundary, the arm may meet the M-line
again. If it does, and if this occurs at a distance (measured appropriately along
the M-line) from point T shorter than the distance from the latest hit point Hj

to T , the arm will define a leave point , Lj . Hit and leave points will play an
important role in the path planning procedure. We will see below that these points
come in pairs, (Hj , Lj ), j = 1, 2, . . . . For convenience, denote Lo = S, Start,
with no corresponding Ho. The motion planning algorithm proper, the proof of
its convergence, and the test for target reachability will emerge from our analysis
of the described scheme and of C-space properties.

Similar to the mobile robot case (Chapter 3), under our scheme the arm will
need no beforehand information about the obstacles in order to move properly.
The C-space presentation is used primarily for the analysis, the algorithm devel-
opment, and the proof of convergence. No explicit mapping of any kind from
W -space to C-space and no explicit calculation of C-space will ever take place
before or during the actual arm motion.
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5.2 PLANAR REVOLUTE–REVOLUTE (RR) ARM

Let us reiterate, with a bit more specifics of the RR-arm, the arm’s model given
in Section 5.1.1. The arm consists of two links, l1 and l2, and two revolute joints,
J0 and J1 (Figure 5.2). Joint J0 is fixed. Strictly for better visualization, links
will be drawn as line segments. (As mentioned above, the shape of the arm links,
or the fact of their being smooth or convex or concave, will be of no importance
to the planning algorithm.) Link li , i = 1, 2, is hence a straight-line segment of
length li . It can rotate indefinitely about the corresponding joint producing an
angle θi , called the joint value. If W -space (workspace) is free of obstacles, the
arm endpoint b can reach any point within the W -space boundaries.

The arm’s W -space is formed by a circle of radius (l1 + l2) (the outer circle,
Figure 5.2) and by a circular “dead zone” (the inner circle, Figure 5.2) of radius
|l1 − l2|. The middle circle in Figure 5.2 is a locus of points reachable by joint
J1. For a given position P of the arm endpoint in W -space, the corresponding
pair of values (θ

p

1 , θ
p

2 ), or the set of Cartesian coordinates of the link endpoints
ap and bp, represent an arm solution (arm position) for P . It is easy to see that,
in general, any position of the arm endpoint in W -space, except for points along
the W -space boundaries, corresponds to two arm solutions.

An obstacle in W -space is a closed curve of finite length homeomorphic to a
circle; that is, it cannot have self-intersections or double points. This also means
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Figure 5.2 Revolute–revolute (RR) arm. l0 and l1 are joints; θ1 and θ2 are joint values;
b is the arm endpoint.
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that for all practical purposes an obstacle can be of arbitrary shape. There can
be only a finite number of obstacles present in W -space. Any disk or a straight
line passing through W -space intersects a finite set of obstacles. Being rigid
bodies, obstacles cannot intersect. Two or more obstacles may touch each other,
in which case the arm will treat them as one obstacle. Only such configurations
of sets of obstacles are considered for which, at any position of the arm, at
least some arm motion is possible. Only continuous motion of robot links is
allowed.

At any given moment, the arm knows its current coordinates θ1 and θ2, as
well as coordinates of the target position T . The starting position S is known to
be reachable; that is, when the arm is in the position S, no arm links intersect any
obstacles. It is not known whether position T is reachable and, if so, whether T

can be reached from S. The arm is said to be moving in free space when it has
no contacts with obstacles. Repeating the description given in the section above,
the arm is assumed to be capable of the following actions:

1. Moving the arm endpoint through a prescribed simple curve (called main
line or M-line) that connects points S and T .

2. Identifying the point(s) of contact on the arm body when the arm hits an
obstacle.

3. Following the obstacle boundary.

The first operation implies that the arm is capable of computing coordinates of
consecutive points along the M-line and transforming them into the corresponding
pairs (θ1, θ2).

The purpose of the second operation is to provide information needed to pass
around an obstacle. This is done with the help of the arm’s tactile sensing.
When at least one point of an arm link is in contact with an obstacle, relative
coordinates of the point(s) of contact can be identified in the link reference
system. Note that the identification is a local operation that does not require
any additional information about the environment. Assume, for example, that
the arm is covered with a “skin” with densely spaced tactile sensors, so that
when a sensor contacts an obstacle, the point of contact on the arm body is
known.

For the third operation, imagine that, while in contact with an obstacle, the
arm follows the obstacle boundary as if some weak force pushes it against the
obstacle. Therefore, at any moment during such motion, there is a variable point
or points of contact between the obstacle boundary and the arm body.1

If the arm endpoint follows the obstacle up to the W -space boundary—for
example, points on the outer circle in Figure 5.2—it is not clear whether the
arm is still in contact with the obstacle on the boundary. To avoid an ambiguity,
assume that no point of the W -space boundary can be a point of contact between
an obstacle and the arm.

1A similar ability is considered in works on compliance control of robot wrists (see, e.g., Ref. 104).
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5.2.1 Analysis

Here we will expand to our RR arm manipulator the theory developed in Section
3.3 for mobile robots. One important part of that theory is making use of distinc-
tive topology of obstacles—namely, the fact that any obstacle is a simple closed
curve. Exploiting this fact resulted in elegant motion planning algorithms with
guaranteed convergence. We now intend to establish a similar characteristic of
obstacles faced by our RR arm—namely, that the arm’s complete passing around
an obstacle presents some sort of simple closed curves.

As we will soon observe, this is not so in the arm workspace. Simple examples
will show that paths produced by the arm endpoint when moving around even
simple obstacles are complex and self-intersecting. We will also see, however,
that the said property holds for all virtual obstacles in C-space. It will further be
shown that the number of such closed curves per obstacle is limited—a fact that
is important for the algorithm completeness. These facts will become the basis
of the algorithm design. We will then study the nonuniqueness of choices for the
M-line caused by peculiarities of the arm kinematics, and establish a criterion
for choosing appropriate M-lines. Finally, we will address one side effect of the
developed motion planning procedure, which can sometimes cause the arm to
repeat parts of its path.

Obstacles in W-Space. Consider an example of the arm interaction with
obstacles in the arm workspace (W -space). The formal underpinnings of our
observations will become clearer in the subsequent analysis of C-space.

We begin with a simple circular obstacle A in the arm’s workspace
(Figure 5.3). Starting at position S, the arm moves its endpoint along the M-
line (S, T ) toward the target position T . In this example the M-line happens to
be a straight line. Denote by (ai, bi) the ends of link l2, where point bi is the arm
endpoint. After traveling for a while in free space, at some moment the arm will
contact obstacle A, at which time the link l2 position is (a2, b2), and the point
of contact on A is b′. Now the arm will attempt to pass around the obstacle in
order to continue its motion along the M-line.

Observe that here the arm has two options for maneuvering around the obstacle
while maintaining a contact with it. With option 1, starting at the link l2 position
(a2, b2), the arm endpoint moves along the curve b2, b3, . . . , b6, b7, b8. Soon
thereafter (between points b8 and b9), the arm endpoint encounters the M-line
(S, T ) and can continue moving along it toward T . When at T , the position of
link l2 is (a′

T , T ).
With option 2, starting again at point b2, the arm endpoint passes through the

curve b2, b14, b13, b12. At point b12 the arm endpoint will encounter the M-line
and then continue along it toward T . When at T , the position of link l2 will be
(a′′

T , T ).
In other words, depending on the option taken, the arm endpoint may encounter

the M-line at different points, and the arm may consequently arrive at point T with
different positions of its links. Notice that we can accommodate this discrepancy:
For example, when moving under option 1, after passing point b8 and reaching



190 MOTION PLANNING FOR TWO-DIMENSIONAL ARM MANIPULATORS

B

A

A

B

T

S

P2

a13

a14

a1

a2

a3

a5

a6

a8

a9

a7

O

P1

a4

b7

b2

b3

b4
b5

b6

a10

a11

a12

b8

b9

b10

b11

b12
b13

b14

bT

a'T

aT''

b'

b''

b1

Figure 5.3 Obstacles A and B form “shadows”; the arm endpoint cannot reach points
inside a shadow. For example, point P1 is in the shadow of the circular obstacle A and
thus cannot be reached. The shadow of the circular obstacle B forms two disconnected
“subshadows.”

the M-line, the arm endpoint can continue through points b9, b10, b11, meeting
the M-line again at point b12 as under option 2.

In fact, when starting at point b2 under any of the two options, if one con-
tinues “rotating” the arm around obstacle A while keeping in contact with it,
the arm endpoint will make a complete closed curve, passing through the points
b2, b3, b4 . . . , b8, b9 . . . , b13, b14 and eventually arriving at the same point b2.
This indicates that the paths produced under both options are complementary to
each other: When added together, they form a closed curve.

Regarding this curve, consider the area whose curvilinear boundary passes
through points b′, b2, b3, b4, then the segment b4, b10 of the workspace boundary,
then points b10, b9, b

′′ of our curve, and finally the smaller part of the obstacle
A boundary between points b′′ and b′. This area is called the shadow of obstacle
A: Though this is a part of free space, no point (such as P1) inside this area can
be reached by the arm endpoint.

This suggests that an obstacle shadow will be perceived by the arm as an
obstacle, as real as an actual physical obstacle. The arm cannot penetrate either
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Figure 5.4 An example of interaction between obstacles. The shadow (shaded area)
behind obstacle A is the result of interaction between obstacles A and B. If the arm moves
through the positions (a1, b1), (a2, b2), . . . , (a17, b17), at any moment it is in contact with
either obstacle A or B. This means that the arm will perceive these two obstacles as one
obstacle. Because of obstacle C, link l1 cannot realize any angle values θ1 in the range
θ ′

1 < θ1 < θ ′′
1 .

of them. The shape of a shadow depends on the shape, size, and position in
W -space of the corresponding actual obstacle that creates the shadow, as well
as on the arm links’ shapes and dimensions. An obstacle can form disconnected
shadows, as in the case of obstacle B (Figure 5.3). Or, obstacles can interact in
forming shadows; this happens, for example, when two or more points of the
arm body touch two or more actual obstacles simultaneously, as at position (a8,
b8) in Figure 5.4.

Definition 5.2.1. A virtual obstacle X is an area (or areas) in W -space, no points
of which can be reached by the arm endpoint because of the arm’s possible inter-
ference with the actual obstacle X.

Thus a virtual obstacle consists of the corresponding actual obstacles and their
shadows. In W -space a virtual obstacle forms one or more compact areas (see
Figure 5.4). Whereas topologically this combination presents little of interest in
W -space, we will see below that it possesses interesting properties in the arm’s
C-space.
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Definition 5.2.2. Passing around an obstacle presents a continuous motion of
the arm, during which the arm is constantly in contact with the corresponding
physical obstacle(s).

It is clear from Figure 5.4 that two or more actual obstacles may be interpreted
by the arm as a single virtual obstacle. In Figure 5.4, at any position from the
set (a1, b1), (a2, b2), . . . , (a17, b17) the arm is in contact with at least one of the
actual obstacles A and B. Hence the two obstacles will be interpreted as one.

Definition 5.2.3. A virtual line is a curve in W -space that the arm endpoint fol-
lows when passing around an obstacle. The virtual line forms the boundary of a
virtual obstacle in W -space.

A virtual line is not necessarily a smooth curve. For example, if the arm
endpoint follows a sharp corner on an obstacle, or if the arm contacts some
obstacle while passing around another obstacle [as in the link position (a8, b8),
Figure 5.4], the virtual line may form sharp turns. Nor is a virtual line necessarily
a non-self-intersecting curve (see virtual boundary of obstacle B, Figure 5.3),
differing in this respect from the boundaries of physical two-dimensional objects.
We will discuss this issue later, when analyzing the arm C-space properties.

Points of contact on the arm may undergo a discontinuous jump when passing
around obstacles. This can happen because of the shapes of obstacles and arm
links involved, or because of the arm–obstacle interaction. In Figure 5.4, for
example, during link l2 motion through positions (a1, b1), (a2, b2), and so on, an
instant before position (a8, b8) link l2 is in contact with obstacle A; an instant
after position (a8, b8) the link is in contact with obstacle B. Accordingly, in this
short period the contact point on the arm jumps from a point of contact on one
side of link l2 to a completely different point on the link’s other side.

Note, however, that even in such cases there will be no discontinuity in the
virtual curve.2 For example, in the area of point b8, which corresponds to the
jump of the contact point mentioned above (Figure 5.4), the virtual line remains
continuous. There will be more on the virtual line continuity in our analysis of
the arm C-space.

Observe also that some distinct pieces of the virtual line may be associated
with the same physical curve. Such is, for example, a part of the virtual line
(b14, b8) (Figure 5.3), which is a part of obstacle A boundary. When trying to
do a complete “rotation” by the arm around A, the arm endpoint will follow the
curve segment (b14, b8) twice, once in each of the two directions.

The requirement of continuous contact while passing around the obstacle is
equivalent to adding a constraint on the arm motion. In general, the arm’s position
relative to obstacles is described by one of these three situations:

1. No contact with obstacles takes place; the motion is unconstrained, and all
points in the vicinity of the arm endpoint are available for its next position.

2Given the physics of the underlying phenomenon, this is not surprising: Physical motion is contin-
uous, so the arm endpoint must be moving through a continuous curve.
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2. One degree of freedom of the system (not necessarily one arm link) is con-
strained by an obstacle boundary; then only points along the virtual line—that
is, a one-dimensional curve—are available for the next positions of the arm
endpoint.

3. Two degrees of freedom of the system are constrained: No motion is possible.

Because of our model’s assumption that some motion is always possible, case 3
is impossible. Case 2 thus includes all cases of interaction between the arm and
obstacles.

Obstacles in C-Space. Configuration space (C-space) of our RR arm manip-
ulator is presented as the surface of a common two-dimensional torus defined by
two independent angular variables, θ1 and θ2 [57]. Values of these variables are
the arm joint values, respectively. An arm position P with coordinates (joint val-
ues) θ

p

1 and θ
p

2 in W -space corresponds to a point P with the same coordinates
on the surface of the C-space torus. Continuity is preserved in this mapping:
A small change in the position of arm links in W -space translates into a small
displacement of the corresponding image point in C-space. A closed curve in
W -space has its closed curve counterpart in C-space [105]. For an M-line in
W -space, there is an M-line image in C-space (Figure 5.5).
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Figure 5.5 C-space torus. Zeroes and positive and negative directions for both angles
θ1 and θ2 are shown. For a given θ1, the point θ2 = 0 lies at the corresponding point
of the torus’s outer equator. For example, coordinates of point T are (θT

1 , θT
2 ). Points

M1,M2, M3, and M4 are the middle points of four M-lines, the four “straight line” routes
between points S and T .
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A geodesic curve connecting points S and T on the surface of the C-space
torus corresponds to a straight line in the plane of variables (θ1, θ2). This geodesic
curve can therefore be used as the “shortest” M-line between positions S and T .
Because of the torus topology, in general, four such “shortest” M-lines can appear.
Shown in Figure 5.5 are these four M-lines, their middle points, and positive and
negative directions and zero points for both variables (θ1, θ2). With appropriate
positioning of points S and T on the torus, all four M-lines can be made indeed
equal. Otherwise, each M-line presents the “shortest” curve for a given set of
directions of change of variables (θ1, θ2).

Since in general every position of the arm endpoint corresponds to two posi-
tions of the arm, defining uniquely the image of a virtual line in C-space will
require some additional information about the corresponding arm positions.

Definition 5.2.4. A virtual boundary is a curve in C-space that represents the
image of the corresponding virtual line.

Clearly, the virtual boundary corresponds to one out of two sets of arm posi-
tions tied to the virtual line. Where is the other set? The other set is physically
unrealizable: In each such position the arm links would cross through the corre-
sponding obstacle.

The virtual boundary separates an area of C-space occupied by the virtual
obstacle from the rest of C-space. A finite number of actual obstacles in W -space
produce a finite number of virtual obstacles in C-space. Each intersection of the
M-line with the virtual line in W -space has its counterpart intersection of the
M-line image with the virtual boundary. Unlike virtual lines, virtual boundaries
cannot form self-intersections or double points. This means that at any point
during the motion along the virtual boundary in C-space, there is one and only one
possible direction for continuing the motion. Therefore, the following statement
holds.

Lemma 5.2.1. A virtual boundary can consist of only simple curves.

To define the virtual boundary corresponding to the virtual line of obstacle A

in Figure 5.3, points a1 to a14 have to be added, coordinates of the endpoint of
link l1; the respective positions (ai, bi) of link l2 are shown in the figure. Note
that the coinciding points on the virtual line correspond to different positions of
link l2. That is, in C-space all points of the virtual boundary are distinct. The
same is true for obstacle B.

Theorem 5.2.1. A virtual boundary can consist of only simple closed curves. (See
the proof in the Appendix to this chapter.)

This statement will be pivotal in the design of the motion planning algorithm
for an RR arm. Formally, the statement means that no matter what direction is
chosen for following the virtual boundary, eventually the whole curve will be
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explored, and the arm will return to the position where it started. The theorem
does not tell us how many simple closed curves may constitute a given virtual
boundary. Can a virtual boundary consist of two, three, or an infinite number of
simple closed curves? We will need to address this question, because it is very
important from the algorithmic standpoint.

Following a simple virtual boundary is as advantageous as it was for the Bug
family algorithms in Section 3.3 to follow the simple closed curves of obstacles,
and for the same reason: When the arm meets an obstacle, one of only two possi-
ble directions for passing around it will have to be chosen. Since no information
about the obstacles is available, neither of the two directions is preferable to
another.

Definition 5.2.5. A local direction is a predefined direction for passing around a
virtual obstacle in C-space; it can be either right or left.

Here “right” and “left” are defined in the same natural way as we did with the
Bug algorithms. Looking at the scene from above, going left means going along
the curve clockwise, that is having the obstacle to one’s right, and going right
means going along the curve counterclockwise—that is, having the obstacle to
one’s left.

The motion planning algorithm (which is still to be formulated) will proceed
as follows. The arm’s endpoint starts moving along the M-line from its starting
position S toward the target position T . (In C-space the arm and both positions
S and T are points.) When during this motion the arm encounters a virtual
boundary—which means the arm contacts an obstacle—it defines on it a hit
point H. The arm then starts passing around the obstacle using the chosen local
direction. Since in doing so it follows a simple closed curve, it will eventually
either reach point T , or return to the hit point H , or meet the M-line again. In
the latter case, if the distance, as measured along the M-line, between the point
where the arm meets the M-line and T is shorter than that between the hit point
H and T , the arm defines this point as a leave point L. In Figure 5.3 the arm
position (a2, b2) is the hit point H1, and position (a12, b12) is the leave point
L1. (As mentioned above, depending on the chosen local direction and the way
of passing around the obstacle, some other point might be defined as the leave
point; this option will be discussed further later.)

We now turn to the question of the maximum number of simple closed curves
that may form a virtual obstacle. Unlike some special two-dimensional nonori-
entable surfaces, such as the Moebius strip and Kline bottle, the surface of the
common torus is topologically an orientable surface [57]. By continuously mov-
ing on one side of an orientable surface, a point robot will never find itself on the
other side of the surface (which can happen on nonorientable surfaces). This fact
follows from the Jordan Curve Theorem [57, 105], according to which any closed
curve homeomorphic to a circle drawn around and in the vicinity of a given point
on an orientable surface divides the surface into two separate domains, for which
the curve is their common boundary [57].
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Figure 5.6 The C-space representation of obstacles A and B of Figure 5.3. Unlike in
W -space, the boundary of each obstacle is a single closed curve—even for obstacle B,
which forms two disconnected “subshadows” in Figure 5.3. The curve (S, T ) is the image
of the straight line (S, T ) of Figure 5.3. Line (S, T ) intersects the virtual boundary A in
two points, the hit point H1 (it coincides with point 2) and the leave point L1 (it coincides
with point 12).

This suggests that at least some virtual obstacles can be formed by a single
closed curve. Obstacles A and B in Figure 5.3 are examples of obstacles (in W -
space) whose images (virtual boundaries) in C-space are single closed curves.
Those images are shown in Figure 5.6. Note also that although the virtual obstacle
B includes two separate subshadows in W -space, in C-space B becomes one area
separated from the rest of the torus by a single closed curve. For our algorithm
we need to know if these examples exhaust all possible cases, and if not, what
other options are there.

A very different example, of an obstacle virtual boundary formed by two
closed curves, is shown in Figures 5.7. To understand the example, the reader
may find it helpful to try to follow the arm motion as it passes around the obstacle
A. In W -space (Figure 5.7a), the arm starts at the position (a1, b1), and the arm
endpoint goes through a closed curve defined by points b1, b2, . . . , b10, b1. The
part b4 to b8 of the curve is an arc of a circle of radius l2 centered at a point
defined by indices a4 to a8. Starting from position (a11, b11) would result in a
symmetric but different closed curve (in order not to complicate the picture, it
is not shown in Figure 5.7a). The image of the corresponding virtual obstacle is
shown in Figure 5.7b. As one can see, the virtual boundary forms an annulus, a
band-like formation, on the torus.



PLANAR REVOLUTE–REVOLUTE (RR) ARM 197

(a)

0

a10

a4 − a8

a11

b8

b9

b10

b1 b2

b3

b4

b5

b7

a2
a1

a3

a9

b6

b11

A

(b)

11

8

9

10
1

2

3
4

5

6

7

A

Figure 5.7 (a) As the arm passes around the obstacle A, starting with link l2 position
(a1, b1), the arm endpoint goes through a closed curve indicated in W -space by points b1

to b10. With the starting position (a11, b11), a similar but distinct closed curve would be
formed (not shown here). (b) In C-space these two closed curves form the boundary of
the band-like virtual obstacle (partially shaded). No point inside this area can be reached
by the arm endpoint.
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Recall that an ability to explore the whole obstacle boundary is an impor-
tant function exploited in the Bug family algorithms (Section 3.3). The robot
may rarely use it, but it should be there: Bug algorithms need it for assur-
ing convergence and for the target reachability test. We intend to bring this
same mechanism into the process of motion planning for arm manipulators. The
example in Figure 5.7, where two simple closed curves form the virtual obstacle,
raises a question: How many more simple closed curves can a virtual obstacle
have? Unless the robot knows this, it will not know whether it explored the whole
obstacle or there is still something unexplored. And, if the robot does know that
number, how would it know if it has explored the whole obstacle if that were
its goal? The maximum number of simple closed curves in a virtual boundary is
given by the following lemma.

Lemma 5.2.2. For the RR arm, a virtual boundary of an obstacle can be formed
by no more than two closed curves. (See the proof in the Appendix to this chapter.)

This is a good news.3 One conclusion from Lemma 5.2.2 is that if the arm
endpoint completes a full circle on its way around an obstacle, this does not
necessarily mean that the whole virtual boundary has been traversed. There may
be another, yet unobserved, closed curve which limits the virtual obstacle “from
the other side” of the torus. On the other hand, if the robot explored both closed
curves of a virtual boundary, this definitely means the robot has explored the
whole obstacle. We classify obstacles into two types according to topology of
their virtual boundaries.

Definition 5.2.6. The virtual boundary of an obstacle of Type I is formed by a
single closed curve. The virtual boundary of an obstacle of Type II is formed
by two closed curves. No obstacle can be of both types. Type I and Type II are
complementary and together cover all possible virtual obstacles.

For the path planning algorithm, it would be important to know whether a
closed curve traversed by the arm thus far belongs to a Type I or a Type II
obstacle. If such inference is possible, it would allow us to produce a test that the
algorithm can use to plan further robot motion. Namely, if the curve traversed
thus far belongs to an obstacle of Type I, the robot would know that it has
explored that obstacle completely. And, if the curve traversed thus far belongs to
an obstacle of Type II, the robot would know that somewhere out there there is
still another unexplored closed curve of the same virtual boundary. The following
discussion helps produce such a test.

A C-space image of an obstacle is an area on the surface of the C-space torus
separated from the rest of the torus by the obstacle virtual boundary. Taking into
account Lemma 5.2.2 and allowing for any continuous deformations of obstacle

3In principle, there are more complex arms with rather unusual kinematics that have more than two
simple closed curves per virtual boundary. They are not used in practice and are not discussed in
this text.
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Figure 5.8 These five cases exhaust all possible ways to separate an area on the torus
from the rest of its surface. Let Ci be the integral of the angle θi , i = 1, 2, taken along
an obstacle boundary closed curve. Then: (a) Ci = 0, C3−i = 0; (b) and (c) Ci = 0,
C3−i = 2π ; (d) and (e) Ci = 2π , C3−i = n · 2π, n = 1, 2, . . . ; i = 1, 2.

boundaries, all possible ways to separate an area on the torus from the rest of its
surface can be reduced to five cases shown in Figure 5.8. The case in Figure 5.8a
corresponds to a Type I obstacle; the four remaining cases correspond to Type
II obstacles. The cases in Figure 5.8b and 5.8c are topologically equivalent; the
cases in Figure 5.8d and 5.8e are equivalent as well. From the path planning
standpoint, all five cases are distinct and are treated in the algorithm separately.
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Figure 5.9 Obstacle A forms in C-space a Type II obstacle type shown in Figure 5.8c.

Figures 5.3 and 5.6 provide examples of the Type I case of Figure 5.8a. An
example for the Type II case in Figure 5.8b is shown in Figure 5.7. The Type
II case shown in Figure 5.8c appears, for example, when an obstacle in W -
space presents a ring whose center is in the system origin and whose smaller
radius is larger than l1 (see obstacle A, Figure 5.9). One might say the example
is not excessively realistic. This is true, except that with a bit more work one
can come up with a rather realistic example that would still demonstrate the
same phenomenon. An example for the cases in Figures 5.8d and 5.8e appears
in Figure 5.10.

As these examples show, all five cases of Figure 5.8 are physically realiz-
able, and therefore they should be accounted for in the algorithm. Consider two
counters, C1 and C2, corresponding to the angles θ1 and θ2 of the arm joints,
respectively. When the arm travels in free space, the content of each counter
is zero. Once the arm hits an obstacle, both counters are turned on. While the
arm follows a closed curve of a virtual boundary, each counter integrates the
corresponding angle, taking into account the sign. As the arm completes a closed
curve, the contents of each counter must be n · 2π , |n| = 0, 1, 2, . . . .

For a closed curve of some obstacle, the resulting values of the pair (C1, C2)
define its arm joints range (or, simply, range). An obstacle of Type I is defined
by the range of its single closed curve. For a Type I obstacle, its range is hence
(0, 0). For a Type II obstacle, since a closed curve of a given range cannot
be reduced by topological deformation to a curve of a different range, both
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Figure 5.10 (a) W -space and (b) C-space with an obstacle whose virtual boundary in
C-space is formed by two nonintersecting closed curves. The curves’ ranges are C1 =
2π, C2 = 2π , making this another example of Type II cases shown in Figures 5.8d and
5.8e. Each point Pi, i = 1, . . . , 10, on the obstacle virtual boundary in C-space is defined
by the corresponding pair of points (ai , bi) in W -space.
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curves of a Type II obstacle have the same range (see Figures 5.8b to 5.8e).
For a given obstacle, therefore, the term “arm joints range” is equivalent to the
term obstacle range. For a Type II obstacle, its range is (n1 · 2π, n2 · 2π), with
either ni = 0, |n3−i | = 1 (Figures 5.8b and 5.8c) or |ni | = 1, |n3−i | = 1, 2, . . .

(Figures 5.8d and 5.8e); i = 1, 2. Numbers ni uniquely represent the range of an
obstacle.

After the arm has passed around an obstacle, the range accumulated in counters
C1, C2 is, therefore, an indicator of the obstacle’s type. If, after completing a
closed curve, the contents of the counters is (0, 0), then the obstacle in question
is of Type I and thus the whole virtual boundary has already been traversed. If,
on the other hand, the range of the closed curve is different from (0, 0), then the
obstacle is of Type II and hence there must be another closed curve somewhere
that corresponds to the same obstacle.

This observation can be used in the reachability test that we will need in the
complete motion planning algorithm. The mechanism of the test is very similar
to that in the Bug2 algorithm (Section 3.3.2). Namely, in the case of a Type
I obstacle, if, after having defined a leave point, the arm returns back to it
without ever meeting the M-line and without having defined the next hit point,
this indicates that the target position cannot be reached. This may happen, for
example, if the obstacle forms a ring around the target position. A similar idea
works for the Type II obstacles: If the arm traverses both closed curves of a
Type II virtual obstacle without ever meeting the M-line and without defining
the next hit point, the target is not reachable. These mechanism will be used in
the algorithm’s reachability test.

We emphasize that in no way does the above discussion imply that traversing
closed curves of obstacle boundaries is a necessary part of the motion planning
algorithm. More often than not, the robot will be passing only parts of obstacles
that it encounters on its way to the target position. The test above is needed
for algorithm completeness: If once in a while the analysis above is needed, the
algorithm will provide the mechanism for it.

M-Line and Path Planning. How do we choose the M-line? If the arm encoun-
ters no obstacles on its way, the arm endpoint will proceed directly from point
S to point T along the M-line. It is desirable, then, to have a simple and shorter
M-line, such that one could easily determine whether a given point does or does
not lie on it. In the case of planning algorithms for mobile robots (Section 3.3),
we chose a straight line (S, T ) for the M-line.

An M-line can be defined for the RR arm in a number of ways. One option is
a straight line (S, T ) in W -space (see Figures 5.3 and 5.6). Another reasonable
choice for M-line would be a “uniform descent” curve in W -space, described
in polar coordinates as R = p · ϕ + q, where R is the distance from the arm
endpoint to the fixed base O of the arm (Figure 5.2), and ϕ is the angular
position of the arm endpoint relative to some zero axis passing through the base
O. This is a straight line in the plane of variables (R, ϕ), 0 ≤ ϕ ≤ 2π . Knowing
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link positions for points S and T , one can find the corresponding values R and
ϕ (or the complement of ϕ to 2π) and then calculate p and q.

One disadvantage of these M-lines is that with them the motion can be non-
monotonic in terms of the joint angles θ1 and θ2 (see Figure 5.3). Worse yet,
depending on the arm positions S and T , continuous motion along such an
M-line may be impossible even if the scene contains no obstacles. This happens,
for example, if the M-line is a straight line passing through the arm’s dead zone
(Figure 5.2).

Figuring out beforehand if the nonmonotonic change in joint values or the
M-line passing through the workspace dead zone is a problem in the case at
hand is an extra difficulty, which can be avoided with still another choice for
the M-line, the one that it preferred in this text. We choose the M-line that is a
straight line in the plane of variables θ1 and θ2 —that is, a straight line between
points S and T in C-space. When no obstacles are present, this M-line results
in an economical and uniform change of the arm joints from the starting to the
final position. That is, motion along this M-line is monotonic in θ1 and θ2. On
the C-space torus the model of this M-line is a geodesic curve—a tight thread
connecting points S and T . In Figure 5.5 this “shortest route,” M1, corresponds
to the positive change of both angles θ1 and θ2.

There are, however, three other ways to obtain a geodesic curve between points
S and T on the torus surface. All four are obtained by using both positive and
negative directions of change for each of the angles θ1 and θ2. These are shown
in Figure 5.5, as well as on the flattened torus in Figure 5.11. We will see that
from time to time the algorithm may use a combination of these routes. One of
the four routes corresponds to the global minimum, and the other three—called
complementary routes—correspond to the local minima of the distance between
S and T in the plane (θ1, θ2), (Figure 5.5). For some special locations of points
S and T , two or more of the four M-lines may become equal. For example, with
points S and T located at the opposite points of the torus’s outer equator, all
four M-lines are of equal length.

Each M-line is characterized by its Mk-line segment between points S and T ,
k = 1, 2, 3, 4. (For better visibility, in Figure 5.5 Mk also indicates the middle
point of the corresponding segment.) An M-line that represents a straight line in
the plane θ1, θ2 is given by the equation

θ2 = p · θ1 + q (5.1)

To compute coefficients p and q for all Mk-lines—we may need this for the
motion planning algorithm—“flatten” the torus by cutting it along two mutually
perpendicular circles passing through point T , one of which is parallel to the
large equator of the torus; this is shown in Figure 5.11. This operation produces
a rectangle, with point S lying somewhere inside of it. Point T is identified; that
is, it produces four points Tk, k = 1, 2, 3, 4, each sitting in the rectangle’s corners
and corresponding to one of the Mk-lines. Denote δi = sign(θT

i − θS
i ), i = 1, 2,
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Figure 5.11 Flattened C-space torus of Figure 5.5.

where sign() takes values +1 or −1 depending on the sign of the argument. Then,
coordinates of the endpoints S and Tk of each of the Mk-lines are as follows:

M1 : S = (θS
1 , θS

2 ), T1 = (θT
1 , θT

2 )

M2 : S = (θS
1 , θS

2 ), T2 = (θT
1 , θT

2 − 2π · δ2)

M3 : S = (θS
1 , θS

2 ), T3 = (θT
1 − 2π · δ1, θ

T
2 )

M4 : S = (θS
1 , θS

2 ), T4 = (θT
1 − 2π · δ1, θ

T
2 − 2π · δ2)

(5.2)

Substituting these into (5.1), coefficients p and q for each of the segments are
found:

M1 : p = θT
2 − θS

2

θT
1 − θS

1

, q = θT
1 · θS

2 − θT
2 · θS

1

θT
1 − θS

1

M2 : p = θT
2 − θS

2 − 2π · δ2

θT
1 − θS

1

, q = θT
1 · θS

2 − θT
2 · θS

1 + 2π · δ2 · θS
1

θT
1 − θS

1

M3 : p = θT
2 − θS

2

θT
1 − θS

1 − 2π · δ1
, q = θT

1 · θS
2 − θT

2 · θS
1 − 2π · δ1 · θS

2

θT
1 − θS

1 − 2π · δ1

M4 : p = θT
2 − θS

2 − 2π · δ2

θT
1 − θS

1 − 2π · δ1
, q = θT

1 · θS
2 − θT

2 · θS
1 − 2π · (δ1 · θS

2 − δ2 · θS
1 )

θT
1 − θS

1 − 2π · δ1

(5.3)
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For algorithmic purposes, it is important to (a) detect the fact that a given point in
C-space lies on the currently used Mk-line and (b) compute its relative position
on the segment Mk. We will use for this the parametric description of the M-
line equation [97]. For example, for M1-line, the symmetric presentation using
coordinates of points S and T is,

θ1 − θS
1

θT
1 − θS

1

= θ2 − θS
2

θT
2 − θS

2

= T (5.4)

from which the parametric equations for θ1 and θ2 are found, with t as a param-
eter:

θ1 = θS
1 · (1 − t) + θT

1 · t
θ2 = θS

2 · (1 − t) + θT
2 · T

(5.5)

A pair of angles (θ1, θ2) is recognized as a point on the M-line if both equations
in (5.5) produce the same value of t . The relative position of a point on the
M-line segment is determined as follows:

t = 0 corresponds to point S;
t = 1 corresponds to point T ;
0 < t < 1 corresponds to points inside the segment (S, T );
t < 0 correspond to points outside the segment and closer to S than to T ;
t > 1 corresponds to points outside the segment and closer to T than to S.

We emphasize that in the plane (θ1, θ2) where the straight line θ2 = f (θ1) is
defined, angles θi and (θi − 2π) are not equivalent. In determining whether a
given point lies within the segment (S, T ) of a given Mk-line, care should be
taken in choosing the right line from (5.2) to represent the angles in (5.5).

We order four M-line segments according to (5.2), with M1 being the shortest
segment. Here the length of a segment is the Euclidean distance between points S

and T in the plane (θ1, θ2), with coordinates presented as in (5.2). For each angle
θi , i = 1, 2, there is an interval δθi,k = |θT

i,k − θS
i,k| or δθi,k = |θT

i,k − θS
i,k − 2π |

related to the corresponding segment Mk; δθi,k ≤ 2π .

Definition 5.2.7. For two M-line segments Mk and Mm, k,m = 1, 2, 3, 4, k �= m,
their complementarity shows in that, for one or both angles θi , intervals δθi,k and
δθi,m add to 2π (see Figure 5.5). These two segments are said to be complementary
over the angle θi .

The following discussion helps clarify how complementary M-lines are used
during the path planning. Assume that M1 has been chosen as the M-line. Imagine
that the arm, while following M-line, encounters an obstacle (i.e., defines on it
a hit point), tries to pass it around, returns to the hit point without ever meeting
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M-line, and, after having examined the contents of the counters C1 and C2,
concludes that it is dealing with a Type II obstacle. Now the arm needs to explore
the second closed curve of the virtual boundary. This second closed curve must
lie somewhere in a direction “opposite” to that in which the first closed curve had
been spotted. Such “opposite” directions are provided by the complementary Mk-
lines (Figure 5.5). The notion of Mk-line complementarity over a certain angle θi

provides a way of selecting Mk-lines. No more than two complementary M-lines
will have to be tried to complete the task. The outcome of processing the first
closed curve of the virtual boundary is one of these three cases:

1. The accumulated range is (0, n2); |n2| ≥ 1–an integer. This case is shown
in Figure 5.8b: The arm starts at S, moves along the line (S, T ) (which hap-
pens to correspond to the change of θ1 in the positive direction), encounters
an obstacle, goes around one of its closed curves, and concludes that the
further motion along M1-line in this direction is impossible. On the other
hand, using the opposite (in this example, the negative) direction of change
of θ1 guarantees reaching the second closed curve of the virtual obstacle.
How would the arm choose the right M-line for this stage? According to
(5.2), such direction can be realized with either an M3-line or an M4-line
(Figure 5.5). Because no additional information is available, for example,
the shortest of these will be chosen. (There is, of course, no guarantee that
the chosen M-line is better than the other possible choice.)

2. The accumulated range is (n1, 0); |n1| ≥ 1. This case could appear, for
example, in Figure 5.8c. This situation is symmetric to the previous one
except that it relates to angle θ2. The opposite direction of change for θ2

can be realized with either M2-line or M4-line (Figure 5.5). The shortest
of these will be chosen.

3. The accumulated range is (n1, n2); |ni | ≥ 1 (Figures 5.8d and 5.8e). Again,
further motion along M1-line is impossible. Any one of the segments M2,
M3, or M4 can be used as a new M-line. The shortest of these will be
chosen.

Where would the arm start for the exploration of the second closed curve?
Since no information about the obstacle’s second closed curve has been accu-
mulated so far, one point to start with the new M-line is S. If neither of the two
M-lines brings the arm to the target—that is, if point T has not been reached after
exploration of the obstacles both closed curves—the target is not reachable. Using
in the worst case two M-lines instead of one represents the topological distinc-
tion of motion planning on the torus as compared to the plane. With the addition
of complementary M-lines, the convergence theorems developed in Section 3.3
for the Bug family algorithms can be used to ensure that our algorithm for the
revolute–revolute arm terminates.

Local Cycles. As we learned in Section 3.3, a planar sensor-based motion plan-
ning procedure for a mobile robot can create local cycles in the path. Local cycles
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happen in scenes with obstacles of certain shapes and with certain mutual posi-
tions of obstacles and start and target points. The procedure that we are about to
formulate for the RR arm motion planning can create local cycles as well. As
for mobile robots, local cycles do not affect convergence of the RR arm plan-
ning algorithm, but they do result in longer paths. For the process to work, the
algorithm does not need to recognize those local cycles or undertake any specific
action when they occur.

A local cycle is created when the arm image point on the C-space torus comes
back to a previously defined hit point, and the contents of its counters Ci at this
moment is different from ni · 2π , |ni | = 0, 1, 2, . . . , i = 1, 2. This may occur
only if between two consecutive encounters of the same hit point the arm has
defined other hit point(s). (Recall that the counters Ci are turned on when a hit
point is defined.) Otherwise the contents of Ci would be exactly ni · 2π .

An example with a local cycle is shown in Figures 5.12, 5.13, and 5.14.
Using this example, we will first demonstrate the process of path generation by
the algorithm, indicate the place where a local cycle is created, and then present
the algorithm itself. (One may want to return to this example again when reading
the algorithm procedure below.) In this example the workspace includes four

T

S
A

B

C
D

l1

l2

0
q1 = 0

l2

Figure 5.12 Four simple obstacles, A, B, C, and D, interfere with the arm’s attempt to
move from start S to target T . Note the simultaneous interaction of both arm links with
obstacles: For example, when link l1 touches obstacle D, obstacles A and C are on the
way of link l2.
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Figure 5.13 The virtual obstacle that corresponds to obstacles A, B, C, and D of
Figure 5.12 forms two separate closed curves in C-space. Arrows indicate the direction
of motion. Note how simple disk obstacles in W -space form a rather intricate labyrinth
in C-space.
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Figure 5.14 The resulting path of the arm endpoint in the problem of Figure 5.12.
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simple circular obstacles, A,B, C,D (Figure 5.12). In spite of their simplicity,
we will see that moving between these obstacles turns out to be tricky.

As discussed before, at times both links of the arm may interact with obstacles
simultaneously, or one link may interact simultaneously with more than one
obstacle. For instance, when link l1 touches obstacle D (Figure 5.12), obstacles
A and C may be on the way of link l2. Therefore, link l2 may be touching at
least one of obstacles A or C, while at the same time link l1 is touching obstacle
D. This means that in C-space, obstacles A, C, and D form a single obstacle.
Furthermore, note that if we position link l2 between obstacles B and C and
start moving link l1 past obstacle A, at some point link l2 will simultaneously
touch obstacles B and C. In other words, in C-space all four obstacles create a
complicated single obstacle, a kind of a labyrinth (Figure 5.13). As it is formed
by two closed curves, this is a Type II obstacle. Also shown in Figure 5.13 is
the M-line (S, T ), chosen as a straight line in a “flatten” C-space.

Let us choose “right” as the local direction for the arm’s passing around an
obstacle. Although the sensing, the motion, and the actual algorithm procedure
will be happening in W -space, to understand what happens under this procedure
it is better to follow the generated path first in C-space. As we know already,
the reason C-space is easier to follow is that the C-space image of the path has
no self-intersections or double points, and obstacles are sets of simple closed
curves.

When watching it in C-space (Figure 5.13), one will recognize in the arm’s
path (indicated by arrows) the “signature” of the Bug2 procedure described in
Section 3.3.2. (We will see below that the resulting algorithm becomes more
complex than Bug2 because it has to take into account the more complex topology
of the torus compared to the plane.) Starting at S, the arm’s image point moves
along M-line toward T . On its way it encounters obstacle B and defines a hit
point, H1. Here the robot turns right (counterclockwise) relative to the obstacle
boundary; after passing point 3, it meets M-line again and defines here the leave
point L1.

The next path segment is along M-line and is short, producing the next hit
point, H2. Turning right at H2, the robot embarks on another path segment along
the obstacle boundary, which takes it through points H2, 6, 5, 4, bringing it back
to point H1. A local cycle has been created. (More detail on conditions under
which local cycles are created can be found in Section 3.3.) Now the robot will
pass point H1 “on the fly,” still continuing along the obstacle boundary. It is
now looking for a candidate for a leave point that is closer to point T than
point H2 is to T . This path segment will take it again through points 3 and L1

and then through points 2, 1, 12, and 11 until it encounters M-line again and
defines the leave point L2. From then on, it directly proceeds along M-line to
point T .

Note that along its way the robot will see only one of the two simple closed
curves that form our virtual obstacle—and even this one only partially. The robot
will never know that the other closed curve even exists. It will not know that it
has dealt with a Type II obstacle. As we will see, this is not always so: Some
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seemingly similar cases can be more trying for the robot and may require a more
elaborate exploration.

How does this all relate to the actual motion of the arm manipulator in
W -space? The actual path in W -space whose reflection in C-space we just con-
sidered is shown in Figure 5.14. The path created by the arm endpoint on the
way from S to T is shown in a dash line. The direction of motion is indicated
by arrows; also shown are the intermediate positions of the arm that appear
in Figure 5.13. It is a good exercise to try to follow the path in Figure 5.14,
going through the same positions that we have followed in C-space: posi-
tions S, H1, 3, L1, H2, 6, 5, 4, H1, 3, L1, 2, 1, 12, 11, L2, T . Note that the local
cycle—the path segment that includes positions H1, 3, and L1 —has been passed
twice.

As an exercise, try to see what kind of path would be created if the local
direction happened to be “left.”

To reiterate, the actual planning of the path by the motion planning algorithm is
done completely in the workspace (W -space), based on the sensing data from the
arm sensors. No preliminary exploration or computation of the C-space virtual
obstacles takes place. If the target position cannot be reached because of the
interfering obstacles, the reachability test will conclude so after some limited
exploration.

5.2.2 Algorithm

With all the necessary details ready, the whole motion planning procedure for
the planar arm of Figure 5.2 can now be formulated. The name for it would
be the RR-Arm Algorithm. Looking ahead, for the reasons that will become
clear later, the algorithm can also serve two-link arms with other kinematics;
hence it also deserves a more general name, the Two-Link-Arm Algorithm. Some
preliminaries:

• The hit points Hj and leave points Lj are numbered in the order of their
being defined along the path; Lo = S.

• Any local direction, left or right, can be chosen for the arm’s passing around
an obstacle. For the sake of specificity, let us choose “right.”

• If a new M-line is introduced, the arm starts again at point S, and the
numbering starts over.

• Distance d(P, Q) between the arm positions P and Q is the Euclidean
distance in the plane of variables (θ1, θ2); the length of an M-line segment
is defined similarly.

• In the case of a Type II obstacle, a flag is used to indicate that one of the
two virtual boundary’s closed curves has been already processed.

• The test for target reachability is explicitly built into the algorithm’s Steps
5a and 5b. The test is based on the necessary and sufficient condition for
target reachability described in Section 3.3.2.
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The RR-Arm Algorithm procedure is as follows:

1. All four complementary M-lines, Mk, k = 1, 2, 3, 4, are defined according
to the formulae (5.2) and (5.5) and are ordered as follows: M1 is the short-
est; M2 complements M1 over the angle θ2 [as in (5.2)]; M3 complements
M1 over θ1; M4 complements M1 over both θ1 and θ2. Go to Step 2.

2. M1-line is designated as M-line. Set the flag down. Set j = 1. Go to Step 3.
3. Counters C1 and C2 are set to zero. From point Lj−1, the arm moves along

M-line until one of the following takes place:

(a) Target T is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj , is defined. Go to Step 4.

4. Counters C1 and C2 are turned on. The arm follows the obstacle boundary
in the chosen local direction, until one of the following takes place:

(a) Target T is reached. The procedure stops.
(b) M-line is met at a distance d from T such that d < d(Hj , T ); point

Lj is defined. Increment j . Go to Step 3.
(c) The arm returns to position Hj (which completes a closed curve along

the virtual boundary) without ever meeting the M-line. Go to Step 5.

5. Examine the obstacle range accumulated in counters C1 and C2. One of
the following takes place:

(a) The range is (0, 0), which means it is a Type I obstacle. Target cannot
be reached. The procedure stops.

(b) The range is not (0, 0) and the flag is up, which means it is the second
closed curve of the virtual boundary of a Type II obstacle. The target
cannot be reached. The procedure stops.
The remaining three events relate to the case when the range is not (0,
0) and the flag is down (which means that the current virtual boundary
is the first closed curve of the virtual boundary of a Type II obstacle).

(c) The range is (0, n2), |n2| ≥ 1; designate the shorter of M3 and M4 as
the M-line. Go to Step 6.

(d) The range is (n1, 0), |n1| ≥ 1; designate the shorter of M2 and M4 as
the M-line. Go to Step 6.

(e) The range is (n1, n2), |n1| ≥ 1, |n2| ≥ 1; designate the shortest of M2,
M3, and M4 as the M-line. Go to Step 6.

6. The arm moves back to Start S. Set the flag up. Set j = 1. Go to Step 3.

5.2.3 Step Planning

Physical realization of the above motion planning algorithm requires a small
additional piece that addresses the following question: With the overall path
being generated by the motion planning algorithm, how does one plan every
step along that path? While this question is somewhat outside our main topic of
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sensor-based motion planning, one cannot avoid it; after all, a path is built from
individual steps.

The robot control system is guided by a computer; that is, it is a discrete control
system. Accordingly, motors that realize the motion of robot joints usually receive
computer commands at some fixed sampling rate, say 20 or 50 times per second.
For example, the rate of 50 commands per second translates into 20 ms per each
motion cycle. Within each cycle the control computer(s) receives and processes
the sensor data, calculates the next step in space based on guidance from the
motion planning algorithm, translates the step into commands to individual robot
joints, and sends those increments to the corresponding motors; the latter execute
the step motion. Then the next 20-ms cycle starts, and so on. Special software
makes sure that the robot passes each step “on the fly,” without stopping, resulting
in continuous motion.

Recall that the arm motion consists of either moving along an M-line or
moving (“sliding”) along obstacles. When moving along an M-line, the step
calculation is easy: Each step is a linear function of arm coordinates on the
previous step and increments dθi for joint values. The function’s coefficients
depend on the decided speed. When moving along an obstacle boundary, a step
is computed along the line tangent to the corresponding C-obstacle at the point
of local contact. Because this tangent has two possible directions, the direction
chosen is the one that corresponds to the current local direction (see details
above).

Whether at the current moment the arm is in contact with one or a few physical
obstacles, in C-space this corresponds to one point of contact, and so the solution
for a step is unique. We reiterate that the fact of computing each step based on the
C-space representation does not mean that any beforehand C-space calculations
take place. Each step is solely a function of entities in W -space, namely, the
prior step θi coordinates and sensing data. More detail on the step calculation
procedure can be found in Ref. 106.

5.2.4 Example

The workspace in this example contains four obstacles, A, B,C,D (Figure 5.15).
Obstacles are convex and concave, with straight-line and curved boundaries. The
dashed line (S, T ) is the shortest M-line [as in (5.1) and (5.2)]. S and T are the
start and target positions of the arm; also shown are some intermediate positions
of link l2 along the way: (1, 1), (2, 2), . . . , (12, 12). The accepted local direction
is “right.”

The arm proceeds as follows. Starting at point S, it moves toward point T

along the M-line, until it senses obstacle A. The arm then starts passing around
A (see, e.g., point 1) until it senses obstacle B; it proceeds along obstacle B until
it meets the M-line again (point 2); it follows the M-line and very soon meets
obstacle D; it moves along D until it meets obstacle C (e.g., point 3); while
following C, it meets again obstacle D (point 4); it follows D (points 5, 6, 7, 8)
until it meets the M-line again; and finally it proceeds along M-line to T .
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Figure 5.15 An example of the RR-Arm Algorithm performance in an emulated “indus-
trial” work cell. The arm is required to move from the starting position (S, S) to the
target position (T , T ), along the M-line (S, T ) (dashed line) that presents the shortest
path between S and T in C-space. The arm workspace is crowded with four obstacles
A, B,C, D. Shown also are some intermediate positions of link l2, (1, 1) to (8, 8). No a
priori information about the scene is given to the arm, and no preliminary calculations
occur; the arm simply senses its surroundings and makes planning decisions “on the fly,”
in real time.

Note that although the M-line plays a crucial role in the RR-Arm Algorithm’s
workings, in this example the arm actually spends very little time moving along
the M-line; that is, only a small part of the arm’s path coincides with the M-line.
Most of the time is spent passing around obstacles.

5.2.5 Motion Planning with Vision and Proximity Sensing

Similar to how in Section 3.6 VisBug algorithms were obtained from the Bug
family algorithms, we would like to modify the RR-Arm Algorithm to make it
compatible with proximal sensing. If that is feasible, a similar process will likely
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work for other arm manipulator configurations. The process is not as straight-
forward as with the Bug algorithms, both on the sensing hardware level and on
the algorithmic level.

Hardware. Let us consider briefly the sensing hardware requirements. (More
will be said on this in Chapter 8, which is fully devoted to the issues of sens-
ing hardware for arm manipulators.) Recall (see Section 3.6) that the primary
requirement to the arm sensing is to functionally cover the whole body of the
arm, so that no obstacle approaching any point of the arm body would go unde-
tected. Tactile sensing, which was assumed for the arm in this section, satisfies
this requirement. Less satisfactory, however, is tactile sensing’s inability to han-
dle system dynamics. Being made from hard unyielding materials, today’s robot
arm manipulators are quite heavy. Touching an object while moving creates sig-
nificant instantaneous forces and accelerations, which can easily hurt the robot
and the object that it touches. This is less so at the robot hand, where special
measures can be taken to handle contact, but very much so at the rest of the robot
body. Humans and animals are less vulnerable to such encounters because the
soft muscle and fat tissues under their skin produce a softening “braking” effect.
Today’s robots do not have this option. The way out is proximity (distance)
sensing (see Figure 5.16).

r

Jo

J1

q1

q2

l1

l 2

Figure 5.16 Proximity sensing of this arm manipulator forms a sensing cushion around
the arm. The sensing range radius is r . An obstacle will be detected at any point of the
robot body as long as the obstacle–robot distance is within r .
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What kind of proximity sensing is acceptable? In Chapter 8 we will address
this question in much detail. Briefly, of particular interest is vision sensing.
As discussed in Section 1.2, vision is good when the scene in which the robot
operates is much bigger than the robot itself. Mobile robots usually operate in
this setting: An obstacle is detected way before it appears next to the robot. One
way to approximate this situation formally is to say that obstacles are (almost)
always detected when they are outside the robot’s convex hull.

The situation changes if the size of the workspace is comparable to the robot
dimensions, which is a standard case for an arm manipulator. Indeed, the arm’s
base is fixed, and the arm is expected to reach all areas of its work cell. Obstacles
are almost always within the robot’s convex hull and can appear next to any point
of the robot body. In this situation the advantages of vision sensing for motion
planning are diminished. Obstacles can appear from behind or from the sides,
at any link of the arm. Depending on where video cameras are attached, an
approaching obstacle may be occluded by cables that deliver power or materials
to the arm hand, or by one of the arm’s own links, or by some other piece of
machinery in the work cell.

Trying to fight this problem by covering the arm (or the work cell walls) with
many “eyes” will make the system awkward and hardly feasible. Another option,
decreasing the number of cameras by putting them in a few strategic locations
and then using auxiliary arm motion to disambiguate invisible obstacles, is even
more awkward and creates other difficulties. The conclusion is that vision is
useful in a limited role, such as protecting the arm’s gripper when manipulating
objects. To protect the whole arm body at short distances, sensing media that
provides a physical coverage of the body will likely serve the task better than
vision.

Various proximity sensing devices—infrared, ultrasound, capacitance, and oth-
ers—fit our needs well. All of these have some limited distance of operation,
and all have their own pluses and minuses. For example, ultrasound sensing has
a wide sensing range that will likely reach the boundaries of the arm workspace,
but its resolution is not very good. Other properties—for example, accuracy, reli-
ability, and so on—may be important as well in the choice of sensing hardware.
Without going into more specifics (see Chapter 8 for more detail), let us assume
here that our revolute–revolute arm is equipped with some generic proximity
sensing hardware, such that every point of the arm body can sense approaching
obstacles.

Algorithmic Issues. How do we incorporate proximity sensing in the RR-Arm
Algorithm or similar motion planning procedures? In the discussion on sensing
versus motion planning for mobile robots (Section 3.6), we assumed that the
robot has a circular sensing range, with some limited radius of sensing. For
a mobile robot, this is a reasonable and natural assumption; it can be easily
modified for some practical constraints, such as partial sectoral sensing. For
an arm manipulator the situation is more complex. Assuming a similar limited
sensing distance at each point of the robot body, in the workspace the outline of
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the sensing range will be a complex figure (Figure 5.16) that surrounds the arm
and changes its shape as the arm links move relative to each other.

In C-space the situation is somewhat closer to the mobile robot sensing range
simply because in C-space the arm becomes a point. But that’s where the simi-
larity stops. Assume that the arm’s sensing allows it to sense objects in W -space
within some sensing range r (Figure 5.16). An obstacle will be detected when it
is at a distance equal to or smaller than r from the point on the arm body closest
to it.

With this kind of proximity sensing, the robot’s sensing range in C-space
plane (θ1, θ2) is not a circle anymore. In fact, it is not even an entity with fixed
parameters. The sensing range image will look in C-space more or less like the
one in Figure 5.17 (point C is the arm’s current position). As the arm links move
relative to the arm base and relative to each other, the joint angles (θ1, θ2) change
accordingly. The sensing range C-space image then moves in the plane (θ1, θ2),

2p

q2

q1

q2
C

q1
C 2p

C

0

Figure 5.17 In C-space the sensing range of the revolute–revolute arm has a shape
similar to the one shown here. The point in the center of the figure corresponds to the
values (θ1, θ2) of the arm’s current position. As the arm moves in its workspace, this
figure moves in C-space, with its shape and dimensions changing continuously.
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with its shape and dimensions shrinking and expanding from rectangle-like to
ellipse-like, and with shapes in between like in Figure 5.17. Animation of this
process makes for a wonderful movie: One sees a strange creature that is moving
while constantly changing its shape according to some mystifying law. The extent
of variability in the sensing range C-space image depends on the sensing range
r and the arm’s kinematics.

Calculation of the sensing range C-space image is an interesting though rather
involved task; there are many details and many special cases to attend to. With
good equations for the sensing range, one could improve motion planning algo-
rithms by providing a look-ahead optimization of the arm’s next few steps, or
attempt algorithms that take into account the arm dynamics, similar to the work
we did in Chapter 4. To my knowledge, today there are no published analyses
on this topic. As a first approximation, one can start with a simplified model of
the sensing range, presenting it as a circle whose radius changes as a function
of the arm position (θ1, θ2). A conservative approximation would be to model
the arm sensing by the maximum circle inscribed in the real sensing range. With
this model the robot would be safe, but much sensing would be wasted: In some
directions in the (θ1, θ2) plane the actual sensing will go much farther than the
circular model will indicate.

As the arm moves, its sensing range image in C-space “breathes,” shrinking
and expanding as it moves in the plane (θ1, θ2). The extent of such changes
depends on the motion. It is easy to see, for example, that if we fix angle θ2 and
let angle θ1 change, in C-space of Figure 5.17 the sensing range figure will move
horizontally, and its shape will remain the same. This is because the motion does
not involve any changes in the relative position of links l1 and l2. Any motion
involving a change in angle θ2 will cause changes in the shape of the sensing
range figure.

Except for the added calculation due to the variable sensing range in C-space,
incorporating proximity sensing in the arm motion planning algorithm is similar
to the analogous process for mobile robots (Section 3.6). One can combine, for
example, one of the VisBug algorithms for a mobile robot (Section 3.6) with the
RR-Arm Algorithm developed in this chapter. The fact that the latter is noticeably
more complex than Bug algorithms calls for a careful analysis. To date, there
are no published results in this area, in spite of its significant theoretical and
practical potential.

How proximity sensing can affect the RR-Arm Algorithm performance can
be seen in Figure 5.18. Here link l2 happens to be attached to link l1 not by its
endpoint, as in some of our prior figures, but by some other point on the link.
(This is a more realistic design; it often occurs in industrial arm manipulators.)
Note how elegant and economical the arm’s path becomes when the arm is pro-
vided with proximity sensing (Figure 5.18b), compared to its performance with
tactile sensing (Figure 5.18a). In fact, the robot path in Figure 5.18b is almost
the optimal path between the S and T locations; it could hardly be improved
even by a procedure operating with complete information. This of course will
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Figure 5.18 Performance of RR-Arm Algorithm in a scene with four obstacles (black
objects): (a) with tactile sensing and (b) with proximity sensing.

not be always so; as we know, obtaining information about the scene “on the fly”
rather than beforehand precludes one from guaranteeing the optimal solution.4

5.2.6 Concluding Remarks

Let us summarize here some properties of the sensor-based motion planning
strategy for the revolute–revolute arm manipulator developed in this section.

• Of a pivotal importance during the development of RR-Arm Algorithm were
the topological properties of the arm configuration space (C-space). These
properties not only allowed us to convert the problem from moving a kine-
matic jointed arm to moving a point “robot” in the corresponding C-space,
they also allowed us to reduce the problem from searching the whole space
to searching only a tiny one-dimensional subset of space. Analysis carried
out in this section sheds much light on the motion planning issues involved,
and it should serve us well in studying other arm configurations in this and
next chapters.

• The fact that the C-space of the RR arm is a two-dimensional manifold,
namely a common torus, turned out to play an important role in the RR-Arm

4As we will see in Chapter 7, even with the benefit of seeing the whole scene and of prior training,
humans are not able to compete even with the performance shown in Figure 5.18a, let alone with
that in Figure 5.18b. This fact is at the heart of the argument for synergistic human–robot systems,
where responsibilities between the partners are divided in accordance with their abilities.
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Algorithm, not lastly because this C-space structure allows for more than
one “short” route between the start and target positions, which have been
used with profit by the algorithm. The analysis demonstrates that the arm
kinematics can greatly influence the algorithm structure. In the following
sections we will study in a similar vein the remaining four of the five con-
figurations of planar two-link arms shown in Figure 5.1. We will conclude
these studies with an attempt, in Section 5.8.4, to develop a unifying theory
that will allow one to consider each of the five kinematics of Figure 5.1 as
a special instant of one general case.

• Planning of arm motion with the described RR-Arm Algorithm is done
completely in the workspace (W -space), based on the sensing data from
the arm sensors. The above analysis and examples referring to the arm
configuration space have been used solely to establish the theory and develop
the algorithmic machinery.

• A similar consideration applies to the sensing used. Whereas most of our
algorithm design process relied on tactile sensing, this was done only for
the sake of simpler explanation. As discussed in Section 5.2.5 (and more
in Chapter 8), proximity sensing, and not tactile sensing, should be used in
practical arm manipulator motion planning systems.

• No preliminary exploration of obstacles and no beforehand partial or com-
plete computation of the scene in W -space or C-space takes place or is
expected by the algorithm. By the time the arm arrives at the target location,
it may know very little about the space that it just traversed.

• If the desired target position is not feasible because of interfering obsta-
cles, the reachability test built into the algorithm will make this conclusion,
usually quickly enough and without exploring the whole space.

• The algorithm plans the robot arm motion better than humans do. We will
discuss this interesting observation in great detail in Chapter 7. In brief,
when watching the RR-Arm Algorithm in action, humans have difficulty
grasping its mechanism or the rationale behind the paths it generates. A
quick glance at the paths in Figures 5.14, 5.15, and 5.18 should help con-
vince one that this is so. This is so even for simple scenes, and it is so for
tactile as well as for more complex sensing. The difficulty for humans is not
in that the algorithm is overly complex. With quick training, one will be able
to understand and use the RR-Arm Algorithm in C-space—but not in W -
space. Unfortunately, this would be a useless demonstration because C-space
is not available for motion planning; remember, our primary assumption is
that no information about the scene is available beforehand. On the other
hand, asking human operators to use the algorithm in the workspace, the
way a robot arm manipulator does it, turns out to be hopeless. And humans
own strategies, whatever they are, consistently show an inferior performance
compared to that of RR-Arm Algorithm (see Chapter 7).

Recall how very different our current situation is from the one we faced with
mobile robot motion planning algorithms (Chapter 3). We observed there that,
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first, humans’ own motion planning strategies work pretty well in the related
tasks and, second, humans have no problem interpreting, learning, and using
relevant motion planning algorithms. In comparison, motion planning for even
a simple arm manipulator is a task that poses serious mental challenges to a
human. This fact goes a long way in explaining difficulties that human operators
exhibit when controlling real-world teleoperated robotics systems. The price for
those difficulties is operators’ mistakes and an overly slow operation that rules
out many real-life tasks.

This suggests the need for changes in today’s approaches to the design of
teleoperated systems. In particular, it is highly desirable to shift the responsibil-
ity for obstacle collision avoidance from the operator’s shoulders to the robot
intelligence. We will return to this topic in Chapters 7 and 8.

5.3 DISTINCT KINEMATIC CONFIGURATIONS OF RR ARM

Even for the most popular revolute and sliding (prismatic) joint types, each
combination of joint types of an arm manipulator can be realized in more than
one kinematic configuration. The RR arm that we analyzed above (Section 5.2)
is especially prolific in terms of variability of kinematic configurations. We will
review here those configurations, as an example of how such variability occurs
as well as to see how the theory developed above applies to them. This exercise
also helps train one’s spatial intuition, a useful quality in the work we do here.

Four different configurations of RR arms are shown in Figure 5.19. As we
will see, different kinematic configurations result in different, sometimes quite
unusual, configurations of their workspace. This fact does not change the basics
of sensor-based motion planning considered above. No matter how an RR arm
is configured, the following statements are true:

(a) The arm’s two degrees of freedom guarantee that its endpoint moves in a
two-dimensional manifold, be it a plane or some other surface.

(b) The arm’s configuration space is still a common torus, and so the theory
and the motion planning algorithm developed in Section 5.2 applies.

RR Arm of Figure 5.19a. This arm is recognized easily—it is the same planar
two-link RR arm manipulator that has been studied in much detail in Section 5.2
(see Figures 5.1a and 5.2). The arm lies and moves in the plane. Its two joint
axes are parallel to each other and perpendicular to the arm’s plane. The main
difference between this arm and the remaining three arms in Figure 5.19 is that
the two joint axes of those three arms are mutually perpendicular rather than
parallel.5 This changes the arm workspace rather dramatically.

5There exist arm designs where joint axes intersect at angles different from parallel or perpendicular.
Some such designs have even been patented, because they provide interesting kinematic properties.
No such kinematics is considered in this text.
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Figure 5.19 Four different kinematic configurations of the RR (revolute–revolute) arm:
(a) RR arm studied in detail in Section 5.2; the arm’s endpoint moves in the plane. (b)
This arm’s endpoint moves on the surface of a sphere. (c) This arm’s endpoint moves
on the surface of a torus. (d) This arm’s endpoint moves on the surface of a truncated
sphere.

RR Arm of Figure 5.19b. See Figure 5.20a, which shows both revolute joints
of this arm, J1 and J2, in the same spot, with the joint axes intersecting at 90◦.
Because link l1 produces no physical displacement, we can take it as being of
zero length, l1 = 0. Then, only one link, l2, is physically present in this arm;
hence the arm looks like an outstretched human arm. Sometimes this mechanism
is interpreted as a single ball joint. Since from the control standpoint this device
still has two independent control variables, seeing it as two independent revolute
joints, rather than one (ball) joint, is more in line with our other notation in
this text.



222 MOTION PLANNING FOR TWO-DIMENSIONAL ARM MANIPULATORS

The arm’s first joint angle, θ1, is responsible for motion in one plane; for speci-
ficity, assume this is a horizontal plane. The second joint angle, θ2, is responsible
for the arm motion in the vertical plane. Together they allow the arm endpoint
(end effector) to reach any point on the surface of a sphere of radius l2. The
workspace (W -space) of this arm is hence a sphere. Any point P on the sphere
corresponds to two joint solutions, (θP

1 , θP
2 ) and (π + θP

1 , π − θP
2 ).

Since the body of link l2 moves in the three-dimensional (3D) space inside
the W -space sphere, it can interact with 3D obstacles that may appear inside
the workspace sphere, thus presenting a potential collision avoidance issue. The
fact that one end of link l2 is fixed (at the base J1) and the motion of its other
end is limited to the sphere surface constrains the link interaction with obstacles
significantly. In terms of motion planning, this is equivalent to motion along a
curve rather than around a “real” 3D object. This means that the 2D motion
planning algorithms of Section 5.2 fully apply here.

Proceeding in this direction, we want to chose an M-line, the line that the arm
endpoint would go through if no obstacle interfered with the arm motion. Since
the C-space (configuration space) of this arm is a torus, the choice is among
four M-lines (Section 5.2). These are shown in Figure 5.20. Denote the positive
direction of change of angle θi, i = 1, 2, by “+” and denote the negative one by
“−”. Then the four M-lines are four geodesic curves, as shown in Figure 5.20b,
with the corresponding joint angles changing as follows:

θ1 θ2
M1: + +
M2: − +
M3: + −
M4: − −

The choice of the M-line and the motion planning procedure will proceed accord-
ing to the RR-Arm Algorithm (Section 5.2.2).

RR Arm of Figure 5.19c. A detailed picture of this arm configuration is shown
in Figure 5.21a. The only difference between this configuration and the one in
Figure 5.20a is that here the arm’s two joints are at a distance from each other,
equal to the length of the first link, l1. Links l1 and l2 lie in the same plane—in
general, depending on link l1 shape, in parallel planes. The arm’s endpoint moves
along the surface of a torus, and so its W -space is a torus.∗ This torus may or may
not have a hole depending on the relation between the lengths of links l1 and l2:

l2 > l1 produces a W -space torus with no hole;
l2 < l1 produces a W -space torus with a hole.

Projections of W -space onto the horizontal (xy) and vertical (xz or yz) planes for
both cases, l2 > l1 and l2 < l1, are shown in Figures 5.21b and 5.21c, respec-
tively.

∗To emphasize, it is not the configuration space that forms a torus here, as we had it before, but the
workspace.
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RR Arm of Figure 5.19d. Details of this arm configuration are shown
in Figure 5.22a. The difference between this configuration and the one in
Figure 5.21c is that here link l2 rotates in the plane perpendicular, rather than par-
allel, to link l1. In other words, the arm looks like a fan, with link l2 being the fan
propeller’s only blade. This design makes for a somewhat strange workspace: The

arm’s endpoint moves along the surface of a truncated sphere of radius
√

l2
1 + l2

2
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Figure 5.22 The RR arm of Figure 5.19d. (a) Arm design. (b) Arm W -space.

(Figure 5.22b). Link l1 moves in the horizontal plane xy. Link l2 is always inside
the volume D limited by the sphere and a cylinder whose radius is l1 and whose
height is 2l2 (see Figure 5.22b; the cross section of the volume D is shaded). The
body of link l2 may therefore interact with 3D obstacles that happen to appear
in volume D.
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5.4 PRISMATIC–PRISMATIC (PP, OR CARTESIAN) ARM

This arm is the second one, arm (b), among the five arms shown in Figure 5.1.
The reason it is called Cartesian is that the displacement in each of its joints
translates directly in exactly the same motion of the arm endpoint in Cartesian
plane (see Figure 5.23). The arm has two prismatic (sliding) joints, with joint
values l1 and l2 —hence its other name, a PP Arm. The boundaries of the arm’s
W -space are limited by the rectangle whose sides are equal to the maximum
lengths of links l1 and l2. We assume that no obstacles outside W -space can
interfere with the arm motion; hence the path planning problem is limited to
the arm’s W -space rectangle. The M-line is defined as a straight-line segment
connecting the arm’s starting and target points, S and T .

From Section 5.2.1, a shadow of an obstacle X is the area of workspace no
point of which can be reached by the arm endpoint due to interference of X
with the arm motion. Functionally, then, for the arm an obstacle shadow is the
same as the physical obstacle that causes it. Observe in Figure 5.23 that for any
obstacle in W -space of the PP arm, no points to the right of an obstacle can
ever be reached by the arm endpoint. We will see that this property of this arm
kinematics makes motion planning a rather simple task.

The boundary of an obstacle plus the boundary of the shadow that it forms
produces the virtual line of the obstacle. The said property of the PP arm—that
no points to the right of an obstacle can be reached by the arm endpoint—means

l2max
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A

Figure 5.23 Cartesian (PP) arm. The virtual obstacle includes the actual obstacle and
its shadow (shaded).
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that any obstacle’s virtual line is a simple curve. In Figure 5.23, the virtual line
of the circular obstacle A is the line that passes through points 1, 2, 3, 4, 5, 6, 7.

Recall that in the arm configuration space (C-space), the virtual obstacle is the
C-space image of the corresponding physical obstacle. The virtual boundary of
the obstacle is the C-space image of the corresponding virtual line. In Figure 5.23,
the virtual boundary of obstacle A is the same line (1, 2, 3, 4, 5, 6, 7). Clearly,
this will be always so. Hence, any virtual boundary is a simple curve. This simple
correspondence makes the PP arm’s C-space practically identical to its W -space,
and hence unnecessary for further analysis.

As we will see later, the above simple structure of PP arm virtual obstacles
brings about one specific condition that allows a direct and simplified use for
this arm of the basic planning procedure developed in Section 3.3, and ensures
its convergence.

Another condition that the basic planning procedure requires—that the virtual
boundary be a closed curve—does not hold for the PP arm. For example, in
Figure 5.23 no point of the line segment between points 7 and 1 of the obstacle
shadow can be reached by the arm endpoint, and so it is not a part of the virtual
boundary. This will present no difficulty for the planning procedure, though. In
general, an obstacle’s virtual boundary in C-space of this arm consists of four
distinct segments:

• The “left” curve corresponding to the arm endpoint’s following the actual
obstacle boundary; in Figure 5.23 this segment comprises points 3-4-5.

• Two mutually parallel straight line segments corresponding to those points
of the arm body (other than the arm endpoint) that touch the actual obstacle;
in Figure 5.23 these are lines 3-2-1 and 5-6-7.

• The straight-line segment that is a part of the W -space boundary; in Fig-
ure 5.23, this is line 7-1.

Of these, the first three segments form a simple open curve, each point of which
can be reached by the arm endpoint. The fact that the fourth segment cannot be
reached by the arm endpoint poses no algorithmic problems since the endpoints
of the said simple open curve—in Figure 5.23, points 1 and 7—can easily be
recognized from the fact that they always lie on the W -space boundary and hence
correspond to the maximum value of the joint value l2. This fact will help in
showing the algorithm convergence. An important statement that helps simplify
the path planning procedure of the PP arm follows directly from Figure 5.23:

Lemma 5.4.1. For the Cartesian two-link arm, if the target point T is reach-
able from the starting point S, then there exists a path from S to T such that it
corresponds to a monotonic change of the joint value l1.

This can be shown as follows. Depending on whether the difference (lS1 − lT1 )
is positive, zero, or negative, establish the direction of change of link l1 motion
along the M-line from S to T —positive, zero, or negative, respectively. Note
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that this information is known before the motion takes place, from coordinates
of points S and T .

If during its motion along the M-line from S to T the arm encounters an
obstacle, such a local direction is chosen for passing around the obstacle for
which the corresponding change in joint value l1 coincides with the established
M-line direction of change of l1. In the special case of l1 being constant in the
vicinity of the hit point, the local direction should be chosen as corresponding
to decreasing values of l2; otherwise the arm will not be able to pass around the
obstacle.

If, while passing around an obstacle, the current value l1 moves outside of
the interval (lS1 , lT1 ), then, clearly, point T lies in the shadow of the obstacle and
cannot be reached. If the M-line direction of change of l1 is “0”—which will be
so if the M-line happen to be parallel to link l2 —and an obstacle is met along
the way, then, again, point T cannot be reached because it is in the shadow
of the obstacle. In other words, Lemma 5.4.1 holds, and this helps simplify the
planning procedure.

While the PP arm planning procedure will work for the arm links of any
shapes, it can be further simplified and made more efficient if link l2 is assumed
to present an elongated rectangle whose sides are parallel to the joint axes l1 and
l2, respectively. If link l2 happens to be of a more complex shape, the algorithm
can replace it with a minimum rectangle that contains the link. Hence link l2 in
the example of Figure 5.23 would be treated as a rectangle of width zero.

Now the whole path planning procedure for the PP-Arm Algorithm can be
formulated; Lo = S.

1. Establish the M-line direction of change of link l1 (see above). Set j = 1.
Go to Step 2.

2. From point Lj−1, the arm moves along M-line until one of the following
occurs:

(a) Target T is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj , is defined. Choose the

local direction using the M-line direction of change of l1. Go to Step 3.

3. The arm follows the obstacle virtual boundary until one of the following
occurs:

(a) The target T is reached. The procedure stops.
(b) The M-line is met at a distance d from T such that d < d(Hj , T ); point

Lj is defined. Increment j . Go to Step 2.

(c) The current value l1 is outside of the interval (lS1 , lT1 ). Target T cannot
be reached. The procedure stops.

It can be shown that the algorithm will work correctly if the arm links and
obstacles in the scene are of arbitrary chapes.
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5.5 REVOLUTE–PRISMATIC (RP) ARM WITH PARALLEL LINKS

The revolute–prismatic parallel kinematic configuration (Figure 5.1c) is a com-
mon major linkage in commercial robot arm manipulators. The so-called Stanford
manipulator robot (see, e.g., Ref. 7) is a typical example of this type. Joint values
of this arm are the angle θ1 of the first (revolute) joint and the variable length
l2 of the second (prismatic) joint; 0 ≤ l2 ≤ l2 max (see Figure 5.24a). The outer
boundary of the arm’s workspace (W -space) is a circle of radius (l1 + l2 max). Its
inner boundary is a circle of radius l1, which defines the dead zone inaccessible
to the arm endpoint. Unlike in Figure 5.1c, in order to not overcrowd the picture,
no dead zone appears in the arm in Figure 5.24a; that is, here l1 = 0. With the
arm endpoint b in some position of W -space—say, S —the position of the link’s
rear end, aS , can be found by passing a line segment of length l2 max from bS

through the origin O.
For specificity, let us define the M-line as a straight-line segment connecting

points S and T ; denote it M1-line. In the example in Figure 5.24a, one path
from S to T would be as shown, the curve (S, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, T ).
Observe that if due to obstacles the arm cannot reach point T by following the
M1-line, it might be able to reach T “from the other side,” by changing angle
θ1 in the direction opposite to that of the M1-line. Hence, similar to how we
did it with the RR arm (Section 5.2), a complementary M-line, the M2-line, is
introduced, defined as consisting of three parts: two straight-line segments, (S, S′)
and (T , T ′), continuing the M1-line segment outwards until its intersection with
the W -space outer boundary, and a segment of the W -space outer boundary that
corresponds to the interval of θ1 complementing that of the M1-line to 2π . This
choice for the complementary M-line is largely arbitrary; any M2-line will do, as
long as it is uniquely defined, is computationally simple, and complements the
θ1 interval of M1-line to 2π .

As the arm moves along the M-line, obstacles will interfere with its motion
in two different ways. In our example the arm endpoint will be forced to leave
M-line two times: The first time is when obstacle A interferes with the rear part
of link l2, creating the curve (1, 2, 3, 4, 5), (Figure 5.24a), and the second time
is when obstacle B interferes with the front part of link l2, creating the curve
(6, 7, 8, 9, 10) (Figure 5.24a). Note two shadows formed during this process
(shaded in Figure 5.24a): Under no circumstances the arm endpoint will be able
to reach any point within the figures with boundaries (0, 1, 2, 3, 4, 5, 0) and
(6, 7, 8, 9, 10, 11, 12).

Define a front contact of link l2 as a situation where a part of the link between
its front end (which is the part containing the arm endpoint) and the origin is in
contact with the obstacle. A rear contact of the link refers to a situation where a
part of the link between its rear end and the origin is in contact with the obstacle.
Correspondingly, a front contact forms the front shadow of the obstacle, and a
rear contact forms the rear shadow . In Figure 5.24a, the rear shadow of obstacle
A is limited by the line (1, 0, 5, 4, 3, 2, 1), and the front shadow of obstacle B is
limited by the line (6, 7, 13, 9, 10, 11, 12, 6).
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Note also that these same obstacles A and B create another two shadows,
which are not of importance in our current task but might show up with some
other M-line: the arm endpoint will not be able to reach any point within the
figures described by points in the left part of Figure 5.24a, (4, 5, 5′, 1′, 1, 2, 3′, 4)

and (0, 10′, 6′, 0). An obstacle that extends into the arm’s dead zone forms only
one shadow, which extends from the obstacle all the way to the W -space outer
periphery. An obstacle X that is in the shadow of another obstacle Y will never
interact with the arm. If obstacle X partially intersects the shadow of obstacle Y,
it will be treated by the arm as a part of Y.

Therefore, with the exception of obstacles that extend into the arm’s dead zone,
any virtual obstacle in the workspace of this RP arm includes the actual obstacle
itself plus two shadow components: one front shadow and one rear shadow. The
front shadow extends from the obstacle to the outer boundary of W -space [see the
curve (6, 7, 8, 9, 10, 11, 12, 6) in Figure 5.24a]; the rear shadow extends from the
arm origin O into the periphery, but in general not to the boundary, of W -space
[see the curve (1, 0, 5, 4, 3, 2, 1) in Figure 5.24a].

Unlike the more complicated situation with the RR arm (Section 5.2), in the
case of our RP arm the virtual lines of obstacles are always simple curves. In
a special case when the M-line crosses the dead zone, the latter can be treated
simply as an obstacle interfering with the rear end of link l2.

Two independent variables, one angular and the other linear displacement, can
be represented by the surface of a cylinder. The C-space of our arm is therefore
a cylinder whose flat sides, called base circles, correspond to the first joint value,
θ1, and whose height corresponds to the second joint value, l2. The C-space of
the example in Figure 5.24a is shown in Figure 5.24b. Shown in the figure are
the images of an M-line and of the shadow components of virtual obstacles A and
B that interfere with the arm motion. In order to not overcrowd the picture, for
the complementary two shadow components only their projections on the lower
base circle, (1′, 5′) and (6′, 10′), are shown.

Unlike the RR arm, each point in W -space of our RP arm has only one
arm solution. That is, there is one-to-one mapping between W -space and the
corresponding C-space, as compared to the one-to-two mapping in the case of
the RR arm. Because of this, and also because virtual lines in W -space are always
simple curves, the virtual boundaries in C-space are also simple curves. Recall
that this constitutes a necessary condition for the basic path planning procedures
(Section 3.3). In general, each virtual boundary in C-space of the RP arm consists
of a combination of three distinct segments:

1. A curve formed when the front or the rear end of link l2 follows the
boundary of the actual obstacle; for obstacle B in Figure 5.24b this seg-
ment passes through points 7-8-9.

2. A vertical straight-line segment formed when points of the arm body
other than the arm endpoint touch the obstacle while passing around it;
in Figure 5.24b this consists of lines 7-6-12 and 9-10-11).
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3. A segment that is a part of one of the base circles (e.g., line 11-12,
Figure 5.24b); the inside points of this segment cannot be reached by the
arm.

In order to apply the basic path planning procedure to this arm, the algorithm
has to reflect specifics of moving along the C-space cylinder. Similar to the RR
arm, one concern in our case is whether obstacle boundaries may be formed
by more than one simple curve. Recall that if a virtual boundary is formed
by one simple (closed) curve, it is called a Type I obstacle, and if the virtual
boundary has more than one simple (closed) curve, it is a Type II obstacle (see
Section 5.2.2). Starting with one specific case, observe that if a ring-like actual
obstacle appears in W -space, positioned so that it separates the arm from the
W -space outer boundary, the result will be a band-like virtual obstacle in C-
space—formally, a Type II obstacle. One simple closed curve of the band can
be reached by the arm, whereas the other, formed by one of the base circles, is
inaccessible to the arm. Because of this, and in spite of the fact that the virtual
boundary has two closed curves, from the standpoint of path planning we will
treat it as a Type I obstacle.

As another case, observe the arm shown in Figure 5.1c, where l1 �= 0. If
an obstacle extends from W -space into the dead zone, it is easy to see that
in C-space a swath-like virtual obstacle will appear, whose virtual boundary
in C-space includes two separate “simple curves,” plus two vertical lines each
connecting the opposite base circles of the C-space cylinder. This is a real Type
II obstacle. Similar to the RR arm, if during the arm motion one such curve of a
Type II obstacle has been completely explored by the arm without ever meeting
the M-line, it is clear that the second curve has to be explored as well. To do
that, the complementary M2-line will be used.

As with the Cartesian arm studied above, the choice of the local direction
for following the virtual obstacle by our RP arm happens to be unique. Once
the arm encounters an obstacle, one of two possible cases arises. If the con-
tact is a front contact—that it, it corresponds to the front part of the arm
contacting the obstacle—then only such a local direction is meaningful that
corresponds to decreasing values of l2. As one can see in Figure 5.24a, the oppo-
site local direction would never bring the arm any closer to the target. If, on the
other hand, the contact is a rear contact, then only such local direction should
be chosen that corresponds to increasing values of l2. The reachability test is
built in a manner similar to this test for the RR arm (Section 5.2.2), taking
into account the simpler structure of the RP arm’s C-space (see the algorithm
below).

How will the arm tell a front contact from a rear contact? By our model, the
arm’s sensing lets it know which point of its body contacts the obstacle. The arm
also knows at all times which point of link l2 is at the joint point of the link.
This information allows the arm to always distinguish a front contact from a rear
contact.
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Because of the unique choice of the local direction, there is no need to investi-
gate the whole curve of the virtual boundary. If, while passing around the obstacle
in the chosen local direction, the arm reaches one of the limits of l2, it can safely
conclude that it is dealing with a Type II obstacle, so the arm should start looking
for the second curve of the virtual boundary using the complementary M-line.
The procedure is further simplified through the use of the following statement
similar to the one in Section 5.2.2:

Lemma 5.5.1. For the two-link revolute–prismatic (RP) arm, if position T is
reachable from the starting position S, then there exists a path from S to T such
that it corresponds to a monotonic change of the joint value θ1.

In the motion planning procedure, a flag is used to indicate processing of
each of the two curves of a Type II virtual boundary. When the complementary
M-line is introduced, the numbering of hit and leave points starts over; Lo = S.
The distance used is a Euclidean distance in W -space. Assume the M1-line is
the shorter of the two complementary M-lines. The procedure RP-Arm Algorithm
includes the following steps.

1. Establish an M1-line as the M-line. Set the flag down. Set j = 1. Go to
Step 2.

2. From point Lj−1, the arm moves along the M-line until one of the following
occurs:
(a) Target T is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj , is defined. In case

of a front contact, choose the local direction such that it corresponds
to decreasing values of l2. In the case of a rear contact, choose the
local direction such that it corresponds to increasing values of l2. Go
to Step 3.

3. The arm follows the virtual boundary until one of the following occurs:
(a) The target is reached. The procedure stops.
(b) Current joint value θ1 is outside the interval (θS

1 , θT
1 ). The target cannot

be reached. The procedure stops.
(c) The M-line is met at a distance d from T such that d < d(Hj , T ).

Point Lj is defined. Increment j . Go to Step 2.
(d) The value l2 approaches one of its limits, and the flag is down (i.e.,

the first curve of the virtual boundary of a Type II obstacle has been
processed). Set the flag up. Set j = 1. Establish an M2-line as the
M-line. Move the arm back to S. Go to Step 2.

(e) The value l2 approaches one of its limits, and the flag is up (i.e., the
second curve of the virtual boundary of a Type II obstacle has been
processed). The target cannot be reached. The procedure stops.
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5.6 REVOLUTE–PRISMATIC (RP) ARM WITH PERPENDICULAR
LINKS

The arm is shown in Figure 5.1d. An example of the arm’s interaction with two
circular obstacles is shown in Figure 5.25a. C-space images of the corresponding
virtual obstacles and of the M-line are shown in Figure 5.25b. The path gener-
ated under the motion planning algorithm passes through points S, 1, 2, . . . , 9, T .
Although the arm’s configuration and its interaction with obstacles appear to be
quite different from those of the RP arm with parallel links (Figure 5.1c), both
arm manipulators turn out to be very similar from the standpoint of path plan-
ning. Visually this is evident when comparing Figures 5.24 and 5.25: Whereas
the W -space looks quite different for both arms, their C-spaces look very similar.
The reader is therefore referred to the previous section for analysis and motion
planning algorithm.

5.7 PRISMATIC–REVOLUTE (PR) ARM

The PR arm is shown in Figure 5.1e. A more detailed sketch appears in Fig-
ure 5.26. The arm’s first joint value is the variable length of its first link, 0 ≤
l1 ≤ l1 max. The second joint value is angle θ2. The length of second link, l2, is
constant. The arm’s W -space boundary is a combination of a rectangle with sides
of length l1 max and 2l2, respectively, and two semicircles of radius l2 attached to
the rectangle, as shown in Figure 5.26. As before, assume that no obstacles may
interfere with the part of link l1 as it moves outside of W -space.6

The two circles of radius l2 centered at the limit positions O and O1 of link
l1 are called the limit areas of arm’s W -space. Note that any point belonging
to a limit area has only one corresponding arm solution, whereas any point
of W -space that is outside the limit areas has two possible arm solutions. For
example, in Figure 5.26 a single arm solution exists for point P , and two arm
solutions exist for point P1. As we will see, for the path planning purposes this
peculiarity makes the arm distinct from those considered so far and leads to a
combination of features of the algorithms for those arms.

An obstacle is considered to be inside the limit area if only one arm solution
exists for all points of the obstacle virtual line. An obstacle is outside the limit
area if two arm solutions exist for all points of the obstacle virtual line. An
intermediate situation, referred to as partially inside the limit area, is when some
points of the obstacle virtual line have one solution and some other points have
two solutions.

Consider three circular obstacles A, B, and C (Figure 5.27a), positioned out-
side, partially inside, and fully inside the limit areas of the arm W -space, respec-
tively. Positions of the link endpoints at some points of the corresponding virtual

6Incorporating that part of the arm body into the algorithm is very easy because link l1 moves always
along the same line.



PRISMATIC–REVOLUTE (PR) ARM 235

A

(a)

(b)

B
q1

l1

l2max

q1 = 0

S

T

0

1 2

3

4

5
6

7

8

9

10

11

8
7

6
4

3

2

q1 = 90°

q1 = 0
q1

+

S

A

l2

2
3

l2max

T

1

B

4

10

9

8

7
6

5

Figure 5.25 Revolute–prismatic (RP) arm with perpendicular links. Line (S, T ) is the
M-line. (a) W -space, with obstacles A and B. Similar to Figure 5.24, from the related
obstacle shadows only the rear shadow of obstacle A and the front shadow of obstacle B
are shown (shaded). (b) C-space images of the corresponding virtual obstacles.



236 MOTION PLANNING FOR TWO-DIMENSIONAL ARM MANIPULATORS

l1

q2
P

l1 l2max

P1

P

l1
P

l2

O

O1

Figure 5.26 A PR (prismatic–revolute) arm. Any point in the workspace (such as point
P ) within the circles with centers O and O1 and of radius l2 has a single arm solution.
Any point (such as P1) outside those circles has two arm solutions—except on the border
of W -space, where it also has a single solution.

lines are indicated in the figure by pairs of numbers, (1, 1), (2, 2), and so on.
Note that the virtual line of obstacle A, which is outside the limit areas, is a
closed curve: starting at some position of contact with A (say, point 1), the arm
can pass around the obstacle while keeping in contact with it (points 2, 3, . . . ,
8, 1), returning eventually to the starting position. On the other hand, the virtual
line of obstacle B is an open curve, whose endpoints 13 and 16 lie inside the
W -space but on the boundary of a limit area. Finally, the virtual line of obstacle
C is an open curve, whose endpoints 17 and 21 lie on the boundary of W -space
(and of a limit area).

The C-space of our PR arm presents the surface of a cylinder whose height
is equal to the upper limit of the first joint value, l1 max, and whose base circles
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Figure 5.27 PR arm. (a) W -space. Shown are M-lines M1 and M2, along with some
link positions during the arm’s passing around obstacles A, B, and C. (b) The C-space
images of the two M-lines, virtual obstacles, and those same positions.

correspond to the second joint value, θ2. An obstacle virtual boundary presents
in C-space a curve, which may or may not include as its part a segment of the
base circle, depending on whether it corresponds to an inside, partially inside, or
an outside obstacle (Figure 5.27b). No point of a base circle segment of a virtual
boundary can be directly accessed by the arm.

Similar to the revolute–revolute (RR) arm studied in Section 5.2, it is easy
to see that in case of an outside obstacle, (a) the corresponding virtual boundary
in C-space presents a single simple closed curve—even if the obstacle virtual
line in W -space has self-intersections or double points—and (b) this curve can
be traced by the arm fully. Obstacle A in Figure 5.27 presents an example of
this type.

Furthermore, similar to two revolute–prismatic (RP) arms considered in the
two previous sections, it can be shown for the PR arm that in the case of inside and
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partially inside obstacles the corresponding virtual boundaries are simple curves.
Each such curve includes two types of segments: (i) one or two open curve
segments (and these can be followed by the arm) and (ii) one or two segments
of the base circles of the C-space cylinder (and these cannot be accessed by the
arm). Obstacles B and C in Figure 5.27 provide examples of this type.

That the curves are not closed in case (i) produces no algorithmic difficulties
simply because the endpoints of the open curves always correspond to one or
both limit values of link l1 and hence are easily recognizable. Together with
the simplicity of obstacle virtual boundaries, this fact ensures conditions nec-
essary for convergence of the path planning procedure that we are about to
develop.

The Choice of M-Line. A straight-line M-line in W -space would be a perfectly
legitimate choice for M-line. From the practical standpoint, this choice is, how-
ever, not convenient because it may make it impossible to maintain continuous
motion of both links. Try, for example, to follow a straight line between points
S and T in Figure 5.27a. A discontinuity in the motion of one or both links will
take place somewhere along the path. Similar to the RR arm case, it is preferable
to define the M-line as a straight line in C-space.

A C-space straight M-line is a function θ2 = p · l1 + q in the plane of variables
l1 and θ2. Coefficients p and q are found from the coordinates of points S and
T [97]. The image of this M-line, denoted as M1-line in Figures 5.27a and
5.27b, is a geodesic line between points S and T on the surface of the C-space
cylinder. If, because of the obstacles, point T cannot be reached from point S

using this M-line, a complementary M-line, denoted as M2-line in Figure 5.27,
is used. M2-line is defined similar to M1-line, with the coordinate of point T

being (θ2 − 2π) instead of θ2. In other words, M1- and M2-lines are mutually
complementary over the joint angle θ2, adding together to 2π . As one can see, the
overall logic behind the choice of M-line here is very similar (though somewhat
simpler because of two rather than four possible M-lines) to the logic in the case
of RR-arm (Section 5.2).

Special Cases. To complete the study of interaction between the arm and the
obstacles, and before we can formulate the motion planning algorithm proper,
we will consider a few examples that show what kind of special cases can arise
for the PR arm. For the sake of specificity, assume that every time the arm meets
an obstacle and defines on it a hit point, it starts with the local direction “left.”

In the example shown in Figure 5.28, the virtual obstacle A forms a swath
along the C-space cylinder that extends all the way between the cylinder’s two
limit circles—that is, between both limits of l1 values. That is, in this example
the obstacle virtual boundary includes two separate open curves [passing through
points (4, 1, 2, 3) and (5, 6, 7, 8), Figure 5.28b] and two segments of the cylinder
limit bases [passing through points (4, 5) and (3, 8), accordingly, Figure 5.28b].
After leaving point S, following M-line and meeting obstacle A at point 1, the
arm turns left along the virtual boundary and passes through points 2 and 3. Point
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Figure 5.28 The PR arm. (a) A bar-like obstacle A in W -space forms (b) a swath-like
virtual obstacle in C-space. Link positions shown are denoted in W -space and C-space
with the same numbers.

3 is the first endpoint of the first open curve of the obstacle virtual boundary that
the arm encounters. According to our algorithm, the arm will then attempt to
complete the exploration of this curve, by returning to the hit point 1 and then
trying to pass around the obstacle using the local direction “right.” Along this
path segment, point 4 will be reached, which is the other endpoint of the same
open curve.

The difference between this example and, say, that of obstacle B in Figure 5.27
is that if in the latter both endpoints of the virtual boundary B correspond to the
same (namely, upper) limit of the joint value l1, the endpoints of the virtual
boundary A in Figure 5.28 correspond to both limits of l1. One consequence of
this difference is that in the former case it is possible to pass around the obstacle,
whereas in the latter case this is not possible. The fact that both endpoints of
the open curve are located at the opposite base circles of the C-space cylinder
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(Figure 5.28b) indicates that the arm is dealing with a Type II obstacle (see
Section 5.2.1 for the definition of Type I and Type II obstacles).

As we know from the RR arm study, having explored one curve of a Type
II obstacle virtual boundary brings in additional global knowledge: It tells the
arm that somewhere there is another, second curve of the virtual boundary. It
also tells the arm in which direction it can find this unknown curve. Now the
arm knows it has to find and start exploring the second curve in order to draw
conclusions about the target reachability. Because of the topology of a common
cylinder, if one simple curve of an obstacle boundary connects to both base
circles of C-space, in order for the virtual obstacle to be separated from the rest
of the C-space cylinder, the two endpoints of the second curve of the boundary
must lie at the two base circles as well. This means that the only way to reach
the second curve is to go in the direction opposite to the current M-line. For
that, a complementary M-line will be used. If, after reaching and following the
second curve of the virtual boundary neither the M-line nor the target is met, this
means the target T cannot be reached.

If an obstacle happen to interfere with the first link, as in the example in
Figure 5.29a, the resulting virtual boundary forms a band around the C-space
cylinder (Figure 5.29b). If the arm attempts to pass around the obstacle, starting,
say, in the position 1, it will follow the whole virtual boundary, passing through
points (1, 2, 3, 4, 5, 6, 1) and thus making a full circle. For the PR arm, this is
the first example so far where the arm makes a full circle in θ2. It suggests that,
similar to the RR arm before, we may need a counter to indicate the fact of making
a full circle in θ2. Denote the counter C2, to emphasize that it corresponds to our
second joint variable, θ2. (There will be no counter C1.) The fact of completing
a full circle will be detected by the counter C2 as follows: Starting at the hit
point, the counter integrates the angle θ2, taking into account the sign. If a full
circle is made without ever meeting the M-line (that is, the value of C2 is 2π),
then the target cannot be reached.

Continuing our observations of various special cases, if two (or more) obstacles
happen to interfere with the first link the way it appears in Figure 5.30, two bands
are formed on the surface of the C-space cylinder. In this example the distance
between the obstacles along the line OO1 is longer than the length of link l2;
this makes the two bands connect with each other in two places, forming two
disconnected free areas in C-space. As a result, in Figure 5.30a position T cannot
be reached from the arm position S.

Here is what will happen in this example under the algorithm: Starting at S, the
arm follows the M-line, hits obstacle A at point 1 (Figure 5.30), goes through
points (2, 3, 9, 8, 7) while trying to pass around the obstacle, and eventually
returns to the hit point 1 without ever encountering the M-line. This trajectory of
the arm endpoint in shown in Figure 5.30a. However, unlike in the example in
Figure 5.29, the counter C2 will now contain zero. Obviously, the target cannot
be reached. [One may note that this outcome is quite different from the outcome
in a similar situation with an RR arm, (Section 5.2).]
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Figure 5.29 PR arm. (a) In W -space obstacle A interferes with the motion of link l1.
(b) In C-space this creates a band-like virtual obstacle. The arm can make a full circle
around the obstacle, passing through points (1, 2, 3, 4, 5, 6, 1).

Local Cycles. As another similarity with the RR arm, the path planning proce-
dure for the PR arm can create local cycles. Recall that a local cycle is a situation
where the arm passes through some segment of its path more than once. (For
definitions and further detail on local cycles, hit and leave points, and so on, see
Section 5.2.1). In such a case, when the PR arm returns to the previously defined
hit point, its counter C2 will contain a value different from |n| · 2π, n = 0, 1, . . . .
An example with a local cycle is shown in Figure 5.31, where the W -space scene
contains four obstacles.

To see how a local cycle appears here, it is easier to follow the path first
in C-space (Figure 5.31b) and then see what the path looks like in W -space.
Assume that the chosen local direction is “left.” The arm starts at point S and
follows the M-line until it hits an obstacle, which happens to be obstacle D, and
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Figure 5.30 PR arm. Because of obstacles A and B, two band-like virtual obstacles
appear in C-space and connect with each other in two spots. This creates two free areas
of space disconnected from each other. As a result, point T cannot be reached from
point S.

defines on it the first hit point, point 1 (Figure 5.31b). It then turns left (in the
figure this corresponds to going up) and starts passing around obstacle D. On
this path segment it passes point 2, and it meets the M-line again at point 3.

At point 3 the arm defines its first leave point; then it follows M-line until
it hits obstacle B at point 4, which becomes the second hit point. Looking at
Figure 5.31b, note that the “correct” way to proceed is so clear: One should turn
right, go around obstacle C, meet there the M-line and follow it to T . So easy.
Unfortunately, the arm has no information it would need to do this: It does not
have the benefit of seeing the bird’s-eye view of Figure 5.31 that we have. The
only thing it knows is what comes to it from its sensors. Therefore, as required
by the chosen local direction “left,” the arm will turn left and attempt to pass
around obstacle C. On this path segment, while passing through point 5, it will
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Figure 5.31 PR arm. In this example with four obstacles, as the arm attempts to move
from S to T under the planning algorithm, a local cycle is created.

encounter obstacle B and and will try to pass it around. This will take the arm to
point 6, where it will encounter obstacle A. As the arm starts following obstacle
A, at point 7 it will meet obstacle D. While following the latter, it will arrive to
point 1, the first hit point.

This moment will signal that a local cycle has been produced. (This should
not be confused with completing a closed curve of a virtual boundary. No closed
curve of a virtual boundary has been explored so far in this example). As the
algorithm will prescribe the arm to look for a leave point that is closer to T

than the lastly defined hit point, point 4, the arm will pass point 1 without even
noticing it since the algorithm will not require remembering it. Nor will the
counter C2 contain anything of interest at this point: Since C2 was last turned
on at the second hit point, point 4, at the time of completion of the local cycle
(point 1), its content will be some arbitrary number different from the prescribed
|n| · 2π, n = 1, 2, . . . .
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Hence the arm will pass point 1 and continue following the obstacle boundary.
It will pass point 2 and then point 3. At point 8 the arm will encounter again
obstacle A (albeit at this new point), switch to following it, encounter at point
9 obstacle B, follow it to point 10 where it meets obstacle D, and follow that
obstacle to point 11, where it—finally!—meets the M-line again. Since point 11
is closer to T than the last hit point (point 4), point 11 is defined as the second
leave point.

Notice that by the time the arm reaches point 1 for the second time, on its
way to point 11 it will have encountered all four obstacles A, B, C, and D.
Since during this motion the arm is passing from one obstacle to the other in
an uninterrupted obstacle following, with no path segments in free space, the
arm will perceive all four as one obstacle. [This is very clear from the C-space
picture (Figure 5.31b).] Thereafter, starting at point 11, the arm will switch to
following the M-line and eventually will arrive happily at the target point T .

The torturous exercise that we have just gone through is given only for those
courageous souls who want to understand how a local cycle is formed and why
it causes no difficulty to the algorithm. The arm will have no idea that it went
through a local cycle. The theory developed here and in Section 5.2.1 guarantees
that the cycle will not become an infinite loop. The different cases that we
have considered thus far are necessary only to establish such a guarantee in the
algorithm.

We emphasize again that the described path has been produced by the arm
equipped with simple tactile sensing. As described in Section 5.2.5, a more
advanced sensing will in general improve the performance—that is, shorten the
path—quite markedly.

The Algorithm. We are now ready to formulate the sensor-based motion-plan-
ning algorithm for the prismatic-revolute (PR) arm. The following notation and
parameters will be used in the procedure:

• Parameter F is used to handle an open curve of a Type II obstacle. It is set
according to this rule:

F = +1 when the arm, while following a virtual boundary, reaches the
upper limit of joint value l1.

F = −1 when, while following a virtual boundary, the arm reaches the
lower limit of joint value l1.

F = 0 at the first hit point of the virtual boundary.

• A flag is used to distinguish between the first and second open curves of
the virtual boundary of a Type II obstacle.

• Counter C2 is used to handle closed curves of virtual boundaries.
• Complementary M-lines, M1 and M2, are defined as before.
• Hit, Hj , and leave, Lj , points are defined as before (Section 5.2.1); Lo = S.
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• Distances are Euclidean distances along M-line in the plane (l1, θ2).
• For specificity only, the local direction for passing around an obstacle is

taken as “left” when the first hit point is defined.

The PR-Arm Algorithm consists of the following steps:

1. M1-line is designated as the M-line. Set the flag down. Set j = 1. Go to
Step 2.

2. Set counter C2 to zero. Set F = 0. From point Lj−1, the arm moves along
the M-line until one of the following occurs:
(a) Target T is reached. The procedure stops.
(b) An obstacle is encountered and a hit point, Hj , is defined. Choose the

local direction “left”. Turn on counter C2. Go to Step 3.
3. The arm follows the virtual boundary until one of the following occurs:

(a) Target is reached. The procedure stops.
(b) M-line is met at a distance d from T such that d < d(Hj , T ); point

Lj is defined. Set the flag down. Increment j. Go to Step 2.
(c) The arm reaches one of the limits of link l1 (this corresponds to an

endpoint of one open curve of a virtual boundary) without ever meeting
the M-line. Go to Step 4.

(d) The arm returns to Hj (i.e., a closed curve along the virtual boundary
has been completed) without ever encountering the M-line. The target
cannot be reached. The procedure stops.

4. Depending on the value F , the flag condition, and the current arm position,
one of the following occurs:
(a) F = 0. Set F to +1 or −1 according to the rule above. Return to the

last hit point. Choose the local direction “right.” Go to Step 3.
(b) Value F corresponds to the current curve endpoint (i.e., +1 for the

upper limit and −1 for the lower limit of l1); this means that the
whole obstacle has been explored. The target cannot be reached. The
procedure stops.

(c) Value F does not correspond to the current curve endpoint, and the flag
is down; this means the first open curve of a Type II obstacle has been
explored. Set j = 1. Set the flag up. Designate M2-line as the M-line.
Return to S. Go to Step 2.

(d) Value F does not correspond to the current curve endpoint, and the flag
is up; this means that the second open curve of a Type II obstacle has
been investigated. The target cannot be reached. The procedure stops.

5.8 TOPOLOGY OF ARM’S FREE CONFIGURATION SPACE

In the previous sections of this chapter we have considered an exhaustive list
of five kinematic configurations of two-link arm manipulators (see Figure 5.1).
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We observed that by studying the configuration space of each particular arm
and making appropriate modifications in the basic sensor-based path planning
procedure (which take into account topological properties of the arm workspace
and configuration space), the basic algorithms developed in Chapter 3 for point
mobile robots can be applied to planning the arm motion in space with arbitrary
and previously unknown obstacles. Realization of these algorithms requires avail-
ability of sensing hardware that provides information about potential collision at
every point of the arm body. We further learned in Section 5.2.5 that the devel-
oped algorithms can be extended to take advantage of more complex nontactile
sensing, using the ideas of “algorithms with vision” developed in Section 3.6.

One may find it odd that each kinematic arm configuration in Figure 5.1
requires its own motion planning algorithm. While in general this is rather nat-
ural (after all, animals with different kinematics of their body have different
gaits—compare a cat and a kangaroo), it would be indeed interesting to approach
all these arms in a unified manner and attempt a unified motion planning strategy
that would serve them all. In this section we will attempt a unified theory, and a
unified motion planning algorithm, of planar arm manipulators.

Two comments on what follows:

• Looking ahead, we will see, in particular, that the topology of configura-
tion space and planning algorithms for all arm configurations depicted in
Figure 5.1 are special cases of the RR (revolute–revolute) arm. The conse-
quence of this is that the sensor-based motion planning algorithm for RR
Arm is the universal 2-link-Arm Algorithm. While, on the positive side, this
means that one algorithm can serve all cases of 2D arm manipulators, it also
means, on the negative side, that in cases of simpler arm configurations one
would use a strategy that is more complex than the case in hand requires.

• The theory developed in this section is somewhat more complex than that
presented elsewhere in this text (and it will not be used in the following
chapters). It requires a prior exposure to topology. If this presents a problem
to the reader, and/or if the comment above convinces the reader that a unified
motion planning algorithm may be of a limited value, the reader can skip
the rest of this section.

Let us recall some basics. The sought commonality of the five two-link arms
of Figure 5.1 lies in the connectivity properties of their free space. Clearly, a path
between two points in space exists if and only if both points lie in a connected
area [or volume, in the three-dimensional (3D) case] of the free space. According
to our model (Section 5.1.1), we deal with the case of highly incomplete infor-
mation, with a situation when input information appears in real time and is of
strictly local nature, as when coming from robot sensors. Since potential obsta-
cles in the robot’s environment are not known beforehand, the hope is that the
robot can (a) infer some essential topological properties of the scene from a few
incomplete encounters with obstacles and (b) use this knowledge to guarantee
the solution to the motion planning task.
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The sensor-based approach is thus a topological approach. The question being
posed is as follows: Is there a solution to the robot motion planning problem based
on topological (rather than geometrical and algebraic) characteristics of the space
at hand—that is, a solution that does not require knowing shapes and dimensions
of the objects involved, be it the robot itself or obstacles in its environment? Such
procedures would allow robots to operate in a previously unknown environment
filled with arbitrarily shaped obstacles. As we saw in the prior sections, a positive
answer to this question carries significant advantages: It allows, first, to drop the
computationally expensive requirement of algebraic representation and, second,
drop the equally expensive requirement of complete information. The algorithms
developed in earlier sections suggest that at least in some cases of arm kinematics
the answer to the said question is “yes.”

For the topological approach to work correctly, in the prior sections of this
chapter it was vital that obstacle boundaries presented appropriate manifolds in
the corresponding configuration space. In this section we will study the spa-
tial relationships between the robot and obstacles and develop a set of condi-
tions under which the obstacle boundaries present manifolds in the configuration
space [107]. The analysis makes use of topology of the arm workspace and does
not require algebraic representations.

Recall that kinematically a robot arm manipulator consists of connected rigid
bodies, links and joints, which together possess some—say, d —degrees of freedom
(d-DOF), d = 1, 2, . . . . The spatial arrangement (position and orientation) of the
links and joints in the robot arm’s workspace makes its kinematic configuration.

In all practical cases a robot configuration can be uniquely described by a finite
number of parameters. Assuming that each DOF of the robot is implemented via
the (most popular in practice) translational (prismatic and sliding are other terms
used) or rotational (revolute) joint, each joint value represents such a parameter.
For example, the three-dimensional robot in Figure 5.32 has nine degrees of
freedom (9-DOF), and so its configuration can be described by the nine-tuple
(l1, l2, θ3, θ4, θ5, θ6, θ7, l8, l9). Here translational variables l1, l2 ∈ � describe the
Cartesian coordinates of the robot base unit; revolute variables θ3 . . . θ7 ∈ [0, 2π),
respectively, parameterize the “waist,” left and right “shoulders,” and “elbows”
of the robot arms; and translational variables l8 and l9 relate to the left- and
right-hand effectors, respectively.

Two different sets of the nine-tuple parameters above would describe two
distinct robot positions (configurations would be another term) in space. The col-
lection of all possible robot configurations define the robot configuration space
(C-space). To emphasize the theoretical nature of this section, we will drop the
terms W -space and C-space that we used above for the workspace and configu-
ration space and we will use instead abbreviations WS and CS , accordingly.

Due to the presence of obstacles in WS, some regions in CS are not reachable;
these regions collectively form the configuration space obstacle, denoted CSO or
OC . A reachable configuration is called a free configuration (FC); the subspace
that contains all free configurations is called the free configuration space, FCS.
Points in CS represent robot configurations. A path in CS represents continuous
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q5 q7

Figure 5.32 A 9-DOF robot with two arms attached to a common base.

motion of the robot in WS. By introducing FCS, the robot motion planning
problem can be studied under a unified mathematical framework [108].

For sensor-based motion planning algorithms to work, it is essential that the
CSO boundary presents manifolds. This topological property is not trivial and
cannot be simply assumed. It has been shown in Ref. 109 that in general CSO
boundaries are not manifolds. Consider, for example, the example shown in
Figure 5.33a. The setting is such that the mobile robot R can barely squeeze
into the opening in the obstacle O, while touching both opposite walls of O

simultaneously. As a consequence, the CSO boundary, which consists of two
rectangles and a straight-line segment that connects them (Figure 5.33b), is not
a manifold.

O

(a) (b)

R

OC

Figure 5.33 Interaction between a square-shaped mobile robot R and an obstacle O.
(a) WS: The robot can barely squeeze into the opening of obstacle O. (b) CS : The
corresponding CSO boundary consists of the inner and outer rectangles plus a straight-line
segment that connects them.
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Under what conditions will CSO boundaries present manifolds? We will show
below that if a certain unrestrictive spatial relationship between the robot and
obstacle is satisfied—for example, under no condition is the robot immobilized,
nor does it need to squeeze between two obstacles as in Figure 5.33—then FCS
is uniformly locally connected (ULC). Although the ULC property is not sufficient
to ensure manifold boundaries for the general case, we will show that for the
two-dimensional (2D) case the ULC property guarantees that FCS is bounded by
manifolds—in this case, simple closed curves.

We proceed as follows. First, a general robot with d translational and/or rev-
olute degrees of freedom will be defined. CS is defined as a Euclidean space
formed by the robot parameter variables. A physical obstacle is the interior of a
connected compact point set in WS. We will show that CSO is a closed subset
of CS (Corollary 5.8.1).

Then we will study the interaction between the robot and obstacles, and will
define a set of conditions that correspond to certain undesirable degenerate situ-
ations (Conditions 5.8.1 to 5.8.4), such as when a part of or the whole robot is
immobilized or when the robot can move between two obstacles only by simul-
taneously touching them both (Figure 5.33). We will show in Section 5.8.3 that
after these situations are removed, CSO presents a uniformly locally connected
subset of CS .

We will then show in Section 5.8.4 that ULC is a necessary condition for
an open subset of a compact space to have manifold boundaries. This is also a
sufficient condition for a 2D open subset of a compact space to have manifold
boundaries—that is, simple closed curves. We will thus conclude that FCS of a
2-DOF robot is bounded by simple closed curves. More details pertinent to the
material in this section can be found in [107].

5.8.1 Workspace; Configuration Space

As said above, kinematically a robot arm manipulator is an assembly of rigid links
connected to each other by joints that permit the links’ motion relative to each
other [8]. Joints and links form kinematic pairs. As in prior sections, without
loss of generality we limit the types of kinematic pairs to either translational
(prismatic) or rotational (revolute). The degrees of freedom (DOF) of a robot are
often referred to as its mobility, which is the number of independent variables
that must be specified in order to locate all the links relative to each other.

The 9-DOF robot shown in Figure 5.32 has nine joints and nine links. The robot
base is a link in which two translational joints l1 and l2 are implemented. The
number of degrees of freedom of a robot is not necessarily equal to the number
of links or the number of joints. Closed kinematic chains often have fewer DOF
than the number of their links (joints). For example, a triangle-shaped planar closed
kinematic chain with three links and three revolute joints has mobility zero.

We choose arbitrarily d independent joints, J1, . . . , Jd , to form a d-DOF robot,
and we parameterize the robot configuration using the corresponding joint vari-
ables. With a reference system defined at its connecting joint, each kinematic
pair can be specified by four scalar parameters. So, for the joint i, ai is the link
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length, αi is the link twist, θi is the angle between links Li and Li−1, and li is
the distance between links Li and Li−1, i = 1, . . . , d [8].

Assume that a revolute joint has no joint limit, and a translational (prismatic)
joint has its lower and upper limits. Let θi denote a revolute joint variable, let
li be a translational joint variable, and let ji be a (revolute or translational)
joint variable when the exact type is not important; i = 1, . . . , d . Assume for
simplicity, and without loss of generality, that li ∈ I 1 and θi ∈ S1 (a 1-circle).

The configuration space (CS) is defined as C �= C1 × · · · × Cn, where Ci = I 1 if
the ith joint is translational and Ci = S1 if it is revolute. In all combinations of
cases, C ∼= I dt × Sdr for all d-DOF robots, where dt and dr are respectively the
numbers of independent translational and revolute joints, dt + dr = d .

Lemma 5.8.1. CS is compact and is of finite volume (area).

Proof: The compactness is obvious since, by definition, CS is the cross product
of a finite number of unit intervals (length 1) and circles (length 2π). The volume
of CS is (2π)dr . Q.E.D.

For example, for a robot with two revolute joints, C ∼= S1 × S1 with area
2π · 2π = 4π2; for a robot with two revolute joints and one prismatic joint,
C ∼= S1 × S1 × I 1 with volume 2π · 2π · 1 = 4π2.

We define the 3D robot workspace (denoted by WS or W) as follows (its 2D
counterpart can be defined accordingly by replacing �3 with �2):

Definition 5.8.1. A robot link Li , i = 1, . . . , d , is defined as the interior of a
connected and compact subset of �3 homeomorphic to an open ball; for any
point x ∈ Li , let x(j) ∈ �3 be the point that x would occupy in �3 when the joint
vector of the robot is j ∈ C. Let Li(j) =⋃x∈Li

x(j). Then, Li(j) ⊂ �3 is a set
of points the ith link occupies when the robot’s joint vector is j ∈ C. Similarly,

L(j)
�= ⋃n

i Li(j) ⊂ �3 is a set of points the whole robot occupies when its joint
vector is j ∈ C. The workspace is defined as

W �=
⋃
j∈C

L(j)

where L(j) is the closure of L(j).

We assume that Li has a finite volume; thus, W is bounded.
The robot workspace may contain obstacles; each obstacle is a rigid body of

an arbitrary shape. In the 2D case, an obstacle is of finite area and its boundary
presents a simple closed curve. In the 3D case, an obstacle has a finite volume, its
surface has a finite area, and it presents one or more orientable 2D manifolds. The
assumption that WS has a finite volume (area) implies that the number of obstacles
present in WS must be finite. Being rigid bodies, obstacles cannot intersect. We
define 3D obstacles as follows (2D obstacles are defined accordingly):
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Definition 5.8.2. An obstacle, Ok , k = 1, 2, . . . , M , is the interior of a connected
and compact subset of �3 satisfying

Ok1 ∩ Ok2 = ∅, k1 �= k2 (5.6)

When the index k is not important, we use notation O
�= ⋃M

k=1 Oi to represent
the union of all obstacles in WS.

Definition 5.8.3. The free workspace is

Wf
�= W − O

Lemma 5.8.2 follows from Definition 5.8.1.

Lemma 5.8.2. Wf is a closed set.

In WS the robot may simultaneously touch more than one obstacle. In such cases
the obstacles involved effectively present one obstacle for the robot; in CS they
present a single body.

Definition 5.8.4. Configuration space obstacle (CSO) OC ⊂ C is defined as

OC
�= {j ∈ C : L(j) ∩ O �= ∅}.

The free configuration space (FCS) is

Cf
�= C − OC

CSO may consist of many separate components. For convenience, we use the
term “configuration space obstacle” to also refer to a component of OC when the
exact meaning is obvious from the context. A workspace obstacle can map into
any large but finite number of disconnected CSO components (Theorem 5.8.2).

Theorem 5.8.1. OC is an open set in C.

Proof: Let j∗ ∈ OC . By Definition 5.8.4, there exists a point x ∈ L such that
y = x(j∗) ∈ O. Since O is an open set (Definition 5.8.2), there must exist an
ε > 0 such that the neighborhood U(y, ε) ⊂ O. On the other hand, since x(j)

is a continuous function7 from C to W, there exists δ > 0 such that for all
j ∈ U(j∗, δ), x(j) ∈ U(y, ε) ⊂ O; thus, U(j∗, δ) ⊂ OC , and OC is an open set.
Q.E.D.

The theorem gives rise to this statement:

Corollary 5.8.1. FCS is a closed set.

Being a closed set, Cf = Cf . Thus, points on Cf boundary can be considered
reachable by the robot.

7If x ∈ L is a reference point on the robot, then x(j) is the forward kinematics with respect to x

and is thus continuous [8].
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5.8.2 Interaction Between the Robot and Obstacles

Below we will need the property of space uniform local connectedness (ULC).
To derive it, we need to properly define the notion of a contact between the robot
and an obstacle. To this end, four conditions will be stated (Conditions 5.8.1 to
5.8.4) that together define a contact. Mathematically, at position (joint vector)
j∗, robot L is in contact with obstacle O if

L(j∗) ∩ O = ∅ and L(j∗) ∩ O �= ∅ (5.7)

The first relation in (5.7) states that j∗�∈OC (Definition 5.8.4), while the second
relation states that j∗ ∈ ∂OC , where ∂OC refers to the boundary of OC . However,
there may be situations where both relations of (5.7) hold but no obstacle exists
in CS . Consider a robot manipulator with a fixed base, one link, and one revolute
joint, along with a circular obstacle centered at the robot base O, as shown in
Figure 5.34. Here relation (5.7) is satisfied at every robot configuration. Note,
though, that the link can rotate freely in WS; this means that there are no obstacles,
and hence no obstacle boundaries, in CS .

Therefore, robot configurations that satisfy Eq. (5.7) do not necessarily corre-
spond to points on CSO boundaries. We modify the notion of contact by imposing
additional conditions on the admissible robot and obstacle spatial relationships.
As with any physical system, the term “contact” implies an existence of a force
at the point of contact between the robot and the obstacle. In other words, for an
object to present an obstacle for the robot, it must be possible for the robot to
move in the direction of the force if the object were removed. With this definition
of a contact, the robot shown in Figure 5.34 is not in contact with the obstacle
at any position θ because at a point of “contact” it cannot exert a force upon

ΘO

Figure 5.34 Shown is a single-link “robot” with a revolute joint at point O, along with
a circular obstacle (shaded) also centered at O. With no obstacles in CS , the link can
freely rotate about point O.
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the obstacle. Mathematically, the removal of such “false contacts” translates into
the following condition, which guarantees that each CSO component has at least
one interior point:

Condition 5.8.1. Let j∗ ∈ C satisfy (5.7); that is, there exists u ∈ L such that
w = u(j∗) ∈ O. For given δ > 0 and ε > 0, define �O = O ∩ U(w, δ), �L =
L ∩ U(u, δ), and �OC = {j ∈ U(j∗, ε) : �L(j) ∩ �O �= ∅}. For any given γ >

0, there must exist ε ∈ (0, γ ) and δ ∈ (0, γ ) such that �OC �= ∅.

Theorem 5.8.2. An obstacle in WS can map into any large but finite number of
CSO components in CS.

Proof: We first design a simplified example showing that a simple obstacle in
WS can map into two CSO components in CS. In Figure 5.35, the WS obstacle
O produces two separate CSO components, each resulting from the interaction
between O and each of the two vertical walls on the robot. Clearly, one can
add additional vertical walls to the robot (and reduce the size of the obstacle if
necessary) so that the number of CSO components will increase as well. This
way one can create as many CSO components as one wishes.

On the other hand, by Condition 5.8.1, a CSO component must have an interior
point. Also, by Theorem 5.8.1, CSO is an open set, and so its any interior point
must have a neighborhood of positive radius r that is entirely enclosed in a
CSO component. Thus the CSO component must occupy in CS a finite volume
(area). By Lemma 5.8.1, C has a finite volume or area; hence the number of CSO
components in CS must be finite. Q.E.D.

Figure 5.36a demonstrates another case of a “false contact,” more compli-
cated than the previous one. The corresponding CSO indeed has interior points,
Figure 5.36b. By our definition of contact, at the configuration shown the robot
is not in contact with the obstacle because it cannot exert any force upon the

l

l
Robot

0

O

Oc Oc

(a) (b)

Figure 5.35 Illustration for Theorem 5.8.2. A single physical obstacle, O, can produce
more than one CSO component. (a) WS: A simple robot with one translational joint. (b)
CS: The corresponding two separate CSO components.



254 MOTION PLANNING FOR TWO-DIMENSIONAL ARM MANIPULATORS

l
l

q

q

2p

2p0

Oc

Oc

O

(a) (b)

Figure 5.36 A 2-DOF robot with one translational joint and one revolute joint. (a) WS:
The configuration shown is singular. (b) CS : The two resultant components of CSO almost
touch each other—almost because at the corresponding point the robot is not in contact
with obstacles, and hence the two CSO components are disjoint.

obstacle in the vertical direction. Thus the configuration corresponds not to a
point on the CSO boundaries, but to an interior point of FCO.

Note that the robot configuration shown in Figure 5.36 is a singular configu-
ration. That is, in this configuration a certain direction of motion in WS—here,
along the vertical line—is impossible (or, theoretically, requires infinite joint
velocities). In this configuration the robot cannot exert a force in the upward
vertical direction. On the other hand, a small change in any joint variable will
enable the robot to exert a force onto the obstacle. In CS this means that the two
CSO components are very close but not touching each other (Figure 5.36b). We
require that if the robot touches obstacles in two configurations that are arbitrarily
close to each other, then the robot shall be able to move from one configura-
tion to the other while maintaining the contact. This translates into the following
condition:

Condition 5.8.2. Let �O, �L, and �OC be as defined in Condition 5.8.1.
∀c1, c2 ∈ �OC , c1 �= c2, there exists a continuous path pC : I → �OC such that

pC(0) = c1, pC(1) = c2, pC(t) ∈ �OC for t ∈ I.

We further restrict that only such interactions between the robot and an obstacle
are allowed in which, for any robot configuration, at least some robot motion is
possible:

Condition 5.8.3. For any j∗ ∈ Cf and any ε > 0, there exists c ∈ U(j∗, ε) ⊂
Cf , such that c �= j∗ and c and j∗ are connected within Cf .

Condition 5.8.3 rules out the possibility that Cf contains isolated points. A degen-
erate case where the robot can barely squeeze between two or more obstacles
while being in contact with both of them is not allowed. Removing this case
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simplifies the theory and is not restrictive for practice. Stated more precisely,
this condition is as follows:

Condition 5.8.4. Let j∗ ∈ C satisfy (5.7), and L(j∗) ∩ O contain at least two
points. Let u1, u2 ∈ L be such that wi = ui(j∗) ∈ O, i = 1, 2. For given δi and ε,
define �Oi = O ∩ U(wi, δi), �Li = L ∩ U(ui, δi), and �Oi

C = {c ∈ U(j∗, ε) :
�Li(c) ∩ �Oi �= ∅}, i = 1, 2. For any ε, δ1, δ2 > 0, �O1

C ∩ �O2
C �= ∅.

We can now define the term “contact” in mathematical terms:

Definition 5.8.5. The robot is in contact with an obstacle if and only if Eq. (5.7)
and Conditions 5.8.1 to 5.8.4 are all satisfied.

5.8.3 Uniform Local Connectedness

Together, Conditions 5.8.2 and 5.8.4 bring about an important topological prop-
erty of CSO , the uniform local connectedness (ULC). ULC guarantees that ∂OC

presents manifolds in the 2D case.

Definition 5.8.6. Let E be a subset of a space X, and let x be any point of X. The
set E is locally connected at x if, given any positive ε, there exists a positive δ such
that any two points of E ∩ U(x, δ) are joined by a connected set in E ∩ U(x, ε).

Note that x in this definition is not necessarily a point in E. However, if x � ∈E,
then E is certainly locally connected at x, since for sufficiently small δ, there
are no points in E ∩ U(x, δ).

Definition 5.8.7. A space or a set of points is uniformly locally connected if,
given a positive ε, there exists a positive δ such that all pairs of points, x and y,
of distance ‖x − y‖ < δ are joined by a connected subset of the space, of diameter
less than ε.

Theorem 5.8.3. The open set CSO is uniformly locally connected.

Proof: Since CS is compact and CSO is open and locally connected (Theo-
rem 5.8.1), according to Ref. 110, VI.13.1, we only need to prove that CSO is
locally connected at CSO boundary points.

Let j∗ ∈ C satisfy Eq. (5.7). If L(j∗) ∩ O contains only one single point,
then Condition 5.8.2 guarantees that OC is locally connected at j∗. Now assume
L(j∗) ∩ O contains at least two points. Let ui ∈ L satisfy wi = ui(j∗) ∈ O;
let εi and δi be such as to satisfy Condition 5.8.2 with respect to ui , i = 1, 2.
Let ε = min(ε1, ε2), and let �Oi

C be as defined in Condition 5.8.4. According
to Condition 5.8.4, there exists a point c+ ∈ �O1

C ∩ �O2
C . According to Con-

dition 5.8.2, every point c, c ∈ �Oi
C ⊂ U(j∗, δi) is connected to c+ ∈ �Oi

C ⊂
U(j∗, δi) within �Oi

C . Thus, any two points c1, c2 ∈ �O1
C ∪ �O2

C are connected
in U(j∗, max(ε1, ε2)), and so OC is locally connected at j∗. Q.E.D.
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5.8.4 The General Case of 2-DOF Arm Manipulators

We will now show that in 2D space ULC guarantees that CSO is bounded by
simple closed curves. This result provides an effective tool for reducing the robot
motion problem to the analysis of simple closed curves in CS .

Lemma 5.8.3. CS of a 2-DOF robot presents one of the following: C ∼= I 1 × I 1,
the unit square; C ∼= S1 × I 1, a cylinder surface; or C ∼= S1 × S1, a torus surface.

Proof: The lemma follows from the fact that Ci
∼= I 1 for a translational joint,

Ci
∼= S1 for a revolute joint, i = 1, 2, and C = C1 × C2. Q.E.D.

Recall that the CS of a 2-DOF manipulator with two revolute joints (RR arm,
Figure 5.37) presents the surface of a common torus. The CS of a PR or RP arm
[arms (c), (d), and (e), Figure 5.1] is a cylinder, which is topologically a piece
of the torus. A cylinder is obtained from the torus (Figure 5.5), for example, by
making two vertical cuts in it. Finally, the CS of a PP arm [arm (b), Figure 5.1]
is a rectangular piece of plane (formally, a unit square). It can be obtained from
the torus by cutting a patch out of it. Figure 5.38 demonstrates how a cylinder
and a patch are obtained from the torus.

The previous discussion and Lemma 5.8.3 suggest an important fact: The RR
arm presents the most general case among all 2-DOF robot arms (see Figure 5.1).
This means that the motion planning algorithm for the RR arm (Section 5.2.2),
can be used to handle any two-link XX arm, X being X = (P or R). This will
result in more calculations than the arm in question really needs, but it will work.
For example, for the PR arm, the general (RR) algorithm may call for the third
and fourth M-line, in which case the control will need to infer that for the PR
arm those M-lines do not exist (see Figure 5.5).

q2

q1

Figure 5.37 A 2-DOF robot with two revolute joints.
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cylinder

patch

Figure 5.38 A cylinder (left) and a patch (right) can be cut out of a common torus.

Theorem 5.8.4. If a connected open set D in the torus surface T 1 is uniformly
locally connected, then each component of its boundary is a simple closed curve,
or a point, or null.

The counterpart of this theorem in a closed plane is the so-called Converse of
Jordan’s Theorem [110, VI.16.2], which states that if a connected open set D

in a closed plane �2 is uniformly locally connected, then each component of its
boundary is a simple closed curve, or a point, or null.

It is of no surprise that the two theorems share the same necessary condi-
tions. By definition, a simple closed curve is a continuum whose connectivity is
destroyed by the removal of two points; this is a local property. The proof of
Theorem 5.8.4 is analogous to its counterpart; due to its length, the proof appears
in the Appendix to this chapter.

By Condition 5.8.3, the boundary of an obstacle cannot consist of isolated
points. In addition, the boundary of the subset CSO on the torus is null if and
only if CSO is either null, in which case there is no obstacle, or is the torus itself,
which is a case of no interest. In summary, the following statement describes the
CSO boundaries for a 2-DOF robot:

Corollary 5.8.2. For a 2-DOF robot with two revolute joints, if Condi-
tions 5.8.1 to 5.8.4 are met, then the corresponding CSO is bounded by simple
closed curves.

Proof: The proof follows directly from Theorems 5.8.3 and 5.8.4. Q.E.D.

Theorem 5.8.5. For a 2-DOF robot, assuming Conditions 5.8.1 to 5.8.4 are met
and joint limits, if any, are treated as obstacles, CSO is bounded by simple closed
curves.
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Proof: CS of any 2-DOF robot can be considered as a closed subset of a torus,
written as C ⊆ T 1. Let C−1 be the complement of C in T 1 and OC ⊂ C be CSO.

Then, the set O ′
C

�= OC ∪ C−1 is open and locally connected in T 1; thus, accord-
ing to Theorems 5.8.3 and 5.8.4, O ′

C is bounded by simple closed curves in T 1.
Q.E.D.

Now consider kinematic configurations of 2-DOF robots other than RR
arms—that is, arms (b) to (e) in Figure 5.1. By Lemma 5.8.3, CS of each of
these robot arms is homeomorphic to either the surface of a cylinder (RP or PR
arms) or a disk (PP arm). In each of these cases, CS can be thought of as a
closed subset of the torus. This also applies to 2-DOF arms with two revolute
joints, one or both of which are constrained. The physical constraints on the joint
range can be due to either the robot design or the obstacles in WS. This indicates
that the constraints on joint limits can be treated as obstacles.

One might argue that, since the information about joint limits is known before-
hand, there is no reason to treat them as unknown obstacles. This is true,
especially if incorporating those limits is easy. Note, however, that the joint
limits are not necessarily mutually independent. There are commercial robots in
which the limit values of one joint depend on the values of other joints. This
dependence is a function of the robot design and may be quite complex. Treating
joint limits as obstacles is an elegant way to combine simplicity with universality.

To conclude, we have shown that if the spatial relationship between the
robot arm and obstacles satisfies some reasonable and nonrestrictive for prac-
tice conditions, as defined by Conditions 5.8.1 to 5.8.4, then the corresponding
configuration space obstacle (CSO) is uniformly locally connected. In particular,
for the case of 2-DOF robot arms, this property guarantees that the free config-
uration space obstacle (FCS) is bounded by simple closed curves, which is an
important feature upon which various sensor-based motion strategies developed
above are based.

Both the simplicity and closedness of the boundary curves are important to
these algorithms: It is these features that allow the algorithms to solve the motion
planning problem with very little input information (local sensing only) about
the robot environment. This is true for the simpler Bug family algorithms pre-
sented in Chapter 3, as well as for the more sophisticated algorithms developed
in this chapter. The robot can correctly conclude that the target position is not
reachable—a global property—by circumnavigating only parts of the obstacles
involved.

5.9 APPENDIX

Proof of Theorem 5.2.1 (Section 5.2.1). Suppose the statement of the theorem
does not hold, and the virtual boundary of some obstacle is formed in C-space
by one or more simple (which is guaranteed by Lemma 5.2.1) but not closed
curves. Take one such simple open curve and consider one of its two endpoints
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(“dead ends”). This endpoint corresponds to some arm position P∗ = (a∗, b∗).
Along the curve, take a close, but distinct from P∗, arm position, P1 = (a1, b1).
Apparently, once the arm moves from P1 to P∗, the only way for it to continue
its motion is to return to P1.

Because this curve corresponds to the same virtual boundary, in both positions
P∗ and P1 the arm is in contact with the obstacle. For P∗ to be a dead end—that
is, to be qualitatively different from P1 —there must be some other obstacle that
affects the arm in the position P∗ but does not affect it in position P1. The idea of
the proof is to show that for all possible occurrences of such additional obstacles
at position P∗, there is a direction for passing around the obstacle different from
the direction toward P1. This means that the arm, after moving from P1 to P∗,
can then use this alternative direction. Hence, no dead ends are possible, and a
virtual boundary must consist solely of simple closed curves.

Since the numbers ai and bi, i = ∗, 1, come in pairs, there are four possible
combinations: (1) a∗ = a1, b∗ = b1; (2) a∗ �= a1, b∗ = b1; (3) a∗ = a1, b∗ �= b1;
and (4) a∗ �= a1, b∗ �= b1. The first combination is of no interest because positions
P∗ and P1 on the virtual boundary curve are assumed to be distinct. The second
combination presents two arm solutions for a single point in W -space. For P∗ and
P1 to be close to each other in C-space, this point must be located in the vicinity
of the W -space boundary. If it is on the W -space boundary, then a∗ = a1, which
brings us to the first combination. If the point is not on the W -space boundary,
then consider a point P2 on the curve such that it lies between, and is distinct
from, points P∗ and P1. Because of the curve continuity, such a point exists.

It must be that b2 �= b∗ because otherwise P2 would make the third distinct
arm solution for the same point of W -space, and this is not possible. Using P2

instead of P1, we replace the second combination by either the third or the fourth
combination. Therefore, out of the four possible combinations above, the ones to
study are the third and the fourth. Now we consider the types of situations with
the arm motion that lead to those combinations: Case 1 (for the third combina-
tion) and Cases 2 and 3 (for the fourth combination). (In Figures 5.39a, 5.39b,
and 5.39c, known entities are shown in solid lines, and guessed entities are shown
in dashed lines).

Case 1 (Figure 5.39a); a∗ = a1, b∗ �= b1. For this case to occur, link l1 must
be constrained from one side by some obstacle, call it A. It cannot be constrained
from both sides as it would be immobilized permanently. The only possibility
for the position P∗ = (a∗, b∗) to be a dead end is if some other obstacle, B,
constrains link l2 as shown in Figure 5.39a. Clearly, it is possible to continue
passing around the virtual obstacle while moving from P∗ to some other position
in its vicinity, P2 = (a2, b2), instead of P1. Since P2 does not lie between P1

and P∗ on the virtual boundary and since the virtual boundary is a simple curve,
position P∗ cannot be a dead end. The only other possibility to consider is having
the obstacle A on the other side of the link l1; this creates a symmetric situation.

Case 2 (Figure 5.39b); a∗ �= a1, b∗ �= b1. In this case, the segments l2 in both
positions P1 and P∗ do not intersect. This may occur only if in both positions the
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Figure 5.39 An illustration for the proof of Theorem 5.2.1.

arm endpoint (and not any other point of the arm body) is in contact with some
obstacle, A. The dead end position may occur only if one or two other obstacles,
B and C, appear as shown in Figure 5.39a. Clearly, it is always possible to move
from P∗ to a position distinct from P1 (here, P ′

2 or P ′′
2 , respectively). Thus, P∗

cannot be a dead end position.
Case 3 (Figure 5.39c); a∗ �= a1, b∗ �= b1. In this case, the segments l2 in both

positions P1 and P∗ intersect each other. This may occur only if l2 is “rolling”
around some obstacle, A. Here, P∗ may be a dead end only if one or two other
obstacles, B and C, appear as shown in Figure 5.39c. Observe that positions P ′

2
and P ′′

2 , respectively, are good alternatives to P1. Therefore, P∗ is not a dead-end
position. This exhausts all possible cases and completes the proof. Q.E.D.

Proof of Lemma 5.2.2 (Section 5.2.1). Torus is a closed orientable manifold.
The maximum number of closed curves needed to divide a given closed orientable
manifold into two separate domains is determined by its connectivity numbers.
The first connectivity number is known to define the maximum number of closed
cuts that can be made on the surface without dividing it into separate domains.
On the torus, the first connectivity number is equal to two [105]. The only
arrangement for two closed cuts (two closed curves), a and b, that can be made
on the torus without dividing it into separate domains is shown in Figure 5.40.
According to Theorem 5.2.1, a virtual boundary consists of simple closed curves
and thus cannot have self-intersections. Any other arrangement of two closed
curves on the torus such that they do not touch or intersect each other produces
at least two separate domains. Similarly, more than two simple closed curves
produce more than two separate domains. Therefore, if some area on the torus is
separated from the rest of it by simple closed curves then the boundary of this
area consists of no more that two such curves. Q.E.D.



APPENDIX 261

a

b

Figure 5.40 Closed cuts a and b do not divide the surface of the torus into separate
areas but leave it as one area. However, addition of any other closed curve would cut it
into two separate areas.

Separation Theorems on the Common Torus. (See Section 5.8.4). The
purpose of this subsection is to prove Theorem 5.8.4. The proof for its pla-
nar counterpart can be found in Ref. 110, VI.16.2, which uses the concept of
regular grating as the fundamental tool. We will use an analogous strategy to
prove Theorem 5.8.4. Since the topology of a torus is different from that of a
plane, we start with the modified definitions of regular grating, k-chains, and k-
cycles in torus T 1, and proceed with the corresponding operations and properties
(Theorems 5.9.1 to 5.9.7).

Several intermediate results are needed in order to prove Theorem 5.8.4. The
proofs for some of these are the same as their planar counterparts, in which case
we simply restate the statements and cite the source [110]. Proofs will be given
to statements that are valid only for T 1.

Regular grating is a convenient tool for studying the connectivity of a subset
of T 1. We show in Theorem 5.9.8 that a 1-cycle (a simple closed curve) does
not necessarily separate a torus into two halves as it would in a plane. This
major fact makes the proof of Theorem 5.8.4 different from its planar counter-
part.

Finally, to prove Theorem 5.8.4 we need to show that if a region (a connected
subset) D in T 1 is uniformly connected, then the connectivity of any of its
boundary components is destroyed by the removal of two single points. This is
done by drawing a cross-cut L connecting the same boundary component of D

and showing that D-L has exactly two components (Theorem 5.9.12). The proof
of Theorem 5.9.12 in turn requires the intermediate results of Theorems 5.9.9 to
5.9.11.
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Figure 5.41 Rectangular grating of a torus surface.

Regular Grating. Let us represent T 1 as a unit square with its opposite sides,
marked by a and b respectively, identified. A regular grating G in T 1 is formed
by drawing a finite number of lines parallel to a or b. The lines become closed
curves after the identified sides are glued together (see Figure 5.41). A grat-
ing must contain at least two lines, a and b, that cut the torus surface into a
“rectangle.”

The 2-cells of G are the closures of the rectangular regions into which the
unit square is divided. The edges, or 1-cells, are the sides of the 2-cells, and
the vertices, or 0-cells, are their corners. All cells are bounded closed sets of
points. When G contains a and b and at least another two lines that are par-
allel to a and b respectively, such as the case in Figure 5.41, then every edge
of the grating evidently belongs to just two 2-cells, which lie on the opposite
sides of it.

Theorem 5.9.1. If F1 and F2 are nonintersecting closed sets in T 1, there exists
a grating G no cells of which meet both F1 and F2.

Proof: The nonintersecting compact sets F1 and F2 in T 1 are at positive distance
δ apart. Let m be an integer exceeding 4/δ. A grating with the required property
can evidently be formed by drawing m equidistant straight lines between, and
parallel to, each pair of the opposite sides of the unit square. Q.E.D.

A k-chain, Ck (k = 0, 1, 2), on grating G is any set of k-cells of G. The sum
(modulo 2) of two k-chains, Ck

1 and Ck
2 , is the set of k-cells that belong to one

and only one of Ck
1 and Ck

2 . It is denoted by Ck
1 + Ck

2 . The complement (C2)−1

of a 2-chain C2 is the set of 2-cells of G not belonging to C2. Thus, if �2 denotes
the 2-chain containing all the 2-cells of G, (C2)−1 = C2 + �2.
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Addition of k-chains is commutative and associative, and

q∑
1

Ck
i = Ck

1 + Ck
2 + · · · + Ck

q (5.8)

is the set of k-cells that belong to an odd number of the k-chains Ck
i . For any Ck ,

Ck + Ck = 0 (the “zero chain”), hence the equation Ck
1 + Xk = Ck

2 is satisfied by
Xk = Ck

1 + Ck
2 and no other k-chain. Thus the k-chain on G form a commutative

group under the operation of addition modulo 2.
The boundary, ∂Ck , of the k-chain Ck on G (for k = 1, 2) is the set of (k − 1)-

cells of G that are contained in an odd number of k-cells of Ck . (The boundary
of a 0-chain is not defined.)

Theorem 5.9.2. [110, V.2.1]

∂(Ck
1 + Ck

2 ) = ∂Ck
1 + ∂Ck

2 (k = 1, 2)

Since ∂�2 = 0, it follows from Theorem 5.9.2 that for any C2,

∂(C2)−1 = ∂(C2 + �2) = ∂C2

A k-cycle, for k = 1, 2, is a k-chain whose boundary is zero; a 0-cycle is a
0-chain with an even number of 0-cells. The sum mod 2 of any set of k-cycle is
a k-cycle (by Theorem 5.9.2, or directly from k = 0).

Theorem 5.9.3. [110, V.2.2]. The boundary of any k-chain is a (k − 1)-cycle
(k = 1, 2).

The k-chain Ck (a finite set whose members are k-cells) is to be distinguished
from the union of its k-cells, a set of points denoted by |Ck| and called the locus
of Ck , or the set of points covered by Ck .

Clearly, |Ck
1 + Ck

2 | ⊂ |Ck
1 | ∪ |Ck

2 | in all cases, and |Ck
1 + Ck

2 | = |Ck
1 | ∪ |Ck

2 | if
and only if the Ck

1 and Ck
2 have no common k-cells. Note that whereas |C2|−1

is an open set, |(C2)−1| is a closed set, and in fact |(C2)−1| = |C2|−1.
A k-chain Ck is, by definition, connected if its locus |Ck| is connected. The

maximal connected k-chains contained in any k-chain Ck are called the compo-
nents of Ck . They have as loci the components of |Ck|.

Theorem 5.9.4. [110, V.3.1] If Kk is a component of Ck , ∂Kk is the part of ∂Ck

in Kk (k > 0).

Theorem 5.9.5. If x and y form the boundary of a 1-chain C1, they are connected
in |C1|.
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Proof: If this were not so, the component of C1 containing x would have, by
Theorem 5.9.4, the single vertex x as its boundary. This is contrary to Theo-
rem 5.9.3. Q.E.D.

Theorem 5.9.6. [110, V.3.3] For any C2, ∂|C2| = |∂C2|.

It follows from Theorem 5.9.6 that �2 and 0 are the only 2-cycles. Hence, if ∂C2

is connected then so is C2, because either C2 = �2 or else every component of
C2 contains a non-null component of ∂C2. On the other hand, if C2 is connected,
it does not necessarily mean ∂C2 is connected.

It is sometimes necessary to pass from one grating, G, to another, G∗, by
introducing additional lines. Such a new grating G∗ is called a refinement of
the old. (It is convenient to agree that G is a refinement of itself.) A common
refinement can be formed for any two gratings G1 and G2, by taking all the lines
of G1 and G2 as cross lines.

To each k-chain, Ck on G corresponds to the subdivided k-chain Ck∗ on G∗;
Ck∗ is the sum of the k-chains into which the k-chain Ck are subdivided. (0-chains
are unaltered by subdivision: C0∗ = C0.) A subdivided chain has the same locus
as its original: |Ck∗| = |Ck|.

Theorem 5.9.7. [110, V.4.1]

(Ck
1 + Ck

2 )∗ = Ck
1∗ + Ck

2∗, (∂Ck)∗ = ∂(Ck
∗)

Corollary 5.9.1. Ck∗ is a k-cycle if and only if Ck is a k-cycle.

Separation Theorems. Let E be an open set of T 1, and let �k be a k-cycle on
a grating G defined in E. We say the cycle �k bounds in E, denoted as �k ∼ 0, if
there is, on some refinement G∗ of G, a (k + 1)-chain Ck+1 such that |Ck+1| ⊆ E

and ∂Ck+1 = �k on G∗. We say �k is nonbounding in E if |�k| ⊆ E but �k does
not bound in E. The notion of bounding can be used to study the connectivity of
a subset of T 1: A simple closed curve (a 1-cycle) bounds if it separates a subset
from the rest of the space; if two vertices (a 0-cycle) in G do not bound in E,
then E is not connected.

By Jordan Curve Theorem [110, V.10.2], a simple closed curve always bounds
in a plane (a sphere). The following statement indicates this is not necessarily
true in a torus.

Theorem 5.9.8. Every 1-cycle on a rectangular grating in T 1 is the boundary of
either none 2-chain or just two 2-chains.

Proof: The proof is by induction on the number of lines drawn across the unit
square that represents T 1. On the grating consisting of a and b alone, the only
1-cycles are (a) the null sets, which bound two 2-chains (the zero chain and �2),
and (b) the cycles a, b, and a + b, each of which does not bound (i.e, does not
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separate a region from T 1) because there is only one rectangle in the grating,
which is � and ∂� = 0.

Assume the given grating, G1, is formed from a grating G0, for which the
theorem holds true, by the addition of a line λ across the square; assume λ is
parallel to a. Let �1 be the given 1-cycle on G1. We denote by C2 the sum of
the 2-cells of G1 whose lower edges lie in the line λ and belong to �1. The
1-cycle �1 + ∂C2 therefore contains no edge in λ. It follows that this 1-cycle
is the subdivided form of a 1-cycle �1

0 on G0, because �1 + ∂C2 contains no
horizontal edge at a vertex x of λ and therefore, since it is a cycle, contains both
or neither of the vertical edges at x, which together make up an edge of G0.

By hypothesis, if F 1
0 bounds, then there is a 2-chain C2

0 on G0 such that
�1

0 = ∂C2
0 ; and, if C2

1 is the subdivided form of C2
0 on G1, then ∂C2

1 = �1 + ∂C2.
Hence by Theorem 5.9.2

∂(C2
1 + C2

2 ) = (�1 + ∂C2) + ∂C2 = �1

The 2-chain (C2
1 + C2)−1 also has boundary �1.

For every 1-cycle �1
0 in G0 there is a 1-cycle �1

1 in G1, which is the subdivided
form, or a refinement, of �1

0. Therefore, by Corollary 5.9.1, if every 1-cycle in
G1 bounds, so will every 1-cycle in G0, which is impossible.

It has thus been shown that �1 bounds none or two 2-chains. No 1-cycle
bounds more than two 2-chains. For if ∂C2

a = ∂C2
b , then ∂(C2

a + C2
b ) = 0 and

therefore C2
a + C2

b is 0 or �, i.e. C2
b = C2

a or (C2
a )

−1. Q.E.D.

Theorem 5.9.9. [110, V.6.4] If 1-cycles �1
1 and �1

2 bound in T 1, and x and y do
not lie on |�1

1| or |�1
2 |, at least one of the 1-cycles �1

1 , �1
2 , �1

1 + �1
2 bounds in

T 1 − (x ∪ y).

Theorem 5.9.10. [110, V.9.1.2] Let F1 and F2 be closed sets in T 1. If the points
x and y bound the 1-chain ki not meeting Fi (for i = 1, 2) and if k1 + k2 ∼ 0 in
T 1 − F1F2, then x and y are not separated by F1 ∪ F2.

Theorem 5.9.11. [110, V.10.1] A simple arc in T 1 has a single complementary
region.

For a region D in T 1, a simple arc L, with one endpoint on ∂D and all its other
points in D, is called an end-cut. If both endpoints are on ∂D and the rest in
D, the arc is a cross-cut.

Theorem 5.9.12. Given a region D of T 1, a cross-cut L can be drawn in D such
that both endpoints of L in D are on the same component of ∂D, (D-L) has two
components, and L is contained in the boundary of both.

Proof: First we prove that for any cross-cut L in D, (D − L) has at most two
components. Let u and v be the two endpoints of L. Suppose x, y, z are points
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of three different regions of D − L. By Theorem 5.9.11, there exists a 1-chain
k1 bounded by x and y, such that k1 does not meet L; and by hypothesis, there
exists a 1-chain k2 bounded by x and y, such that k1 does not meet D−1, the
complement of D in T 1. Since x and y are separated by L ∪ D−1, it follows
from Theorem 5.9.10 that k1 + k2 is nonbounding in (LD−1)−1, that is, in T 1 −
(u ∪ v).

Similarly, (y) + (z) is the common boundary of two 1-chains k3 and k4 that do
not meet L and D−1 respectively, and k3 + k4 is nonbounding in T 1 − (u ∪ v).
Therefore, by Theorem 5.9.9,

(k1 + k2) + (k3 + k4) ∼ 0 in T 1 − (u ∪ v) (5.9)

The 1-chain k1 + k3 does not meet L and is bounded by (x + y) + (y + z)—that
is, by x and z. Similarly, k2 + k4 does not meet D−1 and is bounded by x and
z. The sum

(k1 + k3) + (k2 + k4)

is identical to (5.9) and therefore bounds in (LD−1)−1. Hence, x and z are not
bounded by L ∪ D−1, contrary to the hypothesis.

Now we show that a cross-cut L can be drawn in D such that (D − L) has
at least two components. Consider one component, F , of ∂D and assume that
it contains at least two points, u and v. Define a grating G on T 1 such that no
2-cells meet more than one component of D or D−1 (Theorem 5.9.1), and that
both u and v are vertices of G. Let K be the set of 2-cells in G that meet F .
Then, ∂K bounds at least two regions; one contains F and the others do not.
Let κ1 be 1-chain such that |κ1| = |∂K| ∩ D and let κ2 be 1-chain such that
|κ2| = |∂K| ∩ D−1. Clearly, |κ1| and |κ2| are disjoint. Thus, D − |κ1| separates
D into at least two components. Since u ∈ F is a vertex in G, one of the four
1-cells adjacent to u must have its other vertex in κ1. Denote the 1-cell that
connects u and κ1 by C1

1 , denote the 1-cell that connects v and κ1 by C1
2 , and let

L be the locus of any 1-chain in C1
1 + C1

2 + κ1 bounded by u and v. (D − L)

has at least two components. Q.E.D.

A point of ∂D is accessible from D if it is an endpoint of an end-cut in D.

Theorem 5.9.13. [110, VI.14.4] If D is locally connected at u, a point of ∂D,
then u is accessible from D.

If u is an accessible point of ∂D and v a point of D, then there is an end-cut in D

joining u and v. If Lu is an end-cut in D joining u and x, and Lv a segment arc
joining x and v in D, let y be the first point of Lu, counting from u, that lies in Lv .
Then, the arc segments uy of Lu and yv of Lb together form the required end-cut.
Similarly, if u and v are accessible points of ∂D, there is a cross-cut uv in D.

We are now ready to prove Theorem 5.8.4.
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Proof of Theorem 5.8.4. The proof is analogous to that of Ref. 110, VI.16.2.
Let F be a component of ∂D. Suppose F contains at least two points, u and v.
Since D is uniformly locally connected, u and v are accessible (Theorem 5.9.13)
and can be joined by a cross-cut, L, such that (D − L) determines two regions,
D1 and D2, in D (Theorem 5.9.12). No points of F except u and v can belong
to the boundary of both of these regions, because if w were such a point, any
arc in D joining two points x and y of D1 and D2 within 1

2ρ(w, L) of w would
necessarily meet L and would therefore have diameter at least 1

2ρ(w, L). The
region would not be locally connected at w. Thus, the sets

Ei = (F ∩ Di) − (u ∪ v), i = 1, 2

have no common points. Their union is (F − (u ∪ v)), and since

Ei = (F − (u ∪ v)) ∩ Di

they are closed in (F − (u ∪ v)). Thus, (F − (u ∪ v)) is not connected because
it has partition E1|E2, so F is a continuum whose connectivity is destroyed
by the removal of any two points. F is therefore a simple closed curve.
Q.E.D.

5.10 EXERCISES

1. Consider a planar RR (revolute–revolute) arm manipulator (see Figure 5.E.1).
The arm’s links l1 and l2 are line segments of the same length l. There is an

J1

Jo

l2

l1

l/4

O l /4

Figure 5.E.1



268 MOTION PLANNING FOR TWO-DIMENSIONAL ARM MANIPULATORS

obstacle O that lies fully in the arm workspace, as shown. Obstacle O is a
square with the side length l/4.
Recall that the method of motion planning with complete information (Piano
Mover’s model) [13] requires one to first approximate the configuration space
(C-space) image of obstacle O by a polygon. Call the obstacle in C-space
OC and call the approximating polygon PC . Let δ be the maximum linear
deviation of PC from OC . Evaluate the minimum order (the number of sides)
of the polygon PC that will keep δ within 1% of the perimeter of PC .

2. Consider a two-link planar robot arm with revolute joints, as shown in
Figure 5.E.2. Joint values θ1 and θ2 of the joints J0 and J1 can change within
the range (0, 2π), with no mechanical stops. The arm has a sensing capabil-
ity spread uniformly along its body so that any point of its body can sense
surrounding objects within the distance rv , called the arm’s radius of vision.
The relevant dimensions are: l1 = 30, l2 = 20, R = 2, rv = 3.
Develop general equations necessary to compute the boundary of the robot’s
sensing field (or fields if applicable) in the corresponding configuration space
(C-space), as a function of the joint angles θ1 and θ2. The resulting boundary
will consist of pieces of straight lines and curves. If you use any simplifications
or approximations, acknowledge and justify them.

R

rv

J1

Jo

a

b

Θ2

Θ1

l1

l2

Figure 5.E.2

Draw the C-space as a flattened torus—that is, a square in the plane (θ1, θ2),
with the coordinates of its corners, respectively, (0, 0), (0, 2π), (2π, 2π),
(2π, 0). For the six positions of the arm characterized by the six pairs (θ1, θ2)
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below, show in this plane the outline of the sensing field(s) for each point.
The points (θ1, θ2) to check are, respectively:

(90◦
, 0◦

), (90◦
, 45◦

), (90◦
, 90◦

), (30◦
, 150◦

), (30◦
, 135◦

), (30◦
, 90◦

)

3. Come up with an example of sensor-based motion planning for the pris-
matic–prismatic (PP) arm manipulator algorithm (Section 5.4). The scene in
the example shall feature nonconvex shapes of the arm link l2 and of obstacles
in the workspace. Compare the results with the example in Figure 5.23.

4. Modify the sensor-based motion planning algorithm for the PP arm
(Section 5.4), so as to incorporate in it a possibility of the rear end of link
l2 to collide with obstacles. Connect this modification with the test for tar-
get reachability, and show that the modified algorithm converges. Provide an
example where the arm goes through a local cycle.





CHAPTER 6

Motion Planning for Three-Dimensional
Arm Manipulators

The robot is going to lose. Not by much. But when the final score is tallied, flesh
and blood is going to beat the damn monster.

—Adam Smith, philosopher and economist, 1723–1790

6.1 INTRODUCTION

We are continuing developing SIM (Sensing–Intelligence–Motion) algorithms
for robot arm manipulators. The cases considered in Chapter 5 all deal with
arm manipulators whose end effectors (hands) move along a two-dimensional
(2D) surface. Although applications do exist that can make use of those algo-
rithms—for example, assembly of microelectronics on a printed circuit board is
largely limited to a 2D operation—most robot arm manipulators live and work
in three-dimensional (3D) space. From this standpoint, our primary objective
in Chapter 5 should be seen as preparing the necessary theoretical background
and elucidating the relevant issues, before proceeding to the 3D case. Sensor-
based motion planning algorithms should be able to handle 3D space and 3D
arm manipulators. Developing such strategies is the objective of this chapter. As
before, the arm manipulators that we consider are simple open kinematic chains.

Is there a fundamental difference between motion planning for two-dimensional
(2D) and 3D arm manipulators? The short answer is yes, but the question is not
that simple. Recall a similar discussion about mobile robots in Chapter 3. From the
standpoint of motion planning, mobile robots differ from arm manipulators: They
have more or less compact bodies, kinematics plays no decisive role in their motion
planning, and their workspace is much larger compared to their dimensions. For
mobile robots the difference between the 2D and 3D cases is absolute and dramatic:
Unequivocally, if the 2D case has a definite and finite solution to the planning
problem, the 3D case has no finite solution in general.

The argument goes as follows. Imagine a bug moving in the two-dimensional
plane, and imagine that on its way the bug encounters an object (an obstacle).

Sensing, Intelligence, Motion, by Vladimir J. Lumelsky
Copyright  2006 John Wiley & Sons, Inc.
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Assume the bug’s target location is somewhere on the other side of the obstacle.
One way for it to continue its motion is to first pass around the obstacle. The bug
has only two options: It can pass the obstacle from the left or it can pass it from the
right, clockwise or counterclockwise. If neither option leads to success—let us
assume it is a smart bug, with a reasonably good motion planning skills—the goal
is not achievable. In this case, by slightly exaggerating the bug’s stubbornness,
we will note that eventually the bug will come back to the point on the obstacle
where it started. It took only one simple going around, all in one direction, to
explore the whole obstacle. That is the essence of the 2D case.

Imagine now a fly that is flying around a room—that is, in 3D space. Imagine
that on its way the fly encounters a (3D) obstacle—say, a child’s balloon hanging
on a string. Now there is an infinite number of routes the fly can take to pass
around the obstacle. The fly would need to make a great many loops around the
obstacle in order to explore it completely. That’s the fundamental difficulty of the
3D case; in theory it takes an infinitely long path to explore the whole obstacle,
even if its dimensions and volume are finite and modest.1 The point is that while
in the 2D case a mobile robot has a theoretically guaranteed finite solution, no
such solution can be guaranteed for a 3D mobile robot. The 3D sensor-based
motion planning problem is in general intractable.

The situation is more complex, but also not as hopeless, for 3D arm manip-
ulators. Try this little experiment. Fix your shoulder and try to move your hand
around a long vertical pole. Unlike a fly that can make as many circles around
the pole as it wishes, your hand will make about one circle around the pole
and stop. What holds it from continuing moving in the same direction is the
arm’s kinematics and also the fact that the arm’s base is “nailed down.” The
length of your arm links is finite, the links themselves are rigid, and the joints
that connect the links allow only so much motion. These are natural constraints
on your arm movement. The same is so for robot arm manipulators. In other
words, the kinematic constraints of an arm manipulator impose strong limitations
on its motion.

This fact makes the problem of sensor-based motion planning for 3D arm
manipulators manageable. The hope is that the arm kinematics can be effectively
exploited to make the problem tractable. Furthermore, those same constraints
promise a constructive test of target reachability, similar to those we designed
above for mobile robots and 2D arm manipulators.

As noted by Brooks [102], the motion planning problem for a manipulator with
revolute joints is inherently difficult because (a) the problem is nondecomposable,
(b) there may be difficulties associated with rotations, (c) the space representation
and hence the time execution of the algorithm are exponential in the number of
robot’s degrees of freedom of the objects involved, and (d) humans are especially
poor at the task when much reorientation is needed, which makes it difficult to

1One may argue that the fly can use its vision to space its loops far enough from each other, making
the whole exercise quite doable. This may be true, but not so in general: The room may be dark, or
the obstacle may be terribly wrinkled, with caves and overhangs and other hooks and crannies so
that the fly’s vision will be of little help.
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develop efficient heuristics. This is all true, and indeed more true for arms with
revolute joints—but these difficulties have been formulated for the motion plan-
ning problem with complete in formation. Notice that these difficulties above did
not prevent us from designing rather elegant sensor-based planning algorithms
for 2D arms with revolute joints, even in the workspace with arbitrarily complex
obstacles. The question now is how far we can go with the 3D case.

It was said before that this is a difficult area of motion control and algorithm
design. As we will see in Chapter 7, human intuition is of little help in designing
reasonable heuristics and even in assessing proposed algorithms. Doing research
requires expertise from different areas, from topology to sensing technology.
There are still many unclear issues. Much of the exciting research is still waiting
to be done. Jumping to the end of this chapter, today there are still no provable
algorithms for the 3D kinematics with solely revolute joints. While this type of
kinematics is just one mechanism among others in today’s robotics, it certainly
rules the nature.

As outlined in Section 5.1.1, we use the notion of a separable arm [103],
which is an arm naturally divided into the major linkage responsible for the
arm’s position planning (or gross motion), and the minor linkage (the hand)
responsible for the orientation planning of the arm’s end effector. As a rule,
existing arm manipulators are separable. Owing to the fact that three degrees of
freedom (DOF) is the minimum necessary for reaching an arbitrary point in 3D
space, and another three DOF are needed to provide an arbitrary orientation for
the tool—six DOF in total as a minimum—many 3D arm manipulators’ major
linkages include three links and three joints, and so do typical robot hands. Our
motion planning algorithms operate on the major linkage—that is, on handling
gross motion and making sure that the hand is brought into the vicinity of the
target position. The remaining “fine tuning” for orientation is usually a simpler
task and is assumed to be done outside of the planning algorithm. For all but
very few unusual applications, this is a plausible assumption.

While studying topological characteristics of the robot configuration space
for a few 3D kinematics types, we will show that obstacle images in these
configuration spaces exhibit a distinct property that we call space monotonicity :
For any point on the surface of the obstacle image, there exists a direction
along which all the remaining points of the configuration space belong to the
obstacle. Furthermore, the sequential connection of the arm links results in the
property called space anisotropy of the configuration space, whereby the obstacle
monotonicity presents itself differently along different space axes.

The space monotonicity property provides a basis for selecting directions of
arm motion that are more promising than others for reaching the target posi-
tion. By exploiting the properties of space monotonicity and anisotropy, we will
produce motion planning algorithms with proven convergence. No explicit or
implicit beforehand calculations of the workspace or configuration space will be
ever needed. All the necessary calculations will be carried out in real time in the
arm workspace, based on its sensing information. No exhaustive search will ever
take place.
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As before with 2D arms, motion planning algorithms that we will design for
3D arms will depend heavily on the underlying arm kinematics. Each kinematics
type will require its own algorithm. The extent of algorithm specialization due to
arm kinematics will be even more pronounced in the 3D case than in the 2D case.
Let us emphasize again that this is not a problem of depth of algorithmic research
but is instead a fundamental constraint in the relationship between kinematics and
motion. The same is true, of course, in nature: The way a four-legged cat walks is
very different from the way a two-legged human walks. Among four-legged, the
gaits of cats and turtles differ markedly. One factor here is the optimization pro-
cess carried out by the evolution. Even if a “one fits all” motion control procedure
is feasible, it will likely be cumbersome and inefficient compared to algorithms
that exploit specific kinematic peculiarities. We observed this in the 2D case
(Section 5.8.4): While we found a way to use the same sensor-based motion
planning algorithm for different kinematics types, we also noted the price in
inefficiency that this universality carried. Here we will attempt both approaches.

This is not to say that the general approach to motion planning will be changing
from one arm to another; as we have already seen, the overall SIM approach is
remarkably the same independent of the robot kinematics, from a sturdy mobile
robot to a long-limbed arm manipulator.

As before, let letters P and R refer to prismatic and revolute joints, respec-
tively. We will also use the letter X to represent either a P or a R joint,
X = [P,R]. A three-joint robot arm manipulator (or the major linkage of an
arm), XXX, can therefore be one of eight basic kinematic linkages: PPP, RPP,
PRP, RRP, PPR, RPR, PRR, and RRR. As noted in Ref. 111, each basic linkage
can be implemented with different geometries, which produces 36 linkages with
joint axes that are either perpendicular or parallel to one another. Among these,
nine degenerate into linkages with only one or two DOF; seven are planar. By
also eliminating equivalent linkages, the remaining 20 possible spatial linkages
are further reduced to 12, some of which are of only theoretical interest.

The above sequence XXX is written in such an order that the first four linkages
in it are XXP arms; in each of them the outermost joint is a P joint. Those four
are among the five major 3D linkages (see Figure 6.1) that are commonly seen
in industry [111–113] and that together cover practically all today’s commercial
and special-purpose robot arm manipulators. It turns out that these four XXP
arms are better amenable to sensor-based motion planning than the fifth one
(Figure 6.1e) and than the remaining four arms in the XXX sequence. It is XXP
arms that will be studied in this chapter.

While formally these four linkages—PPP, RPP, PRP, and RRP—cover a half
of the full group XXX, they represent four out of five, or 80%, of the linkages
in Figure 6.1. Many, though not all, robot arm applications are based on XXP
major linkages. Welding, assembly, and pick-and-place robot arms are especially
common in this group, one reason being that a prismatic joint makes it easy to
produce a straight-line motion and to expand the operating space. The so-called
SCARA arm (Selective Compliance Assembly Robot Arm), whose major linkage
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(a)

(b)

(c)

(e)

(d)

Figure 6.1 Five commonly used 3D robot arm linkages: (a) RRP, “polar coordinates”
arm, with a spherical workspace; (b) PRP, “cylindrical coordinates” arm, with a cylindrical
workspace; (c) PPP, Cartesian arm, with a “cubicle” workspace; (d) RRP, SCARA-
type arm, with a cylindrical workspace; and (e) RRR, “articulate” arm, with a spherical
workspace.

is, in our notation, an RRP arm, is especially popular among assembly oriented
industrial arm manipulators.

Recall our showing in Chapter 5 that RR, the arm with two revolute joints, is
the most general among XX arms, X = [P,R]. We will similarly show that the
arm RRP is the most general case among XXP arms. The algorithm that works
for the RRP arm will work for other XXP arms.

While arm configurations shown in Figure 6.1 have nice straight-line links
that are mutually perpendicular or parallel, our SIM approach does not require
such properties unless specified explicitly.
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We will first analyze the PPP arm (Section 6.2), an arm with three slid-
ing (prismatic) joints (it is often called the Cartesian arm), and will develop a
sensor-based motion planning strategy for it. Similar to the 2D Cartesian arm,
the SIM algorithm for a 3D Cartesian arm turns out to be the easiest to visu-
alize and to design. After mastering in this case the issues of 3D algorithmic
machinery, in Section 6.3 we will turn our attention to the general case of an
XXP linkage. Similar to the material in Section 5.8, some theory developed in
Section 6.2.4 and Sections 6.3 to 6.3.6 is somewhat more complex than most of
other sections.

As before, we assume that the arm manipulator has enough sensing to sense
nearby obstacles at any point of its body. A good model of such sensing mech-
anism is a sensitive skin that covers the whole arm body, similar to the skin on
the human body. Any other sensing mechanism will do as long as it guarantees
not missing potential obstacles. Similar to the algorithm development for the 2D
case, we will assume tactile sensing: As was shown in prior chapters, the algo-
rithmic clarity that this assumption brings is helpful in the algorithm design. We
have seen in Sections 3.6 and 5.2.5 that extending motion planning algorithms
to more information-rich sensing is usually relatively straightforward. Regarding
the issues of practical realization of such sensing, see Chapter 8.

6.2 THE CASE OF THE PPP (CARTESIAN) ARM

The model, definitions, and terminology that we will need are introduced in
Section 6.2.1. The general idea of the motion planning approach is tackled in
Section 6.2.2. Relevant analysis appears in Sections 6.2.3 and 6.2.4. We formu-
late, in particular, an important necessary and sufficient condition that ties the
question of existence of paths in the 3D space of this arm to existence of paths
in the projection 2D space (Theorem 6.2.1). This condition helps to lay a foun-
dation for “growing” 3D path planning algorithms from their 2D counterparts.
The corresponding existential connection between 3D and 2D algorithms is for-
mulated in Theorem 6.2.2. The resulting path planning algorithm is formulated
in Section 6.2.5, and examples of its performance appear in Section 6.2.6.

6.2.1 Model, Definitions, and Terminology

For the sake of completeness, some of the material in this section may repeat the
material from other chapters.

Robot Arm. The robot arm is an open kinematic chain consisting of three links,
l1, l2, and l3, and three joints, J1, J2, and J3, of prismatic (sliding) type [8]. Joint
axes are mutually perpendicular (Figure 6.2). For convenience, the arm endpoint
P coincides with the upper end of link l3. Point Ji , i = 1, 2, 3, also denotes the
center point of joint Ji , defined as the intersection point between the axes of link
li and its predecessor. Joint J1 is attached to the robot base O and is the origin
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Figure 6.2 The work space of a 3D Cartesian arm: l1, l2, and l3 are links; J1, J2, and
J3 are prismatic joints; P is the arm endpoint. Each link has the front and rear end; for
example, J3 is the front end of link l2. O1, O2, and O3 are three physical obstacles. Also
shown in the plane (l1, l2) are obstacles’ projections. The cube abcodefg indicates the
volume whose any point can be reached by the arm endpoint.

of the fixed reference system. Value li also denotes the joint variable for link li ;
it changes in the range li = [li min, li max]. Assume for simplicity zero minimum
values for all li , li = [0, li max]; all li max are in general different.

Each link presents a generalized cylinder (briefly, a cylinder)—that is, a rigid
body characterized by a straight-line axis coinciding with the corresponding joint
axis, such that the link’s cross section in the plane perpendicular to the axis does
not change along the axis. A cross section of link li presents a simple closed
curve; it may be, for example, a circle (then, the link is a common cylinder), a
rectangle (as in Figure 6.2), an oval, or even a nonconvex curve. The link cross
section may differ from link to link.2

The front ends of links l1 and l2 coincide with joints J2 and J3, respectively;
the front end of link l3 coincides with the arm endpoint P (Figure 6.2). The
opposite end of link li , i = 1, 2, 3, is its rear end. Similarly, the front (rear) part
of link li is the part of variable length between joint Ji and the front (rear) end
of the link. When joint Ji is in contact with an obstacle, the contact is considered
to be with link li−1.

2More precisely, we will see that only link l3 has to be a generalized cylinder to satisfy the motion
planning algorithm; links l1 and l2 can be of arbitrary shape.
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For the sensing mechanism, we assume that the robot arm is equipped with
a kind of “sensitive skin” that covers the surfaces of arm links and allows any
point of the arm surface to detect a contact with an approaching obstacle. Other
sensing mechanisms are equally acceptable as long as they provide information
about potential obstacles at every point of the robot body. Depending on the
nature of the sensor system, the contact can be either physical—as is the case
with tactile sensors—or proximal. As said above, solely for presentation purposes
we assume that the arm sensory system is based on tactile sensing.3

The Task. Given the start and target positions, S and T , with coordinates
S = (l1 S, l2 S, l3 S) and T = (l1 T , l2 T , l3 T ), respectively, the robot is required
to generate a continuous collision-free path from S to T if one exists. This may
require the arm to maneuver around obstacles. The act of maneuvering around
an obstacle refers to a motion during which the arm is in constant contact with
the obstacle. Position T may or may not be reachable from S; in the latter case
the arm is expected to make this conclusion in finite time. We assume that the
arm knows its own position in space and those of positions S and T at all times.

Environment and Obstacles. The 3D volume in which the arm operates is the
robot environment. The environment may include a finite number of obstacles.
Obstacle positions are fixed. Each obstacle is a 3D rigid body whose volume and
outer surface are finite, such that any straight line may have only a finite number
of intersections with obstacles in the workspace. Otherwise obstacles can be of
arbitrary shape. At any position of the arm, at least some motion is possible. To
avoid degeneracies, the special case where a link can barely squeeze between
two obstacles is treated as follows: We assume that the clearance between the
obstacles is either too small for the link to squeeze in between, or wide enough
so that the link can cling to one obstacle, thus forming a clearance with the
other obstacle. The number, locations, and geometry of obstacles in the robot
environment are not known.

W-Space and W-Obstacles. The robot workspace (W-space or W) presents
a subset of Cartesian space in which the robot arm operates. It includes the
effective workspace, any point of which can be reached by the arm end effector
(Figure 6.3a), and the outside volumes in which the rear ends of the links may
also encounter obstacles and hence also need to be protected by the planning
algorithm (Figure 6.3b). Therefore, W is the volume occupied by the robot arm
when its joints take all possible values l = (l1, l2, l3), li = [0, li max], i = 1, 2, 3.
Denote the following:

• vi is the set of points reachable by point Ji , i = 1, 2, 3;
• Vi is the set of points (the volume) reachable by any point of link li . Hence,

3On adaptation of “tactile” motion planning algorithms to more complex sensing, see Sections 3.6
and 5.2.5.
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Figure 6.3 (a) The effective workspace of the 3D Cartesian arm—the volume that can
be reached by the arm endpoint—is limited by the cubicle abcodefg. (b) Since the rear
end of every link may also encounter obstacles, the workspace that has to be protected
by the planning algorithm is larger than the effective workspace, as shown.
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• v1 is a single point, O;
• v2 is a unit line segment, Oa;
• v3 is a unit square, Oabc;
• V1 is a cylinder whose (link) cross section is s1 and whose length is 2l1 max;
• V2 is a slab of length 2l2 max formed by all possible motions of the front and

rear ends of link l2 within the joint limits of l1 and l2;
• V3 is a “cubicle” of height 2l3 max formed by all possible motions of the

front and rear ends of link l3 within the joint limits of l1, l2, and l3.

The total volume VW of W -space is hence VW = V1 ∪ V2 ∪ V3. Out of this,
the set {l} = {l ∈ [0, lmax]}, where lmax = (l1 max, l2 max, l3 max), represents points
reachable by the arm end effector; {l} is a closed set.

An obstacle in W -space, called W-obstacle, presents a set of points, none of
which can be reached by any point of the robot body. This may include some
areas of W -space which are actually free of obstacles but still not reachable
by the arm because of interference with obstacles. Such areas are called the
shadows of the corresponding obstacles. A W -obstacle is thus the sum of volumes
of the corresponding physical obstacle and the shadows it produces. The word
“interference” refers here only to the cases where the arm can apply a force to
the obstacle at the point of contact. For example, if link l1 in Figure 6.2 happens
to be sliding along an obstacle (which is not so in this example), it cannot apply
any force onto the obstacle, the contact would not preclude the link from the
intended motion, and so it would not constitute an interference. W -obstacles that
correspond to the three physical obstacles—O1, O2, and O3 —of Figure 6.2 are
shown in Figure 6.4.

C-Space, C-Point, and C-Obstacle. The vector of joint variables l =
(l1, l2, l3) forms the robot configuration space (C-space or C). In C-space,
the arm is presented as a single point, called the C-point. The C-space of our
Cartesian arm presents a parallelepiped, or generalized cubicle, and the mapping
W → C is unique.4 For the example of Figure 6.2, the corresponding C-space is
shown in Figure 6.5. For brevity, we will refer to the sides of the C-space cubicle
as its floor (in Figure 6.2 this is the side Oabc), its ceiling (side edgf), and its
walls, the remaining four sides. C-obstacle is the mapping of a W -obstacle into
C. In the algorithm, the planning decisions will be based solely on the fact of con-
tact between the links and obstacles and will never require explicit computation
of positions or geometry of W -obstacles or C-obstacles.

M-Line, M-Plane, and V-Plane. As before, a desired path, called the main line
(M-line), is introduced as a simple curve connecting points S and T (start and
target) in W -space. The M-line presents the path that the arm end effector would

4In general, the mapping W → C is not unique. In some types of kinematics, such as arm manipulators
with revolute joints, a point in W may correspond to one, two, or even an infinite number of points
in C [107].
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Figure 6.4 The W -obstacles produced by obstacles shown in Figure 6.2 consist of the
parts of physical obstacles that intersect W -space plus their corresponding shadows.

follow if no obstacles interfered with the arm motion. Without loss of generality,
we assume here that the M-line is a straight-line segment. We will also need two
planes, M-plane and V-plane, that will be used in the motion planning algorithm
when maneuvering around obstacles (see Figures 6.7 and 6.9):

• M-plane is a plane that contains an M-line and the straight line perpendicular
to both the M-line and link l3 axis. M-plane is thus undetermined only if the
M-line is collinear with l3 axis. This special case will present no difficulty:
Here motion planning is trivial and amounts to changing only values l3;
hence we will disregard this case.

• V-plane contains the M-line and is parallel to link l3 axis.

For our Cartesian arm, the M-line, M-plane, and V-plane map in C-space into a
straight line and two planes, respectively.
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Figure 6.5 C-space and C-obstacles that correspond to W -space in Figures 6.2 and
6.4. Thicker dotted and solid lines show intersections between obstacles. Shown also are
projections of the three obstacles on the plane l1, l2.

Local Directions. Similar to other algorithms in previous chapters, a common
operation in the algorithm here will be the choice of a local direction for the
next turn (say, left or right). This will be needed when, while moving along a
curve, the C-point encounters a sort of T-intersection with another curve (which
is here the horizontal part of “T”). Let us define the vector of current motion p
and consider all possible cases.

1. The C-point moves along the M-line or along an intersection curve between
the M-plane and an obstacle and is about to leave M-plane at the cross-
point. Define the normal vector m of the M-plane [97]. Then the local
direction b is upward if b · m > 0 and downward if b · m ≤ 0.

2. The C-point moves along the M-line or along an intersection curve between
the V-plane and an obstacle, and it is about to leave V-plane at the cross-
point. Let �l3 be the vector of l3 axis. Then, local direction b is left if
b · (p × �l3) > 0 and right if b · (p × �l3) ≤ 0.
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3. In a special case of motion along the M-line, the directions are �ST =
forward and �T S = backward .

Consider the motion of a C-point in the M-plane. When, while moving along
the M-line, the C-point encounters an obstacle, it may define on it a hit point , H .
Here it has two choices for following the intersection curve between the M-plane
and the obstacle surface: Looking from S toward T , the direction of turn at H

is either left or right. We will see that sometimes the algorithm may replace the
current local direction by its opposite. When, while moving along the intersection
curve in the M-plane, the C-point encounters the M-line again at a certain point,
it defines here the leave point , L. Similarly, when the C-point moves along a
V-plane, the local directions are defined as “upward” and “downward,” where
“upward” is associated with the positive and “downward”—with the negative
direction of l3 axis.

6.2.2 The Approach

Similar to other cases of sensor-based motion planning considered so far, con-
ceptually we will treat the problem at hand as one of moving a point automaton
in the corresponding C-space. (This does not mean at all, as we will see, that C-
space needs to be computed explicitly.) Essential in this process will be sensing
information about interaction between the arm and obstacles, if any. This infor-
mation—namely, what link and what part (front or rear) of the link is currently
in contact with an obstacle—is obviously available only in the workspace.

Our motion planning algorithm exploits some special topological character-
istics of obstacles in C-space that are a function of the arm kinematics. Note
that because links l1, l2, and l3 are connected sequentially, the actual number of
degrees of freedom available to them vary from link to link. For example, link l1
has only one degree of freedom: If it encounters an obstacle at some value l′1, it
simply cannot proceed any further. This means that the corresponding C-obstacle
occupies all the volume of C-space that lies between the value l′1 and one of the
joint limits of joint J1. This C-obstacle thus has a simple structure: It allows
the algorithm to make motion planning decisions based on the simple fact of a
local contact and without resorting to any global information about the obstacle
in question.

A similar analysis will show that C-obstacles formed by interaction between
link l2 and obstacles always extend in C-space in the direction of one semi-axis
of link l2 and both semi-axes of link l3; it will also show that C-obstacles formed
by interaction between link l3 and obstacles present generalized cylindrical holes
in C-space whose axes are parallel to the axis l3. No such holes can appear, for
example, along the axes l1 or l2. In other words, C-space exhibits an anisotropy
property; some of its characteristics vary from one direction to the other. Further-
more, C-space possesses a certain property of monotonicity (see below), whose
effect is that, no matter what the geometry of physical obstacles in W -space, no
holes or cavities can appear in a C-obstacle.
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From the standpoint of motion planning, the importance of these facts is in
that the local information from the arm’s contacts with obstacles allow one to
infer some global characteristics of the corresponding C-obstacle that help avoid
directions of motion leading to dead ends and thus avoid an exhaustive search.

Whereas the resulting path planning algorithm is used in the workspace, with-
out computations of C-space, it can be conveniently sketched in terms of C-space,
as follows. If the C-point meets no obstacles on its way, it will move along the
M-line, and with no complications the robot will happily arrive at the target
position T . If the C-point does encounter an obstacle, it will start moving along
the intersection curve between the obstacle and one of the planes, M-plane or
V-plane. The on-line computation of points along the intersection curve is easy:
It uses the plane’s equation and local information from the arm sensors.

If during this motion the C-point meets the M-line again at a point that satisfies
some additional condition, it will resume its motion along the M-line. Otherwise,
the C-point may arrive at an intersection between two obstacles, a position that
corresponds to two links or both front and rear parts of the same link contacting
obstacles. Here the C-point can choose either to move along the intersection
curve between the plane and one of the obstacles, or move along the intersection
curve between the two obstacles. The latter intersection curve may lead the C-
point to a wall, a position that corresponds to one or more joint limits. In this
case, depending on the information accumulated so far, the C-point will conclude
(correctly) either that the target is not reachable or that the direction it had chosen
to follow the intersection curve would lead to a dead end, in which case it will
take a corrective action.

At any moment of the arm motion, the path of the C-point will be constrained
to one of three types of curves, thus reducing the problem of three-dimensional
motion planning to the much simpler linear planning:

• The M-line
• An intersection curve between a specially chosen plane and the surface of

a C-obstacle
• An intersection curve between the surfaces of two C-obstacles

To ensure convergence, we will have to show that a finite combination of such
path segments is sufficient for reaching the target position or concluding that the
target cannot be reached. The resulting path presents a three-dimensional curve
in C-space. No attempt will be made to reconstruct the whole or part of the space
before or during the motion.

Since the path planning procedure is claimed to converge in finite time, this
means that never, not even in the worst case, will the generated path amount to
an exhaustive search.

An integral part of the algorithm is the basic procedure from the Bug family
that we considered in Section 3.3 for two-dimensional motion planning for a
point automaton. We will use, in particular, the Bug2 procedure, but any other
convergent procedure can be used as well.
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6.2.3 Topology of W-Obstacles and C-Obstacles

Monotonicity Property. Obstacles that intersect the W -space volume may
interact with the arm during its motion. As mentioned above, one result of such
interaction is the formation of obstacle shadows. Consider the spherical obsta-
cle O1 in Figure 6.2. Clearly, no points directly above O1 can be reached by
any point of the arm body. Similarly, no point of W -space below the obstacle
O2 or to the left of the cubical obstacle O3 can be reached. Subsequently, the
corresponding W -obstacles become as shown in Figure 6.4, and their C-space
representation becomes as in Figure 6.5. This effect, studied in detail below, is
caused by the constraints imposed by the arm kinematics on its interaction with
obstacles. Anisotropic characteristics of W -space and C-space present themselves
in a special topology of W - and C-obstacles best described by the notion of the
(W - and C-) obstacle monotonicity :

Obstacle Monotonicity. In all cases of the arm interference with an obstacle,
there is at least one direction corresponding to one of the axes li , i = 1, 2, 3,
such that if a value l′i of link li cannot be reached due to the interference with
an obstacle, then no value l′′i > l′i in case of contact with the link front part, or,
inversely, l′′i < l′i in case of contact with the link rear part, can be reached either.

In what follows, most of the analysis of obstacle characteristics is done in
terms of C-space, although it applies to W -space as well. Comparing Figures 6.2
and 6.5, note that although physical obstacles occupy a relatively little part of
the arm’s workspace, their interference with the arm motion can reduce, often
dramatically, the volume of points reachable by the arm end effector. The kine-
matic constraints are due to the arm joints, acting differently for different joint
types, and to the fact that arm links are connected in series. As a result, the
arm effectively has only one degree of freedom for control of motion of link l1,
two degrees of freedom for control of link l2, and three degrees of freedom for
control of link l3. A simple example was mentioned above on how this can affect
path planning: If during the arm motion along M-line the link l1 hits an obstacle,
then, clearly, the task cannot be accomplished.

The monotonicity property implies that C-obstacles, though not necessarily
convex, have a very simple structure. This special topology of W - and C-
obstacles will be factored into the algorithm; it allows us, based on a given
local information about the arm interaction with the obstacle, to predict impor-
tant properties of the (otherwise unknown) obstacle beyond the contact point.
The monotonicity property can be expressed in terms more amenable to the path
planning problem, as follows:

Corollary 6.2.1. No holes or cavities are possible in a C-obstacle.

W -obstacle monotonicity affects differently different links and even differ-
ent parts—front or rear—of the same link. This brings about more specialized
notions of li-front and li-rear monotonicity for every link, i = 1, 2, 3 (see more
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below). By treating links’ interaction with obstacles individually and by making
use of the information on what specific part—front or rear—of a given link is
currently in contact with obstacles, the path planning algorithm takes advantage
of the obstacle monotonicity property. Because this information is not available
in C-space, the following holds:

Information Loss due to Space Transition. Information is lost in the space tran-
sition W → C. Since some of this information—namely, the location of contact
points between the robot arm and obstacles—is essential for the sensor-based
planning algorithm, from time to time the algorithm may need to utilize some
information specific to W -space only.

We will now consider some elemental planar interactions of arm links with
obstacles, and we will show that if a path from start to target does exist, then a
combination of elemental motions can produce such a path. Define the following:

• Type I obstacle corresponds to a W - or C-obstacle that results from the
interaction of link l1 with a physical obstacle.

• Type II obstacle corresponds to a W - or C-obstacle that results from the
interaction of link l2 with a physical obstacle.

• Type III obstacle corresponds to a W - or C-obstacle that results from the
interaction of link l3 with a physical obstacle.

We will use subscripts “+” and “−” to further distinguish between obstacles that
interact with the front and rear part of a link, respectively. For example, a Type
III+ obstacle refers to a C-obstacle produced by interaction of the front part of
link l3 with some physical obstacle.

In the next section we will analyze separately the interaction of each link
with obstacles. Each time, three cases are considered: when an obstacle interacts
with the front part, the rear part, or simultaneously with both parts of the link
in question. We will also consider the interaction of a combination of links with
obstacles, setting the foundation for the algorithm design.

Interaction of Link l1 with Obstacles—Type I Obstacles. Since, according
to our model, sliding along an obstacle does not constitute an interference with
the link l1 motion, we need to consider only those cases where the link meets
an obstacle head-on. When only the front end of link l1 is in contact with an
obstacle—say, at the joint value l′1 —a Type I+ obstacle is produced, which
extends from C-space floor to ceiling and side to side (see Figure 6.6) which
effectively reduces the C-space cubicle by the volume (l1 max − l′1) · l2 max · l3 max.

A similar effect appears when only the rear end of link l1 interacts with an
obstacle—say, at a joint value l′1. Then the C-space is effectively decreased by
the volume l′1 · l2 max · l3 max. Finally, a simultaneous contact of both front and
rear ends with obstacles at a value l′1 corresponds to a degenerate case where no
motion of link l1 is possible; that is, the C-obstacle occupies the whole C-space.
Formally the property of Type I obstacle monotonicity is expressed as follows:
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Figure 6.6 C-space with a Type I obstacle.

Type I Monotonicity. For any obstacle interacting with link l1, there are three
directions corresponding to the joint axes li , i = 1, 2, 3, respectively, along which
the C-obstacle behaves monotonically, as follows: If a position (l′1, l

′
2, l

′
3) cannot

be reached by the arm due to an obstacle interference, then no position (l′′1 , l′′2 , l′′3 ),
such that l′′1 > l′1 in case of the (obstacle’s) contact with the link’s front part,
or l′′1 < l′1 in case of the contact with the link’s rear part, and l′′2 ∈ [0, l2 max],
l′′3 ∈ [0, l3 max], can be reached either.

Interaction of Link l2 with Obstacles—Type II Obstacles

Front Part of Link l2 —Type II+ Obstacles. Consider the case when only the
front part of link l2 interferes with an obstacle (Figure 6.2). Because link l2
effectively has two degrees of freedom, the corresponding Type II+ obstacle will
look in C-space as shown in Figure 6.7. The monotonicity property in this case
is as follows:

Type II+ Monotonicity. For any obstacle interacting with the front part of link
l2, there are two axes (directions), namely l2 and l3, along which the C-obstacle
behaves monotonically, as follows: If a position (l′1, l

′
2, l

′
3) cannot be reached by

the arm due to an obstacle interference, then no position (l′1, l
′′
2 , l′′3 ), such that

l′′2 > l′2 and l′′3 ∈ [0, l3 max], can be reached either.

As a result, a Type II+ collision, as at point H in Figure 6.7, indicates that any
motion directly upward or downward from H along the obstacle will necessarily
bring the C-point to one of the side walls of the C-space cubicle. This suggests
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Figure 6.7 (a) W -space and (b) C-space with a Type II obstacle. (S, T ) is the M-line;
HabL is a part of the intersection curve between the obstacle O and M-plane.

that a plane can be chosen such that the exploration of the intersection curve
between this plane and the Type II+ obstacle will produce a more promising
outcome that will result either in a success or in the correct conclusion that the
target cannot be reached. In the algorithm, the M-plane will be used, which offers
some technical advantages. In general, all three arm joints will participate in the
corresponding motion.

For this case (front part of link l2 interacting with an obstacle), the decision
on which local direction, right or left, is to be taken at a hit point H in order
to follow the intersection curve between an M-plane and a Type II+ obstacle is
made in the algorithm based on the following rule:

Rule 1:

If l1 H > l1 T , the current direction is “left.”
If l1 H < l1 T , the current direction is “right.”
If l1 H = l1 T , the target cannot be reached.

Rear Part of Link l2 —Type II− Obstacles. Now consider the case when only the
rear part of link l2 —that is, the link’s part to the left of joint J2 —can interfere
with obstacles (see obstacle O3, Figure 6.2). This situation produces a C-space
very similar to that in Figure 6.7. The direction of obstacle monotonicity along
the axis l2 will now reverse:

Type II− Monotonicity. For any obstacle interacting with the rear part of link
l2, there are two axes (directions), namely l2 and l3, along which the C-obstacle
behaves monotonically, as follows: If a position (l′1, l

′
2, l

′
3) cannot be reached by
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the arm due to an obstacle interference, then no position (l′1, l
′′
2 , l′′3 ), such that

l′′2 < l′2 and l′′3 ∈ [0, l3 max], can be reached either.

In terms of decision-making, this case is similar to the one above, except that
the direction of obstacle monotonicity along l2 axis reverses, and the choice of
the current local direction at a hit point H obeys a slightly different rule:

Rule 2:

If l1 H > l1 T , the current direction is “right.”
If l1 H < l1 T , the current direction is “left.”
If l1 H = l1 T , the target cannot be reached.

Interaction of Both Parts of Link l2 with Obstacles. Clearly, when both the front
and the rear parts of link l2 interact simultaneously with obstacles, the resulting
Type II+ and Type II− obstacles fuse into a single C-obstacle that divides C-
space into two separate volumes unreachable one from another (see Figure 6.8).
If going from S to T requires the arm to cross that obstacle, the algorithm will
conclude that the target position cannot be reached.

l3

l1

l2

O1O2

Figure 6.8 C-space in the case when both front and rear parts of link l2 interact with
obstacles, producing a single obstacle that is a combination of a Type II+ and Type II−
obstacles.
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Stalactites and Stalagmites: Type III Obstacles

Front Part of Link l3 —Type III+ Obstacles. Assume for a moment that only
the front part of link l3 can interfere with an obstacle (see, e.g., obstacle O1,
Figures 6.2 and 6.4). Consider the cross sections of the obstacle with two hori-
zontal planes: one corresponding to the value l′3 and the other corresponding to
the value l′′3 , with l′3 < l′′3 . Denote these cross sections a′ and a′′, respectively.
Each cross section is a closed set limited by a simple closed curve; it may or
may not include points on the C-space boundary. Because link l3 is a generalized
cylinder, the vertical projection of one cross section onto the other satisfies the
relationship a′ ⊆ a′′. This is a direct result of the Type III+ obstacle monotonicity
property, which is formulated as follows:

Type III+ Monotonicity. For any obstacle interacting with the front part of link l3,
there is one axis (direction), namely l3, along which the corresponding C-obstacle
behaves monotonically, as follows: if a position (l′1, l

′
2, l

′
3) cannot be reached by

the arm due to an obstacle interference, then no position (l′1, l
′
2, l

′′
3 ) such that

l′′3 > l′3 can be reached either.

This property results in a special “stalactite” shape of Type III+ obstacles. A
typical property of icicles and of beautiful natural stalactites that hang down from
the ceilings of many caves is that their horizontal cross section is continuously
reduced (in theory at least) from its top to its bottom. Each Type III+ obstacle
behaves in a similar fashion. It forms a “stalactite” that hangs down from the
ceiling of the C-space cubicle, and its horizontal cross section can only decrease,
with its maximum horizontal cross section being at the ceiling level, l3 = l3 max

(see cubicle Oabcdefg and obstacle O1, Figure 6.4). For any two horizontal cross
sections of a Type III+ obstacle, taken at levels l′3 and l′′3 such that l′′3 > l′3, the
projection of the first cross section (l′3 level) onto a horizontal plane contains no
points that do not belong to the similar projection of the second cross section (l′′3
level). This behavior is the reflection of the monotonicity property.

Because of this topology of Type III+ obstacles, the sufficient motion for
maneuvering around any such obstacle—that is, motion sufficient to guarantee
convergence—turns out to be motion along the intersection curves between the
corresponding C-obstacle and either the M-plane or the V-plane (specifically,
its part below M-plane), plus possibly some motion in the floor of the C-space
cubicle (Figure 6.9).

Rear Part of Link l3 —Type III− Obstacles. A similar argument can be made
for the case when only the rear end of link l3 interacts with an obstacle (see,
e.g., obstacle O2, Figures 6.2, 6.4, and 6.5). In C-space the corresponding Type
III− obstacle becomes a “stalagmite” growing upward from the C-space floor.
This shape is a direct result of the Type III− obstacle monotonicity property,
which is reversed compared to the above situation with the front part of link l3,
as follows:
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Figure 6.9 C-space with a Type III obstacle. (a) Curve abc is the intersection curve
between the obstacle and V-plane that would be followed by the algorithm. (b) Here
the Type III obstacle intersects the floor of C-space. Curve aHbLc is the intersection
curve between the obstacle and V-plane and C-space floor that would be followed by the
algorithm.
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Type III− Monotonicity. For any obstacle interacting with the rear part of link l3,
there is one axis (direction), l3, along which the corresponding C-obstacle behaves
monotonically, as follows: if a position (l′1, l

′
2, l

′
3) cannot be reached by the arm

due to an obstacle interference, then no position (l′1, l
′
2, l

′′
3 ) such that l′′3 < l′3 can

be reached either.

The motion sufficient for maneuvering around a Type III− obstacle and for
guaranteeing convergence is motion along the curves of intersection between the
corresponding C-obstacle and either the M-plane or the V-plane (its part above
M-plane), or the ceiling of the C-space cubicle.

Interaction of Both Parts of Link l3 with Obstacles. This is the case when
in C-space a “stalactite” obstacle meets a “stalagmite” obstacle and they form
a single obstacle. (Again, similar shapes are found in some caves.) Then the
best route around the obstacle is likely to be in the region of the ”waist” of the
new obstacle.

Let us consider this case in detail. For both parts of link l3 to interact with
obstacles, or with different pieces of the same obstacle, the obstacles must be
of both types, Type III+ and Type III−. Consider an example with two such
obstacles shown in Figure 6.10. True, these C-space obstacles don’t exactly look
like the stalactites and stalagmites that one sees in a natural cave, but they do
have their major properties: One “grows” from the floor and the other grows
from the ceiling, and they both satisfy the monotonicity property, which is how
we think of natural stalactites and stalagmites.

Without loss of generality, assume that at first only one part of link l3 —say,
the rear part—encounters an obstacle (see obstacle O2, Figure 6.10). Then the
arm will start maneuvering around the obstacle following the intersection curve
between the V-plane and the obstacle (path segment aH, Figure 6.10). During
this motion the front part of link l3 contacts the other (or another part of the
same) obstacle (here, obstacle O1, Figure 6.10).

At this moment the C-point is still in the V-plane, and also at the intersection
curve between both obstacles, one of Type III+ and the other of Type III− (point
H , Figure 6.10; see also the intersection curve H2cdL2fg, Figure 6.12). As with
any curve, there are two possible local directions for following this intersection
curve. If both of them lead to walls, then the target is not reachable. In this
example the arm will follow the intersection curve—which will depart from
V-plane, curve HbcL—until it meets V-plane at point L, then continue in the
V-plane, and so on.

Since for the intersection between Type III+ and Type III− obstacles the
monotonicity property works in the opposite directions—hence the minimum
area “waist” that they form—the following statement holds (it will be used
below explicitly in the algorithm):

Corollary 6.2.2. If there is a path around the union of a Type III+ and a Type III−
obstacles, then there must be a path around them along their intersection curve.
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Figure 6.10 C-space in the case when both front and rear parts of link l3 interact with
obstacles, producing a single obstacle that is a combination of a Type III+ and Type III−
obstacles.

Simultaneous Interaction of Combinations of Links with Obstacles.
Since Type I obstacles are trivial from the standpoint of motion planning—they
can be simply treated as walls parallel to the sides of the C-space cubicle—we
focus now on the combinations of Type II and Type III obstacles. When both
links l2 and l3 are simultaneously in contact with obstacles, the C-point is at
the intersection curve between Type II and Type III obstacles, which presents a
simple closed curve. (Refer, for example, to the intersection of obstacles O2 and
O3, Figure 6.11.) Observe that the Type III monotonicity property is preserved
in the union of Type II and Type III obstacles. Hence,

Corollary 6.2.3. If there is a path around the union of a Type II and a Type III
obstacles, then there must be a path around them along their intersection curve.

As in the case of intersection between the Type III obstacle and the V-plane
(see above), one of the two possible local directions is clearly preferable to the
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Figure 6.11 The path in C-space in the presence of obstacles O2 and O3 of Figure 6.2;
SHabcLdeT is the actual path of the arm endpoint, and curve S′H ′a′ . . . T ′ is its projection
onto the plane (l1, l2).

other. For example, when in Figure 6.11 the C-point reaches, at point b, the
intersection curve between obstacles O2 and O3, it is clear from the monotonic-
ity property that the C-point should choose the upward direction to follow the
intersection curve. This is because the downward direction is known to lead
to the base of the obstacle O2 “stalagmite” and is thus less promising (though
not necessarily hopeless) as the upward direction (see path segments bc and cL,
Figure 6.11).

Let us stress that in spite of seeming multiplicity of cases and described
elemental strategies, their logic is the same: All elemental strategies force the C-
point to move either along the M-line, or along the intersection curves between
a C-obstacle and a plane (M-plane, V-plane, or C-space side planes), or along
the intersection curves between two Type III C-obstacles. Depending on the real
workspace obstacles, various combinations of such path segments may occur. We
will show in the next section that if in a given scene there exists a path to the
target position, a combination of elemental strategies is sufficient to produce one.
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6.2.4 Connectivity of C
A space or manifold is connected relative to two points in it if there is a path that
connects both points and that lies fully in the space (manifold). For a given path
l, the corresponding trajectory l(t) defines this path as a function of a scalar
variable t ; for example, t may indicate time. Denote the 2D Cartesian space
formed by joint values l1, l2 as Cp, Cp = [0, l1 max] × [0, l2 max].

We intend to show here that for the 3D Cartesian arm the connectivity in C
can be deduced from the connectivity in Cp. Such a relationship will mean that
the problem of path planning for the 3D Cartesian arm can be reduced to that
for a point automaton in the plane, and hence the planar strategies of Chapter 3
can be utilized here, likely with some modifications.

Define the conventional projection Pc(E) of a set of points E = {(l1, l2, l3)} ⊆
C onto space Cp as Pc(E) = {(l1, l2) | ∃ l∗3 , (l1, l2, l

∗
3 ) ∈ E}. Thus, Pc(S), Pc(T ),

Pc(M-line), and Pc({O}) are, respectively, the projections of points S and T , the
M-line, and C-obstacles onto Cp. See, for example, projections Pc of three obsta-
cles, O1, O2, O3 (Figure 6.12). It is easy to see that Pc(O1 ∩ O2) = Pc(O1) ∩
Pc(O2).

Define the minimal projection Pm(E) of a set of points E = {(l1, l2, l3)} ⊆ C
onto space Cp as Pm(E) = {(l1, l2) | ∀ l3, (l1, l2, l3) ∈ E}. Thus, if a C-obstacle
O stretches over the whole range of l3 ∈ [0, l3 max], and E contains all the points
in O, then Pm(E) is the intersection between the (l1, l2)-space and the maximum
cylinder that can be inscribed into O and whose axis is parallel to l3. Note that if a
set E is a cylinder whose axis is parallel to the l3 axis, then Pc(E) = Pm(E). Type
I and Type II obstacles present such cylinders. In general, Pm(S) = Pm(T ) = ∅.

Existence of Collision-Free Paths. We will now consider the relationship
between a path in C and its projection in Cp. The following statement comes
directly from the definition of Pc and Pm:

Lemma 6.2.1. For any C-obstacle O in C and any set Ep in Cp, if Ep ∩ Pc(O) =
∅, then P−1

m (Ep) ∩ O = ∅.

If the hypothesis is not true, then P−1
m (Ep) ∩ O �= ∅. We have Pc(P−1

m (Ep) ∩
O) = Pc(P−1

m (Ep)) ∩ Pc(O) = Ep ∩ Pc(O) �= ∅. Thus a contradiction.
The next statement provides a sufficient condition for the existence of a path

in C-space:

Lemma 6.2.2. Given a set of obstacles {O} in C and the corresponding projec-
tions Pc({O}), if there exists a path between Pc(S) and Pc(T ) in Cp, then there
must exist a path between S and T in C.

Let lp(t) = {l1(t), l2(t)} be a trajectory of Pc(C-point) between Pc(S) and
Pc(T ) in Cp. From Lemma 6.2.1, P−1

m (lp(t)) ∩ {O} = ∅ in C. Hence, for example,
the path l(t) = {(lp(t), (1 − t)l3S + t · l3T )} ∈ P−1

c (lp(t)) connects S and T in C.
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To find the necessary condition, we will use the notion of a minimal projection.
The following statement asserts that a zero overlap between two sets in C implies
a zero overlap between their minimal projections in Cp:

Lemma 6.2.3. For any set E and any C-obstacle O in C, if O ∩ E = ∅, then
Pm(E) ∩ Pm(O) = ∅.

By definition, P−1
m (E1 ∩ E2) = P−1

m (E1) ∩ P−1
m (E2) and P−1

m (Pm(O)) ⊂ O.
Thus, if Pm(E) ∩ Pm(O) = ∅, then ∅ �= P−1

m (Pm(E) ∩ Pm(O)) = P−1
m (Pm(E) ∩

P−1
m (Pm(O))) ⊂ O ∩ E.
To use this lemma in the algorithm design, we need to describe minimal

projections for different obstacle types. For any Type I or Type II obstacle O,
Pc(O) = Pm(O). For a Type III obstacle we consider three cases, using, as an
example, a Type III+ obstacle; denote it O+.

• O+ intersects the floor F of C. Because of the monotonicity property,
Pm(O+) = O+ ∩ F . In other words, the minimal projection of O+ is exactly
the intersection area of O+ with the floor F .

• O+ intersects with a Type III− obstacle, O−. Then, B(Pm(O+ ∪ O−)) =
Pc(B(O+) ∩ B(O−)), where B(O) refers to the boundary of O. That is,
the boundary curve of the combined minimal projection of O+ and O− is
the conventional projection of the intersection curve between the boundary
surfaces of O+ and O−.

• Neither of the above cases apply. Then Pm(O+) = ∅.

A similar argument can be carried out for a Type III− obstacle.
We now turn to establishing a necessary and sufficient condition that ties the

existence of paths in the plane Cp with that in C. This condition will provide a
base for generalizing, in the next section, a planar path planning algorithm to the
3D space. Assume that points S and T lie outside of obstacles.

Theorem 6.2.1. Given points S, T and a set of obstacles {O} in C, a path exists
between S and T in C if and only if there exists a path in Cp between points Pc(S)

and Pc(T ) among the obstacles Pm({O}).

First, we prove the necessity. Let l(t), t ∈ [0, 1], be a trajectory in C. From
Lemma 6.2.3, Pm(l(t)) ∩ Pm({O}) = ∅. Hence, the path Pm(l(t)) connects Pc(S)

and Pc(T ) in Cp.
To show the sufficiency, let lp(t), t ∈ [0, 1], be a trajectory in Cp and let lp(·)

be the corresponding path. Then P−1
m (lp(·)) presents a manifold in C. Define

E = P−1
m (lp(·)) ∩ {O} and let Ec be the complement of E in P−1

m (lp(·)). We need
to show that Ec consists of one connected component. Assume that this is not true.
For any t∗ ∈ [0, 1], since lp(t∗) ∩ Pm({O}) = ∅, there exists l3∗ such that point
(lp(t∗), l3∗) ∈ Ec. The only possibility for Ec to consist of two or more discon-
nected components is when there exists t∗ and a set (l3∗, l′3∗, l

′′
3∗), l′3∗ > l3∗ > l′′3∗,
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such that (lp(t∗), l3∗) ∈ E while (lp(t∗), l′3∗) ∈ Ec and (lp(t∗), l′′3∗) ∈ Ec. How-
ever, this cannot happen because of the monotonicity property of obstacles. Hence
Ec must be connected, and since points S and T lie outside of obstacles, then
S, T ∈ Ec. Q.E.D.

Lifting 2D Algorithms into 3D Space. Theorem 6.2.1 establishes the rela-
tionship between collision-free paths in C and collision-free paths in Cp. We now
want to develop a similar relationship between motion planning algorithms for
C and those for Cp. We address, in particular, the following question: Given an
algorithm Ap for Cp, can one construct an algorithm A for C, such that any tra-
jectory (path) l(t) produced by A in C in the presence of obstacles {O} maps by
Pm into the trajectory lp(t) produced by Ap in Cp in the presence of obstacles
Pm({O})?

We first define the class of algorithms from which algorithms Ap are chosen.
A planar algorithm Ap is said to belong to class Ap if and only if its operation
is based on local information, such as from tactile sensors; the paths it produces
are confined to the M-line, obstacle boundaries, and W -space boundaries; and it
guarantees convergence. In other words, class Ap comprises only sensor-based
motion planning algorithms that satisfy our usual model. In addition, we assume
that all decisions about the direction to proceed along the M-line or along the
obstacle boundary are made at the intersection points between M-line and obstacle
boundaries.

Theorem 6.2.1 says that if there exists a path in Cp (between projections
of points S and T ), then there exists at least one path in C. Our goal is to
dynamically construct the path in C while Ap, the given algorithm, generates its
path in Cp. To this end, we will analyze five types of elemental motions that
appear in C, called Motion I, Motion II, Motion III, Motion IV, and Motion V,
each corresponding to the Pc(C-point) motion either along the Pc(M-line) or
along the obstacle boundaries Pc({O}). Based on this analysis, we will augment
the decision-making mechanism of Ap to produce the algorithm A for C.

Out of the three types of obstacle monotonicity property identified above, only
Type III monotonicity is used in this section. One will see later that other mono-
tonicity types can also be used, resulting in more efficient algorithms. Below,
Type I and II obstacles are treated as C-space side walls; the C-space ceiling is
treated as a Type III+ obstacle; and the C-space floor is treated as a Type III−
obstacle. Note that when the arm comes in contact simultaneously with what it
perceives as two Type III obstacles, only those of the opposite “signs” have to
be distinguished—that is, a Type III+ and a Type III−. Obstacles of the same
sign will be perceived as one. Below, encountering “another Type III obstacle”
refers to an obstacle of the opposite sign. Then the projection Pm of the union
of the obstacles is not zero, Pm(·) �= ∅.

Among the six local directions defined in Section 6.2.1— forward, backward,
left, right, upward, and downward —the first four can be used in a 2D motion
planning algorithm. Our purpose is to design a general scheme such that, given
any planar algorithm Ap, a 3D algorithm A can be developed that lifts the
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decision-making mechanism of Ap into 3D space by complementing the set of
local directions by elements upward and downward. We now turn to the study
of five fundamental motions in 3D, which will be later incorporated into the 3D
algorithm.

Motion I—Along the M-Line. Starting at point S, the C-point moves along the
M-line, as in Figure 6.7, segment SH; this corresponds to Pc(C-point) moving
along the Pc(M-line) (segment S′H ′, Figure 6.7). Unless algorithm Ap calls for
terminating the procedure, one of these two events can take place:

1. A wall is met; this corresponds to Pc(C-point) encountering an obstacle.
Algorithm Ap now has to decide whether Pc(C-point) will move along
Pc(M-line), or turn left or right to go around the obstacle. Accordingly,
the C-point will choose to reverse its local direction along the M-line, or
to turn left or right to go around the wall. In the latter case we choose a
path along the intersection curve between the wall and the M-plane, which
combines two advantages: (i) While not true in the worst case, due to
obstacle monotonicity the M-plane typically contains one of the shortest
paths around the obstacle; and (ii) after passing around the obstacle, the
C-point will meet the M-line exactly at the point of its intersection with the
obstacle (point L, Figure 6.7), and so the path will be simpler. In general,
all three joints participate in this motion.

2. A Type III+ or III− obstacle is met. The C-point cannot proceed along
the M-line any longer. The local objective of the arm here is to maneuver
around the obstacle so as to meet the M-line again at a point that is closer
to T than the encounter point. Among various ways to pass around the
obstacle, we choose here motion in the V-plane. The intersection curve
between the Type III obstacle and the V-plane is a simple planar curve. It
follows from the monotonicity property of Type III obstacles that when the
front (rear) part of link l3 hits an obstacle, then any motion upward (accord-
ingly, downward) along the obstacle will necessarily bring the C-point to
the ceiling (floor) of the C-space. Therefore, a local contact information
is sufficient here for a global planning inference—that the local direction
downward (upward ) along the intersection curve between the V-plane and
the obstacle is a promising direction. In the example in Figure 6.9a, the
resulting motion produces the curve abc.

Motion II—Along the Intersection Curve Between the M-Plane and a Wall. In
Cp, this motion corresponds to Pc(C-point) moving around the obstacle boundary
curve in the chosen direction (see Figure 6.12, segments H1aL1 and H ′

1a
′L′

1).
One of these two events can take place:

1. The M-line is encountered, as at point L1, Figure 6.12; in Cp this means
Pc(M-line) is encountered. At this point, algorithm Ap will decide whether
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Figure 6.12 The path in C-space in the presence of obstacles O1, O2 and O3 of
Figure 6.2. Trajectory SH1aL1bH2cdL2eT is the actual path of the arm endpoint;
S′H ′

1a
′b′H ′

2c
′d ′L′

2e
′T ′ is its projection onto the plane (l1, l2).

Pc(C-point) should start moving along the Pc(M-line) or continue mov-
ing along the intersection curve between the M-plane and the obstacle
boundary. Accordingly, the C-point will either resume its motion along the
M-line, as in Motion I, or will keep moving along the M-plane/obstacle
intersection curve.

2. A Type III+ or III− obstacle is met. In Cp, the Pc(C-point) keeps moving
in the same local direction along the obstacle boundary (path segments
bcL and b′L′, Figure 6.11). As for C-point, there are two possible direc-
tions for it to follow the intersection curve between the Type III obstacle
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and the wall. Since the Type III+ (or III−) monotonicity property is pre-
served here, the only promising local direction for passing around the Type
III+ (III−) obstacle is downward (upward). This possibility corresponds to
Motion IV below.

Motion III—Along the Intersection Curve Between the V-Plane and a Type
III+ or III− Obstacle. This corresponds to moving along the Pc(M-line) in Cp.
One of the following can happen:

1. The M-line is met. C-point resumes its motion along the M-line as in
Motion I; see path segments bc, cT and b′c′, c′T ′, Figure 6.9a.

2. A wall is met. This corresponds to the Pm(C-point) encountering an obsta-
cle. According to the algorithm Ap, Pc(C-point) will either reverse its
local direction to move along Pc(M-line) or will make a turn to follow the
obstacle. Accordingly, the C-point will either (a) reverse its local direction
to follow the intersection curve between the V-plane and the (Type III)
obstacle or (b) try to go around the union of the wall and the obstacle. For
the latter motion we choose a path along the intersection curve between
the wall and the Type III obstacle.

3. Another Type III+ or III− obstacle is met. Since the Pm projection of
both Type III obstacles onto Cp is not zero, this corresponds to the Pc(C-
point) encountering an obstacle, which presents the Pm projection of the
intersection curve between both obstacles. According to Ap algorithm, the
Pc(C-point) will either (a) reverse its local direction to move along Pc(M-
line) or (b) make a turn to follow the obstacle. Accordingly, the C-point
will either (a) reverse its local direction to follow the intersection curve
between V-plane and the Type III obstacle or (b) try to go around the
union of two Type III obstacles. For the latter motion, we choose a path
along the intersection curve between the two Type III obstacles in the local
direction left or right decided by Ap .

Motion IV—Along the Intersection Curve Between a Type III Obstacle and
a Wall. In Cp, this corresponds to the Pc(C-point) moving along the bound-
ary of Pm({O}); see segments bcL and b′L′, Figure 6.11. One of the following
can occur:

1. The C-point returns to the M-plane. Then C-point resumes its motion
along the intersection curve between the M-plane and the wall, similar to
Motion II.

2. The V-plane is encountered (see point L, Figure 6.11). In Cp this means that
Pc(M-line) is encountered. At this point, algorithm Ap will decide whether
the Pc(C-point) should start moving along the Pc(M-line) or should con-
tinue moving along the obstacle boundary. Accordingly, the C-point will
either (a) continue moving along the intersection curve between the Type
III obstacle and the wall or (b) move along the intersection curve between
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V-plane and the Type III obstacle in the only possible local direction, as
in Motion III.

3. Another Type III obstacle is encountered. Then there will be a nonzero
projection of the intersection curve between two Type III obstacles onto
Cp; the Pc(C-point) will continue following the obstacle boundary. Accord-
ingly, the C-point will follow the intersection curve between the two Type
III obstacles in the only possible local direction, see Motion V.

Motion V—Along the Intersection Curve Between Two Type III Obstacles. In
Cp this corresponds to the Pc(C-point) moving along the boundary of Pm({O});
see segments H2cdL2 and H ′

2c
′d ′L′

2, Figure 6.12. One of the following two
events can occur:

1. The V-plane is encountered (point L2, Figure 6.12). In Cp this means that
Pc(M-line) is encountered. At this point, algorithm Ap will decide whether
the Pc(C-point) should start moving along the Pc(M-line) or should con-
tinue moving along the obstacle boundary in one of the two possible
directions. Accordingly, the C-point will either (a) move along the inter-
section curve between the V-plane and the Type III obstacle that is known
to lead to the M-plane (as in Motion III.3 above) or (b) keep moving along
the intersection curve between two Type III obstacles.

2. A wall is encountered. In Cp this corresponds to continuous motion of the
Pc(C-point) along the obstacle boundary. Accordingly, the C-point starts
moving along the intersection curve between the newly encountered wall
and one of the two Type III obstacles—the one that is known to lead to
the M-line (as in Motion IV).

To summarize, the above analysis shows that the five motions that exhaust
all distinct possible motions in C can be mapped uniquely into two categories of
possible motions in Cp —along the Pc(M-line) and along Pm({O})—that consti-
tute the trajectory of the Pc(C-point) in Cp under algorithm Ap . Furthermore, we
have shown how, based on additional information on obstacle types that appear
in C, any decision by algorithm Ap in Cp can be transformed uniquely into the
corresponding decision in C. This results in a path in C that has the same con-
vergence characteristics as its counterpart in Cp. Hence we have the following
theorem:

Theorem 6.2.2. Given a planar algorithm Ap ∈ Ap, a 3D algorithm A can be
constructed such that any trajectory produced by A in the presence of obstacles
{O} in C maps by Pc into the trajectory that Ap produces in the presence of
obstacles Pm({O}) in Cp.

6.2.5 Algorithm

Theorem 6.2.2 states that an algorithm for sensor motion planning for the 2D
Cartesian robot arm can be extended to a 3D algorithm, while preserving the
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algorithm’s convergence. This kind of extension will not, however, necessar-
ily produce efficient paths, since it may or may not utilize all the information
available in the arm (3D) workspace. For example, the obstacle monotonicity
property suggests that some directions for passing around an obstacle are more
promising than others. Following the analysis in Section 6.2.4, a more efficient
algorithm, which preserves the convergence properties discussed in Section 6.2.4
and also takes into account the said additional information, is presented below.
The algorithm is based on a variation of the Bug2 procedure (see Section 3.3.2).

The following notation is used in the algorithm’s procedure:

• Flag F is used to check whether or not both local directions have been tried
for a given curve.

• Variables curr dir and curr loc, respectively, store the current local direction
and current robot position.

• Function dist(x, y) gives the Cartesian distance between points x and y.
• Rules 1 and 2 are as defined in Section 6.2.3.
• When the C-point encounters a curve on the surface of an obstacle that it

has to follow, the directions right and left are defined similar to those for
the M-plane above.

• In order to choose the local direction upward or downward, function
AboveMLine(curr loc) is used to determine if the current location is above
or below the M-line.

• Variable local dir1 refers to the local directions forward, backward, left
and right.

• Variable local dir2 refers to the local directions upward and downward.

The algorithm proceeds as follows.

Step 0 Initialization. Set j = 0. Start at S. Go to Step 1.

Step 1 Motion Along the M-Line. Move along the M-line toward T until one
of the following occurs:

(a) T is reached. The procedure terminates.
(b) A wall or a Type I obstacle is encountered. T cannot be reached—the

procedure terminates.
(c) A Type II+ obstacle is encountered. Set j = j + 1 and define Hj =

curr loc; set F = 1 and set local dir1 according to Rule 1. Go to
Step 2.

(d) A Type II+ obstacle is encountered. Set j = j + 1 and define Hj =
curr loc; set F = 1 and set local dir1 according to Rule 2. Go to
Step 2.

(e) A Type III obstacle is encountered. If l3 S = l3 T , T cannot be
reached—the procedure terminates. Otherwise, set local dir2 = down-
ward or upward if the obstacle is of Type III+ (or III−); go to Step 3.
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Step 2 Motion Along the Intersection Curve Between a Type II Obstacle and
an M-Plane. Move along the intersection curve until one of the following
occurs:

(a) The M-line is encountered. If dist(Pc(curr loc),Pc(T )) >

dist(Pc(Hj ),Pc(T )), go5 to Step 2. Otherwise, define Lj = curr loc;
go to Step 1.

(b) A wall or a Type I obstacle is encountered. T cannot be reached—the
procedure terminates.

(c) Another Type II obstacle is encountered. T cannot be reached—the
procedure terminates.

(d) A Type III obstacle is encountered. Set local dir2 = downward or
upward if the obstacle is of Type III+ (or III−). Go to Step 4.

Step 3 Motion Along the Intersection Curve Between a Type III Obstacle and
a V-Plane. Move along the intersection curve until one of the following
occurs:

(a) The M-line is met. Go to Step 1.
(b) A wall or a Type I obstacle is encountered. T cannot be reached—the

procedure terminates.
(c) A Type II+ obstacle is encountered. Set j = j + 1 and define Hj =

curr loc; set F = 1 and set local dir1 according to Rule 1. Go to
Step 4.

(d) A Type II− obstacle is encountered. Set j = j + 1 and define Hj =
curr loc; set F = 1 and set local dir1 according to Rule 2. Go to
Step 4.

(e) Another Type III obstacle is encountered. Set j = j + 1 and define
Hj = curr loc; set F = 2 and set local dir1 = right. Go to Step 5.

Step 4 Motion along the intersection curve between a Type II obstacle and
a Type III obstacle. Move along the intersection curve until one of the
following occurs:

(a) A wall or a Type I obstacle is encountered. Target T cannot be
reached—the procedure terminates.

(b) The M-plane is encountered. Go to Step 2.
(c) The V-plane is encountered. If dist(Pc(curr loc),Pc(T )) >

dist(Pc(Hj ),Pc(T )), then go to Step 2. Otherwise, define Lj =
curr loc; go to Step 3.

(d) Another Type II obstacle is encountered. Target T cannot be
reached—the procedure terminates.

(e) Another Type III obstacle is encountered. Go to Step 5.

5If l3 S = l3 T , this comparison will never be executed because the procedure will have terminated at
Step 1d.
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(f) The V-plane is encountered. If dist(Pc(curr loc), Pc(T )) >

dist(Pc(Hj ), Pc(T )), then repeat Step 4. Otherwise, define
Lj = curr loc; go to Step 3.

Step 5 Motion Along the Intersection Curve Between Two Type III Obsta-
cles. Move along the intersection curve until one of the following occurs:

(a) A wall or a Type I obstacle is encountered. F = F − 1. If F = 0, T

cannot be reached—the procedure terminates. Otherwise, set local dir1
to its opposite; retrace to Hj ; repeat Step 5.

(b) The V-plane is encountered. If dist(Pc(curr loc),Pc(T )) >

dist(Pc(Hj ),Pc(T )), then repeat Step 5. Otherwise, define
Lj = curr loc; if AboveMPlane(curr loc) = true, then follow the
intersection curve between the V-plane and the Type III− obstacle.
Otherwise, follow the intersection curve between the V-plane and the
Type III+ obstacle. Go to Step 3.

(c) A Type II obstacle is encountered. If AboveMPlane(curr loc) = true,
then follow the intersection curve between the Type II obstacle and the
Type III− obstacle. Otherwise, follow the intersection curve between
the Type II obstacle and the Type III+ obstacle; go to Step 4.

6.2.6 Examples

Two examples considered here demonstrate performance of the motion planning
algorithm presented in the previous section. Both examples make use of examples
considered above in the course of the algorithm construction. To simplify the
visualization of algorithm performance and not to overcrowd pictures with the
arm links and joints, only the resulting paths are presented in Figures 6.11 and
6.12. Since for the Cartesian arm the C-space presentation of a path is the same as
the path of the arm end effector in W -space, the paths are shown in C-space only.

Example 1. The arm’s workspace contains only two obstacles, O2 and O3, of
those three shown in Figure 6.2. Shown in Figure 6.11 are the corresponding
C-obstacles, the start and target points S and T , the path (SHabcLdeT) of the
arm end effector, and, for better visualization, the path’s projection (S′H ′ . . . T ′)
onto the plane (l1, l2). Between points S and H the end effector moves in free
space along the M-line. At point H the rear part of link l2 contacts obstacle O3,
and the arm starts maneuvering around this (Type II) obstacle, producing path
segments Ha and ab. At point b the rear part of link l3 contacts the (Type III)
obstacle O2. The next two path segments, bc and cL, correspond to the motion
when the arm is simultaneously in contact with both obstacles. At point L the
C-point encounters the V-plane, and the next two path segments, Ld and de,
correspond to the motion in the V-plane; here the arm is in contact with only
one obstacle, O2. Finally, at point e the C-point encounters the M-line and the
arm proceeds in free space along the M-line toward point T .
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Example 2. The arm workspace here contains all three obstacles, O1, O2, and
O3, of Figure 6.2. The corresponding C-space and the resulting path are shown
in Figure 6.12. Up until the arm encounters obstacle O1 the path is the same
as in Example 1: The robot moves along the M-line from S toward T until the
rear part of link l2 contacts obstacle O3 and a hit point H1 is defined. Between
points H1 and L1, the arm maneuvers around obstacle O3 by moving along the
intersection curve between the M-plane and O3 and producing path segments
H1a and aL1. At point L1 the M-line is encountered, and the arm moves along
the M-line toward point T until the rear part of link l3 contacts obstacle O2 at
point b. Between points b and H2 the arm moves along the intersection curve
between the V-plane and obstacle O2 in the direction upward. During this motion
the front part of link l3 encounters obstacle O1 at the hit point H2. Now the C-
point leaves the V-plane and starts moving along the intersection curve between
obstacles O1 and O2 in the local direction right, producing path segments H2c,
cd , and dL2. At point L2 the arm returns to the V-plane and resumes its motion
in it; this produces the path segment L2e. Finally, at point e the arm encounters
the M-line again and continues its unimpeded motion along the M-line toward
point T .

6.3 THREE-LINK XXP ARM MANIPULATORS

In Section 6.2 we studied the problem of sensor-based motion planning for a
specific type, PPP, of a three-dimensional three-link arm manipulator. The arm
is one case of kinematics from the complete class XXX of arms, where each
joint X is either P or R, prismatic or revolute. All three joints of arm PPP are
of prismatic (sliding) type. The theory and the algorithm that we developed fits
well this specific kinematic linkage, taking into account its various topological
peculiarities—but it applies solely to this type. We now want to attempt a more
universal strategy, for the whole group XXP of 3D manipulators, where X is,
again, either P or R. As mentioned above, while this group covers only a half
of the exhaustive list of XXX arms, it accounts for most of the arm types used in
industry (see Figure 6.1).

As before, we specify the robot arm configuration in workspace (W -space,
denoted also by W) by its joint variable vector j = (j1, j2, j3), where ji is
either linear extension li for a prismatic joint, or an angle θi for a revolute joint,
i = 1, 2, 3. The space formed by the joint variable vector is the arm’s joint space
or J-space, denoted also by J. Clearly, J is 3D.

Define free J-space as the set of points in J -space that correspond to the
collision-free robot arm configurations. We will show that free J -space of any
XXP arm has a 2D subspace, called its deformation retract, that preserves the
connectivity of the free J -space. This will allow us to reduce the problem’s
dimensionality. We will further show that a connectivity graph can be defined in
this 2D subspace such that the existing algorithms for moving a point robot in
a 2D metric space (Chapter 3) can be “lifted” into the 3D J -space to solve the
motion planning problem for XXP robot arms.
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In particular, in Section 6.3.1 we define the arm configuration Lj = L(j) as
an image of a continuous mapping from J -space to 3D Cartesian space �3, which
is the connected compact set of points the arm would occupy in 3D space when
its joints take the value j . A real-world obstacle is the interior of a connected
compact point set in �3. Joint space obstacles are thus defined as sets of points in
joint space whose corresponding arm configurations have nonempty intersections
with real-world obstacles. The task is to generate a continuous collision-free
motion between two given start and target configurations, denoted Ls and Lt .

Analysis of a J -space in Section 6.3.2 will show that a J -space exhibits
distinct topological characteristics that allow one to predict global characteristics
of obstacles in J based on the arm local contacts with (that is, sensing of)
obstacles in the workspace. Furthermore, similar to the Cartesian arm case in
Section 6.2, for all XXP arms the obstacles in J exhibit a property called the
monotonicity property, as follows: For any point on the surface of the obstacle
image, there exists one or more directions along which all the remaining points
of J belong to the obstacle. The geometric representation of this property will
differ from arm to arm, but it will be there and topologically will be the same
property. These topological properties bring about an important result formulated
in Section 6.3.3: The free J -space, Jf , is topologically equivalent to a generalized
cylinder. This result will be essential for building our motion planning algorithm.

Deformation retracts D of J and Df of Jf , respectively, are defined in
Section 6.3.4. By definition, Df is a 2D surface that preserves the connectiv-
ity of Jf . That is to say, for any two points js, jt ∈ Jf , if there exists a path
pJ ⊂ Jf connecting js and jt , then there must exist a path pD ⊂ Df connecting
js and jt , and pD is topologically equivalent to pJ in Jf . Thus the dimensionality
of the planning problem can be reduced.

When one or two X joints in XXP are revolute joints, X = R, J is somewhat
less representative of W, only because the mapping from J to W is not unique.
That is, it may happen that L(j) = L(j ′) for j �= j ′. Let SJ = {j ∈ J|L(j) =
Ls} and TJ = {j ∈ J|L(j) = Lt }. The task in J -space is to find a path between
any pair of points js ∈ SJ and jt ∈ TJ . We define in Section 6.3.5 a configuration
space or C-space, denoted by C, as the quotient space of J over an equivalent
relation that identifies all J -space points that correspond to the same robot arm
configuration. It is then shown that B and Bf , the quotient spaces of D and Df

over the same equivalent relation, are, respectively, deformation retracts of C and
Cf . Therefore, the connectivity between two given robot configurations in C can
be determined in Cf .

A connectivity graph G will be then defined in Section 6.3.6, and it will
be shown that G preserves the connectivity of Df and Jf . We will conclude
that the workspace information available to the 3D robot is sufficient for it to
identify and search the graph, and therefore the problem of 3D arm motion plan-
ning can be reduced to a graph search—something akin to the maze-searching
problem in Chapter 3. Finally, in Section 6.3.7 we will develop a systematic
approach, which, given a 2D algorithm, builds its 3D counterpart that preserves
convergence.
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The following notation is used throughout this section:

• X, Y ⊂ �3 are point sets.
• ∂X denotes the boundary of X.
• X ∼= Y means X is homeomorphic to Y .

• X includes the closure of X, X
�= X ∪ ∂X.

• For convenience, define the closure of R
1 �= R1 ∪ {−∞,+∞} and R

n �=
R

1 × · · · × R
1
.

• It is obvious that R
n ∼= In.

6.3.1 Robot Arm Representation Spaces

To recap some notations introduced earlier, a three-joint XXP robot arm manip-
ulator is an open kinematic chain consisting of three links, Li , and three joints,
Ji , i = 1, 2, 3; Ji also denotes the center point of joint Ji , defined as the inter-
section point between the axes of joints Ji−1 and Ji . Joints J1 and J2 can be
of either prismatic (sliding) or revolute type, while joint J3 is of prismatic type.
Joint J1 is attached to the base O and is the origin of the fixed reference system.
Figures 6.1a–d depict XXP arm configurations. Let p denote the arm end point;
θi , a revolute joint variable, li , a prismatic joint variable, and ji , either one of
them, a revolute or a prismatic joint variable; i = 1, 2, 3. Figure 6.13 depicts the
so-called SCARA type arm manipulator, which is of RRP type; it is arm (d) in
Figure 6.1. We will later learn that from the standpoint of sensor-based motion
planning the RRP arm presents the most general case among the XXP kinematic
linkages.

p

l3

J3

J2

J1

L3L2
L1

q2

q1

Figure 6.13 An RRP robot arm manipulator: p is the arm end point; Ji and Li are,
respectively, the ith joint and link, i = 1, 2, 3; θ1, θ2, and l3 are the joint variables.
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As before, assume the robot arm has enough sensing to (a) detect a contact
with an approaching obstacle at any point of the robot body and (b) identify the
location of that point(s) of contact on that body. The act of maneuvering around
an obstacle refers to a motion during which the arm is in constant contact with
the obstacle.

Without loss of generality, assume for simplicity a unit-length limit for joints,
li ∈ I 1 and θi ∈ R

1
, i = 1, 2, 3. Points at infinity are included for convenience.

The joint space J is defined as J �= J1 × J2 × J3, where Ji = I 1 if the ith
joint is prismatic, and Ji = R

1
if the ith joint is revolute. In all combinations of

cases, J ∼= I 3. Thus, by including points at infinity in Ji , it is possible to treat
all XXP arms largely within the same analytical framework.

Definition 6.3.1. Let Lk be the set of points representing the kth robot link, k =
1, 2, 3; for any point x ∈ Lk , let x(j) ∈ �3 be the point that x would occupy in �3

when the arm joint vector is j ∈ J. Let Lk(j) =⋃x∈Lk
x(j). Then, Lk(j) ⊂ �3

is a set of points the kth robot link occupies when the arm is at j ∈ J. Simi-

larly, L(j)
�= L1(j) ∪ L2(j) ∪ L3(j) ⊂ �3 is a set of points the whole robot arm

occupies at j ∈ J. The workspace (or W-space, denoted W) is defined as

W �=
⋃
j∈J

L(j) (6.1)

We assume that Li has a finite volume; thus W is bounded.
Arm links L1 and L2 can be of arbitrary shape and dimensions. Link L3 is

assumed to present a generalized cylinder —that is, a rigid body characterized
by a straight-line axis coinciding with the corresponding joint axis, such that the
link cross section in the plane perpendicular to the axis does not change along
the axis. There are no restrictions on the shape of the cross section itself, except
the physical-world assumption that it presents a simple closed curve—it can be,
for example, a circle (then the link is a common cylinder), a rectangle, an oval,
or any nonconvex curve.

We distinguish between the front end and rear end of link L3. The front end
coincides with the arm endpoint p (see Figure 6.13). The opposite end of link L3

is its rear end. Similarly, the front (rear) part of link L3 is the part of variable
length between joint J3 and the front (rear) end of link L3. Formally, we have
the following definition:

Definition 6.3.2. At any given position j = (j1, j2, l3) ∈ J, the front part L3+(j)

of link L3 is defined as the point set

L3+(j) = L3(j) − L3((j1, j2, 0))

Similarly, the rear part L3−(j) of link L3 is defined as the point set

L3−(j) = L3(j) − L3((j1, j2, 1))
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The purpose of distinguishing between the front and rear parts of a pris-
matic (sliding) link as follows: When the front (respectively, rear) part of link
L3 approaches an obstacle, the only reasonable local direction for maneuvering
around the obstacle is by decreasing (respectively, increasing) the joint variable
l3. This makes it easy to decide on the direction of motion based on the local con-
tact only. Since the point set is L3((j1, j2, 0)) ∩ L3((j1, j2, 1) ⊂ L3((j1, j2, l3))

for any l3 ∈ I , and it is independent of the value of joint variable l3, the set is
considered a part of L2. These definitions are easy to follow on the example
of the PPP (Cartesian) arm that we considered in great detail in Section 6.2:
See the arm’s effective workspace in Figure 6.3a and its complete workspace in
Figure 6.3b.

The robot workspace may contain obstacles. We define an obstacle as a rigid
body of an arbitrary shape. Each obstacle is of finite volume (in 2D of finite area),
and its surface is of finite area. Since the arm workspace is of finite volume (area),
these assumptions imply that the number of obstacles present in the workspace
must be finite. Being rigid bodies, obstacles cannot intersect. Formally, we have
the following definition:

Definition 6.3.3. In the 2D (3D) case, an obstacle Ok, k = 1, 2, . . . , is the inte-
rior of a connected and compact subset of �2 (�3) satisfying

Ok1 ∩ Ok2 = ∅, k1 �= k2 (6.2)

We use notation O
�= ⋃M

k=1 Oi to represent a general obstacle, where M is the
number of obstacles in W.

Definition 6.3.4. The free W-space is

Wf
�= W − O.

Lemma 6.3.1 follows from Definition 6.3.1.

Lemma 6.3.1. Wf is a closed set.

The robot arm can simultaneously touch more than one obstacle in the work-
space. In this case the obstacles being touched effectively present one obstacle
for the arm. They will present a single obstacle in the joint space.

Definition 6.3.5. An obstacle in J -space (J-obstacle) OJ ⊂ J is defined as

OJ
�= {j ∈ J : L(j) ∩ O �= ∅}.

Theorem 6.3.1. OJ is an open set in J.
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Let j∗ ∈ OJ . By Definition 6.3.5, there exists a point x ∈ L such that y =
x(j∗) ∈ O. Since O is an open set (Definition 6.3.3), there must exist an ε > 0
such that the neighborhood U(y, ε) ⊂ O. On the other hand, since x(j) is a con-
tinuous function6 from J to W, there exists a δ > 0 such that for all j ∈ U(j∗, δ),
we have x(j) ∈ U(y, ε) ⊂ O; thus, U(j∗, δ) ⊂ OJ , and OJ is an open set.

The free J-space is Jf
�= J − OJ . Theorem 6.3.1 gives rise to this corollary:

Corollary 6.3.1. Jf is a closed set.

Being a closed set, Jf = Jf . Thus, a collision-free path can pass through
∂Jf .

When the arm kinematics contains a revolute joint, due to the 2π repe-
tition in the joint position it may happen that L(j) = L(j ′) for j �= j ′. For
an RR arm, for example, given two robot arm configurations, Ls and Lt , in
W, L(jsk1,k2

) = Ls0,0 = Ls for jsk1,k2
= (2k1π + θ1s , 2k2π + θ2s) ∈ J, k1, k2 =

0, ±1,±2, . . . . Similarly, L(jtk3,k4
) = Lt0,0 = Lt for jtk3,k4

= (2k3π + θ1t , 2k4π

+ θ2t ) ∈ J, k3, k4 = 0, ±1,±2, . . . . This relationship reflects the simple fact that
in W every link comes to exactly the same position with the periodicity 2π . In
physical space this is the same position, but in J -space these are different points.7

The result is the tiling of space by tiles of size 2π . Figure 6.14 illustrates this
situation in the plane. We can therefore state the motion planning task in J -space
as follows:

Given two robot arm configurations in W, Ls and Lt , let sets Ss = {j ∈ J : L(j) =
Ls} and St = {j ∈ J : L(j) = Lt } contain all the J -space points that correspond to
Ls and Lt respectively. The task of motion planning is to generate a path pJ ⊂ Jf

between js and jt for any js ∈ Ss and any jt ∈ St or, otherwise, conclude that no
path exists if such is the case.

The motion planning problem has thus been reduced to one of moving a
point in J -space. Consider the two-dimensional RR arm shown in Figure 6.14a;
shown also is an obstacle O1 in the robot workspace, along with the arm start-
ing and target positions, S and T . Because of obstacle O1, no motion from
position S to position T is possible in the “usual” sector of angles [0, 2π]. In J -
space (Figure 6.14b), this motion would correspond to the straight line between
points s0,0 and t0,0 in the square [0, 2π]; obstacle O1 appears as multiple vertical
columns with the periodicity (0, 2π).

However, if no path can be found between a specific pair of positions js and jt

in J -space, it does not mean that no paths between S and T exist. There may be
paths between other pairs, such as between positions js0,0 and jt1,0 (Figure 6.14b).
On the other hand, finding a collision-free path by considering all pairs of js and

6If x ∈ L is the arm endpoint, then x(j) is the forward kinematics and is thus continuous.
7In fact, in those real-world arm manipulators that allow unlimited movement of their revolute joints,
going over the 2π angle may sometimes be essential for collision avoidance.
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Figure 6.14 The Ls and Lt configurations (positions S and T ) in robot workspace in
part (a) produce an infinite number of S-T pairs of points in the corresponding J -space,
part (b); vertical shaded columns in J -space are J -obstacles that correspond to obstacle
O1 in the robot workspace.
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jt drawn from Ss and St , respectively, is not practical because Ss and St are
likely to contain an infinite number of points. To simplify the problem further,
in Section 6.3.5 we will introduce the notion of configuration space.

6.3.2 Monotonicity of Joint Space

Let Li(j) ⊂ �3 be the set of points that link Li occupies when the manipula-
tor joint value vector is j ∈ J, i = 1, 2, 3 (Definition 6.3.1). Define joint space
obstacles resulting from the interaction of Li with obstacle O as Type i obsta-
cles. For link L3, let L3+(j) and L3−(j) ⊂ �3 be, respectively, the set of points
that the front part and rear part of link L3 occupy when the joint value vector
is j ∈ J (Definition 6.3.2). Define Type 3+ and Type 3− J -obstacles respectively
resulting from the interaction of L3+ and L3− with an obstacle O. More precisely:

Definition 6.3.6. The Type i J -obstacle, i = 1, 2, 3, is defined as

OJi
�= {j ∈ J|Li(j) ∩ O �= ∅} (6.3)

Similarly, the Type 3+ and Type 3− J -obstacles are defined as

OJ3+
�= {j ∈ J|L3+(j) ∩ O �= ∅} and OJ3−

�= {j ∈ J|L3−(j) ∩ O �= ∅}
(6.4)

Note that OJ3 = OJ3+ ∪ OJ3− and OJ = OJ1 ∪ OJ2 ∪ OJ3. We will also need

notation for the intersection of Type 3+ and Type 3− obstacles: OJ3∩
�= OJ3+ ∩

OJ3+ .
We now show that the underlying kinematics of the XXP robot arm results in

a special topological properties of J -space, which is best described by the notion
of J-space monotonicity :

J -Space Monotonicity. In all cases of arm interference with obstacles, there
is at least one of the two directions along the l3 axis, such that if a value l′3 of link
L3 cannot be reached because of the interference with an obstacle, then no value
l′′3 > l′3 (in case of contact with the front part of link L3) or, inversely, l′′3 < l′3 (in
case of contact with the rear part of link L3) or l′′3 ∈ I 1 (in case of contact with
link L1 or L2) can be reached either.

J -space monotonicity results from the fact that link L3 of the arm manipulator
presents a generalized cylinder. Because links are chained together successively,
the number of degrees of freedom that a link has differs from one link to another.
As a result, a specific link, or even a specific part—front or rear—of the same
link can produce J -space monotonicity in one or more directions. A more detailed
analysis appears further.

Lemma 6.3.2. If j = (j1, j2, l3) ∈ OJ1 ∪ OJ2, then j ′ = (j1, j2, l
′
3) ∈ OJ1 ∪

OJ2 for all l3 ∈ I 1.
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Consider Figure 6.13. If j ∈ OJ1, then L1(j) ∩ O �= ∅. Since L1(j) is inde-
pendent of l3, then L1(j

′) ∩ O �= ∅ for all j ′ = (j1, j2, l
′
3). Similarly, if j ∈ OJ2,

then L2(j) ∩ O �= ∅. Since L2(j) is independent of l3, then L2(j
′) ∩ O �= ∅ for

j ′ = (j1, j2, l
′
3) with any l′3 ∈ I .

Lemma 6.3.3. If j = (j1, j2, l3) ∈ OJ3+ , then j ′ = (j1, j2, l
′
3) ∈ OJ3+ for all

l′3 > l3. If j = (j1, j2, l3) ∈ OJ3− , then j ′ = (j1, j2, l
′
3) ∈ OJ3− for all l′3 < l3.

Using again an example in Figure 6.13, if j ∈ OJ3, then L3(j) ∩ O �= ∅.
Because of the linearity and the (generalized cylinder) shape of link L3, L3(j

′) ∩
O �= ∅ for all j ′ = (j1, j2, l

′
3) and l′3 > l3. A similar argument can be made for

the second half of the lemma.
Let us call the planes {l3 = 0} and {l3 = 1} the floor and ceiling of the

joint space. A corollary of Lemma 6.3.3 is that if O3+ �= ∅, then its intersection
with the ceiling is not empty. Similarly, if O3− �= ∅, then its intersection with
the floor is nonempty. We are now ready to state the following theorem, whose
proof follows from Lemmas 6.3.2 and 6.3.3.

Theorem 6.3.2. J-obstacles exhibit the monotonicity property along the l3 axis.

This statement applies to all configurations of XXP arms. Depending on the spe-
cific configuration, though, J -space monotonicity may or may not be limited to
the l3 direction. In fact, for the Cartesian arm of Figure 6.15 the monotonic-
ity property appears along all three axes: Namely, the three physical obstacles
O1,O2, and O3 shown in Figure 6.15a produce the robot workspace shown in
Figure 6.15b and produce the configuration space shown in Figure 6.15c. Notice
that the Type 3 obstacles O1 and O2 exhibit the monotonicity property only along
the axis l3, whereas the Type 2 obstacle O3 exhibits the monotonicity property
along two axes, l1 and l2. A Type 1 obstacle (not shown in the figure) exhibits the
monotonicity property along all three axes (see Figure 6.6 and the related text).

6.3.3 Connectivity of J f

We will now show that for XXP arms the connectivity of Jf can be deduced from
the connectivity of some planar projections of Jf . From the robotics standpoint,
this is a powerful result: It means that the problem of path planning for a three-
joint XXP arm can be reduced to the path planning for a point robot in the plane,
and hence the planar strategies such as those described in Chapters 3 and 5 can
be utilized, with proper modifications, for 3D planning.

Let Jp be the floor {l3 = 0}. Clearly, Jf
∼= J1 × J2. Since the third coordinate

of a point in Jf is constant zero, we omit it for convenience.

Definition 6.3.7. Given a set E = {j1, j2, l3} ⊂ J, define the conventional pro-
jection Pc(E) of E onto space Jp as Pc(E) = {(j1, j2) | ∃l∗3 , (j1, j2, l

∗
3 ) ∈ E}.
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Figure 6.15 The physical obstacles O1, O2, and O3 shown in figure (a) will be effec-
tively perceived by the arm as those in figure (b), and they will produce the rather crowded
C-space shown in (c).

Thus, for a joint space obstacle OJ , given start and target configurations js ,
jt and any path pJ between js and jt in J, Pc(OJ ), Pc(js), Pc(jt ), and Pc(pJ )

are respectively the conventional projections of OJ , js , jt , and pJ onto Jp. See,
for example, the conventional projections of three obstacles, O1, O2, and O3,
Figure 6.15b. It is easy to see that for any nonempty sets E1, E2 ⊂ J, we have
Pc(E1 ∩ E2) = Pc(E1) ∩ Pc(E2).

Definition 6.3.8. Define the minimal projection Pm(E) of a set of points E =
{(j1, j2, l3)} ⊆ J onto space Jp as Pm(E) = {(j1, j2) | ∀l3, (j1, j2, l3) ∈ E}. For
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any set Ep = {(j1, j2)} ⊂ Jp, the inverse minimal projection is P −1
m (Ep) =

(j1, j2, l3) | (j1, j2) ∈ Ep and l3 ∈ I }.

The minimal projection of a single point is empty. Hence Pm({js}) =
Pm({jt }) = ∅. If E ⊂ J is homeomorphic to a sphere and stretches over the
whole range of l3 ∈ I , then Pm(E) is the intersection between Jp and the max-
imum cylinder that can be inscribed into OJ and whose axis is parallel to l3.
If a set E ⊂ J presents a cylinder whose axis is parallel to the axis l3, then
Pc(E) = Pm(E).

In general, OJ is not homeomorphic to a sphere and may be composed of
many components. We extend the notion of a cylinder as follows:

Definition 6.3.9. A subset E ⊂ J presents a generalized cylinder if and only if
Pc(E) = Pm(E).

Type 1 and Type 2 obstacles present such generalized cylinders. It is easy to
see that for any Ep ⊂ Jp, P −1

m (Ep) is a generalized cylinder, and Pc(P
−1
m (Ep))

= Ep.
We will now consider the relationship between a path pJ in J and its projection

pJp

�= Pc(pJ ) in Jp.

Lemma 6.3.4. For any set E ⊂ J and any set Ep ⊂ Jp, if Ep ∩ Pc(E) = ∅,
then P −1

m (Ep) ∩ E = ∅.

If P −1
m (Ep) ∩ E �= ∅, then we have Pc(P

−1
m (Ep) ∩ E) = Pc(P

−1
m (Ep)) ∩

Pc(E) = Ep ∩ Pc(E) �= ∅. Thus a contradiction.
The next statement provides a sufficient condition for the existence of a path

in joint space:

Lemma 6.3.5. For a given joint space obstacle OJ in J and the corresponding
projection Pc(OJ ), if there exists a path between Pc(js) and Pc(jt ) in Jp that
avoids obstacle Pc(OJ ), then there must exist a path between js and jt in J that
avoids obstacle OJ .

Let pJp(t) = {(j1(t), j2(t))} be a path between Pc(js) and Pc(jt ) in Jp avoid-
ing obstacle Pc(OJ ). From Lemma 6.3.4, P −1

m (pJp(t)) ∩ OJ = ∅ in J. Hence,
for example, the path pJ (t) = {(pJp (t), (1 − t)l3s + t · l3t )} ∈ P −1

m ({pJp(t)})
connects positions js and jt in J and avoids obstacle OJ .

To find the necessary condition, we use the notion of a minimal projection.
The next statement asserts that a zero overlap between two sets in J implies a
zero overlap between their minimal projections in Jp:

Lemma 6.3.6. For any sets E1, E2 ⊂ J, if E1 ∩ E2 = ∅, then Pm(E1) ∩
Pm(E2) = ∅.
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By definition, P −1
m (Ep1 ∩ Ep2) = P −1

m (Ep1) ∩ P −1
m (Ep2), and P −1

m (Pm(E)) ⊂
E. Thus, if Pm(E1) ∩ Pm(E2) �= ∅, then ∅ �= P −1

m (Pm(E1) ∩ Pm(E2)) = P −1
m

(Pm(E1)) ∩ P −1
m (Pm(E2)) ⊂ E1 ∩ E2.

To use this lemma for designing a sensor-based motion planning algorithm,
we need to describe minimal projections for different obstacle types. For a Type
1 or Type 2 obstacle O, we have Pc(O) = Pm(O). For a Type 3 obstacle, we
consider three events that cover all possible cases, using as an example a Type
3+ obstacle; denote it O+.

• O+ intersects the floor Jf . Because of the monotonicity property, Pm(O+) =
O+ ∩ Jf . In other words, the minimal projection of O+ is exactly the inter-
section area of O+ with the floor Jf .

• O+ intersects with a Type 3− obstacle, O−. Then, Pm(O+ ∪ O−) =
Pc(∂O+ ∩ ∂O−). That is, the combined minimal projection of O+ and O−
is the conventional projection of the intersection curve between O+ and O−.

• Neither of the above cases apply. Then Pm(O+) = ∅.

A similar argument can be carried out for a Type 3− obstacle.

Define Jpf
�= Jp − Pm(OJ ) and J′

f

�= P −1
m (Jpf ). It is easy to see that Jpf =

Pc(Jf ). Therefore, J′
f = P −1

m (Jpf ) = P −1
m (Pc(Jf )).

Theorem 6.3.3. Jf
∼= J′

f ; that is, Jf is topologically equivalent to a generalized
cylinder.

Define O ′
J

�= OJ − P −1
m (Pm(OJ )). Clearly, J ′

f = Jf ∪ O ′
J and Pm(O ′

J ) = ∅.
By Theorem 6.3.2, each component of O ′

J can be deformed either to the floor
{l3 = 0} or to the ceiling {l3 = 1} and thus does not affect the topology of Jf .
Thus, Jf

∼= J ′
f and, by definition, J ′

f presents a generalized cylinder in J.
From the motion planning standpoint, Theorem 6.3.3 indicates that the third

dimension, l3, of Jf is not easier to handle than the other two because Jf

possesses the monotonicity property along l3 axis. It also implies that as a direct
result of the monotonicity property of joint space obstacles, the connectivity of
Jf can be decided via an analysis of 2D surfaces.

We now turn to establishing a necessary and sufficient condition that ties the
existence of paths in the plane Jp with that in 3D joint space J. This condition
will provide a base for generalizing planar motion planning algorithms to 3D
space. Assume that points (arm positions) js and jt lie outside of obstacles.

Theorem 6.3.4. Given points js , jt ∈ Jf and a joint space obstacles OJ ⊂ J,
a path exists between js and jt in Jf if and only if there exists a path in Jpf

between points Pc(js) and Pc(jt ).

To prove the necessary condition, let pJ (t), t ∈ [0, 1], be a path in Jf . From
Lemma 6.3.6, Pm(pJ (t)) ∩ Pm(OJ ) = ∅. Hence the path Pm(pJ (t)) connects
Pc(js) and Pc(jt ) in Jpf .
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To show the sufficiency, let pJp(t), t ∈ [0, 1], be a path in Jpf . Then
P −1

m (pJp(t)) presents a “wall” in J. Define E = P −1
m (pJp(t)) ∩ OJ and let E−1

be the complement of E in P −1
m (pJp(t)). We need to show that E−1 consists

of one connected component. Assume that this is not true. For any t∗ ∈ [0, 1],
since pJp(t∗)� ∈Pm(OJ ), there exists l3∗ such that point (pJp (t∗), l3∗) ∈ E−1.
The only possibility for E−1 to consist of two or more disconnected compo-
nents is when there exists t∗ and a set (l3∗, l′3∗, l

′′
3∗), l′3∗ > l3∗ > l′′3∗, such that

(pJp (t∗), l3∗) ∈ E−1 while (pJp(t∗), l′3∗) ∈ E and (pJp (t∗), l′′3∗) ∈ E. However,
this cannot happen because of the monotonicity property of obstacles. Hence
E−1 must be connected.

6.3.4 Retraction of J f

Theorem 6.3.4 indicates that the connectivity of space Jf can indeed be captured
via a space of lower dimension, Jpf . However, space Jpf cannot be used for
motion planning because, by definition, it may happen that Jpf ∩ OJ �= ∅; that
is, some portion of Jpf is not obstacle-free. In this section we define a 2D space
Df ⊂ Jf that is entirely obstacle-free and, like Jpf , captures the connectivity
of Jf .

Definition 6.3.10. [57]. A subset A of a topological space X is called a retract
of X if there exists a continuous map r : X −→ A, called a retraction, such that
r(a) = a for any a ∈ A.

Definition 6.3.11. [57]. A subset A of space X is a deformation retract of X if
there exists a retraction r and a continuous map

f : X × I → X (6.5)

such that

f (x, 0) = x

f (x, 1) = r(x)

}
x ∈ X

f (a, t) = a, a ∈ A and t ∈ I

(6.6)

In other words, set A ⊂ X is a deformation retract of X if X can be continu-
ously deformed into A. We show below that Df is a deformation retract of Jf .
Let Jp, Jpf , and J′

f be as defined in the previous section; then we have the
following lemma.

Lemma 6.3.7. Jp is a deformation retract of J, and Jpf is a deformation retract
of J′

f .

Define r(j1, j2, l3) = (j1, j2, 0). It follows from Lemma 6.3.2 that r is a retrac-
tion. Since for Type 1 and 2 obstacles P −1

m (Pm(OJ )) = OJ , then, if J contains
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only Type 1 and Type 2 obstacles—that is, Jf = J − (OJ1 ∪ OJ2)—it follows
that Jf = J ′

f and Jpf is a deformation retract of Jf . In the general case, all
obstacle types (including Type 3) can be present, and Jpf is not necessarily a
deformation retract of Jf .

Theorem 6.3.5. Let Q1
�= ∂OJ3− ∩ Jf , and Q2

�= Jp ∩ Jf . Then,

Df
�= Q1 ∪ Q2

is a deformation retract of Jf .

Q1 and Q2, are respectively, the obstacle-free portion of ∂OJ3− and Jp. It is easy
to see that Df

∼= Jpf . Since Jf
∼= J ′

f (Theorem 6.3.3) and Jpf is a deformation
retract of J ′

f (Lemma 6.3.7), then Df is a deformation retract of Jf .
Let D denote the 2D space obtained by patching all the “holes” in Df so that

D ∼= Jp. It is obvious that D is a deformation retract of J.

Theorem 6.3.6. Given two points j ′
s , j

′
t ∈ Df , if there exists a path pJ ⊂ Jf

connecting j ′
s and j ′

t , then there exists a path pD ⊂ Df , such that pD ∼ pJ .

From Theorem 6.3.5, Df is a deformation retract of Jf . Let r be the retraction
as in Ref. 57, II.4; then p′ = r(p) must be an equivalent path in Df .

On the other hand, if j ′
s and j ′

t are not connected in Jf , then by definition j ′
s

and j ′
t are not connected in Df either. Hence the connectivity of j ′

s and j ′
t can

be determined completely by studying Df , which is simpler than Jf because
the dimensionality of Df is lower than that of Jf . Furthermore, a path between
two given points js = (j1s , j2s , l3s), jt = (j1t , j2t , l3t ) ∈ Jf can be obtained by
finding the path between the two points j ′

s = (j1s , j2s , l
′
3s), j ′

s = (j1t , j2t , l
′
3t ) ∈

Df . Because of the monotonicity property (Theorem 6.3.2), j ′
s and j ′

t always exist
and they can be respectively connected within Jf with js and jt via vertical line
segments. Hence the following statement:

Corollary 6.3.2. The problem of finding a path in the 3D subset Jf between
points js, jt ∈ Jf can be reduced to one of finding a path in its 2D subset Df .

6.3.5 Configuration Space and Its Retract

Our motion planning problem has thus been reduced to one of moving a point
in a 2D subset of J -space, J. However, as pointed out in Section 6.3.1, the joint
space J is not very representative when revolute joints are involved, because the
mapping from J to workspace W is not unique. Instead, we define configuration
space C:

Definition 6.3.12. Define an equivalence relation F in J as follows: for j =
(j1, j2, jw), j ′ = (j ′

1, j
′
2, j

′
3) ∈ J, jFj ′ if and only if (ji − j ′

i )%2π = 0, for i =
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1, 2, 3, where % is the modular operation. The quotient space C �= J/F is called
the configuration space (C-space), with normal quotient space topology assigned,
see Ref. 57, A.1. Let c = Fj represent an equivalence class; then the project
f : J → C is given by f (j) = Fj .

Theorem 6.3.7. The configuration space C is compact and of finite volume (area).

By definition, J = J1 × J2 × J3. Define equivalence relations Fi in Ji such

that jiFij
′
i if and only if (ji − j ′

i )%2π = 0. Define Ci
�= Ji/Fi and the project

fi : Ji → Ci given by fi(j) = Fij . Apparently, Ci
∼= S1 with length vi = 2π if

Ji = �, and Ci
∼= I 1 with length vi = 1 if Ji = I 1. Because f is the product of

fi’s, fi’s are both open and closed, and the product topology and the quotient
topology on C1 × C2 × C3 are the same (see Ref. 57, Proposition A.3.1); therefore,
C ∼= C1 × C2 × C3 is of finite volume v1 · v2 · vn.

For an RR arm, for example, C ∼= S1 × S1 with area 2π · 2π = 4π2; for an
RRP arm, C ∼= S1 × S1 × I 1 with volume 2π · 2π · 1 = 4π2.

For c ∈ C, we define L(c)
�= L(j), where j ∈ f −1(c), to be the area the robot

arm occupies in W when its joint vector is j .

Definition 6.3.13. The configuration space obstacle (C-obstacle) is defined as

OC
�= {c ∈ C : L(c) ∩ O �= ∅}

The free C-space is Cf
�= C − OC .

The proof for the following theorem and its corollary are analogous to those for
Theorem 6.3.1.

Theorem 6.3.8. A C-obstacle is an open set.

Corollary 6.3.3. The free C-space Cf is a closed set.

The configuration space obstacle OC may have more than one component.
For convenience, we may call each component an obstacle.

Theorem 6.3.9. Let L(cs) = Ls and L(ct ) = Lt . If there exists a collision-free
path (motion) between Ls and Lt in W, then there is a path pC ⊂ Cf connecting
cs and ct , and vice versa.

If there exists a motion between Ls and Lt in W, then there must be a path
pJ ⊂ Jf between two points js, jt ∈ Jf such that L(js) = Ls and L(jt ) = Lt .
Then, pC = f (pJ ) ⊂ Cf is a path between cs = f (js) and ct = f (jt ). The other
half of the theorem follows directly from the definition of Cf .
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We have thus reduced the motion planning problem in the arm workspace to
the one of moving a point from start to target position in C-space.

The following characteristics of the C-space topology of XXP arms are direct
results of Theorem 6.3.7:

• For a PPP arm, C ∼= I 1 × I 1 × I 1, the unit cube.
• For a PRP or RPP arm, C ∼= S1 × I 1 × I 1, a pipe.
• For an RRP arm, C ∼= S1 × S1 × I 1, a solid torus.

Figure 6.16 shows the C-space of an RRP arm, which can be viewed either
as a cube with its front and back, left and right sides pairwise identified, or as a
solid torus.

The obstacle monotonicity property is preserved in configuration space. This
is simply because the equivalent relation that defines C and Cf from J and Jf

has no effect on the third joint axis, l3. Thus we have the following statement:

Theorem 6.3.10. The configuration space obstacle OC possesses the monotonic-
ity property along l3 axis.

As with the subset Jf , Cp ⊂ C can be defined as the set {l3 = 0}; OC1, OC2,
OC3, OC3+ , OC3− , Pc, Pm, Cf , Cpf , and C′

f can be defined accordingly.

Theorem 6.3.11. Let Q1
�= ∂OC3− ∩ Cf and Q2

�= Cp ∩ Cf . Then,

Bf
�= Q1 ∪ Q2

is a deformation retract of Cf .

(a) (b)

Figure 6.16 Two views of C-space of an RRP arm manipulator: (a) As a unit cube with
its front and back, left and right sides pairwise identified; and (b) as a solid torus.
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The proof is analogous to that of Theorem 6.3.5. Let B denote the 2D space
obtained by patching all the “holes” in Bf so that B ∼= Cp. It is obvious that
B ∼= Cp

∼= T is a deformation retract of C. We obtain the following statement
parallel to Theorem 6.3.6.

Theorem 6.3.12. Given two points j ′
s , j ′

t ∈ Bf , if there exists a path pC ⊂ Cf

connecting j ′
s and j ′

t , then there must exist a path pB ⊂ Bf , such that pB ∼ pJ .

A path between two given points js = (j1s , j2s, l3s), jt = (j1t , j2t , l3t ) ∈ Cf

can be obtained by finding the path between the two points j ′
s = (j1s , j2s , l

′
3s),

j ′
s = (j1t , j2t , l

′
3t ) ∈ Bf . Because of the monotonicity property (Theorem 6.3.10),

j ′
s and j ′

t always exist and can be respectively connected within Cf with js and
jt via vertical line segments. Hence the following statement:

Corollary 6.3.4. The problem of finding a path in Cf between points js , jt ∈ Cf

can be reduced to that of finding a path in its subset Bf .

6.3.6 Connectivity Graph

At this point we have reduced the problem of motion planning for an XXP
arm in 3D space to the study of a 2D subspace B that is homeomorphic to a
common torus.

Consider the problem of moving a point on a torus whose surface is populated
with obstacles, each bounded by simple closed curves. The torus can be repre-
sented as a square with its opposite sides identified in pairs (see Figure 6.17a).
Note that the four corners are identified as a single point. Without loss of gen-
erality, let the start and target points S and T be respectively in the center and
the corners of the square. This produces four straight lines connecting S and T ,
each connecting the center of the square with one of its corners. We call each
line a generic path and denote it by gi , i = 1, 2, 3, 4.

Define a connectivity graph G on the torus by the obstacle-free portions of
any three of the four generic paths and the obstacle boundary curves. We have
the following statement:

Theorem 6.3.13. On a torus, if there exists an obstacle-free path connecting two
points S and T , then there must exist such a path in the connectivity graph G.

Without loss of generality, let g1, g2, and g3 be the complete set of generic
paths, as shown in Figure 6.17a, where the torus is represented as a unit square
with its opposite sides identified.

The generic paths g1, g2, and g3 cut the unit square into three triangular pieces.
Rearrange the placements of the three pieces by identifying the opposite sides
of the square in pairs along edges a and b, respectively (see Figures 6.17b and
6.17c). We thus obtain a six-gon (hexagon), with three pairs of S and T as its
vertices and generic paths g1, g2, and g3 as its edges. The hexagon presentation
is called the generic form of a torus.
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Figure 6.17 Paths g1, g2, and g3 constitute a complete set of generic paths. A hexagon
is obtained by (a) cutting the square along g1, g2, and g3, (b) pasting along b, and (c)
pasting along a. (d) The resulting hexagon.

Now consider the effects of the above operation on obstacles (see Figure 6.18a).
Obstacle boundaries and the generic paths partition our hexagon into occupied
areas (shaded areas in Figure 6.18b) and free areas (numbered I , II, III, IV and V

in Figure 6.18b). Each free area is not necessarily simple, but it must be homeo-
morphic to a disc, possibly with one or more smaller discs removed (e.g., area I of
Figure 6.18b has the disc that corresponds to obstacle O2 removed). The free area’s
inner boundaries are formed by obstacle boundaries; its outer boundary consists of
segments of obstacle boundaries and segments of the generic paths.

Any arbitrary obstacle-free path p that connects points S and T consists of one
or more segments, p1, p2, . . . , pn, in the hexagon. Let xi , yi be the end points of
segment pi , where x1 = S, xi+1 = yi for i = 1, 2, . . . , n − 1, and yn = T . Since
p is obstacle-free, xi and yi must be on the outer boundary of the free area
that contains pi . Therefore, xi and yi can be connected by a path segment p′

i of

the outer boundary of the free area. The path p′ �= p′
1p

′
2 . . . p′

n that connects S

and T and consists of segments of the generic paths and segments of obstacle
boundaries is therefore entirely on the connectivity graph G.
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Figure 6.18 Illustration for Theorem 6.3.13. Shown are two obstacles O1,O2 (shaded
areas) and path p (thicker line). The torus is represented, respectively, as (a) a unit square
with its opposite sides a and b identified in pairs and (b) as a hexagon, with generic paths
as its sides. Segments p1, p2 and p3 in (b) are connected; they together correspond to the
path p in (a).

Figure 6.18a presents a torus shown as a unit square, with its opposite sides a

and b identified in pairs. O1 and O2 are two obstacles. Note that the three pieces
of obstacle O1 in the figure are actually connected. Segments g1, g2 and g3 are
(any) three of the four generic paths.

For an XXP arm, we now define generic paths and the connectivity graph in
B, which is homeomorphic to a torus.

Definition 6.3.14. For any two points a, b ∈ J, let ab be the straight line segment
connecting a and b. A vertical plane is defined as

Vab
�= P −1

m (Pc(ab))
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where Pc and Pm are respectively the conventional and minimal projections as in
Definition 6.3.7 and Definition 6.3.8.

In other words, Vab contains both a and b and is parallel to the l3 axis. The
degenerate case where ab is parallel to the l3 axis is simple to handle and is not
considered.

Definition 6.3.15. Let Ls and Lt be the given start and target configurations of

the arm, and let S �= {j ∈ J|L(j) = Ls} ⊂ J and T �= {j ∈ J|L(j) = Lt } ⊂ J,
respectively, be the sets of points corresponding to Ls and Lt . Let f : J → C be
the projection as in Definition 6.3.12. Then the vertical surface V ⊂ C is defined as

V �= {f (j) ∈ C|j ∈ Vst for all s ∈ S and t ∈ T}

For the RRP arm, which is the most general case among XXP arms, V consists
of four components Vi , i = 1, 2, 3, 4. Each Vi represents a class of vertical planes
in J and can be determined by the first two coordinates of a pair of points drawn
respectively from S and T. If js = (θs

1 , θ s
2 , ls3) and jt = (θ t

1, θ
t
2, l

t
3) are the robot’s

start and target configurations, the four components of the vertical surface V can
be represented as follows:

V1 : (θs
1 , θ s

2) (θ t
1, θ

t
2)

V2 : (θs
1 , θ s

2) (θ t
1, θ

t
2 − 2π × sign(θ t

2 − θs
2)) (6.7)

V3 : (θs
1 , θ s

2 )) (θ t
1 − 2π × sign(θ t

1 − θs
1 ), θ t

2)

V4 : (θs
1 , θ s

2) (θ t
1 − 2π × sign(θ t

1 − θs
1 ), θ t

2 − 2π × sign(θ t
2 − θs

2))

where sign() takes the values +1 or −1 depending on its argument. Each of the
components of V -surface determines a generic path, as follows:

gi
�= Vi ∩ B, i = 1, 2, 3, 4

Since B is homeomorphic to a torus, any three of the four generic paths can be

used to form a connectivity graph. Without loss of generality, let g
�= ⋃3

i=1 gi

and denote g′ �= Bf ∩ g. A connectivity graph can be defined as G �= g′ ∪ ∂Bf .
If there exists a path in Cf , then at least one such path can be found in the
connectivity graph G.

Now we give a physical interpretation of the connectivity graph G; G consists
of the following curves:

• ∂Cp —the boundary curve of the floor, identified by the fact that the third
link of the robot reaches its lower joint limit (l3 = 0) and, simultaneously,
one or both of the other two links reach their joint limits.
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• Cp ∩ ∂(OC1 ∪ OC2)—the intersection curve between the floor and the Type
1 or Type 2 obstacle boundary, identified by the fact that the third link of
the robot reaches its lower joint limit (l3 = 0) and simultaneously, one or
both of the other two links contact some obstacles.

• ∂OC3− ∩ ∂J—the intersection curve between the Type 3− obstacle bound-
ary and C-space boundary, identified by the fact that the robot’s third link
touches obstacles with its rear part and, simultaneously, one or more links
reach their joint limits; this case includes the intersection curve between a
Type 3− obstacle boundary and the ceiling.

• ∂OC3− ∩ ∂(OC1 ∪ OC2)—the intersection curve between the Type 3− obsta-
cle boundary and the Type 1 or Type 2 obstacle boundary, identified by the
fact that the third link of the robot touches obstacles with its rear part
and that, simultaneously, one or both of the other two links contact some
obstacles.

• ∂OC3− ∩ ∂OC3+ —the intersection curve between the Type 3+ obstacle
boundary and the Type 3− obstacle boundaries, identified by the fact that
both front and rear parts of the third link contact obstacles.

• g ∩ Jpf —the obstacle-free portion of the generic path, identified by the
fact that the robot is on the V-surface and that the third joint reaches its
lower limit (l3 = 0).

• V ∩ ∂OC3− —the intersection curve between V-surface and the Type 3−
obstacle boundaries, identified by the fact that the robot is on V-surface and
simultaneously touches the obstacle with the rear part of its third link.

Note that the sensing capability of the robot arm manipulator allows it to
easily identify the fact of being at any of the curves above.

6.3.7 Lifting 2D Algorithms into 3D

We have reduced the problem of motion planning for an XXP arm to the search
on a connectivity graph. The search itself can be done using any existing graph
search algorithm. The efficiency of a graph search algorithm is often in gen-
eral—and, as we discussed above, in the Piano Mover’s approach in particu-
lar—measured by the total number of nodes visited and the number of times
each node is visited, regardless of the number of times that each edge is visited.
In robotics, however, what is important is the total number of edge traverses,
because physically each edge presents a part of the path whose length the robot
may have to pass. For this reason, typical graph algorithms—for example, the
width-first search algorithm [114]—would be inefficient from the standpoint of
robot motion planning. On the other hand, depth-first search algorithms may
work better; Tarry’s rule [42] and Fraenkel’s rule [45], which we discussed in
Section 2.9.1, are two versions of such search algorithms. More efficient algo-
rithms can be obtained by taking into account specifics of the connectivity graph
topology [59].
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In this section we intend to show how a 2D motion planning algorithm—we
will call it Ap —can be carried out in Bf . We assume that Ap operates according
to our usual model—that is, using local information from the robot tactile sensors,
the paths it produces are confined to generic paths, obstacle boundaries, and
space boundaries, if any—and that it guarantees convergence.8 As before, it is
also assumed that all decisions as to what directions the robot will follow along
the generic path or along an obstacle boundary are made at the corresponding
intersection points.

Without loss of generality, side walls of the C-space, if any, are simply
treated below as Type I and Type II obstacles, the C-space ceiling is treated
as a Type III+ obstacle, and the C-space floor is treated as a Type III− obstacle.

Since the robot start and target positions are not necessarily in Bf , our first
step is to bring the robot to Bf . This is easily achieved by moving from js

downward until a Type III− obstacle is encountered; that is, the link L3 of the
robot either reaches its joint limit or touches an obstacle with its rear end. Then,
the robot switches to Ap, which searches for point j ′

t directly above or below jt ,
with the following identification of path elements:

• Generic path—the intersection curve of V and ∂O3− .
• Obstacle boundary—the intersection curve of ∂O3− and ∂(O1 ∪ O2 ∪ O3+).

If Ap terminates without reaching j ′
t , then the target jt is not reachable. On

the other hand, if j ′
t is reached, then the robot moves directly toward jt . Along

this path segment the robot will either reach jt or encounter an obstacle, in which
case the target is not reachable. This shows how a motion planning algorithm
for a compact 2D surface can be “lifted” into 3D to solve the motion planning
problem of an XXP arm.

6.3.8 Step Planning

Similar to 2D algorithms in Chapter 5, realization of the above 3D motion plan-
ning algorithms requires a complementary lower-level control piece for step
calculation. The required procedure for step calculation is similar to the one
sketched in Section 5.2.3 for a 2D arm, except here the tangent to the C-obstacle
at the local point of contact is three-dimensional. Since, according to the motion
planning algorithm, the direction of motion is always unique—the curve along
which the arm moves is either an M-line, or an intersection curve between an
obstacle and one of the planes M-plane or V-plane, or an intersection curve
between obstacles—the tangent to the C-obstacle at the contact point is unique
as well. More detail on the step calculation procedure can be found in Refs. 106
and 115.

8The question of taking advantage of a sensing medium that is richer than tactile sensing (vision,
etc.) has been covered in great detail in Section 3.6 and also in Section 5.2.5; hence we do not dwell
on it in this chapter.
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6.3.9 Discussion

As demonstrated in this section, the kinematic constraints of any XXP arm major
linkage result in a certain property—called monotonicity—of the arm joint space
and configuration space (C-space or Cf ). The essence of the monotonicity prop-
erty is that for any point on the surface of a C-space obstacle, there exists at
least one direction in C-space that corresponds to one of the joint axes, such
that no other points in space along this direction can be reached by the arm. The
monotonicity property allows the arm to infer some global information about
obstacles based on local sensory data. It thus becomes an important component
in sensor-based motion planning algorithms. We concluded that motion planning
for a three-dimensional XXP arm can be done on a 2D compact surface, Bf ,
which presents a deformation retract of the free configuration space Cf .

We have further shown that any convergent 2D motion planning algorithm for
moving a point on a compact surface (torus, in particular) can be “lifted” into
3D for motion planning for three-joint XXP robot arms. The strategy is based on
the monotonicity properties of C-space.

Given the arm’s start and target points js, jt ∈ Cf and the notions “above”
and “below” as defined in this section, the general motion planning strategy for
an XXP arm can be summarized as consisting of these three steps:

1. Move from js to j ′
s , where j ′

s ∈ Bf is directly above or below js ;
2. find a path between j ′

s and j ′
t within Bf , where j ′

t ∈ Bf is directly above
or below jt ; and

3. move from j ′
t to jt .

Because of the monotonicity property, motion in Steps 1 and 3 can be achieved
via straight line segments. In reality, Step 2 does not have to be limited to the
plane: It can be “lifted” into 3D by modifying the 2D algorithm respectively,
thus resulting in local optimization and shorter paths. With the presented theory,
and with various specific algorithms presented in this and previous chapters, one
should have no difficulty constructing one’s own sensor-based motion planning
algorithms for specific XXP arm manipulators.

6.4 OTHER XXX ARMS

One question about motion planning for 3D arm manipulators that still remains
unanswered in this chapter is, How can one carry out sensor-based motion plan-
ning for XXR arm manipulators—that is, arms whose third joint is of revolute
type? At this time, no algorithms with a solid theoretical foundation and with
guaranteed convergence can be offered for this group. This exciting area of
research, of much theoretical as well as practical importance, still awaits for its
courageous explorers.

In engineering terms, one kinematic linkage from the XXR group, namely
RRR, is of much importance among industrial robot manipulators. On a better
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side, the RRR linkage is only one out of the five 3D linkages shown in Figure 6.1,
Section 6.1, which together comprise the overwhelming majority of robot arm
manipulators that one finds in practice. Still, RRR is a popular arm, and knowing
how to do sensor-based motion planning for it would be of much interest. Judging
by our analysis of the RR arm in Chapter 5, it is also likely the most difficult
arm for sensor-based motion planning.

Conceptually, the difficulty with the RRR arm, and to some extent with other
XXR arms, is of the same kind that we discussed in the Section 6.1, when describ-
ing a fly moving around an object in three-dimensional space. The fly has an
infinite number of ways to go around the object. Theoretically, it may need to
try all those ways in order to guarantee getting “on the other side” of the object.

We have shown in this chapter that, thanks to special properties of mono-
tonicity of the corresponding configuration space, no infinite motion will ever
be necessary for any XXP arm manipulator in order to guarantee convergence.
No matter how complex are the 3D objects in the arm’s workspace, the motion
planning algorithm guarantees a finite (and usually quick) path solution. No such
properties have been found so far for the XXR arm manipulators. On the other
hand, similar to XXP arms considered in this chapter, motion planning for XXR
arms seems to be reducible to motion along curves that are similar to curves we
have used for XXP algorithms (such as an intersection curve between an obstacle
and an M-plane or V-plane, etc.). Even in the worst case, this would require a
search of a relatively small graph.

Provided that the arm has the right whole-body sensing, in practice one can
handle an XXR arm by using the motion planning schemes developed in this
chapter for XXP arms, perhaps with some heuristic modifications. Some such
attempts, including physical experiments with industrial RRR arm manipulators,
are in described Chapter 8 (see also Ref. 115).



CHAPTER 7

Human Performance in Motion
Planning

I . . . do not direct myself so badly. If it looks ugly on the right, I take the left . . .

Have I left something unseen behind me? I go back; it is still on my road. I trace
no fixed line, either straight or crooked.

—Michel de Montaigne (1533–1592), The Essays

7.1 INTRODUCTION

It is time to admit that we will not be able to completely fulfill the promise
contained in this book’s subtitle—explain how humans plan their motion. This
would be good to do—such knowledge would help us in many areas—but we
are not in a position to do so. Today we know precious little about how human
motion decision-making works, certainly not on the level of algorithmic detail
comparable to what we know about robot motion planning. To be sure, in the
literature on psychophysical and cognitive science analysis of human motor skills
one will find speculations about the nature of human motion planning strategies.
One can even come up with experimental tests designed to elucidate such strate-
gies. The fact is, however, that the sum of this knowledge tells us only what
those human strategies might be, not what they are.

Whatever those unknown strategies that humans use to move around, we can,
however, study those strategies’ performance. By using special tests, adhering to
carefully calibrated test protocols designed to elucidate the right questions, and by
carrying out those tests on statistically significant groups of human subjects, we
can resolve how good we humans are at planning our motion. Furthermore, we
can (and will) subject robot sensor-based motion planning algorithms to the same
tests—making sure we keep the same test conditions—and make far-reaching
conclusions that can be used in the design of complex systems involving human
operators.

Clearly, the process of testing human subjects has to be very different from
the process of designing and testing robot algorithms that we undertook in prior
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chapters. This dictates a dramatic change in language and methodology. So far, as
we dealt with algorithms, concepts have been specific and well-defined, statements
have been proven, and algorithms were designed based on robust analysis. We had
definitions, lemmas, theorems, and formal algorithms. We talked about algorithm
convergence and about numerical bounds on the algorithm performance.

All such concepts become elusive when one turns to studying human motion
planning. This is not a fault of ours but the essence of the topic. One way to com-
pensate for the fuzziness is the black box approach, which is often used in physics,
cybernetics, and artificial intelligence: The observer administers to the object of
study—here a human subject—a test with a well-controlled input, observes the
results at the output, and attempts to uncover the law (or the algorithm) that
transfers one into the other.

With an object as complex as a human being, it would not be realistic to
expect from this approach a precise description of motion planning strategies
that humans use. What we expect instead from such experiments is a measure
of human performance, of human skills in motion planning. By using techniques
common in cognitive sciences and psychology, we should be able to arrive at
crisp comparisons and solid conclusions. Why do we want to do this? What are
the expected scientific and practical uses of this study?

One use is in the design of teleoperated systems—that is, systems with
remotely controlled moving machinery and with a human operator being a part
of the control and decision-making loop. In this interesting domain the issues
of human and robot performance intersect. More often than not, such systems
are very complex, very expensive, and very important. Typical examples include
control of the arm manipulator at the Space Shuttle, control of arms at the Inter-
national Space Station, and robot systems used for repair and maintenance in
nuclear reactors.

The common view on the subject is that in order to efficiently integrate the
human operator into the teleoperated system’s decision-making and control, the
following two components are needed: (1) a data gathering and preprocessing
system that provides the operator with qualitatively and quantitatively adequate
input information; this can be done using fixed or moving TV cameras and moni-
tors looking at the scene from different directions, and possibly other sensors; and
(2) a high-quality master–slave system that allows the operator to easily enter
control commands and to efficiently translate them into the slave manipulator
(which is the actual robot) motion.

Consequently, designers of teleoperation systems concentrate on issues imme-
diately related to these two components (see, e.g., Refs. 116–119). The implicit
assumption in such focus on technology is that one component that can be fully
trusted is the human operator: As long as the right hardware is there, the operator
is believed to deliver the expected results. It is only when one closely observes the
operation of some such highly sophisticated and accurate systems that one per-
ceives their low overall efficiency and the awkwardness of interactions between
the operator and the system. One is left with the feeling that while the two
components above are necessary, they are far from being sufficient.
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Even in simple teleoperation tasks that would be trivial for a human child,
like building a tower out of a few toy blocks or executing a collision-free motion
between a few obstacles, the result is far from perfect: Unwanted collisions do
occur, and the robot arm’s motion is far from confident. The operator will likely
move the arm maddeningly slowly and tentatively, stopping often to assess the
situation. One becomes convinced that these difficulties are not merely a result
of a (potentially improvable) inferior mechanical structure or control system, but
are instead related to cognitive difficulties on the part of the operator. This is an
exciting topic for a cognitive scientist, with important practical consequences.

To summarize, here are a few reasons for attempting a comparison between
human and robot performance in motion planning:

• Algorithm Quality. Sensor-based motion planning algorithms developed in
the preceding chapters leave a question unanswered: How good are they?
If they produced optimal solutions, they would be easy to praise. But in a
situation with limited input information the solutions are usually far from
optimal, and assessing them is difficult. One way to assess those solutions
is in comparison with human performance. After all, humans are used to
solving motion planning problems under uncertainty and therefore must be
a good benchmark.

• Improving Algorithms. If robot performance turns out to be inferior to
human performance, this fact will provide a good incentive to try to under-
stand which additional algorithmic resources could be brought to bear to
improve robot motion planning strategies.

• Synergistic Teleoperation Systems. If, on the other hand, human perfor-
mance can be inferior to robot performance—which we will observe to
be so in some motion planning tasks—this will present a serious challenge
for designers of practical teleoperation systems. It would then make sense
to shift to robots some motion planning tasks that have been hitherto the
sole responsibility of humans. We will observe that humans have difficulty
guiding arm manipulators in a crowded space, resulting in mistakes or, more
often, in a drastic reduction of the robot’s speed to accommodate human
“thinking.” Complementing human intelligence with appropriate robot intel-
ligence may become a way of dramatically improving the performance of
teleoperated systems.

• Cognitive Science. Human performance in motion planning is of much inter-
est to cognitive scientists who study human motor skills and the interface
between human sensory apparatus and motion. The performance compari-
son with robot algorithms in tasks that require motion planning might shed
light on the nature of human cognitive processes related to motion in space.

To be meaningful, a comparison between human and robot performance must
take place under exactly the same conditions. This is very important: It makes no
sense, for example, to compare the performance of a human who moves around
blindfolded with the performance of a robot that has a full use of its vision
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sensor. Other conditions may be more subtle: For instance, how do we make
sure that in the same scene the robot and the human have access to exactly the
same information? While one can never be absolutely sure that the conditions
under which human and robot performance are compared are indeed equal, every
effort has been made to ascertain this in our study.

To formulate the right questions, we will start in the next section with obser-
vations from a few experiments, and then move in the following sections to a
consistent study with more representative tests and statistics. Most of those lim-
ited experiments have been done by the author in the late 1980s while at Yale
University.1

The surprising, sometimes seemingly bizarre results from these experiments
helped prompt discussion and sharpen our questions, but also indicated a need
for a more consistent study. The larger, better designed, and much more consis-
tent studies discussed in Sections 7.4 and 7.5 were undertaken in the mid-1990s
at the University of Wisconsin—Madison, within a joint project between two
groups: on the robotics side, by the author and graduate student Fei Liu, and on
the cognitive science side, by Dr. Sheena Rogers and graduate student Jeffrey
Watson, both from the University of Wisconsin Psychology Department’s Center
for Human Performance in Complex Systems.

7.2 PRELIMINARY OBSERVATIONS

We will start with a task that is relatively intuitive for a human—walking in a
labyrinth (a maze)—and will then proceed to the less intuitive task of moving
a simple planar two-link arm manipulator, of the kind that we considered in
Section 5.2 (see Figures 5.2 and 5.15). It is important to realize that in some
formal sense, both tasks are of the same difficulty: Moving in a maze amounts
to controlling a combination of two variables, x and y (horizontal and vertical
displacement), and moving a two-link arm also requires control of two variables,
representing angular displacement (call these angles θ1 and θ2).

7.2.1 Moving in a Maze

Many of us have tried to walk in a labyrinth (a maze). Some medieval monasteries
and churches have had labyrinths on the premises, or even indoors, to entertain its
visitors. Today labyrinths appear in public and amusement parks. The labyrinth
corridors are often made of live bushes cut neatly to make straight-line and
curved walls. The wall may be low, to allow one to see the surrounding walls;
in a more challenging labyrinth the walls are tall, so that at any given moment

1Much of the software for this first stage and many tests were produced by my graduate students,
especially by Timothy Skewis. The human subjects used were whoever passed through the Yale
Robotics Laboratory—graduate students, secretaries, unsuspecting scientists coming to Yale for a
seminar, and even faculty’s children.
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the walker can only see the surrounding walls. The visitor may start inside or
outside of the labyrinth and attempt to reach the center, or locate a “treasure”
inside the labyrinth, or find an exit from it.

Moving with Complete Information. If one has a bird’s-eye view of the
whole labyrinth, this makes the task much easier. To study human performance
in motion planning consistently, we start with this simpler task. Consider the
bird’s-eye view of a labyrinth shown in Figure 7.1. Imagine you are handed
this picture and asked to produce in it a collision-free path from the position S

(Start) to the target point T . One way to accomplish this test is with the help of
computer. You sit in front of the computer screen, which shows the labyrinth,
Figure 7.1. Starting at point S, you move the cursor on the screen using the
computer mouse, trying to get to T while not banging into the labyrinth walls.
At all times you see the labyrinth, points S and T , and your own position in the
labyrinth as shown by the cursor. For future analysis, your whole path is stored
in the computer’s memory.

If you are a typical labyrinth explorer, you will likely study the labyrinth
for 10–15 seconds, and think of a more or less complete path even before you
start walking. Then you quickly execute the path on the screen. Your path will

S

T

Figure 7.1 A two-dimensional labyrinth. The goal is to proceed from point S to point T .
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likely be something akin to the three examples shown in Figure 7.2. All examples
demonstrate exemplary performance; in fact, these paths are close to the opti-
mal—that is, the shortest—path from S to T .2 In the terminology used in this
text, what you have done here and what the paths in Figure 7.2 demonstrate is
motion planning with complete information.

If one tried to program a computer to do the same job, one would first prepro-
cess the labyrinth to describe it formally—perhaps segment the labyrinth walls
into small pieces, approximate those pieces by straight lines and polynomials for
a more efficient description, and so on, and eventually feed this description into
a special database. Then this information could be processed, for example, with
one or another motion planning algorithm that deals with complete information
about the task.

The level of detail and the respectable amount of information that this database
would encompass suggests that this method differs significantly from the one you
just used. It is safe to propose that you have paid no attention to small details
when attempting your solution, and did not try to take into account the exact
shapes and dimensions of every nook and cranny. More likely you concentrated
on some general properties of the labyrinth, such as openings in walls and where
those openings led and whether an opening led to a dead end. In other words,
you limited your attention to the wall connectivity and ignored exact geometry,
thus dramatically simplifying the problem. Someone observing you—call this
person the tester—would likely conclude that you possess some powerful motion
planning algorithm that you applied quickly and with no hesitation. Since it is
very likely that you never had a crash course on labyrinth traversal, the source
and nature of your powerful algorithm would present an interesting puzzle for
the tester.

Today we have no motion planning algorithms that, given complete informa-
tion about the scene, will know from the start which information can be safely
ignored and that will solve the task with the effectiveness you have demonstrated
a minute ago. The existing planning algorithms with complete information will
grind through the whole database and come up with the solution, which is likely
to be almost identical to the one you have produced using much less information
about the scene. The common dogma that humans are smarter than computers is
self-evident in this example.

Moving with Incomplete Information. What about a more realistic labyrinth
walk, where at any given moment the walker can see only the surrounding walls?
To test this case, let us use the same labyrinth that we used above (Figure 7.1),
except that we modify the user interface to reflect the new situation. As before,
you are sitting in front of the computer screen. You see on it only points S and
T and your own position in the labyrinth (the cursor). The whole labyrinth is
there, but it is invisible. As before, you start at S, moving the cursor with the

2Of course, in a more complex labyrinth a quick look may not be sufficient to see the solution; then
one’s performance may deteriorate. For the point that we are to make in this section, this fact is not
essential.
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(a)

(b)

(c)

S

T

S

T

S

T

Figure 7.2 Three paths produced by human subjects in the labyrinth of Figure 7.1, if
given the complete information, the bird’s-eye view of the scene.
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computer mouse. Every time the cursor approaches a labyrinth wall within some
small distance—that is your “radius of vision”—the part of the wall within this
radius becomes visible, and so you can decide where to turn to continue the
motion. Once you step back from the wall, that piece of the wall disappears from
the screen.

Your performance in this new setting will of course deteriorate compared to
the case with complete information above. You will likely wander around, hitting
dead ends and passing some segments of the path more than once. Because you
cannot now see the whole labyrinth, there will be no hope of producing a near-
optimal solution; you will struggle just to get somehow to point T . This is
demonstrated in two examples of tests with human subjects shown in Figure 7.3.
Among the many such samples with human subjects that were obtained in the
course of this study (see the following sections), these two are closest to the best
and worst performance, respectively. Most subjects fell somewhere in between.

While this performance is far from what we saw in the test with complete
information, it is nothing to be ashamed of—the test is far from trivial. Those
who had a chance to participate in youth wilderness training know how hard one
has to work to find a specific spot in the forest, with or without a map. And many
of us know the frustration of looking for a specific room in a large unfamiliar
building, in spite of its well-structured design.

Human Versus Computer Performance in a Labyrinth. How about com-
paring the human performance we just observed with the performance of a decent
motion planning algorithm? The computer clearly wins. For example, the Bug2
algorithm developed in Section 3.3.2, operating under the same conditions as for
the human subjects, in the version with incomplete information produces elegant
solutions shown in Figure 7.4: In case (a) the “robot” uses tactile information,
and in case (b) it uses vision, with a limited radius of vision rv , as shown.

Notice the remarkable performance of the algorithm in Figure 7.4b: The path
produced by algorithm Bug2, using very limited input information—in fact, a
fraction of complete information—almost matches the nearly optimal solution in
Figure 7.2a that was obtained with complete information.

We can only speculate about the nature of the inferior performance of humans
in motion planning with incomplete information. The examples above suggest
that humans tend to be inconsistent (one might say, lacking discipline): Some
new idea catches the eye of the subject, and he or she proceeds to try it, without
thinking much about what this change will mean for the overall outcome.

The good news is that it is quite easy to teach human subjects how to use
a good algorithm, and hence acquire consistency and discipline. With a little
practice with the Bug2 algorithm, for example, the subjects started producing
paths very similar to those shown in Figure 7.4.

This last point—that humans can easily master motion planning algorithms
for moving in a labyrinth—is particularly important. As we will see in the next
section, the situation changes dramatically when human subjects attempt motion
planning for arm manipulators. We will want to return to this comparison when
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(a)

(b)

Figure 7.3 Two examples of human performance when operating in the labyrinth of
Figure 7.1 with incomplete information about the scene. Sample (a) is closer to the best
performance, while sample (b) is closer to the worst performance observed in this study.
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(a)

(b)

S

T

S

T

ru

Figure 7.4 Performance of algorithm Bug2 (Chapter 3) in the labyrinth of Figure 7.1.
(a) With tactile sensing and (b) with vision that is limited to radius rv .
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discussing the corresponding tests, so let us repeat the conclusion from the above
discussion:

When operating in a labyrinth, humans have no difficulty learning and using
motion planning algorithms with incomplete information.

7.2.2 Moving an Arm Manipulator

Operating with Complete Information. We are now approaching the main
point of this discussion. There was nothing surprising about the human perfor-
mance in a labyrinth; by and large, the examples of maze exploration above
agree with our intuition. We expected that humans would be good at moving in a
labyrinth when seeing all of it (moving with complete information), not so good
when moving in a labyrinth “in the dark” (moving with incomplete information),
and quite good at mastering a motion planning algorithm, and this is what hap-
pened. We can use these examples as a kind of a benchmark for assessing human
performance in motion planning.

We now turn to testing human performance in moving a simple two-link
revolute–revolute arm, shown in Figure 7.5. As before, the subject is sitting in

O2

J1

S TP

Θ2

O3

O4

O1

J0

Θ1

l1

l2

Figure 7.5 This simple planar two-link revolute–revolute arm manipulator was used to
test human performance in motion planning for a kinematic structure: l1 and l2 are two
links; J0 and J1 are two revolute joints; θ1 and θ2 are joint angles; S and T are start and
target positions in the test; P is the arm endpoint in its current position; O1, O2, O3, and
O4 are obstacles.
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front of the computer screen, and controls the arm motion using the computer
mouse. The first link, l1, of the arm rotates about its joint J0 located at the fixed
base of the arm. The joint of the second link, J1, is attached to the first link,
and the link rotates about point J1, which moves together with link l1. Overall,
the arm looks like a human arm, except that the second link, l2, has a piece that
extends outside the “elbow” J1. (This kinematics is quite common in industrial
and other manipulators.) And, of course, the arm moves only in the plane of
the screen.

How does one control the arm motion in this setup? By positioning the cursor
on link l1 and holding down the mouse button, the subject will make the link
rotate about joint J0 and follow the cursor. At this time link l2 will be “frozen”
relative to link l1 and hence move with it. Similarly, positioning the cursor on
link l2 and holding down the mouse button will make the second link rotate about
joint J1, with link l1 being “frozen” (and hence not moving at all). Each such
motion causes the appropriate link endpoint to rotate on a circular arc.

Or—this is another way to control the arm motion—one can position the
cursor at the endpoint P of link l2 and drag it to whatever position in the arm
workspace one desires, instantaneously or in a smooth motion. The arm endpoint
will follow the cursor motion, with both links moving accordingly. During this
motion the corresponding positions of both links are computed automatically in
real time, using the inverse kinematics equations. (Subjects are not told about
this mechanism, they just see that the arm moves as they expect.) This second
option allows one to control both links motion simultaneously. It is as if someone
moves your hand on the table—your arm will follow the motion.

We will assume that, unlike in the human arm, there are no limits to the motion
of each joint in Figure 7.5. That is, each link can in principle rotate clockwise
or counterclockwise indefinitely. Of course, after every 2π each link returns to
its initial position, so one may or may not want to use this capability. [Looking
ahead, sometimes this property comes in handy. When struggling with moving
around an obstacle, a subject may produce more than one rotation of a link.
Whether or not the same motion could be done without the more-than-2π link
rotation, not having to deal with a constraint on joint angle limits makes the test
psychologically easier for the subject.]

The difficulty of the test is, of course, that the arm workspace contains obsta-
cles. When attempting to move the arm to a specified target position, the subjects
will need to maneuver around those obstacles. In Figure 7.5 there are four obsta-
cles. One can safely guess, for example, that obstacle O1 may interfere with the
motion of link l1 and that the other three obstacles may interfere with the motion
of link l2.

Similar to the test with a labyrinth, in the arm manipulator test with complete
information the subject is given the equivalent of the bird’s-eye view: One has a
complete view of the arm and the obstacles, as shown in Figure 7.5. Imagine you
are that subject. You are asked to move the arm, collision-free, from its starting
position S to the target position T . The arm may touch an obstacle, but the system
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will not let you move the arm “through” an obstacle. Take your time—time is
not a consideration in this test.

Three examples of performance by human subjects in controlled experiments
are shown in Figure 7.6.3 Shown are the arm’s starting and target positions S and
T , along with the trajectory (dotted line) of the arm endpoint on its way from S

to T . The examples represent what one might call an “average” performance by
human subjects.4

The reader will likely be surprised by these samples. Why is human perfor-
mance so unimpressive? After all, the subjects had complete information about
the scene, and the problem was formally of the same (rather low) complexity
as in the labyrinth test. The difference between the two sets of tests is indeed
dramatic: Under similar conditions the human subjects produced almost optimal
paths in the labyrinth (Figure 7.2) but produced rather mediocre results in the
test with the arm (Figure 7.6).

Why, in spite of seeing the whole scene with the arm and obstacles (Figure 7.5),
the subjects exhibited such low skills and such little understanding of the task.
Is there perhaps something wrong with the test protocol, or with control means
of the human interface—or is it indeed real human skills that are represented
here? Would the subjects improve with practice? Given enough time, would they
perhaps be able to work out a consistent strategy? Can they learn an existing algo-
rithm if offered this opportunity? Finally, subjects themselves might comment that
whereas the arm’s work space seemed relatively uncluttered with obstacles, in
the test they had a sense that the space was very crowded and “left no room for
maneuvering.”

The situation becomes clearer in the arm’s configuration space (C-space,
Figure 7.7). As explained in Section 5.2.1, the C-space of this revolute–revolute
arm is a common torus (see Figure 5.5). Figure 7.7 is obtained by flattening
the torus by cutting it at point T along the axes θ1 and θ2. This produces
four points T in the resulting square, all identified, and two pairs of identified
C-space boundaries, each pair corresponding to the opposite sides of the C-space
square. For reference, four “shortest” paths (M-lines) between points S and T are
shown (they also appear in Figure 5.5; see the discussion on this in Section 5.2.1).
The dark areas in Figure 7.7 are C-space obstacles that correspond to the four
obstacles in Figure 7.5.

Note that the C-space is quite crowded, much more than one would think
when looking at Figure 7.5. By mentally following in Figure 7.7 obstacle outlines
across the C-space square boundaries, one will note that all four workspace
obstacles actually form a single obstacle in C-space. This simply means that
when touching one obstacle in work space, the arm may also touch some other

3The experimental setup used in Figure 7.6c slightly differs from the other two; this played no visible
role in the test outcomes.
4The term “average” here has no formal meaning: It signifies only that some subjects did better and
some did worse. A more formal analysis of human performance in this task will be given in the next
section. A few subjects did not finish the test and gave up, citing tiredness or hopelessness (“There
is no solution here”, “You cannot move from S to T here”. . .).
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(a)

(b)

(c)

Figure 7.6 Paths produced by three human subjects with the arm shown in Figure 7.5,
given complete information about the scene.
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TT

T T

S

Figure 7.7 C-space of the arm and obstacles shown in Figure 7.5.

obstacle, and this is true sequentially, for pairs (O1, O2), (O2,O3), (O3, O4),
(O4, O1). No wonder the subjects found the task difficult. In real-world tasks,
such interaction happens all the time; and the difficulties only increase with more
complex multilink arms and in three-dimensional space.

Operating the Arm with Incomplete Information. Similar to the test with
incomplete information in the labyrinth, here a subject would at all times see
points S and T , along with the arm in its current positions. Obstacles would be
hidden. Thus the subject moves the arm “in the dark”: When during its motion
the arm comes in contact with an obstacle—or, in the second version of the test,
some parts of the obstacle come within a given “radius of vision” rv from some
arm’s points—those obstacle parts become temporarily visible. Once the contact
is lost—or, in the second version, once the arm-to-obstacle distance increases
beyond rv —the obstacle is again invisible.

The puzzling observation in such tests is that, unlike in the tests with the
labyrinth, the subjects’ performance in moving the arm “in the dark” is on aver-
age indistinguishable from the test with complete information. In fact, some
subjects performed better when operating with complete information, while others
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performed better when operating “in the dark.” One subject did quite well “in the
dark,” then was not even able to finish the task when operating with a completely
visible scene, and refused to accept that in both cases he had dealt with the same
scene: “This one [with complete information] is much harder; I think it has no
solution.” It seems that extra information doesn’t help. What’s going on?

Human Versus Computer Performance with the Arm. As we did above
with the labyrinth, we can attempt a comparison between the human and computer
performance when moving the arm manipulator, under the same conditions. Since
in previous examples human performance was similar in tests with complete
and incomplete information, it is not important which to consider: For example,
the performance shown in Figure 7.6 is representative enough for our informal
comparison. On the algorithm side, however, the input information factor makes a
tremendous difference—as it should. The comparison becomes interesting when
the computer algorithm operates with incomplete (“sensing”) information.

Shown in Figure 7.8 is the path generated in the same work space of Figure 7.5
by the motion planning algorithm developed in Section 5.2.2. The algorithm
operates under the model with incomplete information. To repeat, its sole input
information comes from the arm sensing; known at all times are only the arm

S T

M1

ru

Figure 7.8 Path produced in the work space of Figure 7.5 by the motion planning algo-
rithm from Section 5.2.2; M1 is the shortest (in C-space) path that would be produced if
there were no obstacles in the workspace.
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positions S and T and its current position. The arm’s sensing is assumed to
allow the arm to sense surrounding objects at every point of its body, within
some modest distance rv from that point. In Figure 7.8, radius rv is equal to
about half of the link l1 thickness; such sensing is readily achievable today in
practice (see Chapter 8).

Similar to Figure 7.6, the resulting path in Figure 7.8 (dotted line) is the path
traversed by the arm endpoint when moving from position S to position T .
Recall that the algorithm takes as its base path (called M-line) one of the four
possible “shortest” straight lines in the arm’s C-space (see lines M1, M2,M3, M4

in Figure 5.5); distances and path lengths are measured in C-space in radians.
In the example in Figure 7.8, the shortest of these four is chosen (it is shown as
line M1, a dashed line). In other words, if no obstacles were present, under the
algorithm the arm endpoint would have moved along the curve M1; given the
obstacles, it went along the dotted line path.

The elegant algorithm-generated path in Figure 7.8 is not only shorter than
those generated by human subjects (Figure 7.6). Notice the dramatic differ-
ence between the corresponding (human versus computer) arm test and the
labyrinth test. While a path produced in the labyrinth by the computer algorithm
(Figure 7.4) presents no conceptual difficulty for an average human subject, they
find the path in Figure 7.8 incomprehensible. What is the logic behind those
sweeping curves? Is this a good way to move the arm from S to T ? The best
way? Consequently, while human subjects can easily master the algorithm in the
labyrinth case, they find it hard—in fact, seemingly impossible—to make use
of the algorithm for the arm manipulator.

7.2.3 Conclusions and Plan for Experiment Design

We will now summarize the observations made in the previous section, and will
pose a few questions that will help us design a more comprehensive study of
human cognitive skills in space reasoning and motion planning:

1. The labyrinth test is a good easy-case benchmark for testing one’s general
space reasoning abilities, and it should be included in the battery of tests.
There are a few reasons for this: (a) If a person finds it difficult to move
in the labyrinth—which happens rarely—he or she will be unlikely to
handle the arm manipulator test. (b) The labyrinth test prepares a subject
for the test with an easier task, making the switch to the arm test more
gradual. (c) A subject’s successful operation in the labyrinth test suggests
that whatever difficulty the subject may have with the arm test, it likely
relates to the subject’s cognitive difficulties rather than to the test design
or test protocol.

2. When moving the arm, subjects exhibit different tastes for control means:
Some subjects, for example, prefer to change both joint angles simulta-
neously, “pulling” the arm endpoint in the direction they desire, whereas
other subjects prefer to move one joint at the time, thus producing circular
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arcs in the path; see Figure 7.6. Because neither technique seems inher-
ently better or easier than the other, for subjects’ convenience both types
of control should be available to them during the test.

3. Since working with a bird’s-eye view (complete information) as opposed to
“in the dark” (incomplete information) makes a difference—clearly so in
the labyrinth test and seemingly less so in the arm manipulator test—this
dichotomy should be consistently checked out in the comprehensive study.

4. In the arm manipulator test it has been observed that the direction of arm
motion may have a consistent effect on the subjects’ performance. Obvi-
ously, in the labyrinth test this effect appears only when operating with
incomplete information (“moving in the dark”). This effect is, however,
quite pronounced in either test with the arm manipulator, with complete
or with incomplete information. Namely, in the setting of Figure 7.5, the
generated path and the time to finish were noted to be consistently longer
when moving from position T to S than when moving from S to T . This
suggests that it is worthwhile to include the direction of motion as a fac-
tor in the overall test battery. (And, the test protocol should be set up so
that the order of subtests has no effect on the test results.) One possi-
ble reason for this peculiar phenomenon is a psychological effect of one’s
paying more attention to route alternatives that are closer to the direction
of the intended route than to those in other directions. Consider the sim-
ple “labyrinth” shown in Figure 7.9: The task is to reach one point (S or
T ) from the other while moving “in the dark.” When walking from S to
T , most subjects will be less inclined to explore the dead-end corridor A
because it leads in a direction almost opposite to the direction toward T ,
and they will on average produce shorter paths. On the other hand, when
walking from T to S, more subjects will perceive corridor A as a promising
direction and will, on average, produce longer paths. Such considerations
are harder to pinpoint for the arm test, but they do seem to play a role.5

5. The less-than-ideal performance of the subjects in the arm manipulator tests
makes one wonder if something else is at work here. Can it be that the
human–computer interface offered to the subjects is somewhat “unnatural”
for them—and this fact, rather than their cognitive abilities, is to blame
for their poor performance? Some subjects did indeed blame the computer
interface for their poor performance.6 Some subjects believed that their
performance would improve dramatically if they had a chance to operate a
physical arm rather than a virtual arm on the computer screen (“if I had a
real thing to grab and move in physical space, I would do much better. . .”).
This is a serious argument; it suggests that adding a physical test to the
overall test battery might provide interesting results.

5Of course, no such effect can be expected for the computer algorithm.
6An “unscientific” observation made here was that older subjects, such as visiting professors who
graciously agreed to participate in the experiment, were more critical of the human–computer inter-
face than younger subjects. The latter were more willing than the former to accept the test results
as measuring their real spatial reasoning abilities.
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Figure 7.9 In this simplistic maze, the subjects seem less inclined to explore the dead-
end corridor A when walking from S to T than when walking from T to S.

6. Based on standard practice for cognitive tests, along with some subjects’
comments, it is worthwhile to explore human motion planning skills along
some demographic lines. For example,
• Performance as a function of gender (consider the proverbial proficiency

of men in handling maps).
• Performance as a function of age: For example, are children better than

adults in spatial reasoning tasks (as they seem to be in some computer
games or with the Rubik’s Cube)?

• Performance as a function of educational level and professional orienta-
tion: For example, wouldn’t we expect students majoring in mechanical
engineering to do better in our tests than students majoring in comparative
literature?

7. Finally, there is an important question of training and practice. We all know
that with proper training, people achieve miracles in motion planning; just
think of an acrobat on a high trapeze. In the examples above, subjects
were given a chance to get used to the task before a formal test was
carried out, but no attempt was made to consistently study the effect of
practice on human performance. The effect of training is especially serious
in the case of arm operation, in view of the growing area of teleoperation
tasks (consider the arm operator on the Space Shuttle, or a partially disabled
person commanding an arm manipulator to take food from the refrigerator).
This suggests that the training factor must be a part of the larger study.

This list covers a good number of issues and consequently calls for a rather
ambitious study. In the specific study described below, not all questions on the
list have been addressed thoroughly enough, due to the difficulty of arranging a
statistically representative group of subjects. Some questions were addressed only
cursorily. For example, attempts to enlist in the experiment a local kindergarten
or a primary school had a limited success, and so was an attempt to round up
enough subjects over the age of 60.

The very limited number of tests carried out for these insufficiently studied
issues provide these observations: (a) Children do not seem to do better than
adults in our tests. (b) Subjects aged 60 and over seem to have significantly more
difficulty carrying out the tests: in the arm test, in particular, they would give
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Figure 7.10 The physical two-link arm used in the tests of human performance.

up more often than younger subjects before reaching the solution. (c) The level
of one’s education and professional orientation seems to play an insignificant
role: Secretaries do as well or as poorly as mechanical engineering PhDs or
professional pilots, who pride themselves in their spatial reasoning.

The Physical Arm Test Setup. This experimental system has been set up in
a special booth, with about 5 ft by 5 ft floor area, enough to accommodate a
table with the two-link arm and obstacles, and a standing subject. The inside
of the booth is painted black, to help with the “move in the dark” test. For a
valid comparison of subjects’ performance with the virtual environment test, the
physical arm and obstacles (Figure 7.10) are proportionally similar to those in
Figure 7.5. (Only two obstacles can be clearly seen in Figure 7.10; obstacle O1

of Figure 7.5 was replaced for technical reasons by two stops; see Figure 7.10.)
For the subjects’ convenience the arm is positioned on a slightly slanted table.

Each arm link is about 2 ft long. A subject moves one or both arm links using the
handles shown. During the test the arm positions are sampled by potentiometers
mounted on the joint axes, and they are documented in the host computer for
further analysis, together with the corresponding timing information.7

Special features have been added for testing the scene visibility factor. Opening
the booth doors and turning on its light produces the visible scene; closing the

7The physical arm and the booth system, including hardware, electronics, and related software, have
been designed by Branimir Stankovic and Steve Seaney at the University of Wisconsin Robotics
Laboratory [120].
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door shut and turning off the light makes it an invisible environment. For the
latter test, the side surfaces of the arm links and of the obstacles are equipped
with densely spaced contacts and LED elements located along perimeters of both
links (Figure 7.10). There are 117 such LEDs on the inner link (link 1) and 173
LEDs on the outer link (link 2). When a link touches an obstacle, one or more
LEDs light up, informing the subject of a collision and giving its exact location.
Visually, the effect is similar to how a contact is shown in the virtual arm test.8

7.3 EXPERIMENT DESIGN

7.3.1 The Setup

Two batteries of tests, called Experiment One and Experiment Two, have been
carried out to address the issues listed in the previous section. Experiment One
addresses the effect of three factors on human performance: interface factor,
which focuses on the effect of a virtual versus physical interface; visibility factor,
which relates to the subject’s seeing the whole scene versus the subject’s “moving
in the dark”; and direction factor, which deals with the effect of the direction of
motion in the same scene. Each factor is therefore a dichotomy with two levels.
We are especially interested in the effects of interface and visibility, since these
affect most directly one’s performance in motion planning tasks. The direction
of motion is a secondary factor, added to help clarify the effect of the other
two factors.

Experiment Two is devoted specifically to the effect of training on one’s
performance. The effect is studied in the context of the factors described above.
One additional factor here, serving an auxiliary role, is the object-to-move factor,
which distinguishes between moving a point robot in a labyrinth versus moving
a two-link arm manipulator among obstacles. The arm test is the primary focus
of this study; the labyrinth test is used only as a benchmark, to introduce the
human subjects to the tests’ objectives.

The complete list of factors, each with two levels (settings), is therefore as
follows9:

A. Object-to-move factor, with two levels:
1. Moving a point robot in a labyrinth, as in Figure 7.1.
2. Moving a two-link revolute-revolute arm manipulator in a planar work-

space with obstacles, as in Figure 7.5.
B. Interface factor, with two levels:

1. In this test, called the virtual test, the subject operates on the computer
screen, moving the arm links with the computer mouse; all necessary help

8In addition to this arm, a wooden mockup of the arm, of the same dimensions as the test arm, was
built and installed outside the booth, to help subjects practice their motor skills in the task.
9More details on the experiment design and test conditions can be found in Ref. 121.
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is done by the underlying software. Both the labyrinth test (Figure 7.1)
and the arm test (Figure 7.5) are done in this version.

2. In this test, called the physical test, the subject works in the booth,
moving the physical arm (Figure 7.10). Only the arm tests, and no
labyrinth tests, were done in this version.

C. Visibility factor, with two levels:
1. Visible environment: The object (one of those in factor A) and its envi-

ronment are fully visible.
2. Invisible environment: Obstacles cannot be seen by the subject, except

when the robot (in case of the point robot) or a part of its body (in case
of the arm) is close enough to an obstacle, in which case a small part
of the obstacle near the contact point becomes visible for the duration
of contact. The arm is visible at all times.

D. Direction factor (for the arm manipulator test only), with two levels:
1. “Left-to-right” motion (denoted below LtoR), as in Figure 7.8.
2. “Right-to-left” motion (denoted RtoL); in Figure 7.8 this would corre-

spond to moving the arm from position T to position S.
E. Training factor. The goal here is to study the effect of prior learning and

practice on human performance. This factor is studied in combination with
all prior factors and has two levels:
1. Subjects’ performance with no prior training. Here the subjects are only

explained the rules and controls, and are given the opportunity to try
and get comfortable with the setup, before the actual test starts.

2. Subjects’ performance is measured after a substantial prior training and
practice.

Therefore, the focus of Experiment One is on factors B, C, and D, and the
focus of Experiment Two is on factor E (with the tests based on the same factors
B, C, and D). Because each factor is a dichotomy with two levels, all possible
combinations of levels for factors B, C, and D produce eight tasks that each
subject can be subjected to:

Task 1: Virtual, visible, left-to-right
Task 2: Virtual, visible, right-to-left
Task 3: Virtual, invisible, left-to-right
Task 4: Virtual, invisible, right-to-left
Task 5: Physical, visible, left-to-right
Task 6: Physical, visible, right-to-left
Task 7: Physical, invisible, left-to-right
Task 8: Physical, invisible, right-to-left

In addition to these tasks, a smaller study was carried out to measure the effect
of three auxiliary variables:
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(a) gender, with values “males” and “females”,
(b) specialization, with values “engineering,” “natural sciences,” and “social

sciences”, and
(c) age, with values “15–24,” “25–34”, and “above 34”.

A total of 48 subjects have been tested in Experiment One, with the following
distribution between genders, specializations, and age groups:

Gender : 23 males and 25 females
Specialization: engineering, 16; natural sciences, 20; social sciences, 12
Age groups: age 15–24, 32 subjects; age 25–34, 12 subjects; age above 34,

4 subjects

From the standpoint of statistical tests, subjects have been selected randomly,
and so test observations can be considered mutually independent.

One problem that must be addressed in the test protocol is avoiding the learning
effect: We need to prevent the subjects from using in one test the knowledge that
they acquired in a prior test. Then one’s performance is independent of the order
of tasks execution. This is important when randomly varying the order of tasks
between subjects, a standard technique in cognitive skills tests. This has been
achieved by making each subject go through 4 out of 8 tasks. For example, a
subject who went through the virtual–visible–LtoR task would not be subjected
to the virtual–visible–RtoL task. With this constraint, half of the subject pool did
tasks 1, 4, 5, 8, while the other half did tasks 2, 3, 6, and 7 from the list above.

As a result, each of the eight tasks should have 24 related observation sets,
each set including the path length, the completion time, and the actual data on the
generated path for one subject. (In reality, two observation sets for the physical
test, one for the visible–RtoL and the other for the invisible-LtoR combina-
tion, were documented incorrectly and were subsequently discarded, leaving 23
observations for Task 6 and Task 7 each.)

Another way to group the observed data is by the three factors (interface, visi-
bility, direction), each with two levels: (virtual, physical), (visible, invisible), and
(LtoR, RtoL). This grouping produces six data sets and is useful for studying sepa-
rate effects on human performance—for example, the effect on one’s performance
of moving a visible arm or moving left to right (see the next section). With two lost
observations mentioned above, the sizes of the six data sets are as follows:

Set 1: Interface data for “virtual”—96 observations
Set 2: Interface data for “physical”—94 observations
Set 3: Visibility data for “visible”—95 observations,
Set 4: Visibility data for “invisible”—95 observations,
Set 5: Direction data for “left to right”—95 observations,
Set 6: Direction data for “right to left”—95 observations.

A total of 12 subjects have been tested in Experiment Two.
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Performance Criteria. Two criteria have been used to measure subjects’ per-
formance in the tasks:

1. The length of generated path (called Path)
2. The task completion time (called Time)

In the labyrinth tests the path length is the actual length of the path a subject
generates in the labyrinth. In the arm manipulator test the path length is measured
as the sum of two modulo link rotation angles in radians. Time, in seconds, is
the time it takes a subject to complete the task.

Statistical Considerations. In statistical terms, the length of path and the
completion time are dependent variables, and the test conditions, as represented
by factors and levels, are independent variables. If, for example, we want to
compare the effect of a visible scene versus invisible scene on the length of
paths produced by the subjects, then visibility is an independent variable (with
two values, visible and invisible), and the length of path is a dependent variable.

As one would expect, the dependent variables Path and Time are highly
correlated: In Experiment One the correlation coefficient between the two is
r(Path, Time) = 0.74.

A multivariate observation for a particular subject is the set of scores of
this subject in a given task; it is thus a vector. For example, for Subject 1 the
dependent variable vector (Path, Time) in Task 1 (virtual-visible-LtoR) happened
to be (59; 175).

The concept of statistical significance (see e.g., [127]) is a quantitative index
of reliability of a given result or statement, usually in terms of a variable in ques-
tion. Specifically, the significance p-level represents the probability of an error
involved in accepting an observed result (or statement) as valid, or as representa-
tive of the population. In practice, results corresponding to the significance level
p ≤ 0.05 are usually considered significant.

Put differently, p-level indicates the probability of error when rejecting some
related null hypothesis. A null hypothesis, denoted as H0, relates to making
a statement about the observation data—for example, when deciding whether
two sets of data came from the same population of data. If a statistical test
suggests that the null hypothesis should be rejected, say with significance level
p ≤ 0.01, we can conclude that the two samples differ significantly, or that the
variable of interest has a significant effect on the sample data. If the test results
suggest accepting the null hypothesis, we conclude that the two samples do
not differ significantly, and hence the variable of interest has no effect on the
sample data.

7.3.2 Test Protocol

The salient characteristics of the test protocol can be summarized as follows (more
details on the experiment design and test conditions can be found in Ref. 121):
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• The primary focus in the study is on tests with the arm manipulator (see
Figure 7.5). The labyrinth test is used only as a benchmark, for introducing
the subjects to the tests and the study’s underlying ideas.

• The bulk of the subject pool for this study was paid undergraduate stu-
dents and also some graduate students. (There was no statistical difference
in performance between the two groups.)

• In the first session, about one hour long, a subject would be taught how to
carry out a test and would be given a pilot test to ascertain that he/she can
be submitted to the test; the latter would be different from the pilot test.

• The maximum time a subject was given to finish the test with the arm
manipulator was 15 minutes. Much less was allowed for the labyrinth test:
As a rule, 1–2 minutes were enough. These limits were chosen as a rough
estimate of the time the subjects would need to complete a test without
feeling time pressure. Most subjects finished their tasks well within the
time allocation; those few who didn’t were not likely to finish even with
significantly more time.

• Measures were taken to eliminate the effect of a subject’s memory recall, or
information passing, from one task to another. In the invisible version of the
arm test, rotating the whole scene on the computer screen for a consequent
session would practically eliminate the effect of memorization from prior
sessions. This also helps from the test protocol standpoint: Using the same
scene in subsequent tests allows for an “apples-with-apples” assessment of
subjects’ performance.

7.4 RESULTS—EXPERIMENT ONE

The basic (descriptive) statistics for motion planning tests carried out in Experi-
ment One are given in Table 7.1. Statistics are given separately for each depen-
dent variable, the length of path (Path) and the time to completion in seconds
(Time), and within each dependent variable for each of the eight tasks listed
in Section 7.3.1. Each line in Table 7.1 refers to a given task and includes the
number of tested subjects (“Valid N” statistics) as well as the mean, minimum,
maximum, and standard deviation of the correspondent variable.

A quick glance at the table provides a few observations that we will address
in more detail later. One surprise is that the subjects’ performance with the right-
to-left direction of motion was significantly worse than their performance with
the left-to-right direction of motion: Depending on the task, the mean length of
path for the right-to-left direction is about two to five times longer than that for
the left-to-right direction.10

10This alone would make a smart robot conclude that we humans are terribly inconsistent: What
prevents one, the robot would think, from going from point B to point A along the same path one
takes when going from A to B!
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Another surprise is that the statistics undermines the predominant belief among
subjects and among robotics and cognitive science experts that humans should
be doing significantly better when moving a physical as opposed to a virtual arm.
Isn’t the physical arm quite similar to our own arm, which we use so efficiently?
To be sure, the subjects did better with the physical arm—but only a little
better, not by as much as one would expect, and only for the (easier) left-to-right
direction of motion. Once the task became a bit harder, the difference disappeared:
When moving the physical arm in the right-to-left direction, more often than not
the subjects’ performance was significantly worse than when moving the virtual
arm in the left-to-right direction, and more or less comparable to moving the
virtual arm in the same right-to-left direction (see Table 7.1).

In other words, letting a subject move the physical arm does not guarantee
more confidence than when moving a virtual arm: Some other factors seem to
play a more decisive role in the subjects’ performance. In an attempt to extract
the (possibly hidden) effects of our experimental factors on one’s performance,
two types of analysis have been undertaken for the Experiment One data:

• The first one, Principal Components Analysis (PCA), has been carried out
as a preliminary study, to understand the general nature of obtained obser-
vation data and to see if such factors as subjects’ gender, specialization, and

TABLE 7.1. Descriptive Statistics for the Data in Experiment One

Descriptive Statistics

Variable/Task Valid N Mean Minimum Maximum Std. Dev.

Length of path
Virtual–visible–LtoR 24 58.77 18.26 147.23 31.74
Virtual–visible–RtoL 24 176.92 29.54 391.41 91.28
Virtual–invisible–LtoR 24 85.82 21.88 340.15 71.65
Virtual–invisible–RtoL 24 156.08 17.59 392.41 96.89
Physical–visible–LtoR 23 27.70 13.92 51.69 11.64
Physical–visible–RtoL 24 142.97 15.78 396.45 109.38
Physical–invisible–LtoR 24 60.57 15.17 306.13 75.78
Physical–invisible–RtoL 23 160.19 14.26 501.59 145.10

Time to completion:
Virtual–visible–LtoR 24 265.54 82 595 163.19
Virtual–visible–RtoL 24 692.79 186 912 252.00
Virtual–invisible–LtoR 24 376.02 72 920 282.82
Virtual–invisible–RtoL 24 675.75 66 941 329.91
Physical–visible–LtoR 24 46.21 14 102 26.49
Physical–visible–RtoL 24 218.50 15 902 228.44
Physical–invisible–LtoR 24 122.88 19 612 155.37
Physical–invisible–RtoL 24 299.88 22 900 244.63
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age group have a noticeable effect on the subjects’ performance in motion
planning tasks.

• The second, more pointed analysis addresses separate effects of individual
factors on subjects’ performance—the effect of interface (virtual versus
physical), scene visibility, and the direction of motion. This study makes
use of tools of nonparametric analysis and univariate analysis of variance.
Only brief summaries of the techniques used are presented below. For more
details on the techniques the reader should refer to the sources cited in the
text below; for details related to this specific study see Ref. 121.

7.4.1 Principal Components Analysis

We attempt to answer the following questions:

1. To what extent are the factors used—interface (virtual or physical), scene
visibility, and direction of motion—indicative of human performance?

2. Can these factors be replaced by some “hidden” factors that describe the
same data in a clearer and more compact way?

3. Which factor or which part of the factor’s variance is most indicative of
one’s performance in a motion planning task?

4. Do the patterns of subjects’ performance differ as a function of their gender,
college specialization, and age group?

5. Can we predict one’s performance in one task based on their performance
in another task?

Principal Components Analysis (PCA) addresses these questions based on
analysis of the covariance matrix of the original set of independent variables
[122, 123]. In our case this would be the covariance matrix of a set of two-
level tasks. The analysis seeks to identify “hidden” factors—called the principal
components—which turn out to be eigenvectors of the sample covariance matrix.
The matrix’s eigenvalues represent variation of the principal components; the sum
of eigenvalues is the total variance of the original sample data and is equal to
the sum of variances of the original variables.

With the principal components (eigenvectors) conveniently ordered from the
largest to the smallest, the first component accounts for most of the total variance
in the sample data, the second component accounts for the next biggest part
of the total variance, and so on. The first component can thus be called the
“most important hidden factor,” and so on. This ordering sometimes allows the
researcher to (a) drop the last few components if they account for too small a
part of the total variance and (b) claim that the data can be adequately described
via a smaller set of variables. Often attempts are made to interpret the “hidden
factors” in physical terms, arguing that if the hidden factors could be measured
directly they would allow a significantly better description of the phenomenon
under discussion.
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Let X be the column matrix of the original sample data; its element xij is
the value of the j th sample variable (the j th column vector of X) for the ith
observation row vector (the ith subject, ith row of X). Denote the covariance
matrix computed from the sample matrix X by R. Let matrix A contain as
its column vectors the eigenvectors of matrix R: The ith column of A is the
ith principal component of R. Both R and A are square matrices of the same
rank (normally equal to the number of sample variables). Matrix A can then
be seen as a transformation matrix that relates the original data to the principal
components: Each original data point (described by a row vector of X) can now
be described in terms of new coordinates (principal components), as a row vector
z; hence

Z = X * A (7.1)

Let matrix � be a diagonal matrix of the same rank, with eigenvalues of R in
its diagonal positions, ordered from largest to smallest.

The matrix of principal component loadings, denoted by L, is

L = A *�1/2 (7.2)

An element lij of the square matrix L is the correlation coefficient between the ith
variable and the j th principal component. It informs us about the “importance,” or
“contribution,” of the ith variable to the j th principal component. Geometrically,
the loading is the projection of ith variable onto the j th component.

If only independent variables represented by the interface and visibility factors
are considered in our arm test, this will include four out of the eight tasks listed
in Section 7.3.1:

virtual–visible
virtual–invisible
physical–visible
physical–invisible

The loading matrix of the corresponding four principal components in the arm test
is shown in Table 7.2. As seen in the table, the first PC (principal component)
accounts for 36.3% of the total variance (top four numbers in column 1) and
is tied primarily to the virtual–visible and physical–invisible tasks (0.679 and
0.695 loads, accordingly). The second PC accounts for the next 25.6% of the
total variance and is tied primarily to the other two tasks, virtual–invisible and
physical–visible (loads 0.666 and 0.739), and so on. Since the contribution of
successive PCs into the total variance falls off rather smoothly, with 85.9% of
the variance being accounted for by the first three PCs, we conclude (somewhat
vaguely) that to a large extent the four tasks measure something different, each
one bringing new information about the subjects’ performance, and hence cannot
be replaced by a smaller number of “hidden factors.”
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TABLE 7.2. Loadings for the Principal Components in the Arm Manipulator Test

Principal component number 1 2 3 4

Task
Virtual–visible 0.679 0.082 −0.238 −0.690
Virtual–invisible 0.164 0.666 0.728 −0.011
Physical–visible −0.170 0.739 −0.637 0.139
Physical–invisible 0.695 −0.056 −0.095 0.710

Eigenvalues 1.453 1.023 0.958 0.566
Cumulative percent of total variation 36.3% 61.9% 85.9% 100%

Using Eq. (7.1), the scores on all PCs can now be calculated for all subjects
and plotted accordingly. The scores have been obtained and plotted in this study
in various forms—for example, in three-dimensional space of the first three
PCs and in two-dimensional plots for different pairs of PCs (e.g., a plot in
plane PC1 versus PC2, etc.). By labeling the subjects (which become points in
such plots) with additional information categories, such as their specialization
majors, gender, and age, score plots regarding those categories have been also
obtained.

These plots (see Ref. [121]) happen to provide no interesting conclusions about
the importance of principal components or of their correlations with the subjects’
specialization, gender, or age. Namely, we conclude that contrary to the common
wisdom, engineering and computer science students, whose specialities can be
expected to give them an edge in handling spatial reasoning tasks, have done no
better than students with majors in the arts and social sciences. Also, men did
no better than women.

This does not give us a right, however, to make sweeping conclusions of one
sort or another. The Principal Component Analysis (PCA) is designed to study
the input variables as a pack, and in particular to uncover the biggest sources of
variation between independent variables of the original test data. Our “variables”
in this study are, however, tasks, not individual variables. Each task is a com-
bination of variables: For example, Task 1—that is, virtual–visible–LtoR—is
a combination of three variables: interface, visibility, and direction of motion.
Within the PCA framework it is hard to associate the test results with individual
variables.

We may do better if we switch to other statistical techniques, those that
lend themselves to studying specific effects in sample distributions. They can
also yield conclusions about the effect of individual factors on dependent vari-
ables. For example, statistical tests may be a better tool for determining to what
extent the visibility factor affects a specific side of human performance, say
the length of generated paths in motion planning tasks. We will consider such
techniques next.
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7.4.2 Nonparametric Statistics

Brief Review. Both parametric and nonparametric statistical techniques require
that observations are drawn from the sampled population randomly and indepen-
dently. Besides, parametric techniques rely on an assumption that the underlying
sample data are distributed according to the normal distribution. Nonparametric
techniques do not impose this constraint. Because the distribution of sample data
in our experiments looks far from normal, nonparametric methods appear to be
a more appropriate tool.

The Mann–Whitney U-test [124] is one of the more powerful nonparamet-
ric tests. It works by comparing two subgroups of sample data. For a given
variable under study, the test assesses the hypothesis that two independently
drawn sets of data come from two populations that differ in some respect—that
is, differ not only with respect to their means but also with respect to the
general shape of the distribution. Here the null hypothesis, H0, is that both
samples come from the same population. If the test suggests that the hypoth-
esis should be rejected, say with the significance level p ≤ 0.01, we will con-
clude that the samples differ significantly, and hence the variable of interest
has a significant effect on the sample data. If the test results suggest accept-
ing the null hypothesis, we will conclude that the two sample sets do not
differ significantly, and hence the variable of interest has no effect on the sam-
ple data.

Order statistics is an ordering of the set Xi into a set X(i) such that

X(1) ≤ · · · ≤ X(m)

Rank, referred to as R∗
i , is the new indexing of the set X(i), such that Xi =

X(R∗
i
).

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from continu-
ous distributions with distribution functions F(x) and G(x) = F(x − �), respec-
tively, where � is an unknown shift parameter. The hypotheses of interest are:

• H0: � = 0.
• H1: � ≤ 0.

Let Qi , i = 1, . . . , m, and Rj , j = 1, . . . , n, be the ranks of Xi and Yj , respec-
tively, among the N = (m + n) combined X and Y observations. That is, Rj

is the rank of Yj among the m Xs and n Y s, combined and treated as a sin-
gle set of observations. Similarly for Qi . This implies that the rank vector R∗ =
(Q1, . . . ,Qm,R1, . . . , Rn) is simply a permutation of sequence (1, . . . , N);
although random, it hence must satisfy the constraint:

m∑
i=1

Qi +
n∑

j=1

Rj =
N∑

i=1

i = N(N + 1)

2
(7.3)
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To test the null hypothesis H0 against the alternative hypothesis H1, we use
the rank sum statistics by Wilcoxon and by Mann and Whitney [125]. The test
statistics by Wilcoxon is

W =
n∑

i=1

Ri (7.4)

That is, W is the sum of ranks for the sample observations Y when ranked among
all (m + n) observations. The test statistics by Mann and Whitney is

U =
m∑

i=1

n∑
j=1

�(Yj − Xi) (7.5)

where �(t) = 1 for t > 0, otherwise �(t) = 0 for t ≤ 0. It represents the total
number of times a Y observation is larger than an X observation. W and U are
linearly related,

W = U + n(n + 1)

2

Therefore, the discrete distribution of W or U under the null hypothesis H0 is
something that we might know or can tabulate from permutations of the sequence
(1, . . . , N). The test will be of the form

reject H0: � = 0 in favor of H1: � ≤ 0 if and only if W ≥ w(α, m, n)

where w(α, m, n) is some accepted critical value that is dependent on a desired
significance level α and sample sizes m and n. In other words, the Mann–Whitney
U-test is based on rank sums rather than sample means.

Implementation. As mentioned in Section 7.3.1, Experiment One includes a
total of six group data sets, with 94 to 96 sample size each, related to three
independent variables: direction of motion, visibility, and interface. Each variable
has two levels. The data satisfy the statistical requirement that the observations
appear from their populations randomly and independently. The objectives of the
Mann–Whitney U-test here are as follows:

• Compare the left-to-right group data with the right-to-left group data, thereby
testing the effect of the direction variable.

• Compare the visible group data with the invisible group data, testing the
effect of the visibility variable.

• Compare the virtual group data with the physical group data, testing the
effect of the interface variable.

The null hypothesis H0 here is that each of the two group data were drawn
from the same population distribution, for each variable test, respectively. The
alternative hypothesis H1 for the corresponding test is that the two group data
were drawn from different population distributions.
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If results of the Mann–Whitney U-test show that a significant difference exists
between the two group data—which means that a certain independent variable
has a significant effect—we will break the group data associated with that inde-
pendent variable into subgroups to find possible simpler effects. In this case,
interaction effects might be found.

Results

1. The results of testing the effect of direction of motion, with data groups,
RtoL and LtoR, are shown in Table 7.3. “Valid N” is the valid number of observa-
tions. Given the significance level p < 0.01, we reject the null hypothesis (which
is that the two group samples come from the same population). This means there
is a statistically significant difference between the “right to left” data set and the
“left to right” data set. We therefore conclude that the direction-of-motion variable
has a statistically significant effect on the length of paths generated by subjects.
This is surprising, and we had already a hint of this surprise from Table 7.1.

2. The results of testing the effect of visibility factor, with the visible and
invisible group data sets, are shown in Table 7.4; here, Vis stands for “visible”
and Invis stands for “invisible.” Given the significance level p > 0.01, we accept
the null hypothesis (which says that the two group samples came from the same
population). We therefore conclude that the visibility factor has no statistically
significant effect on the length of paths generated by the subjects.

This is a serious surprise: The statistical test says that observation data from
the subjects’ performance in motion planning tasks contradicts the common belief
that seeing the scene in which one operates should help one perform in it sig-
nificantly better than if one “moves in the dark.” While the described cognitive
tests leave no doubt about this result, its deeper understanding will require more
testing with a wider range of tasks. Indeed, we know from the tests—and it

TABLE 7.3. Results of Mann–Whitney Test on the Direction-of-Motion Factor

Mann–Whitney Test Variable: Direction. Group 1: RtoL; Group 2: LtoR

Rank Sum Valid N

Variable RtoL LtoR U p-Level RtoL LtoR

Path length 6250.000 11895.00 1690.000 0.000000 95 95

TABLE 7.4. Results of Mann–Whitney Test on the Visibility Factor

Mann–Whitney test Variable: Visibility. Group 1: vis; Group 2: invis

Rank Sum Valid N

Variable Vis Invis U p-Level Vis Invis

Path length 8881.000 9264.000 4321.000 0.613376 95 95
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agrees with our intuition—that an opposite is true in the point-in-the-labyrinth
test: One performs significantly better with a bird’s-eye view of the labyrinth
than when seeing at each moment only a small part of the labyrinth.

Apparently, something changes dramatically when one switches from the
labyrinth test to moving a kinematic structure, the arm test. With the arm, mul-
tiple points of the arm body are subject to collision, the contacts may happen
simultaneously, and the relation between some such points keeps changing as
the arm links move relative to each other. It is likely (and some of our tests
confirm this) that in simpler tasks where the arm cannot touch more than one
obstacle at the time the visibility factor will play a role similar to the labyrinth
test. It is clear, however, that if our more general result holds after a sufficient
training of subjects (see Experiment Two below), we cannot rely on operator’s
skills in more complex tasks of robot arm teleoperation. Providing the robot with
more intelligence—perhaps of the kind developed in Chapters 5 and 6—will be
necessary to successfully handle teleoperation tasks.

3. The results of testing the effect of interface on the simulation group data
and the booth group data are shown in Table 7.5; here, Virt stands for “virtual”
and Phys stands for “physical.” Given the significance level p < 0.01, we reject
the null hypothesis (which says the two group data sets came from the same pop-
ulation). We therefore conclude that there is a statistically significant difference
between the virtual tests (tests where subjects move the arm on the computer
screen) and “physical” tests (tests where subjects move the physical arm). In
other words, the interface factor has a statistically significant effect on the length
of paths produced by the subjects. Furthermore, this effect is present whether or
not the task is implemented in a visible or invisible environment, and whether
or not the direction of motion is left-to-right or right-to-left.

While the Mann–Whitney statistical test isolates the single factor we are
interested in, the interface factor, its results do not reconcile easily with the
observations summarized in Table 7.1. Namely, Table 7.1 shows that while in
the easier (left-to-right) task the subjects performed better with the physical arm
than with the virtual arm, this difference practically disappeared in the harder
(right-to-left) task. This calls for more refined statistical tests, with two separate
direction-of-motion data sets. These are summarized next.

4. Here the Mann–Whitney test measures the effect of the interface factor
using only the left-to-right (LtoR) data sets. The results are shown in Table 7.6.
Given the significance level p < 0.01, we reject the null hypothesis and conclude
that in the left-to-right task there is a statistically significant difference between

TABLE 7.5. Results of Mann–Whitney Test on the Interface Factor

Mann–Whitney Test Variable: Interface. Group 1: Virt; Group 2: Phys

Rank Sum Valid N

Variable Virt Phys U p-Level Virt Phys

Path length 10427.00 7718.000 3253.000 0.000895 96 94
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TABLE 7.6. Results of Mann–Whitney Test on the Interface Factor for LtoR Task

Mann–Whitney Test Variable: Interface (LtoR only). Group 1: Virt; Group 2: Phys

Rank Sum Valid N

Variable Virt Phys U p-Level Virt Phys

Path length 2943.000 1617.000 489.0000 0.000002 48 47

TABLE 7.7. Results of Mann–Whitney Test on the Interface Factor for the RtoL
Task

Mann–Whitney Test Variable: Interface (RtoL). Group 1: Virt; Group 2: Phys

Rank Sum Valid N

Variable Virt Phys U p-Level virt phys

Path length 2505.000 2055.000 927.0000 0.134619 48 47

the virtual group data and the physical group data. This result agrees with the
results above obtained for the combined LtoR and RtoL data.

5. Here the Mann–Whitney U-test measures the effect of the interface fac-
tor using only the right-to-left (RtoL) task data sets. The results are shown in
Table 7.7. Given the significance level p > 0.01, we accept the null hypothesis
and thus conclude that in this more difficult motion planning task there is no sta-
tistically significant difference between the subjects’ performance when moving
the virtual arm and when moving the physical arm.

The last three test results (3, 4, and 5) imply a complex relationship between
the subjects’ performance and the type of interface used in the test. This points to
a possibility of an interaction effect between the interface factor and the direction-
of-motion factor. To clarify this issue, we turn in the next section to analysis of
variance of sample data.

7.4.3 Univariate Analysis of Variance

Assumptions. The purpose of analysis of variance (ANOVA), which is also
the name of the technique that serves this purpose, is to probe the data for
significant differences between the means of sets of data, with the number of sets
being at least two. The technique performs a statistical test of comparing variances
(hence the name). This objective is very similar to the objective of nonparametric
analysis above, except that ANOVA can sometimes be more sensitive. In addition,
besides testing individual effects of independent variables, ANOVA can also test
for interaction effects between variables.

To apply the analysis of variance, we need some assumptions about the data.
As before, we assume that the experimental scores have been sampled randomly
and independently, from a normally distributed population with a group mean
and an overall constant variance. Since the assumption may be too restrictive for



RESULTS—EXPERIMENT ONE 363

real data, we need to address the effect of this assumption being invalid. The
statistical F test [126] used in the next section is known to be fairly robust to
deviations from normality.11

One-Way Analysis of Variance. The simplest data structure, called a one-way
layout, has one or more observations at every level of a single factor. We call
each level of a one-way layout a group or cell. For example, the path length
scores obtained by subjecting 96 randomly selected subjects to motion planning
tasks in a visible and invisible environments form a one-way layout. The single
factor is visibility, and the two groups are visible and invisible. Let us denote
these groups A1 and A2, respectively.

The one-way analysis of variance in this example will attempt to answer the
following question: Do data from the visible and invisible groups really score
differently on the path length, and is the difference due to the random selection
of subjects? The corresponding null and alternative hypotheses relate to unknown
population averages for the groups, µi :

• H0: µi = µ for all Ai , i = 1, 2
• H1: µ1 �= µ2

Suppose Xij represents the jth sampled score from group Ai , i = 1, 2 . . . , m;
j = 1, 2, . . . , ni . Here m is the number of groups, and ni is the number of
observations in each group; N is the total number of observations, N = m ∗ ni .
Then the mean of group Ai is

Xi· = 1

ni

∑
j

Xij (7.6)

and the grand mean for all groups is

X·· = 1

N

∑
i

∑
j

Xij (7.7)

For this one-way layout there are three estimates of variance of population:

1. Mean Square Within, MSw, and Sum of Squares Within, SSw, with MSw

being the average of estimates of variances within individual groups,

MSw = 1

m

∑
i

1

n − 1

∑
j

(Xij − Xi.)
2

SSw =
∑

i

∑
j

(Xij − Xi.)
2

(7.8)

11Also, according to the central limit theorem, if the sample size is fairly large, deviations from
normality do not matter much [126].
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2. Mean Square Between, MSb, and Sum of Squares Between, SSb, with MSb

being the estimated variance of means among groups,

MSb = n

m − 1

∑
i

(Xi. − X..)
2

SSb = n
∑

i

(Xi. − X..)
2

(7.9)

3. Mean Square Total, MSt , and Sum of Squares Total, SSt , with MSt being
the estimated variance of the total mean (ignoring group membership),

MSt = 1

N − 1

∑
i

∑
j

(Xij − X..)
2

SSt = SSw + SSb

(7.10)

The Mean Square Within, SSw, is usually called error variance. The term implies
that one cannot readily account for this value in one’s data. The Mean Square
Between, SSb, usually called effect variance, is due to the difference in means
between the groups. Consider the ratio

F = MSb

MSw

∼ F(m−1,N−m) (7.11)

Under our assumption, this ratio has an F distribution with (m − 1) degrees of
freedom in the numerator and (N − m) degrees of freedom in the denomina-
tor. Note that MSb is a valid variance estimate only if the null hypothesis is
true. Therefore, the ratio is distributed as F only if the null hypothesis is true.
This suggests that we can test the null hypothesis by comparing the obtained
ratio with that expected from the F distribution. Under the null hypothesis, vari-
ance estimated based on the within-group variability should be the same as the
variance due to between-group variability. We can compare these two variance
estimates using the F test, which checks if the ratio of two variance estimates is
significantly greater than 1.

To summarize the basic idea of ANOVA, its purpose is to test differences
in the group for statistical significance. This is accomplished by a data vari-
ance analysis, namely by partitioning the total variance into a component that
is due to the true random error (i.e., SSw) and components that are due to
differences between the means (i.e., SSb). These latter components of vari-
ance are then tested for statistical significance. If the differences are signifi-
cant, we reject the null hypothesis (which expects no difference between the
means) and accept the alternative hypothesis (that the means in the popula-
tion differ).
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7.4.4 Two-Way Analysis of Variance

Main Effects. One-way analysis of variance handles group data for a single
variable. For example, ANOVA can address the effect of visibility by testing
differences between the visible group and the invisible group. Nonparametric
statistics (Section 7.4.2) can do this as well. Sometimes more than one indepen-
dent variable (factor) has to be taken into account.

For example, in the Experiment One data, human performance may be deter-
mined by the visibility factor and also by the interface factor. One important
reason for using the ANOVA method rather than the multiple two-group non-
parametric U-test is the efficiency of the former: With fewer observations we can
gain more information [126].

Suppose we want to analyze the data in Table 7.8. The two rows in the table
correspond to the two levels of factor A, namely, A1, and A2; the two columns
correspond to the two levels of factor B, namely, B1 and B2. The levels of factor
A can be, for example, the visible group and the invisible group, and the levels
of factor B can be the virtual group and the physical group. The cell ABij in the
table relates to the level Ai of factor A and the level Bj of factor B, i, j = 1, 2.
In general the number of levels of A does not have to be equal to that of B. For
simplicity, assume that the number of observations at every level/factor is the
same, n.

Here are some notations that we will need:

I —number of levels of factor A;
J —number of levels of factor B;
n—number of observations in each cell ABij;
N —total number of observations in the entire experiment; henceN = n ∗ I ∗ J ;
µ—unknown population means, as follows:
µi = 1

J

∑
j µij —the mean for level i, summed over subscript j ,

µj = 1
I

∑
i µij —the mean for level j , summed over subscript i,

µ = 1
I

∑
i µi. = 1

J

∑
j µj —overall mean of all µij,

Xij = 1
n

∑
k Xijk —average within a cell over its subjects’ scores,

TABLE 7.8. An Example of a
Two-Way Data Layout

B1 B2

A1 AB11 AB12

A2 AB21 AB22
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Xi = 1
J

∑
j Xij. —average for the row i of A over related subjects’ scores,

Xj = 1
I

∑
i Xij. —average for the column j of B over related subjects’ scores,

X = 1
J

∑
i Xi.. = 1

I

∑
j X.j. —overall mean of all the scores.

With this notation, if we only test for the main effect of factor B (similarly for
the main effect of factor A), the null and alternative hypotheses can be written as

• H0(B): µj = µ for all j

• H1(B): µj �= µ for at least one j

The Main Sum Between, MSB
b , for J cells of factor B, is the average of estimated

variance of estimated column means (this ignoring factor A). That is,

MSB
b = nI

J − 1

∑
j

(Xj –X)2 (7.12)

The Main Sum Within is the same error variance MSw considered above; it is
equal to the average of (separately estimated) variances within the individual
cells. Under the null hypothesis,

MSB
b

MSw

∼ F(J−1,N−IJ) (7.13)

That is, the ratio of two main averages has an F distribution with (J − 1) degrees
of freedom in the numerator and (N − IJ) degrees of freedom in the denominator,
which is the total number of observations N minus the total number of cells, IJ.

Interaction Between Factors. Unfortunately, the main effects are not suffi-
cient to answer questions such as, “Does the effect of factor A remain the same
at different levels of factor B?” For example, in some observations of Experi-
ment One the main effect of the visibility factor is that it significantly affects the
subjects’ path length: The invisible task results in longer path lengths compared
to the visible task. However, we notice that the subjects’ scores on the visibility
factor are also affected by the interface factor: Namely, in the physical test (in the
booth) the visibility factor has no significant effect on the path length, whereas in
the virtual test the visibility factor has a significant effect on the path length. This
suggests that the tests on main effects may be missing such interaction effects.
The latter can be tested by the following formulas of interaction (for details refer
to Refs. 126 and 127):

SSAB = n
∑

i

∑
j

(Xij. − Xi.. − X.j. + X...)
2

MSAB = SSAB

(I − 1)(J − 1)

(7.14)
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F = MSAB

MSw

∼ F[(I−1)(J−1),N−IJ] (7.15)

where MSAB represents the Interaction Mean Square between factors A and B.
The ratio has an F distribution with (I − 1)(J − 1) degrees of freedom in the
numerator and (N − IJ) degrees of freedom in the denominator.

In the case considered now, the results of F test may show that the effect of
visibility factor on the path length depends on the type of interface utilized in
a given task. In other words, there is an interaction between the visibility factor
and the interface factor. One way to express interactions is by saying that one
effect is modified (qualified) by another effect.

When the data indicate an interaction between factors, the notion of a main
effect has no meaning. In such cases, tests of simple effects can be more useful
than tests of main effects. Simple effect tests are done via one-way analysis
of variance across levels of one factor, performed separately at each level of
the other factor. For example, even if we suspect an interaction between the
visibility factor and the interface factor, we might undertake simple effect tests
for the visibility factor separately at the virtual and physical level, respectively,
and see what kind of conclusions can be made based on the results.

7.4.5 Implementation: Two-Way Analysis for Path Length

We are now ready to perform the analysis of variance on the Experiment One
data. From other tests above, we already know that the direction factor has a
significant effect on the path length. We know, further, that the left-to-right task
is significantly easier for the subjects (it results in shorter paths) than the right-to-
left task. We now want to analyze the combined effect of visibility and interface
factors on the subjects’ performance. Even though the underlying data are not
known to obey the normal distribution, we justify using the ANOVA by the F

test being known to be robust.
The data set has been first separated into the LtoR and RtoL data sets. The

ANOVA variables are:

• Dependent variable: Path length.
• Independent variables:

1. Visibility factor, with two levels: visible and invisible.
2. Interface factor, with two levels: virtual and physical.

In the tables of results that appear here, the following terms are used:

df effect—degrees of freedom for a given effect, including main and interac-
tion effects.

MS effect—Mean Square for an effect, including main and interaction effects.
df error—degrees of freedom for the error variance, or Mean Square Within.
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MS error—Mean Square for the error variance, or Mean Square Within.
Rows with the effect names “1” and “2” correspond to main effects.
Rows with more than one digit in the name, such as “12” or “123,” relate to

the corresponding interaction effects.

Results. For the left-to-right task, the summary of ANOVA results appears in
Table 7.9. The p-levels for the visibility and interface factors are about 0.01,
and the p-level for the interface is much greater than 0.01. This means the
main effects of both factors are slightly significant, and there is no interaction.
We therefore conclude that for both visible and invisible environments, the path
length is affected only slightly by the interface factor. This reconciles with our
knowing that for the physical task the path length is slightly shorter than for
the virtual task. And, for both physical and virtual tasks the path length is only
slightly affected by the visibility factor. Again, this reconciles with our knowing
that in the visible environment the path length is slightly shorter than in the
invisible environment.

The summary of ANOVA results for the right-to-left task appears in Table 7.10.
Here the p-levels for the visibility factor, the interface factor, and the interaction
are all greater than 0.01. Therefore, the main effects make no significant differ-
ence for the dependent variable, and there is no interaction. The conclusion is that

TABLE 7.9. ANOVA Results for Path Length: Interface and Visibility Factors;
LtoR Task

ANOVA Effects Studied: 1—interface, 2—visibility

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 18828.49 91 3036.650 6.200416 0.014587

2 1 21314.74 91 3036.650 7.019164 0.009508

12 1 201.26 91 3036.650 0.066277 0.797418

TABLE 7.10. ANOVA Results for Path Length: Interface and Visibility Factors;
RtoL Task

ANOVA Effects Studied: 1—interface, 2—visibility

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 5283.137 91 12592.88 0.419534 0.518801

2 1 77.399 91 12592.88 0.006146 0.937684

12 1 8598.556 91 12592.88 0.682811 0.410782
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for either the visible or invisible environments, the path length for the physical
task is not significantly different from the path length in the virtual task. Also,
in either of physical or virtual tasks, the path length in the visible environment
does not significantly differ from the path length in the invisible environment.

7.4.6 Implementation: Two-Way Analysis for Completion Time

In the previous section we have analyzed the effects of test factors on the length
of paths generated by the human subjects in Experiment One. We will now
analyze how these same factors affect another performance indicator, the task
completion time.

Each completion time score is random and independent (for the 48 subjects
tested here); this meets the “sampling assumption” of nonparametric statistics
and analysis of variance. Even though a closer look at the completion time data
shows that they do not obey a normal distribution (as the ANOVA assumption
requires), we still use ANOVA, counting on the F test known to be robust.

To analyze the effect of all factors on the completion time data, a three-way
analysis of variance has been done. The ANOVA variables are as follows:

• Dependent variable: Completion time.
• Independent variables:

1. Direction factor, with two levels: LtoR and RtoL.
2. Visibility factor, with two levels: visible and invisible.
3. Interface factor, with two levels: virtual (simulation) and physical (booth).

Second, since we are more interested in the visibility factor and interface factor,
and since the performance in LtoR task significantly differs from that in RtoL
task, a two-way ANOVA was implemented. The ANOVA variables are:

• Dependent variable: Completion time.
• Independent variables:

1. Visibility factor, with two levels: visible and invisible.
2. Interface factor, with two levels: virtual and physical.

Results. The summary of ANOVA results of analysis of variance for all three
factors used in Experiment One appears in Table 7.11. The p-levels for the
interface factor, the direction factor, and the interaction between them are less
than 0.01. This means that these two main effects likely significantly affect the
dependent variable (completion time), and there is interaction between them. The
p-levels for the remaining main effect, visibility, and for interactions with this
factor are greater than 0.01. This means that there is no significant difference
for these effects and interactions. However, given that an interaction has been
detected, we should not be forming any conclusions from the results in Table 7.11
until we separate the factor levels.
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TABLE 7.11. ANOVA Results for Completion Time: Direction, Interface, and
Visibility Factors

ANOVA Effects Studied: 1—interface, 2—visibility, 3—direction

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 5248143.0 184 51978.68 100.9672 0.000000

2 1 189719.0 184 51978.68 3.6499 0.057626

3 1 3475104.0 184 51978.68 66.8563 0.000000

12 1 12523.0 184 51978.68 0.2409 0.624127

13 1 427953.0 184 51978.68 8.2332 0.005494

23 1 45246.0 184 51978.68 0.8705 0.352049

123 1 52450.0 184 51978.68 1.0091 0.316444

TABLE 7.12. ANOVA Results for Completion Time: Interface and Visibility
Factors, LtoR Task

ANOVA Effects Studied: 1—interface, 2—visibility

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 1339396.0 92 32864.84 40.75467 0.000000

2 1 210132.0 92 32864.84 6.39382 0.013155

12 1 6858.0 92 32864.84 0.20867 0.648886

Hence the data for the left-to-right task was analyzed, which is one of two
levels of the direction factor. The summary of related ANOVA results appears in
Table 7.12. The p-level for the interface factor is smaller than 0.01, the p-level for
the visibility factor is about 0.01, and the p-level for the interface factor is greater
than 0.01. Therefore, the main effect of interface is statistically significant, the
main effect of visibility is slightly significant, and there is no interaction between
them. This reconciles with our knowledge that for both visible or invisible tasks,
the completion time for the physical task is significantly shorter than for the
virtual task. Similarly, for both physical or virtual tasks the completion time is
slightly shorter in the visible environment than in the invisible environment.

The summary of ANOVA results for the right-to-left task appears in Table 7.13.
The p-level for the interface factor is smaller than 0.01, the p-levels for the vis-
ibility factor and interaction are greater than 0.01. This means the main effect
of the interface factor is statistically significant, and there is no interaction. This
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TABLE 7.13. ANOVA Results for Completion Time: Interface and Visibility
Factors, RtoL Task

ANOVA Effects Studied: 1—interface, 2—visibility

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 4336700.0 92 71092.52 61.00080 0.000000

2 1 24833.0 92 71092.52 0.34930 0.555959

12 1 58115.0 92 71092.52 0.81746 0.368286

reconciles with test observations: For both visible or invisible tasks the com-
pletion time in the physical task was significantly shorter than in the virtual
task. Similarly, for both physical and virtual tasks the completion time in the
visible environment shows no significant difference from that in the invisible
environment.

7.5 RESULTS—EXPERIMENT TWO

Recall that Experiment Two was designed to analyze the effect of subjects’
training and the related effect of the visibility factor on human performance. A
total of 12 subjects appeared in this study. In the first group, which included
six subjects, on day 1 each subject was subjected to six different training tasks,
plus one test task at the end, all in the visible environment. About one week
later, on day 2, the same subjects performed the same six training tasks, plus
the same test task, this time in the invisible environment. In the second group,
the remaining six subjects did the same tasks in the opposite order—that is,
tests in the invisible environment on day 1 and tests in the visible environment
on day 2. The specific task was right-to-left movement of the arm, the same
as in Experiment One (recall that this is a more difficult task compared to the
left-to-right task).

We therefore have a training factor Day, with two levels, day 1 and day 2.
Subjects were expected to learn the motion planning skill through a repeated
exercise.

Similar to Experiment One, human performance was measured by the path
length and completion time for each of the tasks Path and Time. Path length
is the measure of motion generated by the arm manipulator during the task.
Completion time is the time it takes the subject to complete the task. Both
measure the subjects’ proficiency in carrying out motion planning. We suppose
that both the path length and the completion time may be affected by such factors
as training and visibility of the scene, and we would like to quantify those effects.

In statistical terms, the training and visibility factors are independent vari-
ables, whereas the path length and completion time are dependent variables. The
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objective of data analysis is to test whether the training and/or visibility fac-
tor improves the overall human performance in motion planning. If in terms of
both dependent variables the improvement in subjects’ performance turns out
to be significant, follow-up tests on the separate effects on human performance
should be conducted, to explain which specific aspects of human performance
are responsible for such effects. Multivariate analysis of variance (MANOVA) is
a good technique for data analysis of overall effects [128].

Multivariate analysis of variance is conceptually a straightforward extension
of the univariate ANOVA technique described above. Their major distinction is
that if in ANOVA one evaluates mean differences on a single dependent vari-
able, in MANOVA one evaluates mean vector differences simultaneously on two
or more dependent variables. In addition, the MANOVA design accounts for
the fact that dependent variables may be correlated. For instance, two depen-
dent variables in Experiment Two, the path length and completion time, are
indeed relatively highly correlated, with the correlation coefficient 0.79. In this
case, MANOVA should provide a distinct advantage over separate ANOVAs.
In fact, performing separate ANOVA tests carries an implicit assumption that
either the dependent variables are uncorrelated or such correlations are of no
importance.

7.5.1 The Technique

Assumptions. The first and partly second of the three following assumptions
are required by MANOVA (and are the same for the statistical tests considered
above):

1. Observation scores are randomly sampled from the population of interest.
Observations are statistically independent of one another.

2. Dependent variables have a multivariate normal distribution within each
group of interest. This means that (a) each dependent variable is dis-
tributed normally, (b) any linear combination of the dependent variables
are distributed normally as well; (c) all subsets of the variables have a
multivariate normal distribution. In practice, it is unlikely that this and
the next assumption are met precisely. Fortunately, similar to ANOVA,
MANOVA is relatively robust to violations of these assumptions. In prac-
tice, MANOVA tends to perform well regardless of whether or not the data
violate these assumptions.

3. Homogeneity of covariance matrices. That is, all groups of data are assumed
to have a common within-group population covariance matrix. This can be
likened to the assumption in ANOVA of homogeneity of variance for each
dependent variable, or the assumption that correlation between any two
dependent variables must be the same in all groups. If the number of sub-
jects is approximately the same in the experimental groups, a violation of
the assumption of covariance matrix homogeneity leads to a slight reduction
in statistical power [128–130].
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Multivariate Null Hypothesis. Hypotheses in MANOVA are very similar to those
in univariate ANOVA, except that vectors of means are considered instead of
single values (scalars) of means. For a simple example, imagine we carry out
a one-way MANOVA for a visible task and invisible task groups. We would
like to know if the scores of path length and completion time came from the
same population that includes visible and invisible task data. That is, we want to
compare the population mean vector for the dependent variables for one group
with the population mean vector for the dependent variables for another group.

Suppose µij represents the mean of the dependent variable i for group j ,
i = 1, 2, j = 1, 2. The mean vector for group j can be written as

�µj =
[

µ1j

µ2j

]

Then the multivariate null hypothesis H0 can be written as an equality of vectors:

H0: �µ1 = �µ2 = �µ

The alternative hypothesis H1 in this case says that for at least one variable there
is at least one group with a population mean different from that in the other
group(s):

H1: �µ1 �= �µ2

Calculating MANOVA Test Statistics. Derivation of the MANOVA test statistics
is similar to that in ANOVA but involves relatively cumbersome matrix operations
and equations. Hence we will limit the discussion to a conceptual level (see
Ref. 130 for more detail).

Recall that the ANOVA attempts to test if the amount of variance explained by
the independent variable (namely, SSb, see Section 7.4.3) exceeds significantly
the variance that has not been explained (namely, SSw). The variance here is a
function of the sum of squares of deviations from the mean for an entire group
(the latter being called the sum of squares, SS). The ANOVA’s F statistics is a
ratio of the mean square between, MSb, to the mean square within, MSw.

Instead of scalars of dependent variables, MANOVA employs a vector of
dependent variables. A single sum of squares is replaced with a complete (total)
matrix of sums of squares and cross-products, SPt . Along its diagonal the matrix
has the sums of squares that represent variances for all dependent variables, and
in its off-diagonal elements it has cross-products that represent covariances of
variables. Just as a univariate ANOVA, MANOVA divides matrix SPt into the
within-group matrix, SPw , and the between-group matrix, SPb. From algebra,
the matrix determinant expresses the amount of generalized variance, or the total
variability that is present in the underlying data and is expressed through the
dependent variables. One can hence compare the generalized variance of one
matrix with another.

Wilks’ lambda test is perhaps the most widely used statistical test of multivari-
ate mean differences [130]. It derives from the following idea. Since matrix SPb
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represents the amount of explained variance and covariance, and matrix SPw rep-
resents the remaining variance and covariance, in the case of a significant effect
one would expect matrix SPb to have a larger generalized variance compared to
matrix SPw . Wilks’ lambda index, �, is defined as a ratio of determinants of the
two matrices:

� = |SPw|
|SPt | = |SPw|

|SPw + SPb| (7.16)

where SPt , SPw, and SPb are the total, within-group, and between-group SP

matrices, respectively.
We associate the value of � with the effect’s significance. The value can

also be interpreted as the proportion of unexplained variance. The main effects
and interaction effects in multiple-way MANOVA are conceptually the same as
those in ANOVA. While computations are more complex in MANOVA, their
underlying logic is the same as in ANOVA.

If an overall significant multivariate effect is found, the next natural step
is to submit the data to further testing, to see whether all dependent variables
or some specific dependent variables are affected by the independent variables.
Performing multiple univariate ANOVAs for each of the dependent variables is a
common method for interpreting the respective effects. One attempts to identify
specific dependent variables that contributed to the overall significant effect.

Repeated Measures MANOVA. In our statistical tests so far, all independent
variables involved in ANOVA and MANOVA were also between-subjects vari-
ables (or factors); we were interested in differences between means or mean
vectors of several distinct groups of subjects. The observed scores were indepen-
dent of each other at different levels of the between-subjects variables.

However, in Experiment Two we also want to study the difference in responses
of the same subjects before and after treatment; in our case, treatment is training.
This variable is called repeated measures, and its analysis is called repeated
measures MANOVA. In a repeated measures design the several response variables
are results of the same test carried out by the same subjects, applied a number of
times or under more than one experimental condition. For example, in Experiment
Two each subject was assessed as to their path length and completion time on
day 1 and again on day 2. The variable “day” is a repeated measures variable,
as well as a within-subjects variable.

In other words, a between-subjects variable is a grouping variable—similar to
the visibility or interface in our study—whereas a within-subjects variable refers
to the measurements for every level of the within-subjects variable. For example,
a within-subjects variable may be “time,” or “day,” or “training factor.” A study
can involve both within- and between-subjects independent variables. Our Experi-
ment Two analysis constitutes a 2 (days) by 2 (visibility levels) repeated measures
MANOVA, or repeated measures ANOVA. The first independent variable, day, is
a within-subjects (repeated measures) variable, and the last independent variable,
visibility, is a between-subjects variable.
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Repeated measures MANOVA is an extension of the standard MANOVA. The
underlying principles of both are almost the same. In the standard MANOVA,
vectors of means are compared across the levels of independent variables. In the
repeated measures MANOVA, vectors of mean differences are compared across
the levels of independent variables.

Mean differences are the differences in values of dependent measures between
levels of the within-subjects variable. These can be seen as new independent
variables. If, for example, the dependent variables were measured for each subject
at four different time moments, say at times T1 through T4, these original four
variables would be transformed to three alternative derived difference variables,
denoted (T1–T2), (T2–T3), and (T3–T4). These three new variables directly
address the questions of interest. The repeated measures MANOVA, therefore,
compares the vectors of means across the new transformed variables, not the
original scores.

When conducting a repeated measures MANOVA, a sphericity assumption
must be met. It requires that the covariance matrix for the transformed variables
be a diagonal matrix. That is, the values (variances) along the diagonal of the
transformed covariance matrix should be equal, and all the off-diagonal elements
(correlation coefficients) should be zeros. The purpose of the sphericity assump-
tion is to ensure the homogeneity of covariance matrices for the new transformed
variables [131, 132].

7.5.2 Implementation Scheme

Experiment One. Recall that in Experiment One the observation scores in each
task were measured on two dependent variables, path length and completion
time. Subjects have been randomly selected, and sets of scores were mutually
independent. Further, the two dependent variables were correlated, with the cor-
relation coefficient 0.74. We take this correlation into account when performing
the significance test, since the overall set of dependent variables may contain
more information than each of the individual variables. This suggests that the
Experiment One data can be a candidate for a multivariate analysis of variance,
MANOVA.

Since, as discussed in the previous section, the effect of direction factor in
Experiment One is statistically significant, we separately perform two sets of
MANOVAs—one for the left-to-right task and the other for the right-to-left task.
When performing MANOVA for the left-to-right task, the data set forms a two-
way array, 2 (visibility) × 2 (interface). For the right-to-left task, the data set
also forms a two-way array, 2 (visibility) × 2 (interface). The results of analysis
should answer questions such as: (1) does human performance improve in the
visible environment compared to the invisible environment? (2) Does human
performance improve in a test with the physical arm manipulator as compared
to the virtual arm manipulator? (3) Does the effect of the visibility factor work
across the levels of the interface factor?
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TABLE 7.14. Descriptive Statistics for the Data in Experiment Two

Descriptive Statistics

Variable/Task Valid N Mean Minimum Maximum Std. Dev.

day1-path 12 96.68 24.39 232.55 66.59

day1-time 12 432.67 65.00 900.00 333.66

day2-path 12 129.04 15.13 393.90 107.99

day2-time 12 432.42 36.00 900.00 365.89

vis-path 12 88.83 15.13 181.92 62.20

vis-time 12 360.25 36.00 900.00 620.83

invis-path 12 136.89 27.04 393.90 107.42

invis-time 12 504.83 90.00 900.00 361.76

Experiment Two. Table 7.14 lists basic descriptive statistics for the Experiment
Two data: the number N of valid observations in each group; and means, min-
imums, maximums, and standard deviations in each group. In the table, “vis”
means visible, “invis” means invisible, “path” means path length, and “time”
means task completion time.

Similar to Experiment One, the Experiment Two data for each task were
recorded for two dependent variables, path length and completion time. Subjects
were randomly selected, and the sets of scores were independent of each other.
The correlation coefficient of the two dependent variables is 0.79. This correlation
suggests that each dependent variable contains some new information as well as
some information overlapping with the other dependent variables. Accounting
for this correlation allows us to test the significance of dependent variables in
human performance. Since the data in Experiment Two correspond to the same
subjects on day 1 and day 2, the day factor is a repeated measures variable with
two levels, day 1 and day 2. These data call for a repeated measures MANOVA.

The Experiment Two data form a two-way array, 2 (day) × 2 (visibility). If
any main effects or interaction effects are identified, multiple univariate ANOVA
would be performed, in order to observe the effects on each dependent variable.
In our data analysis we are interested in these questions: (1) Is there an improve-
ment in human performance across day 1 and day 2? (2) Is there a statistically
significant difference in human performance in the visible as opposed to invisible
environment? and (3) Does the effect of one independent variable change over
the levels of another independent variable?

Combined Experiment One and Two. There is another data set that we can
use to test the effects of training and visibility. The first half of the data (12
subjects) in this new combined data set was extracted from the Experiment One.
Six of these were randomly picked among the virt–vis–RtoL data, and another
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six were randomly picked among the virt–invis–RtoL data. The second half (12
subjects) of the data in the new combined set are the day 2 data (12 subjects)
from Experiment Two.

The purpose of MANOVA or ANOVA analysis on this combined data set is
to test whether human performance would show improvement from day 0, when
the subjects executed tasks without any training (in Experiment One), to day
2, when subjects had a benefit of several training trials (in Experiment Two).
The effect of visibility would also be tested here. Note, however, that the day
factor in this analysis is not a repeated measure variable any longer but instead
a between-subjects variable. This is because there are no pairs of data for day
0 and day 2 coming from the same subjects (which would be required by the
definition of repeated measure variable). The data for day 0 are independent with
respect to the data for day 2. Therefore, the new combined data form a two-way
array, 2 (day) × 2 (visibility).

7.5.3 Results and Interpretation

1. The MANOVA scheme was applied to the left-to-right data in Experiment
One. The variables involved are as follows:

• Dependent variables:
1. Path length.
2. Completion time.

• Independent variables:
1. Interface, with 2 levels: virtual and physical.
2. Visibility, with 2 levels: visible and invisible.

The results are shown in Table 7.15. Here df is the degrees of freedom (see
Section 7.4.5). Note that the p-level for interaction between the two independent
variables is significantly high. We thus conclude that there is no interaction effect.
This means that the effect of one independent variable does not change across
the levels of the other independent variable. The p-level for the interface factor
is almost zero. We therefore reject the null hypothesis of the MANOVA, and
we conclude that the interface factor has a statistically significant effect on the

TABLE 7.15. Results of MANOVA for LtoR Task, Experiment One

MANOVA Effects Studied: 1—interface, 2—visibility

Effect Wilks’ Lambda df 1 df 2 p-Level

1 0.615711 2 90 0.000000

2 0.924517 2 90 0.029253

12 0.986327 2 90 0.538205
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overall human performance. The p-level for the visibility factor shows that the
overall human performance is only slightly improved in the visible environment
compared to the invisible environment.

Given a significant effect indicated by the MANOVA results, multiple uni-
variate ANOVAs have followed.

2. The MANOVA was applied to the right-to-left data in Experiment One.
The variables are as follows:

• Dependent variables:
1. Path length.
2. Completion time.

• Independent variables:
1. Interface, with 2 levels: virtual and physical.
2. Visibility, with 2 levels: visible and invisible.

The results are shown in Table 7.16. Note that the p-level for the interaction
effect between the two independent variables is large enough; we can conclude
that there is no interaction effect. This means that the effect of one independent
variable is not influenced by the other independent variable. The p-level for the
interface factor is almost zero, hence we reject the null hypothesis of MANOVA.
That is, the interface factor has a statistically significant effect on the overall
subjects’ performance. The p-level for the visibility factor is large; we thus
conclude that the overall subjects’ performance was affected by the visibility
factor.

Since a significant effect was demonstrated by this MANOVA, multiple uni-
variate ANOVAs have followed.

3. MANOVA was applied to the Experiment Two data. The variables involved
are as follows:

• Dependent variables:
1. Path length.
2. Completion time.

TABLE 7.16. Results of MANOVA for RtoL Task, Experiment One

MANOVA Effects Studied: 1—interface, 2—visibility

Effect Wilks’ Lambda df 1 df 2 p-Level

1 0.406424 2 90 0.000000

2 0.988945 2 90 0.606390

12 0.990999 2 90 0.665716



RESULTS—EXPERIMENT TWO 379

TABLE 7.17. Results of MANOVA, Experiment Two

MANOVA Effects Studied: 1—visibility, 2—day

Effect Wilks’ Lambda df 1 df 2 p-Level

1 0.839068 2 9 0.454033

2 0.479769 2 9 0.036698

12 0.631314 2 9 0.126213

• Independent variables:
1. Visibility, with 2 levels: visible and invisible.
2. Day (repeated measures), with 2 levels: day 1 and day 2.

The results are shown in Table 7.17. The p-level for the interaction effect is
bigger than the significance level (0.05), pointing to no significant interaction
effect. This means the result for one independent variable is not modified by
the other independent variable. The p-level for the visibility factor is also larger
than the significance level, so the null hypothesis should be accepted. In other
words, the overall human performance is not affected by the visibility factor. The
p-level for the day factor suggests a slight effect of the day (training) factor on
human performance. This reconciles with our knowing that the overall subjects’
performance was better on day 2 compared to day 1.

In order to see which indicator of human performance might be affected by
the day (training) factor, multiple univariate ANOVAs have been performed.

4. ANOVA was applied to the path-length-dependent variable in Experiment
Two. The variables involved are as follows:

• Dependent variables:
1. Path length.

• Independent variables:
1. Visibility, with two levels: visible and invisible.
2. Day (repeated measures), with two levels: day 1 and day 2.

The results are shown in Table 7.18. The p-levels for the main effects and
interaction effect are larger than the significance level 0.05. Each null hypothesis
for the main effects and interaction effect should hence be accepted. We conclude
that there are no significant effects of the visibility factor and day (training) factor,
and that these results do not change across the levels of the independent variables.
In other words, surprisingly, the visibility factor has no significant effect on the
subjects’ path length, and the day (training) effect has no significant effect on
the path length as well.
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TABLE 7.18. Results of ANOVA for Path Length, Experiment Two

ANOVA Effects studied: 1—visibility, 2—day

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 13860.02 10 7756.985 1.786780 0.210934

2 1 6281.40 10 7292.907 0.861303 0.375232

12 1 12706.58 10 7292.907 1.742321 0.216262

TABLE 7.19. Results of ANOVA on Completion Time, Experiment Two

ANOVA Effects studied: 1—visibility, 2—day

df MS df MS

Effect Effect Effect Error Error F -Value p-Level

1 1 125426.0 10 197945.9 0.633638 0.444509

2 1 0.4 10 442773.8 0.000008 0.997735

12 1 149626.0 10 44273.8 3.379561 0.095856

5. An ANOVA was applied to the independent variable of completion time in
Experiment Two. The variables involved are as follows:

• Dependent variables:
1. Completion time.

• Independent variables:
1. Visibility, with 2 levels: visible and invisible.
2. Day (repeated measures), with 2 levels: day 1 and day 2.

The results are shown in Table 7.19. The p-levels for the main effects and
interaction effect are all larger than the accepted threshold significance level
0.05. Hence all null hypotheses for the main effects and interaction effect are
accepted. We thus conclude that there are no significant effects for the visibility
factor and day (training) factor, and this does not change across all levels of the
independent variables. In other words, surprisingly, neither the visibility factor
nor the day (training) factor has a significant effect on the completion time.

6. The MANOVA was applied to the combined data set. The variables involved
are as follows:

• Dependent variables:
1. Path length.
2. Completion time.
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TABLE 7.20. Results of MANOVA in the Combined Data Set

MANOVA Effects Studied: 1—visibility, 2—day

Effect Wilks’ Lambda df 1 df 2 p-level

1 0.961175 2 19 0.686476

2 0.877370 2 19 0.288559

12 0.812598 2 19 0.139257

• Independent variables:
1. Visibility, with 2 levels: visible and invisible.
2. Day (repeated measures), with 2 levels: day 0 and day 2.

The results are shown in Table 7.20. Note that the p-level for the interaction
effect is larger than the significance level. We therefore conclude that there is
no interaction effect in these data, and hence any main effect is not modified
across the levels of another main effect. The p-levels for the day factor and
visibility factor are large enough, so the null hypotheses for these main effects
are accepted. This means that both the day (training) factor and the visibility
factor do not improve the overall human performance; that is, subjects’ path
lengths and completion times are not improved (decreased) by providing them
with a visible environment or with the opportunity to train and practice.

7.6 DISCUSSION

The study described in this chapter focuses on experimental testing of human
performance in tasks that deal with motion planning and require spatial reasoning.
The experimental stage was followed with a thorough statistical analysis of the
obtained test data. As said in the introduction to this chapter, the motivation
for the study was two-prong. First, we wanted to use these data to compare
human performance with the performance of robot sensor-based motion planning
algorithms described elsewhere in this book. Second, we wanted to foresee the
human performance in robot teleoperation systems, with an eye on techniques to
compensate for operator deficiencies via a synergistic human–robot operation.
To recap our prior discussion, assessing robot motion planning algorithms raises
these questions:

• The question of quality of sensor-based robot motion planning algorithms
can in principle be addressed in a number of ways. As those options are
listed below, we will note that the last option—a comparison with human
performance—stand out as more attractive:
— One can compare actual generated paths with optimal paths. This com-

parison would make, however, little sense simply because producing
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an optimal path requires complete information about the environment
whereas our algorithms have only limited sensing information.

— One can assess algorithms’ performance theoretically. We have done
this in Chapter 3 for the case of a point robot moving in the plane. The
upper bounds on the robot performance obtained there give a good idea
about the worst-case performance of the algorithms, but they do not
answer the direct practical “How good is it in ‘normal life’?” question.

— One can attempt a comparison between paths produced by different
algorithms in the same task. While some such comparisons have been
done in literature, they are of limited value simply because different
algorithms tend to behave differently in different tasks: An algorithm
that wins in one task can easily lose in another task. That is why the
task of choosing between algorithms is a hard one. And, importantly,
such a comparison is not feasible for arm manipulators because today
there is no competing options to the sensor-based algorithms developed
in Chapters 5 and 6.

— One can compare the algorithms’ performance with human performance.
While we still don’t know what algorithms people use in such tasks,
from the practical standpoint this would be a satisfying comparison.
After all, we humans do solve motion planning problems with uncer-
tainty. We do it all the time, and so using human performance as a
benchmark would be an “apples-to-apples” comparison. We tend to
associate motion planning tasks with “thinking” and intelligence: If our
robots perform well in such tasks, we not only can be proud of the
robots’ performance but can also use this fact in technical systems.

• If human performance in motion planning tasks turns out to be less than
ideal—and the results described in this chapter demonstrate that this is so
for tasks with arm manipulators—this conclusion should pose a serious
challenge to designers of practical human-guided teleoperation systems. If
robot skills in motion planning are better than human skills, and if that is
still so after a substantial training by humans, this becomes a good argument
for a new design approach in teleoperation systems. Namely, we should
attempt to switch to human–robot synergy teams, where human intelligence
is complemented with appropriate robot intelligence.

In our tests the performance of human subjects was measured in terms of two
dependent variables:

• Path length— the length of paths a subject generates in a given task.
• Task completion time— the time a subject takes to complete a given task.

The experimental data appear in groups, each related to one independent variable
(factor). Overall, four factors have been studied:

• Task Interface: Each subject operated either a virtual arm manipulator on
the computer screen or a physical arm in the test booth.
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• Visibility of the Scene: The subject either was given a bird’s-eye view of
the scene or was forced to “move in the dark.”

• Direction of the arm motion in the scene (this factor had played an auxiliary
role in the study): When moving the arm manipulator, the subject had to
move it either from “start” to “target” position or in the opposite direction.

• Training factor represented by specific days on which the test was taken:
Namely, on day 1 the subjects had moved the arm after only a small per-
functory practice; on day 2 they had a benefit of significant prior training.

The summary of results of statistical processing of testing data appears in Table 7.21
(here, “no” means “no effect”; the corresponding details appear in Sections 7.4.6
and 7.5.3). The table shows effects of each factor on the overall human performance
and on each component of human performance, path length and completion time.

TABLE 7.21. Summary of Results in Experiments One and Two

Data Statistics Test Factors Effects Found
Covered Used Involved

Experiment
One MANOVA

Effect for
LtoR

Effect for
RtoL

Effect for
Both

Interface Significant Significant Significant

Visibility Slight No No

ANOVA,
left-to-right
task

Effect on
Path

Effect on
Time

Interface Slight Significant

Visibility Slight Slight

ANOVA,
right-to-left
task

Effect on
Path

Effect on
Time

Interface No Significant

Visibility No No

Experiment
Two and
combined
data

MANOVA

Effect in
Exp. 2

Effect in
Combined
Data

Training Slight No

Visibility No No

Experiment
Two ANOVA

Effect on
Path

Effect on
Time

Training No No

Visibility No No
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The motion direction factor is not included in the table since it was added to the
study only as a secondary factor, to shed light on the primary factors’ effects.

In brief, statistical analysis of experimental data from tests with arm manipu-
lator motion planning indicates the following:

• The interface factor has no significant effect on the length of generated
paths, but has a significant effect on the task completion time.

• The visibility factor has no significant effect on human performance—neither
on the path length nor on the completion time.

• Similarly, the training factor has no significant effect on the human perfor-
mance.

• The motion direction factor has a statistically significant effect on human
performance.

Overall, these conclusions look rather surprising. Let us discuss these findings
and their implications in more detail.

Effects of the Interface Factor. The two components of this factor are the vir-
tual (simulated) interface and the physical (arm in the booth) interface. Simple
considerations and expert opinions suggest that this factor should be of much
importance. After all, we humans are used to moving physical objects. Manip-
ulating a physical object—here the arm—adds significant haptic, visual, and
even auditory information about the task. Plus, the physical arm looks much like
a human arm and hence adds to one’s confidence. On the other hand, moving an
abstract object on the screen seems far less natural. A good many observers and
participants in this study had predicted that the subjects would do much better
when moving the physical arm than when moving the virtual arm on the screen.

Indeed, statistical analysis of test data agrees to some extent with this intu-
ition: For the task completion time it does show an improvement in subjects’
performance. On the average, subjects moved the physical arm in a more contin-
uous fashion, whereas in the simulation they often paused after small motions,
spending extra time on figuring out what to do next.

However, an interesting result here was that the improvement was very small in
the path length, and that even this small effect was erased by the motion direction
factor: In Table 7.21, column “Effect on Path,” observe those “slight” and “no”
(effect) in the ANOVA left-to-right and in ANOVA right-to-left, respectively.
The fact that no significant effect of the interface factor on the path length was
found in the more difficult right-to-left task is surprising. It suggests that the
importance to a human operator of the type of interface fades as the spatial tasks
become harder. To put it bluntly, in nontrivial teleoperation motion planning
tasks the operators will likely need help, such as from the robot intelligence;
mere improvements in the control means will not go far enough.

The difference in the factor effects on the two dependent variables—path
length and completion time—is not hard to explain. The length of a path gen-
erated by a human subject is, in general, independent of how quickly or slowly
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one moves the arm or how continuous its motion is. If the subject stops to think
how to proceed, this in itself will not increase the path length, but it will increase
the time to task completion. The harder the task, the more thinking the operator
needs, and the more time he or she takes to think. The relation of task hardness to
the length of path is hence more subtle than its relation to the time to completion.
This may be a useful consideration for balancing advantages and disadvantages
of virtual versus physical control means in real-world teleoperation systems.

Effects of the Visibility Factor. This factor refers to the obstacles in the environ-
ment being visible or invisible to the subjects during the test. The test subjects
themselves, researchers, and practicing operators usually think that seeing the
robot surroundings would significantly improve their performance.

Interestingly, our study suggests that while this common sense judgment
applies to very easy tasks, it does not apply to relatively complex tasks. For
the easier task in this study (which is moving the arm left-to-right), there is only
a slight difference in the resulting path length and completion time. That is, see-
ing the environment helped a little in path length and in completion time. On the
other hand, for the more difficult task (moving the arm right-to-left,) there was
almost no difference in the path length and completion time. This looks puzzling,
but becomes less so if one considers that many studies have demonstrated that
humans are, in general, not very good in spatial reasoning based on visual data.
This fact questions the large resources that are often allocated in telerobotics to
help the operator see the scene. It also implies that the operator performance is
affected less by the visibility factor than by the human spatial reasoning abilities.

Effects of the Training Factor. This factor has two components that refer to the
day of the task execution: day 1, before training, and day 2, after training. When
comparing human performance on those two days, with the other conditions
fixed, any statistically significant difference should be attributed to the effect
of training. Namely, a significant difference would support a common wisdom
hypothesis that one’s performance should improve significantly after learning
from repeated exercise.

This study shows that in arm manipulator motion planning tasks, training has
no significant effect on human performance, neither in terms of path length nor
in the task completion time. In our tasks the subjects were unable to seriously
improve their motion planning skills via training. This is no doubt very surpris-
ing. One would expect the opposite conclusion: We all know examples of tasks
involving motion where, given enough training, humans become extremely adept;
an acrobat on the trapeze is but one example.

There is a big difference, however: The acrobat does a once-and-for-all learned
motion, whereas our tasks require constant spatial reasoning. Our test protocols
do not allow a subject to simply memorize a task. We want our subjects to learn
how to do a class of tasks; we want them to improve their spatial reasoning skills,
rather than memorize a specific motion. Examples of positive effect of training in
tasks that involve spatial reasoning are harder to come up with. Note that since
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the tasks given to subjects in this study are quite close to teleoperation tasks, the
reported results should be taken seriously by designers of teleoperated systems.

There was one exception from this pattern: The training factor had a slight
positive effect on the subjects’ overall performance in Experiment Two (see the
box “Experiment Two and combined data,” Table 7.21; the extent of improvement
is only 3.67%). The meaning of this exception is not clear. Given that the effect
disappears for the combined Experiments One + Two data (further in the same
box in Table 7.21), the small effect of the training factor for the Experiment Two
data might be an artifact due to the insufficient data or measurement errors. Or,
training may indeed improve—though only a little bit—human performance in
motion planning tasks such as ours.

Effects of the Motion Direction Factor. This factor has two components, left-to-
right direction and right-to-left direction of motion. These two tasks took place in
the same scene and with the same two-link arm manipulator. The only difference
was that in the first task one was asked to move the arm from position S (start)
to position T (target) (Figure 7.5, Section 7.2.2), and in the second task one
would go from T to S. In this study the motion direction factor happened to
have a significant effect on the subjects’ performance. In fact, the effect has
been stronger than other effects observed. Hence the motion direction factor was
included in the study, to help assess the effect of the task difficulty on one’s
performance, with or without other factors involved.

Using the same scene and the same arm in both tasks has an added advantage
that the perceived difficulty of one task over the other is then known to be “in
one’s head only.” After all, a human subject could in principle produce exactly
the same path in both tasks, which is what a robot algorithm would do.12 The
unequal difficulty of the two tasks as perceived by the subjects is very interesting.
It suggests that human performance is limited by human motion planning skills
no less than by the task’s objective complexity. As a minimum, it demonstrates
a profound qualitative difference between the human and robot algorithms.

Why do human subjects perceive the above two tasks as completely differ-
ent? It is as if changing the direction of motion to right-to-left produces some
additional, if unclear, difficulties; perhaps it adds more possibilities for motion
planning or more ways to make mistakes. In Section 7.2.3 we made an attempt
to speculate about the reasons affecting human performance in these two tasks
(see design comment No. 4 and Figure 7.9).

12Formally, this is not exactly so. For example, in the example in Figure 3.5, Section 3.3.2, the path
shown from point S to point T is produced using the local direction “left.” If the same algorithm
(here Bug2) now starts from T toward S, using the same local direction, the resulting path will be
different from the one shown: It will be complementary to the shown path in that it will pass around
parts of obstacles that were not passed when moving from S to T . The same is true for the arm
manipulator algorithms discussed in Chapters 5 and 6. The nature of this difference is, however,
not the same as in human performance. By simply switching the algorithm’s local direction to its
opposite, we will obtain a path identical to the one shown in Figure 3.5. Whatever rules guide human
motion planning strategies, they must be very different.
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To summarize, in tasks that involve spatial reasoning and motion planning for
a multilink kinematic structures, human performance changes surprisingly little
with the change in external conditions, such as interface, environment visibility,
and training factors:

• Common wisdom suggests that seeing the complete scene should signifi-
cantly help the operator. This study shows that it is not so, at least for more
or less complex tasks.

• Common wisdom suggests that moving a physical device in physical space,
rather than moving an equivalent abstract object on the computer screen,
should significantly help the operator. This study shows that it is not the
case. As the only exception, a slightly shorter completion time was achieved
with the physical arm manipulator compared to the simulated manipulator.
In other words, the subjects made decisions faster with the physical arm,
but this did not improve the paths they produced.

• Common wisdom suggests that training should help operators in improving
their performance. This study shows that at least within the training protocol
of this study (which is a typical protocol in cognitive science experiments),
human performance changed very little with training.

The study suggests that unlike factors that common wisdom expects to be influ-
ential in human performance (visibility, interface, training), some other “strange”
factors, such as a change in the required direction of motion, may have a much
stronger effect. One is left with a thought that we humans have not been designed
by nature to handle motion planning tasks with objects that have lengths and
joints. That, for example, finding one’s place in a forest or in an unknown terrain
was so essential for one’s survival (note a similarity with the point-robot-in-the-
maze problem) that the evolution has built appropriate intelligent strategies in our
genes for this task. And that the need for moving kinematic structures—objects
with lengths and joints—was not nearly as essential.

Thus today not only don’t we have such skills, but we find it very difficult to
acquire them. This should not be much of a surprise: We know, for example, that
evolution made us capable of learning languages with unbelievable ease at a young
age but made this same task excruciatingly difficult at an older age. Well, one may
say, at least in languages there is the right age. True, there seems to be no right age
for learning how to move kinematic structures. Then, we may want to delegate this
job to robots, especially if robots can do it better, as shown in prior chapters.

The results described in this chapter look too strange to leave them unchal-
lenged. We need more controlled experiments with human subjects. We need
to understand which kind of tasks are harder and which are easier for human
operators. As was done in our study, this work requires a collaboration between
system designers and cognitive scientists. This will be especially important if
projects of critical importance are entertained. As an example, the announced (in
2004) NASA program to create technology that will allow bringing humans to the
moon and later to Mars and beyond has a provision for many highly roboticized
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tasks, in both autonomous and teleoperation robotic settings. Elucidation of the
phenomena addressed in this chapter—in particular, the humans’ cognition dif-
ficulties with spatial reasoning—will likely have a serious effect on design of
robotic systems.

One likely practical design strategy coming out of such studies calls for divid-
ing responsibilities between human and robot intelligence, so that both types of
intelligence will control the system simultaneously and in a synergistic manner
(see, e.g., Ref. 133).



CHAPTER 8

Sensitive Skin—Designing an
All-Sensitive Robot Arm Manipulator

I’m tired of all this nonsense about beauty being only skin-deep. That’s deep
enough.

—Jean Kerr, writer

8.1 INTRODUCTION

Similar to Chapter 7, the present chapter may strike some readers as being some-
what out of place in this book. The author agrees: As a confession, the chapter
was added to the book after a serious hesitation on the author’s part. After all, the
primary topic of the book is strategies for sensor-based robot motion planning.
Indeed, Chapters 3 to 6 do concentrate on algorithms and software. So what is
the logic of suddenly switching now to hardware?

We have a problem, though. On the one hand, yes, strategies and algorithms
are what we set out to study in this text. But, once the readers go through those
chapters, they will be right to take us to task: How can we be sure that those
strategies can be implemented in real systems? After all, those chapters imply
that an important prerequisite of sensor-based motion planning algorithms is a
whole-body sensing ability—an ability by the robot to sense surrounding objects
at every point of its body. This is a hardware component, and such hardware is
hardly an off-the-shelf item. Is it even feasible?

We are therefore obliged to convince the reader that the whole-body sensing
is indeed feasible. In fact, this is exactly how the research had proceeded: Once
some sensor-based algorithms appeared, the work started in earnest on appropri-
ate sensing hardware. It became soon clear that the appropriate sensing device
should look like a sensitive skin covering the whole robot body. Research in
this area started in the late 1980s and has expanded since. A number of sensi-
tive skin design projects, very much tied to the issues of robot motion planning
with uncertainty, were undertaken in the author’s laboratories at Yale Univer-
sity in the late 1980s [106, 134] and at the University of Wisconsin—Madison
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in the 1990s [135]. These included our own work on whole-sensitive robot
manipulators, as well as joint projects with industry and government labora-
tories (in particular, with Hitachi Corp. [136]—an attempt to develop sensitive-
skin-clad robot toys—and with Sandia National Laboratory, US Department of
Energy—work on large sensitive-skin based robot manipulators for cleaning
chemical and nuclear waste dumps).

The first Sensitive Skin Workshop, convened in November 1999 in Wash-
ington, DC under the aegis of the National Science Foundation (NSF) and the
Defense Advanced Research Projects Agency (DARPA), brought together about
60 researchers from academia, industry, and government agencies. One surprise
at the Workshop was the interest to sensitive-skin-based devices in a number of
large Fortune 500 companies. The Workshop created a community of like-minded
people, along with an opportunity for discussions and joint work. Details about
the Workshop, along with information about some ongoing work by its members,
can be found in the book called Sensitive Skin [137].

The following years saw an increased activity in this area. Specifically, we
should mention works on development of suitable materials for the skin base.
While some of this work is lacking explicit references to robotics, its relevance
to systems discussed in this book is obvious. In recent years the annual meetings
of the Materials Research Society have featured one or more sessions devoted
to “smart skins,” “smart textiles,” and similar topics of obvious relevance to the
robot sensitive skin. Interesting works have been reported on stretchable materials
(see the discussion on this in the next section) capable of holding (stretchable)
wires, and on sensitive skin electronics [138, 139].

An overall diagram of the flow of information in a robot system equipped with
the sensitive skin is shown in Figure 8.1; in the figure, software blocks are shown
by straight rectangles, and hardware items are shown by curved rectangles. As the
robot moves in the course of executing its task, it is expected to avoid obstacles on
its way. It is the sensitive skin covering its body that will be informing the robot
of the approaching obstacles. (Which is not to say that other sensing means, such
as vision, would not be of use in this process.) To secure this information, the
robot control system continuously interrogates the whole array of skin sensors.1

The sensor sampling rate and the corresponding hardware are designed so as to
fit comfortably within the update rate of the robot actuators—which for the robot
system described in this chapter is 50 position points, or sampling cycles, per
second, or 50 Hz. (This figure is quite typical for today’s complex robots.)

A position point is a set of n numbers that describe increments in the robot
actuators (motors, degrees of freedom) that have to be executed in order for
the robot to arrive at the desired position at the next step. For our robot, n = 6
(which is, again, a rather typical number in today’s arm manipulators). As the
robot simultaneously executes those six increments, a step motion along the robot
path is generated, and so on, 50 steps per second, producing a continuous motion.

1This is not unlike the human control system, which monitors the sensing information from the
skin sensors.
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Figure 8.1 Information flow diagram of the sensitive skin-based robot control system.

In each sample cycle, information obtained from the skin sensors is passed to
the Step Planner, a control unit responsible for local planning—that is, planning
of individual motion steps. As common sense would dictate, only information
from sensors that sense something in front of them is passed to the Step Planner.
A step that will be made based on this information should (a) be such as to help
the robot avoid collision with sensed obstacles, and (b) be reasonable from the
standpoint of the robot’s overall motion plan. The latter function is done by the
Path Planner unit (see Figure 8.1). The Path Planner makes sure that each step
is implemented according to the sensor-based motion planning algorithm used.
(More detail on the overall scheme can be found in Ref. 115.)

As discussed in prior chapters, motion planning algorithms’ requirements to
the whole-body sensing include two major properties:

(a) full coverage, which refers to the robot’s ability to detect a contact between
the robot and a close-by object at every point of the robot body, and

(b) locality identification, an ability to infer which specific points on the robot
body are involved in the contact.

Here “a close-by object” means that the distance between an object and the
robot is small enough so as to require the robot to act on it in order to avoid a
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collision. How close is close enough depends on a number of variables, such as
the robot mass, velocity, and the agility of the robot sensors. The term “contact”
will thus cover a range of distances from a physical contact (a zero distance) to
distant sensing, and it can therefore include tactile as well as various proximal
sensors—infrared, ultrasound, capacitance, vision, and so on. Infrared sensing
has been used in the system described in Sections 8.3 and 8.4.

The full coverage requirement makes one think of a sensing hardware that
would be akin to a sensitive skin, enveloping the whole robot body the way a
human skin envelops our bodies. Technically, this may be a real skin or a “virtual
skin”—that is, a set of sensors that together provide information about the space
around the robot’s whole body.

Besides the full coverage and locality identification properties of robot sensing,
the designer of a sensitive skin system has to worry about its other characteristics,
such as these:

• Reliability
• Accuracy
• Resolution
• Tactile or proximal sensing?
• Ability to measure distances
• Physical principle of action: force, vision, infrared, capacitance, ultrasound,

etc
• Sensors’ physical shape and dimensions
• Control electronics

In the following sections we will consider details and implications of these char-
acteristics for the robot-sensitive skin system, followed by a brief description of
one such system developed and installed on a large arm manipulator, along with
examples of its operation.

8.2 SALIENT CHARACTERISTICS OF A SENSITIVE SKIN

Reliability. Robot sensors must be reliable: We do not want our robot to bump
into an object that its sensors “did not notice.” To provide the full coverage,
many sensors will likely be needed, thousands or even millions of them. (Later
we will address the question, Why is having many sensors on the skin better than
having fewer sensors, even if fewer sensors could do the coverage?)

Each sensor is a single device. The common wisdom says that the more
devices, the bigger the chance that some of them will misbehave or die. Notice
that the latter does not necessarily mean worse reliability. If sensors on the skin
do their work in parallel, and if more than one sensor can functionally cover
every point of the robot body (thus providing a system redundancy), then more
misbehaving elements does not necessarily mean a less reliable system.
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The system will be more reliable if it is capable of self-diagnostics, self-
healing, and graceful degradation. Self-diagnostics is a well-developed discipline
in system design. Our system would continuously poll all its sensors and inform
the control unit of detected deviations from the normal. Self-healing implies
an automatic repair of the failed hardware. On the level of sensors today, this
feature is available in live nature but not in technology. The purpose of graceful
degradation property is to avoid the need to shut off the whole system in case of
losing a few elements. In our case, graceful degradation refers to the system’s
capacity to direct sensors in the vicinity of a broken sensor to take over its job
(see, e.g., Ref. 140). Doing this will effectively increase the distance between
well-functioning sensors; while slightly degraded, the system will still function.
As more sensors die, the system will degrade “gracefully.”

Accuracy. Sensing information has to be accurate. Sensor accuracy is defined
by the difference between the sensor measurement and the actual value that
the sensor attempts to measure. How accurate is accurate enough? The answer
depends on many details, including the sensor types and density on the skin, and
on the robot’s mass, kinematics, and maximum speed. Imagine that our robot arm
manipulator is equipped with short-range proximity sensors capable of detecting
an object when the distance to it from the robot falls below 20 cm. The arm is a
heavy body made of steel; its inertia is high. Imagine that at its maximum speed
the robot control system can guarantee a successful collision-avoiding maneuver
only if the distance to an object on the robot’s way at the time of detection is no
less than 15 cm. This means that we would not be happy with a sensor whose
accuracy is ±5 cm, because with it we would run a risk of the arm colliding
with surrounding objects.

Resolution. This characteristic refers to precision with which the robot can pin-
point the location of an object that appears in the vicinity of the robot body.
The better the robot knows the location of an object that it tries to avoid, the
better the dexterity of its motion and, hence, its chance to accomplish its task in a
workspace filled with obstacles. Sensor resolution is tied to the sensor accuracy,
but it characterizes the whole sensor system rather than a single sensor.

As an example, consider a sensitive skin that is based on proximity infrared
sensing. Unlike passive sensors like a vision camera or a temperature sensor, an
infrared sensor is an active sensor: It contains (a) a light-emitting diode (LED)
that sends a ray of infrared light in space and (b) a detector that sits right next to
the LED and detects the light’s reflection from an object in front of the sensor.
For better resolution we are interested in a sensor that would send light in a
narrow cone. Such sensors, each with a tiny lens in front of the LED in order
to produce a cone-like light ray, are common (see Figure 8.2a). They may have
a limited sensitivity distance, say 20 or 30 cm. For full coverage, sensors are
spaced on the skin so that their sensitivity cones overlap, forming a continuous
sensitivity cushion around the robot. The fact of detecting a reflected signal thus
means that the object in question is wholly or partially within the sensitivity cone
and sensitivity distance of a given sensor.
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Figure 8.2 (a) Scheme with an infrared sensor. (b) Scheme with a capacitance sensor.

Assume for simplicity that the sensor sensitivity area is not a cone but a
cylinder (Figure 8.2a). Let us say, this cylinder is of diameter 2 cm. Since the
robot can easily know each sensor’s exact location on its body, it will know
the location of the obstacle relative to its body (recall the locality identification
feature, Section 8.1) and will be able to use this information to maneuver around
the obstacle.

To provide a full coverage of the robot body, a high enough density of sensors
on the skin is needed. In our example the density of sensors is one sensor per
2 cm, which is the distance between the neighboring sensors, and also the skin
resolution. (Actually, sensor placement should be here a bit more dense for this
resolution, but for the sake of simplicity let us keep it at 2 cm). Providing this
density will result in a large number of sensors on the skin. For a typical industrial
robot manipulator (roughly of the size of a human) this density will require 1200
to 1500 infrared sensors. An example of the sensitive skin described later in
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Section 8.4 has roughly this density of sensors. With this sensitive skin, a round
object 10 cm in diameter will be perceived by the robot as about 13–14 cm in
diameter. This also means that a robot equipped with this skin will be able to
move past the obstacle at about 2 cm distance from it, but not closer—otherwise
it risks a collision.

What this resolution signifies is that two objects located at a distance about
2 cm from each other may be perceived by the robot as one obstacle. Imagine
that the robot arm contemplates moving between two obstacles: The diameter of
the arm links is d; the distance between the obstacles is 2 cm + d . Then, based
on the information from the skin, the robot will not attempt to pass between the
two obstacles, although it actually could. It is insufficient skin resolution that
will make the robot miss the passage.

In real life the 2-cm resolution would be quite good; cases with obstacles requir-
ing motion as tight as in the example above would be rare. The point here is that
the skin resolution affects the dexterity of robot motion in the most direct way.

Note also the quadratic dependence between the skin resolution and the number
of sensors on the skin: For example, decreasing in half the distance between
neighboring sensors will increase fourfold the number of sensors on the skin.

Consider now another example, a skin with capacitance sensors. A capacitance
sensor is a passive sensor: It works by measuring properties of the electric field
that the sensor’s two electrodes create. An object entering the field changes the
field characteristics, and this allows the sensor to detect it. As with any electric
field, the detection effect depends on the object’s material and its distance to
the sensor. The sensor’s sensitivity area can take different shapes depending on
the shape and mutual positions of the sensor’s electrodes. The sensitivity area of
the sensor shown in Figure 8.2b is a hemisphere that extends outwards from the
robot body, with the sensor at its center.

With the sensitivity area sphere of radius, say, 10 cm (about 4 in.), a detection
signal from the sensor will tell the robot that an object has entered a hemisphere
of diameter 20 cm centered at the sensor. In Figure 8.2b, the robot will not
know where within the sensitivity area the object is because an object in the
position Ob1 or Ob2 or anywhere else within the sensitivity area may generate
the same signal. To be on the safe side, the robot will have to conclude that
the object occupies the whole sensitivity area. That is, an obstacle of 2 cm in
diameter will become in the robot’s “mind” an “obstacle” of over 20 cm in
diameter. When planning its motion past the 2-cm obstacle, the robot will have
to leave a large margin between itself and the obstacle, which is equivalent to
suddenly increasing the dimension of every obstacle by 20 cm in every direction.
That is, this capacitance-sensitive skin will effectively make the robot workspace
dramatically more crowded than it actually is. Someone diving into a dirty pool
without a diving mask will likely have a better vision resolution. The robot’s
bad maneuverability here is not the robot’s fault—it is just that its sensors have
unacceptably low resolution.

Compared to the 1200 to 1500 infrared sensors above, achieving a full coverage
for the same large arm manipulator with our capacitance sensors will require



396 SENSITIVE SKIN—DESIGNING AN ALL-SENSITIVE ROBOT ARM MANIPULATOR

B

A

1l

l2

O

P1

P3

P2

C

O′

Figure 8.3 A higher density of sensors on the robot arm body translates into the better
dexterity of the arm’s motion.

roughly 10 sensors—perhaps a little more due to specifics of the robot shape.
This is a great savings in cost and design simplicity compared to the infrared sen-
sitive skin—but the resolution of this skin is much poorer, only 20 cm compared
with the 2 cm resolution in the infrared skin.2

Consider the planar two-link arm manipulator shown in Figure 8.3. The body
of this arm is covered with proximity sensors.3 In its current position A (shown
by solid lines), link l2 is positioned near the obstacle O (a solid black circle).
Assume that, following its motion planning algorithm, the arm intends to slide
along the obstacle, with link l1 rotating clockwise as indicated by the arrow. If
an arm’s sensor tells it (correctly) that the point on its body closest to obstacle
O is P1, then the next position of link l2 would be position B, with the link l1
position calculated accordingly (dotted lines in Figure 8.3). If, however, because
of its sensors’ limited resolution the arm concludes that the point of its body
closest to obstacle O is somewhere at point P3, safety considerations will make
the arm move its link l2 in the position C instead of B, which is equivalent to
its reacting to a much bigger obstacle O ′. Increasing the number of sensors and
placing them, for example, in each of the points P1, P2, and P3 would improve
the skin resolution and be effectively equivalent to making the arm workspace
less crowded.

Tactile or Proximal Sensing? When moving around, humans and legged ani-
mals prefer to use proximal sensing, usually vision. (More rarely we also use
auditory or olfactory (smell) sensing information to guide our motion planning.)

2In theory, the resolution can be improved with extra processing of signals obtained from a few neigh-
boring sensors. This would likely require additional assumptions about the shapes and orientations
of obstacles, along with a more complex data processing scheme.
3In Figure 8.3 sensors are distributed along the robot’s one-dimensional contour; in a real three-
dimensional arm, sensors are of course distributed along the robot body’s two-dimensional surfaces.
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Imagine you walk into a room. It is an evening. Suddenly the lights go out. It is
pitch dark. You stop for a moment, reconsider your plans, and then resume your
motion—except now your movement pattern changes dramatically: You move
much slower, keeping your knees and the whole body slightly bent; perhaps
you outstretch your hands forward and slightly to the sides. Your motion is now
guided by your tactile sensors. Your slow speed is a clear demonstration that the
efficiency of our tactile sensors is not as good as of our vision.

But our tactile sensors play a much more important role in our lives than
this example suggests. We use them almost continuously, sometimes in paral-
lel with our vision and sometimes as a sole source of information. We touch
objects; we keep turning in the chair depending on what the tactile sensors in
the back tell us; we measure the comfort of our shoes by what our foot tactile
sensors feel; we take pleasure at stroking a child’s head or a fur coat. Our tac-
tile sensing is an important component of that pleasure. We often use our tactile
sensors in situations where vision would be of little help, as in the example
with shoes.

In fact, while we all know that people can live without vision—we see blind
people having productive lives—science tells us that humans cannot live without
at least some capacity for tactile sensing. A person with no tactile sensing cannot
even stand: Tactile sensing is actively used in maintaining the standing balance.
Diabetes patients—who often lose partially their tactile sensing—are warned by
their doctors that they should be extremely careful in their interaction with the
environment.

Turning again to the moving-in-the-dark example, the reason you moved so
slowly in the dark has to do with an important side effect of tactile sensing: You
cannot know of an impending collision up until the moment the collision takes
place. Once your hand bumps into some object on your way, you will stop, think
it over, and modify the direction of your movement as you see fit.

But your body has a mass—you cannot stop instantaneously. Regardless of
how slowly you are moving at the moment of collision, the “stop” will still cause
a sharp deceleration of your body and forces at the point of collision. For a tiny
fraction of time, your body will continue moving in the direction of your prior
motion. This residual motion will be absorbed by the soft tissue of your hand,
and so the collision will cause no serious harm to your body. In fact, the speed
you have chosen for moving in the dark was “calculated” by an algorithm that
has been refined by many bumps and pain in your childhood: Experience teaches
us how slowly we should move under the guidance of tactile sensors in order to
prevent a serious harm from possible collision.

Today’s robot arm manipulators have no similar soft tissue to absorb forces.
Their bodies are made of steel or aluminum, sometimes of hard plastic. If the
robot body were to move under the guidance of tactile sensors, bumping into
a suddenly discovered obstacle would spell a disaster. Once the arm collided
with an obstacle, it would be too late to carry out an avoiding maneuver: Infi-
nite accelerations would develop, and an accident would ensue. A theoretical
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alternative—move so slowly that those forces would be contained—is simply
not realistic.

Then, why not use vision instead? The short answer is that since an arm
manipulator operates in a workspace that is comparable in size to the arm itself,
vision will be less effective for motion planning than proximity sensing that
covers the whole arm. By and large, humans and animals use whole-body (tactile)
sensing rather than vision for motion planning at small distances—to sit down
comfortably in a chair, to delicately avoid an overactive next-chair neighbor on
an aircraft flight, and so on. See more on this below.

This discussion suggests that except for some specific tasks that require a
physical contact of the robot with other objects—such as the robot assembly,
where the contact occurs in the robot wrist—tactile sensing is not a good sensing
media for robot motion planning. Proximity sensing is a better sensing candidate
for the robot sensitive skin.

Ability to Measure Distances. When the robot’s proximal sensor detects an
obstacle that has to be dealt with to avoid collision, it is useful to know not only
which point(s) of the robot body is in danger, but also how far from that spot
the obstacle is. In Figure 8.4, if in addition to learning from sensor P about a
nearby obstacle the arm would also know the obstacle’s distance from it—for
example, that the obstacle is in position O and not O ′ —its collision-avoiding
maneuver could be much more precise. Similar to a higher sensor resolution,
an ability to measure distances to obstacles can improve the dexterity of robot
motion. In mobile robots this property is common, with stereo vision and laser
ranger sensors being popular choices. For robot arms, given the full coverage
requirement, realizing this ability is much harder.

For example, at the robot-to-obstacle distances that we are interested in, 5
to 20 cm, the time-of-flight techniques used in mobile robot sensors are hardly
practical for infrared sensors: The light’s time of flight is too short to detect
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Figure 8.4 Knowing the distance between the robot and a potential obstacle translates
into better dexterity of the arm’s motion.
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it. Ultrasound sensors can do this measurement easily, but their resolution is
not good.

One possible strategy is to adhere to a binary “yes–no” measurement. In a
sensor with limited sensitivity range, say 20 cm, the “yes” signal will tell the
robot that at the time of detection the object was at a distance of 20 cm from
the robot body. The technique can be improved by replacing a single sensor by
a small cluster of sensors, with each sensor in the cluster adjusted to a different
turn-on sensitivity range. The cluster will then provide a crude measurement of
distance to the object.

Sensors’ Physical Principle of Action. Vision sensing being as powerful as
we know it, it is tempting to think of vision as the best candidate for the robot
whole-body sensing. The following discussion shows that this is not so: Vision
is very useful, but not universally so. Here are two practical rules of thumb:

1. When the size of the workspace in which the robot operates is significantly
larger than the robot’s own dimensions—as, for example, in the case of
mobile robot vehicles—vision (or a laser ranger sensor) is very useful for
motion planning.

2. When the size of the robot workspace is comparable to the robot dimen-
sions—as in the case of robot arm manipulators—proximal sensing other
than vision will play the primary role. Vision may be useful as well—for
example, for the task execution by the arm end effector.

Let us start with mobile robot vehicles. When planning its path, a mobile
robot’s motion control unit will benefit from seeing relatively far in the direction
of intended motion. If the robot is, say, about a meter in diameter and standing
about a meter tall, with sensors on its top, seeing the scene at 10–20 meters
would be both practical and useful for motion planning. Vision is perfect for
that: Similar to the use of human vision, a single camera or, better, a two-camera
stereo pair will provide enough information for motion planning. On the other
hand, remember, the full coverage requirement prescribes an ability to foresee
potential collisions at every point of the robot body, at all times. If the mobile
robot moves in a scene with many small obstacles, possibly occluding each other
and possibly not visible from afar, so that they can appear underneath and at the
sides, even a few additional cameras would not suffice to notice those details.

The need for sensing in the vicinity of the robot becomes even stronger for
arm manipulators. The reason is simple: Since the arm’s base is fixed, it can reach
only a limited volume defined by its own dimensions. Thinking of vision as a
candidate, where would we attach vision cameras to guarantee the full coverage?
Should they be attached to the robot, or put on the walls of the robot work cell,
or both?

A simple drawing would show that in any of these options even a large number
of cameras—which is impractical anyway—would not guarantee the full sensing
coverage. Occlusion of one robot link by another link, or by cables that carry
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power and communication lines to the end effector, or by some other objects is
hard to avoid when sensing the robot surface from a distance. Robot links often
have nonconvex concavities, indentations, holes, bolts, or other pieces sticking
out of them. Seeing behind every nook and cranny at all times is simply not
practical. Sooner or later, some object will be hidden from all those cameras.
Short of unreasonable, no number of cameras on the surrounding walls or on the
robot body will do the job.

Another consideration is that for a single-step motion planning decision (and
there will be 20 to 50 such steps per second) the robot needs information on all
nearby obstacles simultaneously. Doing vision processing simultaneously for a
significant number of cameras is too computationally expensive. We must con-
clude that, powerful as it is, vision is not a right solution for protecting the robot
body at short distances.

Nature, of course, “noticed” this fact long ago. While supplying us with the
powerful stereo vision, evolution has also supplied us with other sensors to help
protect our bodies when moving in space. It gave us, in particular, the tactile
sensing of our skin. The nature “concluded,” in other words, that vision is not a
good sensor to protect one’s own body at short distances. In combination with
vision and with the effect of soft tissue force absorption discussed above, tactile
skin provides a rather universal protective sensor.

If so, one may ask indignantly, why hasn’t the evolution been gracious enough
to supply us with something better than tactile sensors—covering our skin, for
example, with some proximal sensors? Then our life would be so much safer,
and we would be able to move so much faster in the dark than we do now with
our tactile sensing.

Unfortunately, proximal sensors that we find in nature do not fit our purpose.
A bat’s sonar is one example: Acting as a substitute for vision, at distances
much larger than the bat’s body, sonar does not protect the bat’s body at very
small distances. For this purpose, bats have sensitive skin. Cat’s whiskers are
another example: While whiskers work on a physical contact, they supply the cat
with input information far enough from its body to allow for motion planning
decisions typical of a proximity sensor performance. (And again, cats still need
their tactile sensitive skin.) We humans have proximal sensing as well: Besides
vision, we have hearing, smelling, and temperature sensing. Of these, temperature
sensing is the only type of proximal sensing that appears in one’s whole body
and hence satisfies our requirement of full coverage. It also operates at a range
of temperatures and distances: We sense a hot cup at a few centimeters’ distance,
and we can sense volcano lava from a distance of many meters. Unfortunately,
the range of temperatures in the world around us makes temperature sensing of
a limited use.

The list of sensors provided to us by technology is much bigger. Engineering
progress moves in ways very different from nature. The proverbial inability of the
evolution to invent a wheel does not stop there: Engineers have a whole panoply
of proximity sensors that are not available in nature. Many of these—infrared,
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capacitance, and ultrasound sensors are but a few examples—can be used for a
skin-like full coverage for robots.

Sensors Physical Shape, Dimensions, and other Physical Properties. The
diameter of a link of a typical robot manipulator ranges from a few centimeters to
20–25 cm. The link diameter of the NASA Shuttle Remote Manipulator System
(SRMS), likely the biggest robot arm built so far, is about 40 cm. Some arm
links are short, and some are very long. Proximity sensors that we choose to
cover the arm should satisfy some reasonable physical properties:

1. The sensing skin should not add significantly to the robot link diameter.
What is or is not “significant”? A skin that is 1–2 mm in thickness will likely be
acceptable for most arm manipulators. Many existing sensors and other necessary
electronic components fall into this range. Today’s surface mounting technology
allows one to put those components on the skin board with only a tiny addition
to the skin thickness. Future large-area electronics technology will allow printing
skin sheets in a manner we produce today newspaper or wallpaper sheets.

2. If the skin base is to be a continuous medium—which is highly desirable for
a high-density skin—it should be designed on a flexible carrier, so that the skin
can be wrapped around robot surfaces of various shapes. To make it scalable and
easier to install, the skin can be designed on separate more or less self-contained
circuit board modules. Each module can include, for example, n-by-n sensors
plus the related control electronics. The skin could then be extended functionally
and spatially by tiling the modules to cover large surfaces.

3. Look at your own arm. When you bend it, the skin on the elbow stretches.
When you stretch the arm, the elbow skin shrinks and forms wrinkles. Having
the stretchability property is as important for the robot sensitive skin as it is for
the human skin. In a skin built on unstretchable plastic material, every time a
robot joint makes the adjoining links bend (similar to the human elbow), a gap
will appear between the parts of the skin belonging to both links. The exposed
part of the robot body will then lose its sensing ability and become vulnerable
to the dangers of the surrounding unstructured world.

Note that having a stretchable sensing module implies stretchable wires in it,
which is quite a difficult technical problem in itself. No materials fitting the needs
of a stretchable sensitive skin exist today. The sensitive skin sample described later
in this chapter does not have the stretchability property: Less “natural” means, such
as parts of the skin that slide over each other as the robot links move, are used to
compensate for the unstretchable skin material. A new and very interesting area of
research in stretchable materials for sensitive skins belongs mostly to the disciplines
of material science and chemical engineering (see, e.g., Ref. 137).

4. Attaching a flexible skin board to some surface may require cutting off
pieces of the board. For example, if a part of the robot surface happen to be
of spherical shape, a planar skin board cannot be attached to it without cutting
off some portions. The board design should allow such cutting, at least to some
limited degree. One problem with this is that while sensors cover the whole
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board, the local control electronics occupies only a small physical area in it.
We obviously don’t want to cut off pieces of the board that contain control
electronics. This suggests that the control electronics should be put on the board
so as to simplify the cutting for typical surfaces. Another related problem is that,
electrically, sensors present a load on control electronics. Cutting off some sensors
changes that load, and so the control electronics should be able to handle this.

5. The arm’s interaction with its environment brings additional constraints.
Consider an environment where the robot arm may be hit by sharp hard objects.
Without extra precautions, this environment will likely rule out an infrared-
sensitive skin: Whereas these sensors have enviably high resolution and accuracy,
the tiny optical lenses sitting in front of every sensor make them brittle. A better
option then may be capacitance sensors: While not particularly accurate, they are
quite rugged.

On the other hand, covering the infrared sensitive skin with a layer of transpar-
ent epoxy or a similar compound may still warrant its use in a harsh environment.
The epoxy will pass sensors’ optical beams while mechanically protecting the
skin from the environment. This measure would also help in tasks where the
arm is periodically covered with dirt and has to be washed, such as in cleaning
chemical and nuclear dump sites. Because the content of such sites presents a
danger for human workers, robots are good candidates for the cleaning job.4

Often the material that is to be evacuated from cleanup sites is inside large
metal or concrete tanks. The robot arm has to enter the tank through a relatively
small opening. Careful motion planning for the whole body of the arm is very
important: A small deviation from the opening’s center can spell a collision, and
this may happen at various points of the robot body, depending on how deep into
the tank opening the arm has to move. The operation calls for dextrous motion,
which in turn requires a good resolution of the sensitive skin. Infrared sensors
provide the requisite characteristics; the problem is, however, that sensors on the
skin will be quickly covered with dirt. A transparent layer of protective epoxy
will allow one to quickly wash off the dirt from the arm.

6. Specific applications can add their own constraints on the choice of sen-
sitive skin components. Given their decent accuracy and physical ruggedness,
arrays with tiny sonar sensors may be a good candidate for the skin. A sonar-
studded sensitive skin cannot be used, however, in space applications, for the
simple reason that sound does not spread outside the atmosphere.

The above need to wash off dirt from the skin is also such a constraint. Another
example is applications with unusual levels of radiation. Space robots must be
able to withstand space radiation. Hence only radiation-hardened components
will do the job for a sensitive skin intended for space applications.

Control Electronics. Depending on the physical principle of sensors chosen for
the sensitive skin, appropriate control schemes must be chosen. Ordinarily, skin

4The multi-billion cleanup Superfund project in the United States in the mid-1990s had a provision
for utilizing robotics.
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sensors produce analog electric signals. Before those signals are passed to the
robot computer and used by motion planning algorithms, they have to be cleaned
of noise, perhaps brought to some standard form, and turned into the digital
form using an analog-to-digital transformation. This is done by the skin control
electronics. Ideally, this could be done by an appropriate tiny control unit built
into each sensor.

Today an electronic control unit will likely handle a group of sensors, say an
n-by-n sensor subarray, thereby allowing an easy scaling up of the skin device.
The unit also takes care of polling the whole subarray, identifying sensors that
sense something in front of them, collecting information about their physical
coordinates on the robot body, and passing this information to the robot “brain”
for making decisions on collision-free motion. How often the polling is done
depends on the robot joint motors sampling rate: 20 to 50 times per second are
typical polling frequencies for large arm manipulators. Larger groups of sensors
and control components are united under the control of local computer micro-
processors, forming a hierarchical control system. Such architecture frees the
“brain” computer for more intelligent work, and it allows scaling up the system
to practically any number of sensors on the skin.

We now turn to an example of implementation of the sensitive skin concept.
Space shortage will not allow us to cover all the questions that an electronics
professional may have. Appropriate references will be given. The intent here is
to give an idea of how the sensing skin hardware can be approached.

8.3 SKIN DESIGN

The large-area skin versions built so far are all based on optical (infrared, IR)
sensors; other sensors are still waiting for their implementation in a sensitive
skin. The main reason for choosing infrared sensors is the best resolution one
can get with them compared to other sensors. This advantage may overweigh the
drawbacks of IR sensors, such as their mechanical brittleness or their inability
to measure distances at a short range. Other than this similarity, the projects
carried out so far have differed in the specifications of sensors and other elec-
tronic components, in overall physical and electrical architecture of skin sections,
implementation of the control scheme and robot intelligence, the mechanical
installation of components on the skin (such as direct soldering or surface mount-
ing), and so on. (For details, see references in Section 8.1 and citations therein.)

As mentioned above, an infrared sensor is an active sensing device. Each sen-
sor presents a pair consisting of a light-emitting diode (LED) and a light detector.
When initiated, the LED sends in space in front of it a beam of directed infrared
light. The associated light detector detects the reflected light. If a noticeable
amount of reflected light has been detected, the system assumes it was reflected
from an object located in front of the sensor.5 The LED light beam is of a conical

5In principle, a signal detected by the detector in the sensor pair X can be the light sent by an LED
of some other sensor pair Y and reflected “in a wrong direction” by an object positioned in front
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shape, formed by a tiny lens on the top of the LED (Figure 8.2a). The beam cones
of neighboring LEDs must overlap, forming a continuous detection cushion in
the space around the robot.

To increase the skin reliability, it is desirable to decrease the amount of wiring
running within sensor modules, between modules, and especially between mod-
ules attached to different robot links (because these wires will have to run over
robot joints). This requirement is in conflict with a desire to control every sen-
sor independently. The latter requires parallel addressing of sensors, hence many
wires, whereas a serial addressing scheme allows one to minimize the number
of interconnecting wires. Another advantage of a parallel scheme is that sens-
ing information it produces in each cycle is known to correspond to the same
time moment, hence the same position of all robot links. With the serial polling
scheme, the sensing information obtained from polling sensors corresponds to
the robot links being in slightly different positions. The motion within one serial
polling cycle is usually insignificant: The actual uncertainty depends on the serial
scheme implementation and the robot speed.

A fully parallel scheme with n sensors requires roughly logn wires. In a fully
serial addressing scheme, only one wire will be sufficient to do the job. In the
system described here, this conflict is resolved via a compromise parallel–serial
system: The system is divided into modules that are run in parallel, whereas
sensors in each module are divided into rows and columns and addressed serially.

Sensor Interface. The purpose of the sensor interface circuit (Figure 8.1) is to
realize computer access to the skin sensor. The circuit’s two major components
are an analog-to-digital converter and a number of one-shots that control sensor
addressing. In each sensor module, sensors are addressed in a serial fashion.
The entire skin is reset regularly, synchronizing address counters of the sensor
modules. (More information on a version of this unit appears in Ref. 134.)

Sensor Circuit Module. A sensor circuit module contains a group of sensors
that, from the standpoint of control and mechanical design, are handled as a unit.
A number of sensor modules makes the whole skin. The skin system described
in Ref. 134 and shown in Figure 8.6 included three sensor modules, each with a
different geometric shape and with an unequal number of sensors, totaling about
500 sensors. A later system described in Ref. 135 and shown in Figure 8.7 fea-
tured smaller standardized modules, each about 23 by 23 cm in size and with 8
by 8 sensors, with the whole system totaling over 1200 sensors. Each module is
wrapped around and fastened to the robot arm. Neighboring modules are con-
nected physically, using appropriate fasteners—such as Velcro fasteners—and
electrically, through appropriate connectors.

Besides sensors, each module contains all necessary control electronics. The
latter can be divided into two parts. The first part is a sensor addressing circuit,

of the pair Y. This scenario suggests an interesting hardware and processing schemes that would
be checking for various combinatorial possibilities, to determine which object actually triggered the
signal. No such attempts have been done so far, to my knowledge.
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which decodes the order of sensor addressing. The second part is a sensor detec-
tion circuit, which amplifies and filters signals from the light detectors.

The addressing scheme is organized as follows. Each sensor module has a
counter that keeps track of which sensor is being addressed currently. The counter
is incremented by a clock, causing selection of a new sensor. When needed, the
counter is set to zero by a long pulse from a pulse discriminator. In the earlier
system, pulses longer than 10 µs are considered zero reset pulses; pulses shorter
than 10 µs increment the counter. This addressing scheme allows one signal line
to address a practically unlimited number of sensors.

Besides its serial nature, an obvious drawback of this scheme is that it does
not allow random addressing. When picking a particular sensor, all sensors with
addresses lower than this sensor will be selected. Note, however, that this is not a
serious drawback, because by the nature of the skin all sensors must be addressed
in turn in each cycle of sensor polling. The order in which sensors are addressed is
immaterial, and so the advantages of serial addressing outweigh its disadvantages.

The sensor module circuit implemented in Ref. 134 is shown in Figure 8.5. In
brief, it operates as follows. The Sensor Select signal from the Sensor Interface
is first “cleaned up” by triggers IC8b and IC8c and is then passed to the “Clk”
input of the 8-bit counter that keeps track of selected sensors. The function of
the pulse discriminator IC6 (a dual one-shot) is to choose the time of resetting
the counter.

In the pulse discriminator, when the Sensor Select line is “low,” the one-
shots’ outputs “Q” are low, and the 8-bit counter is not reset. As a pulse arrives
on the Sensor Select line at time Ta , the output “Q” of the one-shots IC6a is
triggered high. If the Sensor Select line stays high longer than 10 µs, IC6a will
time out, causing its output to go low at time Tb. This triggers IC6b, and its
output “Q” goes high, resetting the counter. If, on the other hand, Sensor Select
signal goes low before IC6a times out, no reset pulse is generated and the counter
increments normally.

The infrared diode (LED) light is amplitude-modulated and then synchronously
detected, to increase the system immunity to other light sources. This scheme
allows operation on several “channels”: For example, light transmitted by an
LED on the robot link X will not be sensed by a detector on a link Y even if
directly illuminated by it.

The output byte ‘Out’ of IC7 controls analog multiplexers that switch optical
components in the sensor circuit. The least significant four bits are connected to
the analog multiplexer IC2, which selects signals among the 12 preamplifiers on
the skin. The analog signal is first high-pass filtered by IC1a to remove noise due
to the ambient (room) light, then passed to the synchronous detector ICb, which
demodulates the transmitted signal, and then low-pass filtered by a three-pole
Butterworth filter composed of IC1c and IC1d. The IC1d output is then passed
to one of the input channels of the Sensor Interface Board via a resistor, which
provides short-circuit protection for the IC1d’s output.

The setting time of the Butterworth filter is about 0.25 m, which determines
the overall scheme’s response time. A higher bandwidth filter would settle in less
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Figure 8.5 Sensor circuit module. Most notations are conventional notations found in
electronics literature. Some details on components appear in this section; more detail can
be found in Ref. 134.

time, but would also make the circuit more noise prone. Since the skin sensors
on the arm links are polled in parallel, the limiting factor in the sensor update
rate is the polling of the largest skin sections, which in this skin version happens
to be on the robot arm link l3. The resulting sensor polling rate makes the whole
skin polled every sixteenth of a second. A bit faster rate—for example, equal to
the arm’s 25-Hz sampling rate—may be desirable, but it would require a more
complex design and was deemed unessential.
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Figure 8.6 The first sensitive skin (mid-1980s). Skin sheets have been custom designed
to fit this specific General Electric robot arm. The system has over 500 infrared proximity
sensors.

Switch S1 selects the operating frequency of a particular sensor module. By
selecting the output of IC5b, the circuit operates at 67.5 kHz, or one-half the
frequency of the signal (modulation frequency) from the sensor interface circuit.
The lower frequency (67.5 kHz) is used for the link l2 skin section, and the
higher frequency (135 kHz) is used on the skin of link l3. Note that from the
standpoint of motion planning these two links comprise practically the whole
arm (Figure 8.6).

The Skin. The skin base is manufactured from a plastic material called Kapton,
by Dupont Corporation, and is 0.26 mm (0.0085 in.) thick. (See Section 8.2 for
considerations affecting the choice of base material for the skin.) Both sides of
the material are copper-clad, resembling the (much thicker) inflexible material
commonly used for regular printed circuits. After processing, the board pro-
vides both the necessary structural support and electrical interconnection for
electronic components.

Once the skin design concept has been finalized based on preliminary exper-
iments, skin sections have been designed using common CAD-CAM software.
The actual production was done in a shop that had expertise in producing com-
plete circuit boards on flexible materials like Kapton; a number of such shops
have appeared in the United States in recent years.

8.4 EXAMPLES

The skin that covers the industrial robot arm shown in Figure 8.6 was built in
1985–1987. It is the first robot sensitive skin system ever built, and the robot
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system equipped with it was the first whole-body motion planning system. It is a
custom-built skin, designed specifically for the robot shown. The skin consists of
three large sections covering the second and third link of the robot arm—which
are by far the robot’s biggest links, so covering them effectively takes care of all
robot parts that are subject to collision. (Motion planning still has to be done for
the whole robot major linkage, in three-dimensional space.) Common components
and simple soldering was used to produce the skin; its most protruding parts,
LEDs, make the skin rather thick, about 6 mm.

The robot arm “under the skin” is a General Electric industrial arm manipu-
lator. The skin resolution (distance between neighboring sensors on the skin) is
about 5 cm, resulting in slightly more than 500 sensors total on the skin. The
cuts in the front part of the skin were necessary to cover the robot’s roundish
endpoint. Note also that no hand or other end effector appears in the figure. As
discussed in prior chapters, motion planning for the end effector (that is, the
robot’s minor linkage) is treated as a separate task, which is usually much easier
due to the hand’s small size.

A more advanced version of the sensitive skin system (built in 1993–1996) is
shown in Figure 8.7. The skin consists of standardized sensor modules (they can
be seen in the figure), each about 20 by 20 cm in size and including 8 × 8 = 64
sensors and necessary local control electronics. Module dimensions are chosen
so that the distance between border sensors of two neighboring modules is equal
to the normal between-sensor distance within a single module. This, along with

Figure 8.7 This robot is equipped with the 1993–1996 skin version. The skin is made of
standardized sensor modules, each 23 by 23 cm in size and includes about 1200 infrared
proximity sensors.
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the fact that each module includes all the control electronics its own operation
requires, makes for a universal module design. Covering the whole arm amounts
to tiling it with such modules, perhaps with some modules cut to size for better
coverage. The skin resolution (distance between neighboring sensors on a mod-
ule) is 2.5 cm, twice as good as that of the earlier skin shown in Figure 8.6.
Consequently, the skin has about 1200 sensors. Modules are electrically con-
nected with each other by special connectors built into all four sides of each
module. The skin’s material base is again Kapton, but it is slightly different
from the type used in Figure 8.6. The arm used in this system is a Hitachi P60
industrial arm manipulator.

One such sensor module is shown in Figure 8.8. Unlike the skin shown in
Figure 8.6, surface mounting technology was used for the skin component instal-
lation. Combined with smaller components available at the time, the skin has
about 2-mm maximum thickness, three times less than in the skin of Figure 8.6.
Black dots in the figure are sensor detectors.

Both of the described systems went through a variety of tests using the software
packages based on motion planning algorithms discussed in prior chapters. A
good number of tests covered these three settings:

1. Tests with a Fully Autonomous Operation of the Robot Arm Manipulator.
Typically the arm would be requested to go from some position A to a posi-
tion B, while automatically avoiding collisions with previously unknown
obstacles that it encounters on its way.

2. Tests with Teleoperation. In real time the operator shows the arm a rough
idea of the desired trajectory, moving a master arm quickly and without
any account for possible obstacles, and the main (slave) arm is expected to

Figure 8.8 A single sensor module, one of those used in the skin on Figure 8.7. The
module is 23 by 23 cm in size and includes 8 by 8 = 64 infrared sensor pairs, spaced at
2.5 cm between neighboring sensors.
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move as close as possible to the shown trajectory while avoiding collisions
with previously unknown obstacles.

3. Tests with a fully autonomous operation. The robot is expected to interact
with the human (who shares workspace with the robot) by moving next to
him or her. Whether or not the human partner is watching the robot, the
robot is expected to be “out of the way” of the human. One variation of
this test is when the arm “follows” the human, by keeping at some distance
from him/her while avoiding collisions.

When entertaining such experiments, one is reminded of the Isaak Asimov’s
three laws of robotics (from his short story I, Robot, 1950). In tests 3 above,
since the robots used were heavy industrial manipulators, Asimov’s first law (“A
robot may not injure a human being. . .”) suddenly took on a literal meaning.

Manufacturer technical manuals of industrial robot arm manipulators prohibits,
in no uncertain terms, humans from sharing space with such robots. Industrial
robots are large and heavy and fast—they can hurt. Factory work cells with
robots are often equipped with automatic means for stopping the robot if the rule
is somehow neglected (e.g., this can be a laser or wire sensor guarding the robot
perimeter, doors that are automatically locked when the robot is turned on, etc.).

In the described experiments, however, the whole point of the sensitive skin
and collision-avoidance software is that no such protection is necessary anymore.
A whole-sensitive robot is expected to never hurt a human: It should gently move
aside or back or around the human. And, it should do it no matter whether the
human noticed the robot. Aside from Asimov’s dramatic formulations, common
sense says that without such ability the robot simply cannot be used as a, say,
astronaut assistant. The assistant’s function may be to hand the astronaut tools
and to take them back for storage, or, say, help the astronaut move and rotate
bulky objects. In this team the astronaut must share space with the robot, and he
or she cannot afford to always be aware of the robot presence. No less important
is of course the robot’s own safety; the skin should protect it from hurting itself
by banging into surrounding objects. (Recall Asimov’s third law: “A robot must
protect its own existence. . .”).

This author and his students, and later people who did not know much about
robotics, have spent much time next to the robot, testing its “gentleness” provided
by its sensitive skin and its intelligence. Nothing bad ever happened. This, of
course, is not surprising: Multiple protective layers often appear in engineering
systems. If worse comes to worse, the system should stop (we never came to this
point in our experiments).

The pictures in Figures 8.9 to 8.12 show a few frames from videos taken in
the laboratory during some of those tests.6 The pictures in Figure 8.9 correspond
to the test setting 1 above: The robot was instructed to start from some position
on the left side of the scene and finish at some position on the right. Along the

6A note to the reader: videos that supplied pictures for Figures 8.9 to 8.11 can be seen in full on
the web, http://aaaprod.gsfc.nasa.gov/Project/public html-NASA/LaRue-Lumelsty.htm.
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Figure 8.9 An autonomous operation of the whole-sensitive robot arm. The robot moves
from the starting to the final position while maneuvering around the chess players and
other obstacles as it senses them.
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Figure 8.10 Robot teleoperation. The operator controls the main (slave) robot arm by
moving a small master arm seen on the right. The robot is expected to roughly follow the
path indicated in real time by the operator, while using its own sensing and intelligence
to avoid a chess player in its work space. The result is a path that is as close as possible
to the path shown by the operator, short of collisions.
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Figure 8.11 Robot teleoperation. Here the operator has attempted “to hurt” a student
sitting in the robot work space. After bringing the (slave) robot right above the student’s
head (second picture), the operator moves the master arm sharply down, “expecting” the
robot to repeat this motion. The robot starts in this direction, but then hesitates and stops.
Note the difference between the robot and master arms’ positions (second picture); the
latter shows a clear intention to bring the robot much lower than it went. Eventually
the operator moves the master arm toward us, and the robot follows (third picture).
Note: The videos that supplied pictures for Figures 8.9 to 8.11 can be seen in full on the
web, http://aaaprod.gsfc.nasa.gov/Project/public html-NASA/LaRue-Lumelsty.htm.
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Figure 8.12 A robot dancing with a ballerina (frames from a video). At all times the
robot moves so as to be close to the ballerina while avoiding collisions with her. Note
that at times the ballerina moves while not looking at the robot. She expects the robot to
behave the same way as she would expect from a human partner—stepping in and out
as necessary and reacting in a gentle “human” way. This expectation relates to the whole
bodies of both partners. There is no preprogrammed motion on the robot part.

way the robot encountered obstacles—two students “oblivious” to the robot and
bending slightly over the chess board; it went around and above the students’
heads and continued on its trajectory.

The experiment in Figure 8.10 relates to the teleoperation setting 2 above.
The robot is controlled by an operator using a small master arm that can be
seen on the right, and also by its own motion planning algorithms. Unlike a
common teleoperation, here we have a human–machine team, where each partner
does what he/she/it is best at. The operation is thus is a real-time synergy of
human and robot intelligence. The operator would move the master arm in a
rather cavalier fashion, without regard for a human inside the robot workspace
and without attempting a precise trajectory. The goal here was for the main
(slave) robot to reach the right side of the scene and into the large loop. The
operator quickly moves the master arm ahead of the robot, paying no attention to
the human “obstacle” in the scene. When encountering the previously unknown
obstacle—a person playing chess—the robot goes around the player’s head;
lowers slightly, trying to get to the operator’s path; and then continues on the
operator-dictated path.

The pictures in Figure 8.11 also relate to the teleoperation setting 2. Along
the way the operator attempts to make the robot “hit” the human present in the
robot workspace. This scene surely looks more dramatic in a videotape: The
viewer sees that the operator, after first bringing the robot right above the human
head, decisively pushes the master arm straight down; the viewer also sees how,
after starting in this direction, the robot freezes in the air, “refusing” to hurt the
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human. Notice the difference between the positions of the master arm and the
slave arm: The operator clearly intended the arm to go much lower than it did.7

The value of this experiment is more than a joke exercise. Imagine a robot
assistant working next to an astronaut, controlled via teleoperation by a remote
operator. If the operator is on the ground, a signal transmission delay due to large
distance will introduce a bias into the operator’s perception of the scene compared
to the actual scene at the moment. Imagine that the operator makes a mistake,
guiding the robot directly onto the astronaut. The robot behavior demonstrated
in the Figure 8.11 experiment would save the situation.

Finally, the pictures shown in Figure 8.12 relate to the autonomous robot
operation in the setting 3 above. A good way to demonstrate robot interaction
with a nearby moving human is dance. If we can make the robot behave the
way two human partners expect each other to move in a dance, we can count
on the robot’s adequate behavior in a human–robot crew. During the dance
the partners stay close to each other. They continuously react to each other’s
movement. One partner does not have to look intently at the other partner at all
times; he or she is confident that their partner will make sure that no collision
takes place. For each of them it is not enough to know that his/her head or hand
is safe: There is an expectation that one’s whole body is safe from unpredictable
collisions. Hence the interaction involves their whole bodies. A demonstration
of this kind of interaction is a demonstration of a highly coupled robot–human
team operation.

With these ideas in mind, we have carried out a special project between the
University of Wisconsin (UW) Robotics Laboratory, on the one hand, and the
UW Dance Department, on the other hand. Professor Tibor Zana from the UW
Dance Department, who is also Artistic Director of the Wisconsin Dance Ensem-
ble, choreographed the dance. The video frames shown in Figure 8.12 are from
the resulting videos. Again, still pictures are not a good medium for showing
motion: A color video looks much more interesting than these black-and-white
still pictures.

The robot motion planning shown in these pictures was fully autonomous.
The robot was not programmed for any specific paths. (Tests with predefined
paths, which the robot would modify on the fly when reacting to the ballerina’s
movement, have also been tried.) The robot was only programmed to stay out of
the ballerina’s way and to move toward her when losing the proximity contact
with her. In other words, the actual motion was in response to the ballerina
movement. In a typical pair dance (e.g., waltz, tango, foxtrot, swing), one partner
is the leader and the other partner is the follower. In our robot–ballerina dance
the ballerina was the leader. This is admittedly not a typical dance convention
today, but aren’t robots the sign of the future!

The robot behavior in these experiments looks convincing and somehow
“alive.” We humans are not used to seeing machines behave like humans or

7For those romantically inclined after reading Isaac Asimov’s robotic laws, the same would happen
if the obstacle was not a human but a chair.
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animals—following us and staying out of our way the way a dog or a cat do.
The last thing one thinks of when first seeing these arm manipulators, large and
heavy chunks of steel, would be the word “gentle.” And yet this is what one
thinks when watching this dance. The robot follows the ballerina, steps back
when she changes her direction of motion, and hesitates when the ballerina puts
her arms around the robot (as if thinking, “Where should I move now?”). The
dance looks fascinating, for now at least: There are many such scenes in our
future, with robots much smarter and much more sensitive and also capable of
doing what we want them to do.



CHAPTER 9

Suggested Course Projects

The projects can start 3–4 weeks into the course—when the students are already
familiar with the problem, notation, and terminology, and can read additional lit-
erature on their own. In this author’s experience, the student would be required to
write an email report once a week, outlying the work done on the project, issues to
be tackled in the next period, and asking questions, if any. The work status would
be also discussed in the regular meetings with the instructor. If the class is too big
for that, other means of following the projects’ progress are needed.

It may happen that in order to proceed with their project, some students may
need the knowledge of material that would be discussed in class somewhat later.
In such cases I would encourage the students to proceed with their reading of the
corresponding material on their own, and would be ready to provide consultation
as needed.

The topics of course projects listed here are given only as examples. Very often,
students themselves try to come up with a topic that is closely related to their
interests, their specialty, their thesis topic, or even another course that they are
presently taking or have recently completed. With most students being already quite
experienced in science and engineering, this author has chosen to make it known
that such connections would be welcome; he has given students much flexibility
in choosing their topics, as long as the project satisfied the expected level of effort
and was closely related to the course’s material. As a result, projects may vary
widely, and the defense of projects at the final exam likely turns into an interesting
mini-lectures series. Not rarely, course projects would have continuations in the
following years (a student may continue the project for another year, or change
his/her PhD topic, or prepare a conference or journal paper, etc.) Once the topic is
chosen and worked on for a little while, changing the topic should be discouraged
because this will not leave sufficient time for work.

One will note that the list of suggested projects below involves topics that, while
related to the material taught in the course, go beyond the specific material studied.
One such example is motion planning for multiple mobile robots. The idea here
is that the course has prepared the student to use the material they have already
learned for more advanced work. A topic like this would encourage the student to
read literature and to apply creatively the ideas and techniques taught in the course
to produce new knowledge. The instructor may want to recommend appropriate
literature in such cases.
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Suggested course topics can be roughly divided into three categories: theory
and algorithms; computer simulation; experimental (hardware) work. A project
may fall into more than one category; for example, one may be assigned to
develop an algorithm and validate it by theoretical analysis and a computer sim-
ulation. Examples of topics in each category are given below.

Theory and Algorithms for Sensor-Based Motion Planning

1. Sensor-based motion planning for multiple mobile robots:
• Centralized motion planning: All or most commands to all robots come

from one center.
• Decentralized motion planning: Each robot makes its motion planning

decisions on its own, without coordinating it with other robots. Various
options can be considered here, for example: A robot knows nothing
about other robots’ decisions except by watching them move; or, robots
may distribute their next step decisions to other robots; or, in a given
pair of robots, one is required to report its planning decisions to the other
but not vice versa. A mathematically interesting problem is an inter-
ception problem: One robot tries to escape from a robot that attempts
to intercept it; different assumptions about sensing means, speeds, and
knowledge about the other robot abilities gives rise to different schemes.

• Collective behavior of multiple robots. Again, different behavioristic
schemes addressing motion planning can be considered here, such as
making and changing formations, covering a maximum area (the Mush-
room Pickers problem), etc.

• Motion planning for tethered robots. Such problems appear in some
industrial settings—for example, a Robot World system where tethered
robots are floating above an assembly table (a two-dimensional setting);
or underwater robot probes connected by tethers to the mother ship (a
three-dimensional setting). Options include the tether being able, or not
being able, to sense surrounding objects or other robots and tethers.
One may want to consult related literature.

• Computational geometry: efficient (static or dynamic) division of work
space between a few robots (such as when vacuum cleaning a super-
market floor); the rendezvous problem for two robots. The performance
criteria may include minimizing the total path (equivalent to minimiz-
ing energy), or minimizing total time spent on the job, or minimizing
wasted walks over areas that have been cleaned already or walks to
charging stations.

2. Hierarchical motion planning systems: combining prior knowledge (e.g.,
a map of the area) with on-line sensor data. For example, inspection of a
nuclear plant after a major disaster: Some areas may be still as they were
before the event, and some may be damaged by an explosion, so the robot
must be able to deviate from the map using its sensing and intelligence.
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3. VLSI routing as a motion planning problem (designing a printed board is a
variation of this problem). Assume that after a VLSI chip has been already
designed, a need appears to add another few wires. With the traditional
tools, the whole design must be recalculated from scratch; this is expensive
and not always possible. Address the task as a motion planning problem.
The new wires cannot intersect those already on the chip, so the old wires
and other electronics on the chip present obstacles to new wires. Options
may include motion only in one plane or between planes, in which case
a wire may jump from plane to plane only in designated points.

4. Motion planning amongst moving obstacles. The topic can be formulated
for either a mobile robot or an arm manipulator. Investigate the constraints,
if any, to be imposed on the velocities and directions of motion of the
obstacles (relative to the robot) to make the problem tractable.

5. Mutual collision avoidance of two arm manipulators operating in shared
space.

6. Effect of arm kinematics on workspace accessibility in the presence of
obstacles. As we learned in Chapters 5 and 6, an interaction between
the arm and an obstacle creates shadows, which is effectively a part
of workspace that is not accessible to the arm. For the same size and
shape obstacle, the amount of workspace lost due to this effect depends
on the arm kinematics and relative dimensions of its links. Investigate
this phenomenon.

7. Algorithm for coordinating information from different sensors—for
example, in the context of sensitive skin sensors. As presented in
Chapter 8, each sensor of the skin looks exactly in front of it, catching the
reflection of its light from an obstacle in this direction. If, for example,
the obstacle’s surface is at an angle to this sensor, much of reflected light
will go in a different direction, possibly to another sensor. Therefore, the
fact of the object detection by both sensors may provide additional infor-
mation about the object’s shape, location, and distance from the robot
body. Investigate the coordinated use of sensor data for such and other
useful inferences about the obstacles.

8. Effect of robot dynamics on motion planning. This set of topics is good
for students with a strong background in control theory. The study of
effects of robot dynamics in Chapter 4 is done for a mobile robot that is
either a point, or a very symmetrical body.
• Investigate effects of dynamics for a mobile robot of a more com-

plex shape, e.g., a boxy four-wheel vehicle.
• Investigate effects of dynamics for an arm manipulator of a given kine-

matics.
9. Motion planning for highly redundant kinematic structures:

• Snakes
• Multi-finger wrists as multi-snake systems: power (whole-wrist) grasp-

ing, precision (two-point) grasping; pick-and-place operation, and so on
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• Two-legged locomotion among obstacles; same with gravity
• Same with dynamically stable motion
• Multi-legged locomotion
• Advanced sensing (vision, range sensing) and redundancy
• Effect of joint limits in redundant systems; handling potential self-

collisions of robot links

Computer Simulation, Real-Time Animation

10. Computation and visualization of configuration space of an arm manipu-
lator.

11. Animation of motion planning algorithms for locomotion.
12. Real-time human-centered systems (blending human and machine intelli-

gence in physical and virtual tasks):
• Human-assisted interaction between multiple mobile robots (e.g., top

view control of C-space or W-space); 2D and 3D tasks; same for a
single mobile robot; for an arm manipulator

• Same for advanced versus simple (tactile) sensing.
• Human-assisted virtual part assembly/disassembly.

13. Taking advantage of advanced sensing for arm manipulator motion
planning: For example, design an arm manipulator version of VisBug
algorithms.

14. Simulation of 3D vision-based underwater exploration.
15. Motion of two arms sharing common space: each with two links; each

with three links.
16. Implementation of motion planning algorithms; animation of robot motion.
17. Development of modular robot motion simulation software.

Experimental Work

Projects in this area tend to vary greatly and to be highly individualized. Examples
below are shown only to give a taste of possible topics.

18. Experimental validation of, using a robot available for this work, one or
more sensor-based motion planning algorithms.

19. Experimental study of a few existing sensing devices for the choice of
technology that satisfies in the best way a given motion planning sys-
tem. Examples: infrared, ultrasound, capacitance, electromagnetic, and so
on, sensors.

20. Sensor/processing systems for detecting surrounding objects and doing
motion planning.

21. Experimental analysis of human performance in spatial reasoning tasks:
teleoperation skills; motion planning skills; effects of training.
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J -space monotonicity, 312
PPP (Cartesian) robot arm, 276
XXP robot arms, 274
XXX robot arms, 274
li -front monotonicity, 285
li -rear monotonicity, 285
2-Link-Arm Algorithm, 210

A

actuators, 18
algorithm convergence, 57
ANOVA, 362
arm base, 18
arm configuration, 18
arm joints range, 200
arm solution, 187
arm’s minimal configuration, 180

B

Bug1 algorithm, 84
Bug2 algorithm, 90
Bug2 path, 109
BugM1 algorithm, 101

C

canonical solution, 144, 159
Cartesian (PP) robot arm, 182
Cartesian coordinates, 19
Class 1 algorithms, 77
Class 2 algorithms, 77
collision avoidance, 48
complementary M-lines, 203
compliant motion, 40
computational complexity, 53
configuration space (C-space), 18
configuration space anisotropy, 285
connectedness, uniform, 252
connectivity graph, 305, 323
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contiguous sets, 107
conventional projection, 295

D

deformation retract, 305
deformation retract theorems, 317
degrees of freedom (DOF), 18
direct kinematics solution, 30
dynamics, 33

E

effect of vision, 104
end effector, 18
end effector, gross motion, 180
end effector, orientation, 180
Euler, Leonhard, 59
exhaustive search, 64

F

feedback control, 37
Fraenkel’s algorithm, 65
Frenet frame, 146, 161
front contact, 229
front shadow, 229

G

generalized cylinder, 277, 308
generic path, 321
geodesic curves in C-space, 194
graph searching, 61
guarded motion, 40

H

heuristic algorithms, 50
hinged robot body, 15
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hit point, 79, 106, 146, 186, 283
human motion planning, 329
humans, test factors, 349

I

in-position condition, 93
input information, 15
intermediate target, 106
inverse kinematics solution, 30

J

Jogger’s Problem, 140
joint coordinates, 19
joint value, 187
joint, arm joints, 18
Jordan Curve Theorem, 77, 195

K

Königsberg Bridge Problem, 59
kinematics, 29
Klein bottle, 77

L

leave point, 79, 107, 146, 186, 283
LED (light-emitting diode), 393
limit areas of PR arm, 234
link, arm links, 18
local cycle, 207
local direction, 79, 107, 186, 282
lower bound, Class 1 algorithms, 103
lower bound, Class 2 algorithms, 103

M

M-line (Main line), 61, 90, 106
M-plane, 281
MA, moving automaton, 78
Main line (M-line), 188, 280
main semiplane, 107
major linkage, 19, 180, 273
Mann–Whitney U-test, 358
MANOVA, 372
Maximum Turn Strategy, 144
maze searching, 60
maze-to-graph transition, 66
minimal projection, 295
Minimum Time Strategy, 144
minor linkage, 19, 180, 273
Moebius strip, 77
monotonicity property, 320

motion planning with complete
information, 49

motion planning with incomplete
information, 49

N

near-canonical solution, 159
nonparametric statistics, 358
null hypothesis, 363

O

obstacle, 15
obstacle monotonicity, 285
obstacle of Type I, 198, 286
obstacle of Type II, 198, 286
obstacle of Type III, 286
obstacle’s shadow, 190, 280
obstacles

stalactites in C-space, 290
stalagmites in C-space, 290

one-way analysis of variance, 363
order statistics, 358
osculating plane, 146, 161
out-position condition, 93

P

passing around an obstacle, 192
path coordinate frame, 146
Piano Movers paradigm, 49
planar arms, 180
point mass, 160
PP-arm Algorithm, 228
PR-arm Algorithm, 245
primary path frame, 160
Principal Components Analysis

(PCA), 354, 355
prismatic joint, 18
prismatic-prismatic (PP) arm, 182
prismatic–revolute (PR) arm, 182
Procedure Compute Ti -21, 110
Procedure Compute Ti -22, 121
provable algorithms, 50

Q

quasi-Bug2 path, 121

R

radius of vision, 106
rank, statistics indexing, 358
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rear contact, 229
rear shadow, 229
regular grating, 262
revolute joint, 18, 180
revolute–prismatic (RP) arm, 182
revolute–revolute (RR) arm, 181
robot, 13
robot arm manipulator, 18
robot’s path, 20
RP-arm Algorithm, 233
RR-Arm Algorithm, 210

S

scanning, 106
SCARA arm manipulator, 179
secondary path frame, 161
secondary semiplane, 107
sensitive skin, 17, 392
sensitive skin diagram, 390
separable arm, 180, 273
separation theorems, 261
sequential linkage, 18
SIM (Sensing–Intelligence–Motion)

paradigm, 49, 55, 74, 177
skin properties, 392
skin, full coverage, 391
skin, locality identification, 391
sliding (prismatic) joint, 18, 180
space anisotropy, 273
space monotonicity, 273
statics, 33
step planning, 212
stopping path, 140
straight-line interpolation, 46

T
Tarry’s Rule, 64
terrain acquisition, 125
test for target reachability, 89

Bug1, 88
Bug2, 99

topology of obstacles, 285
trajectory, 20
Tremaux, 64
two-way analysis of variance, 365
Type I monotonicity, 287
Type II monotonicity, 287
Type III monotonicity, 290

U

uncertainty, 16
univariate analysis of variance, 355
universal lower bound, 80

V

V-plane, 281
virtual boundary, 185, 194
virtual line, 192
virtual obstacle, 191
VisBug-21 Algorithm, 110
VisBug-22 Algorithm, 120
vision, adding to algorithms, 104, 213

W

Wiener’s Algorithm, 64
workspace (W -space), 18
world coordinate frame, 146
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