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Preface

To create a usable piece of software, you have to fight for every fix, every feature, every little
accommodation that will get one more person up the curve. There are no shortcuts. Luck is involved, but
you don’t win by being lucky, it happens because you fought for every inch.

—Dave Winer

For many years, I had been looking for a book or a magazine article that would describe
a truly practical way of coding modern state machines (UML' statecharts) in a
mainstream programming language such as C or C++. I have never found such a
technique.

In 2002, I wrote Practical Statecharts in C/C++: Quantum Programming for
Embedded Systems (PSiCC), which was the first book to provide what had been missing
thus far: a compact, efficient, and highly maintainable implementation of UML state
machines in C and C++ with full support for hierarchical nesting of states. PSiCC was
also the first book to offer complete C and C++ source code of a generic, state machine-
based, real-time application framework for embedded systems.

To my delight, PSiCC continues to be one of the most popular books about
statecharts and event-driven programming for embedded systems. Within a year of

its publication, PSiCC was translated into Chinese, and a year later into Korean.

I’ve received and answered literally thousands of e-mails from readers who successfully
used the published code in consumer, medical, industrial, wireless, networking,
research, defense, robotics, automotive, space exploration, and many other
applications worldwide. In 2003 I started to speak about the subject matter at

' UML stands for Unified Modeling Language and is the trademark of Object Management Group.
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the Embedded Systems Conferences on both U.S. coasts. I also began to consult to
companies. All this gave me additional numerous opportunities to find out firsthand
how engineers actually use the published design techniques in a wide range of
application areas.

What you’re holding in your hands is the second edition of PSiCC. It is the direct result
of the plentiful feedback I've received as well as five years of the “massive parallel
testing” and scrutiny that has occurred in the trenches.

What’s New in the Second Edition?

As promised in the first edition of PSiCC, I continued to advance the code and refine
the design techniques. This completely revised second edition incorporates these
advancements as well the numerous lessons learned from readers.

New Code

First of all, this book presents an entirely new version of the software, which is now
called Quantum Platform (QP) and includes the hierarchical event processor (QEP) and
the real-time framework (QF) as well as two new components. QP underwent several
quantum leaps of improvement since the first publication six years ago. The
enhancements introduced since the first edition of PSiCC are too numerous to list here,
but the general areas of improvements include greater efficiency and testability and
better portability across different processors, compilers, and operating systems. The two
new QP components are the lightweight, preemptive, real-time kernel (QK) described
in Chapter 10 and the software-tracing instrumentation (QS) covered in Chapter 11.
Finally, I'm quite excited about the entirely new, ultralight, reduced-feature version of
QP called QP-nano that scales the approach down to the lowest-end 8- and 16-bit
MCUs. I describe QP-nano in Chapter 12.

Open Source and Dual Licensing

In 2004, I decided to release the entire QP code as open source under the terms of the
GNU General Public License (GPL) version 2, as published by the Free Software
Foundation. Independent of the open-source licensing, the QP source code is also
available under the terms of traditional commercial licenses, which expressly supersede
the GPL and are specifically designed for users interested in retaining the proprietary
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status of their applications based on QP. This increasingly popular strategy of
combining open source with commercial licensing, called dual licensing, is explained
in more detail in Appendix A.

C as the Primary Language of Exposition

Most of the code samples in the first edition of PSiCC pertained to the C++
implementation. However, as I found out in the field, many embedded software
developers come from a hardware background (mostly EE) and are often unnecessarily
intimidated by C++.

In this edition, I decided to exactly reverse the roles of C and C++. As before, the
companion Website contains the complete source code for both C and C++ versions.
But now, most of the code examples in the text refer to the C version, and the C++ code
is discussed only when the differences between it and the C implementation become
nontrivial and important.

As far as the C source code is concerned, I no longer use the C+ object-oriented
extension that I’ve applied and documented in the first edition. The code is still
compatible with C+, but the C+ macros are not used.

More Examples

Compared to the first edition, this book presents more examples of event-driven
systems and the examples are more complete. I made a significant effort to come up
with examples that are not utterly trivial yet don’t obscure the general principles in too
many details. I also chose examples that don’t require any specific domain knowledge,
so I don’t need to waste space and your attention explaining the problem specification.

Preemptive Multitasking Support

An event-driven infrastructure such as QP can work with a variety of concurrency
mechanisms, from a simple “superloop” to fully preemptive, priority-based
multitasking. The previous version of QP supported the simple nonpreemptive
scheduling natively but required an external RTOS to provide preemptive multitasking,
if such capability was required.

In Chapter 10, I describe the new real-time kernel (QK) component that provides
deterministic, fully preemptive, priority-based multitasking to QP. QK is a very special,
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super-simple, run-to-completion, single-stack kernel that perfectly matches the
universally assumed run-to-completion semantics required for state machine execution.

Testing Support

A running application built of concurrently executing state machines is a highly
structured affair where all important system interactions funnel through the event-
driven framework that ties all the state machines together. By instrumenting just this
tiny “funnel” code, you can gain unprecedented insight into the live system. In fact, the
software trace data from an instrumented event-driven framework can tell you much
more about the application than any traditional real-time operating system (RTOS)
because the framework “knows” so much more about the application.

Chapter 11 describes the new QS (“spy”) component that provides a comprehensive
software-tracing instrumentation to the QP event-driven platform. The trace data
produced by the QS component allows you to perform a live analysis of your running
real-time embedded system with minimal target system resources and without stopping
or significantly slowing down the code. Among other things, you can reconstruct
complete sequence diagrams and detailed, timestamped state machine activities for all
active objects in the system. You can monitor all event exchanges, event queues,
event pools, time events (timers), and preemptions and context switches. You can also
use QS to add your own instrumentation to the application-level code.

Ultra-Lightweight QP-nano Version

The event-driven approach with state machines scales down better than any
conventional real-time kernel or RTOS. To address really small embedded systems, a
reduced QP version called QP-nano implements a subset of features supported in QP/C
or QP/C++. QP-nano has been specifically designed to enable event-driven
programming with hierarchical state machines on low-end 8- and 16-bit
microcontrollers (MCUs), such as AVR, MSP430, 8051, PICmicro, 68HC(S)08, M16C,
and many others. Typically, QP-nano requires around 1-2KB of ROM and just a few
bytes of RAM per state machine. I describe QP-nano in Chapter 12.

Removed Quantum Metaphor

In the first edition of PSiCC, I proposed a quantum-mechanical metaphor as a way of
thinking about the event-driven software systems. Though I still believe that this
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analogy is remarkably accurate, it hasn’t particularly caught on with readers, even
though providing such a metaphor is one of the key practices of eXtreme Programming
(XP) and other agile methods.

Respecting readers’ feedback, I decided to remove the quantum metaphor from this
edition. For historical reasons, the word quantum still appears in the names of the
software components, and the prefix Q is consistently used in the code for type and
function names to clearly distinguish the QP code from other code, but you don’t need
to read anything into these names.

What You Need to Use QP

Most of the code supplied with this book is highly portable C or C++, independent

of any particular CPU, operating system, or compiler. However, to focus the discussion
I provide executable examples that run in a DOS console under any variant of
Windows. I’ve chosen the legacy 16-bit DOS as a demonstration platform because it
allows programming a standard x86-based PC at the bare-metal level. Without leaving
your desktop, you can work with interrupts, directly manipulate CPU registers, and
directly access the I/O space. No other modern 32-bit development environment for the
standard PC allows this much so easily.

The additional advantage of the legacy DOS platform is the availability of mature and
free tools. To that end, I have compiled the examples with the legacy Borland Turbo
C++ 1.01 toolset, which is available for a free download from Borland.

To demonstrate modern embedded systems programming with QP, I also provide
examples for the inexpensive’? ARM Cortex-M3-based Stellaris EV-LM3S811
evaluation kit from Luminary Micro. The Cortex-M3 examples use the exact same
source code as the DOS counterparts and differ only in the board support package
(BSP). The Cortex-M3 examples require the 32KB-limited KickStart edition of the AR
EWARM toolset, which is included in the Stellaris kit and is also available for a free
download from IAR.

Finally, some examples in this book run on Linux as well as any other POSIX-
compliant operating system such as BSD, QNX, Mac OS X, or Solaris. You can also
build the Linux examples on Windows under Cygwin.

2 At the time of this writing, the EKI-LM3S811 kit was available for $49 (www . luminarymicro.com).
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The companion Website to this book at www.quantum-1leaps.com/psicc2 provides

the links for downloading all the tools used in the book, as well as other resources.
The Website also contains links to dozens of QP ports to various CPUs, operating
systems, and compilers. Keep checking this Website; new ports are added frequently.

Intended Audience

This book is intended for the following software developers interested in event-driven

programming and modern state machines:

Embedded programmers and consultants will find a complete, ready-to-use,
event-driven infrastructure to develop applications. The book describes both
state machine coding strategies and, equally important, a compatible real-time
framework for executing concurrent state machines. These two elements are
synergistically complementary, and one cannot reach its full potential without
the other.

Embedded developers looking for a real-time kernel or RTOS will find that the
QP event-driven platform can do everything one might expect from an RTOS
and that, in fact, QP actually contains a fully preemptive real-time kernel as
well as a simple cooperative scheduler.

Designers of ultra low-power systems, such as wireless sensor networks, will
find how to scale down the event-driven, state machine-based approach to fit the
tiniest MCUs. The ultra-light QP-nano version (Chapter 12) combines a
hierarchical event processor, a real-time framework, and either a cooperative or
a fully preemptive kernel in just 1-2KB of ROM.

On the opposite end of the complexity spectrum, designers of very large-scale,
massively parallel server applications will find that the event-driven approach
combined with hierarchical state machines scales up easily and is ideal for
managing very large numbers of stateful components, such as client sessions.
As it turns out, the “embedded” design philosophy of QP provides the critical
per-component efficiency both in time and space.

The open-source community will find that QP complements other open-source
software, such as Linux or BSD. The QP port to Linux (and more generally to
POSIX-compliant operating systems) is described in Chapter 8.
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e GUI developers and computer game programmers using C or C++ will find that
QP very nicely complements GUI libraries. QP provides the high-level “screen
logic” based on hierarchical state machines, whereas the GUI libraries handle
low-level widgets and rendering of the images on the screen.

e System architects might find in QP a lightweight alternative to heavyweight
design automation tools.

e Users of design automation tools will gain deeper understanding of the inner
workings of their tools. The glimpse “under the hood” will help them use the
tools more efficiently and with greater confidence.

Due to the code-centric approach, this book will primarily appeal to software
developers tasked with creating actual, working code, as opposed to just modeling.
Many books about UML already do a good job of describing model-driven analysis
and design as well as related issues, such as software development processes and
modeling tools.

This book does not provide yet another CASE tool. Instead, this book is about practical,
manual coding techniques for hierarchical state machines and about combining state
machines into robust event-driven systems by means of a real-time framework.

To benefit from the book, you should be reasonably proficient in C or C++ and have a
general understanding of computer architectures. I am not assuming that you have
prior knowledge of UML state machines, and I introduce the underlying concepts in

a crash course in Chapter 2. I also introduce the basic real-time concepts of
multitasking, mutual exclusion, and blocking in Chapter 6.

The Companion Websites

This book has a companion Website at www.quantum-leaps.com/psicc?2 that
contains the following information:

e Source code downloads for QP/C, QP/C++, and QP-nano
e All QP ports and examples described in the book

e Reference manuals for QP/C, QP/C++, and QP-nano in HTML and CHM file
formats

e Links for downloading compilers and other tools used in the book
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Selected reviews and reader feedback

Errata

Additionally, the Quantum Leaps Website at www.quantum-1leaps.com has been
supporting the QP user community since the publication of the first edition of PSiCC in
2002. This Website offers the following resources:

Latest QP downloads

QP ports and development Kkits
Programmer manuals
Application notes

Resources and goodies such as Visio stencils for drawing UML diagrams,
design patterns, links to related books and articles, and more

Commercial licensing and technical support information
Consulting and training in the technology

News and events

Discussion forum

Newsletter

Blog

Links to related Websites

And more

Finally, QP is also present on SourceForge.net—the world’s largest repository of open
source code and applications. The QP project is located at https://sourceforge.
net/projects/gpc/.


http://www.quantum-leaps.com
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Introduction

Almost all computer systems in general, and embedded systems in particular, are event-
driven, which means that they continuously wait for the occurrence of some external or
internal event such as a time tick, an arrival of a data packet, a button press, or a mouse click.
After recognizing the event, such systems react by performing the appropriate computation
that may include manipulating the hardware or generating “soft” events that trigger other
internal software components. (That’s why event-driven systems are alternatively called
reactive systems.) Once the event handling is complete, the software goes back to waiting for
the next event.

You are undoubtedly accustomed to the basic sequential control, in which a program
waits for events in various places in its execution path by either actively polling for
events or passively blocking on a semaphore or other such operating system
mechanism. Though this approach to programming event-driven systems is functional
in many situations, it doesn’t work very well when there are multiple possible

sources of events whose arrival times and order you cannot predict and where it is
important to handle the events in a timely manner. The problem is that while a
sequential program is waiting for one kind of event, it is not doing any other work and
is not responsive to other events.

Clearly, what we need is a program structure that can respond to a multitude of possible
events, any of which can arrive at unpredictable times and in an unpredictable sequence.
Though this problem is very common in embedded systems such as home appliances,
cell phones, industrial controllers, medical devices and many others, it is also very
common in modern desktop computers. Think about using a Web browser, a word
processor, or a spreadsheet. Most of these programs have a modern graphical user
interface (GUI), which is clearly capable of handling multiple events. All developers of
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modern GUI systems, and many embedded applications, have adopted a common program
structure that elegantly solves the problem of dealing with many asynchronous events
in a timely manner. This program structure is generally called event-driven programming.

Inversion of Control

Event-driven programming requires a distinctly different way of thinking than
conventional sequential programs, such as “superloops” or tasks in a traditional RTOS.
Most modern event-driven systems are structured according to the Hollywood principle,
which means “Don’t call us, we’ll call you.” So an event-driven program is not in
control while waiting for an event; in fact, it’s not even active. Only once the event
arrives, the program is called to process the event and then it quickly relinquishes the
control again. This arrangement allows an event-driven system to wait for many events
in parallel, so the system remains responsive to all events it needs to handle.

This scheme has three important consequences. First, it implies that an event-driven
system is naturally divided into the application, which actually handles the events,
and the supervisory event-driven infrastructure, which waits for events and dispatches
them to the application. Second, the control resides in the event-driven infrastructure, so
from the application standpoint the control is inverted compared to a traditional
sequential program. And third, the event-driven application must return control after
handling each event, so the execution context cannot be preserved in the stack-based
variables and the program counter as it is in a sequential program. Instead, the
event-driven application becomes a state machine, or actually a set of collaborating
state machines that preserve the context from one event to the next in the

static variables.

The Importance of the Event-Driven Framework

The inversion of control, so typical in all event-driven systems, gives the event-driven
infrastructure all the defining characteristics of an application framework rather than

a toolkit. When you use a toolkit, such as a traditional operating system or an RTOS, you
write the main body of the application and call the toolkit code that you want to reuse.
When you use a framework, you reuse the main body and write the code if calls.

Another important point is that an event-driven framework is actually necessary if you
want to combine multiple event-driven state machines into systems. It really takes more
than “just” an API, such as a traditional RTOS, to execute concurrent state machines.
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State machines require an infrastructure (framework) that provides, at a minimum,
run-to-completion (RTC) execution context for each state machine, queuing of events,
and event-based timing services. This is really the pivotal point. State machines cannot
operate in a vacuum and are not really practical without an event-driven framework.

Active Object Computing Model

This book brings together two most effective techniques of decomposing event-driven
systems: hierarchical state machines and an event-driven framework. The combination
of these two elements is known as the active object computing model. The term active
object comes from the UML and denotes an autonomous object engaging other
active objects asynchronously via events. The UML further proposes the UML variant
of statecharts with which to model the behavior of event-driven active objects.

In this book, active objects are implemented by means of the event-driven framework
called QF, which is the main component of the QP event-driven platform. The QF
framework orderly executes active objects and handles all the details of thread-safe
event exchange and processing within active objects. QF guarantees the universally
assumed RTC semantics of state machine execution, by queuing events and dispatching
them sequentially (one at a time) to the internal state machines of active objects.

The fundamental concepts of hierarchical state machines combined with an event-
driven framework are not new. In fact, they have been in widespread use for at least two
decades. Virtually all commercially successful design automation tools on the market
today are based on hierarchical state machines (statecharts) and incorporate internally a
variant of an event-driven, real-time framework similar to QF.

The Code-Centric Approach

The approach I assume in this book is code-centric, minimalist, and low-level. This
characterization is not pejorative; it simply means that you’ll learn how to map
hierarchical state machines and active objects directly to C or C++ source code, without
big tools. The issue here is not a tool—the issue is understanding.

The modern design automation tools are truly powerful, but they are not for everyone.
For many developers the tool simply can’t pull its own weight and gets abandoned. For
such developers, the code-centric approach presented in this book can provide a
lightweight alternative to the heavyweight tools.
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Most important, though, no tool can replace conceptual understanding. For example,
determining which exit and entry actions fire in which sequence in a nontrivial state
transition is not something you should discover by running a tool-supported animation
of your state machine. The answer should come from your understanding of the
underlying state machine implementation (discussed in Chapters 3 and 4). Even if
you later decide to use a design automation tool and even if that particular tool would
use a different statechart implementation technique than discussed in this book, you
will still apply the concepts with greater confidence and more efficiency because of
your understanding of the fundamental mechanisms at a low level.

In spite of many pressures from existing users, I persisted in keeping the QP event-
driven platform lean by directly implementing only the essential elements of the bulky
UML specification and supporting the niceties as design patterns. Keeping the core
implementation small and simple has real benefits. Programmers can learn and deploy
QP quickly without large investments in tools and training. They can easily adapt

and customize the framework’s source code to the particular situation, including

to severely resource-constrained embedded systems. They can understand, and indeed
regularly use, all the provided features.

Focus on Real-Life Problems

You can’t just look at state machines and the event-driven framework as a collection of
features, because some of the features will make no sense in isolation. You can only use
these powerful concepts effectively if you are thinking about design, not simply coding.
And to understand state machines that way, you must understand the problems with
event-driven programming in general.

This book discusses event-driven programming problems, why they are problems,
and how state machines and active object computing model can help. Thus, I begin
most chapters with the programming problems the chapter will address. In this way,
I hope to move you, a little at a time, to the point where hierarchical state machines
and the event-driven framework become a much more natural way of solving the
problems than the traditional approaches such as deeply nested IFs and ELSESs for
coding stateful behavior or passing events via semaphores or event flags of a
traditional RTOS.
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Object Orientation

Even though I use C as the primary programming language, I also extensively use
object-oriented design principles. Like virtually all application frameworks, QP uses the
basic concepts of encapsulation (classes) and single inheritance as the primary
mechanisms of customizing, specializing, and extending the framework to a particular
application. Don’t worry if these concepts are new to you, especially in C. At the C
language level, encapsulation and inheritance become just simple coding idioms, which
I introduce in Chapter 1. I specifically avoid polymorphism in the C version

because implementing late binding in C is a little more involved. Of course, the C++
version uses classes and inheritance directly and QP/C++ applications can use
polymorphism.

More Fun

When you start using the techniques described in this book, your problems will change.
You will no longer struggle with 15 levels of convoluted i f—else statements, and you
will stop worrying about semaphores or other such low-level RTOS mechanisms.
Instead, you’ll start thinking at a higher level of abstraction about state machines,
events, and active objects. After you experience this quantum leap you will find,

as I did, that programming can be much more fun. You will never want to go back to
the “spaghetti” code or the raw RTOS.

How to Contact Me

If you have comments or questions about this book, the code, or event-driven
programming in general, I’d be pleased to hear from you. Please e-mail me at

miro@guantum-leaps.com.
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PART | UML STATE MACHINES

State machines are the best-known formalism for specifying and implementing event-
driven systems that must react to incoming events in a timely fashion. The advanced
UML state machines represent the current state of the art in state machine theory
and notation.

Part I of this book shows practical ways of using UML state machines in event-driven
applications to help you produce efficient and maintainable software with well-
understood behavior, rather than creating “spaghetti” code littered with convoluted IFs
and ELSEs. Chapter 1 presents an overview of the method based on a working example.
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Chapter 2 introduces state machine concepts and the UML notation. Chapter 3 shows
the standard techniques of coding state machines, and Chapter 4 describes a generic
hierarchical event processor. Part I concludes with Chapter 5, which presents a mini-
catalog of five state design patterns. You will learn that UML state machines are a
powerful design method that you can use, even without complex code-synthesizing
tools.



Getting Started with UML State
Machines and Event-Driven
Programming

It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all,
try something.
—Franklin D. Roosevelt

This chapter presents an example project implemented entirely with UML state
machines and the event-driven paradigm. The example application is an interactive
“Fly ‘n” Shoot”-type game, which I decided to include early in the book so that you can
start playing (literally) with the code as soon as possible. My aim in this chapter is

to show the essential elements of the method in a real, nontrivial program, but without
getting bogged down in details, rules, and exceptions. At this point, I am not trying
to be complete or even precise, although this example as well as all other examples in
the book is meant to show a good design and the recommended coding style. I don’t
assume that you know much about UML state machines, UML notation, or event-driven
programming. I will either briefly introduce the concepts, as needed, or refer you to
the later chapters of the book for more details.

The example “Fly ‘n’ Shoot” game is based on the Quickstart application provided in source
code with the Stellaris EV-LM3S811 evaluation kit from Luminary Micro [Luminary 06].
I was trying to make the “Fly ‘n’ Shoot” example behave quite similarly to the original
Luminary Micro Quickstart application so that you can directly compare the event-driven
approach with the traditional solution to essentially the same problem specification.
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1.1 Installing the Accompanying Code

The companion Website to this book at www.quantum-leaps.com/psicc2 contains the
self-extracting archive with the complete source code of the QP event-driven platform
and all executable examples described in this book; as well as documentation,
development tools, resources, and more. You can uncompress the archive into any
directory. The installation directory you choose will be referred henceforth as the QP
Root Directory <qgp>.

NOTE

Although in the text I mostly concentrate on the C implementation, the accompanying Web-
site also contains the equivalent C++ version of virtually every element available in C. The
C++ code is organized in exactly the same directory tree as the corresponding C code, except
you need to look in the <gp>\gpcpp\... directory branch.

Specifically to the “Fly ‘n’ Shoot” example, the companion code contains two versions'
of the game. I provide a DOS version for the standard Windows-based PC (see
Figure 1.1) so that you don’t need any special embedded board to play the game and
experiment with the code.

NOTE

I’ve chosen the legacy 16-bit DOS platform because it allows programming a standard PC at
the bare-metal level. Without leaving your desktop, you can work with interrupts, directly
manipulate CPU registers, and directly access the I/O space. No other modern 32-bit devel-
opment environment for the standard PC allows this much so easily. The ubiquitous PC run-
ning under DOS (or a DOS console within any variant of Windows) is as close as it gets to
emulating embedded software development on the commodity 80x86 hardware. Addition-
ally, you can use free, mature tools, such as the Borland C/C++ compiler.

I also provide an embedded version for the inexpensive> ARM Cortex-M3-based
Stellaris EV-LM3S811 evaluation kit (see Figure 1.2). Both the PC and Cortex-M3

' The accompanying code actually contains many more versions of the “Fly ‘n’ Shoot” game, but they are
not relevant at this point.
2 At the time of this writing the EV-LM3S811 kit was available for $49 (www.luminarymicro.com).
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versions use the exact same source code for all application components and differ only
in the Board Support Package (BSP).

1.2 Let’s Play

The following description of the “Fly ‘n” Shoot” game serves the dual purpose of
explaining how to play the game and as the problem specification for the purpose of
designing and implementing the software later in the chapter. To accomplish these two
goals I need to be quite detailed, so please bear with me.

Your objective in the game is to navigate a spaceship through an endless horizontal
tunnel with mines. Any collision with the tunnel or the mine destroys the ship. You can
move the ship up and down with Up-arrow and Down-arrow keys on the PC (see
Figure 1.1) or via the potentiometer wheel on the EV-LM3S811 board (see Figure 1.2).
You can also fire a missile to destroy the mines in the tunnel by pressing the Spacebar
on the PC or the User button on the EV-LM3S811 board. Score accumulates for
survival (at the rate of 30 points per second) and destroying the mines. The game lasts
for only one ship.

The game starts in a demo mode, where the tunnel walls scroll at the normal pace
from right to left and the “Press Button” text flashes in the middle of the screen.
You need to generate the “fire missile” event for the game to begin (press Spacebar
on the PC or the User button on the EV-LM3S811 board).

You can have only one missile in flight at a time, so trying to fire a missile while it is
already flying has no effect. Hitting the tunnel wall with the missile brings you no
points, but you earn extra points for destroying the mines.

The game has two types of mines with different behavior. In the original Luminary
Quickstart application both types of mines behave the same, but I wanted to
demonstrate how state machines can elegantly handle differently behaving mines.

Mine type 1 is small, but can be destroyed by hitting any of its pixels with the missile.
You earn 25 points for destroying a mine type 1. Mine type 2 is bigger but is nastier
in that the missile can destroy it only by hitting its center, not any of the “tentacles.”
Of course, the ship is vulnerable to the whole mine. You earn 45 points for destroying
a mine type 2.

When you crash the ship, by either hitting a wall or a mine, the game ends and displays
the flashing “Game Over” text as well as your final score. After 5 seconds of flashing,
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the “Game Over” screen changes back to the demo screen, where the game waits to be
started again.

Additionally the application contains a screen saver because the OLED display of the
original EV-LM3S811 board has burn-in characteristics similar to a CRT. The screen
saver only becomes active if 20 seconds elapse in the demo mode without starting
the game (i.e., the screen saver never appears during game play). The screen saver is
a simple random pixel type rather than the “Game of Life” algorithm used in the
original Luminary Quickstart application. I’ve decided to simplify this aspect of the
implementation because the more elaborate pixel-mixing algorithm does not contribute
any new or interesting behavior.

After a minute of running the screen saver, the display turns blank and only a single
random pixel shows on the screen. Again, this is a little different from the original
Quickstart application, which instead blanks the screen and starts flashing the User
LED. I’ve changed this behavior because I have a better purpose for the User LED (to
visualize the activity of the idle loop).

== Command Prompt - dbg\game

Press UP-arrow to move the space ship up
Prezs DOWUN-arrow to move the space ship down
Press SPACE to fire the missile

Press ESC to guit the game

Positjon:

Mine Mine Tunnel
Ship Missile Type 1 Explosion Type 2 wall

Figure 1.1: The “Fly ‘n’ Shoot” game running in a DOS window under Windows XP.
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Potentiometer Reset LM3S811 96 x 16 Power
Wheel Switch Cortex-M3 MCU OLED Display LED

jmnme

USB Cable LMI FTDI User User
to PC Debugger LED Switch

Figure 1.2: The “Fly ‘n’ Shoot” game running on the Stellaris EV-LM3S811
evaluation board.

1.2.1 Running the DOS Version

The “Fly ‘n’ Shoot” sample code for the DOS version (in C) is located in the
<gp>\gpc\examples\80x86\dos\tcppl01l\1\game\ directory, where <gp> stands
for the installation directory in which you chose to install the accompanying software.

The compiled executable is provided, so you can run the game on any Windows-based
PC by simply double-clicking the executable game . exe located in the directory
<gp>\gpc\examples\80x86\dos\tcppl01l\1l\game\dbg\. The first screen you
see is the game running in the demo mode with the text “Push Button” flashing in
the middle of the display. At the top of the display you see a legend of keystrokes
recognized by the application. You need to hit the SPACEBAR to start playing the game.
Press the Esc key to cleanly exit the application.

If you run “Fly ‘n’ Shoot” in a window under Microsoft Windows, the animation effects in
the game might appear a little jumpy, especially compared to the Stellaris version of the
same game. You can make the application execute significantly more smoothly if you
switch to the full-screen mode by pressing and holding the Alt key and then pressing the
Enter key. You go back to the window mode via the same Alt-Enter key combination.

As you can see in Figure 1.1, the DOS version uses simply the standard VGA text mode
to emulate the OLED display of the EV-LM3S811 board. The lower part of the DOS screen
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is used as a matrix of 80 x 16 character-wide “pixels,” which is a little less than the 96 x 16
pixels of the OLED display but still good enough to play the game. I specifically avoid
employing any fancier graphics in this early example because I have bigger fish to fry for
you than to worry about the irrelevant complexities of programming graphics.

My main goal is to make it easy for you to understand the event-driven code and
experiment with it. To this end, I chose the legacy Borland Turbo C++ 1.01 toolset to
build this example as well as several other examples in this book. Even though Turbo
C++ 1.01 is an older compiler, it is adequate to demonstrate all features of both the
C and C++ versions. Best of all, it is available for a free download from the Borland
“Museum” at http://bdn.borland.com/article/0,1410,21751,00.html.

The toolset is very easy to install. After you download the Turbo C++ 1.01 files directly
from Borland, you need to unzip the files onto your hard drive. Then you run the
INSTALL.EXE program and follow the installation instructions it provides.

NOTE

I strongly recommend that you install the Turbo C++ 1.01 toolset into the directory
C:\tools\tcppl01\. That way you will be able to directly use the provided project files
and make scripts.

Perhaps the easiest way to experiment with the “Fly ‘n” Shoot” code is to launch the Turbo
C++ IDE (TC.EXE) and open the provided project file GAME-DBG . PRJ, which is located
in the directory <gp>\gpc\examples\80x86\dos\tcppl01l\1l\game\. You can
modify, recompile, execute, and debug the program directly from the IDE. However, you
should avoid terminating the program stopped in the debugger, because this will not restore
the standard DOS interrupt vectors for the time tick and keyboard interrupts. You should
always cleanly exit the application by letting it freely run and pressing the Esc key.

The next section briefly describes how to run the embedded version of the game. If you
are not interested in the Cortex-M3 version, feel free to skip to Section 1.3, where I start
explaining the application code.

1.2.2 Running the Stellaris Version

In contrast to the “Fly ‘n’ Shoot” version for DOS running in the ancient real mode of
the 80x86 processor, the exact same source code runs on one of the most modern
processors in the industry: the ARM Cortex-M3.
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The sample code for the Stellaris EV-LM3S811 board is located in the
<gp>\gpc\examples\cortex-m3\vanilla\iar\game-ev-1m3s811\ directory,
where <gp> stands for the root directory in which you chose to install the
accompanying software.

The code for the Stellaris kit has been compiled with the 32KB-limited Kickstart edition
of the IAR Embedded Workbench for ARM (IAR EWARM) v 5.11, which is provided
with the Stellaris EV-LM3S811 kit. You can also download this software free of charge
directly from IAR Systems (www.iar.com) after filling out an online registration.

The installation of IAR EWARM is quite straightforward, since the software comes
with the installation utility. You also need to install the USB drivers for the hardware
debugger built into the EV-LM3S811 board, as described in the documentation of
the Stellaris EV-LM3S811 kit.

NOTE

I strongly recommend that you install the IAR EWARM toolset into the directory C:\tools
\iar\arm_ks_5.11. That way you will be able to directly use the provided EWARM work-
space files and make scripts.

Before you program the “Fly ‘n’ Shoot” game to the EV-LM3S811 board, you might
want to play a little with the original Quickstart application that comes preprogrammed
with the EV-LM3S811 kit.

To program the “Fly ‘n’ Shoot” game to the Flash memory of the EV-LM3S811 board,
you first connect the EV-LM3S811 board to your PC with the USB cable provided in the
kit and make sure that the Power LED is on (see Figure 1.2). Next, you need to launch the
IAR Embedded Workbench and open the workspace game . eww located
in the <gp>\gpc\examples\cortex-m3\vanilla\iar\game-ev-1m3s811\
directory. At this point your screen should look similar to the screenshot shown in
Figure 1.3.

The game-ev-1m3s811 project is set up to use the LMI FTDI debugger, which is the
piece of hardware integrated on the EV-LM3S811 board (see Figure 1.2). You can

verify this setup by opening the “Options” dialog box via the Project | Options menu.
Within the “Options” dialog box, you need to select the Debugger category in the panel
on the left. While you’re at it, you could also verify that the Flash loading is enabled
by selecting the “Download” tab. The checked “Use flash loader(s)” check box means
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that the Flash loader application provided by IAR will be first loaded to the RAM of the
MCU, and this application will program the Flash with the image of your application.

To start the Flash programming process, select the Project | Debug menu, or simply
click the Debug button (see Figure 1.3) in the toolbar. The IAR Workbench should
respond by showing the Flash programming progress bar for several seconds, as shown
in Figure 1.3. Once the Flash programming completes, the IAR EWARM switches to
the IAR C-Spy debugger and the program should stop at the entry to main (). You can
start playing the game either by clicking the Go button in the debugger or you can

close the debugger and reset the board by pressing the Reset button. Either way, the
“Fly ‘n” Shoot” game is now permanently programmed into the EV-LM3S811 board
and will start automatically on every powerup.

/A IAR Embedded Workbench IDE

Total number of warnings: 0

| Total number of errors: 0
E <

Progress

|C:\soﬂ:ware\\qpc\exampIes\cortex—mE\vanilla\iar\game—ev»lmBsSll\ Errors 0, Warnings 0 | |

File Edit View Project Tools Window Help
DEWg b B R o o =l < Do« EHHS P
E |bsp.c | missile.c | ship.c | tunnel.c il
|Debug Build Confi . T.h Debug H
- = uild Con |_gurat|on Button | ~
Selection
= game - Debug v i b dact s e s s e i
i static QEvent const * 1_missileQueueSto[2];
—EDLUH‘IIHBI’VV static QEvent const * 1_shipQueuesto[z]; !
I—@drwerhb.a static QEvent const * 1_tunnelQueueSTto[GAME_MINES_MAX + 573
static objectPoseEvt T_smi1Pool1Sto[GAME_MINES_MAX + 8]; /* smé
[ esramagxigxi.c static ObjectImageEvt 1_medPoolSto(GAME_MINES_MAX + 21} /% meds
—EDQP—Debug e - isT 1_subscrSto[MAX_PUB_SIG];
— B libgep.a QP Libraries
I—mhbqf.a void main(int argc, char =argv[]) {
/% explicitly inveke the active obje
—® (0 QP-Release Missile_ctor();
—8(1qr-spy ahipCROPLY: |
= [ Source unnel_ctor ();
Elbsp.c BSP_init(argc, argv); A/ initialize the Board Su
Eﬁ - QF_init(); S* initialize the framework and the wnderly
o .
Hlﬁm!nel.: N - S initialize the ¢
& [ minez.c Application Sources [1_smiPoolsto. sizeof(l_smlPoolsto). sizeof(l_s
Elmissﬂe.-: 1 _medPonlsto, sizeof(]l medpogisto), sizeof(1_m
[B =hip.c H /T init pubi
[ startup.c Programming flash /* setup the
E’tunnel.c
L (3 Qutput p
'] v v
+| NN - o2
* ‘ Messages ! o]
1
Flash Programming =
-
> Al
NL

Figure 1.3: Loading the “Fly ‘n’ Shoot” game into the flash of LM3S811 MCU

with IAR EWARM IDE.
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The IAR Embedded Workbench environment allows you to experiment with the

“Fly ‘n” Shoot” code very easily. You can edit the files and recompile the application
at a click of a button (F7). The only caveat is that the first time after the installation
of the IAR toolset you need to build the Luminary Micro driver library for the
LM3S811 MCU from the sources. You accomplish this by loading the workspace
ek-1m3s811.eww located in the directory <IAR-EWARM>\ARM\examples
\Luminary\Stellaris\boards\ek-1m3s811, where <IAR-EWARM> stands for the
directory name where you’ve installed the IAR toolset. In the ev-1m3s811.eww
workspace, you select the “driverlib - Debug” project from the drop-down list at
the top of the Workspace panel and then press F7 to build the library.

1.3 The main() Function

Perhaps the best place to start the explanation of the “Fly ‘n’ Shoot” application code is
the main () function, located in the file main. c. Unless indicated otherwise in this
chapter, you can browse the code in either the DOS version or the EV-LM3S811
version, because the application source code is identical in both. The complete main.c
file is shown in Listing 1.1.

NOTE

To explain code listings, I place numbers in parentheses at the interesting lines in the left
margin of the listing. I then use these labels in the left margin of the explanation section that
immediately follows the listing. Occasionally, to unambiguously refer to a line of a particular
listing from sections of text other than the explanation section, I use the full reference con-
sisting of the listing number followed by the label. For example, Listing 1.1(21) refers to
the label (21) in Listing 1.1.

Listing 1.1 The file main.c of the “Fly ‘n’ Shoot” game application

(1) #include "gp_port.h" /* the QP port */
(2) #include "bsp.h" /* Board Support Package */
(3) #include "game.h" /* this application */

/* Local-scope objects ———————— - mm - - */
(4) static QEvent const * 1_missileQueueSto[2]; /* event queue */

static QEvent const * 1_shipQueueSto[3]; /* event queue */
(6) static QEvent const * 1_tunnelQueueSto[GAME_MINES_MAX +5]; /* event queue */

Continued onto next page
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(7) static ObjectPosEvt 1_smlPoolSto[GAME_MINES_MAX + 8]; /* small-size pool */
(8) static ObjectImageEvt 1_medPoolSto[GAME_MINES_MAX + 8]; /* medium-size pool */
(9) static QSubscrList 1_subscrSto[MAX_PUB_SIG]; /* publish-subscribe */
2P */
void main (int argc, char *argv[]) {
/* explicitly invoke the active objects’ ctors... */
(10) Missile_ctor () ;
(11) Ship_ctor () ;
(12) Tunnel_ctor () ;
(13) BSP_init (argc, argv) ; /* initialize the Board Support Package */
(14) QF_init () ; /* initialize the framework and the underlying RT kernel */
/* initialize the event pools... */
(15) QF_poolInit (1l_smlPoolSto, sizeof (1_smlPoolSto), sizeof (1_smlPoolSto[01]));
16) QF_poolInit (1_medPoolSto, sizeof (1_medPoolSto), sizeof (1_medPoolSto[0])) ;
(17) QF_psInit (1_subscrSto, Q_DIM(1_subscrSto)); /* init publish-subscribe */
/* start the active objects... */
(18) QActive_start (AO_Missile, /* global pointer to theMissile active object */
1, /* priority (lowest) */
1_missileQueueSto, Q DIM(1_missileQueueSto), /* evt queue */
(void *)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */
(19) QActive_start (AO_Ship, /* global pointer to the Ship active object */
2, /* priority */
1_shipQueueSto, Q_DIM(1_shipQueueSto), /* evt queue */
(void *)0, 0, /* no per-thread stack */
(QEvent *)0) ; /* no initialization event */
(20) QActive_start (AO_Tunnel, /* global pointer to the Tunnel active object */
3, /* priority */
1_tunnelQueueSto, Q DIM(1l_tunnelQueueSto), /* evt queue */
(void *)0, 0, /* no per-thread stack */
(QEvent *)O0) ; /* no initialization event */
(21) QF_run() ; /* run the QF application */
}
(1) The “Fly ‘n’ Shoot” game is an example of an application implemented with the

QP event-driven platform. Every application C-file that uses QP must include the
ap_port.h header file. This header file contains the specific adaptation of QP to
the given processor, operating system, and compiler, which is called a port. Each
QP port is located in a separate directory, and the C compiler finds the right

ap_port.h header file through the include search path provided to the compiler
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(typically via the —I compiler option). That way I don’t need to change the
application source code to recompile it for a different processor or compiler.
I only need to instruct the compiler to look in a different QP port directory
for the gp_port.h header file. For example, the DOS version includes the
ap_port.h header file from the directory <gp>\gpc\ports\80x86\dos
\tcppl01\1\, and the EV-LM3S811 version from the directory <gp>\apc
\ports\cortex-m3\vanilla\liar\.

(2) The bsp.h header file contains the interface to the Board Support Package and
is located in the application directory.

(3) The game.h header file contains the declarations of events and other facilities
shared among the components of the application. I will discuss this header file
in the upcoming Section 1.6. This header file is located in the application
directory.

The QP event-driven platform is a collection of components, such as the QEP event
processor that executes state machines according to the UML semantics and the QF
real-time framework that implements the active object computing model. Active
objects in QF are encapsulated state machines (each with an event queue, a separate
task context, and a unique priority) that communicate with one another
asynchronously by sending and receiving events, whereas QF handles all the details of
thread-safe event exchange and queuing. Within an active object, the events are
processed by the QEP event processor sequentially in a run-to-completion (RTC)
fashion, meaning that processing of one event must necessarily complete before
processing the next event. (See also Section 6.3.3 in Chapter 6.)

(4-6) The application must provide storage for the event queues of all active objects
used in the application. Here the storage is provided at compile time
through the statically allocated arrays of immutable (const) pointers to
events, because QF event queues hold just pointers to events, not events
themselves. Events are represented as instances of the QEvent structure
declared in the gp_port.h header file. Each event queue of an active
object can have a different size, and you need to decide this size based
on your knowledge of the application. Event queues are discussed in
Chapters 6 and 7.

(7,8) The application must also provide storage for event pools that the framework
uses for fast and deterministic dynamic allocation of events. Each event pool
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can provide only fixed-size memory blocks. To avoid wasting memory by
using oversized blocks for small events, the QF framework can manage up to
three event pools of different block sizes (for small, medium, and large
events). The “Fly ‘n” Shoot” application uses only two out of the three
possible event pools (the small and medium pools).

The QF real-time framework supports two event delivery mechanisms: the simple
direct event posting to active objects and the more advanced mechanism called
publish-subscribe that decouples event producers from the consumers. In the publish-
subscribe mechanism, active objects subscribe to events by the framework. Event
producers publish the events to the framework. Upon each publication request, the
framework delivers the event to all active objects that had subscribed to that event
type. One obvious implication of publish-subscribe is that the framework must

store the subscriber information, whereas it must be possible to handle multiple
subscribers to any given event type. The event delivery mechanisms are described
in Chapters 6 and 7.

©)

(10-12)

13)

(14)

(15.16)

The “Fly ‘n’ Shoot” application uses the publish-subscribe event delivery
mechanism supported by QF, so it needs to provide the storage for the
subscriber lists. The subscriber lists remember which active objects have
subscribed to which events. The size of the subscriber database depends on
both the number of published events, which is specified in the MAX_PUB_SIG
constant found in the game . h header file, and the maximum number of active
objects allowed in the system, which is determined by the QF configuration
parameter QF_MAX_ACTIVE.

These functions perform an early initialization of the active objects in the
system. They play the role of static “constructors,” which in C you need to
invoke explicitly. (C++ calls such static constructors implicitly before
entering main()).

The function BSP_init () initializes the board and is defined in the bsp.c
file.

The function QF_init () initializes the QF component and the underlying
RTOS/kernel, if such software is used. You need to call QF_init () before
you invoke any QF services.

The function QF_poolInit () initializes the event pools. The parameters of
this function are the pointer to the event pool storage, the size of this storage,
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and the block-size of this pool. You can call this function up to three times to
initialize up to three event pools. The subsequent calls to QF _poolInit ()
must be made in the increasing order of block size. For instance, the small
block-size pool must be initialized before the medium block-size pool.

(17) The function QF_psInit () initializes the publish-subscribe event
delivery mechanism of QF. The parameters of this function are the pointer to
the subscriber-list array and the dimension of this array.

The utility macro Q_DIM(a) provides the dimension of a one-dimensional array a[]
computed as sizeof (a) /sizeof (a[0]), which is a compile-time constant. The use
of this macro simplifies the code because it allows me to eliminate many #define
constants that otherwise I would need to provide for the dimensions of various arrays.
I can simply hard-code the dimension right in the definition of an array, which is the
only place that I specify it. I then use the macro Q_DIM () whenever I need this
dimension in the code.

(18-20) The function QActive_start () tells the QF framework to start managing
an active object as part of the application. The function takes the following
parameters: the pointer to the active object structure, the priority of the active
object, the pointer to its event queue, the dimension (length) of that queue,
and three other parameters that I explain in Chapter 7 (they are not relevant at
this point). The active object priorities in QF are numbered from 1 to
QF_MAX_ACTIVE, inclusive, where a higher-priority number denotes higher
urgency of the active object. The constant QF _MAX_ACTIVE is defined in
the QF port header file gf_port.h and currently cannot exceed 63.

I like to keep the code and data of every active object strictly encapsulated within its
own C-file. For example, all code and data for the active object Ship are encapsulated in
the file ship.c, with the external interface consisting of the function Ship_ctor ()
and the pointer AO_Ship.

(21) At this point, you have provided to the framework all the storage and
information it needs to manage your application. The last thing you must do is
call the function QF_run () to pass the control to the framework.

After the call to QF_run () the framework is in full control. The framework
executes the application by calling your code, not the other way around. The function
OF_run () never returns the control back to main (). In the DOS version of the
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“Fly ‘n’ Shoot” game, you can terminate the application by pressing the Esc key, in
which case QF_run () exits to DOS but not to main (). In an embedded system, such
as the Stellaris board, QF _run () runs forever or till the power is removed, whichever
comes first.

NOTE

For best cross-platform portability, the source code consistently uses the UNIX end-of-line
convention (lines are terminated with LF only, OxA character). This convention seems to
be working for all C/C++ compilers and cross-compilers, including legacy DOS-era tools.
In contrast, the DOS/Windows end-of-line convention (lines terminated with the CR,LF, or
0xD,0xA pair of characters) is known to cause problems on UNIX-like platforms, especially
in the multiline preprocessor macros.

1.4 The Design of the “Fly ‘n’ Shoot” Game

To proceed further with the explanation of the “Fly ‘n’ Shoot” application, I need to
step up to the design level. At this point I need to explain how the application has been
decomposed into the active objects and how these objects exchange events to
collectively deliver the functionality of the “Fly ‘n’ Shoot” game.

In general, the decomposition of a problem into active objects is not trivial. As usual
in any decomposition, your goal is to achieve possibly loose coupling among the
active object components (ideally no sharing of any resources), and you also strive
for minimizing the communication in terms of the frequency and size of exchanged
events.

In the case of the “Fly ‘n’ Shoot” game, I need to first identify all objects with reactive
behavior (i.e., with a state machine). I applied the simplest object-oriented technique of
identifying objects, which is to pick the frequently used nouns in the problem
specification. From Section 1.2, I identified Ship, Missile, Mines, and Tunnel. However,
not every state machine in the system needs to be an active object (with a separate
task context, an event queue, and a unique priority level), and merging them is a valid
option when performance or space is needed. As an example of this idea, I ended up
merging the Mines into the Tunnel active object, whereas I preserved the Mines as
independent state machine components of the Tunnel active object. By doing so

I applied the “Orthogonal Component” design pattern described in Chapter 5.
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The next step in the event-driven application design is assigning responsibilities and
resources to the identified active objects. The general design strategy for avoiding
sharing of resources is to encapsulate each resource inside a dedicated active object and
to let that object manage the resource for the rest of the application. That way, instead
of sharing the resource directly, the rest of the application shares the dedicated

active object via events.

So, for example, I decided to put the Tunnel active object in charge of the display.
Other active objects and state machine components, such as Ship, Missile, and Mines,
don’t draw on the display directly, but rather send events to the Tunnel object with
the request to render the Ship, Missile, or Mine bitmaps at the provided (x, y)
coordinates of the display.

With some understanding of the responsibilities and resource allocations to active
objects I can move on to devising the various scenarios of event exchanges among
the objects. Perhaps the best instrument to aid the thinking process at this stage is the
UML sequence diagram, such as the diagram depicted in Figure 1.4. This particular
sequence diagram shows the most common event exchange scenarios in the

“Fly ‘n’ Shoot” game (the primary use cases, if you will). The explanation section
immediately following the diagram illuminates the interesting points.

NOTE

A UML sequence diagram like Figure 1.4 has two dimensions. Horizontally arranged boxes
represent the various objects participating in the scenario, whereas heavy borders indicate
active objects. As usual in the UML, the object name is underlined. Time flows down the
page along the vertical dashed lines descending from the objects. Events are represented as
horizontal arrows originating from the sending object and terminating at the receiving object.
Optionally, thin rectangles around instance lines indicate focus of control.

NOTE

To explain diagrams, I place numbers in parentheses at the interesting elements of the dia-
gram. I then use these labels in the left margin of the explanation section that immediately
follows the diagram. Occasionally, to unambiguously refer to a specific element of a partic-
ular diagram from sections of text other than the explanation section, I use the full reference
consisting of the figure number followed by the label. For example, Figure 1.4(12) refers to
the element (12) in Figure 1.4.
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Figure 1.4: The sequence diagram of the “Fly ‘n’ Shoot” game.

(1) The TIME_TICK is the most important event in the game. This event is generated
by the QF framework from the system time tick interrupt at a rate of 30 times
per second, which is needed to drive a smooth animation of the display. Because
the TIME_TICK event is of interest to virtually all objects in the application,
it is published by the framework to all active objects. (The publish-subscribe
event delivery in QF is described in Chapter 6.)

(2) Upon reception of the TIME_TICK event, the Ship object advances its position by
one step and posts the event SHIP_IMG (x, v, bmp) to the Tunnel object. The
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SHIP_IMG event has parameters x and y, which are the coordinates of the Ship on
the display, as well as the bitmap number bmp to draw at these coordinates.

The Missile object is not in flight yet, so it simply ignores the TIME_TICK event
this time.

The Tunnel object performs the heaviest lifting for the TIME_TICK event. First,
Tunnel redraws the entire display from the current frame buffer. This action,
performed 30 times per second, provides the illusion of animation of the display.
Next, the Tunnel clears the frame buffer and starts filling it up again for the next
time frame. The Tunnel advances the tunnel walls by one step and copies the
walls to the frame buffer. The Tunnel also dispatches the TIME_TICK event to all
its Mine state machine components.

Each Mine advances its position by one step and posts the MINE_IMG (x, y, bmp)
event to the Tunnel to render the appropriate Mine bitmap at the position (x, y) in
the current frame buffer. Mines of type 1 send the bitmap number MINE1_BMP,
whereas mines of type 2 send MINE2_BMP.

Upon receipt of the SHIP_IMG (x, y, bmp) event from the Ship, the Tunnel
object renders the specified bitmap in the frame buffer and checks for any
collision between the ship bitmap and the tunnel walls. Tunnel also dispatches
the original SHIP_IMG (x, y, bmp) event to all active Mines.

Each Mine determines whether the Ship is in collision with that Mine.

The PLAYER_TRIGGER event is generated when the Player reliably presses the
button (button press is debounced). This event is published by the QF framework
and is delivered to the Ship and Tunnel objects, which both subscribe to the
PLAYER_TRIGGER event.

Ship generates the MISSILE_FIRE (x, y) event to the Missile object. The
parameters of this event are the current (x, y) coordinates of the Ship, which are
the starting point for the Missile.

Tunnel receives the published PLAYER_TRIGGER event as well because Tunnel
occasionally needs to start the game or terminate the screen saver mode based on
this stimulus.

Missile reacts to the MISSILE_FIRE (x, y) event by starting to fly, whereas it
sets its initial position from the (x, y) event parameters delivered from the Ship.
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(12) This time around, the TIME_TICK event arrives while Missile is in flight. Missile
posts the MISSILE_IMG (x, vy, bmp) event to the Tunnel.

(13) Tunnel renders the Missile bitmap in the current frame buffer and dispatches
the MISSILE_IMG (x, v, bmp) event to all the Mines to let the Mines test for the
collision with the Missile. This determination depends on the type of the Mine. In
this scenario a particular Mine[n] object detects a hit and posts the DESTROYED_MINE (score)
(score) event to the Missile. The Mine provides the score earned for destroying
this particular mine as the parameter of this event.

(14) Missile handles the HIT MINE (score) event by becoming immediately ready to
launch again and lets the Mine do the exploding. Because I decided to make the Ship
responsible for the scorekeeping, the Missile also generates the DESTROYED_MINE
(score) event to the Ship, to report the score for destroying the Mine.

(15) Upon reception of the DESTROYED_MINE (score) event, the Ship increments
the score by the value received from the Missile.

(16) The Ship object handles the PLAYER_SHIP_MOVE (x, y) event by updating its
position from the event parameters.

(17) When the Tunnel object handles the SHIP_IMG (x, y, bmp_1id) event next time
around, it detects a collision between the Ship and the tunnel wall. In that case
it posts the event HIT_WALL to the Ship.

(18) The Ship responds to the HIT_WALL event by transitioning to the “exploding” state.

Even though the sequence diagram in Figure 1.4 shows merely some selected scenarios
of the “Fly ‘n’ Shoot” game, I hope that the explanations give you a big picture of
how the application works. More important, you should start getting the general idea
about the thinking process that goes into designing an event-driven system with
active objects and events.

1.5 Active Objects in the “Fly ‘n’ Shoot” Game

I hope that the analysis of the sequence diagram in Figure 1.4 makes it clear that actions
performed by an active object depend as much on the internal mode of the object as
on the events it receives—Epr example, the Missile active object handles the
TIME_TICK event very differently when the Missile is in flight (Figure 1.4(12))
compared to the time when it is not (Figure 1.4(3)).
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The best-known mechanism for handling such modal behavior is through state
machines because a state machine makes the behavior explicitly dependent on both the
event and the state of an object. Chapter 2 introduces UML state machine concepts
more thoroughly. In this section, I give a cursory explanation of the state machines
associated with each object in the “Fly ‘n’ Shoot” game.

1.5.1 The Missile Active Object

I start with the Missile state machine shown in Figure 1.5 because it turns out to be the
simplest one. The explanation section immediately following the diagram illuminates
the interesting points.

NOTE

A UML state diagram like Figure 1.5 preserves the general form of the traditional state tran-
sition diagrams, where states are represented as nodes and transitions as arcs connecting the
nodes. In the UML notation the state nodes are represented as rectangles with rounded cor-
ners. The name of the state appears in bold type in the name compartment at the top of
the state. Optionally, right below the name, a state can have an internal transition compart-
ment separated from the name by a horizontal line. The internal transition compartment
can contain entry actions (actions following the reserved symbol “entry”), exit actions
(actions following the reserved symbol “exit”), and other internal transitions (e.g., those trig-
gered by TIME_TICK in Figure 1.5(3)). State transitions are represented as arrows originating
at the boundary of the source state and pointing to the boundary of the target state. At a min-
imum, a transition must be labeled with the triggering event. Optionally, the trigger can be
followed by event parameters, a guard, and a list of actions.

(1) The state transition originating at the black ball is called the initial transition.
Such transition designates the first active state after the state machine object
is created. An initial transition can have associated actions, which in the
UML notation are enlisted after the forward slash ( /). In this particular case,
the Missile state machine starts in the “armed” state and the actions executed
upon the initialization consist of subscribing to the event TIME_TICK. Subscribing
to an event means that the framework will deliver the specified event to the
Missile active object every time the event is published to the framework.
Chapter 7 describes the implementation of the publish-subscribe event delivery
in QF.
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(1)

. armed \1 / QActive_subscribe(me, TIME_TICK),—e®
el
MISSILE_FIRE(x, y) / \
N /) me->X = e->X; @)
me->y = e->y;
4 flying P
TIME_TICK [me->x + GAME_MISSILE_SPEED_X h (4) Y
< GAME_SCREEN_WIDTH] / TIME_TICK [else]
me->x += GAME_MISSILE_SPEED_X; ®) /
QActive_postFIFO(Tunnel, DESTROYED_MINE(score)
MISSILE_IMG(me->x, me->y, QActive_postFIFO(Ship,
MISSILE_BMP)); DESTROYED_MINE(e->score));
HIT_WALL
-
4 exploding A
(6)
entry /
me->exp_ctr = 0; (7)
TIME_TICK [(me->x >= GAME_SPEED_X)
&& (me->exp_ctr < 16)]/ (8)
me->x -= GAME_SPEED_X;
++me->exp_ctr;
QActive_postFIFO(Tunnel, 9) /
EXPLOSION_IMG(me->x + 3, me->y -4, ——TIME_TICK [else]
9 EXPLOSIONO_BMP + (me->exp_ctr >> 2))); )

Figure 1.5: Missile state machine diagram.

(2) The arrow labeled with the MISSILE_FIRE (x, y) event denotes a state transition,
that is, a change of state from “armed” to “flying.” The MISSILE_FIRE (x, vy)
event is generated by the Ship object when the Player triggers the Missile (see the
sequence diagram in Figure 1.4). In the MISSILE_FIRE event, Ship provides
Missile with the initial coordinates in the event parameters (x, y).

NOTE

The UML intentionally does not specify the notation for actions. In practice, the actions are
often written in the programming language used for coding the particular state machine. In
all state diagrams in this book, I assume the C programming language. Furthermore, in the
C expressions I refer to the data members associated with the state machine object through
the “me->" prefix and to the event parameters through the “e->" prefix. For example, the
action “me->x = e->x; " means that the internal data member x of the Missile active object
is assigned the value of the event parameter x.
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The event name TIME_TICK enlisted in the compartment below the state name
denotes an internal transition. Internal transitions are simple reactions to

events performed without a change of state. An internal transition, as well as a
regular transition, can have a guard condition, enclosed in square brackets. Guard
condition is a Boolean expression evaluated at runtime. If the guard evaluates

to TRUE, the transition is taken. Otherwise, the transition is not taken and no
actions enlisted after the forward slash ( / ) are executed. In this particular case,
the guard condition checks whether the x-coordinate propagated by the Missile
speed is still visible on the screen. If so, the actions are executed. These actions
include propagation of the Missile position by one step and posting the
MISSILE_IMG event with the current Missile position and the MISSILE_BMP
bitmap number to the Tunnel active object. Direct event posting to an active object
is accomplished by the QF function Qactive_postFIFO (), which I discuss

in Chapter 7.

The same event TIME_TICK with the [else] guard denotes a regular state
transition with the guard condition complementary to the other occurrence of the
TIME_TICK event in the same state. In this case, the TIME_TICK transition to
“armed” is taken if the Missile object flies out of the screen.

The event HIT_MINE (score) triggers another transition to the “armed” state.
The action associated with this transition posts the DESTROYED_MINE event with
the parameter e->score to the Ship object, to report destroying the mine.

The event HIT_WALL triggers a transition to the “exploding” state, with the
purpose of animating the explosion bitmaps on the display.

The label “entry” denotes the entry action to be executed unconditionally upon the
entry to the “exploding” state. This action consists of clearing the explosion
counter (me->exp_ctr) member of the Missile object.

The TIME_TICK internal transition is guarded by the condition that the explosion
does not scroll off the screen and that the explosion counter is lower than 16. The
actions executed include propagation of the explosion position and posting the
EXPLOSION_IMG event to the Tunnel active object. Please note that the bitmap of
the explosion changes as the explosion counter gets bigger.

The TIME_TICK regular transition with the complementary guard changes the
state back to the “armed” state. This transition is taken after the animation of the
explosion completes.
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1.5.2 The Ship Active Object

The state machine of the Ship active object is shown in Figure 1.6. This state machine
introduces the profound concept of hierarchical state nesting. The power of state
nesting derives from the fact that it is designed to eliminate repetitions that otherwise
would have to occur.

One of the main responsibilities of the Ship active object is to maintain the current position
of the Ship. On the original EV-LM3S811 board, this position is determined by the
potentiometer wheel (see Figure 1.2). The PLAYER_SHIP_MOVE (x, y) event is generated
whenever the wheel position changes, as shown in the sequence diagram (Figure 1.4).
The Ship object must always keep track of the wheel position, which means that all states
of the Ship state machine must handle the PLAYER_SHIP_MOVE (x, y) event.

In the traditional finite state machine (FSM) formalism, you would need to repeat the
Ship position update from the PLAYER_SHIP_MOVE (x, y) event in every state. But
such repetitions would bloat the state machine and, more important, would represent
multiple points of maintenance both in the diagram and the code. Such repetitions go
against the DRY (Don’t Repeat Yourself) principle, which is vital for flexible and
maintainable code [Hunt+ 00].

Hierarchical state nesting remedies the problem. Consider the state “active”

that surrounds all other states in Figure 1.6. The high-level “active” state is called the
superstate and is abstract in that the state machine cannot be in this state directly but only
in one of the states nested within, which are called the substates of “active.” The UML
semantics associated with state nesting prescribe that any event is first handled in the
context of the currently active substate. If the substate cannot handle the event, the state
machine attempts to handle the event in the context of the next-level superstate.

Of course, state nesting in UML is not limited to just one level and the simple rule of
processing events applies recursively to any level of nesting.

Specifically to the Ship state machine diagram shown in Figure 1.6, suppose that the event
PLAYER_SHIP_MOVE (x, y) arrives when the state machine is in the “parked” state. The
“parked” state does not handle the PLAYER_SHIP_MOVE (x, y) event. In the traditional
finite state machine this would be the end of the story—the PLAYER_SHIP_MOVE (x, V)
event would be silently discarded. However, the state machine in Figure 1.6 has another layer
of the “active” superstate. Per the semantics of state nesting, this higher-level superstate
handles the PLAYER_SHIP_MOVE (x, y) event, which is exactly what’s needed. The same
exact reasoning applies for any other substate of the “active” superstate, such as “flying”
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or “exploding,” because none of these substates handle the PLAYER_SHIP_MOVE (x, vy)
event. Instead, the “active” superstate handles the event in one single place, without repetitions.

/ QActive_subscribe(me, TIME_TICK); —e
QActive_subscribe(me, PLAYER_TRIGGER); (1)
4 active )
PLAYER_SHIP_MOVE(x, y) / 3)
me->X = e->X; °
me->y = e->y; (2
/d parked N\
N ) TAKE_OFF 4) \
[ flying N
entry /

me->score = 0; ©)
QActive_postFIFO(Tunnel, SCORE(me->score));

TIME_TICK / (6)
QActive_postFIFO(Tunnel,
SHIP_IMG(me->x, me->y, SHIP_BMP));
++me->Score;
if ((me->score % 10) == 0)
QActive_postFIFO(Tunnel, SCORE(me->score)); —HIT_WALL—\
9)

PLAYER_TRIGGER / @

QActive_postFIFO(Missile, MISSLE_FIRE(me->x, me->y));
—HIT_MINE(type)

DESTROYED_MINE(score) / (8) (10)
\__ Me->score += e->score; )
4 exploding (1) )
entry / /
me->exp_ctr = 0; <
TIME_TICK [me->exp_ctr < 16] / —TIME_TICK [else] /
++me->exp_ctr; QActive_postFIFO(Tunnel,
QActive_postFIFO(Tunnel, GAME_OVER(me->score));
EXPLOSION(me->x, me->y + SHIP_HEIGHT -1, (12)

EXPLOSIONO_BMP + (me->exp_ctr >> 2)));/
J

Figure 1.6: Ship state machine diagram.

(1) Upon the initial transition, the Ship state machine enters the “active” superstate
and subscribes to events TIME_TICK and PLAYER_TRIGGER.

(2) At each level of nesting, a superstate can have a private initial transition that
designates the active substate after the superstate is entered directly. Here the
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initial transition of state “active” designates the substate “parked” as the initial
active substate.

The “active” superstate handles the PLAYER_SHIP_MOVE (x, y) event as an
internal transition in which it updates the internal data members me->x and
me->y from the event parameters e->x and e->y, respectively.

The TAKE_OFF event triggers transition to “flying.” This event is generated by
the Tunnel object when the Player starts the game (see the description of the
game in Section 1.2).

The entry actions to “flying” include clearing the me->score data member and
posting the event SCORE with the event parameter me->score to the Tunnel
active object.

The TIME_TICK internal transition causes posting the event SHIP_IMG with
current Ship position and the SHIP_BMP bitmap number to the Tunnel active
object. Additionally, the score is incremented for surviving another time tick.
Finally, when the score is “round” (divisible by 10) it is also posted to the Tunnel
active object. This decimation of the SCORE event is performed just to reduce
the bandwidth of the communication, because the Tunnel active object only
needs to give an approximation of the running score tally to the user.

The PLAYER_TRIGGER internal transition causes posting the event MISSILE_FIRE
with current Ship position to the Missile active object. The parameters (me->x,
me->y) provide the Missile with the initial position from the Ship.

The DESTROYED_MINE (score) internal transition causes update of the score
kept by the Ship. The score is not posted to the Tunnel at this point, because the
next TIME_TICK will send the “rounded” score, which is good enough for giving
the Player the score approximation.

The HIT WALL event triggers transition to “exploding.”
The HIT_MINE (type) event also triggers transition to “exploding.”

The “exploding” state of the Ship state machine is very similar to the
“exploding” state of Missile (see Figure 1.5(7-9)).

The TIME_TICK [else] transition is taken when the Ship finishes exploding. Upon
this transition, the Ship object posts the event GAME_OVER (me->score) to the
Tunnel active object to terminate the game and display the final score to the Player.
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1.5.3 The Tunnel Active Object

The Tunnel active object has the most complex state machine, which is shown in
Figure 1.7. Unlike the previous state diagrams, the diagram in Figure 1.7 shows only the
high level of abstraction and omits a lot of details such as most entry/exit actions,
internal transitions, guard conditions, or actions on transitions. Such a “zoomed out”
view is always legal in the UML because UML allows you to choose the level of detail
that you want to include in your diagram.

The Tunnel state machine uses state hierarchy more extensively than the Ship state
machine in Figure 1.6. The explanation section immediately following Figure 1.7
illuminates the new uses of state nesting as well as the new elements not explained yet
in the other state diagrams.

4 active )
MINE_DISABLED(mine_id) / (4)
me->mines[e->mine_id] = NULL; ™)
4 demo °
entry / QTimeEvt_postin(&me->screenTimeEvt, me, |4
BSP_TICKS_PER SEC'20); (5) | qopeen TIMEOUT \
exit/ QTimeEvt_disarm(&me->screenTimeEvt); (6) @
\ 2
E < PLAYER_TRIGGER (@)
4 playing N\ o /
-
.
GAME_OVER
V4 game_over \< J J
k /LSCREENiTIMEOUT—
V4 screen_saver N\ /
el
/4 screen_saver_n_pixels N\ _
- v
. \
_ SCREEN_TIMEOUT
/ screen_saver_1_pixel N\ Y @®)
k ) J—PLAYER_TRIGGER

. %
3) @q—PLAYEFLQUIT—/

Figure 1.7: Tunnel state machine diagram.
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An initial transition can target a substate at any level of state hierarchy, not
necessarily just the next-lower level. Here the topmost initial transition goes down
two levels to the substate “demo.”

The superstate “active” handles the PLAYER_QUIT event as a transition to the final
state (see explanation of element (3)). Please note that the PLAYER_QUIT
transition applies to all substates directly or transitively nested in the “active”
superstate. Because a state transition always involves execution of all exit actions
from the states, the high-level PLAYER_QUIT transition guarantees the proper
cleanup that is specific to the current state context, whichever substate happens to
be active at the time when the PLAYER_QUIT event arrives.

The final state is indicated in the UML notation as the bull’s-eye symbol and
typically indicates destruction of the state machine object. In this case, the
PLAYER_QUIT event indicates termination of the game.

The MINE_DISABLED (mine_id) event is handled at the high level of the
“active” state, which means that this internal transition applies to the whole sub-
machine nested inside the “active” superstate. (See also the discussion of the Mine
object in the next section.)

The entry action to the “demo” state starts the screen time event (timer)
me->screenTimeEvt to expire in 20 seconds. Time events are allocated by the
application, but they are managed by the QF framework. QF provides functions

to arm a time event, such as QTimeEvt_postIn () for one-shot timeout, and
QTimeEvt_postEvery () for periodic time events. Arming a time event is in effect
telling the QF framework, for instance, “Give me a nudge in 20 seconds.” QF then posts
the time event (the event me->screenTimeEvt in this case) to the active object after
the requested number of clock ticks. Chapters 6 and 7 talk about time events in detail.

The exit action from the “demo” state disarms the me->screenTimeEvt time
event. This cleanup is necessary when the state can be exited by a different event
than the time event, such as the PLAYER_TRIGGER transition.

The SCREEN_TIMEOUT transition to “screen_saver” is triggered by the expiration
of the me->screenTimeEvt time event. The signal SCREEN_TIMEOUT is
assigned to this time event upon initialization and cannot be changed later.

The transition triggered by PLAYER_TRIGGER applies equally to the two substates
of the “screen_saver” superstate.
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1.5.4 The Mine Components

Mines are also modeled as hierarchical state machines, but are not active objects. Instead,
Mines are components of the Tunnel active object and share its event queue and priority
level. The Tunnel active object communicates with the Mine components synchronously
by directly dispatching events to them via the function QHsm_dispatch (). Mines
communicate with Tunnel and all other active objects asynchronously by posting events
to their event queues via the function QActive_postFIFO ().

NOTE

Active objects exchange events asynchronously, meaning that the sender of the event merely
posts the event to the event queue of the recipient active object without waiting for the com-
pletion of the event processing. In contrast, synchronous event processing corresponds to a
function call (e.g., QHsm_dispatch ()), which processes the event in the caller’s thread of
execution.

As shown in Figure 1.8, Tunnel maintains the data member mines [ ], which is an array
of pointers to hierarchical state machines (QHsm *). Each of these pointers can point
either to a Minel object, a Mine2 object, or NULL, if the entry is unused. Note that
Tunnel “knows” the Mines only as generic state machines (pointers to the QHsm
structure defined in QP). Tunnel dispatches events to Mines uniformly, without
differentiating between different types of Mines. Still, each Mine state machine handles
the events in its specific way. For example, Mine type 2 checks for collision with the
Missile differently than with the Ship, whereas Mine type 1 handles both identically.

Tunnel
Mine1 mines[] QHsm *mines(] Mine2 mines2[]
[ [0]® [
(1 ®[1] (1
[2] [2] ®+> NULL [2]
(3] [3]® (3]
[4] [4] > NULL [4]

Figure 1.8: The Table active object manages two types of Mines.
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NOTE

The last point is actually very interesting. Dispatching the same event to different Mine
objects results in different behavior, specific to the type of the Mine, which in OOP is known
as polymorphism. I’'ll have more to say about this in Chapter 3.

Each Mine object is fairly autonomous. The Mine maintains its own position and is
responsible for informing the Tunnel object whenever the Mine gets destroyed or scrolls
out of the display. This information is vital for the Tunnel object so that it can keep
track of the unused Mines.

Figure 1.9 shows a hierarchical state machine of Mine2 state machine. Minel is very
similar, except that it uses the same bitmap for testing collisions with the Missile and
the Ship.

(1) The Mine starts in the “unused” state.

(2) The Tunnel object plants a Mine by dispatching the MINE_PLANT (x, y) event
to the Mine. The Tunnel provides the (x, y) coordinates as the original position of
the Mine.

(3) When the Mine scrolls off the display, the state machine transitions to
“unused.”

(4) When the Mine hits the Ship, the state machine transitions to “unused.”
(5) When the Mine finishes exploding, the state machine transitions to “unused.”

(6) When the Mine is recycled by the Tunnel object, the state machine transitions to
“unused.”

(7) The exit action in the “used” state posts the MINE_DISABLDED (mine_id)
event to the Tunnel active object. Through this event, the Mine informs the
Tunnel that it’s becoming disabled, so that Tunnel can update its mines[]
array (see also Figure 1.7(4)). The mine_id parameter of the event becomes
the index into the mines[] array. Note that generating the
MINE_DISABLDED (mine_id) event in the exit action from “used” is much
safer and more maintainable than repeating this action in each individual
transition (3), (4), (5), and (6).
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TIME_TICK [(me->x >= GAME_SPEED_X)
&& (me->exp_ctr < 16)] /
me->x -= GAME_SPEED_X;
++me->exp_ctr;
postFIFO(Tunnel, EXPLOSION(me->x + 3, me->y -4,
EXPLOSIONO_BMP + (me->exp_ctr >> 2)));
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-

postFIFO(Tunnel, SHIP_IMG [do_bitmaps_overlap(
MISSILE_IMG(me->x, me->y, MINE2_BMP, (4)
MINE2_BMP)); me->X, me->y,

e->bmp, e->x, e->y)]/
postFIFO(Ship, HIT_MINE(2));

MISSILE_IMG [do_bitmaps_overlap(
MINE2_MISSILE_BMP,
me->X, me->y,’
e->bmp, e->x, e->y)]/
postFIFO(Missile, DES/TROYED_MINE(45));

(3) ]/
TIME_TICK [else

(5)
| TIME_TICK [else]—/

Figure 1.9: Mine2 state machine diagram.
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1.6 Events in the “Fly ‘n’ Shoot” Game

The key events in the “Fly ‘n” Shoot” game have been identified in the sequence
diagram in Figure 1.4. Other events have been invented during the state machine design
stage. In any case, you must have noticed that events consist really of two parts. The
part of the event called the signal conveys the type of the occurrence (what happened).
For example, the TIME_TICK signal conveys the arrival of a time tick, whereas the
PLAYER_SHIP_MOVE signal conveys that the player wants to move the Ship. An event
can also contain additional quantitative information about the occurrence in form of
event parameters. For example, the PLAYER_SHIP_MOVE signal is accompanied by the
parameters (x, y) that contain the quantitative information as to where exactly to move
the Ship.

In QP, events are represented as instances of the QEvent structure provided by the
framework. Specifically, the QEvent structure contains the member sig, to represent
the signal of that event. Event parameters are added in the process of inheritance, as
described in the sidebar “Single Inheritance in C.”

SINGLE INHERITANCE IN C

Inheritance is the ability to derive new structures based on existing structures in order to
reuse and organize code. You can implement single inheritance in C very simply by literally
embedding the base structure as the first member of the derived structure. For example,
Figure 1.10(A) shows the structure ScoreEvt derived from the base structure QEvent by
embedding the QEvent instance as the first member of ScoreEvt. To make this idiom better
stand out, I always name the base structure member super.

me P
typedef struct QEventTag { " Instance of the QEvent
QSignal sig; base struct sig : QSignal
. super
} QEvent;
typedef struct ScoreEvtTag { Members
QEvent super; added in 3 Evi
uint16_t score; the derived coreEv
} ScoreEvt; struct score : uint16_t
A B C

Figure 1.10: (A) Derivation of structures in C, (B) memory alignment,
and (C) the UML class diagram.
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As shown in Figure 1.10(B), such nesting of structures always aligns the data member super
at the beginning of every instance of the derived structure, which is actually guaranteed by
the C standard. Specifically, WG14/N1124 Section 6.7.2.1.13 says: “... A pointer to a struc-
ture object, suitably converted, points to its initial member. There may be unnamed padding
within a structure object, but not at its beginning” [ISO/IEC 9899:TC2]. The alignment lets
you treat a pointer to the derived ScoreEvt structure as a pointer to the QEvent base struc-
ture. All this is legal, portable, and guaranteed by the C standard. Consequently, you can
always safely pass a pointer to ScoreEvt to any C function that expects a pointer to
Qkvent. (To be strictly correct in C, you should explicitly cast this pointer. In OOP such
casting is called upcasting and is always safe.) Therefore, all functions designed for the
QEvent structure are automatically available to the ScoreEvt structure as well as other
structures derived from QEvent. Figure 1.10(C) shows the UML class diagram depicting
the inheritance relationship between ScoreEvt and QEvent structures.

QP uses single inheritance quite extensively not just for derivation of events with parameters,
but also for derivation of state machines and active objects. Of course, the C++ version of QP
uses the native C++ support for class inheritance rather than “derivation of structures.”
You’ll see more examples of inheritance later in this chapter and throughout the book.

Because events are explicitly shared among most of the application components, it is
convenient to declare them in the separate header file game . h shown in Listing 1.2. The
explanation section immediately following the listing illuminates the interesting points.

Listing 1.2 Signals, event structures, and active object interfaces
defined in file game.h

(1) enum GameSignals { /* signals used in the game */

(2) TIME_TICK_SIG = Q_USER_SIG, /* published from tick ISR */
PLAYER_TRIGGER_SIG, /* published by Player (ISR) to trigger the Missile */
PLAYER_QUIT_SIG, /* published by Player (ISR) to quit the game */
GAME_OVER_SIG, /* published by Ship when it finishes exploding */
/* insert other published signals here ... */

(3) MAX_PUB_SIG, /* the last published signal */

PLAYER_SHIP_MOVE_SIG, /* postedby Player (ISR) to the Ship tomove it */

BLINK_TIMEOUT_SIG, /* signal for Tunnel'’s blink timeout event */
SCREEN_TIMEOUT_SIG, /* signal for Tunnel'’s screen timeout event */
TAKE_OFF_SIG, /* from Tunnel to Ship to grant permission to take off */
HIT_WALL_SIG, /* from Tunnel to Ship when Ship hits the wall */
HIT MINE_SIG, /* from Mine to Ship or Missile when it hits the mine */
SHIP_IMG_SIG, /* from Ship to the Tunnel to draw and check for hits */
MISSILE_IMG_SIG, /* fromMissile to the Tunnel to draw and check for hits */
MINE_TIMG_SIG, /* sent by Mine to the Tunnel to draw the mine */

Continued onto next page
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MISSILE_FIRE_SIG, /* sent by Ship to the Missile to fire */
DESTROYED_MINE_SIG, /* fromMissile to ShipwhenMissile destroyed Mine */
EXPLOSION_SIG, /* from any exploding object to render the explosion */
MINE_PLANT_SIG, /* from Tunnel to the Mine to plant it */
MINE_DISABLED_SIG, /* from Mine to Tunnel when it becomes disabled */
MINE_RECYCLE_SIG, /* sent by Tunnel to Mine to recycle the mine */
SCORE_SIG, /* from Ship to Tunnel to adjust game level based on score */
/* insert other signals here ... */
(4) MAX_SIG /* the last signal (keep always last) */
Y
(5) typedef struct ObjectPosEvtTag {
(6) QEvent super; /* extend the QEvent class */
(7) uint8_t x; /* the x-position of the object */
(8) uint8_t vy; /* new y-position of the object */
} ObjectPosEvt;
typedef struct ObjectImageEvtTag {
QEvent super; /* extend the QEvent class */
uint8_t x; /* the x-position of the object */
int8_t vy; /* the y-position of the object */
uint8_t bmp; /* the bitmap ID representing the object */
} ObjectImageEvt;
typedef struct MineEvtTag {
QEvent super; /* extend the QEvent class */
uint8_t id; /* the ID of the Mine */
} MineEvt;
typedef struct ScoreEvtTag {
QEvent super; /* extend the QEvent class */
uintl6é_t score; /* the current score */
} ScoreEvt;
/* opaque pointers to active objects in the application */
(9) extern QActive * const AO_Tunnel;
(10) extern QActive * const AO_Ship;
(11) extern QActive * const AO_Missile;
/* active objects’ "constructors" */
(12) void Tunnel_ctor (void) ;
(13) void Ship_ctor (void) ;
(14) void Missile_ctor (void) ;

(1) In QP, signals of events are simply enumerated constants. Placing all signals in
a single enumeration is particularly convenient to avoid inadvertent overlap
in the numerical values of different signals.
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(&)

(6)

(7.8)

The application-level signals do not start from zero but rather are offset by the
constant Q_USER_SIG. This is because QP reserves the lowest few signals for
the internal use and provides the constant Q_USER_SIG as an offset from which
user-level signals can start. Also note that by convention, I attach the suffix
_SIG to all signals so that I can easily distinguish signals from other constants. I
drop the suffix _SIG in the state diagrams to reduce the clutter.

The constant MAX_PUB_SIG delimits the published signals from the rest. The
publish-subscribe event delivery mechanism consumes some RAM, which is
proportional to the number of published signals. I save some RAM by providing
the lower limit of published signals to QP (MAX_PUB_SIG) rather than the
maximum of all signals used in the application. (See also Listing 1.1(9)).

The last enumeration MAX_SIG indicates the maximum of all signals used in the
application.

The event structure ObjectPosEvt defines a “class” of events that convey the
object’s position on the display in the event parameters.

The structure ObjectPosEvt derives from the base structure QEvent, as
explained in the sidebar “Single Inheritance in C.”

The structure ObjectPosEvt adds parameters x and y, which are coordinates of
the object on the display.

NOTE

Throughout this book I use the following standard exact-width integer types (WG14/N843
C99 Standard, Section 7.18.1.1) [ISO/IEC 9899:TC2]:

Exact Size Unsigned Signed
8-bits uint8_t int8_t

16-bits uint16_t int16_t
32-bits uint32_t int32_t

If your (pre-standard) compiler does not provide the <stdint.h> header file, you can
always typedef the exact-width integer types using the standard C data types such as
signed/unsigned char, short, int, and long.
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(9-11) These global pointers represent active objects in the application and are used
for posting events directly to active objects. Because the pointers can be
initialized at compile time, I like to declare them const, so that they can be
placed in ROM. The active object pointers are “opaque” because they cannot
access the whole active object, only the part inherited from the QActive
structure. I’ll have more to say about this in the next section.

(12-14) These functions perform an early initialization of the active objects in the
system. They play the role of static “constructors,” which in C you need to
call explicitly, typically at the beginning of main () . (See also Listing 1.1
(10-12).)

1.6.1 Generating, Posting, and Publishing Events
The QF framework supports two types of asynchronous event exchange:

1. The simple mechanism of direct event posting supported through the functions
QActive_postFIFO() and QActive_postLIFO (), where the producer of an
event directly posts the event to the event queue of the consumer active object.

2. A more sophisticated publish-subscribe event delivery mechanism supported
through the functions QF_publish () and QActive_subscribe (), where the
producers of the events “publish” them to the framework, and the framework then
delivers the events to all active objects that had “subscribed” to these events.

In QF, any part of the system, not necessarily only the active objects, can produce
events. For example, interrupt service routines (ISRs) or device drivers can also produce
events. On the other hand, only active objects can consume events, because only active
objects have event queues.

NOTE

QF also provides “raw” thread-safe event queues (struct QEQueue), which can consume
events as well. These “raw” thread-safe queues cannot block and are intended to deliver
events to ISRs or device drivers. Refer to Chapter 7 for more details.

The most important characteristic of event management in QF is that the framework
passes around only pointers to events, not the events themselves. QF never copies the
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events by value (“zero-copy” policy); even in case of publishing events that often
involves multicasting the same event to multiple subscribers. The actual event instances
are either constant events statically allocated at compile time or dynamic events
allocated at runtime from one of the event pools that the framework manages. Listing 1.3
provides examples of publishing static events and posting dynamic events from the
ISRs of the “Fly ‘n” Shoot” version for the Stellaris board (file <gqp>\gpc\examples
\cortex-m3\vanilla\iar\game-ev-1m3s811\bsp.c). In Section 1.7.3 you will
see other examples of event posting from active objects in the state machine code.

Listing 1.3 Generating, posting, and publishing events from the ISRs
in bsp. c for the Stellaris board

1) wvoid ISR_SysTick(void) {

(
(2) static QEvent const tickEvt = { TIME_TICK_SIG, 0 };
(3) QF_publish (&tickEvt) ; /* publish the tick event to all subscribers */
(4) QF_tick(); /* process all armed time events */
}
L e e e e e e e e e e e e e e e e */
(5) wvoid ISR_ADC (void) {
static uint32_t adcLPS = 0; /* Low-Pass-Filtered ADC reading */
static uint32_t wheel = 0; /* the last wheel position */

unsigned long tmp;

ADCIntClear (ADC_BASE, 3); /* clear the ADC interrupt */
(6) ADCSequenceDataGet (ADC_BASE, 3, &tmp) ; /* read the data from the ADC */
/* 1lst order low-pass filter: time constant ~= 2”n samples

*TF = (1/2"n)/(z-((2"n-1)/2"n)),
*e.g., n=3, y(k+l) =y(k) —y(k)/8+x(k)/8=>y+= (x-vy)/8
*/
(7) adcLPS += (((int)tmp - (int)adcLPS + 4) >> 3); /* Low-Pass-Filter */

/* compute the next position of the wheel */

(8) tmp = (((1 << 10) - adcLPS) * (BSP_SCREEN_HEIGHT - 2)) >> 10;
if (tmp != wheel) { /* did the wheel position change? */
(9) ObjectPosEvt *ope = Q_NEW (ObjectPosEvt, PLAYER_SHIP_MOVE_SIG) ;
(10) ope->x = (uint8_t)GAME_SHIP_X; /* x-position is fixed */
(11) ope->y = (uint8_t) tmp;
(12) QActive_postFIFO(AO_ship, (QEvent *)ope) ; /* post to the Ship A0 */

wheel = tmp; /* save the last position of the wheel */
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In the case of the Stellaris board, the function ISR_SysTick () services the
system clock tick ISR generated by the Cortex-M3 system tick timer.

The TIME_TICK event never changes, so it can be statically allocated just
once. This event is declared as const, which means that it can be placed in
ROM. The initializer list for this event consists of the signal TIME_TICK_SIG
followed by zero. This zero informs the QF framework that this event is
static and should never be recycled to an event pool.

The ISR calls the framework function QF_publish (), which takes the
pointer to the tickEvt event to deliver to all subscribers.

The ISR calls the function QF_tick (), in which the framework manages
the armed time events.

The function ISR_ADC () services the ADC conversions, which ultimately
deliver the position of the Ship.

The ISR reads the data from the ADC.

A low-pass filter is applied to the raw ADC reading and the potentiometer
wheel position is computed.

The QF macro Q_NEW (ObjectPosEvt, PLAYER_SHIP_MOVE_SIG)
dynamically allocates an instance of the ObjectPosEvt event from an event
pool managed by QF. The macro also performs the association between the
signal PLAYER_SHIP_MOVE_SIG and the allocated event. The Q_NEW ()
macro returns the pointer to the allocated event.

NOTE

The PLAYER_SHIP_MOVE (x, y) event is an example of an event with changing parameters.
In general, such an event cannot be allocated statically (like the TIME_TICK event at label
(2)) because it can change asynchronously next time the ISR executes. Some active objects
in the system might still be referring to the event via a pointer, so the event should not be
changing. Dynamic event allocation of QF solves all such concurrency issues because every
time a new event is allocated. QF then recycles the dynamic events after it determines that all
active objects are done with accessing the events.

(10,11) The x and y parameters of the event are assigned.

(12) The dynamic event is posted directly to the Ship active object.
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1.7 Coding Hierarchical State Machines

Contrary to widespread misconceptions, you don’t need big design automation tools to
translate hierarchical state machines (UML statecharts) into efficient and highly
maintainable C or C++. This section explains how to hand-code the Ship state machine
from Figure 1.6 with the help of the QF real-time framework and the QEP hierarchical
processor, which is also part of the QP event-driven platform. Once you know how

to code this state machine, you know how to code them all.

The source code for the Ship state machine is found in the file ship. c located either in
the DOS version or the Stellaris version of the “Fly ‘n’ Shoot” game. I break the
explanation of this file into three steps.

1.7.1 Step 1: Defining the Ship Structure

In the first step you define the Ship data structure. Just as in the case of events, you use
inheritance to derive the Ship structure from the framework structure QActive (see
the sidebar “Single Inheritance in C”). Creating this inheritance relationship ties the
Ship structure to the QF framework.

The main responsibility of the QActive base structure is to store the information about the
current active state of the state machine as well as the event queue and priority level of
the Ship active object. In fact, Qactive itself derives from a simpler QEP structure QHsm
that represents just the current active state of a hierarchical state machine. On top of that
information, almost every state machine must also store other “extended-state” information.
For example, the Ship object is responsible for maintaining the Ship position as well as
the score accumulated in the game. You supply this additional information by means of data
members enlisted after the base structure member super, as shown in Listing 1.4.

Listing 1.4 Deriving the Ship structure in file ship.c

(1) #include "gp_port.h" /* the QP port */

(2) #include "bsp.h" /* Board Support Package */

(3) #include "game.h" /* this application */
/* local objects - - - - - —— === == — - - */

(4) typedef struct ShipTag {

(5) QActive super; /* derive from the QActive struct */

(6) uint8_t x; /* x-coordinate of the Ship position on the display */

(7) uint8_t vy; /* y-coordinate of the Ship position on the display */

(8) uint8_t exp_ctr; /* explosion counter, used to animate explosions */

Continued onto next page
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(9) uintl6_t score; /* running score of the game */

(10) } Ship; /* the typedef-ed name for the Ship struct */
/* state handler functions... */

(11) static QState Ship_active (Ship *me, QEvent const *e) ;

(12) static QState Ship_parked (Ship *me, QEvent const *e) ;

(13) static QState Ship_flying (Ship *me, QEvent const *e);

(14) static QState Ship_exploding (Ship *me, QEvent const *e) ;

(15) static QState Ship_initial (Ship *me, QEvent const *e) ;
(16) static Ship 1_ship; /* the sole instance of the Ship active object */

/* global objects ——===--==-——---—--- - */
(17) QActive * const AO_ship = (QActive *)&1_ship; /* opaque pointer to Ship AO */

(1) Every application-level C file that uses the QP platform must include the
gp_port.h header file.

(2) The bsp.h header file contains the interface to the Board Support Package.

(3) The game.h header file contains the declarations of events and other facilities
shared among the components of the application (see Listing 1.2).

(4) This structure defines the Ship active object.

NOTE

I like to keep active objects, and indeed all state machine objects (such as Mines), strictly
encapsulated. Therefore, I don’t put the state machine structure definitions in header files; rather,
I define them right in the implementation file, such as ship.c. That way I can be sure that the
internal data members of the Ship structure are not known to any other parts of the application.

(5) The ship active object structure derives from the framework structure
QActive, as described in the sidebar “Single Inheritance in C.”

(6,7) The x and y data members represent the position of the Ship on the display.

(8) The exp_ctr member is used for pacing the explosion animation (see also the
“exploding” state in the Ship state diagram in Figure 1.6).

(9) The score member stores the accumulated score in the game.
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(10) I use the typedef to define the shorter name Ship equivalent to

(11-14)

struct ShipTag.

These four functions are called state-handler functions because they correspond
one to one to the states of the Ship state machine shown in Figure 1.6. For
example, the Ship_active () function represents the “active” state. The
QEP event processor calls the state-handler functions to realize the UML
semantics of state machine execution. All state-handler functions have the same
signature. A state-handler function takes the state machine pointer and the
event pointer as arguments and returns the status of the operation back to the
event processor—for example whether the event was handled or not. The return
type QState of state-handler functions is typedef-ed to uint8_t as
QState in the header file <gp>\gpc\include\gep.h.

NOTE

I use a simple naming convention to strengthen the association between the structures and the
functions designed to operate on these structures. First, I name the functions by combining
the typedef’ed structure name with the name of the operation (e.g., Ship_active). Sec-
ond, I always place the pointer to the structure as the first argument of the associated func-
tion, and I always name this argument *me” (e.g., Ship_active (Ship *me, ...)).

15)

(16)

a7

In addition to state-handler functions, every state machine must declare the
initial pseudostate, which QEP invokes to execute the topmost initial
transition (see Figure 1.6(1)). The initial pseudostate handler has a signature
identical to the regular state-handler function.

In this line I statically allocate the storage for the Ship active object. Note
that the object 1_ship is defined as static so that it is accessible only
locally at the file scope of the ship. c file.

In this line I define and initialize the global pointer A0_Ship to the Ship
active object (see also Listing 1.2(10)). This pointer is “opaque” because it
treats the Ship object as the generic QActive base structure rather than the
specific Ship structure. The power of an “opaque” pointer is that it allows me
to completely hide the definition of the Ship structure and make it
inaccessible to the rest of the application. Still, the other application
components can access the Ship object to post events directly to it via the
QActive_postFIFO (QActive *me, QEvent const *e) function.
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1.7.2 Step 2: Initializing the State Machine

The state machine initialization is divided into the following two steps for increased
flexibility and better control of the initialization timeline:

1. The state machine ‘“constructor’; and
2. The top-most initial transition.

The state machine “constructor,” such as Ship_ctor (), intentionally does not execute
the topmost initial transition defined in the initial pseudostate because at that time
some vital objects can be missing and critical hardware might not be properly initialized
yet.” Instead, the state machine “constructor” merely puts the state machine in the
initial pseudostate. Later, the user code must trigger the topmost initial transition
explicitly, which happens actually inside the function QActive_start () (see
Listing 1.1(18-20)). Listing 1.5 shows the instantiation (the “constructor” function)
and initialization (the initial pseudostate) of the Ship active object.

Listing 1.5 Instantiation and initialization of the Ship active object in ship.c

(1) void Ship_ctor (void) { /* instantiation */
(2) Ship *me = &1_ship;
(3) QActive_ctor (&me->super, (QStateHandler)&Ship_initial) ;
(4) me->x = GAME_SHIP_X;
(5) me->y = GAME_SHIP_Y;

}

2O */
(6) QState Ship_initial (Ship *me, QEvent const *e) { /* initialization */
(7) QActive_subscribe( (QActive *)me, TIME_TICK_SIG) ;
(8) QActive_subscribe ( (QActive *)me, PLAYER TRIGGER_SIG) ;
(9) return Q TRAN(&Ship_active); /* top-most initial transition */

(1) The global function Ship_ctor () is prototyped in game.h and called at the
beginning of main () .

(2) The “me” pointer points to the statically allocated Ship object (see Listing 1.4(16)).

3 In C++, the static constructors run even before main ().
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(3) Every derived structure is responsible for initializing the part inherited from
the base structure. The “constructor” QActive_ctor () puts the state machine
in the initial pseudostate &Ship_initial (see Listing 1.4(15)).

(4,5) The Ship position is initialized.

(6) The ship_initial () function defines the topmost initial transition in the
Ship state machine (see Figure 1.6(1)).

(7,8) The Ship active object subscribes to signals TIME_TICK_SIG and
PLAYER_TRIGGER_SIG, as specified in the state diagram in Figure 1.6(1).

(9) The initial state “active” is specified by returning the QP macro Q_TRAN().

NOTE

The macro Q_TRAN () must always follow the return statement.

1.7.3 Step 3: Defining State-Handler Functions

In the last step, you actually code the Ship state machine by implementing one state at
a time as a state-handler function. To determine what elements belong to any given
state-handler function, you follow around the state’s boundary in the diagram

(Figure 1.6). You need to implement all transitions originating at the boundary, any
entry and exit actions defined in the state, and all internal transitions enlisted directly
in the state. Additionally, if there is an initial transition embedded directly in the state,
you need to implement it as well.

Take for example the state “flying” shown in Figure 1.6. This state has an entry action
and two transitions originating at its boundary: HIT_WALL and HIT_MINE (type) as
well as three internal transitions TIME_TICK, PLAYER_ TRIGGER, and
DESTROYED_MINE (score). The “flying” state nests inside the “active” superstate.

Listing 1.6 shows two state-handler functions of the Ship state machine from Figure 1.6.
The state-handler functions correspond to the states “active” and “flying,” respectively.
The explanation section immediately following the listing highlights the important
implementation techniques.



44 Chapter 1

Listing 1.6 State-handler functions for states “active” and “flying” in ship.c

) QState Ship_active(Ship *me, QEvent const *e) {

) switch (e->sig) {

(3) case Q_INIT SIG: { /* nested initial transition */
)
)

(4 /* any actions associated with the initial transition */
(5 return Q TRAN(&Ship_parked);
}
(6) case PLAYER_SHIP_MOVE_SIG: {
(7) me->x = ( (ObjectPosEvt const *)e)->x;
(8) me->y = ( (ObjectPosEvt const *)e)->vy;
(9) return Q HANDLED();
}
}
(10) return Q_SUPER(&QHsm top) ; /* return the superstate */
}
/Y */

QState Ship_flying (Ship *me, QEvent const *e) {
switch (e->sig) {
(11) case Q_ENTRY_SIG: {
ScoreEvt *sev;

me->score = 0; /* reset the score */
(13) sev = Q_NEW (ScoreEvt, SCORE_SIG) ;
(14) sev->score = me->score;
(15) QActive_postFIFO (AO_Tunnel, (QEvent *)sev) ;
(106) return Q HANDLED() ;

}

case TIME_TICK_SIG: {
/* tell the Tunnel to draw the Ship and test for hits */
ObjectImageEvt *oie = Q_NEW(ObjectImageEvt, SHIP_IMG_SIG) ;
olie->x = me->x;
oie->y = me->y;
oie->bmp = SHIP_BMP;
QActive_postFIFO (AO_Tunnel, (QEvent *)oie);

++me->score; /* increment the score for surviving another tick */

if ((me->score % 10) ==0) { /* is the score "round"? */
ScoreEvt *sev = Q_NEW(ScoreEvt, SCORE_SIG) ;
sev->score = me->score;
QActive_postFIFO (AO_Tunnel, (QEvent *)sev);
}
return Q HANDLED() ;
}
case PLAYER_TRIGGER_SIG: { /* trigger the Missile */
ObjectPosEvt *ope = Q_NEW (ObjectPosEvt, MISSILE_FIRE_SIG) ;
ope->X = me->Xx;
ope->y = me->y + SHIP_HEIGHT - 1;
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QActive_postFIFO(AO_Missile, (QEvent *)ope) ;
return Q HANDLED();
}
case DESTROYED_MINE_SIG: {
me->score += ( (ScoreEvt const *)e)->score;
/* the score will be sent to the Tunnel by the next TIME_TICK */
return Q HANDLED() ;
}

(17) case HIT WALL_SIG:
(18) case HIT_MINE_SIG: {
(19) /* any actions associated with the transition */
(20) return Q_TRAN(&Ship_exploding) ;
}
}
(21) return Q_SUPER(&Ship_active); /* return the superstate */
}
(1) Each state handler must have the same signature, that is, it must take two

2

3)

)

®)

parameters: the state machine pointer “me” and the pointer to QEvent.

The keyword const before the * in the event pointer declaration means that
the event pointed to by that pointer cannot be changed inside the state-handler
function (i.e., the event is read-only). A state-handler function must return
QState, which conveys the status of the event handling to the QEP event
processor.

Typically, every state handler is structured as a switch statement that
discriminates based on the signal of the event e->sig.

This line of code pertains to the nested initial transition Figure 1.6(2). QEP
provides a reserved signal Q_INIT_ SIG that the framework passes to the state-
handler function when it wants to execute the initial transition.

You can enlist any actions associated with this initial transition (none in this
particular case).

You designate the target substate with the Q_ TRAN () macro. This macro must
always follow the return statement, through which the state-handler function
informs the QEP event processor that the transition has been taken.
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NOTE

The initial transition must necessarily target a direct or transitive substate of a given state. An
initial transition cannot target a peer state or go up in state hierarchy to higher-level states,
which in the UML would represent a “malformed” state machine.

(6)

(7,8)

This line of code pertains to the internal transition PLAYER_SHIP_MOVE_SIG
(x, y) in Figure 1.6(3).

You access the data members of the Ship state machine via the “me” argument
of the state-handler function. You access the event parameters via the “e”
argument. You need to cast the event pointer from the generic QEvent base
class to the specific event structure expected for the PLAYER_SHIP_MOVE_SIG,

which is ObjectPosEvt in this case.

NOTE

The association between the event signal and event structure (event parameters) is estab-
lished at the time the event is generated. All recipients of that event must know about this
association to perform the cast to the correct event structure.

©)

(10)

You terminate the case statement with “return QHANDLED (), which informs
the QEP processor that the event has been handled but no transition has been
taken.

The final return from a state-handler function designates the superstate of that
state by means of the QEP macro Q_SUPER (). The final return statement
from a state-handler function represents the single point of maintenance for
changing the nesting level of a given state. The state “active” in Figure 1.6 has
no explicit superstate, which means that it is implicitly nested in the “top” state.
The “top” state is a UML concept that denotes the ultimate root of the state
hierarchy in a hierarchical state machine. QEP provides the “top” state as a
state-handler function QHsm_top (), and therefore the Ship_active () state
handler uses the pointer &QHsm_top as the argument of the macro Q_SUPER ().
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NOTE

In C and C++, a pointer-to-function QHsm_top () can be written either as QHsm_top or
&QHsm_top. Even though the notation QHsm_top is more succinct, I prefer adding the amper-
sand explicitly, to leave absolutely no doubt that I mean a pointer-to-function &QHsm_top.

(1D

(12)

(13)

(14)

(15)

(16)

(17,18)

(19)

(20)

This line of code pertains to the entry action into state “flying” (Figure 1.6(5)).
QEP provides areserved signal 9_ ENTRY_ SIG that the framework passes to the
state-handler function when it wants to execute the entry actions.

The entry action to “flying” posts the SCORE event to the Tunnel active object
(Figure 1.6(5)). This line defines a temporary pointer to the event structure
ScoreEvt.

The QF macro Q_NEW (ScoreEvt, SCORE_SIG) dynamically allocates an
instance of the ScoreEvt from an event pool managed by QF. The macro
also performs the association between the signal SCORE_SIG and the
allocated event. The Q_NEW () macro returns the pointer to the allocated
event.

The score parameter of the ScoreEvt is set from the state machine member

me->score.

The sev event is posted directly to the Tunnel active object by means of the
QP function QActive_postFIFO (). The arguments of this function are
the recipient active object (A0_Tunnel in this case) and the pointer to the
event (the temporary pointer sev in this case).

You terminate the case statement with return Q HANDLED (), which
informs QEP that the entry actions have been handled.

These two lines of code pertain to the state transitions from “flying” to
“exploding” (Figure 1.6(9, 10)).

You can enlist any actions associated with the transition (none in this
particular case).

You designate the target of the transition with the Q_TRAN () macro.
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(21) The final return from a state-handler function designates the superstate of that
state. The state “flying” in Figure 1.6 nests in the state “active,” so the state
handler ship_flying () returns the pointer &Ship_active.

When implementing state-handler functions you need to keep in mind that the

QEP event processor is in charge here rather than your code. QEP will invoke a
state-handler function for various reasons: for hierarchical event processing, for
execution of entry and exit actions, for triggering initial transitions, or even just to elicit
the superstate of a given state handler. Therefore, you should not assume that a state
handler would be invoked only for processing signals enlisted in the case statements.
You should avoid any code outside the switch statement, especially code that

would have side effects.

1.8 The Execution Model

As you saw in Listing 1.1(21), the main () function eventually gives control to the
event-driven framework by calling QF _run () to execute the application. In this
section, I briefly explain how QF allocates the CPU cycles to various tasks within the
system and what options you have in choosing the execution model.

1.8.1 Simple Nonpreemptive “Vanilla” Scheduler

The “Fly ‘n’ Shoot” example uses the simplest QF configuration, in which QF runs on a
bare-metal target processor without any underlying operating system or kernel.* I call
such a QF configuration “plain vanilla” or just “vanilla.”

QF includes a simple nonpreemptive “vanilla” kernel, which executes one active object
at a time in the infinite loop (similar to the “superloop”). The “vanilla” kernel is
engaged after each event is processed in the run-to-completion (RTC) fashion to choose
the next highest-priority active object ready to process the next event. The “vanilla”
scheduler is cooperative, which means that all active objects cooperate to share a single
CPU and implicitly yield to each other after every RTC step. The kernel is
nonpreemptive, meaning that every active object must completely process an event
before any other active object can start processing another event.

4 The 80x86 version of the “Fly ‘n’ Shoot” game runs on top of DOS, but DOS does not provide any
multitasking support.
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The ISRs can preempt the execution of active objects at any time, but due to the
simplistic nature of the “vanilla” kernel, every ISR returns to exactly the preemption
point. If the ISR posts or publishes an event to any active object, the processing of this
event won’t start until the current RTC step completes. The maximum time an event for
the highest-priority active object can be delayed this way is called the task-level
response. With the nonpreemptive “vanilla” kernel, the task-level response is equal to
the longest RTC step of all active objects in the system. Note that the task-level
response of the “vanilla” kernel is still a lot better than the traditional “superloop”
(a.k.a. main+ISRs) architecture. I’ll have more to say about this in the upcoming
Section 1.9, where I compare the event-driven “Fly ‘n’ Shoot” example to the
traditionally structured Quickstart application.

The task-level response of the simple “vanilla” kernel turns out to be adequate for
surprisingly many applications because state machines by nature handle events quickly
without a need to busy-wait for events. (A state machine simply runs to completion
and becomes dormant until another event arrives.) Also note that often you can make
the task-level response as fast as you need by breaking up longer RTC steps into shorter
ones (e.g., by using the “Reminder” state pattern described in Chapter 5).

1.8.2 The QK Preemptive Kernel

In some cases, breaking up long RTC steps into short enough pieces might be very
difficult, and consequently the task-level response of the nonpreemptive “vanilla”
kernel might be too long. An example system could be a GPS receiver. Such a receiver
performs a lot of floating-point number crunching on a fixed-point CPU to calculate
the GPS position. At the same time, the GPS receiver must track the GPS satellite
signals, which involves closing control loops in submillisecond intervals. It turns out
that it’s not easy to break up the position-fix computation into short enough RTC steps
to allow reliable signal tracking.

But the RTC semantics of state machine execution do not mean that a state machine has
to monopolize the CPU for the duration of the RTC step. A preemptive kernel can
perform a context switch in the middle of the long RTC step to allow a higher-priority
active object to run. As long as the active objects don’t share resources, they can run
concurrently and complete their RTC steps independently (see also Section 6.3.3 in
Chapter 6).

The QP event-driven platform includes a tiny, fully preemptive, priority-based
real-time kernel component called QK, which is specifically designed for processing
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events in the RTC fashion. Configuring QP to use the preemptive QK kernel is very
easy, but as with any fully preemptive kernel you must be very careful with any
resources shared among active objects.” The “Fly ‘n’ Shoot” example has been
purposely designed to avoid any resource sharing among active objects, so the
application code does not need to change at all to run on top of the QK preemptive
kernel, or any other preemptive kernel or RTOS for that matter. The accompanying
code contains the “Fly ‘n’ Shoot” example with QK in the following directory:
<gp>\gpc\examples\80x86\gk\tcppl0l\1l\game\. You can execute this
example in a DOS-console on any standard Windows-based PC.

1.8.3 Traditional OS/RTOS

QP can also work with a traditional operating system (OS), such as Windows or Linux,
or virtually any real-time operating system (RTOS) to take advantage of the existing
device drivers, communication stacks, and other middleware.

QP contains a platform abstraction layer (PAL), which makes adapting QP to virtually
any operating system easy. The carefully designed PAL allows tight integration with
the underlying OS/RTOS by reusing any provided facilities for interrupt management,
message queues, and memory partitions. I cover porting QP in Chapter 8.

1.9 Comparison to the Traditional Approach

The “Fly ‘n’ Shoot” game behaves intentionally almost identically to the Quickstart
application provided in source code with the Luminary Micro Stellaris EV-LM3S811
evaluation kit [Luminary 06]. In this section I’d like to compare the traditional approach
represented by the Quickstart application with the state machine-based solution
exemplified in the “Fly ‘n” Shoot” game.

Figure 1.11(A) shows schematically the flowchart of the Quickstart application;
Figure 1.11(B) shows the flowchart of the “Fly ‘n’ Shoot” game running on top of the
cooperative “vanilla” kernel. At the highest level, the flowcharts are similar in that they
both consist of an endless loop surrounding the entire processing. But the internal
structure of the main loop is very different in the two cases. As indicated by the heavy

> QK provides a mutex facility for enforcing a mutually exclusive access to shared resources. The QK
mutex uses the priority-ceiling protocol to avoid priority inversions. Refer to Chapter 10 for more
information.
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lines in the flowcharts, the Quickstart application spends most of its time in the tight
“event loops” designed to busy-wait for certain events, such as the screen update event.
In contrast, the “Fly ‘n’ Shoot” application spends most of its time right in the main
loop. The QP framework dispatches any available event to the appropriate state
machine that handles the event and returns quickly to the main loop without ever
waiting for events internally.

— —| QF_run() 57—————.

QF_start();
>

| — | MainScreen()

|

|

|

| | Busy-wait
— 4+ 4 for screen

|

|

|

|

|

update event

|
|
|
|
|
|
|
|
|
: event
————— = | available
I— | PlayGame(); : :
|
\| |
\ |
'~ |
|
| | Busy-wait : no
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: update event I QHsm_dispatch(); | events
|
| |
| s’ |
| |
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i 2700 | QF_onldle(); | |
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| ! | '
| : | :
| | : A\
-~ |

Figure 1.11: The control flow in the Quickstart application (A) and the
“Fly ‘n’ Shoot” example (B). The heavy lines represent the most frequently
exercised paths through the code.

The Quickstart application has much more convoluted flow of control than the

“Fly ‘n” Shoot” example because the traditional solution is very specific to the problem
at hand whereas the state-machine approach is generic. The Quickstart application is
structured very much like a traditional sequential program that tries to stay in control
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from the beginning to the end. From time to time, the application pauses to busy-wait
for a certain event, whereas the code is generally not ready to handle any other
events than the one it chooses to wait for. All this contributes to the inflexibility of the
design. Adding new events is hard because the whole structure of the intervening
code is designed to accept only very specific events and would need to change
dramatically to accommodate new events. Also, while busy-waiting for the screen
update event (equivalent to the TIME_TICK event in “Fly ‘n” Shoot” example), the
application is really not responsive to any other events. The task-level response is hard
to characterize and generally depends on the event type. The timing established by
the hard-coded waiting for the existing events might not work well for new events.

In contrast, the “Fly ‘n” Shoot” application has a much simpler control flow that is
purely event-driven and completely generic (see Figure 1.11(B)). The context of each
active object component is represented as the current state of a state machine, rather
than as a certain place in the code. That way, hanging in tight “event loops” around
certain locations in the code corresponding to the current context is unnecessary.
Instead, a state machine remembers the context very efficiently as a small data item (the
state-variable; see Chapter 3). After processing of each event, the state machine can
return to the common event loop that is designed generically to handle all kinds of
events. For every event, the state machine naturally picks up where it left off and moves
on to the next state, if necessary. Adding new events is easy in this design because

a state machine is responsive to any event at any time. An event-driven,
state-machine-based application is incomparably more flexible and resilient to change
than the traditional one.

NOTE

The generic event loop can also very easily detect the situation when no events are available,
in which case the QP framework calls the QF _onIdle () function (see Figure 1.11(B)). This
callback function is designed to be customized by the application and is the ideal place to put
the CPU in a low-power sleep mode to conserve the power. In contrast, the traditional
approach does not offer any single place to transition to the low-power sleep mode and con-
sequently is much less friendly for implementing truly low-power designs.

1.10 Summary

If you’ve never done event-driven programming before, the internal structure of the
“Fly ‘n” Shoot” game must certainly represent a big paradigm shift for you. In fact,
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I hope that it actually blows your mind, because otherwise I’'m not sure that you really
appreciate the complete reversal of control of an event-driven program compared to
the traditional sequential code. This reversal of control, known as the Hollywood
Principle (don’t call us, we’ll call you), baffles many newcomers, who often find it
“mind-boggling,” “backward,” or “weird.”

The “Fly ‘n” Shoot” game is by no means a big application, but at the same time it is
definitely not trivial, either. You shouldn’t worry if you don’t fully understand it at
the first reading. In the upcoming chapters, I will provide a closer look at the state
machine design and coding techniques. In Part II, I discuss the features,
implementation, and porting of the QF real-time framework.

My main goal in this chapter was just to introduce you to the event-driven paradigm and
the modern state machines to convince you that these powerful concepts aren’t
particularly hard to implement directly in C or C++. Indeed, I hope you noticed that the
actual coding of the nontrivial “Fly ‘n” Shoot” game wasn’t a big deal at all. All you
needed to know was just a few cookie-cutter rules for coding state machines and
familiarity with a few framework services for implementing the actions.

While the coding turned out to be essentially a nonissue; the bulk of the programming
effort was spent on the design of the application. At this point, I hope that the

“Fly ‘n’ Shoot” example helps you get the big picture of how the method works. Under
the event-driven model, the program structure is divided into two rough groups: events
and state machine components (active objects). An event represents the occurrence

of something interesting. A state machine codifies the reactions to the events, which
generally depend both on the nature of the event and on the state of the component.
While events often originate from the outside of your program, such as time ticks or
button presses in the “Fly ‘n’ Shoot” game, events can also be generated internally by
the program itself. For example, the Mine components generate notification events
when they detect a collision with the Missile or the Ship.

An event-driven program executes by constantly checking for possible events and,
when an event is detected, dispatching the event to the appropriate state machine
component (see Figure 1.11(B)). For this approach to work, the events must be checked
continuously and frequently. This implies that the state machines must execute quickly
so that the program can get back to checking for events. To meet this requirement, a
state machine cannot go into a condition where it is busy-waiting for some long or
indeterminate time. The most common example of this would be a while loop inside a
state-handler function, where the condition for termination was not under program



54 Chapter 1

control—for instance, the button press. This kind of program structure, an indefinite
loop, is referred to as “blocking” code,® and you saw examples of it in the Quickstart
application (see Figure 1.11(A)). For the event-driven programming model to work, you
must only write “nonblocking” code [Carryer 05].

Finally, the “Fly ‘n’ Shoot” example demonstrates the use of the event-driven platform
called QP, which is a collection of components for building event-driven

applications. The QF real-time framework component embodies the Hollywood
Principle by calling the application code, not the other way around. Such an
arrangement is very typical for event-driven systems and application frameworks
similar to QF are at the heart of virtually every design automation tool on the market
today.

The QF framework operates in the “Fly ‘n’ Shoot” game in its simplest configuration,
in which QF runs on a bare-metal target processor without any operating system. QF
can also be configured to work with the built-in preemptive real-time kernel called
QK (see Chapter 10) or can be easily ported to almost any traditional OS or RTOS
(see Chapter 8). In fact, you can view the QF framework itself as a high-level,
event-driven, real-time operating system.

® In the context of a multitasking operating system the “blocking” code corresponds to waiting on a
semaphore, event flag, message mailbox, or other such operating system primitive.
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One place we could really use help is in optimizing IF-THEN-ELSE constructs. Most programs start out
fairly well structured. As bugs are found and features are grafted on, IFs and ELSEs are added until no
human being really has a good idea how data flows through a function. Pretty printing helps, but does not
reduce the complexity of 15 nested IF statements.

—Jack Ganssle, “Break Points,” ESP Magazine, January 1991

Traditional, sequential programs can be structured as a single flow of control, using
standard constructs such as loops and nested function calls. Such programs represent
most of the execution context in the location of the program counter, in the procedure
call tree, and in the temporary variables allocated on the stack.

Event-driven programs, in contrast, require a series of fine-granularity event-handler
functions for handling events. These event-handler functions must execute quickly and
always return to the main event-loop, so no context can be preserved in the call tree and
the program counter. In addition, all stack variables disappear across calls to the
separate event-handlers. Thus, event-driven programs rely heavily on static variables to
preserve the execution context from one event-handler invocation to the next.

Consequently, one of the biggest challenges of event-driven programming lies in
managing the execution context represented as data. The main problem here is that the
context data must somehow feed back into the control flow of the event-handler code so
that each event handler can execute only the actions appropriate in the current context.
Traditionally, this dependence on the context very often leads to deeply nested
if-else constructs that direct the flow of control based on the context data.
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If you could eliminate even a fraction of these conditional branches (a.k.a. “spaghetti”
code), the software would be much easier to understand, test, and maintain, and the
sheer number of convoluted execution paths through the code would drop radically,
typically by orders of magnitude. Techniques based on state machines are capable of
achieving exactly this—a dramatic reduction of the different paths through the code and
simplification of the conditions tested at each branching point.

In this chapter I briefly introduce UML state machines that represent the current state of
the art in the long evolution of these techniques. My intention is not to give a complete,
formal discussion of UML state machines, which the official OMG specification [OMG 07]
covers comprehensively and with formality. Rather, my goal in this chapter is to lay a
foundation by establishing basic terminology, introducing basic notation,' and clarifying
semantics. This chapter is restricted to only a subset of those state machine features

that are arguably most fundamental. The emphasis is on the role of UML state machines in
practical, everyday programming rather than mathematical abstractions.

2.1 The Oversimplification of the Event-Action
Paradigm

The currently dominating approach to structuring event-driven software is the
ubiquitous “event-action” paradigm, in which events are directly mapped to the code
that is supposed to be executed in response. The event-action paradigm is an important
stepping stone for understanding state machines, so in this section I briefly describe
how it works in practice.

I will use an example from the graphical user interface (GUI) domain, given that
GUIs make exemplary event-driven systems. In the book Constructing the User
Interface with Statecharts [Horrocks 99], Ian Horrocks discusses a simple GUI
calculator application distributed in millions of copies as a sample program with
Microsoft Visual Basic, in which he found a number of serious problems. As Horrocks
notes, the point of this analysis is not to criticize this particular program but to
identify the shortcomings of the general principles used in its construction.

When you launch the Visual Basic calculator (available from the companion Website,
in the directory <gp>\resources\vb\calc.exe), you will certainly find out that
most of the time it correctly adds, subtracts, multiplies, and divides (see Figure 2.1(A)).

! Appendix B contains a comprehensive summary of the notation.
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What’s not to like? However, play with the program for a while longer and you can
discover many corner cases in which the calculator provides misleading results, freezes,
or crashes altogether.

NOTE

Tan Horrocks found 10 serious errors in the Visual Basic calculator after only an hour of test-
ing. Try to find at least half of them.

[T 2]

For example, the Visual Basic calculator often has problems with the event; just try
the following sequence of operations: 2, —, —, —, 2, =. The application crashes with a
runtime error (see Figure 2.1(B)). This is because the same button ( — ) is used to negate
a number and to enter the subtraction operator. The correct interpretation of the “-”
button-click event, therefore, depends on the context, or mode, in which it occurs.
Likewise, the CE (Cancel Entry) button occasionally works erroneously—try 2, x, CE,
3, =, and observe that CE had no effect, even though it appears to cancel the 2 entry
from the display. Again, CE should behave differently when canceling an operand than
canceling an operator. As it turns out, the application handles the CE event always
the same way, regardless of the context. At this point, you probably have noticed an

w Calculator ! & Calculator
| : cale. mak
U g 2 il s 3 Rur-time error '13" || E
4 5 6 + - y Type mismatch =
0 = % 0 | | = %
A - - ) B

Figure 2.1: Visual Basic calculator before the crash (A) and after a crash with a
runtime error (B).
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emerging pattern. The application is especially vulnerable to events that require
different handling depending on the context.

This is not to say that the Visual Basic calculator does not attempt to handle the context.
Quite the contrary, if you look at the calculator code (available from the companion
Website, in the directory <gp>\resources\vb\calc. frm), you'll notice that
managing the context is in fact the main concern of this application. The code is littered
with a multitude of global variables and flags that serve only one purpose: handling the
context. For example, DecimalF1lag indicates that a decimal point has been entered,
OpFlag represents a pending operation, LastInput indicates the type of the last
button press event, NumOps denotes the number of operands, and so on. With this
representation, the context of the computation is represented ambiguously, so it is difficult
to tell precisely in which mode the application is at any given time. Actually, the
application has no notion of any single mode of operation but rather a bunch of tightly
coupled and overlapping conditions of operation determined by values of the global
variables and flags.

Listing 2.1 shows the conditional logic in which the event-handler procedure for the
operator events (+, —, *, and /) attempts to determine whether the — (minus) button-
click should be treated as negation or subtraction.

Listing 2.1 Fragment of Visual Basic code that attempts to determine
whether the - (minus) button-click event should be treated as negation or
subtraction

Private Sub Operator_Click(Index As Integer)

Select Case NumOps
Case 0
If Operator (Index) .Caption = "-" And LastInput <> "NEG" Then
ReadOut = "-" & ReadOut
LastInput = "NEG"
End If
Case 1
Opl = ReadOut
If Operator (Index) .Caption = "-" And LastInput <> "NUMS" And
OpFlag <> "=" Then
ReadOut = "-"
LastInput = "NEG"
End If
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The approach exemplified in Listing 2.1 is a fertile ground for the “corner case”
behavior (a.k.a. bugs) for at least three reasons:

e [t always leads to convoluted conditional logic (a.k.a. “spaghetti” code).
e Each branching point requires evaluation of a complex expression.

e Switching between different modes requires modifying many variables, which
can easily lead to inconsistencies.

Convoluted conditional expressions like the one shown in Listing 2.1, scattered
throughout the code, are unnecessarily complex and expensive to evaluate at runtime.
They are also notoriously difficult to get right, even by experienced programmers, as
the bugs still lurking in the Visual Basic calculator attest. This approach is insidious
because it appears to work fine initially, but doesn’t scale up as the problem grows in
complexity. Apparently, the calculator application (overall only seven event handlers
and some 140 lines of Visual Basic code including comments) is just complex enough
to be difficult to get right with this approach.

The faults just outlined are rooted in the oversimplification of the event-action paradigm.
The Visual Basic calculator example makes it clear, I hope, that an event alone does
not determine the actions to be executed in response to that event. The current context
is at least equally important. The prevalent event-action paradigm, however, recognizes
only the dependency on the event-type and leaves the handling of the context to largely
ad hoc techniques that all too easily degenerate into spaghetti code.

2.2 Basic State Machine Concepts

The event-action paradigm can be extended to explicitly include the dependency on the
execution context. As it turns out, the behavior of most event-driven systems can be
divided into a relatively small number of chunks, where event responses within each
individual chunk indeed depend only on the current event-type but no longer on the
sequence of past events (the context). In other words, the event-action paradigm is still
applied, but only locally within each individual chunk.

A common and straightforward way of modeling behavior based on this idea is
through a finite state machine (FSM). In this formalism, “chunks of behavior” are called
states, and change of behavior (i.e., change in response to any event) corresponds to
change of state and is called a state transition. An FSM is an efficient way to specify
constraints of the overall behavior of a system. Being in a state means that the
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system responds only to a subset of all allowed events, produces only a subset of
possible responses, and changes state directly to only a subset of all possible states.

The concept of an FSM is important in programming because it makes the event
handling explicitly dependent on both the event-type and on the execution context
(state) of the system. When used correctly, a state machine becomes a powerful
“spaghetti reducer” that drastically cuts down the number of execution paths through
the code, simplifies the conditions tested at each branching point, and simplifies the
transitions between different modes of execution.

2.2.1 States

A state captures the relevant aspects of the system’s history very efficiently. For
example, when you strike a key on a keyboard, the character code generated will be
either an uppercase or a lowercase character, depending on whether the Caps Lock is
active.” Therefore, the keyboard’s behavior can be divided into two chunks (states):
the “default” state and the “caps_locked” state. (Most keyboards actually have an LED
that indicates that the keyboard is in the “caps_locked” state.) The behavior of a
keyboard depends only on certain aspects of its history, namely whether the Caps Lock
key has been pressed, but not, for example, on how many and exactly which other
keys have been pressed previously. A state can abstract away all possible (but
irrelevant) event sequences and capture only the relevant ones.

To relate this concept to programming, this means that instead of recording the event
history in a multitude of variables, flags, and convoluted logic, you rely mainly on just
one state variable that can assume only a limited number of a priori determined values
(e.g., two values in case of the keyboard). The value of the state variable crisply defines
the current state of the system at any given time. The concept of state reduces the
problem of identifying the execution context in the code to testing just the state variable
instead of many variables, thus eliminating a lot of conditional logic. Actually, in all but
the most basic state machine implementation techniques, such as the “nested-switch
statement” technique discussed in Chapter 3, even the explicit testing of the state
variable disappears from the code, which reduces the “spaghetti” further still (you
will experience this effect later in Chapters 3 and 4). Moreover, switching between
different states is vastly simplified as well, because you need to reassign just one state
variable instead of changing multiple variables in a self-consistent manner.

2 Ignore at this point the effects of the Shift, Ctrl, and Alt keys.
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2.2.2 State Diagrams

FSMs have an expressive graphical representation in the form of state diagrams. These
diagrams are directed graphs in which nodes denote states and connectors denote
state transitions.’

For example, Figure 2.2 shows a UML state transition diagram corresponding to the
computer keyboard state machine. In UML, states are represented as rounded rectangles
labeled with state names. The transitions, represented as arrows, are labeled with the
triggering events followed optionally by the list of executed actions. The initial
transition originates from the solid circle and specifies the starting state when the
system first begins. Every state diagram should have such a transition, which should not
be labeled, since it is not triggered by an event. The initial transition can have
associated actions.

initial states 5
transition P <
-~ - ~ ~

| . ~
' rd - ~

|/ default_~\ caps_Tocked

ANY_KEY / send_lower_case_scan_code(); , 7 ANY_KEY/ send_\upper_case_/scan_code();

7 state
transition trigger Il‘ list of actions B‘

Figure 2.2: UML state diagram representing the computer keyboard state machine.

~
~

2.2.3 State Diagrams versus Flowcharts

Newcomers to the state machine formalism often confuse state diagrams with
flowcharts. The UML specification [OMG 07] isn’t helping in this respect because it
lumps activity graphs in the state machine package. Activity graphs are essentially
elaborate flowcharts.

3 Appendix B contains a succinct summary of the graphical notations used throughout the book, including
state transition diagrams.
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Figure 2.3 shows a comparison of a state diagram with a flowchart. A state machine
(panel (A)) performs actions in response to explicit triggers. In contrast, the flowchart
(panel (B)) does not need explicit triggers but rather transitions from node to node in its
graph automatically upon completion of activities.

............. B/ @CHONT () oo

............. B2/ aCtion2()—r- -

,,,,,,,,,,,,, E3/ aCtONS()—P - - v

Figure 2.3: Comparison of (A) state machine (statechart) with (B) activity diagram
(flowchart).

Graphically, compared to state diagrams, flowcharts reverse the sense of vertices and
arcs. In a state diagram, the processing is associated with the arcs (transitions),
whereas in a flowchart, it is associated with the vertices. A state machine is idle when it
sits in a state waiting for an event to occur. A flowchart is busy executing activities
when it sits in a node. Figure 2.3 attempts to show that reversal of roles by aligning
the arcs of the statecharts with the processing stages of the flowchart.

You can compare a flowchart to an assembly line in manufacturing because the flowchart
describes the progression of some task from beginning to end (e.g., transforming source
code input into object code output by a compiler). A state machine generally has no
notion of such a progression. A computer keyboard, for example, is not in a more
advanced stage when it is in the “caps_locked” state, compared to being in the “default”
state; it simply reacts differently to events. A state in a state machine is an efficient way
of specifying a particular behavior, rather than a stage of processing.

The distinction between state machines and flowcharts is especially important
because these two concepts represent two diametrically opposed programming
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paradigms: event-driven programming (state machines) and transformational
programming (flowcharts). You cannot devise effective state machines without
constantly thinking about the available events. In contrast, events are only a secondary
concern (if at all) for flowcharts.

2.2.4 Extended State Machines

One possible interpretation of state for software systems is that each state represents
one distinct set of valid values of the whole program memory. Even for simple
programs with only a few elementary variables, this interpretation leads to an
astronomical number of states. For example, a single 32-bit integer could contribute
to over 4 billion different states. Clearly, this interpretation is not practical, so
program variables are commonly dissociated from states. Rather, the complete
condition of the system (called the extended state) is the combination of a
qualitative aspect (the state) and the quantitative aspects (the extended state
variables). In this interpretation, a change of variable does not always imply a
change of the qualitative aspects of the system behavior and therefore does not lead
to a change of state [Selic+ 94].

State machines supplemented with variables are called extended state machines.
Extended state machines can apply the underlying formalism to much more complex
problems than is practical without including extended state variables. For instance,
suppose the behavior of the keyboard depends on the number of characters typed on it
so far and that after, say, 1,000 keystrokes, the keyboard breaks down and enters the
final state. To model this behavior in a state machine without memory, you would need
to introduce 1,000 states (e.g., pressing a key in state stroke123 would lead to state
stroke124, and so on), which is clearly an impractical proposition. Alternatively, you
could construct an extended state machine with a key_count down-counter variable.
The counter would be initialized to 1,000 and decremented by every keystroke
without changing state. When the counter reached zero, the state machine would
enter the final state.

The state diagram from Figure 2.4 is an example of an extended state machine, in which
the complete condition of the system (called the extended state) is the combination of a
qualitative aspect—the “state”—and the quantitative aspects—the extended state
variables (such as the down-counter key_count). In extended state machines, a change
of a variable does not always imply a change of the qualitative aspects of the system
behavior and therefore does not always lead to a change of state.
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The obvious advantage of extended state machines is flexibility. For example,
extending the lifespan of the “cheap keyboard” from 1,000 to 10,000 keystrokes would
not complicate the extended state machine at all. The only modification required
would be changing the initialization value of the key_count down-counter in the
initial transition.

°
/ key_count = 1000;

default

CAPS_LOCK. o/ caps_locked ™\

4¢—CAPS_LOCK———

ANY_KEY / --key_count; ANY_KEY / --key_count;

choice guard
pseudostate conditions

s
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yZ _ -~ ~ -
o ~o
[else [key_count == O]4>©47[keyfcount =0 [else]

Figure 2.4: Extended state machine of “cheap keyboard” with extended state
variable key_count and various guard conditions.

2.2.5 Guard Conditions

This flexibility of extended state machines comes with a price, however, because of the
complex coupling between the “qualitative” and the “quantitative” aspects of the
extended state. The coupling occurs through the guard conditions attached to
transitions, as shown in Figure 2.4.

Guard conditions (or simply guards) are Boolean expressions evaluated dynamically
based on the value of extended state variables and event parameters (see the discussion
of events and event parameters in the next section). Guard conditions affect the
behavior of a state machine by enabling actions or transitions only when they evaluate
to TRUE and disabling them when they evaluate to FALSE. In the UML notation,
guard conditions are shown in square brackets (e.g., [key_count == 0]).

The need for guards is the immediate consequence of adding memory (extended state
variables) to the state machine formalism. Used sparingly, extended state variables
and guards make up an incredibly powerful mechanism that can immensely simplify
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designs. But don’t let the fancy name (“guard”) and the concise UML notation fool you.
When you actually code an extended state machine, the guards become the same

IFs and ELSEs that you wanted to eliminate by using the state machine in the first
place. Too many of them, and you’ll find yourself back in square one (“spaghetti”),
where the guards effectively take over handling of all the relevant conditions in the
system.

Indeed, abuse of extended state variables and guards is the primary mechanism of
architectural decay in designs based on state machines. Usually, in the day-to-day
battle, it seems very tempting, especially to programmers new to state machine
formalism, to add yet another extended state variable and yet another guard condition
(another if or an else) rather than to factor out the related behavior into a new
qualitative aspect of the system—the state. From my experience in the trenches, the
likelihood of such an architectural decay is directly proportional to the overhead (actual
or perceived) involved in adding or removing states. (That’s why I don’t particularly
like the popular state-table technique of implementing state machines that I describe in
Chapter 3, because adding a new state requires adding and initializing a whole new
column in the table.)

One of the main challenges in becoming an effective state machine designer is to
develop a sense for which parts of the behavior should be captured as the “qualitative”
aspects (the “state””) and which elements are better left as the “quantitative” aspects
(extended state variables). In general, you should actively look for opportunities to
capture the event history (what happened) as the “state” of the system, instead of storing
this information in extended state variables. For example, the Visual Basic calculator
uses an extended state variable DecimalFlag to remember that the user entered the
decimal point to avoid entering multiple decimal points in the same number. However,
a better solution is to observe that entering a decimal point really leads to a distinct
state “entering_the_fractional_part_of_a_number,” in which the calculator ignores
decimal points. This solution is superior for a number of reasons. The lesser reason is
that it eliminates one extended state variable and the need to initialize and test it. The
more important reason is that the state-based solution is more robust because the
context information is used very locally (only in this particular state) and is discarded as
soon as it becomes irrelevant. Once the number is correctly entered, it doesn’t really
matter for the subsequent operation of the calculator whether that number had a decimal
point. The state machine moves on to another state and automatically “forgets” the
previous context. The DecimalFlag extended state variable, on the other hand, “lays
around” well past the time the information becomes irrelevant (and perhaps outdated!).
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Worse, you must not forget to reset DecimalFlag before entering another number
or the flag will incorrectly indicate that indeed the user once entered the decimal
point, but perhaps this happened in the context of the previous number.

Capturing behavior as the quantitative “state” has its disadvantages and limitations, too.
First, the state and transition topology in a state machine must be static and fixed at
compile time, which can be too limiting and inflexible. Sure, you can easily devise
“state machines” that would modify themselves at runtime (this is what often actually
happens when you try to recode “spaghetti” as a state machine). However, this is

like writing self-modifying code, which indeed was done in the early days of
programming but was quickly dismissed as a generally bad idea. Consequently,
“state” can capture only static aspects of the behavior that are known a priori and are
unlikely to change in the future.

For example, it’s fine to capture the entry of a decimal point in the calculator as a
separate state “entering_the_fractional_part_of_a_number,” because a number can
have only one fractional part, which is both known a priori and is not likely to change
in the future. However, implementing the “cheap keyboard” without extended state
variables and guard conditions would be practically impossible. This example points
to the main weakness of the quantitative “state,” which simply cannot store too
much information (such as the wide range of keystroke counts). Extended state
variables and guards are thus a mechanism for adding extra runtime flexibility to state
machines.

2.2.6 Events

In the most general terms, an event is an occurrence in time and space that has
significance to the system. Strictly speaking, in the UML specification the term

event refers to the type of occurrence rather than to any concrete instance of that
occurrence [OMG 07]. For example, Keystroke is an event for the keyboard, but each
press of a key is not an event but a concrete instance of the Keystroke event.
Another event of interest for the keyboard might be Power-on, but turning the power
on tomorrow at 10:05:36 will be just an instance of the Power-on event.

An event can have associated parameters, allowing the event instance to convey not
only the occurrence of some interesting incident but also quantitative information
regarding that occurrence. For example, the Keystroke event generated by pressing a
key on a computer keyboard has associated parameters that convey the character scan
code as well as the status of the Shift, Ctrl, and Alt keys.
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An event instance outlives the instantaneous occurrence that generated it and might
convey this occurrence to one or more state machines. Once generated, the event
instance goes through a processing life cycle that can consist of up to three stages. First,
the event instance is received when it is accepted and waiting for processing (e.g., it
is placed on the event queue). Later, the event instance is dispatched to the state
machine, at which point it becomes the current event. Finally, it is consumed when the
state machine finishes processing the event instance. A consumed event instance is no
longer available for processing.

2.2.7 Actions and Transitions

When an event instance is dispatched, the state machine responds by performing
actions, such as changing a variable, performing I/O, invoking a function, generating
another event instance, or changing to another state. Any parameter values associated
with the current event are available to all actions directly caused by that event.

Switching from one state to another is called state transition, and the event that causes

it is called the triggering event, or simply the trigger. In the keyboard example, if the
keyboard is in the “default” state when the Caps Lock key is pressed, the keyboard will
enter the “caps_locked” state. However, if the keyboard is already in the “caps_locked”
state, pressing Caps Lock will cause a different transition—from the “caps_locked” to the
“default” state. In both cases, pressing Caps Lock is the triggering event.

In extended state machines, a transition can have a guard, which means that the
transition can “fire” only if the guard evaluates to TRUE. A state can have many
transitions in response to the same trigger, as long as they have nonoverlapping guards;
however, this situation could create problems in the sequence of evaluation of the
guards when the common trigger occurs. The UML specification intentionally does not
stipulate any particular order; rather, UML puts the burden on the designer to devise
guards in such a way that the order of their evaluation does not matter. Practically, this
means that guard expressions should have no side effects, at least none that would
alter evaluation of other guards having the same trigger.

2.2.8 Run-to-Completion Execution Model

All state machine formalisms, including UML statecharts, universally assume that a
state machine completes processing of each event before it can start processing the next
event. This model of execution is called run to completion, or RTC.
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In the RTC model, the system processes events in discrete, indivisible RTC steps. New
incoming events cannot interrupt the processing of the current event and must be

stored (typically in an event queue) until the state machine becomes idle again. These
semantics completely avoid any internal concurrency issues within a single state machine.
The RTC model also gets around the conceptual problem of processing actions associated
with transitions,* where the state machine is not in a well-defined state (is between two
states) for the duration of the action. During event processing, the system is unresponsive
(unobservable), so the ill-defined state during that time has no practical significance.

Note, however, that RTC does not mean that a state machine has to monopolize the CPU
until the RTC step is complete. The preemption restriction only applies to the task context of
the state machine that is already busy processing events. In a multitasking environment,
other tasks (not related to the task context of the busy state machine) can be running,
possibly preempting the currently executing state machine. As long as other state machines
do not share variables or other resources with each other, there are no concurrency hazards.

The key advantage of RTC processing is simplicity. Its biggest disadvantage is that the
responsiveness of a state machine is determined by its longest RTC step.” Achieving
short RTC steps can often significantly complicate real-time designs.

2.3 UML Extensions to the Traditional FSM Formalism

Though the traditional FSMs are an excellent tool for tackling smaller problems, it’s
also generally known that they tend to become unmanageable, even for moderately
involved systems. Due to the phenomenon known as state explosion, the complexity
of a traditional FSM tends to grow much faster than the complexity of the reactive
system it describes. This happens because the traditional state machine formalism
inflicts repetitions. For example, if you try to represent the behavior of the Visual Basic
calculator introduced in Section 2.1 with a traditional FSM, you’ll immediately notice
that many events (e.g., the Clear event) are handled identically in many states.

A conventional FSM, however, has no means of capturing such a commonality and
requires repeating the same actions and transitions in many states. What’s missing in the
traditional state machines is the mechanism for factoring out the common behavior

in order to share it across many states.

4 State machines that associate actions with transitions are classified as Mealy machines.
> A state machine can improve responsiveness by breaking up the CPU-intensive processing into
sufficiently short RTC steps (see also the “Reminder” state pattern in Chapter 5).
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The formalism of statecharts, invented by David Harel in the 1980s [Harel 87],
addresses exactly this shortcoming of the conventional FSMs. Statecharts provide a
very efficient way of sharing behavior so that the complexity of a statechart no longer
explodes but tends to faithfully represent the complexity of the reactive system it
describes. Obviously, formalism like this is a godsend to embedded systems
programmers (or any programmers working with event-driven systems) because it
makes the state machine approach truly applicable to real-life problems.

UML state machines, known also as UML statecharts [OMG 07], are object-based
variants of Harel statecharts and incorporate several concepts defined in ROOMcharts, a
variant of the statechart defined in the Real-time Object-Oriented Modeling (ROOM)
language [Selic+ 94]. UML statecharts are extended state machines with characteristics
of both Mealy and Moore automata. In statecharts, actions generally depend on both
the state of the system and the triggering event, as in a Mealy automaton. Additionally,
UML statecharts provide optional entry and exit actions, which are associated with
states rather than transitions, as in a Moore automaton.

2.3.1 Reuse of Behavior in Reactive Systems

All reactive systems seem to reuse behavior in a similar way. For example, the
characteristic look and feel of all GUIs results from the same pattern, which the Windows
guru Charles Petzold calls the “Ultimate Hook™ [Petzold 96]. The pattern is brilliantly
simple: A GUI system dispatches every event first to the application (e.g., Windows calls
a specific function inside the application, passing the event as an argument). If not
handled by the application, the event flows back to the system. This establishes a
hierarchical order of event processing. The application, which is conceptually at a lower
level of the hierarchy, has the first shot at every event; thus the application can choose
to react in any way it likes. At the same time, all unhandled events flow back to the higher
level (i.e., to the GUI system), where they are processed according to the standard look
and feel. This is an example of programming by difference because the application
programmer needs to code only the differences from the standard system behavior.

2.3.2 Hierarchically Nested States

Harel statecharts bring the “Ultimate Hook™ pattern to the logical conclusion by
combining it with the state machine formalism. The most important innovation of
statecharts over the classical FSMs is the introduction of hierarchically nested states
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(that’s why statecharts are also called hierarchical state machines, or HSMs). The
semantics associated with state nesting are as follows (see Figure 2.5(A)): If a system is
in the nested state “s11” (called the substate), it also (implicitly) is in the surrounding state
“s1” (called the superstate). This state machine will attempt to handle any event in the
context of state “s11,” which conceptually is at the lower level of the hierarchy. However, if
state “s11” does not prescribe how to handle the event, the event is not quietly discarded
as in a traditional “flat” state machine; rather, it is automatically handled at the higher level
context of the superstate “s1.” This is what is meant by the system being in state “s11” as
well as “s1.” Of course, state nesting is not limited to one level only, and the simple rule
of event processing applies recursively to any level of nesting.

s N\ ° /4 heating N
A ——OPEN_DOOR
—| superstate 5
— — —| substate 5
/
A B

Figure 2.5: UML notation for hierarchically nested states (A), and a state model of
a toaster oven in which states “toasting” and “baking” share the common
transition from state “heating” to “door_open” (B).

States that contain other states are called composite states; conversely, states without
internal structure are called simple states or leaf states. A nested state is called a direct
substate when it is not contained by any other state; otherwise, it is referred to as a
transitively nested substate.

Because the internal structure of a composite state can be arbitrarily complex, any
hierarchical state machine can be viewed as an internal structure of some (higher-level)
composite state. It is conceptually convenient to define one composite state as the
ultimate root of state machine hierarchy. In the UML specification, every state machine
has a top state (the abstract root of every state machine hierarchy), which contains all
the other elements of the entire state machine. The graphical rendering of this all-
enclosing top state is optional [OMG 07].

As you can see, the semantics of hierarchical state decomposition are designed to
facilitate sharing of behavior through the direct support for the “Ultimate Hook”
pattern. The substates (nested states) need only define the differences from the
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superstates (surrounding states). A substate can easily reuse the common behavior from
its superstate(s) by simply ignoring commonly handled events, which are then
automatically handled by higher-level states. In this manner, the substates can share all
aspects of behavior with their superstates. For example, in a state model of a toaster
oven shown in Figure 2.5(B), states “toasting” and “baking” share a common transition
DOOR_OPEN to the “door_open” state, defined in their common superstate “heating.”

The aspect of state hierarchy emphasized most often is abstraction—an old and
powerful technique for coping with complexity. Instead of facing all aspects of a
complex system at the same time, it is often possible to ignore (abstract away) some
parts of the system. Hierarchical states are an ideal mechanism for hiding internal
details because the designer can easily zoom out or zoom in to hide or show nested
states. Although abstraction by itself does not reduce overall system complexity, it is
valuable because it reduces the amount of detail you need to deal with at one time. As
Grady Booch [Booch 94] notes:

... we are still constrained by the number of things that we can comprehend at one time, but through
abstraction, we use chunks of information with increasingly greater semantic content.

However valuable abstraction in itself might be, you cannot cheat your way out of
complexity simply by hiding it inside composite states. However, the composite states
don’t simply hide complexity, they also actively reduce it through the powerful
mechanism of reuse (the “Ultimate Hook™ pattern). Without such reuse, even a
moderate increase in system complexity often leads to an explosive increase in the
number of states and transitions. For example, if you transform the statechart from
Figure 2.5(B) to a classical flat state machine,® you must repeat one transition (from
heating to “door_open”) in two places: as a transition from “toasting” to “door_open”
and from “baking” to “door_open.” Avoiding such repetitions allows HSMs to grow
proportionally to system complexity. As the modeled system grows, the opportunity for
reuse also increases and thus counteracts the explosive increase in states and transitions
typical for traditional FSMs.

2.3.3 Behavioral Inheritance

Hierarchical states are more than merely the “grouping of [nested] state machines
together without additional semantics” [Mellor 00]. In fact, hierarchical states have

© Such a transformation is always possible because HSMs are mathematically equivalent to classical FSMs.
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simple but profound semantics. Nested states are also more than just “great
diagrammatic simplification when a set of events applies to several substates”
[Douglass 99]. The savings in the number of states and transitions are real and go far
beyond less cluttered diagrams. In other words, simpler diagrams are just a side
effect of behavioral reuse enabled by state nesting.

The fundamental character of state nesting comes from the combination of abstraction and
hierarchy, which is a traditional approach to reducing complexity and is otherwise
known in software as inheritance. In OOP, the concept of class inheritance describes
relations between classes of objects. Class inheritance describes the “is a ...” relationship
among classes. For example, class Bird might derive from class Animal. If an object

is a bird (instance of the Bird class), it automatically is an animal, because all operations
that apply to animals (e.g., eating, eliminating, reproducing) also apply to birds. But
birds are more specialized, since they have operations that are not applicable to animals
in general. For example, £1ying () applies to birds but not to fish.

The benefits of class inheritance are concisely summarized by Gamma and colleagues
[Gamma+ 95]:

Inheritance lets you define a new kind of class rapidly in terms of an old one, by reusing functionality
from parent classes. It allows new classes to be specified by difference rather than created from scratch
each time. It lets you get new implementations almost for free, inheriting most of what is common from
the ancestor classes.

As you saw in the previous section, all these basic characteristics of inheritance apply
equally well to nested states (just replace the word class with state), which is not
surprising because state nesting is based on the same fundamental “is a ...”
classification as object-oriented class inheritance. For example, in a state model of a
toaster oven, state “toasting’” nests inside state “heating.” If the toaster is in the
“toasting” state, it automatically is in the “heating” state because all behavior pertaining
to “heating” applies also to “toasting” (e.g., the heater must be turned on). But
“toasting” is more specialized because it has behaviors not applicable to “heating” in
general. For example, setting toast color (light or dark) applies to “toasting” but not to
“baking.”

In the case of nested states, the “is a ...” (is-a-kind-of) relationship merely needs to be
replaced by the “is in ...” (is-in-a-state) relationship; otherwise, it is the same
fundamental classification. State nesting allows a substate to inherit state behavior from
its ancestors (superstates); therefore, it’s called behavioral inheritance.
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NOTE

The term “behavioral inheritance” does not come from the UML specification. Note too that
behavioral inheritance describes the relationship between substates and superstates, and you
should not confuse it with traditional (class) inheritance applied to entire state machines.

The concept of inheritance is fundamental in software construction. Class inheritance is
essential for better software organization and for code reuse, which makes it a
cornerstone of OOP. In the same way, behavioral inheritance is essential for efficient
use of HSMs and for behavior reuse, which makes it a cornerstone of event-driven
programming. In Chapter 5, a mini-catalog of state patterns shows ways to structure
HSMs to solve recurring problems. Not surprisingly, behavioral inheritance plays the
central role in all these patterns.

2.3.4 Liskov Substitution Principle for States

Identifying the relationship among substates and superstates as inheritance has many
practical implications. Perhaps the most important is the Liskov Substitution Principle
(LSP) applied to state hierarchy. In its traditional formulation for classes, LSP requires
that a subclass can be freely substituted for its superclass. This means that every
instance of the subclass should be compatible with the instance of the superclass and
that any code designed to work with the instance of the superclass should continue to
work correctly if an instance of the subclass is used instead.

Because behavioral inheritance is just a special kind of inheritance, LSP can be
applied to nested states as well as classes. LSP generalized for states means that the
behavior of a substate should be consistent with the superstate. For example, all states
nested inside the “heating” state of the toaster oven (e.g., “toasting” or “baking”) should
share the same basic characteristics of the “heating” state. In particular, if being in the
“heating” state means that the heater is turned on, then none of the substates should
turn the heater off (without transitioning out of the “heating” state). Turning the heater
off and staying in the “toasting” or “baking” state would be inconsistent with being in
the “heating” state and would indicate poor design (violation of the LSP).

Compliance with the LSP allows you to build better (more correct) state hierarchies and
make efficient use of abstraction. For example, in an LSP-compliant state hierarchy,
you can safely zoom out and work at the higher level of the “heating” state (thus
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abstracting away the specifics of “toasting” and “baking”). As long as all the
substates are consistent with their superstate, such abstraction is meaningful. On the
other hand, if the substates violate basic assumptions of being in the superstate,
zooming out and ignoring the specifics of the substates will be incorrect.

2.3.5 Orthogonal Regions

Hierarchical state decomposition can be viewed as exclusive-OR operation applied to
states. For example, if a system is in the “heating” superstate (Figure 2.5(B)), it means
that it’s either in “toasting” substate OR the “baking” substate. That is why the
“heating” superstate is called an OR-state.

UML statecharts also introduce the complementary AND-decomposition. Such
decomposition means that a composite state can contain two or more orthogonal
regions (orthogonal means independent in this context) and that being in such a
composite state entails being in all its orthogonal regions simultaneously [Harel+ 98].

Orthogonal regions address the frequent problem of a combinatorial increase in the
number of states when the behavior of a system is fragmented into independent,
concurrently active parts. For example, apart from the main keypad, a computer
keyboard has an independent numeric keypad. From the previous discussion, recall the
two states of the main keypad already identified: “default” and “caps_locked”

(Figure 2.2). The numeric keypad also can be in two states—"“‘numbers” and “arrows”—
depending on whether Num Lock is active. The complete state space of the keyboard
in the standard decomposition is the cross-product of the two components (main keypad
and numeric keypad) and consists of four states: “default—numbers,” “default-arrows,”
“caps_locked—numbers,” and “caps_locked—arrows.” However, this is unnatural
because the behavior of the numeric keypad does not depend on the state of the

main keypad and vice versa. Orthogonal regions allow you to avoid mixing the
independent behaviors as a cross-product and, instead, to keep them separate, as shown
in Figure 2.6.

Note that if the orthogonal regions are fully independent of each other, their combined
complexity is simply additive, which means that the number of independent states
needed to model the system is simply the sum k+/+ m + ..., where k, [, m, ... denote
numbers of OR-states in each orthogonal region. The general case of mutual
dependency, on the other hand, results in multiplicative complexity, so in general, the
number of states needed is the product k x [ X m x ....
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Figure 2.6: Two orthogonal regions (main keypad and numeric keypad) of a
computer keyboard.

In most real-life situations, however, orthogonal regions are only approximately
orthogonal (i.e., they are not independent). Therefore, UML statecharts provide a
number of ways for orthogonal regions to communicate and synchronize their
behaviors. From these rich sets of (sometimes complex) mechanisms, perhaps the most
important is that orthogonal regions can coordinate their behaviors by sending event
instances to each other.

Even though orthogonal regions imply independence of execution (i.e., some kind of
concurrency), the UML specification does not require that a separate thread of
execution be assigned to each orthogonal region (although it can be implemented that
way). In fact, most commonly, orthogonal regions execute within the same thread.
The UML specification only requires that the designer not rely on any particular order
in which an event instance will be dispatched to the involved orthogonal regions.

NOTE

The HSM implementation described in this book (see Chapter 4) does not directly support
orthogonal regions. Chapter 5 describes the “Orthogonal Component” state pattern, which
emulates orthogonal regions by composition of HSMs.

2.3.6 Entry and Exit Actions

Every state in a UML statechart can have optional entry actions, which are executed
upon entry to a state, as well as optional exit actions, which are executed upon exit from
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a state. Entry and exit actions are associated with states, not transitions.” Regardless
of how a state is entered or exited, all its entry and exit actions will be executed.
Because of this characteristic, statecharts behave like Moore automata. The UML
notation for state entry and exit actions is to place the reserved word “entry” (or “exit”)
in the state right below the name compartment, followed by the forward slash and

the list of arbitrary actions (see Figure 2.7).

The value of entry and exit actions is that they provide means for guaranteed
initialization and cleanup, very much like class constructors and destructors in OOP.
For example, consider the “door_open” state from Figure 2.7, which corresponds to the
toaster oven behavior while the door is open. This state has a very important safety-
critical requirement: Always disable the heater when the door is open.® Additionally,
while the door is open, the internal lamp illuminating the oven should light up.

Of course, you could model such behavior by adding appropriate actions (disabling the
heater and turning on the light) to every transition path leading to the “door_open”
state (the user may open the door at any time during “baking” or “toasting” or when the
oven is not used at all). You also should not forget to extinguish the internal lamp

4 heating N\ _
entry / heater_on(); b e
exit / heater_off(); {
toasting \ _DOOR_OPEN
entry / arm_time_event(me->toast_color);
exit / disarm_time_event(); 'a door_open
entry / internal_lamp_on();
——DO_BAKING t DO_TOASTING—— exit / internal_lamp_off();

baking
tntry / set_temperature(me->temperature); J

«¢—DOOR_CLOSE

exit / set_temperature(0);

A /

Figure 2.7: Toaster oven state machine with entry and exit actions.

7 State machines are classified as Mealy machines if actions are associated with transitions and as Moore
machines if actions are associated with states. UML state machines have characteristics of both Mealy
machines and Moore machines.

# Commonly, such a safety-critical function is (and should be) redundantly safeguarded by mechanical
interlocks, but for the sake of this discussion, suppose you need to implement it entirely in software.
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with every transition leaving the “door_open” state. However, such a solution would
cause the repetition of actions in many transitions. More important, such an approach is
error-prone in view of changes to the state machine (e.g., the next programmer
working on a new feature, such as top-browning, might simply forget to disable the
heater on transition to “door_open”).

Entry and exit actions allow you to implement the desired behavior in a much safer,
simpler, and more intuitive way. As shown in Figure 2.7, you could specify that the exit
action from “heating” disables the heater, the entry action to “door_open” lights up the
oven lamp, and the exit action from “door_open” extinguishes the lamp. The use of
entry and exit action is superior to placing actions on transitions because it avoids
repetitions of those actions on transitions and eliminates the basic safety hazard of
leaving the heater on while the door is open. The semantics of exit actions guarantees
that, regardless of the transition path, the heater will be disabled when the toaster is
not in the “heating” state.

Because entry actions are executed automatically whenever an associated state is
entered, they often determine the conditions of operation or the identity of the state,
very much as a class constructor determines the identity of the object being constructed.
For example, the identity of the “heating” state is determined by the fact that the heater
is turned on. This condition must be established before entering any substate of
“heating” because entry actions to a substate of “heating,” like “toasting,” rely on
proper initialization of the “heating” superstate and perform only the differences from
this initialization. Consequently, the order of execution of entry actions must always
proceed from the outermost state to the innermost state.

Not surprisingly, this order is analogous to the order in which class constructors are
invoked. Construction of a class always starts at the very root of the class hierarchy and
follows through all inheritance levels down to the class being instantiated. The
execution of exit actions, which corresponds to destructor invocation, proceeds in the
exact reverse order, starting from the innermost state (corresponding to the most derived
class).

2.3.7 Internal Transitions

Very commonly, an event causes only some internal actions to execute but does not
lead to a change of state (state transition). In this case, all actions executed comprise the
internal transition. For example, when you type on your keyboard, it responds by
generating different character codes. However, unless you hit the Caps Lock key, the
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state of the keyboard does not change (no state transition occurs). In UML, this situation
should be modeled with internal transitions, as shown in Figure 2.8. The UML notation
for internal transitions follows the general syntax used for exit (or entry) actions, except
instead of the word entry (or exit) the internal transition is labeled with the triggering
event (e.g., see the internal transition triggered by the ANY_KEY event in Figure 2.8).

/4 default N\

QNY_KEY / send_lower_case_scan_code(); )‘
7

. [ +

internal CAPS_LOCK

transitions ; CAPSrLOCK
e

caps_locked
UNY_KEY / send_upper_case_scan_cod99 J

trigger B‘ list of actions I%

Figure 2.8: UML state diagram of the keyboard state machine with internal
transitions.

In the absence of entry and exit actions, internal transitions would be identical to self-
transitions (transitions in which the target state is the same as the source state). In fact, in
a classical Mealy automaton, actions are associated exclusively with state transitions,

so the only way to execute actions without changing state is through a self-transition
(depicted as a directed loop in Figure 2.2). However, in the presence of entry and exit
actions, as in UML statecharts, a self-transition involves the execution of exit and entry
actions and therefore it is distinctively different from an internal transition.

In contrast to a self-transition, no entry or exit actions are ever executed as a result of an
internal transition, even if the internal transition is inherited from a higher level of the
hierarchy than the currently active state. Internal transitions inherited from superstates at
any level of nesting act as if they were defined directly in the currently active state.

2.3.8 Transition Execution Sequence

State nesting combined with entry and exit actions significantly complicates the state
transition semantics in HSMs compared to the traditional FSMs. When dealing with
hierarchically nested states and orthogonal regions, the simple term current state can be
quite confusing. In an HSM, more than one state can be active at once. If the state
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machine is in a leaf state that is contained in a composite state (which is possibly
contained in a higher-level composite state, and so on), all the composite states that
either directly or transitively contain the leaf state are also active. Furthermore, because
some of the composite states in this hierarchy might have orthogonal regions, the
current active state is actually represented by a tree of states starting with the single
top state at the root down to individual simple states at the leaves. The UML
specification refers to such a state tree as state configuration [OMG 07].

main source Active state main target Active state
of T1 before transition LCA(s1, s2) of T1 after transition
T
|

| i
a s I
| |

| i
I I N
| |
4 st LN 4 s2 N
exit / b(); ' entry / c(); '
T1 [90]/ 1(); o—/d)—p—=2
()
- J

Figure 2.9: State roles in a state transition.

In UML, a state transition can directly connect any two states. These two states, which
may be composite, are designated as the main source and the main target of a transition.
Figure 2.9 shows a simple transition example and explains the state roles in that
transition. The UML specification prescribes that taking a state transition involves
executing the following actions in the following sequence [OMG 07, Section 15.3.13]:

1. Evaluate the guard condition associated with the transition and perform the
following steps only if the guard evaluates to TRUE.

2. Exit the source state configuration.
3. Execute the actions associated with the transition.
4. Enter the target state configuration.

The transition sequence is easy to interpret in the simple case of both the main source
and the main target nesting at the same level. For example, transition T1 shown in
Figure 2.9 causes the evaluation of the guard g () ; followed by the sequence of actions:
a();b();t0);c(); a(); and e (), assuming that the guard g () evaluates to TRUE.
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However, in the general case of source and target states nested at different levels of the state
hierarchy, it might not be immediately obvious how many levels of nesting need to be
exited. The UML specification prescribes that a transition involves exiting all nested states
from the current active state (which might be a direct or transitive substate of the main
source state) up to, but not including, the least common ancestor (LCA) state of the main
source and main target states. As the name indicates, the LCA is the lowest composite state
that is simultaneously a superstate (ancestor) of both the source and the target states. As
described before, the order of execution of exit actions is always from the most deeply
nested state (the current active state) up the hierarchy to the LCA but without exiting the
LCA. For instance, the LCA(s1, s2) of states “s1” and “s2” shown in Figure 2.9 is state “s.”

Entering the target state configuration commences from the level where the exit actions
left off (i.e., from inside the LCA). As described before, entry actions must be executed
starting from the highest-level state down the state hierarchy to the main target state.
If the main target state is composite, the UML semantics prescribes to “drill” into its
submachine recursively using the local initial transitions. The target state configuration
is completely entered only after encountering a leaf state that has no initial transitions.

NOTE

The HSM implementation described in this book (see Chapter 4) preserves the essential order
of exiting the source configuration followed by entering the target state configuration, but
executes the actions associated with the transition entirely in the context of the source state,
that is, before exiting the source state configuration. Specifically, the implemented transition
sequence is as follows:

1. Evaluate the guard condition associated with the transition and perform the following
steps only if the guard evaluates to TRUE.

2. Execute the actions associated with the transition.
3. Atomically exit the source state configuration and enter the target state configuration.

For example, the transition T1 shown in Figure 2.9 will cause the evaluation of the guard
g(); followed by the sequence of actions: £t (); a(); b(); c(); d(); and e(),
assuming that the guard g () evaluates to TRUE.

One big problem with the UML transition sequence is that it requires executing actions
associated with the transition after destroying the source state configuration but
before creating the target state configuration. In the analogy between exit actions in
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state machines and destructors in OOP, this situation corresponds to executing a
class method after partially destroying an object. Of course, such action is illegal in
OOP. As it turns out, it is also particularly awkward to implement for state machines.

Executing actions associated with a transition is much more natural in the context of the
source state—the same context in which the guard condition is evaluated. Only after
the guard and the transition actions execute, the source state configuration is exited and
the target state configuration is entered atomically. That way the state machine is
observable only in a stable state configuration, either before or after the transition, but
not in the middle.

2.3.9 Local versus External Transitions

Before UML 2, the only transition semantics in use was the external transition, in
which the main source of the transition is always exited and the main target of the
transition is always entered. UML 2 preserved the “external transition” semantics for
backward compatibility, but also introduced a new kind of transition called local
transition [OMG 07, Section 15.3.15]. For many transition topologies, external and
local transitions are actually identical. However, a local transition doesn’t cause exit
from the main source state if the main target state is a substate of the main source. In
addition, local state transition doesn’t cause exit and reentry to the target state if the
main target is a superstate of the main source state.

Figure 2.10 contrasts local (A) and external (B) transitions. In the top row, you see the
case of the main source containing the target. The local transition does not cause exit

Local transition External transitions
T Y VR
T Y VR
() )

A B

Figure 2.10: Local (A) versus external transitions (B). QP implements only the local
transitions.
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from the source, while the external transition causes exit and re-entry to the source.
In the bottom row of Figure 2.10, you see the case of the target containing the source.
The local transition does not cause entry to the target, whereas the external transition
causes exit and reentry to the target.

NOTE

The HSM implementation described in Chapter 4 of this book (as well as the HSM imple-
mentation described in the first edition) supports exclusively the local state transition
semantics.

2.3.10 Event Types in the UML

The UML specification defines four kinds of events, each one distinguished by a
specific notation.

e SignalEvent represents the reception of a particular (asynchronous) signal.
Its format is signal-name ' (’ comma-separated-parameter-
list 7)".

o TimeEvent models the expiration of a specific deadline. It is denoted with the
keyword ‘after’ followed by an expression specifying the amount of time.
The time is measured from the entry to the state in which the TimeEvent is used
as a trigger.

e (CallEvent represents the request to synchronously invoke a specific operation.
Its format is operation-name ’ (' comma-separated-parameter-
list 7).

® (ChangeEvent models an event that occurs when an explicit Boolean expression
becomes TRUE. It is denoted with the keyword ‘when’ followed by a
Boolean expression.

A SignalEvent is by far the most common event type (and the only one used in
classical FSMs). Even here, however, the UML specification extends traditional
FSM semantics by allowing the specified signal to be a subclass of another signal,
resulting in polymorphic event triggering. Any transition triggered by a given

signal event is also triggered by any subevent derived directly or indirectly from the
original event.
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NOTE

The HSM implementation described in this book (see Chapter 4) supports only the
SignalEvent type. The real-time framework described in Part II also adds support for the
TimeEvent type, but TimeEvents in QF require explicit arming and disarming, which is not com-
patible with the UML ‘after’ notation. The polymorphic event triggering for SignalEvents
is not supported, due to its inherent complexity and very high performance costs.

2.3.11 Event Deferral

Sometimes an event arrives at a particularly inconvenient time, when a state machine is
in a state that cannot handle the event. In many cases, the nature of the event is such
that it can be postponed (within limits) until the system enters another state, in which it
is much better prepared to handle the original event.

UML state machines provide a special mechanism for deferring events in states.

In every state, you can include a clause ‘deferred / [event 1ist]’. If an event in
the current state’s deferred event list occurs, the event will be saved (deferred) for
future processing until a state is entered that does not list the event in its deferred
event list. Upon entry to such state, the UML state machine will automatically recall
any saved event(s) that are no longer deferred and process them as if they have just
arrived.

NOTE

The HSM implementation described in this book (see Chapter 4) does not directly support
the UML-style event deferral. However, the “Deferred Event” state pattern presented in
Chapter 5 shows how to approximate this feature in a much less expensive way by explicitly
deferring and recalling events.

2.3.12 Pseudostates

Because statecharts started as a visual formalism [Harel 87], some nodes in the
diagrams other than the regular states turned out to be useful for implementing various
features (or simply as a shorthand notation). The various “plumbing gear” nodes are
collectively called pseudostates. More formally, a pseudostate is an abstraction that
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encompasses different types of transient vertices (nodes) in the state machine graph.
The UML specification [OMG 07] defines the following kinds of pseudostates:

The initial pseudostate (shown as a black dot) represents a source for initial
transition. There can be, at most, one initial pseudostate in a composite state.
The outgoing transition from the initial pseudostate may have actions but not a
trigger or guard.

The choice pseudostate (shown as a diamond or an empty circle) is used for
dynamic conditional branches. It allows the splitting of transitions into multiple
outgoing paths, so the decision as to which path to take could depend on the
results of prior actions performed in the same RTC step.

The shallow-history pseudostate (shown as a circled letter /) is a shorthand
notation that represents the most recent active direct substate of its containing
state. A transition coming into the shallow-history vertex (called a transition to
history) is equivalent to a transition coming into the most recent active substate
of a state. A transition can originate from the history connector to designate a
state to be entered in case a composite state has no history yet (has never been
active before).

The deep-history pseudostate (shown as a circled H*) is similar to shallow-
history except it represents the whole, most recent state configuration of the
composite state that directly contains the pseudostate.

The junction pseudostate (shown as a black dot) is a semantics-free vertex
that chains together multiple transitions. A junction is like a Swiss Army
knife: It performs various functions. Junctions can be used both to merge
multiple incoming transitions (from the same concurrent region) and to split
an incoming transition into multiple outgoing transition segments with
different guards. The latter case realizes a static conditional branch because the
use of a junction imposes static evaluation of all guards before the transition
is taken.

The join pseudostate (shown as a vertical bar) serves to merge several
transitions emanating from source vertices in different orthogonal regions.

The fork pseudostate (represented identically as a join) serves to split an
incoming transition into two or more transitions terminating in different
orthogonal regions.
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2.3.13 UML Statecharts and Automatic Code Synthesis

UML statecharts provide sufficiently well-defined semantics for building executable
state models. Indeed, several design automation tools on the market support various
versions of statecharts (see the sidebar “Design Automation Tools Supporting
Statecharts”). The commercially available design automation tools typically not only
automatically generate code from statecharts but also enable debugging and testing of
the state models at the graphical level [Douglass 99].

But what does automatic code generation really mean? And more important, what kind
of code is actually generated by such statechart-based tools?

Many people understand automatic code synthesis as the generation of a program to
solve a problem from a statement of the problem specification. Statechart-based tools
cannot provide this because a statechart is just a higher-level (mostly visual) solution
rather than the statement of the problem.

As far as the automatically generated code is concerned, the statechart-based tools can
autonomously generate only so-called “housekeeping code” [Douglass 99]. The
modeler explicitly must provide all the application-specific code, such as action and
guard expressions, to the tool. The role of housekeeping code is to “glue” the various
action and guard expressions together to ensure proper state machine execution in
accordance with the statechart semantics. For example, synthesized code typically
handles event queuing, event dispatching, guard evaluation, or transition chain
execution (including exit and entry of appropriate states). Almost universally, the tools
also encompass some kind of real-time framework (see Part II of this book) that
integrates tightly with the underlying operating system.

DESIGN AUTOMATION TOOLS SUPPORTING STATECHARTS

Some of the computer-aided software-engineering (CASE) tools with support for statecharts
currently available on the market are (see also Queens University CASE tool index [Queens
07)):

® Telelogic Statemate, www.telelogic.com (the tool originally developed by I-Logix,
Inc. acquired by Telelogic in 2006, which in turn is in the process of being acquired
by IBM)

® Telelogic Rhapsody, www.telelogic.com

Continued onto next page
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® Rational Suite Development Studio Real-Time, Rational Software Corporation, www.
ibm.com/software/rational (Rational was acquired by IBM in 2006)

® ARTiISAN Studio, ARTiSAN Software Tools, Ltd., www.artisansw.com

® Stateflow, The Mathworks, www.mathworks.com

® VisualState, AR Systems, www.iar.com

2.3.14 The Limitations of the UML State Diagrams

Statecharts have been invented as “a visual formalism for complex systems” [Harel 87],
so from their inception, they have been inseparably associated with graphical
representation in the form of state diagrams. However, it is important to understand
that the concept of HSMs transcends any particular notation, graphical or textual. The
UML specification [OMG 07] makes this distinction apparent by clearly separating
state machine semantics from the notation.

However, the notation of UML statecharts is not purely visual. Any nontrivial state machine
requires a large amount of textual information (e.g., the specification of actions and guards).
The exact syntax of action and guard expressions isn’t defined in the UML specification,
so many people use either structured English or, more formally, expressions in an
implementation language such as C, C++, or Java [Douglass 99b]. In practice, this means
that UML statechart notation depends heavily on the specific programming language.

Nevertheless, most of the statecharts semantics are heavily biased toward graphical
notation. For example, state diagrams poorly represent the sequence of processing, be it
order of evaluation of guards or order of dispatching events to orthogonal regions. The UML
specification sidesteps these problems by putting the burden on the designer not to rely

on any particular sequencing. But, as you will see in Chapters 3 and 4, when you actually
implement UML state machines, you will always have full control over the order of
execution, so the restrictions imposed by UML semantics will be unnecessarily restrictive.
Similarly, statechart diagrams require a lot of plumbing gear (pseudostates, like joins, forks,
junctions, choicepoints, etc.) to represent the flow of control graphically. These elements
are nothing but the old flowchart in disguise, which structured programming techniques
proved far less significant’ a long time ago. In other words, the graphical notation does
not add much value in representing flow of control as compared to plain structured code.

° You can find a critique of flowcharts in Brooks [Brooks 95].
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This is not to criticize the graphical notation of statecharts. In fact, it is remarkably
expressive and can scarcely be improved. Rather, I want merely to point out some
shortcomings and limitations of the pen-and-paper diagrams.

The UML notation and semantics are really geared toward computerized design
automation tools. A UML state machine, as represented in a tool, is a not just the state
diagram, but rather a mixture of graphical and textual representation that precisely
captures both the state topology and the actions. The users of the tool can get several
complementary views of the same state machine, both visual and textual, whereas the
generated code is just one of the many available views.

2.3.15 UML State Machine Semantics: An Exhaustive Example

The very rich UML state machine semantics might be quite confusing to newcomers,

and even to fairly experienced designers. Wouldn’t it be great if you could generate the
exact sequence of actions for every possible transition so that you know for sure what
actions get executed and in which order?

In this section, I present an executable example of a hierarchical state machine shown in
Figure 2.11 that contains all possible transition topologies up to four levels of state
nesting. The state machine contains six states: “s,” “s1,” “s11,” “s2,” “s21,” and “s211.”
The state machine recognizes nine events A through I, which you can generate by
typing either uppercase or lowercase letters on your keyboard. All the actions of
these state machines consist only of printf () statements that report the status of
the state machine to the screen. The executable console application for Windows is
located in the directory <gp>\gpc\examples\80x86\dos\tcppl01l\1l\ghsmtst
\dbg\. The name of the application is QHSMTST . EXE.

Figure 2.12 shows an example run of the QHSMTST . EXE application. Note the line
numbers in parentheses at the left edge of the window, added for reference. Line (1)
shows the effect of the topmost initial transition. Note the sequence of entry actions and
initial transitions ending at the “s211-ENTRY” printout. Injecting events into the state
machine begins in line (2). Every generated event (shown on a gray background) is
followed by the sequence of exit actions from the source state configuration followed
by entry actions and initial transitions entering the target state configuration. From these
printouts you can always determine the order of transition processing as well as the
active state, which is the last state entered. For instance, the active state before injecting
event G in line (2) is “s211” because this is the last state entered in the previous line.



88 Chapter 2
® TERMINATE—N:)
/ me->foo = 0; /—
4 s ™
entry /
exit /
| [me->foo] / me->foo = 0; / \ » s2 N
entry /
exit /
- s1 N I ['me->foo] / me->foo = 1;
entry / «C—] 1
D [!me->foo ]/ | exit/ 4 s21 N
me->foo=1; | |/ h 4 L Cp entry /
(s exit / \
- entry / G— A 4 A
exit / 14 s211
_C [
E > <
. T o
A D [me->foo] / H F > D
\ me->foo = 0; o
\_V¥ J . J
& J
o y y )

Figure 2.11: Hypothetical state machine that contains all possible state transition

topologies up to four levels of state nesting.

== Command Prompt

QHzmIst example. built on Apr BY 2008 at 22:48:30.

QEF: 4.8.88.

Press ESC to guit...
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Figure 2.12: QHSMTST.EXE example application running in the command window.

The line numbers in brackets to the right are added for reference.
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Per the semantics of UML state machines, the event G injected in line (2) is handled in
the following way. First, the active state (“s211”) attempts to handle the event.
However, as you can see in the state diagram in Figure 2.11, state “s211” does not
prescribe how to handle event G. Therefore the event is passed on to the next higher-
level state in the hierarchy, which is state “s21.” The superstate “s21” prescribes how to
handle event G because it has a state transition triggered by G. State “s21” executes
the actions associated with the transition (printout “s21-G;” in line (2) of Figure 2.12).
Next the state executes the transition chain that exits the source state configuration and
enters the target state configuration. The transition chain starts with execution of exit
actions from the active state through higher and higher levels of hierarchy. Next the
target state configuration is entered in exact opposite order, that is, starting from highest
levels of state hierarchy down to the lowest. The transition G from state “s21”
terminates at state “s1.” However, the transition chain does not end at the direct target
of the transition but continues via the initial transition defined in the direct target
state “s1.” Finally, a new active state is established by entering state “s11” that has
no initial transition.

In line (3) of Figure 2.12, you see how the statechart handles an internal transition.
Event I is injected while state machine is in state “s11.” Again, the active state does not
prescribe how to handle event I, so it is passed on to the next level of state hierarchy,
that is, to state “s1.” State “s1” has an internal transition triggered by I defined in its
internal transition compartment; therefore “s1” handles the event (printout “s1-I;” in
line (3)). And at this point the processing ends. No change of state ever occurs in the
internal transition, even if such transition is inherited from higher levels of state
hierarchy.

In the UML state machines internal transitions are different from self-transitions.

Line (4) of Figure 2.12 demonstrates the difference. The state machine is in state “s11”
when event A is injected. As in the case of the internal transition, the active state
“s11” does not prescribe how to handle event A, so the event is passed on to the
superstate “s1.” The superstate has a self-transition triggered by A and so it executes
actions associated with the transition (printout “s1-A;” in line (4)). This time, however,
a regular transition is taken, which requires exiting the source state configuration

and entering the target state configuration.

UML statecharts are extended state machines, meaning that in general, the actions
executed by the state machine can depend also on the value of the extended state
variables. Consider for example event D injected in line (5). The active state “s11” has
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transition D, but this transition has a guard [me->foo]. The variable me->foo

is an extended state variable of the state machine from Figure 2.11. You can see

that me->foo is initialized to 0 on the topmost initial transition. Therefore the guard
[me->foo], which is a test of me->foo against 0, evaluates to FALSE. The

guard condition temporarily disables the transition D in state “s11,” which is handled as
though state “s11” did not define the transition in the first place. Therefore, the event
D is passed on to the next higher level, that is, to state “s1.” State “s1” has transition D
with a complementary guard [ !me->foo]. This time, the guard evaluates to TRUE
and the transition D in state “s1” is taken. As indicated in the diagram, the transition
action changes the value of the extended state variable me->foo to 1. Therefore when
another event D is injected again in line (6), the guard condition [me->foo] on
transition D in state “s11” evaluates to TRUE and this transition is taken, as indicated in
line (6) of Figure 2.12.

Line (7) of Figure 2.12 demonstrates that all exit and entry actions are always executed,
regardless of the exit and entry path. The main target of transition C from “s1” is “s2.”
The initial transition in the main target state goes “over” the substate “s21” all the
way to the substate “s211.” However, the entry actions don’t skip the entry to “s21.”
This example demonstrates the powerful concept of guaranteed cleanup of the source
state configuration and guaranteed initialization of the target state configuration,
regardless of the complexity of the exit or entry path.

Interestingly, in hierarchical state machines, the same transition can cause different
sequences of exit actions, depending on which state inherits the transition. For example,
in lines (8) and (9) of Figure 2.12, event E triggers the exact same state transition
defined in the superstate “‘s.” However, the responses in lines (8) and (9) are different
because transition E fires from different state configurations—once when “s211” is
active (line (8)) and next when “s11” is active (line (9)).

Finally, lines (11) and (12) of Figure 2.12 demonstrate that guard conditions can also be
used on internal transitions. States “s2” and s both define internal transition I with
complementary guard conditions. In line (11), the guard [ !me->foo] enables internal
transition in state “s2.” In line (12) the same guard disables the internal transition in “s2,”
and therefore the internal transition defined in the superstate d is executed.

You can learn much more about the semantics of UML state machines by injecting
various events to the QHSMTST . EXE application and studying its output. Because the state
machine from Figure 2.11 has been specifically designed to contain all possible state
transition configurations up to level 4 of nesting, this example can “answer” virtually all
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your questions regarding the semantics of statecharts. Moreover, you can use the source
code that actually implements the state machine (located in <gp>\gpc\examples\
80x86\dos\tcppl0l\1l\ghsmtst\ghsmtst.c) as a template for implementing your
own statecharts. Simply look up applicable fragments in the diagram from Figure 2.11
and check how they have been implemented in ghsmtst.c.

2.4 Designing a UML State Machine

Designing a UML state machine, as any design, is not a strict science. Typically it is an
iterative and incremental process: You design a little, code a little, test a little, and

so on. In that manner you may converge at a correct design in many different ways, and
typically also, more than one correct HSM design satisfies a given problem
specification. To focus the discussion, here I walk you through a design of an UML
state machine that implements correctly the behavior of a simple calculator similar to
the Visual Basic calculator used at the beginning of this chapter. Obviously, the
presented solution is just one of the many possible.

Figure 2.13: A simple electronic calculator used as a model for the
statechart example.

2.4.1 Problem Specification

The calculator (see Figure 2.13) operates broadly as follows: a user enters an operand,
then an operator, then another operand, and finally clicks the equals button to get a
result. From the programming perspective, this means that the calculator needs to parse
numerical expressions, defined formally by the following BNF grammar:
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expression ::= operandl operator operand2 ‘=’

operandl = expression | [+’ | /-] number

operand?2 =['+" | '-'] number

number R I A K 2 L S R R A IR AR
operator SR A A B VA

The problem is not only to correctly parse numerical expressions, but also to do it
interactively (“on the fly”). The user can provide any symbol at any time, not
necessarily only the symbols allowed by the grammar in the current context. It is up to
the application to ignore such symbols. (This particular application ignores invalid
inputs. Often an even better approach is to actively prevent generation of the invalid
inputs in the first place by disabling invalid options, for example.) In addition, the
application must handle inputs not related to parsing expressions, for example Cancel
(C) or Cancel Entry (CE). All this adds up to a nontrivial problem, which is difficult to
tackle with the traditional event-action paradigm (see Section 2.1) or even with the
traditional (nonhierarchical) FSM.

2.4.2 High-Level Design

Figure 2.14 shows first steps in elaborating the calculator statechart. In the very first
step (panel (a)), the state machine attempts to realize the primary function of the system
(the primary use case), which is to compute expressions: operandl operator
operand2 equals. .. The state machine starts in the “operand1” state, whose
function is to ensure that the user can only enter a valid operand. This state obviously
needs some internal submachine to accomplish this goal, but we ignore it for now.
The criterion for transitioning out of “operand1” is entering an operator (+, —, *, or /).
The statechart then enters the “opEntered” state, in which the calculator waits for

the second operand. When the user clicks a digit (0 .. 9) or a decimal point, the state
machine transitions to the “operand2” state, which is similar to “operand1.”

Finally, the user clicks =, at which point the calculator computes and displays the
result. It then transitions back to the “operand1” state to get ready for another
computation.

The simple state model from Figure 2.14(A) has a major problem, however. When
the user clicks = in the last step, the state machine cannot transition directly to
“operand1” because this would erase the result from the display (to get ready for the
first operand). We need another state “result” in which the calculator pauses to display
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OPER

PLUS, MINUS, EQUALS

DIGIT_0_9, POINT

C
MULT, DIVIDE
opEntered ( operand2 ) { OPER EQUALS
opEntered operand2
2,3,4
7,8,9,
DIGIT_0_9, POINT

A B

4

1

Figure 2.14: The first two steps in elaborating the calculator statechart '°.

the result (Figure 2.14(B)). Three things can happen in the “result” state: (1) the user
may click an operator button to use the result as the first operand of a new computation
(see the recursive production in line 2 of the calculator grammar), (2) the user may
click Cancel (C) to start a completely new computation, or (3) the user may enter a
number or a decimal point to start entering the first operand.

TIP

Figure 2.14(B) illustrates a trick worth remembering: the consolidation of signals PLUS,
MINUS, MULTIPLY, and DIVIDE into a higher-level signal OPER (operator). This transfor-
mation avoids repetition of the same group of triggers on two transitions (from “operand1” to
“opEntered” and from “result” to “opEntered”). Although most events are generated exter-
nally to the statechart, in many situations it is still possible to perform simple transformations
before dispatching them (e.g., a transformation of raw button presses into the calculator
events). Such transformations often simplify designs more than the trickiest state and transi-
tion topologies.

2.4.3 Scavenging for Reuse

The state machine from Figure 2.14(B) accepts the C (Cancel) command only in the
result state. However, the user expects to be able to cancel and start over at any time.
Similarly, the user expects to be able to turn the calculator off at any time. Statechart
in Figure 2.15(A) adds these features in a naive way. A better solution is to factor

1% In this section, I am using a shorthand notation to represent many transitions with the same source and
target as just one transition arrow with a multiple triggers.
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OFF

on

DIGIT_0_9, POINT

DIGIT_0_9, ¢
POINT

ey AN

opEntered

EQUALS

\_ DIGIT_0_9, POINT. Y,
B

Figure 2.15: Applying state nesting to factor out the common Cancel
transition (C).

out the common transition into a higher-level state named On and let all substates reuse the

Cancel and Off transitions through behavioral inheritance, as shown in Figure 2.15(B).

2.4.4 Elaborating Composite States

The states “operand1” and “operand2” need submachines to parse floating-point
numbers. Figure 2.16 refers to both these states simultaneously as “operandX” state.

I
DIGIT_0/ clear();

I
DIGIT_1_9 (keyld) / clear();

insert(keyld);

I
POINT / clear();
insert(‘0’); insert(".);

- operandX ~
A A A 4
zeroX intX N\ fracX
DIGIT 0/; DIGIT 0, DIGIT_1_9 (keyld) / DIGIT_0O, DIGIT_1_9 (keyld) /
insert(keyld); insert(keyld);
POINT /5
DIGIT 1_9 (keyld) / insert(keyld); POINT /insert(".”) f j
\_ POINT / insert(".); )

Figure 2.16: Internal submachine of states “operand1” and “operand2.”

These submachines consist of three substates. The “zero” substate is entered when the
user clicks 0. Its function is to ignore additional zeros that the user may try to enter
(so that the calculator displays only one 0). Note my notation for explicitly ignoring an
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event. | use the internal transition (DIGIT_O in this case) followed by an explicitly
empty list of actions (a semicolon in C).

The function of the “int” substate is to parse integer part of a number. This state is entered
either from outside or from the “zero” peer substate (when the user clicks 1 through 9).
Finally, the substate “frac” parses the fractional part of the number. It is entered from
either outside or both peer substates when the user clicks a decimal point ( . ). Again, note
that the “frac” substate explicitly ignores the decimal point POINT event, so that the user
cannot enter multiple decimal points in the fractional part of a number.

2.4.5 Refining the Behavior

The last step brings the calculator statechart to the point at which it can actually
compute expressions. However, it can handle only positive numbers. In the next step,
I will add handling of negative numbers. This turns out to be perhaps the toughest
problem in this design because the same button, — (minus), represents in some contexts
the binary operator of subtraction and sometimes the unary operator of negation.

There are only two possible contexts in which — can unambiguously represent the
negation rather than the subtraction: (1) in the “opEntered” state (as in the expression: 2 *
—2 =), and (2) at the beginning of a new computation (as in the expression: —2 * 2 =),

OPER [keyld == -] EQUALS OPER [keyld == ]
negated2 — C result ) Cbegin) ( negatedl
@PER [key'd =-1/3) | | (OPER [keyld == -7/;
T
(opEntered ) 001 9, 0.1.9, 0,109, 0,1.9,
POINT POINT POINT

POINT.
EQUALS
operand2 operand1

Figure 2.17: Two cases of handling negative numbers.

The solution to the first case (shown in Figure 2.17(A)) is simpler. We need one more
state “negated2,” which is entered when the operator is MINUS (note the use of the

guard). Upon entry, this state sets up the display to show —0 and subsequently does not
clear the display when transitioning to the “operand2” state. This is a different behavior
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from “opEntered” because in this latter state the display must be cleared to prepare for
entering of the second operand.

The second case in which — represents the negation is trickier because the specification
“beginning of new computation” is much more subtle. Here it indicates the situation
just after launching the application or after the user clicks Cancel but not when the
calculator displays the result from the previous computation. Figure 2.17(B) shows the
solution. A new state “begin” is created to capture the behavior specific to the
“beginning of new computation” (note the initial transition pointing now to “begin”
rather than to “operand1”). The rest of the solution is analogous as in the first case,
except now the state “begin” plays the role of “opEntered.”

2.4.6 Final Touches

The calculator is almost ready now. The final touches (which I leave as an exercise) include
adding Cancel-Entry transitions in appropriate contexts and adding an “error” state to
capture overflows and division by zero. Figure 2.18 shows the final calculator state
diagram. The actual C++ implementation of this state machine will be described in Chapter 4.

2.5 Summary

The main challenge in programming event-driven systems is to identify the appropriate
actions to execute in response to a given event. In general, the actions are determined by two
factors: by the nature of the event and by the current context (i.e., by the sequence of past
events in which the system was involved). The traditional techniques, such as the event-
action paradigm, neglect the context and result in code riddled with a disproportionate
amount of convoluted conditional logic that programmers call “spaghetti” code.

Techniques based on state machines are capable of achieving a dramatic reduction of
the different paths through the code and simplification of the conditions tested at
each branching point. A state machine makes the event handling explicitly dependent
on both the nature of the event and on the context (state) of the system. States are
“chunks of behavior,” whereas the event-action paradigm is applied locally within each
state. The concept of state is a very useful abstraction of system history, capable of
capturing only relevant sequences of stimuli (and ignoring all irrelevant ones). In
extended state machines (state machines with “memory”), state corresponds to
qualitative aspects of system behavior, whereas extended state variables (program
memory) correspond to the quantitative aspects.
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Figure 2.18: The final calculator statechart.




98 Chapter 2

An event is a type of instantaneous occurrence that can cause a state machine to perform
actions. Events can have parameters, which convey the quantitative information regarding
that occurrence. Upon reception of an event instance, a state machine responds by
performing actions (executing code). The response might include changing state, which is
called a state transition. Classical FSMs have two complementary interpretations of
actions and transitions. In Mealy automata, actions are associated with transitions,
whereas in Moore automata, actions are associated with states.

State machine formalisms universally assume the run-to-completion (RTC) execution
model. In this model, all actions triggered by an event instance must complete

before the next event instance can be dispatched to the state machine, meaning that the
state machine executes uninterruptible steps (RTC steps) and starts processing each
event in a stable state configuration.

UML state machines are an advanced formalism for specifying state machines, which
extends the traditional automata theory in several ways. The UML state machine
formalism is a variant of extended state machines with characteristics of both Mealy
and Moore automata. UML state machines include notations of nested hierarchical
states and orthogonal regions as well as extending the notation of actions.

The most important innovation of UML state machines over classical FSMs is the
introduction of hierarchically nested states. The value of state nesting lies in avoiding
repetitions, which are inevitable in the traditional “flat” FSM formalism. The semantics
of state nesting allow substates to define only the differences in behavior from the
superstates, thus promoting sharing and reuse of behavior. The relation between a
substate and its superstate has all the characteristics of inheritance and is called
behavioral inheritance in this book. Behavioral inheritance is as fundamental as class
inheritance and allows building whole hierarchies of states, which correspond to

class taxonomies in OOP. Properly designed state hierarchies comply with the

Liskov Substitution Principle (LSP) extended for states.

UML state machines support state entry and exit actions for states, which provide the
means for guaranteed initialization and cleanup, very much as constructors and
destructors do for classes. Entry actions are always executed starting with the outermost
state, which is analogous to class constructors executed from the most general class.
The exit actions, similar to destructors, are always executed in exact reverse order.

Entry and exit actions combined with state nesting complicate transition sequence. The
precise semantics of state transitions can be confusing. The exhaustive example
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QHSMTST.EXE discussed in this chapter can precisely “answer” virtually all your
questions regarding the semantics of state machine execution.

Statecharts were first invented as a visual formalism; therefore, they are heavily biased
toward graphical representation. However, it is important to distinguish the underlying
concept of the HSM from the graphical notation. It is also important to distinguish
between statecharts and flowcharts.

Designing effective UML state machines is not trivial and, as with most designs,
typically requires incremental, iterative process. Reuse does not come automatically,
but you must actively look for it. Chapter 5 presents a mini-catalog of proven, effective
state machine designs called state patterns.



Standard State Machine
Implementations

An expert is a man who has made all the mistakes which can be made, in a narrow field.
— Niels Bohr

This chapter discusses standard state machine implementation techniques, which you
can find in the literature or in the working code. They are mostly applicable to the
traditional nonhierarchical extended finite state machines (FSMs) because hardly any
standard implementations of hierarchical state machines (HSMs) are intended for
manual coding.’

Typical implementations of state machines in high-level programming languages, such
as C or C++, include:

® The nested switch statement
e The state table
e The object-oriented State design pattern

e Other techniques that are often a combination of the above

! Design automation tools often use standard state machine implementation techniques to generate code
for hierarchical state machines. The resulting code, however, is typically intended not for manual
maintenance but rather to be regenerated every time you change the state diagram inside the tool.
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3.1 The Time-Bomb Example

To focus the discussion and allow meaningful comparisons, in all following state machine
implementation techniques I’ll use the same time-bomb example. As shown Figure 3.1,
the time bomb has a control panel with an LCD that shows the current value of the
timeout and three buttons: UP, DOWN, and ARM. The user begins with setting up the
time bomb using the UP and DOWN buttons to adjust the timeout in one-second

steps. Once the desired timeout is selected, the user can arm the bomb by pressing the
ARM button. When armed, the bomb starts decrementing the timeout every second and
explodes when the timeout reaches zero. An additional safety feature is the option to
defuse an armed bomb by entering a secret code. The secret defuse code is a certain
combination of the UP and DOWN buttons terminated with the ARM button press.

Of course, the defuse code must be correctly entered before the bomb times out.

LCD showing
the timeout value

| UPbutton
| DOWN button

ARM button

Figure 3.1: Time bomb controller user interface.

Figure 3.2 shows FSM that models the time-bomb behavior. The following explanation
section illuminates the interesting points.

(1) The initial transition initializes the me->timeout extended state variable and
enters the “setting” state.

(2) If the timeout is below the 60-second limit, the internal transition UP in state
“setting” increments the me->timeout variable and displays it on the LCD.

(3) If the timeout is above the 1 second limit, the internal transition DOWN in state
“setting” decrements the me->timeout variable and displays it on the LCD.

(4) The transition ARM to state “timing” clears the me->code extended state
variable to make sure that the code for defusing the bomb is wiped clean before
entering the “timing” state.
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(6)
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€))

(10)

The internal transition UP in state “timing” shifts the me->code variable and
inserts the 1-bit into the least-significant-bit position.

The internal transition DOWN in state “timing” just shifts the me->code
variable and leaves the least-significant-bit at zero.

If the entered defuse code me->code matches exactly the secret code
me->defuse given to the bomb in the constructor, the transition ARM to
state “setting” disarms the ticking bomb. Note that the “setting” state does not
handle the TICK event, which means that TICK is ignored in this state.

The handling of the most important TICK event in state “timing” is the most
complex. To make the time-bomb example a little more interesting, I decided
to generate the TICK event 10 times per second and to include an event
parameter fine_time with the TICK event. The fine_time parameter
contains the fractional part of a second in 1/10 s increments, so it cycles
through 0, 1, .., 9 and back to 0. The guard [e->fine_time == 0] checks for
the full-second rollover condition, at which time the me->timeout variable

is decremented and displayed on the LCD.

The choice pseudostate is evaluated only if the first segment of the TICK
transition fires. If the me->timeout variable is zero, the transition segment is
executed that calls the BSP_boom () function to trigger the destruction of the
bomb (transition to the final state).

Otherwise the choice pseudostate selects the transition back to “timing.”

(1) (8) TICK (fine_time) [e->fine_time == 0]/

/ me->timeout = INIT_TIMEOUT; --me->timeout;

BSP_display(me->timeout);

setting N\ timing

DOWN [me->timeout > 1]/ (3) DOWN / (6)
--me->timeout; me->code <<= 1;

UP [me->timeout < 60] / @) up/ (5)

++me->timeout; @) me->code <<= 1; (10)
BSP_display(me->timeout); | ARM / me->code |= 1; [else}

me->code = 0; (9)
[me->timeout == 0]/

BSP_display(me->timeout); BSP_boom();

@)

ARM [me->code == me->defuse

Figure 3.2: UML state diagram representing the time-bomb state machine.
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3.1.1

Executing the Example Code

Every state machine implementation technique described in this chapter comes
with the complete source code for the time-bomb example and the precompiled
executable program. The C version of the code is located in the directory

<gp>\gpc\examples\80x86\dos\tcppl01l\1l\bompwhereas the C++ version is

found in <gp>\gpcpp\examples\80x86\dos\tcppl01l\1\bomb\

The executable program for each coding technique is a simple console application

compiled with the free Turbo C++ 1.01 compiler (see Section 1.2.1 in Chapter 1). The
Turbo C++ project files are included with the application source code. Figure 3.3 shows

an example run of the time-bomb application.

void BSP_displayCuint8 t ti

—L11]

Window Help

e, Event const »e

switch (me—->state

Tut
rd’
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Press
Press
Press
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printf (B0
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Figure 3.3: Time-bomb example running in the Turbo C++ IDE.
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NOTE

Because all the examples in this chapter are simple console applications, they can easily be
compiled with just about any C/C++ compiler for your favorite desktop workstation, includ-
ing Linux.? The code accompanying this book provides the project files for the legacy Turbo
C++ 1.01 compiler — the same one that I’ve used in Chapter 1. You can run the generated
executables in any variant of Windows.

You generate events by pressing appropriate keys on the keyboard (see the legend of
recognized keypresses at the top of the output window in Figure 3.3.). The time bomb
responds by printing every event it receives (the TICK event is represented as T) as
well as every update to the LCD, which is shown in square brackets. The application
terminates automatically when the bomb explodes. You can also quit the program at
any time by pressing the Esc key.

3.2 A Generic State Machine Interface

The majority of published state machine code presents state machines intimately
intertwined with a specific concurrency model and a particular event-passing
method. For example, embedded systems engineers® often present their state
machines inside polling loops or interrupt service routines (ISRs) that extract
events and event parameters directly from hardware registers or global variables.
GUI programmers are typically more disciplined in this respect because the
GUI system already provides a consistent interface, but then again GUI
programmers seldom use state machines, as demonstrated in the Visual Basic
Calculator example in Chapter 2.

However, it is far better to separate the state machine code from a particular
concurrency model and to provide a flexible and uniform way of passing events with
arbitrary parameters. Therefore, implementations in this chapter use a simple and

2 The Linux platform requires slightly different techniques for interacting with the console, but the state
machine code can be exactly the same.

3 Judging by 20 years of articles (1988—2008) published on the subject in Embedded Systems Design
magazine (formerly Embedded Systems Programming).
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generally applicable interface to a state machine.” The interface I propose consists

of just two functions: init (), to trigger the top-level initial transition in a state
machine, and dispatch (), to dispatch an event to the state machine. In this simple
model, a state machine is externally driven by invoking init () once and dispatch ()
repetitively, for each event.

3.2.1 Representing Events

To nail down the signature of the dispatch () function, we need a uniform
representation of events. Again, this is where the standard approaches vary the most.
For example, the GUI systems, such as Microsoft Windows, provide only events
with fixed sets of event parameters that are passed to the WinMain () function and
thus are not generally applicable outside the GUI domain (after all, the most
complex event parameters that a GUI needs to handle are the parameters of the
mouse-click event).

As described in Chapter 2, events consist really of two parts: the signal of the
event conveys the type of the occurrence (such as arrival of the time tick), and
event parameters convey the quantitative information about the occurrence (such as
the fractional part of a second in the time tick event). In event-driven systems,
event instances are frequently passed around, placed in event queues, and
eventually consumed by state machines. Consequently, it is very convenient to
represent events as event objects that combine the signal and the event parameters
into one entity.

The following Event structure represents event objects. The scalar data member sig
contains the signal information, which is an integer number that identifies the event,
such as UP, DOWN, ARM, or TICK:

typedef struct EventTag {

uintlé_t sig; /* signal of the event */
/* add event parameters by derivation from the Event structure... */
} Event;

4 Because of the special nature, the object-oriented State design pattern uses a different interface for
dispatching events.
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NOTE

Throughout this book I use the following standard exact-width integer types (WG14/N843
C99 Standard, Section 7.18.1.1) [ISO/IEC 9899:TC2]:

Exact Size Unsigned Signed

8 bits uint8_t int8_t
16 bits uintlé6_t intl6_t
32 bits uint32_t int32_t

If your (prestandard) compiler does not provide the <stdint .h> header file, you can always
typedef the exact-width integer types using the standard C data types such as signed/
unsigned char, short, int and long.

You can add arbitrary event parameters to an event in the process of “derivation
of structures” described in the sidebar “Single Inheritance in C” (Chapter 1,
Section 1.6). For example, the following TickEvt structure declares an event
with the parameter fine_time used in the TICK (fine_time) event (see
Figure 3.2(8)).

typedef struct TickEvtTag {

Event super; /* derive from the Event structure */
uint8_t fine_ time; /* the fine 1/10 s counter */
} TickEvt;

As shown in Figure 3.4, such nesting of structures always aligns the data member
super at the beginning of every instance of the derived structure. In particular, this
alignment lets you treat a pointer to the derived TickEvt structure as a pointer to
the Event base structure. Consequently, you can always safely pass a pointer

to TickEvt to any C function that expects a pointer to Event.

With this representation of events, the signature of the dispatch () function looks as
follows:

void dispatch(StateMachine *me, Event const *e) ;
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The first argument ‘StateMachine *me’ is the pointer to the state machine object.
Different state machine implementation techniques will define the StateMachine
structure differently. The second argument ‘Event const *e’ is the pointer to

the event object, which might point to a structure derived from Event and thus might
contain arbitrary event parameters (see Figure 3.4(B)). This interface becomes clearer
when you see how it is used in the concrete implementation techniques.

typedef struct EventTag { Instance of the Event
uint16_t sig; base struct sig : uint16_t
cee B super
} Event; c
typedef struct TickEviTag { Members
Event super; added in _
A uint8_t fine_time; the derived TickEvt
} TimeEvt; struct fine_time : uint8_t

Figure 3.4: Adding parameters to events in the process of derivation
of structures (inheritance).

3.3 Nested Switch Statement

Perhaps the most popular and straightforward technique of implementing state
machines is the nested switch statement, with a scalar state variable used as the
discriminator in the first level of the switch and the signal of the event used in the
second level.

3.3.1 Example Implementation

Listing 3.1 shows a typical implementation of the time bomb FSM from Figure 3.2.
The explanation section immediately following the listing illuminates the interesting points.

Listing 3.1 Time bomb state machine implemented using the nested switch
statement technique (see file bombl . c)

(1) enum BombSignals { /* all signals for the Bomb FSM */
UP_SIG,
DOWN_SIG,
ARM_SIG,
TICK_SIG
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enum BombStates { /* all states for the Bomb FSM */
SETTING_STATE,
TIMING_STATE

Y
/2 */
typedef struct EventTag {
uintlé_t sig; /* signal of the event */
/* add event parameters by derivation from the Event structure... */
} Event;

typedef struct TickEvtTag {

Event super; /* derive from the Event structure */
uint8_t fine_time; /* the fine 1/10 s counter */
} TickEvt;
2 */
typedef struct BomblTag { /* the Bomb FSM */
uint8_t state; /* the scalar state-variable */
uint8_t timeout; /* number of seconds till explosion */
uint8_t code; /* currently entered code to disarm the bomb */
uint8_t defuse; /* secret defuse code to disarm the bomb */
} Bombl;
/* macro for taking a state transition */
#define TRAN (target_) (me->state = (uint8_t) (target_))
2P */
void Bombl_ctor (Bombl *me, uint8_t defuse) { /* the "constructor" */
me->defuse = defuse; /* the defuse code is assigned at instantiation */
}
L e e e e e e e e e e e e e e e e e e e e e e e */
void Bombl_init (Bombl *me) { /* initial transition */

me->timeout = INIT_TIMEOUT; /* timeout is initialized in initial tran. */
TRAN (SETTING_STATE) ;

void Bombl_dispatch (Bombl *me, Event const *e) { /* dispatching */
switch (me->state) {
case SETTING_STATE: {
switch (e->sig) {
case UP_SIG: { /* internal transition with a guard */
if (me->timeout < 60) { /* guard condition */
++me->timeout;
BSP_display (me->timeout) ;
}
break;
}
case DOWN_SIG: { /* internal transition with a guard */
if (me->timeout > 1) {

--me->timeout;

Continued onto next page
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BSP_display (me->timeout) ;

}
break;
}
case ARM_SIG: { /* regular transition */
me->code = 0; /* transition action */
(28) TRAN (TIMING_STATE) ; /* transition to "timing" */
break;
}
}
(29) break;

}
case TIMING_STATE: {
switch (e->sig) {
case UP_SIG: {
me->code <<= 1;
me->code |= 1;
break;
}
case DOWN_SIG: {
me->code <<= 1;

break;
}
case ARM_SIG: { /* regular transition with a guard */
(30) if (me->code == me->defuse) {
(31) TRAN (SETTING_STATE); /* transition to "setting" */
}
break;
}
case TICK_SIG: {
(32) if (((TickEvt const *)e)->fine_time == 0) {
--me->timeout;
BSP_display (me->timeout) ;
(33) if (me->timeout ==0) {
BSP_boom() ; /* destroy the bomb */
}
else {
TRAN (TIMING_STATE) ;
}
}
break;
}
}
break;
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Event signals are typically represented as an enumeration.
States are also typically represented as an enumeration.
The Event structure represents signal events without parameters.

The scalar data member sig holds the signal. Here it’s declared as the C99-
standard 16-bit unsigned integer with the dynamic range of 64K signals.

The TickEvt structure represents TICK events with the fine_time
parameter described in the explanation to Figure 3.2(8).

The TickEvt structure derives from Event structure, as described in the
Sidebar “Single Inheritance in C” in Chapter 1. By convention, I name the
base structure member super.

The event parameter(s) are added after the member super.

The Bomb1l structure represents the time-bomb state machine implemented
with the nested switch statement technique.

The data member state is the scalar state variable in this implementation.
Here it’s declared as the C99-standard 8-bit unsigned integer with the
dynamic range of 256 states. You can adjust it to suit your needs.

The data members timeout, defuse, and code are the extended state
variables used in the state diagram shown in Figure 3.2.

The TRAN () macro encapsulates the transition, which in this method consists
of reassigning the state variable state.

The state machine “constructor” performs just a basic initialization but does
not trigger the initial transition. In C, you need to call the “constructor”
explicitly at the beginning of main ().

Here, the “constructor” initializes the secret defuse code, which is assigned to
the bomb at instantiation.

This is the init () function of the generic state machine interface. Calling
this function triggers the initial transition in the state machine.

The initial transition initializes the me->timeout extended state variable, as
prescribed in the diagram in Figure 3.2(1).
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(18) The initial transition changes the state to the “setting” state by means of the
TRAN () macro.
(19) This is the dispatch () function of the generic state machine interface.
Calling this function dispatches one event to the state machine.
(20) The first level of switch statement discriminates based on the scalar state
variable me->state.
(21) Each state corresponds to one case statement in the first level of the switch.
(22) Within each state the second level of switch discriminates based on the
event signal e->sig.
(23) For example, the internal transition UP is coded as a nested case statement.
(24) The guard condition (see Figure 3.2(2)) is coded by means of the i f statement.
(25,26) The actions associated with the transition are coded directly.
(27) Handling of each event case must be terminated with the break statement.
(28) A state transition is coded by reassigning the state variable, here achieved by
the TRAN () macro.
(29) Handling of each state case must be terminated with the break statement.
(30,31) Aregular transition with a guard is coded with an i f statement and TRAN () macro.
(32) Events with parameters, such as the TICK event, require explicit casting from the
generic base structure Event to the specific derived structure TickEvt, in this case.
(33) The choice pseudostate is coded as an if statement that tests all the outgoing
guards of the choice point.
3.3.2 Consequences

The nested switch statement implementation has the following consequences:

It is simple.
It requires enumerating both signals and states.

It has a small memory footprint, since only one small scalar state variable is
necessary to represent the current state of a state machine.
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e [t does not promote code reuse because all elements of a state machine must be
coded specifically for the problem at hand.

e The whole state machine is coded as one monolithic function, which easily can
grow too large.

e Event dispatching time is not constant but depends on the performance of the
two levels of switch statements, which degrade with increasing number of
cases (typically as O(log n), where #n is the number of cases).

e The implementation is not hierarchical. You could manually code entry/exit
actions directly in every transition, but this would be prone to error and difficult
to maintain in view of changes in the state machine topology. This is mainly
because the code pertaining to one state (e.g., an entry action) would
become distributed and repeated in many places (on every transition leading
to this state).

e The latter property is not a problem for code-synthesizing tools, which often
use a nested switch statement type of implementation.

3.3.3 Variations of the Technique

The variations of this method include eliminating the second level of the switch,

if the state machine handles only one type of event. For example, parser state machines
often receive identical characters from the input stream. In addition, signal-processing
state machines often receive identical time samples of the signal under control. The
“Fly ‘n’ Shoot” game introduced in Chapter 1 provides an example of a simple switch-
debouncing state machine coded with the switch statement technique (see file
<gp>\gpc\examples\cortex-m3\vanilla\iar\game-ev-1m3s811l\bsp.c).

3.4 State Table

Another common approach to implementing state machines is based on state table
representation of a state machine. The most popular is the two-dimensional state

table that lists events along the horizontal dimension and states along the vertical dimension.
The contents of the cells are transitions represented as {action, next-state}

pairs. For example, Table 3.1 shows the two-dimensional state table corresponding to

the time-bomb state diagram from Figure 3.2.
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Table 3.1: Two-dimensional state table for the time bomb

Events —
UP DOWN ARM TICK
Setti setting_UP(), setting DOWN() , setting_ARM(), empty (),
&ur, etting setting setting timing setting
[
o
@ Timi timing_ UP(), timing DOWN () , timing_ARM(), timing_TICK(),
! IMING |+ iming timing setting(¥) timing(*¥)
Notes:
(*) The transition to “setting” is taken only when (me->code == me->defuse).
(**) The self-transition to “timing” is taken only when (e->fine_time == 0) and (me->timeout != 0).

3.4.1 Generic State-Table Event Processor

One of the most interesting aspects of the state-table approach is that it represents a
state machine as a very regular data structure (the table). This allows writing a simple
and generic piece of software called an event processor that can execute any state
machine specified in the tabular form.

As shown in Figure 3.5, the generic event processor consists of the StateTable
structure that manages an external array of transitions and the Event structure for

«abstract»
StateTable

state 1 uint8_t o— — —| state-variable AN

init_tran : Tran

state_table : *Tran @
n_states :uint8_t e
n_signals :uint8_t @ Event
init() sig : uint16_t
dispatch()
State-table event processor
Application
Bomb2 TickEvt

t|m|ng : uints_t H fine_time . UintB_t
code :uint8_t Tran | :Tran | :Tran | :Tran o
defuse : uint8_t |

: :Tran :Tran :Tran :Tran ‘[
seg!ng_LDJCP)(&VN Derived event
setting__ 0 :Tran :Tran Tran Tran with parameter(s)

Figure 3.5: The structure of a generic state table-based event processor.
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derivation of events with parameters or is used as is for events without parameters.
Additionally, the StateTable structure has two functions associated with it. The
init () function triggers the initial transition, and dispatch () dispatches an event
to the state machine. The StateTable structure is abstract, meaning that it is

not intended for direct instantiation but rather only for derivation of concrete’

state machine structures, such as Bomb2.

In this implementation variant, the state table contains just pointers to transition
functions instead of {action, next-state} pairs. This pushes the responsibility
of changing the state to the transition function, but in the end is much more
flexible because the transition function can evaluate guard conditions and

change state only conditionally. Listing 3.2 shows the header file; Listing 3.3
shows the implementation of the generic event processor depicted in Figure 3.5.

Listing 3.2 Generic state-table event processor interface (file statetbl.h)

(1) typedef struct EventTag {

uintlé_t sig; /* signal of the event */
/* add event parameters by derivation from the Event structure */
} Event;
(2) struct StateTableTag; /* forward declaration */

(3) typedef void (*Tran) (struct StateTableTag *me, Event const *e) ;

(4) typedef struct StateTableTag {

(5) Tran const *state_table; /* the State-Table */
(6) uint8_t n_states; /* number of states */
(7) uint8_t n_signals; /* number of signals */
(8) uint8_t state; /* the current active state */
(9) Tran initial; /* the initial transition */

} StateTable;

(10) wvoid StateTable_ctor(StateTable *me,
Tran const *table, uint8_tn_states, uint8_tn_signals,
Tran initial) ;
(11) wvoid StateTable_init (StateTable *me) ; /* init method */
(12) void StateTable_dispatch(StateTable *me, Event const *e); /* dispatchmethod */

Continued onto next page

5 Concrete class is an OOP term and denotes a class that can be instantiated because it has no abstract
(partially defined) operations or protected constructors.
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(13) void stateTable_empty(StateTable *me, Event const *e); /* empty action */
/* macro for taking a state transition inside a transition function */

(14) #define TRAN(target_) (((StateTable *)me)->state = (uint8_t) (target_))

(1) The Event structure represents signal events (see also Listing 3.1(3-4)).

(2) This forward declaration is used in the following definition of a pointer-to-
function type.

(3) This typedef defines Tran type as a pointer to transition function that takes
the pointer to the StateTable struct and a pointer to the Event struct as
arguments and returns void . The value returned from the transition function
represents the next state for the state machine after executing the transition.
The pivotal aspect of this design is that the transition functions can be used with
respect to structures derived (inheriting) from the StateTable.

(4-7) The stateTable structure does not physically contain the state table but
rather manages an arbitrary table state_table of transitions with an arbitrary
number of states n_states and signals n_signals.

(8) The data member state is the scalar state variable in this implementation.

(9) The stateTable structure also contains a pointer to the initial transition.

(10) The state table “constructor” performs just a basic initialization but does not
trigger the initial transition. In C, you need to call the “constructor” explicitly
at the beginning of main ().

(11) This is the init () function of the generic state machine interface. Calling this
function triggers the initial transition in the state machine.

(12) This is the dispatch () function of the generic state machine interface. Calling
this function dispatches one event to the state machine.

(13) The StateTable_empty () function is the default empty action useful for
initializing the empty cells of the state table.

(14) The TRAN () macro encapsulates the transition, which in this method consist of

re-assigning the state-variable state. Note the explicit cast (upcast) of the me
pointer, which typically points to a structure derived from StateTable, rather
than StateTable directly.
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Listing 3.3 Generic state-table event processor implementation
(file statetbl.c)
#include "statetbl.h"
(1) #include <assert.h>
/2 */
(2) void StateTable_ctor (StateTable *me,
Tran const *table, uint8_t n_states, uint8_t n_signals,
Tran initial)
{
me->state_table = table;
me->n_states =n_states;
me->n_signals =n_signals;
me->initial =initial;
(3) me->state =n_states; /* initialize state out of range */
}
L e e e e e e e e e e e e e e e e e e e e e e e e e e */
void StateTable_init (StateTable *me) {
(4) (*me->initial) (me, (Event *)O0); /* top-most initial transition */
(5) assert (me->state <me->n_states); /* theinitial tran. must change state */
}
P */
void StateTable_dispatch(StateTable *me, Event const *e) {
Tran t;
(6) assert (e->sig < me->n_signals) ; /* require the signal in range */
(7) t = me->state_table[me->state*me->n_signals + e->sig];
(8) (*t) (me, e); /* execute the transition function */
(9) assert (me->state < me->n_states) ; /* ensure that state stays in range */
}
L e e e e e e e e e e e e e e e e e e e e e e e e */
void StateTable_empty (StateTable *me, Event const *e) {
(void)me; /* void compiler warning about unused parameter */
(void)e; /* void compiler warning about unused parameter */
}

(1) The event processor implementation uses assertions to prevent incorrect execution
of the externally defined state machine. Here the standard assertions are used.
See Section 6.7.3 in Chapter 6 for the implementation of customizable assertions
in C and C++.
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The state table “constructor” initializes the state_table pointer, the table
geometry, and the initial transition.

The state variable is initially set outside the valid range.

The init () function calls the initial transition via the pointer to transition function.
The state variable must be in range after the initial transition (see also (3)).

The signal of the event dispatched to the state machine must be in range.

The transition function pointer corresponding to the current state and current event
is obtained by indexing into the external state table array.

The transition function is invoked via the pointer to transition function obtained in
the previous step.

The state variable must be in range after the transition.

3.4.2 Application-Specific Code

The application-specific part of the implementation provides (1) enumerated signals and
states, (2) the state machine structure derived from StateTable that includes all the
extended state variables, (3) all the transition functions, and (4) the state table initialized
with the pointers to the transition functions. Listing 3.4 shows all these elements.

Listing 3.4 Time bomb state machine implemented using the state-table
technique (file bomb2 . c)

#include "statetbl.h" /* the generic state table event processor */
enum BombSignals { /* all signals for the Bomb FSM */
UP_SIG,
DOWN_SIG,
ARM_SIG,
TICK_SIG,
MAX_SIG /* the number of signals */
i
enum BombStates { /* all states for the Bomb FSM */

SETTING_STATE,

TIMING_STATE,

MAX_STATE /* the number of states */
i
typedef struct TickEvtTag {

Event super; /* derive from the Event structure */
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(21)

uint8_t fine_time; /* the fine 1/10 s counter */
} TickEvt;
typedef struct Bomb2Tag { /* the Bomb FSM */
StateTable super; /* derive from the StateTable structure */
uint8_t timeout; /* number of seconds till explosion */
uint8_t defuse; /* secret defuse code to disarm the bomb */
uint8_t code; /* currently entered code to disarm the bomb */
} Bomb2 ;
void Bomb2_ctor (Bomb2 *me, uint8_t defuse) ; /* the "constructor" */
void Bomb2_initial (Bomb2 *me); /* theinitial transition function */
voidBomb2_setting_UP Bomb2 *me, Event const*e); /* transition function */

(
void Bomb2_setting_ DOWN (Bomb2 *me, Event const *e) ; /* transition function */
voidBomb2_setting ARM (Bomb2 *me, Event const *e); /* transition function */
voidBomb2_timing_UP (Bomb2 *me, Event const *e); /* transition function */

(

( )

(

/* transition function */

voidBomb2_timing_ DOWN (Bomb2 *me, Event const *e); /* transition function */
; /*transition function */

)i
voidBomb2_timing_ARM Bomb2 *me, Event const *e) ;
voidBomb2_timing TICK (Bomb2 *me, Event const *e) ;

/* the initial value of the timeout */
#define INIT_TIMEOUT 10

void Bomb2_ctor (Bomb2 *me, uint8_t defuse) {
/* state table for Bomb state machine */
static const Tran bomb2_state table[MAX STATE] [MAX SIG] = {
{ (Tran) &Bomb2_setting_UP, (Tran) &Bomb2_setting_DOWN,
(Tran) &Bomb2_setting_ ARM, &StateTable_empty 1},
{ (Tran) &Bomb2_timing_UP, (Tran) &Bomb2_timing_ DOWN,
(Tran) &Bomb2_timing ARM, (Tran) &Bomb2_timing TICK }
Y
StateTable_ctor (&me->super,
&bomb2_state_table[0][0], MAX_STATE, MAX_SIG,
(Tran) &Bomb2_initial); /* construct the superclass */
me->defuse = defuse; /* set the secret defuse code */

void Bomb2_initial (Bomb2 *me) {
me->timeout = INIT TIMEOUT;
TRAN (SETTING_STATE) ;

void Bomb2_setting UP (Bomb2 *me, Event const *e) {
(void)e; /* avoid compiler warning about unused parameter */
if (me->timeout < 60) {
++me->timeout;
BSP_display (me->timeout) ;

Continued onto next page
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}
}
/2P */
void Bomb2_setting DOWN (Bomb2 *me, Event const *e) {
(void)e; /* avoid compiler warning about unused parameter */
if (me->timeout > 1) {
—--me->timeout;
BSP_display (me->timeout) ;
}
}
/2 */
void Bomb2_setting ARM(Bomb2 *me, Event const *e) {
(void)e; /* avoid compiler warning about unused parameter */
me->code = 0;
(22) TRAN (TIMING_STATE) ; /* transition to "timing" */
}
/2 */
void Bomb2_timing_ UP (Bomb2 *me, Event const *e) {
(void)e; /* avoid compiler warning about unused parameter */
me->code <<= 1;
me->code |= 1;
}
/T */
void Bomb2_timing_DOWN (Bomb2 *me, Event const *e) {
(void)e; /* avoid compiler warning about unused parameter */
me->code <<= 1;
}
2T */
void Bomb2_timing ARM (Bomb2 *me, Event const *e) {
(void)e; /* avoid compiler warning about unused parameter */
if (me->code == me->defuse) {
TRAN (SETTING_STATE) ; /* transition to "setting" */
}
}
/O */
void Bomb2_timing TICK (Bomb2 *me, Event const *e) {
(23) if (((TickEvt const *)e)->fine_time == 0) {
—--me->timeout;
BSP_display (me->timeout) ;
(24) if (me->timeout == 0) {
BSP_boom () ; /* destroy the bomb */
}
}
}

(1) Event signals are typically represented as an enumeration.

(2) The extra enumeration added at the end corresponds to the total number of signals,
which you need to know to size the state table array.



Standard State Machine Implementations 121

3)
Q)

&)

(6)

)
®)

®

(10-12)

(13)

(14)

(15)

(16)

17)

States are also typically represented as an enumeration.

The extra enumeration added at the end corresponds to the total number of
signals, which you need to know to size the state table array.

The TickEvt structure represents TICK events with the fine_time
parameter described in the explanation to Figure 3.2(8).

The TickEvt structure derives from Event structure, as described in the
Sidebar “Single Inheritance in C” in Chapter 1. By convention, I always name
the base structure member super.

The event parameter(s) are added after the member super.

The Bomb2 structure represents the time-bomb state machine implemented
with the state table technique.

The Bomb2 structure derives from StateTable structure, as described in the
Sidebar “Single Inheritance in C” in Chapter 1. By convention, I always
name the base structure member super.

The data members timeout, defuse, and code are the extended state
variables used in the state diagram shown in Figure 3.2.

The state machine “constructor” performs just the basic initialization, but
does not trigger the initial transition. In C, you need to call the “constructor”
explicitly at the beginning of main ().

The initial transition function performs the actions of the initial transition (see
Figure 3.2(1)), and initializes the state variable to the default state.

The transition functions are specified for each implemented state-signal
combination. For example, Bomb2_setting_UP () corresponds to transition
UP in state “setting.”

The state table array specifies the structure of the state machine. The table is
known and initialized at compile time, so it can be declared const. The table is
initialized with the pointers to the Bomb2 transition functions. Typically, you
need to explicitly cast these pointers to function on the Tran type because they
refer to Bomb2 subclass of StateTable rather than directly to StateTable.

The state table is passed to theStateTable event processor constructor,
along with the dimensions of the table and the initial transition.
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The Bomb “constructor” also initializes the secret defuse code, which is assigned
to the bomb at instantiation.

The initial transition initializes the me->timeout extended state variable, as
prescribed in the diagram in Figure 3.2(1).

The initial transition changes the state to the “setting” state by means of the
TRAN () macro defined in the event processor interface (file statetbl.h).

The transition functions are responsible for testing the guards, which are
implemented as if statements.

The transition functions are responsible for changing the current active state by
means of the TRAN () macro.

Events with parameters, such as the TICK event, require explicit casting from the
generic base structure Event to the specific derived structure TickEvt, in this case.

The choice pseudostate is coded as an if statement that tests all the outgoing
guards of the choice point.

3.4.3 Consequences

The state table implementation technique has the following consequences.

1.

It maps directly to the highly regular state table representation of a state
machine.

It requires the enumeration of states and signals that are used as indexes into the
state table.

Because states and signals are used as indexes into an array, they must both be
contiguous and start with zero.

It provides relatively good and deterministic performance for event dispatching
(O(const), not taking into account action execution).

It promotes code reuse of the generic event processor, which is typically small.

It requires a large state table, which is typically sparse. However, because the
state table is constant, it often can be stored in ROM rather than RAM.

It requires a complicated initialization of the state table that must implicitly match
the enumerated states and signals. Manual maintenance of this initialization, in view
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of changes in the state machine topology, is tedious and prone to error. For instance,
adding a new state requires adding and initializing a whole row in the state table.

NOTE

Because of the complex initialization and rapid growth of the state table, programmers often
perceive adding new states or events as expensive. This perception often discourages pro-
grammers from evolving the state machine. Instead, they tend to misuse extended state vari-
ables and guard conditions.

8. It requires a large number of fine-granularity functions representing actions.

9. It typically relies heavily on pointers to functions when implemented in C/C++ (see
Section 3.7.1) because state tables typically contain large numbers of such pointers
to functions.

10. It is not hierarchical. Although the state table can be extended to implement
state nesting, entry/exit actions, and transition guards, these extensions require
hardcoding whole transition chains into transition action functions, which is
prone to error and inflexible.

3.4.4 Variations of the Technique

There seem to be two main variations on state table implementation in C/C++. Concrete
state machines can either derive from the generic state table event processor (inheritance)
or contain a state table processor (aggregation). The technique presented here falls into the
inheritance category. However, the aggregation approach seems to be quite popular as
well (e.g., see [Douglass 99, 01]). Aggregation introduces the indirection layer of a context
class—that is, a structure containing the extended state variables on behalf of which the
aggregated state table event processor executes actions. Inheritance eliminates this
indirection because the StateTable class plays the role of the context class (state machine
class) simultaneously. In other words, by virtue of inheritance, every derived state
machine (like Bomb2) also simultaneously “is a” StateTable.

The main shortcoming of the two-dimensional state-table representation is the
difficulty of showing guard conditions and transitions leading to different states
based on different guards, as indicated by the notes added to Table 3.1. Therefore,
some authors use a one-dimensional state transition table, shown in Table 3.2
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Table 3.2: One-dimensional state transition table for the time bomb

Current | Event Next
State (Parameters) | [Guard] State Actions
setting uP [me->timeout < 60] setting ++me->timeout; BSP_display
(me->timeout);
DOWN [me->timeout > 1] setting -me->timeout; BSP_display
(me->timeout);
ARM timing me->code = 0;
TICK setting
timing UpP timing me->code <<=1;
me->code |=1;
DOWN timing me->code <<= 1,
ARM [me->code == me-> setting
defuse]
TICK [e->fine_time == 0] choice -me->timeout; BSP_display
(fine_time) (me->timeout);
[me->timeout == 0] final BSP_boom();
[else] timing

[Diaz-Herrera 93]. In this case, the table can explicitly incorporate event parameters,
guard conditions, and actions.

In the direct implementation of the one-dimensional state table, the transitions are
more complex objects that contain:

e Pointer to the guard function
® Next state

e A list of pointers to action functions

3.5 Object-Oriented State Design Pattern

The object-oriented approach to implementing state machines is known as the State
design pattern [Gamma+ 95]. The intent of the pattern is to make a state machine object
appear to change its class at runtime as it transitions from state to state. An instance
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of the State pattern applied to the time-bomb state machine is shown as a UML class
diagram® in Figure 3.6.

Bomb3 state «abstract»
state : *BombState P BombState
timeout : uint8_t s >
ey - _( _«pattern> N\ apsiract_ _| onUP(context)
code :uint8_t context State P r
defuse - uint8 t - tate Pattern © gstate onDOWN(context)
’ - ~——__--" onARM|(context)
onTICK(context, fine_time)

init();
tran(target) o — — — - — 1 state = target; B‘ Zf

onUp()
onDOWN() | _ |
onARM() SettingState TimingState
onTICK(fine_time) o

! onUP(context) onUP(context)

: onDOWN(context) onDOWN(context)

o ) onARM(context onARM(context

state->onTICK(this, fine_time); B‘ ( ) onTICKEcontext), fine_time)

Figure 3.6: Object-oriented State design pattern applied to the time-bomb state
machine [Gamma+ 95].

The key idea in this pattern is to introduce an abstract class BombState to represent the
states of the time bomb. The BombState declares an interface common to all states,
where each operation corresponds to an event. Subclasses of BombState, such as
SettingState and TimingState, implement state-specific behavior by overriding
the operations inherited from BombState. For example, SettingState handles the
UP event in its own specific way by defining the SettingState: :onUP () operation.
Adding new events requires adding new operations to the abstract BombState class,
and adding new states requires adding new subclasses of BombState.

The context class Bomb3 maintains the state as a pointer to a subclass of BombState
(see the state data member). Bomb3 also contains all the extended state variables
that the time bomb uses, such as timeout, code, and defuse. The class Bomb3
provides an interface identical to the BombState, that is, each handled event
corresponds to an operation. The event-handler operations in Bomb3 delegate all
state-specific requests to the current state object via the state pointer. In this technique
change of state corresponds to changing the current state object, which

is accomplished in the context class operation tran().

© Appendix B contains a quick summary of the UML notation, which includes class diagrams.
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3.5.1 Example Implementation

Listing 3.5 shows a C++ implementation of the time-bomb state with the
object-oriented State pattern. The C implementation is not provided because the
pattern very heavily relies on polymorphism, which is not quite trivial to
implement in C.

Listing 3.5 Time-bomb state machine implemented using the State design
pattern (file bomb3 . cpp)

(1) class Bomb3; // context class, forward declaration
(2) class BombState {

public:
(3) virtual void onUP Bomb3 *) const {}

virtual void onARM (Bomb3 *) const {}
(4) virtual void onTICK (Bomb3 *, uint8_t) const {}
i

(
virtual void onDOWN (Bomb3 *) const {}

(

(

(5) class SettingState : public BombState {
public:
virtual void onUP (Bomb3 *context) const;
virtual void onDOWN (Bomb3 *context) const;
virtual void onARM (Bomb3 *context) const;

i

(6) class TimingState : public BombState {
public:
virtual void onUP (Bomb3 *context) const;
virtual void onDOWN (Bomb3 *context) const;
virtual void onARM (Bomb3 *context) const;
virtual void onTICK (Bomb3 *context, uint8_t fine time) const;

i

(7) class Bomb3 {

public:
(8) Bomb3 (uint8_t defuse) : m_defuse(defuse) {}
(9) void init () ; // the init () FSM interface
(10) void onUP () { m_state->onUP (this); }
void onDOWN () { m_state->onDOWN (this); }
void onARM () {m_state->onARM (this); }
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(23)

void onTICK (uint8_t fine_time) {m_state->onTICK (this, fine_time); }

private:
void tran (BombState const *target) { m_state = target; }

private:
BombState const *m_state; // the state variable
uint8_t m_timeout; // number of seconds till explosion
uint8_t m_code; // currently entered code to disarm the bomb
uint8_t m_defuse; // secret defuse code to disarm the bomb
private:

static SettingState const setting;
static TimingState const timing;

friend class SettingState;
friend class TimingState;
}:

// the initial value of the timeout
#define INIT_TIMEOUT 10

SettingState const Bomb3::setting;
TimingState const Bomb3::timing;

void Bomb3::init () {
m_timeout = INIT TIMEOUT;
tran (&Bomb3: :setting) ;

void SettingState: :onUP (Bomb3 *context) const {
i1f (context->m_timeout < 60) {
++context->m_timeout;
BSP_display (context->m_timeout) ;

}
void SettingState: :onDOWN (Bomb3 *context) const {
if (context->m_timeout > 1) {
—-—context->m_timeout;
BSP_display (context->m_timeout) ;

}
void SettingState: :onARM (Bomb3 *context) const {
context->m_code = 0;
context->tran (&Bomb3: :timing) ; // transition to "timing"

Continued onto next page
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void TimingState: :onUP (Bomb3 *context) const {
context->m_code <<= 1;
context->m_code |= 1;

}

void TimingState: : onDOWN (Bomb3 *context) const {
context->m_code <<= 1;

}

void TimingState: : onARM (Bomb3 *context) const {
if (context->m_code == context->m_defuse) {

context->tran (&Bomb3: :setting) ; // transition to "setting"

}

}

void TimingState: :onTICK (Bomb3 *context, uint8_t fine_time) const {

(25) if (fine_time == 0) {

—-—context->m_timeout;
BSP_display (context->m_timeout) ;

(26) if (context->m_timeout == 0) {

BSP_boom() ; // destroy the bomb
}

ey

2

3)
“)

®)

(6)

(N

The context class Bomb3 needs to be forward-declared because it is used in the
signatures of the operations inside the state classes.

The BombState abstract class declares an interface common to all time-bomb
states, where each operation corresponds to an event. The class provides default
empty implementations for all event handlers.

The onUP () operation handles the UP event without parameters.

The onTICK () operation handles the TICK (fine_time) event with a parameter.
Note that the signature of the event operation contains strongly typed event
parameters.

The class settingState derives from the abstract BombState and overrides

all events handled in the “setting” state. Note that this state does not handle the
TICK event, so the SettingState class defaults to the empty implementation
inherited from the BombState superclass.

The class TimingState derives from the abstract BombState and overrides all
events handled in the “timing” state.

The context class Bomb3 keeps track of the current state and contains all extended
state variables.
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(8) The constructor initializes selected extended-state variables but does not take the
initial transition.

(9) This is the init () function of the generic state machine interface. Calling this
function triggers the initial transition in the state machine.

(10) The context class Bomb3 duplicates the event interface from the abstract state class
BombState. All state-dependent behavior is delegated to the current state object.

NOTE

The standard State design pattern does not use the dispatch() method for dispatching
events to the state machine. Instead, for every signal event, the context class provides a spe-
cific (type-safe) event handler operation.

1)
(12)

13)

(14)

(15,16)

(17,18)

(19,20)

2y

(22)
(23)

The signatures of event operations contain strongly typed event parameters.

The private tran () operation changes the state by reassigning the state
variable.

The state variable in this technique is a pointer to the subclass of the abstract
state class BombState.

The context class Bomb3 contains also all extended-state variables.

The state objects are static and constant members of the context class Bomb3.
Note that the state objects contain only operations but no data and therefore
can be safely shared among all instances of the context class.

The context class Bomb3 declares friendship with all state classes because
the event-handler operations in the state classes must be able to access the
private members of the context class.

The constant state objects must be defined.

The initial transition performs the actions specified in the state diagram in
Figure 3.2(1).

The default state is specified by means of the tran () operation.

The guard condition is coded as an if statement. Note that the state class
must access the extended-state variables via the context argument.
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(24)

(25)

(26)

The transition is achieved by calling the tran () operation on behalf of the
context state machine object.

The event parameters are available directly to state classes because they are
arguments of the event operations.

The choice pseudostate is coded as an i f£-statement.

3.5.2 Consequences

The object-oriented State design pattern has the following consequences:

It relies heavily on polymorphism and requires an object-oriented language like C++.
It partitions state-specific behavior and localizes it in separate classes.
It makes state transitions efficient (reassigning one pointer).

It provides very good performance for event dispatching through the late binding
mechanism (O(const), not taking into account action execution). This
performance is generally better than indexing into a state table plus invoking a
method via a function pointer, as used in the state table technique. However, such
performance is only possible because the selection of the appropriate event
handler is not taken into account. Indeed, clients typically will use a switch
statement to perform such selections. (See the main () function in bomb3 . cpp.)

It allows you to customize the signature of each event handler. Event parameters are
explicit, and the typing system of the language verifies the appropriate type of all
parameters at compile time (e.g., onTICK () takes a parameter of type uint8_t).

The implementation is memory efficient. If the concrete state objects don’t have
attributes (only operations), they can be shared (as in the Bomb3 example).

It does not require enumerating states.
It does not require enumerating events.

It compromises the encapsulation of the context class, which typically requires
granting friendship to all state classes.

It enforces indirect access to the context’s parameters from the methods of the
concrete state subclasses (via the context pointer).
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e Adding states requires subclassing the abstract state class.

e Handling new events requires adding event handlers to the abstract state class
interface.

e The event handlers are typically of fine granularity, as in the state table approach.

e The pattern is not hierarchical.

3.5.3 Variations of the Technique

The State pattern can be augmented to support entry and exit actions to states. As shown
in Figure 3.7, the changes include adding operations onEntry () and onExit () to
the abstract state class BombState. Additionally, as shown in the note to operation
onTick (fine_time), each event handler in the context class must detect the state
change and invoke the onExit () operation to exit the source state and onEntry () to
enter the target state.

Bomb state_ «abstract»
state : *BombState PN BombState
timeout : uint8_t — context—_“PateM> X apsiract | onEntry()
code :uint8_t \ State Pattern _~ _ state onExit))
defuse : uint8_t S~ __-~ ==
init(); onUP(context)
tran(target) o — — — - — { state = target; Il‘ onDOWN(context)
onUp() onARM(context)
onDOWN() onTICK(context, fine_time)
onARM() [F
onTICK(fine_time) ¢
BombState *s = state : SettingState TimingState
state->onTICK(this, fine_time);
if (s 1= state_) { // state changed? onUP(context) onUP(context)
s->onExit(this); onDOWN(context) onDOWN(context)
state_->onEntry(this); onARM(context) onARM(context)
} onTICK(context, fine_time)

Figure 3.7: Object-oriented State design pattern augmented with entry
and exit actions.

The standard State design pattern can also be simplified to provide the standard
state machine interface consisting of operations init () and dispatch() with the
event representation described in Section 3.2.1. A generic dispatch() operation



132 Chapter 3

of the abstract state class handles all events in a state and thus becomes a generic
state-handler operation. As shown in Figure 3.8, the abstract state class then also
becomes generic since it no longer depends on specific event signatures.
Additionally, each state handler must perform explicit demultiplexing of events
(based on the signal), which typically involves one level of switch statement, as
shown in the note to the SettingState: :dispatch() operation.

NOTE

The generic dispatch(Event const *e) operation is weakly typed because it accepts
generic Event superclass and must perform explicit downcasting to the Event subclasses
based on the signal.

Bomb state «abstract»
state : *State P State
timeout : uints_t — context_ ~ «pattgr.n» N \ generic :
code :uint8 t Simplified I state - o dispatch(context, event)
defuse : uint8_t N ~State Pattern_ ~

init()
tran(target) o- — —|— -| state = target; [\

dispatch(event) o — —I state->dispatch(this, event); BI

switch (event->sig) { : —
case UP SIG: ... SettingState TimingState
case DOWN_SIG: ... | _ . ;
case ARM_SIG: ... —o | dispatch(context, event) | | dispatch(context, event)
case TICK_SIG: ...

}

Figure 3.8: Simplified State design pattern with entry and exit actions.

3.6 QEP FSM Implementation

In previous sections, I presented the three most popular techniques for implementing
FSMs. From my experience, though, none of these techniques in its pure form is truly
optimal. However, one particular combination of these techniques repeatedly proved
to be the most succinct and efficient implementation of the traditional nonhierarchical
FSMs. This technique is part of the QEP event processor that I introduced in Chapter 1.
The QEP FSM implementation is object-based, but unlike the State pattern, does not
depend on polymorphism and is easy to implement in C.
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3.6.1 Generic QEP Event Processor

The QEP support for the basic FSMs combines elements from the nested switch
statement, state table, and the simplified State design pattern, but it also adds some
original ideas. The design is based on a generic event processor (the QEP), similar

in functionality to the state-table event processor discussed in Section 3.4.1. The
novelty of the QEP design comes from mapping states directly to state-handler
functions that handle all events in the state they represent. As shown in Figure 3.9, the
central element of the QEP event processor is the QFsm structure that keeps track of
the current state by means of a pointer to a state-handler function. The QFsm structure
also provides the standard state machine interface functions init () and dispatch().
The QFsm structure is abstract, meaning that it is not intended for direct instantiation
but rather only for derivation of concrete state machine structures, such as Bomb4.
The derived state machine structure adds its own extended state variables such as
timeout, code, and defuse, as well as all state-handler functions.

«abstract» |
QFsm typedef
- o _ _ QState /* return type */
state : QStateHandler (*QStateHandler) /* pointer to function */
init (me : *QFsm) (void *me, QEvent const *e); QEvent
dispatch(me : *QFsm, e : *QEvent) | sig : QSignal
QEP event processor
Application TickEVT
QState Bomb4_timing(Bom—_ .
Bomb4 switch (e->sig) { fine_time : uint8_t
timeout : uint8_t case Q_ENTRY_SIG: ...
code :uint8_t return Q_HANLDED();
defuse : uint8_t case UP_SIG:
case DOWN_SIG:
$ initial (me : *Bomb4, e : *QEvent) : QState case ARM_SIG:
$ setting(me : "Bomb4, e : "QEvent) : QState | _ return Q_TRAN(&Bomb4_setting);
$ timing (me : *Bomb4, e : *QEvent) : QState }
return Q_IGNORED();
}

Figure 3.9: The structure of the QEP event processor support for traditional FSMs.

The QEP event processor supports both simple FSMs and hierarchical state machines
(HSMs), which I will discuss in Chapter 4. Even though the basic FSMs are a strict
subset of HSMs, the QEP provides a separate FSM implementation as an optimization
compared to the full-featured HSM. You can use this optimization for performance-
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critical portions of your code, such as inside interrupt service routines or device drivers.
Furthermore, you can use FSMs in extremely resource-constrained embedded systems
that simply cannot fit the full-featured HSMs. The QEP support for FSMs requires
typically about 120 bytes of code (ROM). For comparison, the support for HSMs requires
about 600 bytes of code space for the hierarchical event processor on ARM Cortex-M3.
Both FSM and HSM require just one pointer to function in RAM per state machine.

Listings 3.6 and 3.7 show fragments of the QEP files that pertain to the FSM
implementation. The header files are located in the directory <gp>\gpc\include\,
and the implementation files are found in the directory <gp>\gpc\gep\source\.

Listing 3.6 QEP FSM event processor interface (fragments of the files
gevent.h and gep.h)

/*gevent.h ——-------------- */
(1) typedef struct QEventTag { /* the event structure */
2) QSignal sig; /* signal of the event */
(3) uint8_t dynamic_; /* dynamic attribute of the event (0 for static) */
} QEvent;
/*gep.h------------"--" */
(4) typedef uint8_t QState; /* status returned from a state-handler function */
(5) typedef /* pointer to function type definition */
QState /* return type */
(*QStateHandler) /* name of the pointer-to-function type */
(void *me, QEvent const *e) ; /* argument list */
(6) typedef struct QFsmTag { /* Finite State Machine */
(7) QStateHandler state; /* current active state */
} QFsm;
(8) #define QFsm_ctor (me_, initial_) ((me_)->state = (initial_))
(9) wvoid QFsm_init (QFsm *me, QEvent const *e) ;

(10) void QFsm_dispatch(QFsm *me, QEvent const *e) ;

(11) #define Q_RET_HANDLED ((QState)0)
(12) #define Q_RET_IGNORED ((QState) 1)
(13) #define Q_RET_TRAN ((QState)?2)
(14) #define Q HANDLED() (Q_RET_HANDLED)
(15) #define Q_IGNORED/() (Q_RET_IGNORED)

(16) #define Q_TRAN(target_) \
(((QFsm *)me) ->state = (QStateHandler) (target_), Q_RET_ TRAN)
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(17)

enum QReservedSignals {
Q_ENTRY_SIG =1, /* signal for coding entry actions */
Q_EXIT_SIG, /* signal for coding exit actions */
Q_INIT_SIG, /* signal for coding initial transitions */
Q_USER_SIG /* first signal that can be used in user applications */
};

ey

2

3)

“)

&)

(6)
(M

®)

®

(10)

The structure QEvent represents events in QEP. Arbitrary event parameters
can be added in the process of derivation of structures (see also Section 3.2.1).

The scalar data member sig holds the signal on an event. The data type
QSignal is an unsigned integer that can be configured to be 1 byte, 2 bytes,
or 4 bytes wide.

The byte-wide member dynamic_ is used by the QF real-time framework
to manage dynamically allocated events. The QEP event processor does not
use this data member and you can ignore it for now. I’ll explain dynamic
event allocation in Chapters 6 and 7.

This typedef defines QState as a byte that conveys the status of the event
handling to the event processor (see also lines (11-13)).

This typedef defines QStateHandler type as a pointer to state-handler
function that takes the pointer to a generic state machine and a pointer to
QEvent as arguments and returns QState. The pivotal aspect of this design
is that the state-handler functions signature can be used with respect to
structures derived (inheriting) from QFsm.

The structure QFsm is the base for derivation of state machine structures.

The data member state is a pointer to a state-handler function. This is the
state variable in this implementation.

The “constructor” function-like macro initializes the state variable to the
initial-pseudostate function that defines the initial transition. Note that the
initial transition is not actually executed at this point.

This is the init () function of the generic state machine interface. Calling
this function triggers the initial transition in the state machine.

This is the dispatch () function of the generic state machine interface.
Calling this function dispatches one event to the state machine.
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(11-13) These constants define the status returned from state-handler functions to the

event processor.

(14) A state-handler function returns the macro Q_HANDLED () whenever it

handles the current event.

(15) A state-handler function returns the macro Q_IGNORED () whenever it ignores

(does not handle) the current event.

(16) The 9_TRAN() macro encapsulates the transition, which in this state

machine implementation technique consist of reassigning the state variable
state. The 9_TRAN () macro is defined using the comma expression.

A comma expression is evaluated from left to right, whereas the type and
value of the whole expression is the right-most operand. The right-most
operand is in this case the status of the operation (transition), which is
returned from the state-handler function. The pivotal aspect of this design

is that the Q_ TRAN () macro can be used with respect to structures derived
(inheriting) from QFsm, which in C requires explicit casting (upcasting) to the
QFsm base structure (see the sidebar “Single Inheritance in C” in Chapter 1).

(17) The QEP event processor reserves these few lowest signals for internal use.

(18) The signal Q_USER_SIG is the first signal available for the users. In other

words, the user signals must necessarily be offset from zero by Q_USER_SIG
to avoid overlapping the reserved QEP signals.

Listing 3.7 QEP FSM event processor implementation
(files gfsm_ini.c and gfsm_dis.c)

(3)

/* filegfsm ini.c-------------————————— - */
#include "gep_port.h" /* the port of the QEP event processor */
#include "gassert.h" /* embedded systems-friendly assertions */

void QFsm_init (QFsm *me, QEvent const *e) {
(*me->state) (me, e); /* execute the top-most initial transition */

/* enter the target */
(void) (*me->state) (me , &QEP_reservedEvt_ [Q_ENTRY_SIG]);
}
/* filegfsm dis.C-==---—mmmmm o */
void QFsm_dispatch (QFsm *me, QEvent const *e) {
QStateHandler s = me->state; /* save the current state */
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QStater = (*s) (me, e); /* call the event handler */

if (r == Q_RET_TRAN) { /* transition taken? */
(void) (*s) (me, &QEP_reservedEvt_[Q_EXIT_SIG]); /* exit the source */
(void) (*me->state) (me, &QEP_reservedEvt_[Q ENTRY_SIG]); /*enter target*/

ey

2

The initial transition is invoked via the pointer to function. The initial state handler
changes the current state me->state to the default state by calling the Q_TRAN ()
macro.

The default state is entered by sending the reserved signal Q_ENTRY_SIG to its
state handler.

NOTE

QEP maintains internally a constant array of reserved events QEP_reservedEvt_[]. This
array is indexed by the reserved signals enumerated in Listing 3.6(17).

3)

“)
&)

(6)

(N

The QFsm_dispatch () function saves the current state in a temporary stack
variable s.

The current state-handler function is invoked via the pointer to function.

If the status returned from the state-handler function indicates that a transition has
been taken (via the Q_TRAN () macro), then . . .

The source of the transition is exited by sending the reserved signal Q_EXIT SIG
to the source state handler.

The target of the transition (the new current state) is entered by sending the
reserved signal Q_ENTRY_SIG to its state handler.

3.6.2 Application-Specific Code

The application-specific part of the implementation provides the elements shown below
the dashed line in Figure 3.9. These elements are (1) events with parameters derived
from the QEvent structure, (2) the state machine structure derived from QFsm that
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includes all the extended state variables, and (3) all the state-handler functions. Listing
3.8 shows the application-level code.

NOTE

The time-bomb state machine from Figure 3.2 has been slightly modified for the QEP FSM
implementation to demonstrate the usage of entry actions. The action of clearing of the
defuse code (me->code = 0) has been moved from the transition ARM in state “setting,”
to entry action in state “timing.”

Listing 3.8 Time-bomb state machine implemented using the optimal FSM
technique (file bomb4 . c)

(1) #include "gep_port.h" /* the port of the QEP event processor */
(2) #include "bsp.h" /* board support package */
(3) enum BombSignals { /* all signals for the Bomb FSM */
(4) UP_SIG = Q USER_SIG,

DOWN_SIG,

ARM_SIG,

TICK_SIG

Y

(5) typedef struct TickEvtTag {

(6) QEvent super; /* derive from the QEvent structure */
(7) uint8_t fine_time; /* the fine 1/10 s counter */
} TickEvt;

(8) typedef struct Bomb4Tag {

(9) QFsm super; /* derive from QFsm */
(10) uint8_t timeout; /* number of seconds till explosion */
(11) uint8_t code; /* currently entered code to disarm the bomb */
(12) uint8_t defuse; /* secret defuse code to disarm the bomb */

} Bomb4 ;
(13) wvoid Bomb4_ctor (Bomb4 *me, uint8_t defuse);
(14) QState Bomb4 initial (Bomb4 *me, QEvent const *e);
(15) QState Bomb4 setting(Bomb4 *me, QEvent const *e);
(16) QState Bomb4 timing (Bomb4 *me, QEvent const*e);

/* the initial value of the timeout */
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#define INIT_TIMEOUT 10

void Bomb4_ctor (Bomb4 *me, uint8_t defuse) {
QFsm_ctor (&me->super, (QStateHandler)&Bomb4_initial);

me->defuse = defuse; /* the defuse code is assigned at instantiation */
}
2 */
QState Bomb4_initial (Bomb4 *me, QEvent const *e) {

(void)e;

me->timeout = INIT_TIMEOUT;
return Q TRAN (&Bomb4_setting);

QState Bomb4_setting (Bomb4 *me, QEvent const *e) {
switch (e->sig) {
case UP_SIG: {
if (me->timeout < 60) {
++me->timeout;
BSP_display (me->timeout) ;
}
return Q HANDLED () ;
}
case DOWN_SIG: {
if (me->timeout > 1) {
--me->timeout;
BSP_display (me->timeout) ;
}
return Q HANDLED () ;

}
case ARM_SIG: {

return Q TRAN (&Bomb4_timing); /* transition to "timing" */
}

}
return Q IGNORED () ;

void Bomb4_timing (Bomb4 *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
me->code = 0; /* clear the defuse code */
return Q HANDLED () ;

}

case UP_SIG: {
me->code <<= 1;
me->code |= 1;
return Q HANDLED () ;

Continued onto next page
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case DOWN_SIG: {
me->code <<= 1;
return Q HANDLED () ;
}
case ARM_SIG: {
if (me->code == me->defuse) {
return Q TRAN (&Bomb4d_setting);
}
return Q HANDLED () ;
}
case TICK_SIG: {
if (((TickEvt const *)e)->fine_time == 0) {
--me->timeout;
BSP_display (me->timeout) ;
if (me->timeout == 0) {
BSP_boom() ; /* destroy the bomb */
}
}
return Q HANDLED () ;
}
}
return Q IGNORED () ;

(1) Every application C file that uses the QP framework must include the gp_port.h
header file. This header file contains the specific adaptation of QP to the
given processor, operating system, and compiler, which is called a port—in this
case, the “gp_port .h” header file, located in the directory <qgp>\gpc\ports
\80x86\dos\tcppl01\1\.

(2) The application also includes the board support package.
(3) All signals used in the application are enumerated.

(4) The user signals must be offset by 0_USER_SIG, to avoid overlapping the
reserved signals.

(5) The TickEvt structure represents TICK events with the fine_time parameter
described in the explanation to Figure 3.2(8).

(6) The TickEvt structure derives from QEvent structure, as described in the sidebar
“Single Inheritance in C” in Chapter 1. By convention, I name the base structure
member super.

(7) The event parameter(s) are added after the member super.
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(10-12)

(13)

(14)

(15,16)

(17)

(18)

(19)

(20)

21
(22)

(23)

(24)
(25)

The Bomb4 structure represents the time bomb state machine implemented
with the QEP event processor.

The Bomb4 structure derives from QFsm structure, as described in the sidebar
“Single Inheritance in C” in Chapter 1. By convention, I always name the
base structure member super.

The data members timeout, defuse, and code are the extended state
variables used in the state diagram shown in Figure 3.2.

The state machine “constructor” performs just the basic initialization but does
not trigger the initial transition. In C, you need to call the “constructor”
explicitly at the beginning of main ().

The initial transition function performs the actions of the initial transition (see
Figure 32(1)), and initializes the state variable to the default state.

The state-handler functions are specified for each state.

The constructor of the Bomb4 state machine is responsible for invoking the
constructor of the base structure QFsm_ctor (), which requires the initial
pseudostate handler.

The Bomb4 constructor can also initialize any extended state variables.

The initial transition initializes the me->timeout extended state variable, as
prescribed in the diagram in Figure 3.2(1).

The initial transition designates “setting” as the default state by means of the
Q_TRAN () macro returned to the event processor (file gep.h).

This state-handler function corresponds to the state “setting.”

Each state-handler function is typically structured as a switch statement that
discriminates based on the signal of the event.

Each event is handled in a separate case labeled with the enumerated signal
of the event.

A guard condition is coded as an if statement.

After handling of an event, the state-handler function returns Q_HANDLED ()
to the event processor.
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(26) A state transition is coded by means of the 9_ TRAN () macro (see Listing 3.6(16)).

(27) The final return statement is reached only when no case statements have handled the
event. The state-handler function returns Q_ TGNORED () to the event processor.

NOTE

The QFsm_dispatch () function shown in Listing 3.7 cares only whether a state transition
has been taken but does not check to see whether the event has been handled or ignored.
However, Listing 3.7 does not show the software tracing instrumentation built into the
QEP event processor, which indeed makes use of each status value reported by state-handler
functions. I discuss the software-tracing instrumentation in Chapter 11.

(28) The entry action is coded as a response to the reserved event Q_ENTRY_SIG,
which the event processor dispatches to the state-handler function when the state
needs to be entered (see Listing 3.6(17)).

(29) Entry actions are coded directly.

(30) As all other case statements, entry actions are terminated with
“return Q_ HANDLED ()’ macro.

NOTE

You should never return Q_TRAN () from entry or exit actions!

3.6.3 Consequences
The QEP FSM implementation has the following consequences:
e [t is simple and can easily be coded in C.

e [t partitions state-specific behavior and localizes it in separate state-handler
functions. These functions have just about the right granularity—neither too fine
(as the action functions in the state table or event operations in the State pattern)
nor monolithic (as in the nested switch statement technique).
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e [t provides direct and efficient access to extended state variables from state-
handler functions (via the “me” pointer) and does not require compromising the
encapsulation of the state machine structure.

e It has a small footprint in RAM because only one state variable (a pointer to
function) is necessary to represent a state machine instance (see Listing 3.6(7)).
No data space is required for states.

e [t promotes code reuse of a small and generic QEP event processor that takes
typically around 120 bytes of code space (ROM) for the non-hierarchical FSM
implementation on ARM Cortex-M3.

e It makes state transitions efficient (the Q_TRAN () macro reassigns just one
pointer to function).

e [t provides good performance for event dispatching by eliminating one level of
switch from the nested switch statement technique and replacing it with a
very efficient pointer to function dereferencing. In typical implementations,
state handlers still need one level of a switch statement to discriminate
events based on the signal, which has performance dependent on the number
of cases (typically O(log n), where n is the number of cases). The switch
statement can be replaced by a one-dimensional lookup table in selected
(time-critical) state handlers.

e [t is scalable, flexible, maintainable, and traceable. It is easy to add both states
and events, as well as to change state machine topology, even late in the
development cycle, because every state machine element is represented in the
code exactly once.

¢ [t requires enumerating events.
e [t does not require enumerating states.

e [t is not hierarchical, but can be extended to include state hierarchy without
sacrificing its good characteristics, as described in Chapter 4.

3.6.4 Variations of the Technique

In the literature, you often find techniques that apply pointers to functions in a very
similar way as the QP FSM implementation but still use a scalar state variable to
resolve the state handler through a lookup table (e.g., see [Gomez 00]). This approach
has several weaknesses:
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e [t requires enumerating states, which are used as indexes into the call table.
e [t requires allocating and initializing the call table.

e The indirection level of the call table degrades performance because of
additional steps required by table lookup on top of dereferencing a pointer to
function.

3.7 General Discussion of State Machine
Implementations

3.7.1 Role of Pointers to Functions

Except for the nested switch statement, all other state machine implementation
techniques in C/C++ rely heavily on pointers to functions. I also intentionally include here
the object-oriented State pattern because it too ultimately resolves event-handler
operations via virtual tables that are nothing else than call tables of pointers to functions.

To understand why pointers to functions are so popular in implementing state machines,
it is very instructive to step down to the machine code level. Listing 3.9 shows
disassembled instructions of a state-handler function called via a pointer in the QEP
event processor (see Listing 3.7(4)).

Listing 3.9 Disassembled machine code for a function call via a pointer to
function (x86 instruction set, 16-bit real mode, Turbo C++ compiler)

#QFSM_DIS#39: (*s) (me, e);

cs:0101 FF760C push word ptr [bp+0C]
cs:0104 FF760A push word ptr [bp+0A]
cs:0107 FF7608 push word ptr [bp+08] ; push the "e" far pointer
cs:010A FF7606 push word ptr [bp+06]

cs:010D FF5EFC call far [bp-04] ; de-reference pointer-to-function
cs:0110 83CEFC add sp, 0008 ; cleanup after the call

; push the "me" far pointer

As shown in boldface in Listing 3.9, the actual function call via a pointer takes just one
machine instruction! The four preceding instructions push the function arguments to
the stack (the “me” pointer and the event pointer “e”) and are needed no matter what
technique you use. As it turns out, a pointer to function maps directly to the architecture
of most CPUs and results in unbeatably small and fast code.
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The point to remember from this discussion is that pointers to functions are the fastest
mechanism for implementing state machines in C/C++. State machines are the “killer
applications” for pointers to functions.

3.7.2 State Machines and C++ Exception Handling

Throwing and catching exceptions in C++ is fundamentally incompatible with the
run-to-completion (RTC) semantics of state machines. An exception thrown somewhere
in the middle of an RTC step typically corrupts a state machine by leaving the
extended-state variables inconsistent with the main state variable or with each other.
Therefore, in general, an RTC step of a state machine must be considered as one
indivisible transaction that either atomically succeeds or entirely fails.

Note that the stack-unwinding process occurring when a thrown exception propagates
up the call stack has much less value in the event-driven systems than traditional
data-processing programs. As described in Chapter 2, event-driven systems rely much
less on representing the context in the call tree and stack variables and instead capture
the context in nonstack variables. The problem with exceptions is that they are
specialized for cleaning up the stack but know nothing about the static data.

Therefore, you should be wary of the C++ exception handling in state machines, or more
generally, in event-driven systems. If you cannot avoid the mechanism altogether (e.g.,
you rely on a library that throws exceptions), you should be careful to catch all exceptions
in the same RTC step and before a thrown exception can cause any inconsistencies.
This rule, of course, largely defeats the benefits of throwing exceptions in the first place.

However, state machines offer a better, language-independent way of handling
exceptions. A state machine associated with an event-driven subsystem can represent all
conditions of the subsystem, including fault conditions. Instead of throwing an
exception, an action should generate an exception event, which then triggers a state-
based exception handling. Section 6.7.4 in Chapter 6 describes the state-based exception
handling in more detail.

3.7.3 Implementing Guards and Choice Pseudostates

As described in Chapter 2, guard conditions and choice pseudostates are elements of
flowcharts that the UML statecharts simply reuse. As such, these elements are not specific to
hierarchical state machines and can be applied equally well in classical flat-state machines.
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If you know how to code a flowchart, you already know how to implement guards and
choice pseudostates. Flowcharts map easily to plain structured code and are therefore
straightforward to implement in those techniques that give you explicit choice of the
target of a state transition, such as the nested switch statement, the State design
pattern, and the QP FSM implementation. Conditional execution is harder to use in the
traditional state-table representation because the rigidly structured state table explicitly
specifies the targets of state transitions. The solution presented in Section 3.4.1

solves this problem by removing the “next-state” from the table and pushing the
responsibility for changing states into the action functions.

A guard specified in the UML expression [guard] /action ... maps simply to the
if statement if (guard()) { action(); ...}. A choice pseudostate has one
incoming transition segment and many outgoing segments guarded by nonoverlapping
guard expressions. This construct maps simply to chained if-else statements: if
(guardl()) { actionl(); } else if (guard2()) { action2(); } and so on.

3.7.4 Implementing Entry and Exit Actions

The traditional nonhierarchical FSMs can also reap the benefits of a guaranteed
initialization of the state context through entry actions and a guaranteed cleanup in the
exit actions. The lack of hierarchy vastly simplifies the problem, but at the same time
it makes the feature much less powerful.

One way of implementing entry and exit actions is to dispatch reserved signals (e.g.,
Q_ENTRY_SIG and Q_EXIT_SIG) to the state machine. As shown in Listing 3.7, upon
detecting a state transition, the state machine dispatch () operation sends the
Q_EXIT_SIG signal to the source state and then sends the Q_ENTRY_SIG signal to the
target state.

3.8 Summary

The standard implementation techniques and their variations discussed in this chapter
can be freely mixed and matched to provide a continuum of possible trade-offs. Indeed,
most of the implementations of state machines that you can find in the literature seem
to be variations or combinations of the three fundamental techniques: the nested
switch statement, the state table, and the object-oriented State design pattern. In this
chapter, I provided concrete, executable code, and for each fundamental technique, I
discussed the consequences of its use as well as some of the most common variations.
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One particular combination of techniques, which is part of the QP framework, deserves
special attention because it offers an optimal combination of good performance and

a small memory footprint. As you will see in Chapter 4, it can be extended to
hierarchical state machines (HSMs).

In all techniques, state machines tend to eliminate many conditional statements from
your code. By crisply defining the state of the system at any given time, state machines
require that you test only one variable (the state variable) instead of many variables to
determine the mode of operation (recall the Visual Basic calculator example from
Chapter 2). In all but the most basic approach of the nested switch statement, even this
explicit test of the state variable disappears as a conditional statement. This coding
aspect is similar to the effect of polymorphism in OOP, which eliminates many tests
based on the type of the object and replaces them with more efficient (and extensible)
late binding.
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... the cost of adding a feature isn’t just the time it takes to code it. The cost also includes

the addition of an obstacle to future expansion. . .. The trick is to pick the features that don’t fight
each other.

— John Carmack

Chapter 2 introduced UML statecharts as a very effective way of getting around

the state-explosion problem that plagues the traditional “flat” state machines.

The particularly valuable innovation of UML state machines in this respect is the
concept of state nesting, because it allows reusing behavior across many states
instead of repeating the same actions and transitions over and over again.
Hierarchical nesting of states lets you get new behavior almost for free by inheriting all
of what is common from the superstates. It lets you define new states rapidly by
difference from existing states rather than create every state from scratch each time.
Needless to say, formalism like this is a godsend to the developers of event-driven
software, because only state hierarchy makes the whole state machine approach truly
applicable to real-life problems.

That is, the concept of the hierarchical state machine (HSM) is a true blessing only if it
is easy enough to implement in a mainstream programming language, which for
embedded systems developers means C. As a visual formalism, HSMs have been
intended primarily for automatic code generation by specialized CASE tools (see
Section 2.3.13). However, direct manual coding of HSMs isn’t really any harder than
coding the traditional nonhierarchical FSMs, especially when you use a generic
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hierarchical event processor that transparently handles all the intricacies of the UML
state machine execution semantics.

This chapter describes such a generic hierarchical event processor called QEP, which is
part of the QP event-driven framework. We already used the QEP event processor in
Section 3.6 of Chapter 3 for implementing traditional “flat” FSMs. Here I describe how
this technique can be generalized to support HSMs without sacrificing its good
characteristics.

I begin with describing the structure of QEP, explaining both the C and C++
versions. Later in the chapter, I summarize the steps required to implement the
calculator HSM designed in Chapter 2. I then provide some guidelines for using
the QEP event processor in practice to avoid common pitfalls. I conclude with
the instructions for porting and configuring QEP for various processors and
compilers.

4.1 Key Features of the QEP Event Processor

QEP is a generic, efficient, and highly portable hierarchical event processor that you
can use in any event-driven environment, such as GUI systems, computer games, or
real-time embedded (RTE) systems. QEP makes every effort to be compliant with the
UML specification [OMG 07], but it cannot really implement the entire bulky UML
state machine package. Instead, the QEP design strategy is to supply just enough (but
not more) of truly essential elements to allow building basic UML-compliant state
machines directly and support the higher-level UML concepts only as design patterns.
The main features of QEP are:

o Full support for hierarchical state nesting.
e Guaranteed entry/exit action execution on arbitrary state transition topology.
e Full support of nested initial transitions.

e Highly maintainable and traceable boilerplate state machine representation in
C or C++, in which every state machine element is mapped to code
precisely, unambiguously, and exactly once. This is in contrast to many
automatic code generation techniques that often “flatten” the state hierarchy,
which breaks traceability by repeating the same transitions and actions in
many states.
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NOTE

The direct, precise, and unambiguous mapping of every state machine element to code con-
tribute to the excellent traceability of the QEP HSM implementation technique. The trace-
ability from requirements through design to code is essential for mission-critical systems,
such as medical devices or avionic systems.

¢ Extremely small RAM/ROM footprint. A state machine object requires only one
function pointer in RAM. On the ARM Cortex-M3 processor, the hierarchical
state machine code requires about 600 bytes whereas the simpler “flat” finite
state machine takes only about 120 bytes of code space (ROM).

® No RAM required for representing states and transitions—the number of states
is limited only by code space (ROM).

e Fully reentrant event processor code with minimal stack requirements.
e Support for events with arbitrary parameters.

e FEasy to integrate with any event queuing and dispatching mechanism—for
example, simple event-loop, a GUI system like Windows, or an event-driven
framework like QP.

e Very clean source code passing strict static analysis with PC-Lint.

e Source code 98 percent compliant with the Motor Industry Software Reliability
Association (MISRA) Guidelines for the Use of the C Language in Vehicle-
Based Software [MISRA 98].

e Documentation, application examples, and ports to various compilers are
available online.

e (Q-SPY software tracing instrumentation for unprecedented observability,
controllability, and testability (see Chapter 11).

NOTE

In Chapter 5, you will see how to realize event deferral, orthogonal regions, and transitions to
history as state design patterns that build on top of the basic QEP implementation described
in this chapter.
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4.2 QEP Structure

Figure 4.1 shows the overall structure of QEP and its relation to the application-
specific code, such as the calculator HSM from Figure 2.18. QEP consists of

the QHsm class! for derivation of state machines and the QEvent class for derivation
of events with parameters, or used as is for events without parameters.

The QHsm class keeps track of the current state and provides the standard state machine
interface” operations init () and dispatch (). This class is abstract, which means that it

«abstract»
QHsm | typedef

] QState /* return type */

state : QStateHandler o- —| .qgtateHandler) /* pointer to function */
id * *g): QEvent
init (e : *QEvent) (void *me, QEvent const *e); : :
dispatch(e : *QEvent) sig  :QSignal
$top  (me:*QHsm, e : *QEvent) : QState dynamic_ : uint8_t
[’é QEP event processor
Calc Application

operand1 : double derived event - CalcEvt
operator :uint8_t with parameter(s) key_code : uint8_t
$ initial (me : *Calc, e : *QEvent) : QState
$on (me : *Calc, e : *QEvent) : QState o
$ error (me : *Calc, e : *QEvent) : QState |~ AN
$ ready (me : *Ca|c’ e: *OEvent) : QState QState CalCﬁOﬂ(CaIC *me, QEvent const *e) {
$result  (me: *Calc, e : *QEvent) : QState switch (e->sig) {
$ begin (me : *Calc, e : *QEvent) : QState case Q_INIT_SIG:
$ negated1 (me : *Calc, e : *QEvent) : QState return Q_TRAN(&Calc_ready);
$ operandi1 (me : *Calc, e : *QEvent) : QState case C_SIG:
$zerol  (me: *Calc, e : *QEvent) : QState BSP_clear();
$int1 (me : *Calc, e : *QEvent) : QState return Q_TRAN(&Calc_on);
$ fract (me : *Calc, e : *QEvent) : QState case OFF_SIG: )
$ opEntered(me : *Calc, e : *QEvent) : QState return Q_TRAN(&Calc_final);
$ negated2 (me : *Calc, e : *QEvent) : QState }
$ operand2 (me : *Calc, e : *QEvent) : QState } return Q_SUPER(&QHsm_top);

Figure 4.1: QEP event processor and the calculator HSM derived from it. The $ in
front of the Calc operations denotes static member functions (see Appendix B).

" The concept of a “class” in C and derivation of classes is explained in the sidebar “Single Inheritance
in C” in Chapter 1.

2 Section 3.2 in Chapter 3 introduces the standard state machine interface.
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is not intended for direct instantiation but rather only for derivation of concrete” state
machine classes, such as Calc, shown in Figure 4.1. The derived state machine class
defines all extended state variables as data members and provides state-handler functions
for all states (e.g., see the note attached to the Calc: : on () member function in Figure 4.1).
The following sections explain the implementation of all the QEP elements in C and C++.

4.2.1 QEP Source Code Organization

Listing 4.1 shows the directories and files comprising the QEP event processor in C.
The structure of the C++ version is identical, except that the implementation files have
the .cpp extension.

Listing 4.1 QEP event processor source code organization
apc\ - QP/C root directory (gpcpp for QP/C++)
|
+-include\ - QP platform-independent include files (*.H files)
| +-gassert.h - QP embedded systems-friendly assertions
| +-gep.h - QEP interface
|
+-ports\ - QP platform-specific ports
| +-80x88\ - QP ports to the 80x86 CPU
| | +-dos\ - ports for DOS (the non-preemptive "vanilla" scheduler)
| | | +-tcppl0l\ - the Turbo C++ 1.01 compiler
[ 1] | +-1\ - large memory model
| 1] | | +-dbg\ - build directory for the Debug configuration
1] | | | +-gep.1lib - QEP library
| 1] | | +-gep_port.h - QEP port header file
| 1] | | +-make.bat - make script for building the QP libraries
||
| +-. . . - QP ports to other CPUs ...
|
+-gep\ - QEP event processor component
| +-source\ - QEP platform-independent source code (*.C files)
| | +-gep_pkg.h - internal, package-scope interface of QEP
| | +-gep.c - contains definition of reserved signals
| | +-gfsm_ini.c- contains definition of QFsm_init ()
| | +-gfsm_dis.c- contains definition of QFsm_dispatch()

Continued onto next page

3 Concrete class is the OOP term and denotes a class that has no abstract operations or protected
constructors. Concrete class can be instantiated, as opposed to abstract class, which cannot be instantiated.
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+-ghsm_ini.c- contains definition of QHsm_init ()
+-ghsm_dis.c- contains definition of QHsm_dispatch()
+-ghsm_top.c- contains definition of QHsm_top ()
+-ghsm_in.c - contains definition of QHsm_isIn()

+-opt_gep.lnt - specific PC-Lint options for linting QEP

The QEP source files contain typically just one function or a data structure
definition per file. This design aims at deploying QEP as a fine-granularity library
that you statically link with your applications. Fine granularity means that the QEP
library consists of several small, loosely coupled modules (object files) rather than a
single module that contains all functionality. For example, a separate module
ghsm_in.c implements the QHsm_isIn () function; therefore, if your application
never calls this function, the linker will not pull in the ghsm_in module. This
strategy puts the burden on the linker to do the heavy lifting of eliminating any
unused code automatically at link time, rather than on the application programmer
to configure the QEP code for each application at compile time.

NOTE

The QEP code is instrumented with Q-SPY macros to generate software trace output from
state machine execution. However, the instrumentation is disabled by default and will not
be shown in the listings discussed in this chapter, for better clarity. Refer to Chapter 11
for more information about Q-SPY software tracing.

4.3 Events

The event representation for HSMs is in QEP exactly the same as for FSMs (see
Section 3.6 in Chapter 3). Event instances are implemented as event objects that
combine the signal and the event parameters into one entity. As shown in Figure 4.1,
QEP provides the QEvent base class for direct instantiation of events without
parameters or for derivation of events with arbitrary parameters.

4.3.1 Event Signal (0Signal)

A signal in UML is the specification of an asynchronous stimulus that triggers reactions
[OMG 07] and as such is an essential part of an event. The signal conveys the type of
the occurrence—what happened. Signals are typically enumerated constants. The
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following fragment of QEvent .h header file defines the type of the signal 9Signal to
be either 8 bits (uint8_t), 16 bits (uint16_t), or 32 bits wide (uint32_t),
depending on the configuration macro Q_SIGNAL_SIZE. If you don’t define this macro,
a default of 8 bits is assumed.

#ifndef QP_SIGNAL_SIZE
#define QP_SIGNAL_SIZE 1
#endif

#if (QP_SIGNAL_SIZE == 1)
typedef uint8_t QSignal;
#elif (QP_SIGNAL_SIZE == 2)
typedef uintl6_t QSignal;
#elif (QP_SIGNAL_SIZE == 4)
typedef uint32_t QSignal;
#else
#error "QP_SIGNAL_SIZE defined incorrectly, expected 1, 2, or 4"
#endif

NOTE

All components of the QP framework, including QEP, use the following standard exact-width
integer types (WG14/N843 C99 Standard, Section 7.18.1.1):

Exact Size Unsigned Signed

8 bits uint8_t int8_t
16 bits uintlé_t intl6_t
32 bits uint32_t int32_t

4.3.2 QEvent Structure in C

Listing 4.2 shows the definition of the QEvent structure in C. The member sig of type
QSignal represents the signal. The byte-wide member dynamic_ is used by the QP

framework to manage dynamically allocated events. You should never need to access
this member from the application-level code. (I'll explain dynamic event allocation

in Chapter 7.)
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Listing 4.2 QEvent structure in C (file <gp>\gpc\include\gevent.h)

typedef struct QEventTag {
QSignal sig; /* signal of the event */
uint8_t dynamic_; /* attributes of a dynamic event (0 for static event) */
/* add event parameters by derivation from the QEvent structure... */

} QEvent; /* the QEvent type */

The QEvent structure can be used as is for events without parameters or can serve as
the base structure for derivation of events with arbitrary parameters. The following

C code snippet shows how to derive the calculator event CalcEvt that contains the
key-code parameter (also see the sidebar “Single Inheritance in C” in Chapter 1):

typedef struct CalcEvtTag {

QEvent super; /* derives from QEvent */
uint8_t key_code; /* code of the key */
} CalcEvt; /* the CalcEvt type */

Having the common base structure QEvent for all events ensures that every event
object contains the signal at the same offset within the event. This allows using a pointer
to a derived event as a parameter to any function that expects a generic QEvent *e
pointer to the base structure. Any such function can always access the sig data member
(as e->sig) to determine what kind of derived event structure is used. The function
can then perform an explicit downcast® to the derived event structure to get the event
parameters. For example, to get the key_code parameter, a generic QEvent *e pointer
needs to be cast to CalcEvt as follows: ( (CalcEvt *)e)->key code.

The point here is that the sig data member has double responsibility. It obviously
must convey the occurrence (what happened?). But in addition, the signal must also
uniquely identify the derived event structure so that state-handler functions can
explicitly downcast to this derived structure based only on the sig value. This second
responsibility will became clearer in the upcoming Section 4.4.2, where I provide
examples of state handler functions.

“ Casting from the superclass to the subclass is called in OOP downcasting because the cast goes down a
traditionally drawn inheritance relationship in a class diagram, such as Figure 4.1.
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4.3.3 QEvent Structure in C++

In C++, the QEvent structure can be defined without the ugly typedef, as shown in
Listing 4.3. Please note that in C++ struct is exactly equivalent to class, except
in struct the default protection level is public and in class it is private.

Listing 4.3 QEvent structure in C++ (file <gp>\gpcpp\include\gevent .h)

struct QEvent {
QSignal sig; // signal of the event instance
uint8_t dynamic_; //attributes of adynamicevent (0 for static event)
// add event parameters by inheriting from QEvent

Y

Event instances are used primarily as “bags” for passing around signals and event
parameters. To generate events efficiently, it’s often convenient to use statically
preallocated, constant event objects initialized with an initializer list. To allow such
initialization in C++, a class must be an aggregate; that is, it must not have private or
protected members, constructors, base classes, and virtual functions [Stroustrup 00].
For that reason, QEvent is declared as struct in Listing 4.3, without any private
members or constructors. (An obvious constructor would take one argument to initialize
the sig attribute.)

The following C++ code snippet shows how to derive the calculator event CalcEvt
class that contains the key-code parameter:

struct CalcEvt : public QEvent {
uint8_t key_code; // code of the key
Y

When you derive from QEvent, the subclass is obviously no longer an aggregate. However,
I recommend that you still keep your event classes simple and lightweight. I like to

define the QEvent subclasses using the struct keyword as a reminder that they are
lightweight. In particular, I avoid private members, constructors, or virtual functions in the
derived event classes. As you will see in Chapter 7, events generally do not go through
conventional instantiation (the standard operator new isn’t used to create dynamic events),
so the constructors aren’t invoked and the virtual pointers aren’t set up.
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4.4 Hierarchical State-Handler Functions

In QEP, states are represented as state-handler functions that handle all events in the
state they implement. The hierarchical state-handler functions use exactly the same
signature QStateHandler as nonhierarchical state handler functions, as described in
Section 3.6 of Chapter 3. The only extension to the nonhierarchical implementation
technique discussed before is that a hierarchical state handler must additionally inform
the event processor about the nesting level of the state. When the hierarchical state
handler does not handle the event, the handler must provide the superstate so that the
event processor can invoke the superstate handler function, per the semantics of state
nesting (see Section 2.3.2). The hierarchical state-handler function provides this
additional information to the event processor very similarly as it informs the event
processor about a state transition. A state handler sets the state variable to the superstate
handler and returns a special status information that distinguishes this situation from a
state transition.

4.4.1 Designating the Superstate (Q_SUPER () Macro)

When a hierarchical state handler function does not handle the current event, it returns
the macro Q_SUPER () to the event processor, which is defined as follows:

#define Q_RET_SUPER ((QState)3)
#define Q_SUPER (super_) \
(((QHsm *)me) ->state = (QStateHandler) (super_), Q_RET_SUPER)

The Q_SUPER () macro is defined using the comma expression. A comma expression is
evaluated from left to right, whereas the type and value of the whole expression is the
rightmost operand. The rightmost operand is in this case the status of the operation
(superstate), which is returned from the state-handler function. The pivotal aspect of this
design is that the Q_ SUPER () macro can be used with respect to structures derived
(inheriting) from QHsm, which in C requires explicit casting (upcasting) to the QHsm base
structure (see the sidebar “Single Inheritance in C in Chapter 1).

4.4.2 Hierarchical State-Handler Function Example in C

Listing 4.4 shows an example of a hierarchical state-handler function that corresponds
to the state “int1” in the calculator statechart in Figure 2.18. State “int1” controls
entering the integer part of the first operand.
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Listing 4.4 Example of a hierarchical state-handler function in C (file calc.c)

QState Calc_intl(Calc *me, QEvent const *e) {
switch (e->sig) {
case DIGIT 0_SIG: /* intentionally fall through */
case DIGIT_1_9 SIG: {
BSP_insert (((CalcEvt const *)e)->key_code) ;
return Q HANDLED () ;
}
case POINT SIG: {
BSP insert (((CalcEvt const *)e)->key code);
(7) return Q TRAN(&Calc_fracl);
}
}
(8) return Q SUPER (&Calc_operandl) ;

(1) Each state handler takes two parameters: the state machine pointer “me” and the

constant pointer “e” to QEvent. It returns QState, which conveys the status
of the event handling to the event processor.

NOTE

The event pointer is declared as const to prevent modifying the event inside the state-
handler function. In other words, the state handler is granted read-only access to the event.

(2) Generally, every state handler is structured as a single switch that
discriminates based on the signal of the event e->sig.

(3,4) Each case islabeled by the event signal. Signals are typically enumerated constants.

(5) To get to the event parameters, a state handler must perform an explicit
downcast from the generic QEvent const* pointer to the specific derived event
pointer, such as CalcEvt const* in this case.

NOTE

At this point it becomes apparent that the signature of the state-handler function is really weakly
typed with respect to the event parameter. The compiler knows only that every event is passed as
the generic QEvent * pointer, but the compiler does not know the specific type of the event, such

Continued onto next page
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NOTE—CONT’D

as CalcEvt. The application programmer is ultimately responsible for performing a correct
downcast to the derived event based on the signal (e->sig). The point to remember is that
you need to be careful because the compiler cannot prevent an incorrect downcast.

(6) Returning Q_HANDLED () from a hierarchical state handler informs the QEP event
processor that the particular event has been handled.

(7) A state transition is accomplished by returning the macro Q_TRAN () that requires
the target of the transition as parameter.

(8) If no case executes, the state handler returns the Q_SUPER () macro, which
designates the superstate and informs the event processor about it.

4.4.3 Hierarchical State-Handler Function Example in C++

Listing 4.5 shows an example of a hierarchical state-handler function that corresponds
to the state “int1” in the calculator statechart in Figure 2.18.

Listing 4.5 Example of a hierarchical state-handler function in C++
(file calc.cpp)

QState Calc::intl(Calc *me, QEvent const *e) {
switch (e->sig) {

case DIGIT_O0_SIG: // intentionally fall through
case DIGIT 1 9 SIG: {
(1) BSP_insert (((static_cast<CalcEvtconst *>(e)))->key code);

return Q HANDLED () ;
}
case POINT_SIG: {
BSP_insert (( (static_cast<CalcEvtconst *>(e)))->key code);
return Q TRAN(&Calc::fracl);
}
}
return Q SUPER (&Calc: :operandl);

Apart from the trivial syntactic differences (such as the “: :” scope resolution operator
instead of an underscore), the structure of a hierarchical state-handler function in C++ is
identical to the C version from Listing 4.4. The only interesting difference is the
downcast of the generic event pointer to the specific subclass in Listing 4.5(1). Here,
I’ve used the new-style static_cast<> operator because the cast converts between
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types related by inheritance. Of course, you can also use the C-style cast if your older
C++ compiler does not support the new-style casts.

POINTERS TO MEMBER FUNCTIONS IN C++

The C++ state-handler function takes the “me” pointer of its own class type, through which it
accesses the state machine data members and member functions (e.g., me->operandl =...).
This is because the state-handler functions are static members of the QHsm subclass, such as
the calculator state machine class Calc (see Section 4.6.3).

An obvious and more elegant alternative would be to make the state-handler functions regu-
lar, nonstatic class members, which would allow them to access the class members much
more naturally through the implicit “this” pointer.

Indeed this much more elegant alternative has been used in the earlier QEP/C++ version pub-
lished in the first edition of this book. However, this alternative requires using pointers to member
functions instead of simple pointers to functions, which turned out to be a problem in practice.

Even though the earlier C++ version of QEP used pointers to member functions in a rather stan-
dard way, the embedded developers have filed a number of alarming reports from the trenches,
where the elegant approach either had very lousy performance or did not work at all. For exam-
ple, some embedded C++ compilers used over 30 machine instructions to de-reference a pointer
to member function and only three to de-reference a regular pointer to function. Needless to say,
three machine instructions should do the job (see also Section 3.7.1 in Chapter 3).

As it turns out, too many C++ compilers simply don’t support pointers to member functions
well due to interference from other language features, such as multiple inheritance and vir-
tual base classes. As eloquently explained in the online article “Member Function Pointers
and the Fastest Possible C++ Delegates” [Clugston 07], even such widespread and important
frameworks as the MFC actually use pointers to member functions in a nonstandard way by
subverting the normal C++ type checking.

To avoid inefficiencies and portability issues, the current C++ version of QEP does not
use pointers to member functions but simply plain pointers to functions to static member
functions that don’t have the “this” pointer and therefore are not affected by polymorphism
or multiple inheritance. Note that the explicit “me” pointer required by static class members
plays the same role as the “context” pointer required by the object-oriented State design
pattern (see Section 3.5.1 in Chapter 3).

4.5 Hierarchical State Machine Class

As shown in Figure 4.1, the QHsm base class is the central element of the QEP
design. The QHsm class is abstract, which means that it is not intended for direct
instantiation but only for derivation of hierarchical state machines, such as the Calc
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state machine in Figure 4.1. The main responsibility of the QHsm class is keeping track
of the current active state. In QEP, the state variable is a pointer to the state-handler
function QStateHandler defined previously.

The QHsm class also provides the standard state machine interface functions init ()
and dispatch () as well as the constructor and the top state handler. The following
sections explain these elements, first in the C version and later in C++.

4.5.1 Hierarchical State Machine in C (Structure QHsm)

In C, HSMs are derived from the QHsm base structure, shown in Listing 4.6.

Listing 4.6 QHsm structure and related functions
(file <ap>\gpc\include\gep.h)

typedef struct QHsmTag {

(1) QStateHandler state; /* current active state (state-variable) */
} QHsm;

(2) #define QHsm_ctor (me_, initial_) ((me_)->state = (initial_))

(3) wvoid QHsm_init (QHsm *me, QEvent const *e);

(4) wvoid QHsm_dispatch(QHsm *me, QEvent const *e);

(5) uint8_t QHsm_isIn (QHsm *me, QHsmState state) ;

(6) QState QHsm_top (QHsm *me, QEvent const *e);

(1) The QHsm structure stores the state-variable state, which is a pointer to a state-handler
function. Typically, the QHsm structure requires just 2 or 4 bytes of RAM, depending
on the size of the pointer to function for a given CPU and C compiler options.

(2) The oHsm “constructor” function-like macro initializes the state variable to
the initial-pseudostate function that defines the initial transition. Note that the
initial transition is not actually executed at this point.

(3) The oHsm_init () function triggers the initial transition in the state machine. The
function takes an initialization event argument. You can use this event to pass any
parameters to initialize the state machine.

(4) The QHsm_dispatch () function dispatches one event to the state machine.

(5) The QHsm_isIn () function tests whether the HSM “is in” a given state. Note that
an HSM simultaneously “is in” all superstates of the currently active state,
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and QHsm_isIn () tests for it. The QHsm_isIn () function returns 1 (TRUE)
if the HSM “is in” a given state (in the hierarchical sense). Otherwise the
function returns 0 (FALSE).

(6) The QHsm_top () function is the hierarchical state handler for the fop state.
The top state is the UML concept that denotes the ultimate root of the state
hierarchy. The top state handler “handles” every event by silently ignoring it,
which is the default policy in the UML (see also Section 4.5.3).

NOTE

The application-level state-handler functions that don’t explicitly nest in any other state
return the &QHsm_top pointer to the event processor.

4.5.2 Hierarchical State Machine in C++ (Class QHsm)

In C++, HSMs are derived from the QHsm abstract base class, shown in Listing 4.7.

Listing 4.7 QHsm class (file <gqp>\gpcpp\include\gep.h)

(1)

class QHsm {

protected:

QStateHandler m_state; // current active state (state-variable)
public:

void init (QEvent const *e = (QEvent const *)0) ;

void dispatch (QEvent const *e) ;
uint8_t isIn (QHsmState state);

protected:
QHsm(QStateHandler initial) : m_state(initial) {} // protectedctor
static QState top (QHsm *me, QEvent const *e) ;

}s

1)

2)

The QHsm class stores the state-variable state, which is a pointer to the hierarchical
state-handler function. The state variable m_state is protected so that the concrete
state machine classes derived from QHsm can access it through the macro Q_TRAN ().

The init () member function triggers the initial transition in the state machine.
The function takes an optional initialization event argument. You can use this
event to pass any parameters to initialize the state machine.
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3)
4

&)

(6)

The dispatch () member function dispatches one event to the state machine.

The isIn () member function tests whether the HSM “is in” a given state. Note
that if an HSM is in a substate, it recursively also “is in” all the superstates. The
isIn() function returns 1 (TRUE) if the HSM “is in” a given state (in the
hierarchical sense). Otherwise the function returns 0 (FALSE).

The constructor is protected to prevent direct instantiation of QHsm class, as it is
abstract. The constructor initializes the state variable to the initial-pseudostate
function that defines the initial transition. Note that the initial transition is not
actually executed at this point.

The top () static member function is the hierarchical state handler for the top
state. The top state is in UML the ultimate root of the state hierarchy. The

top state handler “handles” every event by silently ignoring it, which is the default
policy in the UML (see also Section 4.5.3).

NOTE

The application-level state-handler functions that don’t explicitly nest in any other state
return the &QHsm::top pointer to the event processor. It is crucial in this design
that QHsm: : top () 1S a static member, because static member functions can be referenced
by the simple pointers-to-functions, whereas regular member functions would require
pointers to member functions (also see the sidebar “Pointers to Member Functions in C++7).

4.5.3 The Top State and the Initial Pseudostate

Every HSM has the (typically implicit) fop state, which surrounds all the other elements
of the entire state machine, as depicted in Figure 4.2.

{ top

top state

— — — —| initial pseudostate B‘

[ ‘stateA [/ stateB N\

by QHsm_init()

nested ﬁ ( )
sub-machine @ — — — _| top-level initial
transition triggered

Figure 4.2: The top state and the initial pseudostate.
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The QHsm class guarantees that the top state is available to every derived state machine
by providing the QHsm_top () hierarchical state handler subsequently inherited by

the subclasses. The QHsm_top () hierarchical state-handler function is defined as
follows:

QState QHsm_top (QHsm *me, QEvent const *e) {

(void)me; /* avoid the compiler warning about unused parameter */
(void) e; /* avoid the compiler warning about unused parameter */
return Q IGNORED () ; /* the top state ignores all events */

By the UML semantics, the top state has no superstates and silently ignores all events,
so it always returns Q_IGNORED () to the event processor (see Listing 3.6(15) in
Chapter 3). The only purpose, and legitimate use, of the top state is to provide the
ultimate root of a state hierarchy so that the highest-level state handlers can return
&QHsm_top as their superstate. In particular, you should never target the top state in a
state transition.

The state machine initialization is intentionally divided into two steps. The QHsm
constructor merely initializes the state variable to the initial pseudostate. Later, the
application code must trigger the initial transition explicitly by invoking QHsm_init ()
(described in the upcoming Section 4.5.6). This design separates instantiation of the
state machine from initialization, giving the applications full control over the sequence
of initializations in the system. The following code shows an example of an initial
pseudostate handler for the calculator state machine:

QState Calc_initial (Calc *me, QEvent const *e) {

(void) e; /* avoid the compiler warning about unused parameter */
BSP_clear(); /* clear the calculator display */
return Q TRAN (&Calc_on); /* designate the default state */

Note that the topmost initial transition can fire only once (actually, exactly once),
because after you leave the top state, you cannot transition back. In other words, your
state machine cannot reuse the initial pseudostate in its life cycle.
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4.5.4 Entry/Exit Actions and Nested Initial Transitions

In Chapter 2, you saw that UML state machines support elements of Moore automata
such as entry and exit actions as well as nested initial transitions. These elements

are sole characteristics of the state in which they are defined and do not depend,

in particular, on the transition path through which the state has been reached.

As described in Chapter 3, state-handler functions in QEP can (optionally) define
state-specific behavior by responding to the following reserved signals defined in the
gep .h header file:

enum QReservedSignals {
Q_ENTRY_SIG=1, /* signal for coding entry actions */
Q_EXIT_SIG, /* signal for coding exit actions */
Q_INIT SIG, /* signal for coding initial transitions */
Q_USER_SIG /* first signal that can be used in user code */
Y

A state handler can handle these signals by using them as case labels in the usual
switch statement. A state handler is free to execute any actions in response to
those signals, but it should not take any state transitions in entry/exit actions.
Conversely, the response to the Q_INIT_SIG signal must always include the
Q_TRAN () macro to designate the default substate of the current state.

NOTE

The target of a nested initial transition specified in the 9_TRAN () macro must be the direct
or transitive substate of the composite state in which the initial transition is defined. In
other words, the nested initial transition must “drill into” the state hierarchy but cannot
“go up” to target superstates or “sideways” to target peer states. The QEP event processor
does not check for such incorrect initial transition targets, which really violate the UML
semantics and correspond to malformed state machines and could crash the QEP event
processor.

Listing 4.8 provides an example of using an entry action, an exit action, and a nested
initial transition.
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Listing 4.8 Definition of the Calc_on () state-handler function with entry
and exit actions and an initial transition

QState Calc_on(Calc *me, QEvent const *e) {
switch (e->sig) {

case Q ENTRY SIG: { /* entry action */
BSP_message ("on-ENTRY; ") ;
return Q HANDLED () ;

}

case Q EXIT SIG: { /* exit action*/
BSP_message ("on-EXIT;");
return Q HANDLED () ;

}

case Q INIT SIG: { /* nested initial transition */
BSP_message ("on-INIT;");
return Q TRAN (&Calc_ready) ;

}

case C_SIG: {
BSP_clear();
return Q TRAN(&Calc_on);

}

case OFF_SIG: {
return Q TRAN(&Calc_final);

}
return Q SUPER (&QHsm_top) ;

The reserved signals take up the lowest signal values (0..3), which are thus not
available for the applications. For convenience, the public HSM interface contains
the signal 9_USER_SIG, which indicates the first signal free for the users. A typical
way of defining application-level signals is to use an enumeration. In this case,
O_USER_SIG can be used to offset the values of the entire enumeration, as shown
in Listing 4.9.

Listing 4.9 Enumerating signals for the Calc state machine

enum CalcSignals {
C_SIG = Q USER_SIG,
CE_SIG,

Continued onto next page
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DIGIT 0_SIG,
DIGIT 1_9_SIG,
POINT_SIG,
OPER_SIG,
EQUALS_SIG,
OFF_SIG

NOTE

The reserved signals Q_ENTRY_SIG, Q_EXIT_SIG, and Q_INIT_SIG should cause no side
effects in state-handler functions that do not have entry actions, exit actions, or initial transitions.
The signal O (defined internally in the QEP as QEQ_EMPTY_SIG_) isreserved as well and should
cause a state-handler function to always return the superstate without any side effects.

4.5.5 Reserved Events and Helper Macros in QEP

To execute entry/exit actions and initial transitions, the QEP event processor needs to
invoke the various state-handler functions and pass to them pointers to event objects
containing the reserved signals. For example, to trigger an entry action in the
Calc_on () state handler, the event processor calls the Calc_on () function with a
pointer to an event that has the signal equal to Q_ENTRY_SIG. To do this efficiently,
QEP uses the QEP_reservedEvt_[] constant array of reserved events, defined as
follows:

QEvent const QEP reservedEvt [] ={

{ (QSignal)QEP_EMPTY_SIG_, (uint8_t)O0 },
{ (QSignal)Q_ENTRY_SIG, (uint8_t)O0 },
{ (QSignal)Q_EXIT_SIG, (uint8_t)0 },
{ (0Signal)Q_INIT_SIG, (uint8_t)0 }
Y
NOTE

The reserved signal zero, enumerated as QEP_EMPTY_SIG_, is used only internally in QEP
and therefore is not defined in the public QEP interface gep.h with the rest of the reserved
signals.
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The array QEP_reservedEvt_[] is designed to be indexed by the reserved signals.
For example, &QEP_reservedEvt_[Q_ENTRY_SIG] represents a pointer to an event
with the reserved signal Q_ENTRY_SIG.

The following three helper macros are then used extensively inside the QEP
implementation (file <gp>\gpc\gep\source\gep_pkg.h):

/** helper macro to trigger reserved event in an HSM */
#define QEP_TRIG_ (state_, sig_) \
((*(state_)) (me, &QEP_reservedEvt_[sig_]))

/** helper macro to trigger entry action in an HSM */
#define QEP_EXIT_ (state_) \
if (QEP_TRIG_ (state_, Q_EXIT_SIG) == Q_RET_HANDLED) { \
/* QS software tracing instrumentation for state exit */\

}

/** helper macro to trigger exit action in an HSM */
#define QEP_ENTER_ (state_) \
if (QEP_TRIG_ (state_, Q_ENTRY_SIG) == Q RET_HANDLED) { \
/* QS software tracing instrumentation for state entry */\

}

For example, the macro QEP_TRIG_ () calls a given state-handler function state_
with the reserved event pointer argument &QEP_reservedEvt_[sig_], where sig_
is one of these: QEP_EMPTY_SIG_, Q_ENTRY_SIG, Q_EXIT SIG, or Q_INIT SIG.
Note the characteristic syntax of the function call based on a pointer to function
(*(state_)) (...).

DESIGN BY CONTRACT IN C AND C++

All components of the QP framework, including QEP, apply the elements of the Design by
Contract® (DbC) philosophy, which is a method of programming based on precisely defined
specifications of the various software components’ mutual obligations (contracts). The cen-
tral idea of this method is to inherently embed the contracts in the code and validate them
automatically at runtime [Meyer 97].

Continued onto next page

5 Design by Contract is a registered trademark of Interactive Software Engineering (ISE).
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DESIGN BY CONTRACT IN C AND C++—CONT’D

In C or C++, you can implement the most important aspects of DbC with assertions (see
[Murphy Ola, 01b, Samek 03d]). Throughout this book, I use customized assertions defined
in the header file gassert.h, located in directories <gp>\gpc\include\ as well as
<gp>\gpcpp\include\. The gassert.h header file provides a number of macros, which
include:

® (O REQUIRE (), to assert a precondition
® (O ENSURE(), to assert a postcondition
® (O TINVARIANT (), to assert an invariant
® (O ASSERT (), to assert a general contract of another type

® (O ALLEGE, to assert a general contract and always evaluate the condition, even when
assertions are disabled at compile time

Each of these macro works similarly as the standard library macro assert (), and their dif-
ferent names serve only to document the purpose of the contract. Section 6.7.3 in Chapter 6
covers DbC and gassert.h in more detail.

4.5.6 Topmost Initial Transition (QHsm_init ())

State nesting adds a lot of complexity to the topmost initial transition in an HSM compared
to a nonhierarchical FSM. The initial transition in an HSM might be complex because
UML semantics require “drilling” into the state hierarchy with the nested initial transitions
until the leaf state is reached. For example, the topmost initial transition in the calculator
example (Figure 2.18 in Chapter 2) involves the following six steps:

1. Execution of actions associated with the topmost initial transition
2. Execution of entry actions to the “on” state

3. Execution of the actions associated with the initial transition defined in the
“on” state

4. Execution of the entry actions to the “ready” state

5. Execution of the actions associated with the initial transition defined in the
“ready” state

6. Execution of the entry actions to the “begin” state; at this point the transition is
done because “begin” is a leaf state with no nested initial transition
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Figure 4.3: The inheritance tree of the calculator HSM with the nested
initial transitions.

Figure 4.3 shows the inheritance tree of the states comprising the calculator statechart.
The UML specification requires that higher-level states must be entered before entering
lower-level states. Unfortunately, this is exactly the opposite order to the natural
direction of navigation through the state handlers denoted by the behavioral inheritance
arrow in Figure 4.3. As you recall from Section 4.4, a hierarchical state-handler function
provides the superstate, so it’s easy to traverse the state hierarchy from lower- to higher-
level states. Although this order is very convenient for the efficient implementation of
the most frequently used QHsm_dispatch () function, entering states is harder.

The solution implemented in QEP is to use a temporary array path[] to record the exit
path from the target state of the initial transition without executing any actions
(see Figure 4.4). This is achieved by calling the state handlers with the reserved

—_— path[0] target N A
;?1 ex |tr;]to path[1] super(target) discovering  entering
e path[] array superstates  target
N path[2] | super(super(target))

of target configuration

path[n] unused

Figure 4.4: The use of the path[] array to enter the target state configuration
in the correct order.
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QEP_EMPTY_SIG_ signal, which causes every state handler to immediately return the
superstate without executing any actions. The returned superstates are saved in the
path[] array. After reaching the current state, the path[] array is played backward to
enter the target state in the exact reversed order in which it was exited.

Listing 4.10 shows the definition of the QHsm_init () function that executes a generic
topmost initial transition according to the UML semantics. The equivalent C++
implementation of the QHsm: : init () member function is identical, except for trivial
syntactic differences between C and C++.

Listing 4.10 Definition of the QHsm_init () function
(file <gp>\gpc\gep\source\gep_ini.c)

(1) wvoid QHsm_init (QHsm *me, QEvent const *e) {
QOStateHandler t;

/* the top-most initial transition must be taken */

(2) Q ALLEGE ( (*me->state) (me, e) == Q RET_ TRAN) ;
(3) t = (QStateHandler) &QHsm_top; /* HSM starts in the top state */
(4) do { /* drill into the target...*/
(5) QStateHandler path [QEP MAX NEST DEPTH ] ;
(6) int8 tip= (int8 t)O0; /* transition entry path index*/
(7) path[0] =me->state; /* save the target of the initial transition */
(8) (void) QEP_TRIG_(me->state, QEP EMPTY SIG );
(9) while (me->state !=1t) {

(10) path [++ip] = me->state;

(void) QEP TRIG (me—>state, QEP EMPTY SIG );
}

(11) me->state =path[0] ; /* restore the target of theinitial tran.*/
/* entry pathmust not overflow*/

(12) Q ASSERT (ip < (int8 t)QEP_MAX NEST DEPTH );

do { /* retrace the entry path in reverse (desired) order...*/
(13) QEP_ENTER (path[ip]); /* enter path[ip] */
(14) } while ((--ip) >= (int8_t)0);
(15) t =path[0] ; /* current state becomes the new source */
(16) } while (QEP TRIG (t, Q INIT SIG) ==Q RET TRAN);

(17) me->state = t;
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The QHsm_init () implements the QHsm “class operation” and therefore takes the
“me” pointer. The event pointer parameter e can be used to provide additional
initialization parameters to the state machine.

Inside the Q_ALLEGE () macro (see the sidebar “Design by Contract in

C and C++”) the initial pseudostate handler function is called via the pointer to
function stored in the state variable me->state. The initial pseudostate handler
returns the Q_TRAN () macro, in which it designates the target of the initial
transition. The Q_ATLEGE () macro makes sure that the initial pseudostate always
takes the initial transition. I use the Q_ALLEGE () macro because the initial
transition must be executed even when assertions are disabled at compile time.

The temporary variable t holds the source state of the transition. The first source
is the top state.

The do-loop performs the recursive execution of any nested initial transitions until
a leaf state is reached.

The temporary array path[] stores the pointers to state-handler functions in the
exit path from the target state of the initial transition (see Figure 4.4).

The temporary variable ip is used as the index into the path[] array.

The path[0] entry is initialized to hold the target state, which is placed in
me->state by the Q_ TRAN () macro called in the state-handler function.

The superstate of the current state is discovered by calling the state handler with
the reserved QEP_EMPTY_SIG_ signal. The hierarchical state handler never
handles the QEP_EMPTY_SIG_ signal, so it returns Q_SUPER () macro, which sets
me->state to the superstate of the given state.

The discovery of superstates continues until the current source state is reached.

NOTE

It is crucial at this point that the target state of the initial transition indeed is a substate of the
source.
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(10) The exit path from the target is stored in the path[] array.

(11) The current state me->state is restored to the original target of the initial
transition.

(12) This assertion makes sure that the path[] array does not overflow (see the
sidebar “Design by Contract in C and C++”).

(13) All states stored in the path[] array are entered in the correct order.

(14) The entry to the target state configuration continues until index 0, which points to
the target itself.

(15) The current state becomes the new source.

(16) The loop continues as long as the current state handler reports that it handled the
initial transition. Otherwise, it is a leaf state and the job of the QHsm_init ()
function is done.

(17) The current state is set to the final leaf state.

4.5.7 Dispatching Events (QHsm_dispatch(),
General Structure)

Dispatching an event to an HSM requires implementing the UML state nesting
semantics, that is, propagating the event through all the levels of nesting until it is
handled or reaches the top state. This functionality as well as executing of transitions is
implemented in the QHsm_dispatch () function.

The QHsm_dispatch () function is the most complicated in the QEP event processor.°
I will break up the discussion of the implementation into two steps. First, in this
section I explain how the function handles hierarchical event processing. In the

next section, I take a closer look at the transition execution algorithm.

Listing 4.11 shows the general structure of the QHsm_dispatch () function.

The implementation uses many elements already described for QHsm_init (). The code
carefully optimizes the number and size of temporary stack variables to minimize the
stack use. The equivalent C++ implementation of the QHsm: : dispatch () member
function is identical, except for trivial syntactic differences between C and C++.

6 QHsm_dispatch() is not broken up in to smaller functions to conserve the stack space.
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Listing 4.11 General structure of the QHsm_dispatch() function
(file <gp>\agpc\gep\source\gep_dis.c)
(1) wvoid QHsm dispatch (QHsm *me, QEvent const *e) {
2 QStateHandler path [QEP MAX NEST DEPTH ] ;
QStateHandler s;
QStateHandler t;
QState r;

(3) t = me->state; /* save the current state */

(4) do { /* process the event hierarchically...*/

(5) s =me->state;

(6) r= (*s) (me, e); /* invoke state handler s */

(7) } while (r == Q RET_SUPER);

(8) if (r ==Q RET TRAN) { /* transition taken? */
int8 tip= (int8 t) (-1); /* transition entry path index * /
int8 t iqg; /* helper transition entry path index */

(9) path[0] =me->state; /* save the target of the transition */

(10) path[1l] =t;
(11) while (t !=s) { /* exit current state to transition source s...*/
(12) if (QEP_TRIG (t, Q EXIT SIG) == Q RET HANDLED) { /*exit handled? */
(13) (void)QEP_TRIG_(t, QEP_EMPTY SIG ); /* find superstate of t */
}
(14) t = me->state; /* me->state holds the superstate */
}
(15)
}
(16) me->state = t; /* set new state or restore the current state */

(1) The QHsm_dispatch () implements the QHsm “class operation” and therefore it

takes the “me” pointer. The job of this function is to process the event e
according to the UML semantics.

(2) The temporary array path[] stores the pointers to state-handler functions in the

exit path from the target state of the transition. To conserve the stack
space, this array is reused for other purposes as well.

(3) The current state is saved temporarily into ‘t’.
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(4) This do-loop processes the events hierarchically starting from the current state.

(5) The current state is saved in the temporary ‘s’ in case a transition is taken, which
overwrites me->state. In that case, the variable ‘s’ holds the source of the
transition.

(6) At each level of state nesting, the state-handler function is called. The status
of the event handling reported from the state handler is stored in to the temporary
variable ‘r.’

(7) The do-loop continues as long as state handler functions return superstates
(via the 9_SUPER () macro). Please note that the top state handler ignores all
events, so the loop must terminate even if the event is not explicitly handled at
any level of state nesting.

(8) If the returned status is Q_RET_TRAN, the last called state handler must have
taken a state transition by executing the Q_TRAN () macro (see Listing 3.6(16) in
Chapter 3).

(9) The current state me->state holds the target of the transition, which is now
placed in path[0] (see Figure 4.4).

(10) The current state before the transition is copied to path[1], so that the variable
‘t’ can be reused.

(11) This while-loop executes the transition segment from the current state to the
explicit source of the transition. This step covers the case of an inherited state
transition—that is, the transition defined at a level higher than the currently
active state.

For example, assume that the state “result” is the current active state of the calculator
state machine in Figure 4.5 while the user presses one of the operator keys (+, —, *, or /).
When the function QHsm_dispatch () receives the OPER event, it calls the currently
active state handler first, which is the Calc_result () state handler. This state handler
doesn’t handle the OPER event, so it returns the superstate Calc_ready (). The
QHsm_dispatch () function then calls the Calc_ready () state handler, which
handles the OPER event by taking a state transition Q_TRAN (&Calc_opEntered).
However, the correct exit of the current state configuration must include exiting “result”
before exiting “ready.” This transition segment is shown in grey in Figure 4.5.
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12)
13)

(14)

5)

(16)

inheritance

The exit action is triggered in the state.

If the exit action is handled, I need to discover the superstate by calling the
state handler with the empty event. If the exit action is unhandled, the

state handler returned the Q_SUPER () macro, so me->state already
contains the superstate.

The superstate is stored in the temporary variable ‘t’ to be compared with the
transition source.

The omitted part contains the state transition algorithm shown in Listing 4.12 and
explained in the next section.

The current state is restored from the variable ‘t,” where it has been stored in
step (3).

[\

Behavioral Zr m

| LCA(ready, opEntered) |l| —————————————————————— ( on )

Transition segment from OPER
the explicit source to the -
explicit transition target. |

| transition source lll ————————————————— ready > <opEntered>

Transition segment from
the current state to the - =
explicit transition source. | |

——————————————— Cromit ) (oegin )

Figure 4.5: Two segments of an inherited state transition.

4.5.8 Executing a Transition in the State Machine
(QHsm_dispatch (), Transition)

Executing a generic state transition in a HSM is by far the most complex part of
the QEP implementation. The challenge is to quickly find the least common
ancestor (LCA) state of the source and target states. (The LCA is the lowest-hierarchy
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state that is simultaneously the superstate of the source and the target states.) The
transition sequence involves the exit of all states up to the LCA (but without exiting
the LCA itself), followed by the recursive entry into the target state, followed by
“drilling” into the target state configuration with the initial transitions until a leaf state
is reached.

Listing 4.12 shows the omitted part of the QHsm_dispatch () function that
implements the general case of a state transition. A large part of the complexity of
this part of the code results from the optimization of the workload required to
efficiently execute the most frequently used types of state transitions. The
optimization criterion used in the transition algorithm is to minimize the number of
invocations of state-handler functions, in particular the “empty” invocations (with

the reserved QEP_EMPTY_SIG_), which serve only for eliciting the superstate of a given
state handler. The strategy is to order the possible source-target state combinations in
such a way that the information about the state hierarchy gained from earlier steps
can be used in later states. Figure 4.6 shows such ordering of state transition topologies.
This ordering is the basis for the transition algorithm in Listing 4.12.

E F G H

Figure 4.6: Ordering of transition types from simplest to progressively more
complex in the transition algorithm (Listing 4.12).
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Listing 4.12 Transition algorithm implementation in the QHsm_dispatch ()
function (file <gp>\gpc\gep\source\gep_dis.c)

/* NOTE: continued from Listing 4.11 */

t = path[0] ; /* target of the transition */
(1) if (s ==t) { /* (a) check source==target (transition to self) */
QEP_EXIT (s) /* exit the source */
ip = (int8_t)0; /* enter the target */
}
else {
(void) QEP_TRIG_(t, QEP EMPTY SIG ); /* superstate of target */
t = me->state;
(2) if (s ==1t) { /* (b) check source==target->super */
ip = (int8_t)0; /* enter the target */
}
else {
(3) (void)QEP TRIG (s, QEP _EMPTY SIG ); /* superstate of src*/
/* (c) check source->super==target->super */
(4) if (me->state == t) {
QEP_EXIT_(s) /* exit the source */
ip = (int8 t)0; /* enter the target */
}
else {
/* (d) check source->super==target */
(5) if (me->state == path[0]) {
QEP_EXIT_(s) /* exit the source */
}
else { /* (e) check rest of source==target->super->super. .
* and store the entry path along the way
*/
ig= (int8 t)O0; /* indicate that LCA not found */
ip = (int8 t)1; /* enter target and its superstate */
path[l] =t; /* save the superstate of target */
t = me->state; /* save source->super */

/* find target->super->super */
r = QEP_TRIG_(path[1l], QEP_EMPTY SIG );

(6) while (r == Q RET SUPER) {
path [++1ip] = me->state; /* store the entry path */
if (me->state == s) { /* is it the source? */
ig= (int8 t)1; /* indicate that LCA found */

/* entry path must not overflow */
Q ASSERT (ip < (int8 t)QEP_MAX NEST DEPTH );

Continued onto next page
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(10)

(11)

7,ip;

r =
}

else {

}

if (ig== (int8 _t)0) {

Q RET HANDLED; /*

/* do not enter the source */

terminate the loop */

/* it is not the source, keep going up */
r = QEP TRIG (me->state, QEP EMPTY SIG );

/* the LCA not found yet? */

/* entry path must not overflow */
Q ASSERT (ip < (int8 t)QEP MAX NEST DEPTH );

QEP EXIT (s)

/* exit the source */

/* (f) check the rest of source->super

*

== target->super->super...

/* indicate LCA NOT found */

/* is this the LCA? */
indicate LCA found */

/*do not enter LCA*/
terminate the loop */

LCA not found yet? */

/* keep looping */

*/
ig=1ip;
r =0 RET IGNORED;
do {
if (t ==path(idl) {
r =Q RET HANDLED; /*
ip= (int8 _t) (ig-1);
ig= (int8 _t) (-1); /*
}
else{
-—iqg; /* try lower superstate of target */
}
} while (ig>= (int8 t)0);
if (r !=Q RET HANDLED) { /*
/* (g) check each source->super->...
* for each target->super...
*/
r=0Q RET IGNORED;
do {

/* exit t unhandled? */

if (QEP TRIG (t, QO EXIT SIG)
== Q RET HANDLED)

(void) QEP TRIG (t, QEP EMPTY SIG );

}

t = me->state; /* set to super of t */
ig=1ip;
do {

if (t == pathliq]) {

ip= (int8 _t) (ig-1);

/* is this LCA? */
/* do not enter LCA */
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ig= (int8_t) (-1); /*break inner * /
r = Q RET HANDLED; /*break outer */
}
else{
——ig;

}
} while (ig>= (int8 t)0);
} while (r !=Q RET HANDLED);

/* retrace the entry path in reverse (desired) order... */
(12) for (; ip>= (int8_t)0; —-ip) {
QEP _ENTER (path[ip]) /* enter path [ip] */
}
t =path[0] ; /* stick the target into register */
me->state = t; /* update the current state */

/* drill into the target hierarchy... */
(13) while (QEP_TRIG (t, Q INIT SIG) == Q RET TRAN) {
ip= (int8 t)0;
path[0] = me->state;

(void) QEP_TRIG_(me->state, QEP EMPTY SIG ); /* find superstate */
while (me->state !=t) {

path [++ip] = me->state;

(void) QEP TRIG (me->state, QEP_EMPTY SIG ); /* find superstate */

}
me->state = path[0] ;

/* entry path must not overflow */
Q ASSFRT (ip < (int8 t)QFEP _MAX NEST DEPTH );

do { /* retrace the entrypath in reverse (correct) order...*/
QEP_ENTER (path[ip]) /* enter path[ip] */
} while ((-ip) >= (int8 t)0);

t =path[0] ;

(1) From the point of view of reducing the number of state handler calls, the simplest
transition type is transition to self (Figure 4.6(A)) because this transition type
can be determined immediately by testing (source == target), that is, no
state-handler invocations are necessary to check for this transition type. The
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®)

(6)
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(®)

self-transition requires exiting the source and entering the target. The exit from the
source can be performed right away by means of the helper macro QEP_EXIT ()
introduced in Section 4.5.5.

The next transition type is the topology shown in Figure 4.6(B). The check for this
transition type is (source == super (target)) and requires determining the
superstate of the target. This transition type requires only entry to the target but no
exit from the source.

To proceed further, the algorithm checks for the superstate of the source state.
The information about superstates of both the target and the source collected

so far is subsequently used to determine two transition types shown in Figure 4.6
(C) and (D).

The transition topology in Figure 4.6(C) is the peer-to-peer transition shown
(perhaps the most common type). This transition topology can be determined
by checking the condition (super (source) == super (target)) and
requires exit from the source and entry to the target. The exit is performed
right away by means of the helper macro QEP_EXIT_ ().

The topology shown in Figure 4.6(D) requires testing the condition (super (source)
== target) and involves only entry to the target but no exit from the source.

The topology shown in Figure 4.6(E) requires probing all superstates of the
target until a match with the source is found or until the top state is reached.
The target state hierarchy determined in this part of the algorithm is stored in the
temporary array path[] and is subsequently reused to perform the entry to

the target state configuration in the desired order. Note that the entry path[0]
already holds the target itself, and path[1] holds the superstate of target
discovered in the prior steps.

The macro Q_ASSERT () implements a customizable, embedded-system friendly
assertion. I discuss the use of assertions in the QP event-driven platform in Section
6.7 of Chapter 6.

The transition topology from Figure 4.6(E) is the last that might not require
exiting the source state, so if the processed transition does not fall into the
(E) category, the source state must be exited.
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(9) The topology shown in Figure 4.6(F) requires traversal of the target state
hierarchy stored in the array path[] to find the match with the superstate of
source still kept in the temporary variable s.

(10) Because every scan for a match with a given superstate of the source
exhausts all possible matches for the LCA, the source’s superstate can be
safely exited.

(11) The topologies shown in Figure 4.6(G) and (H) require traversal of the target
state hierarchy stored in the array path[] to find the match with any of the
superstates of the source.

The transition types shown in Figure 4.6(A) through Figure 4.6(H) represent all valid
transition topologies, and every well-formed transition should be recognized as one of
the cases (A) through (H). Once QHsm_dispatch () detects the type of the transition
and executes all necessary exit actions up to the LCA, it must enter the target state
configuration.

(12) The entry to the target state configuration is straightforward and involves just a
simple for loop that scans through the array path[] in the reversed order as it
was filled.

(13) The target state can be composite and can have an initial transition as well.
Therefore, the while loop performs the “drilling” into the target until it detects
the leaf state. This part of the algorithm is very similar as the QHsm_init ()
function explained in Listing 4.10.

4.6 Summary of Steps for Implementing HSMs
with QEP

Implementing state machines with the QEP event processor is quite a mechanical
process consisting of just a few simple steps. You already went through the process
at least once in Section 1.7 of Chapter 1, where I explained the implementation of the
Ship state machine in the “Fly ‘n’ Shoot” game. Here I present the implementation
of the calculator state machine, which was designed in Section 2.4 of Chapter 2 and also
served as an example throughout this chapter.
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When you know how to code one HSM, you know how to code them all. Therefore,
this section will necessarily repeat some of the descriptions from Chapter 1. However,
I feel that having all the HSM coding steps conveniently summarized in one section
will be helpful for daily programming work. In addition, to reduce the repetition,

I describe here the state machine implementation in C++. If you are a C programmer,
I hope that by now you are getting more familiar with the concepts of a “class” and
“inheritance” and know how to code them in C.

The C++ source code for the calculator state machine is located in the directory
<gp>\gpcpp\examples\80x86\dos\tcppl0l\1l\calc\ and consists of
the following files:

® calc.h contains the declaration of signals, events, and the global pointer to the
Calc state machine.

® calc.cpp contains declaration of the Calc state machine structure and the
implementation of the state-handler functions.

® bsp.h contains the board support package interface.

® Dbsp.cpp contains the implementation of the board-specific functions.
® main.cpp contains the main () function and the event loop.

® CALC.PRJ is the Turbo C++ project file for building the application.

As always, the code I provide is executable and I encourage you to try it out. You
can run the example on any Windows PC by double-clicking on the executable located
in the directory <gp>\gpcpp\examples\80x86\dos\tcppl01\1l\calc\dbg
\CALC.EXE.

The calculator example is interactive and you can perform computations with it. You
use the keyboard to send keypress events to the application; the state of the calculator
display is shown at the command prompt. The calculator recognizes keys: 0, 1, ..., 9, .,
+,—, *,/, =, C, and E (cancel entry, CE). The Esc key terminates the application. All
other keys are ignored.

Figure 4.7 shows a screen shot in which you can see how the calculator handles the
expression 2, —, —, —, 2, = that has crashed the Visual Basic calculator in Chapter 2. I'd
like to challenge you to crash the state machine-based calculator. The calculator starts
with displaying zero aligned at the right edge of the display [ 0]. To the right of

the display, you can see the key sent to the calculator. For example, the first key is 2.
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The key event is followed by the sequence of actions that the calculator HSM
performs in response to the key event. I recommend that you correlate this output
with the calculator state diagram from Figure 2.18.

=~ Command Prompt HEH

alculatur example, QEP version: 4.0.808
ress '8’ to enter a digit
ress .7 to enter the decimal point _J
ress '+’ to add

ress - to subtract or negate a number
ress ' w' to multiply
ress '/’ to divide
ress '=' or {Enter> to get the result
ress ‘c’ or ‘G’ to Cancel
ress ‘e’ or 'E’ to Cancel Entry
ress <Esc> to guit.
n—ENTRY ;on—INIT ;ready—ENTRY ;ready—INIT ;begin—ENTRY;
B]1 2: begin—EXIT;ready—ERIT;operandl—ENTRY;int1-ENTRY;
21 —: int1-EXIT;operandl-EXIT;opEntered—ENTRY;
21 =: opEntered—-EXIT;:negated2-ENTRY;
-A]1 —:
-B]1 2: negated2-EXIT;operand2—ENTRY;int2-ENTRY;
—-21 =: intZ2-EXIT:;operand2-EXIT;ready— ENTRY,Pesult ENTRY ;
4] #: result-ERIT;ready-ERIT;on—-EXIT;:final-ENTRY;
yet! Bye? LI

Figure 4.7: The calculator HSM running in a Windows console.

4.6.1 Step 1: Enumerating Signals

The first step of the implementation consists of enumerating all signals recognized by
the state machine shown in the state diagram (Figure 2.18 in Chapter 2), such as C,
CE, DIGIT_0O, DIGIT_1_9, and so on.

Listing 4.9 shows the enumeration of all signals recognized by the calculator state
machine. Note that the user-level signals do not start from zero but rather are offset by
the constant Q_ USER_SIG. Also note that by QEP convention, all signals have the
suffix _SIG to easily distinguish signals from other constants. The suffix _SIG is
omitted in the state diagram to reduce the clutter.

4.6.2 Step 2: Defining Events

Many events consist only of the signal and don’t need any additional parameters. You
can represent such events directly as instances of the QEvent structure provided in
the header file <gp>\gpcpp\include\gevent.h
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However, some events require parameters. For example, the calculator signal
DIGIT_1_9_SIG communicates only that one of the digit keys 1..9 has been depressed,
but the signal alone does not inform us as to which digit key this was. The missing
information is added to the event in the form of the key_code parameter

that represents the code of the depressed key.

NOTE

The granularity of signals has been chosen that way because the behavior of the calculator
really is independent of exactly which digit key is depressed (only the digit O needs to be
treated differently from the rest, and that’s why it has been represented as a separate signal).
Similarly, the calculator reacts identically to all operators (+,— , *, /) and therefore all opera-
tors have been represented by only one signal OPER_SIG. Section 4.7.8 talks about achieving
the optimal signal granularity.

The following fragment of the calc.h header file demonstrates how you add event
parameters. You define a class (CalcEvt) that inherits from the QEvent class.
You then add arbitrary parameters as data members:

struct CalcEvt : public QEvent {
uint8_t key_code; // code of the key

Y

4.6.3 Step 3: Deriving the Specific State Machine

Hierarchical state machines are represented in QEP as subclasses of the QHsm
abstract base class, which is defined in the header file <gp>\gpcpp\include\gep.h.
Listing 4.13 demonstrates how you derive the Calc (calculator) class from QHsm.

NOTE

You should not be confused by the fact that the Ship state machine example in Chapter 1
derived from the QActive base class rather than QHsm. As you will see in Chapter 7,
OActive is a subclass of QHsm, so the Ship state machine is in fact derived from QHsm,

albeit not directly.
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Listing 4.13 Deriving the Calc class from QHsm
(1) class Calc : public QHsm {
private:
(2) double m operandl; // the value of operand 1 (extended state variable)
uint8 t m operator; // operator key entered (extended state variable)
public:
(3) Calc() : QHsm( (QStateHandler) &Calc::initial) { // ctor
}
protected:
(4) static QState initial (Calc *me, QEvent const *e); // initial pseudostate
(5) static QState on (Calc *me, QEvent const *e); // state handler
static QState error (Calc *me, QEvent const *e); // state handler
static QState ready (Calc *me, QEvent const *e); // state handler
static QState result (Calc *me, QEvent const *e); // state handler
static QState begin (Calc *me, QEvent const *e); // state handler
static QState negatedl (Calc *me, QEvent const *e); // state handler
static QState operandl (Calc *me, QEvent const *e); // state handler
static QState zerol (Calc *me, QEvent const *e); // state handler
static QState intl (Calc *me, QEvent const *e); // state handler
static QState fracl (Calc *me, QEvent const *e); // state handler
static QState opEntered (Calc *me, QEvent const *e); // state handler
static QState negated?2 (Calc *me, QEvent const *e); // state handler
static QState operand?2 (Calc *me, QEvent const *e); // state handler
static QState zero2 (Calc *me, QEvent const *e); // state handler
static QState int2 (Calc *me, QEvent const *e); // state handler
static QState frac?2 (Calc *me, QEvent const *e); // state handler
static QState final (Calc *me, QEvent const *e); // state handler
by
(1) You define a class (Calc) that inherits the QHsm base class.
(2) You add arbitrary extended-state variables as data members to the derived class.
(3) You typically provide the default constructor (constructor without parameters) that
conveniently encapsulates the initial pseudostate pointer passed to the QHsm
constructor.
(4) You provide the initial pseudostate as a static member function with the shown
signature.
(5) You provide the all state handlers as a static member functions with the shown

signature.
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4.6.4 Step 4: Defining the Initial Pseudostate

The initial pseudostate Calc::initial () shown here takes the “me” pointer to
its own class (Calc *) as the first argument and an event pointer as the second
parameter. This particular initial pseudostate ignores the event, but sometimes such
an initialization event can be helpful to provide additional information required to
initialize extended-state variables of the state machine.

QState Calc::initial (Calc *me, QEvent const * /* e */) {
BSP_clear () ;
return Q TRAN(&Calc::on);

The initial pseudostate can initialize the extended state variables and perform any
other actions, but its most important job is to set the default state of the state machine
with the Q_TRAN () macro, as shown.

4.6.5 Step 5: Defining the State-Handler Functions

Earlier in this chapter, in Listing 4.5 you saw an example of the Calc: :int1 () state
handler function. Typically, every state handler function consists of a switch statement
that discriminates based on the event signal e->sig. Each case is labeled by a signal and
terminates either with “return Q_HANDLED()” or “return Q_TRAN(...).” Either one
of these return statements informs the QEP event processor that the particular event has
been handled. On the other hand, if no case executes, the state handler exits through the
final “return Q_SUPER(...)” statement, which informs the QEP event processor that
the event needs to be handled by the designated superstate.

Highest-level states without explicit superstate (e.g., the “on” state in the calculator
example) nest implicitly in the top state. Such states disignate &QHsm: : top as
the argument to the Q_SUPER () macro.

NOTE

The final return statement from a state handler function is the only place where you specify
the hierarchy of states. Therefore, this one line of code represents the single point of mainte-
nance for changing the nesting level of a given state.
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While coding state-handler functions, you need to keep in mind that QEP will invoke
them for various reasons: for hierarchical event processing, for execution of entry

and exit actions, for triggering initial transitions, or even just to elicit the superstate of a
given state handler. Therefore, you should not assume that a state handler would be
invoked only for processing events enlisted in the case statements. You should also
avoid any code outside the switch statement, especially code that would have side
effects.

4.6.6 Coding Entry and Exit Actions

The gep . h header file provides two reserved signals Q_ENTRY_SIG and Q_EXIT_SIG
that the QEP event processor passes to the appropriate state-handler function to execute
the state entry actions or exit actions, respectively.

Therefore, as shown in Listing 4.8 earlier in this chapter, to code an entry action, you
provide a case statement labeled with signal Q_ENTRY_STIG, enlist all the actions
you want to execute upon the entry to the state, and terminate the lists with “return
Q_HANDLED (),” which informs the QEP that the entry actions have been handled.

Coding the exit actions is identical, except that you provide a case statement labeled
with the signal Q_EXIT_SIG, call the actions you want to execute upon the exit
from the state, and terminate the lists with “return Q_HANDLED (),” which informs
the QEP that the exit action has been handled.

4.6.7 Coding Initial Transitions

Every composite state (a state with substates) can have its own initial transition, which
in the diagram is represented as an arrow originating from a black ball. For example,
the calculator state “on” in Figure 2.18 has such a transition to substate “ready.”

The QEP provides a reserved signal Q_INIT_SIG that the event processor passes to the
appropriate state-handler function to execute the initial transition.

Therefore, as shown Listing 4.8 earlier in this chapter, to code an initial transition, you
provide a case statement labeled with signal Q_INIT_ SIG, enlist all the actions

you want to execute upon the initial transition, and then designate the target substate
with the Q_TRAN () macro. The status returned from the Q_TRAN () macro informs QEP
that the initial transition has been handled.
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The UML specification requires that the target of the initial transition is a direct or
indirect substate of the source state. An initial transition to a nonsubstate (e.g., a peer
state, or a superstate) corresponds to a malformed state machine and may even crash
the event processor. Note that initial transitions cannot have guard conditions.

4.6.8 Coding Internal Transitions

Internal transitions are simple reactions to events that never lead to change of state and
consequently never cause execution of exit actions, entry actions, or initial transitions.

To code an internal transition, you provide a case statement labeled with the triggering
signal, enlist the actions, and terminate the list with “return Q_HANDLED ()" to
inform QEP that the event has been handled.

4.6.9 Coding Regular Transitions

State-handler Calc: :int1 () from Listing 4.5 provides two examples of regular state
transitions. To code a regular transition, you provide a case statement labeled with the
triggering signal (e.g., POINT_SIG), enlist the actions, and then designate the target
state with the Q_TRAN () macro. The status returned from the Q_TRAN () macro informs
QEP that a transition has been taken.

The Q_TRAN () macro can accept any target state at any level of nesting, such as a peer
state, a substate, a superstate, or even the same state as the source of the transition
(transition to self).

NOTE

The QEP hierarchical event processor automatically handles execution of appropriate exit
and entry actions during arbitrary state transitions (in the QHsm: :dispatch() function).
Consequently, any change in state machine topology (change in state transitions or state nest-
ing) requires only recompiling the state-handler functions. QEP automatically takes care of
figuring out the correct sequence of exit/entry actions and initial transitions to execute for
every state transition.

4.6.10 Coding Guard Conditions

Guard conditions (or simply guards) are Boolean expressions evaluated dynamically
based on the value of event parameters and/or the variables associated with the state
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machine (extended-state variables). The following definition of the Calcl: :begin()
state-handler function shows an example of a state transition with a guard.

QState Calc: :begin(Calc *me, QEvent const *e) {
switch (e->sig) {
case OPER_SIG: {
if ((static_cast<CalcEvt const *>(e))->key_code ==KEY_ MINUS) {
return Q TRAN (&Calc: :negatedl);
}
break;
}
}
return Q SUPER (&Calc: :ready);

The guard condition maps simply to an i £-statement that conditionally executes actions.
Note that only the TRUE branch of the if contains the “return Q_TRAN () ” statement,
meaning that only the TRUE branch reports that the event has been handled. If the
TRUE branch is not taken, the break statement causes a jump to the final return that
informs the QEP that the event has not been handled. This is in compliance with the
UML semantics, which require treating an event as unhandled in case the guard
evaluates to FALSE. In that case, the event should be propagated up to the higher levels
of hierarchy (to the superstate).

Guard conditions are allowed not just for regular state transitions but for the internal
transitions as well. In this case a guard maps to the if statement that contains
“return Q_HANDLED () ” only in the TRUE branch. The only difference for the internal
transition is that you return the Q_HANDLED () macro instead of Q_TRAN().

4.7 Pitfalls to Avoid While Coding State
Machines with QEP

The QEP hierarchical event processor enables building efficient and maintainable state
machine implementations in C and C++. However, it is also possible to use QEP
incorrectly because the direct manual-coding approach leaves you a lot of freedom in
structuring your state machine code. This section summarizes the main pitfalls that
various QEP users have fallen into over the years and provides some guidelines on how
to benefit the most from QEP.
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4.7.1 Incomplete State Handlers

You should construct only complete state handlers, that is, state-handler functions
that directly include all state machine elements pertaining to a given state (such as

all actions, all transitions, and all guards), so that you or anyone else could at any
time unambiguously draw the state in a diagram using only the state-handler function.

The key is the way you break up the code. Instead of thinking in terms of individual
C statements, you should think at a higher level of abstraction, in terms of the idioms
defined in Sections 4.6.5-4.6.10 for coding states, transitions, entry/exit actions, initial
transitions, and guards.

Consider the following problematic implementation of the “on” state handler of the
calculator state machine shown before, in Section 4.5.4:

QState Calc_on(Calc *me, QEvent const *e) {
switch (e->sig) {

case C_SIG: {
return Calc_onClear (me) ; /* handle the Clear event */

}

}
return Q_SUPER (&QHsm_top) ;
}

QState Calc_onClear (Calc *me) {
BSP_clear () ;
return Q_TRAN (&Calc_on) ; /* transition to "on" */

This calc_on () state-handler function differs from the original implementation
discussed in Section 4.5.4 only in the way it handles the C_SIG signal. Though

the problematic implementation is in principle equivalent to the original and would
perform exactly the same way, the problematic state handler is incomplete because it does
not follow the idiom for coding state transition from Section 4.6.9. In particular, the state
handler hides the state transition to self triggered by C_SIG and from such an incomplete
state handler alone you would not be able to correctly draw the state in the diagram.

In summary, perhaps the most important principle to keep in mind while coding state
machines with QEP is that the code is as much an implementation as it is a specification
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of a state machine. This perspective on coding state machines with QEP will help
you (and others) readily see the state machine structure right from the code and easily
and unambiguously map the code back to state diagrams. Conversely, state machine
code structured arbitrarily, even if working correctly, might be misleading and
therefore difficult to maintain (see also [Samek 03f]).

4.7.2 lll-Formed State Handlers

All nontrivial, semantically rich formalisms, including UML state machines, allow
building ill-formed constructs. An ill-formed state machine is inherently wrong, not one
that just happens to incorrectly represent behavior. For example, you could draw a UML
state diagram with initial transitions targeting peer states rather than substates or
conflicting transitions with overlapping guards. The specific state machine
implementation technique, such as QEP, introduces additional opportunities of “shooting
yourself in the foot.” It is possible, for example, to code a state handler that would nest
inside itself (the state-handler function would return a pointer to self). Such a state
machine cannot be even drawn in a state diagram but is quite easy to code with QEP.

This section examines more of such situations that result with ill-formed state machines.
Often, ill-formed state machines cause an assertion violation within the QEP code
(see the sidebar “Design by Contract in C and C++”). However, some pathological
cases, such as circular state nesting, could crash the QEP event processor.

4.7.3 State Transition Inside Entry or Exit Action

Novice QEP users sometimes try to code a transition inside the entry action to a state by
using the Q_TRAN () macro. This happens typically when a developer confuses a
statechart with a flowchart (see Section 2.2.3) and thinks of the entered state as just a
stage of processing that automatically progresses to the next stage upon completion
of the entry actions.

The UML does not allow transitions in entry or exit actions. The typical intention in
coding a state transition in an entry action is to enter a given state only under some
condition and transition to a different state under some other condition. The correct way
of handling this situation is to explicitly code two transitions with complementary
guards and with different target states.
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4.7.4 Incorrect Casting of Event Pointers

As described in Section 4.3, event parameters are added to the QEvent structure in the
process of class inheritance. However, events are uniformly passed to state-handler
functions as the generic QEvent* pointer, even though they point to various derived
event classes. That’s why you need to downcast the generic QEvent* pointer onto the
pointer to the specific event subclass as shown, for instance, in Listing 4.4(5).

However, to perform the downcast correctly, you need to know what derived event
to cast to. The only information you have at this point is the signal of the event
(e->sig), and therefore the signal alone must unambiguously identify the derived
event structure. The problem arises if you use one signal with multiple event classes,
because then you could cast incorrectly on the wrong event class.

4.7.5 Accessing Event Parameters in Entry/Exit Actions
or Initial Transitions

A specific case of incorrect event casting is an attempt to access event parameters when
handling entry/exit actions or initial transitions. For example, if a state has only one
incoming transition that is triggered with an event with parameters, novice QEP users
sometimes try to access these parameters in the entry action to this state. Consider
the following hypothetical code example:

QState MyHSM_stateA (MyHSM *me, QEvent const *e) {
switch (e->sig) {
case EVTB_SIG: {

/* the only way to transition to stateB */
return Q TRAN (&MYHSM state B) ;
}
}
return Q_SUPER (&QHsm_top) ;
}
QState MyHSM_stateB (MyHSM *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
EVtB const *evtB = (EvtB const *)e; /* INCORRECT cast */
if (evtB->foo !=) . . . /* INCORRECT access */

}
}
return Q_SUPER (&QHsm_top) ;




Hierarchical Event Processor Implementation 195

The transition in “stateA” triggered by EVTB_SIG is the only way to get to “stateB.” In
the entry action to “stateB” the programmer realizes that some parameter foo in the
EvtB structure, associated with signal EVTB_SIG, is needed and casts the generic event
on (EvtB const *). This is an incorrect cast, however, because by the time “stateB”
is entered the original triggering event EvtB is no longer accessible. Instead, the entry
action is triggered by a reserved signal Q_ENTRY_SIG, which is not associated with
the EvtB event structure. This is actually logical because a state can be entered in many
different transitions, each one triggered by a different event, and none of them are
accessible by the time entry action is processed.

The correct way of handling this situation is to perform actions dependent on the event
parameters directly on the transition triggered by this event rather than in the entry
action. Alternatively, the event parameters can be stored in the extended-state variables
(members of the state machine structure that you access through the “me” pointer). The
extended-state variables are accessible all the time, so they can be used also in the
entry/exit actions or initial transitions.

4.7.6 Targeting a Nonsubstate in the Initial Transition

All initial transitions must target direct or indirect substates of the state in which the initial
transition is defined. Figure 4.8(A) shows several examples of correct initial transitions.
Note that an initial transition can span more than one level of state hierarchy, but it must
always target a direct or indirect substate of a given state. Figure 4.8(B) shows one example
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Figure 4.8: Correct (A) and incorrect (B) initial transitions.
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of the highlighted initial transition in “stateA1” that targets “stateA21.” The problem is that
“stateA21” is not a substate of “stateA1”” and therefore the state machine in Figure 4.8(B) is
ill-formed according to the UML semantics. Coding such an initial transition in QEP

will crash the event processor.

4.7.7 Code Outside the switch Statement

As the QEP user, you need to understand that each event that is dispatched to the state
machine through the function QHsm_dispatch () might potentially cause invocation
of many state-handler functions and some of them might be called more than once.
This is because the event processor needs to call state-handler functions to perform
hierarchical event processing, to handle entry/exit actions and initial transitions, or
simply to discover the nesting level of a given state. Therefore, you should not assume
that a state-handler function would be called exactly once for a given event, so you
should avoid any code outside the main switch statement dedicated to events,
especially if the code has side effects.

For example, the following state-handler function is certainly inefficient, and probably
incorrect, because the for loop executes every time the state handler is invoked, which
is not just for the events enlisted as cases in the switch statement.

QState MyHSM_stateA (MyHSM *me, QEvent const *e) {
for (i =0; i <N; ++i) { /* PROBLEMATIC: expensive loop outside switch */
doSomethingExpensive () ;
}

switch (e->sig) {

}
return Q_SUPER (&QHsm_top) ;

You should even avoid allocating and initializing any automatic variables outside
the main switch statement. I specifically recommend using braces after each
case statement so that you can allocate and initialize automatic variables locally
in each individual case statement. The following code snippet illustrates the
situation:
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QState MyHSM_stateB (MyHSM *me, QEvent const *e) {
uint32_ t tmp = 0x12345678; /* initialization occurring every time * /
switch (e->sig) {

case MY_EVT_SIG: {
uint32_ t tmp=0x12345678; /* initializationonlyinthiscase*/

}
return Q_SUPER (&QHsm_top) ;

4.7.8 Suboptimal Signal Granularity

Nothing affects state machine complexity and efficiency as much as the right
granularity and semantics of events. The optimal granularity of signals falls somewhere
between the two extremes of too fine and too coarse.

The granularity of signals is too fine if you repeatedly find the same groups of signals
handled in the same way. For example, recall the calculator example (Section 2.4 in
Chapter 2). The calculator HSM handles all numerals 1 through 9 in the same way.
Therefore, introducing a separate signal for each numeral would lead to a signal
granularity that is too fine, which would unnecessarily bloat the state-handler functions
(you would see long lists of cases handled identically). Instead, the calculator
statechart represents the whole group of numerals 1 through 9 as just one signal,
DIGIT_1_9_SIG (see Figure 2.18).

The granularity of signals is too coarse if you find yourself frequently using guard
conditions that test event parameters. In this case, event parameters are the de facto
signals. Consider the Windows message WM_COMMAND, frequently used in Windows
GUI applications for all buttons and menus of the application. This signal is too coarse
because Windows applications typically must test the wParam parameter associated
with the wM_COMMAND to determine what actually happened. In other words, values
of wpParam are the de facto signals. In this case, the too coarse signal granularity
results in a suboptimal (and not very elegant) additional switch statement based on
wParam nested within the wM_COMMAND case. When you encounter signals that are
too coarse, the first thing you should try is to redefine or remap signals to the right
level of granularity before dispatching them to the state machine. However, if you
cannot do this, you should include all the de facto signals directly in your state handlers.
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All too often, the additional layer of signal dispatching (such as the switch based
on wParam) end up in a separate function, which makes state handlers incomplete in
the sense discussed in Section 4.7.1.

4.7.9 Violating the Run-to-Completion Semantics

All state machine formalisms, including UML statecharts, universally assume run-to-
completion (RTC) semantics of processing events. RTC means that a state machine
must always complete processing of the previous event before it can start processing
the next. The RTC restriction comes from the fact that a state machine must always go
from one stable state configuration all the way to another stable state configuration
in one indivisible step (RTC step). A state machine cannot accept events before
reaching a stable state configuration.

The RTC semantics is implicit in the QEP implementation because each invocation of
the function QHsm_dispatch () represents one RTC step. In single-threaded systems,
such as all the examples discussed in this chapter, the RTC semantics cannot be violated
because each function must return before it can be called again. However, in
multitasking environments, even as simple as the superloop (main+ISRs), the RTC
semantics can be easily violated by attempts to dispatch an event to a state machine
from an ISR while the same state machine in the background loop is still busy
processing the previous event.

4.7.10 Inadvertent Corruption of the Current Event

A very nasty and difficult-to-debug violation of the RTC semantics is an inadvertent
corruption of the current event before the RTC step completes. Recall that the state-
handler functions in QEP take just pointers to events, not the copies of the entire event
objects. It is therefore possible that the memory pointed to by the event pointer will
get corrupted before the current RTC step completes.

For example, consider once more the superloop (main+ISRs) architecture. An ISR
produces an event and sets a global flag to trigger a state machine running in

the background. The background loop starts processing the event, but before it
completes, another interrupt preempts it. The ISR produces another event by
overwriting the memory used previously for the first event. The RTC semantics are
violated even though the ISR merely sets a flag instead of calling the state
machine directly.
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The general solution to guarantee RTC semantics in multitasking systems is to use
event queues to store events while a state machine is busy. The mechanisms for

a thread-safe event queuing and dispatching to multiple concurrently executing state
machines can be generalized and reused rather than being reinvented from scratch for
each application. Virtually all GUI systems (such as Microsoft Windows, X Windows,
and others) are examples of such reusable architectures. QEP can be used with
virtually any such event-driven infrastructure. In particular, QEP can be combined with
the QF event-driven framework design specifically for the domain of real-time
embedded systems. I introduce the QF component in Chapter 6.

4.8 Porting and Configuring QEP

Adapting the QEP software to a particular CPU and compiler is called porting. You port
and configure the QEP event processor by providing the gep_port .h header file,
which is included in all source files comprising QEP (see Listing 4.1). Listing 4.14
shows an example of gep_port.h for 80x86 CPU.

Listing 4.14 The gep_port.h header file for the 80x86 QEP port located
in the directory <gp>\gpc\ports\80x86\dos\tcppl0l\1\

#ifndef gep_port_h
#define gep_port_h

/* special keyword used for ROM objects (none for 80x86) */
(1) #define Q_ROM

/* mechanism of accessing const objects in ROM (far pointers) */
(2) #define Q_ROM_VAR far
/* 1-byte signal space (255 signals) */
(3) #define Q_SIGNAL_SIZE

/* exact-width types. WG14/N843 C99 Standard, Section 7.18.1.1 */

(4) typedef signed char int8_t;

typedef signed int intl6_t;

typedef signed 1long int32_t;

typedef unsigned char uint8_t;

typedef unsigned int uintlé6_t;

typedef unsigned long uint32_t;
(5) #include "gep.h" /* QEP platform-independent public interface */

#endif /* gqep_port_h */
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(1) The o_roM macro allows enforcing placing the constant objects, such as lookup
tables, constant strings, and the like, in ROM rather than in the precious RAM.
On CPUs with the Harvard architecture (such as 8051 or the Atmel AVR), the
code and data spaces are separate and are accessed through different CPU
instructions. The compilers often provide specific extended keywords to designate
code or data space, such as the “__code” extended keyword in the IAR 8051
compiler. Here, for the 80x86 CPU, the definition of the Q_ROM macro is empty.

(2) The macro Q_ROM_VAR specifies the kind of the pointer to be used to access the
ROM objects because many compilers provide different-sized pointers for
accessing objects in various memories. Constant objects allocated in ROM often
mandate the use of specific-size pointers (e.g., far pointers) to get access to ROM
objects. An example of valid Q_ROM_VAR macro definition is __far (Freescale
HC(S)08 compiler).

NOTE

Macros Q_ROM and Q_ROM_VAR refer to the different parts of the object declaration. The
macro Q_ROM specifies the ROM memory type to allocate an object. This allows compilers
generating different instructions for accessing such ROM objects for CPUs with the Harvard
architecture. On the other hand, the macro Q_ROM_VAR specifies the size of the pointer (e.g.,
the “far” pointer) to access the ROM data, so it refers just to the size of the object’s address,
not to the object itself. The Q_ROM_VAR macro is useful for the von Neumann machines.

If you don’t define macros Q_ROM or Q_ROM_VAR, the gep.h header file will provide
default empty definitions, which means that no special extended keywords are
necessary to correctly allocate and access the constant objects.

(3) The macro Q_SIGNAL_SIZE configures the QSignal type (see Section 4.3.1).
If the macro is not defined, the default of 1 byte will be chosen in gep.h. The
valid Q_SIGNAL_SIZE values 1, 2, or 4 correspond to QSignal of uint8_t,
uintl6_t, and uint32_t, respectively. The QSignal data type determines the
dynamic range of numerical values of signals in your application.

(4) Porting QEP requires providing the C99-standard exact-width integer types that are
consistent with the CPU and compiler options used. For newer C and C++ compilers,
you simply need to include the standard header file <stdint .h> provided by
the compiler vendor. For prestandard compilers, you need to provide the typedefs
for the six basic exact-width integer types.
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(5) The gep_port.h platform-specific header file must include the gep . h platform-
independent header file.

4.9 Summary

Almost all real-life state machines can vastly benefit from the reuse of behavior enabled
by hierarchical state nesting. Traditionally, state hierarchy has been considered an
advanced feature that mandates automatic code synthesis by CASE tools. However,
the use of a generic event processor enables very straightforward manual coding

of HSMs.

This chapter described the inner workings of a small, generic, hierarchical event
processor called QEP. The event processor consists of just two classes: QHsm for
derivation of state machines and QEvent for derivation of events with parameters. The
event-dispatching algorithm implemented in the QHsm class has been carefully
optimized over the years for both speed and space. The most recent QEP version
requires only a single pointer to function per state machine in RAM and minimizes the
stack usage by very judiciously sizing automatic variables and by avoiding any
recursive calls to state handler functions. State-handler functions are an inexpensive
commodity, and there are no limits (except for code space) of how many you can use.

Implementing HSMs with QEP is straightforward because the hierarchical event
processor does most of the heavy lifting for you. In fact, coding of even the most complex
HSM turns out to be a rather simple exercise in applying just a few straightforward rules.
As your design evolves, QEP allows easily changing the state machine topology.

In particular, no transition chains must be coded manually. To change the target of a
transition, you modify the argument of the Q_TRAN () macro. Similarly, to change the
superstate of a given state, you modify the argument of the Q_SUPER () macro.

All these changes are confined to one line of code.

The most important perspective to keep in mind while coding state machines with QEP
is that the source code is as much the implementation as it is the executable
specification of your state machine. Instead of thinking in terms of individual C or C++
statements, you should think in terms of state machine elements, such as states,
transitions, entry/exit actions, initial transitions, and guards. When you make this
quantum leap, you will no longer struggle with convoluted if-else “spaghetti” code.
You will start thinking at a higher level of abstraction about the best ways to partition
behavior into states, about the events available at any given time, and about the best
state hierarchy for your state machine.
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Science is a collection of successful recipes.
— Paul Valéry

In the previous chapter, you learned how to implement hierarchical state machines
(HSMs) in C and C++ with the generic hierarchical event processor called QEP. In fact,
QEP enabled a rather mechanical one-to-one mapping between state models and the
code. With just a bit of practice, you will forget that you are laboriously translating state
models into code; rather, you will directly build state machines in C or C++.

At this point, you will no longer struggle with 15 levels of if-else statements and
gazillions of flags. You will start thinking at a higher level of abstraction about the best
ways to partition behavior into states, about the structure of your state machine, and
about the event exchange mechanisms.

However, coming up with a good structure for a nontrivial state machine isn’t easy.
Experienced developers know that a reusable and flexible state machine design is
difficult to get right the first time. Yet experienced designers repeatedly realize good
state machines, whereas newcomer are overwhelmed by the options available and tend
to fall back on convoluted if-else constructs and the multitude of flags they have
used before.

One thing that distinguishes an expert from a novice is the ability to recognize the
similarities among problems encountered in the past and to reuse proven solutions that
work. To share their expertise, OO designers began to catalog proven solutions to
recurring problems as object-oriented design patterns [GoF 95]. Similarly, state patterns
began to appear [Douglass 99]. In contrast to the OO patterns, which are concerned
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with optimal ways of structuring classes and objects, the state patterns focus on
effective ways of structuring states, events, and transitions.

A state pattern has the following five essential elements, just as an OO pattern does:

® The pattern name. A word or two denoting the problem, the solution, and the
consequences of a pattern. A good name is vital because it will become part
of your vocabulary.

® The problem. An explanation of the problem the pattern addresses. A problem is
often motivated by an example.

® The solution. A description of the elements (states, transitions, events, actions,
and extended-state variables) that compose the solution and their relationships,
responsibilities, and collaborations.

® The sample code. A presentation of a concrete implementation of an instance of
the pattern. Usually the sample code implements the motivating example.

® The consequences. The results and trade-offs of applying the pattern.

In this chapter, I provide a mini-catalog of five basic state patterns (Table 5.1). The first
two are relatively simple state machine solutions to common problems. The other
three are just more advanced or expensive features that are found in the UML state
machine package [OMG 07] but are not supported directly in the QEP event processor.
The leading theme of all these patterns is reusing behavior through hierarchical state
nesting, in contrast to the previously documented state patterns that all revolve
primarily around orthogonal regions [Douglass 99]. The additional distinguishing aspect
of the state patterns presented here is that all are illustrated with executable code.

A state diagram alone is not enough to understand a state pattern, because the devil is
always in the detail. To be genuinely useful, a pattern must be accompanied by a
specific working example that will help you truly comprehend and evaluate the pattern
and give you a good starting point for your own implementations.

Many examples in this chapter are implemented with the QF real-time framework
that I will formally introduce in Chapter 6. The QEP component by itself is not
sufficient, because it provides only the passive event processor that lacks such
essential elements as the event loop, event queuing, and timing services. The QF
framework provides these missing ingredients. However, all patterns can also be
used in conjunction with any other event-driven infrastructure such as GUI systems
(Windows, Mac, X11, etc.).
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Table 5.1: Summary of state patterns covered in this chapter

Pattern Name Intent

Ultimate Hook (Section 5.1) Provide a common look and feel but let clients specialize every
aspect of a system’s behavior.

Reminder (Section 5.2) Invent an event and post it to self.
Deferred Event (Section 5.3) Control the sequence of events.
Orthogonal Component Use state machines as components.

(Section 5.4)

Transition to History Transition to the most recent state configuration of a given
(Section 5.5) composite state.

None of the state patterns described in this chapter captures new or unproven state
machine designs. In fact, by definition, a state pattern is a proven solution to a recurring
problem that is actually used in successful, real-life event-driven systems. However,
most of the basic state patterns have never been documented before (at least not with
such a level of detail and illustrated with executable code). They are either part of
the folklore of various programming communities (e.g., the GUI community or the
embedded systems community) or are elements of some successful systems, neither of
which is easy for novice designers to learn from. So although these state machine
designs are not new, they are offered here in a new and more accessible way.

5.1 Ultimate Hook

5.1.1 Intent

Provide common facilities and policies for handling events but let clients override and
specialize every aspect of the system’s behavior.

5.1.2 Problem

Many event-driven systems require consistent policies for handling events. In a GUI
design, this consistency is part of the characteristic look and feel of the user interface.
The challenge is to provide such a common look and feel in system-level software
that client applications can use easily as the default. At the same time, the clients must
be able to override every aspect of the default behavior easily if they so choose.
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5.1.3 Solution

The solution is to apply programming by difference or, specifically in this case, the
concept of hierarchical state nesting. A composite state can define the default behavior
(the common look and feel) and supply an “outer shell” for nesting client substates.
The semantics of state nesting provide the desired mechanism of handling all events,
first in the context of the client code (the nested state) and of automatically forwarding
of all unhandled events to the superstate (the default behavior). In that way, the

client code intercepts every stimulus and can override every aspect of the behavior.
To reuse the default behavior, the client simply ignores the event and lets the superstate
handle it (the substate inherits behavior from the superstate).

Figure 5.1 shows the Ultimate Hook state pattern using the collaboration notation
adapted for states [OMG 07]. The dashed oval labeled «state pattern» indicates
collaboration among states. Dashed arrows emanating from the oval indicate state roles
within the pattern. States playing these roles are shown with heavy borders. For
example, the state “generic” plays the role of the generic superstate of the pattern,
whereas the state “specific” plays the role of the specific substate.

reset

(idiom)

explicit final state
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w/ final \

" entry / _exit(0);

Figure 5.1: The Ultimate Hook state pattern.
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A diagram like this attempts to convey an abstract pattern but can only show a concrete
example (instance) of the pattern. In this instance, the concrete “generic” state in
Figure 5.1 handles events A and B as internal transitions, event C as a transition to self,
and event D as the termination of the state machine. The concrete “specific” state
overrides event A and provides its own initialization and cleanup (in entry and exit
actions, respectively). Of course, another instance of the pattern can implement
completely different events and actions.
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A few idioms worth noting are illustrated in this state diagram. First is the overall
canonical structure of the state machine that, at the highest level, consists of only one
composite state (the pattern role of the generic superstate). Virtually every application
can benefit from having such a highest-level state because it is an ideal place for
defining common policies subsequently inherited by the whole (arbitrary complex)
submachine.

NOTE

As described in Section 2.3.2 in Chapter 2, every UML state machine is a submachine of an
implicit top state and so has the canonical structure proposed here. However, because you
cannot override the top state, you need another highest-level state that you can customize.

Within such a canonical structure, a useful idiom for resetting the state machine is an
empty (actionless) transition to self in the “generic” superstate (transition C in

Figure 5.1). Such a transition causes a recursive exit from all nested states (including
the “generic” superstate), followed by initialization starting from the initial transition of
the highest-level state. This way of resetting a state machine is perhaps the safest
because it guarantees proper cleanup through the execution of exit actions and clean
initialization by entry actions and nested initial transitions. Similarly, the safest way to
terminate a state machine is through an explicit transition out of the generic superstate
to a “final” state (transition D in Figure 5.1) because all pertinent exit actions are
executed. The QEP event processor does not provide a generic final state (denoted as
the bull’s eye in the UML). Instead, the statechart in Figure 5.1 proposes an idiom,
which consists of an explicit state named “final” with an application-specific
termination coded in its entry action.'

5.1.4 Sample Code

The sample code for the Ultimate Hook state pattern is found in the directory
<gp>\gpc\examples\80x86\dos\tcppl0l\1l\hook\. You can execute the
application by double-clicking the file HOOK . EXE file in the dbg\ subdirectory.
Figure 5.2 shows the output generated by the HOOK . EXE application. Listing 5.1 shows
the example implementation of the Ultimate Hook pattern from Figure 5.1.

' The calculator HSM designed in Chapter 2 and coded in Chapter 4 provides an example of the canonical
state machine structure that uses the idioms to reset and terminate.
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= Command Prompt

EP version: A_80
ress 'a’..’'c’ to inject signals A..C
ress 'd’ or ESC to inject signal D and quit
op-INIT ;generic—ENTRY ;generic—INIT;specif ic—ENTRY;
specific—A;
generic—-B;
: %§¥§$ic:0(reset);specific—EHIT;generic—EHIT;generic—ENTR!;generic—INIT;specif
ic— H
: specific—EXIT:;generic—EXIT;final—-ENTRY;
vetBye?t ;I

Figure 5.2: Output generated by HOOK . EXE.

Listing 5.1 The Ultimate Hook sample code (file hook. c).

(1) #include "gep_port.h"

typedef struct UltimateHookTag { /* UltimateHook state machine */
(2) QHsm super; /* derive from QHsm */
} UltimateHook;

void UltimateHook_ctor (UltimateHook *me) ; /* ctor */
(3) QState UltimateHook_initial (UltimateHook *me, QEvent const *e);

QState UltimateHook_generic (UltimateHook *me, QEvent const *e);

QState UltimateHook_specific (UltimateHook *me, QEvent const *e)

’

QState UltimateHook_final (UltimateHook *me, QEvent const *e) ;
(4) enum UltimateHookSignals { /* enumeration of signals */

A_SIG = Q_USER_SIG,
B_SIG,
C_SIG,
D_SIG

Y

L e e e e e e e e e e e e e e e e e e e e e e e e e */

void UltimateHook_ctor (UltimateHook *me) {
QHsm_ctor (&me->super, (QStateHandler)&UltimateHook_initial);

QState UltimateHook_initial (UltimateHook *me, QEvent const *e) {
printf ("top-INIT;");
return Q_TRAN (&UltimateHook_generic) ;

QState UltimateHook_final (UltimateHook *me, QEvent const *e) {
switch (e->sig) {
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case Q_ENTRY_SIG: {
printf ("final-ENTRY (terminate) ; \nBye!Bye!\n") ;
exit (0);
return Q HANDLED() ;

}
return Q_SUPER (&QHsm_top) ;

QState UltimateHook_generic (UltimateHook *me, QEvent const *e) {
switch (e->sig) {

case Q_INIT SIG: {
printf ("generic-INIT; ") ;
return Q_TRAN (&UltimateHook_specific);
}
case A_SIG: {
printf ("generic-A;");
return Q_HANDLED() ;
}
case B_SIG: {
printf ("generic-B;");
return Q_ HANDLED() ;

}
case C_SIG: {

printf ("Generic:C(reset);");

return Q TRAN (&UltimateHook generic) ;
}

case D_SIG: {
return Q TRAN (&UltimateHook final);

return Q_SUPER (&QHsm_top) ;

QState UltimateHook_specific (UltimateHook *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
printf ("specific-ENTRY; ") ;
return Q_HANDLED() ;

}

case Q_EXIT SIG: {
printf ("specific-EXIT;");
return Q_HANDLED() ;

Continued onto next page
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(9) case A_SIG: {
printf ("specific-A;");
return Q_HANDLED() ;
}
}
return Q_SUPER (&UltimateHook_generic) ; /* the superstate */

(1) Every QEP application needs to include gep_port.h (see Section 4.8 in
Chapter 4).

(2) The structure UltimateHook derives from QHsm.

(3) The UltimateHook declares the initial () pseudostate and three state-
handler functions: generic (), specific (), and final ().

(4) The signals A through D are enumerated.
(5) The transition-to-self in the “generic” state represents the reset idiom.
(6) The transition to the explicit “final” state represents the terminate idiom.

(7,8) The entry and exit actions in the “specific” state provide initialization and
cleanup.

(9) The internal transition A in the “specific” state overrides the same transition in
the “generic” superstate.

One option of deploying the Ultimate Hook pattern is to organize the code into a
library that intentionally does not contain the implementation of the
UltimateHook_specific () state-handler function. Clients would then have

to provide their own implementation and link to the library to obtain the generic behavior.
An example of a design using this technique is Microsoft Windows, which requires the
client code to define the winMain () function for the Windows application to link.

Another option for the C++ version is to declare the UltimateHook: : specific ()
state handler as follows:

QState UltimateHook: :specific (UltimateHook *me, QEvent const *e) {
return me->v_specific(e); /* virtual call */

}
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Where the member function UltimateHook: :v_specific (QEvent const *e) is
declared as a pure virtual member function in C++. This will force clients to
provide implementation for the pure virtual state-handler function v_specific ()
by subclassing the UltimateHook class. This approach combines behavioral
inheritance with traditional class inheritance. More precisely, Ultimate Hook
represents, in this case, a special instance of the Template Method design pattern
[GoF 95].

5.1.5 Consequences

The Ultimate Hook state pattern is presented here in its most limited version —
exactly as it is used in GUI systems (e.g., Microsoft Windows). In particular, neither the
generic superstate nor the specific substate exhibits any interesting state machine
topology. The only significant feature is hierarchical state nesting, which can be applied
recursively within the “specific” substate. For example, at any level, a GUI window
can have nested child windows, which handle events before the parent.

Even in this most limited version, however, the Ultimate Hook state pattern is a
fundamental technique for reusing behavior. In fact, every state model using the
canonical structure implicitly applies this pattern.

The Ultimate Hook state pattern has the following consequences:
e The “specific” substate needs to know only those events it overrides.

e New events can be added easily to the high-level “generic” superstate without
affecting the “specific” substate.

e Removing or changing the semantics of events that clients already use is difficult.

e Propagating every event through many levels of nesting (if the “specific”
substate has recursively nested substates) can be expensive.

The Ultimate Hook state pattern is closely related to the Template Method OO design
pattern and can be generalized by applying inheritance of entire state machines.

5.2 Reminder

5.2.1 Intent

Make the statechart topology more flexible by inventing an event and posting it to self.
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5.2.2 Problem

Often in state modeling, loosely related functions of a system are strongly coupled by a
common event. Consider, for example, periodic data acquisition, in which a sensor
producing the data needs to be polled at a predetermined rate. Assume that a periodic
TIMEOUT event is dispatched to the system at the desired rate to provide the stimulus
for polling the sensor. Because the system has only one external event (the TIMEOUT
event), it seems that this event needs to trigger both the polling of the sensor and

the processing of the data. A straightforward but suboptimal solution is to organize
the state machine into two distinct orthogonal regions (for polling and processing).”
However, orthogonal regions increase the cost of dispatching events (see the
“Orthogonal Component” pattern) and require complex synchronization between the
regions because polling and processing are not quite independent.

5.2.3 Solution

A simpler and more efficient solution is to invent a stimulus (DATA_READY) and to
propagate it to self as a reminder that the data is ready for processing (Figure 5.3).
This new stimulus provides a way to decouple polling from processing without using
orthogonal regions. Moreover, you can use state nesting to arrange these two
functions in a hierarchical relation,” which gives you even more control over the
behavior.

In the most basic arrangement, the “processing” state can be a substate of “polling” and
can simply inherit the “polling” behavior so that polling occurs in the background to
processing. However, the “processing” state might also choose to override polling. For
instance, to prevent flooding the CPU with sensor data, processing might inhibit polling
occasionally. The statechart in Figure 5.3 illustrates this option. The “busy” substate
of “processing” overrides the TIMEOUT event and thus prevents this event from being
handled in the higher-level “polling” superstate.

Further flexibility of this solution entails fine control over the generation of the invented
DATA_READY event, which does not have to be posted at every occurrence of the
original TIMEOUT event. For example, to improve performance, the “polling” state
could buffer the raw sensor data and generate the DATA_READY event only when the buffer

2 This example illustrates an alternative design for the Polling state pattern described in [Douglass 99].
3 Using state hierarchy in this fashion is typically more efficient than using orthogonal regions.
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Figure 5.3: The Reminder state pattern.

fills up. Figure 5.3 illustrates this option with the 1 £ (...) condition, which precedes the
postFIFO (me, DATA_READY) action in the “polling” state.

5.2.4 Sample Code

The sample code for the Reminder state pattern is found in the directory <gp>\gpc
\examples\80x86\dos\tcppl0l\l\reminder\. You can execute the application
by double-clicking on the REMINDER.EXE file in the dbg\ subdirectory. Figure 5.4
shows the output generated by the REMINDER . EXE application. The application prints
every state entry (to “busy” or “idle”) as well as the number of times the TIMEOUT
event has been handled in “polling” and “processing,” respectively. Listing 5.2 shows
the example implementation of the Reminder pattern from Figure 5.3.

B

< Command Prompt

eminder state pattern
EF version: 4.8.88
F wversion: 4.0.88
ress ESC to gquit...
idle—ENTRY;

olling

1
2
3
4

N =

inal-ENTRY;
ye *Byet

Figure 5.4: Output generated by REMINDER. EXE.
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The Reminder state pattern posts the reminder event to self. This operation involves
event queuing and is not supported by the raw QEP event processor. Therefore the sample
code uses the QEP event processor as well as the QF real-time framework, which are
both components of the QP event-driven platform. The QF component provides event
queuing as well as the time events, both of which are used in the sample code.

Listing 5.2 The Reminder sample code (file reminder.c)

(1) #include "gp_port.h" /* QP interface */
#include "bsp.h" /* board support package */

enum SensorSignals {

TIMEOUT_SIG = Q_USER_SIG, /* the periodic timeout signal */
(2) DATA READY SIG, /* the invented reminder signal */
TERMINATE_SIG /* terminate the application */
Y
/2o V4
typedef struct SensorTag { /* the Sensor active object */
(3) QActive super; /* derive from QActive */
(4) QTimeEvt timeEvt; /* private time event generator */
uintl6_t pollCtr;
uintlé_t procCtr;
} Sensor;

void Sensor_ctor (Sensor *me) ;

/* hierarchical state machine ... */
QState Sensor_initial (Sensor *me, QEvent const *e) ;
QState Sensor_polling (Sensor *me, QEvent const *e) ;
QState Sensor_processing (Sensor *me, QEvent const *e) ;
QState Sensor_idle (Sensor *me, QEvent const *e) ;
QState Sensor_busy (Sensor *me, QEvent const *e) ;
QState Sensor_final (Sensor *me, QEvent const *e);
/* oL ... e e e e e e e e e e e e e e L. x/

void Sensor_ctor (Sensor *me) {
QActive_ctor_ (&me->super, (QStateHandler)&Sensor_initial);
(5) QTimeEvt_ctor (&me->timeEvt, TIMEOUT SIG); /* time event ctor */
}
/* HSMdefinition------=-----------"---—-~—- - */
QState Sensor_initial (Sensor *me, QEvent const *e) {
me->pollCtr = 0;
me->procCtr = 0;
(6) return Q_TRAN (&Sensor_polling) ;
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QState Sensor_final (Sensor *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("final-ENTRY; \nBye!Bye!\n") ;
BSP_exit () ; /* terminate the application */
return Q_HANDLED() ;

}
return Q_ SUPER (&QHsm_top) ;

QState Sensor_polling(Sensor *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
/* periodic timeout every 1/2 second */
(7) QTimeEvt postEvery (&me->timeEvt, (QActive *)me,
BSP_TICKS_ PER SEC/2);

return Q_HANDLED() ;

}

case Q_EXIT_SIG: {
QTimeEvt_disarm(&me->timeEvt) ;
return Q_HANDLED() ;

}

case Q_INIT_ SIG: {
return Q_TRAN (&Sensor_processing) ;

}
(8) case TIMEOUT_SIG: {
static const QEvent reminderEvt = { DATA_READY_SIG, 0 };
++me->pollCtr;
printf ("polling %$3d\n", me->pollCtr) ;
if ((me->pollCtr & 0x3) ==0) { /* modulo 4 */
(9) QActive postFIFO((QActive *)me, &reminderEvt) ;
}
return Q_HANDLED() ;
}

case TERMINATE_SIG: {
return Q_TRAN (&Sensor_final) ;

}

return Q_SUPER (&QHsm_top) ;

QState Sensor_processing (Sensor *me, QEvent const *e) {
switch (e->sig) {

Continued onto next page
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case Q_INIT_SIG: {
return Q_TRAN (&Sensor_idle) ;

}
return Q_SUPER (&Sensor_polling) ;

QState Sensor_idle(Sensor *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
printf ("idle-ENTRY;\n") ;
return Q_HANDLED() ;

}

case DATA_READY_SIG: {

(10) return Q_TRAN (&Sensor_busy) ;

}
return Q_SUPER (&Sensor_processing) ;

QState Sensor_busy (Sensor *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
printf ("busy-ENTRY; \n") ;
return Q_HANDLED() ;

}

(11) case TIMEOUT_SIG: {
++me->procCtr;
printf ("processing $3d\n", me->procCtr) ;
if ((me->procCtr & 0x1) ==0) {
return Q_TRAN (&Sensor_idle) ;

}
return Q_HANDLED() ;

}

return Q_SUPER (&Sensor_processing) ;

/* modulo 2 */

(1) The Reminder state pattern posts the reminder event to self. This operation
involves event queuing and is not supported by the raw QEP event processor. The
sample code uses the whole QP, which includes the QEP event processor and the
QF real-time framework. QF provides event queuing as well as the time events,

both of which are used in the sample code.
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NOTE

Event queuing and event-driven timing services are available in virtually every event-driven
infrastructure. For instance, Windows GUI applications can call the PostMessage () Win32
API to queue messages and provide a WM_TIMER case in the window procedure to receive
timer updates.

|
(2)  The invented reminder event signal (DATA_READY in this case) is enumerated

just like all other signals in the system.

(3) The sensor state machine derives from the QF class QActive that combines
an HSM, an event queue, and a thread of execution. The QActive class
actually derives from QHsm, which means that Sensor also indirectly derives
from QHsm (see Chapter 6 for more details).

(4) The sensor state machine declares its own private time event. Time events are
managed by the QF real-time framework. Section 7.7 in Chapter 7 covers the
QTimeEvt facility in detail.

(5) The time event must be instantiated, at which time it gets permanently associated
with the given signal (TIMEOUT_SIG in this case).

(6)  The topmost initial transition enters the “polling” state, which in turn enters the
“idle” substate.

(7)  Upon entry to the “polling” state, the time event is armed for generating periodic
TIMEOUT_SIG events twice per second.

NOTE

In QF, as in every other RTOS, the time unit is the “time tick.” The board support package
(BSP) defines the constant BSP_TICKS_PER_SEC that ties the ticking rate to the second.

(8)  After being armed, the time event produces the TIMEOUT_SIG events at the
programmed rate. Because neither the “idle” state nor the “processing” state
handle the TIMEOUT_SIG signal, the signal is handled initially in the “polling”
superstate.

(9)  Atalower rate (every fourth time, in this example), the “polling” state generates
the reminder event (DATA_READY), which it posts to self. Event posting occurs
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by calling the QActive_postFIFO () function provided in the QF real-time
framework.

(10) The reminder event causes a transition from “idle” to “busy.”

(11) The “busy” state overrides the TIMEOUT_SIG signal and after a few TIMEOUT
events transitions back to “idle.” The cycle then repeats.

5.2.5 Consequences

Although conceptually very simple, the Reminder state pattern has profound consequences.
It can address many more problems than illustrated in the example. You could use it as a
“Swiss Army knife” to fix almost any problem in the state machine topology.

For example, you also can apply the Reminder idiom to eliminate troublesome
completion transitions, which in the UML specification are transitions without an
explicit trigger (they are triggered implicitly by completion events, a.k.a. anonymous
events). The QEP event processor requires that all transitions have explicit

triggers; therefore, the QEP does not support completion transitions. However,

the Reminder pattern offers a workaround. You can invent an explicit trigger for
every transition and post it to self. This approach actually gives you much better control
over the behavior because you can explicitly specify the completion criteria.

Yet another important application of the Reminder pattern is to break up longer RTC
steps into shorter ones. As explained in more detail in Chapter 6, long RTC steps
exacerbate the responsiveness of a state machine and put more stress on event queues.
The Reminder pattern can help you break up CPU-intensive processing (e.g.,
iteration) by inventing a stimulus for continuation in the same way that you stick a
Post-It note to your computer monitor to remind you where you left off on some lengthy
task when someone interrupts you. You can also invent event parameters to convey
the context, which will allow the next step to pick up where the previous step left

off (e.g., the index of the next iteration). The advantage of fragmenting lengthy
processing in such a way is that other (perhaps more urgent) events can “sneak in,”
allowing the state machine to handle them in a more timely way.

You have essentially two alternatives when implementing event posting: the first-in,
first-out (FIFO) or the last-in, first-out (LIFO) policy, both of which are supported in
the QF real-time framework (see Chapter 6). The FIFO policy is appropriate for
breaking up longer RTC steps. You want to queue the Reminder event after other
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events that have potentially accumulated while the state machine was busy, to give the
other events a chance to sneak in ahead of the Reminder. However, in other
circumstances, you might want to process an uninterruptible sequence of posted
events (such a sequence effectively forms an extended RTC step®). In this case, you
need the LIFO policy because a reminder posted with that policy is guaranteed to
be the next event to process and no other event can overtake it.

NOTE

You should always use the LIFO policy with great caution because it changes the order of
events. In particular, if multiple events are posted with the LIFO policy to an event queue
and no events are removed from the queue in the meantime, the order of these events in
the queue will get reversed.

5.3 Deferred Event

5.3.1 Intent

Simplify state machines by modifying the sequencing of events.

5.3.2 Problem

One of the biggest challenges in designing reactive systems is that such systems must be
prepared to handle every event at any time. However, sometimes an event arrives at

a particularly inconvenient moment when the system is in the midst of some complex
event sequence. In many cases, the nature of the event is such that it can be postponed
(within limits) until the system is finished with the current sequence, at which time
the event can be recalled and conveniently processed.

Consider, for example, the case of a server application that processes transactions
(e.g., from ATM" terminals). Once a transaction starts, it typically goes through a
sequence of processing, which commences with receiving the data from a remote
terminal followed by the authorization of the transaction. Unfortunately, new

transaction requests to the server arrive at random times, so it is possible to get a

* For example, state-based exception handling (see Section 6.7.4 in Chapter 6) typically requires immediate
handling of exceptional situations, so you don’t want other events to overtake the EXCEPTION event.
5 ATM stands for automated teller machine, ak.a. cash machine.
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request while the server is still busy processing the previous transaction. One
option is to ignore the request, but this might not be acceptable. Another option

is to start processing the new transaction immediately, which can complicate things
immensely because multiple outstanding transactions would need to be handled
simultaneously.

5.3.3 Solution

The solution is to defer the new request and handle it at a more convenient time, which
effectively leads to altering the sequence of events presented to the state machine.

UML statecharts support such a mechanism directly (see Section 2.3.11 in Chapter 2)
by allowing every state to specify a list of deferred events. As long as an event is on the
combined deferred list of the currently active state configuration, it is not presented
to the state machine but instead is queued for later processing. Upon a state transition,
events that are no longer deferred are automatically recalled and dispatched to the
state machine.

Figure 5.5 illustrates a solution based on this mechanism. The transaction server state
machine starts in the “idle” state. The NEW_REQUEST event causes a transition to a
substate of the “busy” state. The “busy” state defers the NEW_REQUEST event (note the
special “deferred” keyword in the internal transition compartment of the “busy”
state). Any NEW_REQUEST arriving when the server is still in one of the “busy”
substates gets automatically deferred. Upon the transition AUTHORIZED back to the
“idle” state, the NEW_REQUEST is automatically recalled. The request is then processed
in the “idle” state, just as any other event.

4 busy N\
deferred list 5 — — —|-o deferred / NEW_REQUEST
(__receivin
Ve P
_ NEW_REQUEST
idle J
[¢——AUTHORIZED RECEIVE
\ J

Figure 5.5: Event deferral using the built-in UML mechanism.
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NOTE

Hierarchical state nesting immensely complicates event deferral because the deferred lists in
all superstates of the current state contribute to the mechanism.

The lightweight QEP event processor does not support the powerful, but heavyweight,
event deferral mechanism of the UML specification. However, you can achieve
identical functionality by deferring and recalling events explicitly. In fact, the QF
real-time framework supports event deferral by providing defer () and recall ()
operations.

o -~ ( busy N\
«state pattern» \ N
« Deferred Event - -explicit. _ _ _
/
~ - deferral

~ - —
-—

[~ - NEW_REQUEST / defer();

explicit
recall

A 4

Vs
NEW_REQUEST

M (__authorizin
<4——AUTHORIZED RECEIVE

. J

entry / recall();

Figure 5.6: The Deferred Event state pattern.

Figure 5.6 shows how to integrate the explicit defer () and recall () operations into
a HSM to achieve the desired effect. The internal transition NEW_REQUEST in the
“busy” state traps any NEW_REQUEST received in any of the substates. This internal
transition calls the defer () operation to postpone the event. The “idle” state explicitly
recalls any deferred events by calling recall () in the entry action. The recall ()
operation posts the first of the deferred events (if available) to self. The state machine
then processes the recalled event just as any other event.

NOTE

Even though the deferred event is in principle available directly from the recall () operation,
it is not processed in the entry action to “idle.” Rather, the recall () operation posts the
event to self (to the event queue of this state machine). The state machine then handles the
NEW_REQUEST event as any other event, that is, in the transition from “idle” to “receiving.”
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5.3.4 Sample Code

The sample code for the Deferred Event state pattern is found in the directory
<gp>\gpc\examples\80x86\dos\tcpplOl\l\defer\. You can execute the
application by double-clicking the DEFER.EXE file in the dbg\ subdirectory.

Figure 5.7 shows the output generated by the DEFER . EXE application. The application
prints every state entry (to “idle,” “receiving,” and “authorizing”). Additionally, you
get notification of every NEW_REQUEST event and whether it has been deferred or
processed directly. You generate new requests by pressing the n key. Note that
request #7 is not deferred because the deferred event queue gets full. See the explanation
section following Listing 5.3 for an overview of options to handle this situation.

-~ Command Prompt BER
Deferred Event state pattern ﬂ
QEP version: 4.8. — —

version: 4.8.88 | Top-most initial transition |
ress n to generate a new reguest
AJI All requests processed |
| |
= New request #1
; } I New requests #2 .. #4 |

equest #2 recalled
rocessing request #2 New request #5 |
] ecﬁlulng ENEE%]’?Y / q
authorizing— 3 |
equest #S5 deferred; | New request #6 |
equest #6 deferred; w—
equest #7 IGNORED; | New request #7 IGNORED |
idle—ENTRY;

Request #3 recalled \
Recalling and processing
[ deferred requests
Processing request H6
receiving—ENTRY;
authorizing—ENTRY;
idle~ENTRY; J |

o deferred requests { All requests processed |
inal-ENTRY;
ye?*Bye? ﬂ

Figure 5.7: Annotated output generated by DEFER . EXE.
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Listing 5.3 The Deferred Event sample code (file defer.c)

(1) #include "gp_port.h"
#include "bsp.h"

L e e e e e e e e e e e e e e e */
enum TServerSignals {
NEW_REQUEST SIG = Q USER_SIG, /* the new request signal */
RECEIVED_SIG, /* the request has been received */
AUTHORIZED_SIG, /* the request has been authorized */
TERMINATE_SIG /* terminate the application */
}i
2 */
(2) typedef struct RequestEvtTag {
QEvent super; /* derive from QEvent */
uint8_t ref_num; /* reference number of the request */

} RequestEvt;

2 */
(3) typedef struct TServerTag { /* Transaction Server active object */
(4) QActive super; /* derive from QActive */
(5) QEQueue requestQueue; /* native QF queue for deferred request events */
(6) QEvent const *requestQSto[3]; /* storage for the deferred queue buffer */
(7) QTimeEvt receivedEvt; /* private time event generator */
(8) QTimeEvt authorizedEvt; /* private time event generator */

} TServer;

void TServer_ctor (TServer *me) ; /* the default ctor */
/* hierarchical state machine ... */

QState TServer_initial (TServer *me, QEvent const *e) ;

QState TServer_idle (TServer *me, QEvent const *e) ;

QState TServer_busy (TServer *me, QEvent const *e) ;

QState TServer_receiving (TServer *me, QEvent const *e) ;
QState TServer_authorizing (TServer *me, QEvent const *e) ;

QState TServer_final (TServer *me, QEvent const *e) ;
LR e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e */
void TServer_ctor (TServer *me) { /* the default ctor */
QActive_ctor (&me->super, (QStateHandler)&TServer_initial);
(9) QEQueue_init (&me->requestQueue,

me->requestQSto, Q DIM(me->requestQSto)) ;
QTimeEvt_ctor (&me->receivedEvt,RECEIVED_SIG) ;
QTimeEvt_ctor (&me->authorizedEvt, AUTHORIZED_SIG) ;

}
/*HSMdefinition----------—-—"——"—" -~ */
QState TServer_initial (TServer *me, QEvent const *e) {
(void)e; /* avoid the compiler warning about unused parameter */
return Q_TRAN (&TServer_idle) ;
}
L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e */

Continued onto next page
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QState TServer_final (TServer *me, QEvent const *e) {
(void)me; /* avoid the compiler warning about unused parameter */
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("final-ENTRY; \nBye!Bye!\n") ;
BSP_exit () ; /* terminate the application */
return Q_HANDLED() ;

}
return Q_SUPER (&QHsm_top) ;

QState TServer_idle(TServer *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
RequestEvt const *rqg;
printf ("idle-ENTRY;\n") ;

/* recall the request from the private requestQueue */

(10) rq = (RequestEvt const *)QActive_recall ((QActive *)me,
&me->requestQueue) ;

if (rqg != (RequestEvt *)0) { /* recall posted an event? */
(11) printf ("Request #%d recalled\n", (int)rg->refNum) ;

}

else {
(12) printf ("No deferred requests\n") ;

}

return Q_HANDLED() ;
}
case NEW_REQUEST_SIG: {
printf ("Processing request #%d\n",
(int) ( (RequestEvt const *)e) ->refNum) ;
return Q_TRAN (&TServer_receiving) ;
}
case TERMINATE_SIG: {
return Q_TRAN (&TServer_final) ;

}
return Q_SUPER (&QHsm_top) ;

QState TServer_busy (TServer *me, QEvent const *e) {
switch (e->sig) {
case NEW_REQUEST_ SIG: {

(13) if (QEQueue_getNFree (&me->requestQueue) > 0) { /* can defer? */
/* defer the request */
(14) QActive_ defer ((QActive *)me, &me->requestQueue, e);

printf ("Request #%d deferred;\n",
(int) ( (RequestEvt const *)e) ->ref_num) ;
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else {
/* notify the request sender that the request was ignored.. */
(15) printf ("Request #%d IGNORED; \n",

(int) ( (RequestEvt const *)e) ->ref_num) ;
}
return Q_HANDLED() ;
}
case TERMINATE_SIG: {
return Q_TRAN (&TServer_final) ;

}
return Q_SUPER (&QHsm_top) ;

QState TServer_receiving (TServer *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("receiving-ENTRY;\n") ;
/* one-shot timeout in 1 second */
QTimeEvt_fireIn (&me->receivedEvt, (QActive *)me,
BSP_TICKS_PER_SEC) ;
return Q_HANDLED() ;
}
case Q_EXIT_SIG: {
QTimeEvt_disarm(&me->receivedEvt) ;
return Q_HANDLED() ;
}
case RECEIVED_SIG: {
return Q_TRAN (&TServer_authorizing) ;

}
return Q_SUPER (&TServer_busy) ;

QState TServer_authorizing (TServer *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("authorizing-ENTRY; \n") ;
/* one-shot timeout in 2 seconds */
QTimeEvt_firelIn (&me->authorizedEvt, (QActive *)me,
2*BSP_TICKS_PER_SEC) ;
return Q_HANDLED() ;
}
case Q_EXIT_SIG: {
QTimeEvt_disarm(&me->authorizedEvt) ;
return Q_HANDLED() ;
}
case AUTHORIZED_SIG: {
return Q_TRAN (&TServer_idle) ;

Continued onto next page
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}
return Q_SUPER (&TServer_busy) ;

1)

)

(3.4)

)

(6)

(7,8)

)
(10)

The Deferred Event state pattern relies heavily on event queuing, which is not
supported by the raw QEP event processor. The sample code uses the whole
QP, which includes the QEP event processor and the QF real-time framework.
QF provides specific direct support for deferring and recalling events.

The RequestEvt event has a parameter ref_num (reference number) that
uniquely identifies the request.

The transaction server (TServer) state machine derives from the QF class
QActive that combines an HSM, an event queue, and a thread of execution.
The Qactive class actually derives from QHsm, which means that TServer
also indirectly derives from QHsm.

The QF real-time framework provides a “raw” thread-safe event queue class
QEQueue that is needed to implement event deferral. Here the TServer state
machine declares the private requestQueue event queue to store the deferred
request events. The QEQueue facility is discussed in Section 7.8.3 of Chapter 7.

The QEQueue requires storage for the ring buffer, which the user must provide,
because only the application designer knows how to size this buffer. Note that
event queues in QF store just pointers to QEvent, not the whole event objects.

The delays of receiving the whole transaction request (RECEIVED) and receiving
the authorization notification (AUTHORIZED) are modeled in this example with
the time events provided in QF.

The private requestQueue event queue is initialized and given its buffer storage.

Per the HSM design, the entry action to the “idle” state recalls the request
events. The function QActive_recall () returns the pointer to the recalled
event, or NULL if no event is currently deferred.

NOTE

Even though you can “peek” inside the recalled event, you should not process it at this point.
By the time QActive_recall () function returns, the event is already posted to the active
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object’s event queue using the LIFO policy, which guarantees that the recalled event will be
the very next to process. (If other events were allowed to overtake the recalled event, the
state machine might transition to a state where the recalled event would no longer be con-
venient.) The state machine will then handle the event like any other request coming at the
convenient time. This is the central point of the Deferred Event design pattern.

(11,12) The recalled event is inspected only to notify the user but not to handle it.

(13) Before the “busy” superstate defers the request, it checks to see whether the
private event queue can accept a new deferred event.

(14) If so, the event is deferred by calling the Qactive_defer () QF function.

(15) Otherwise, the request is ignored and the user is notified about this fact.

NOTE

Losing events like this is often unacceptable. In fact, the default policy of QF is to fail an
internal assertion whenever an event could be lost. In particular, the QActve_defer ()
function would fire an internal assertion if the event queue could not accept the deferred
event. You can try this option by commenting out the if statement in Listing 5.3(13).

Figure 5.8 shows a variation of the Deferred Event state pattern, in which the state
machine has the “canonical” structure recommended by the Ultimate Hook pattern. The
“busy” state becomes the superstate of all states, including “idle.” The “idle” substate
overrides the NEW_REQUEST event. All other substates of “busy” rely on the default
event handling inside the “busy” superstate, which defers the NEW_REQUEST event. You

4 busy )

NEW_REQUEST / defer();
NEW_REQUEST: ,.(__Teceiving

RECEIVED

Figure 5.8: A variation of the Deferred Event state pattern.



228 Chapter 5

can very easily try this option by reparenting the “idle” state. You simply change
“return Q SUPER (&QHsm_top)” to “return Q_ SUPER (&TServer_ busy)’ in the
TServer_idle() state-handler function.

Finally, I’d like to point out the true convenience of the Qactive_defer () and
QActive_recall () functions. The main difficulty in implementing the event deferral
mechanism is actually not the explicit deferring and recalling but rather the memory
management for the event objects. Consider, for example, that each request event must
occupy some unique memory location, yet you don’t know how long the event will be
used. Some request events could be recycled just after the RTC step of the TServer
state machine, but some will be deferred and thus will be used much longer. Recall that
for memory efficiency and best performance the deferred event queue, as well as the
queues of active objects in QF, store only pointers to events, not the whole event
objects. How do you organize and manage memory for events?

This is where the QF real-time framework comes in. QF takes care of all the nitty-gritty
details of managing event memory and does it very efficiently with “zero-copy” policy
and in a thread-safe manner. As I will explain in Chapter 7, QF uses efficient event pools
combined with a standard reference-counting algorithm to know when to recycle events
back to the pools. The functions QActive_defer () and QActive_recall ()
participate in the reference-counting process so that QF does not recycle deferred events
prematurely.

The whole event management mechanism is remarkably easy to use. You dynamically
allocate an event, fill in the event parameters, and post it. QF takes care of the rest.
In particular, you never explicitly recycle the event. Listing 5.4 shows how the request
events are generated in the sample code for the Deferred Event pattern.

Listing 5.4 Generation of new request events with the 0_NEW () macro
(file defer.c)

void BSP_onConsoleInput (uint8_t key) {
switch (key) {

case ‘n’: { /* new request */
static uint8_t reqCtr =0; /* count the requests */
(1) RequestEvt *e = Q NEW(RequestEvt, NEW _REQUEST SIG) ;
(2) e->ref_num = (++reqCtr) ; /* set the reference number */
/* post directly to TServer active object */
(3) QActive_postFIFO( (QActive *)&1l_tserver, (QEvent *)e);

break;
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}

case 0x1B: { /* ESC key */
(4) static QEvent const terminateEvt = { TERMINATE_SIG, 0};
(5) QActive_postFIFO( (QActive *)&l_tserver, &terminateEvt) ;
break;

(1) When you press the n key, the QF macro Q_NEW () creates a new RequestEvt
event and assigns it the signal NEW_REQUEST_SIG. The new event is allocated
from an “event pool” that the application allocates at startup.

(2) You fill in the event parameters. Here the ref_num parameter is set from the
incremented static counter.

(3) You post the event to an active object, such as the local 1_tserver object.

(4) Constant, never-changing events can be allocated statically. Such events should
have always the dynamic_ attribute set to zero (see Listing 4.2 and Section 4.3 in
Chapter 4).

(5) You post such static event just like any other event. The QF real-time framework
knows not to manage the static events.

5.3.5 Consequences

Event deferral is a valuable technique for simplifying state models. Instead of
constructing an unduly complex state machine to handle every event at any time, you
can defer an event when it comes at an inappropriate or awkward time. The event is
recalled when the state machine is better able to handle it. The Deferred Event state
pattern is a lightweight alternative to the powerful but heavyweight event deferral of
UML statecharts. The Deferred Event state pattern has the following consequences.

e [t requires explicit deferring and recalling of the deferred events.

® The QF real-time framework provides generic defer () and recall ()
operations.

e [f a state machine defers more than one event type, it might use the same event
queue (QEQueue) or different event queues for each event type. The generic
QF defer () and recall () operations support both options.
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e Events are deferred in a high-level state, often inside an internal transition in
this state.

e Events are recalled in the entry action to the state that can conveniently handle
the deferred event type.

e The event should not be processed at the time it is explicitly recalled. Rather,
the recall () operation posts it using the LIFO policy so that the state machine
cannot change state before processing the event.

e Recalling an event involves posting it to self; however, unlike the Reminder
pattern, deferred events are usually external rather than invented.

5.3.6 Known Uses

The Real-Time Object-Oriented Modeling (ROOM) method [Selic+ 94] supports a
variation of the Deferred Event pattern presented here. Just like the QF real-time
framework, the ROOM virtual machine (infrastructure for executing ROOM models)
provides the generic methods defer () and recall (), which clients need to call
explicitly. The ROOM virtual machine also takes care of event queuing. Operations
defer () and recall () in ROOM are specific to the interface component through
which an event was received.

5.4 Orthogonal Component

5.4.1 Intent

Use state machines as components.

5.4.2 Problem

Many objects consist of relatively independent parts that have state behavior. As an
example, consider a simple digital alarm clock. The device performs two largely
independent functions: a basic timekeeping function and an alarm function. Each of
these functions has its own modes of operation. For example, timekeeping can be in two
modes: 12-hour or 24-hour. Similarly, the alarm can be either on or off.

The standard way of modeling such behavior in UML statecharts is to place each of the
loosely related functions in a separate orthogonal region, as shown in Figure 5.9.
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Orthogonal regions are a relatively expensive mechanism® that the current
implementation of the QEP event processor does not support. In addition, orthogonal
regions aren’t often the desired solution because they offer little opportunity for reuse.
You cannot reuse the “alarm” orthogonal region easily outside the context of the
AlarmClock state machine.

«class role» 4 timekeeping alarm

AlarmClock

curr_time  :uint32_t
alarm_time : uint32_t | o4H

mode24h

(_off
SET/ OFF+

—12H>{TiCK/ TICK/ ON—
(@) <«—TERMINATE—
G J

Figure 5.9: AlarmClock class and its UML state machine with orthogonal regions.

5.4.3 Solution

You can use object composition instead of orthogonal regions. As shown in Figure 5.10,
the alarm function very naturally maps to the Alarm class that has both data
(alarm_time) and behavior (the state machine). Indeed, Rumbaugh and colleagues
[Rumbaugh+ 91] observe that this is a general rule. Concurrency virtually always arises
within objects by aggregation; that is, multiple states of the components can contribute
to a single state of the composite object.

The use of aggregation in conjunction with state machines raises three questions:

e How does the container state machine communicate with the component state
machines?

¢ How do the component state machines communicate with the container state
machine?

e What kind of concurrency model should be used?

S Each orthogonal region requires a separate state variable (RAM) and some extra effort in dispatching
events (CPU cycles).
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«abstract» 5 «abstract» «abstract»
QActive QHsm QFsm L
AlarmClock alarm Alarm
curr_time : uint32_t o alarm_time : uint32_t
alarm  : Alarm ~ 7 pattern» >
Container—{  Orthogonal ~ ~ Component —

\
- Qomponent/ 4
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&— / alarm.init()—— TERMINATE>(®) {—0
[ N N

4 timekeeping 4 off
ON/ alarm.dispatch(e); kSET / )
OFF / alarm.dispatch(e); T +
SET / alarm.dispatch(e); ON OFF
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/ mode12h \ mode24h e on ~

TICK/
display24H();
alarm.dispatch(e);

TICK/
display12H();
alarm.dispatch(e);

TIME(curr_time)
[e->curr_time
== me->alarm_time] /
sound_alarm();

12H 24H
I | J

Figure 5.10: The Orthogonal Component state pattern.

The composite object interacts with its aggregate parts by synchronously dispatching
events to them (by invoking dispatch () on behalf of the components). GUI
systems, for instance, frequently use this model because it is how parent windows
communicate with their child windows (e.g., dialog controls). Although, in principle,
the container could invoke various functions of its components or access their data
directly, dispatching events to the components should be the preferred way of
communication. The components are state machines, and their behavior depends on
their internal state.

You can view the event-dispatching responsibility as a liability given that errors

will result if the container “forgets” to dispatch events in some states, but you can
also view it as an opportunity to improve performance. Explicit event dispatching also
offers more flexibility than the event dispatching of orthogonal regions because the
container can choose the events it wants to dispatch to its components and even change
the event type on the fly. I demonstrate this aspect, when the AlarmClock container
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generates the TimeEvt on the fly before dispatching it to the Alarm components
(see Listing 5.8(9)).

To communicate in the opposite direction (from a component to the container), a
component needs to post events to the container. Note that a component cannot call
dispatch () on behalf of the container because this would violate RTC semantics.
As a rule, the container is always in the middle of its RTC step when a component
executes. Therefore, components need to asynchronously post (queue) events to

the container.

This way of communication corresponds to a concurrency model in which a container
shares its execution thread with the state machine components.” The container
dispatches an event to a component by synchronously calling dispatch () state
machine operation on behalf of the component. Because this function executes in the
container’s thread, the container cannot proceed until dispatch () returns, that is, until
the component finishes its RTC step. In this way, the container and components can
safely share data without any concurrency hazards (data sharing is also another method
of communication among them). However, sharing the container’s data makes the
components dependent on the container and thus makes them less reusable.

As you can see on the right side of Figure 5.10, I decided to derive the Alarm
component from the simpler QFsm base class to demonstrate that you have a choice of
the base class for the components. You can decide to implement some components as
HSMs and others as FSMs. The QEP event processor supports both options.

By implementing half of the problem (the AlarmClock container) as a hierarchical
state machine and the other half as a classical “flat” FSM (the Alarm component),
I can contrast the hierarchical and nonhierarchical solutions to essentially identical
state machine topologies. Figure 5.10 illustrates the different approaches to
representing mode switches in the HSM and in the FSM. The hierarchical solution
demonstrates the “Device Mode” idiom [Douglass 99], in which the signals 12H and
24H trigger high-level transitions from the “timekeeping” superstate to the substates
“mode12h” and “mode24h,” respectively. The Alarm FSM is confined to only one
level and must use direct transitions ON and OFF between its two modes. Although it is
not clearly apparent with only two modes, the number of mode-switch transitions in
the hierarchical technique scales up proportionally to the number of modes, n.

7 Most commonly, all orthogonal regions in a UML statechart also share a common execution thread
[Douglass 99].
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The nonhierarchical solution requires many more transitions—n X (n— [ ), in general—
to interconnect all states. There is also a difference in behavior. In the hierarchical
solution, if a system is already in “mode12h,” for example, and the 12H signal arrives,
the system leaves this mode and re-enters it again. (Naturally, you could prevent that by
overriding the high-level 12H transition in the “mode12h” state.) In contrast, if the
flat state machine of the Alarm class is in the “off” state, for example, then nothing
happens when the OFF signal appears. This solution might or might not be what you
want, but the hierarchical solution (the Device Mode idiom) offers you both options
and scales much better with a growing number of modes.

5.4.4 Sample Code

The sample code for the Orthogonal Component state pattern is found in the directory
<gp>\gpc\examples\80x86\dos\tcppl0l\1l\comp\. You can execute the
application by double-clicking the file coMP . EXE file in the dbg\ subdirectory.
Figure 5.11 shows the output generated by the coOMP.EXE application. The application

<~ Command Prompt -|oj=

rthogonal Component pattern <:J
EF version: 4.0.808

version: 4.0.68

‘0o’ to turn the Alarm ON
‘f' to turn the Alarm OFF

a’ to set the Clock i

'h’ to zet the Cloc 2 . . -
to guit... Top-most initial transition in the AlarmClock container
OFF 12:00
24-hour mode

Alarm turned on (‘0’)

@’..79" to set the Alarm | Top-most initial transition in the Alarm component r

a
Al ON 12:00 =
ez Attempt to set alarm (‘1’)

Cannot set Alarm when it is ON

Alarm turned off (‘f’)

Alarm OFF 12:80
184 ;
Alarm SET 28:81 Alarm set (‘1)

(5]

glarm SET 0@:1@ Alarm set (‘0’)
filarm ON B0:10
av

Alarm turned on (‘0’)

08
ézn—lnmuv node Clock set to 12H-mode (‘a’)

Alarm notification from the Alarm component

Alarm notification from the AlarmClock component

|
|

Terminated (‘Esc’) ||

Figure 5.11: Annotated output generated by COMP . EXE.
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prints the status of every mode change, both in the AlarmClock container and in the
Alarm component. Additionally, you get feedback about the currently set alarm time
and a notification when the alarm time is reached. The legend of the keystrokes at
the top of the screen describes how to generate events for the application. Also, note
that to make things happen a little faster, I made this alarm clock advance by one
accelerated minute per one real second.

The sample code demonstrates the typical code organization for the Orthogonal
Component state pattern, in which the component (Alarm) is implemented in a separate
module from the container (AlarmClock). The modules are coupled through shared
signals, events, and variables (Listing 5.5). In particular, the pointer to the container
active object APP_alarmClock is made available to all components so that they can
post events to the AlarmClock container.

Listing 5.5 Common signals and events (file clock.h)

#ifndef clock_h
#define clock_h

enum AlarmClockSignals {

TICK_SIG = Q_USER_SIG, /* time tick event */
ALARM_SET_SIG, /* set the alarm */
ALARM_ON_SIG, /* turn the alarmon */
ALARM_OFF_SIG, /* turn the alarm off */
ALARM_SIG, /*alarmevent fromAlarmcomponent toAlarmClock container */
CLOCK_12H_SIG, /* set the clock in 12H mode */
CLOCK_24H_SIG, /* set the clock in 24H mode */
TERMINATE_SIG /* terminate the application */

Y

/20 */

typedef struct SetEvtTag {
QEvent super; /* derive from QEvent */
uint8_t digit;

} SetEvt;

typedef struct TimeEvtTag {
QEvent super; /* derive from QEvent */
uint32_t current_time;

} TimeEvt;

extern QActive *APP _alarmClock; /* AlarmClock container active object */

#endif /* clock_h */
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NOTE

Note that the APP_alarmClock pointer has the generic type QActive*. The components
only “know” the container as a generic active object; they don’t know its specific data struc-
ture or state-handler functions. This technique is called opaque pointer and is worth remem-
bering for reducing dependencies among modules.

Listing 5.6 shows the declaration of the A1arm component (see Figure 5.10). Note that I
don’t actually need to expose the state-handler functions in the alarm.h header file.
Instead, I provide only the generic interface to the Alarm component as the macros
Alarm_init () and Alarm_dispatch () to let the container initialize and dispatch
events to the component, respectively. This approach insulates the container from the
choice of the base class for the component. If later on I decide to derive Alarm from
QHsm, for example, I need to change only the definitions of the Alarm_init ()

and Alarm_dispatch () macros; I don’t need to change the container code at all.
Note that the macros are unnecessary in the C++ implementation because due to the
compatibility between the QHsm and QFsm interfaces, the container state-handler
functions always dispatch events to the Alarm component in the same way by calling
me->alarm.dispatch().

Listing 5.6 Alarm component declaration (file alarm.h)

#ifndef alarm_h
#define alarm_h

typedef struct AlarmTag { /* the FSM version of the Alarm component */
QFsm super; /* derive from QFsm */
uint32_t alarm_time;

} Alarm;

void Alarm_ctor (Alarm *me) ;

#define Alarm_init (me_) QFsm_init ((QFsm *) (me_), (QEvent *)0)
#define Alarm_dispatch(me_, e_) QFsm_dispatch((QFsm*) (me_), e_)
#endif /* alarm_h */

Listing 5.7 shows the implementation of the Alarm component state machine.
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Listing 5.7 Alarm state machine definition (file alarm.c)

(1) #include "alarm.h"
(2) #include "clock.h"

/* FSM state-handler functions */
(3) OQState Alarm_initial (Alarm *me, QEvent const *e) ;

QState Alarm_off (Alarm *me, QEvent const *e) ;
QState Alarm_on (Alarm *me, QEvent const *e) ;
/P */
void Alarm_ctor (Alarm *me) {
(4) QFsm_ctor (&me->super, (QStateHandler)&Alarm_initial) ;
}
/* HSM definition ---------------------- */
QState Alarm_initial (Alarm *me, QEvent const *e) {
(void)e; /* avoid compiler warning about unused parameter */

me->alarm_time = 12*60;
return Q_TRAN (&Alarm_off) ;

QState Alarm_off (Alarm *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
/*while in the off state, thealarmis kept indecimal format */
(5) me->alarm_time = (me->alarm_time/60)*100 + me->alarm_time%60;
printf ("*** Alarm OFF %$021d:%021d\n",
me->alarm_time/100, me->alarm_time%100) ;
return Q_HANDLED () ;
}
case Q_EXIT_SIG: {
/* upon exit, the alarm is converted to binary format */
(6) me->alarm_time = (me->alarm_time/100) *60 + me->alarm_time%100;
return Q _HANDLED () ;
}
case ALARM_ON_SIG: {
return Q_TRAN(&Alarm_on) ;
}
case ALARM_SET_SIG: {
/* while setting, the alarm is kept in decimal format */
uint32_t alarm = (10 * me->alarm_time
+( (SetEvt const *)e)->digit) %$ 10000;
if ((alarm / 100 < 24) && (alarm % 100 < 60)) { /*alarm in range?*/
me->alarm_time = alarm;
}
else { /* alarm out of range -- start over */
me->alarm_time = 0;
}
printf ("*** Alarm SET $021d:%021d\n",

Continued onto next page
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me->alarm_time/100, me->alarm_time%100) ;
return Q_HANDLED() ;
}
}
return Q_IGNORED() ;
}

QState Alarm_on (Alarm *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {

printf ("*** Alarm ON $021d:%021d\n",
me->alarm_time/60, me->alarm_time%60) ;

return Q HANDLED() ;

}

case ALARM_SET_SIG: {
printf ("*** Cannot set Alarm when it is ON\n") ;
return Q HANDLED() ;

}

case ALARM_OFF_SIG: {
return Q_TRAN (&Alarm_off);

}

case TIME_SIG: {

(7) if (((TimeEvt *)e)->current_time == me->alarm_time) {
printf ("ALARM!!!\n") ;
/* asynchronously post the event to the container AO */
(8) QActive_postFIFO (APP_alarmClock, Q_NEW(QEvent, ALARM_ SIG)) ;
}
return Q_HANDLED() ;
}
}
return Q _IGNORED() ;

(1,2) The Alarm component needs both the alarm.h interface and the clock.h
container interface.

(3) The nonhierarchical state-handler functions have the same signature as the
hierarchical state handlers (see Section 3.6 in Chapter 3).

(4) The Alarm constructor must invoke the constructor of its base class.

(5) Upon the entry to the “off” state, the alarm time is converted to the decimal
format, in which 12:05 corresponds to decimal 1205.

(6) Upon the exit from the “off” state, the alarm time is converted back to the binary
format, in which 12:05 corresponds to 12 * 60 4+ 5 = 725.
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NOTE

The guaranteed initialization and cleanup provided by the entry and exit actions ensure that
the time conversion will always happen, regardless of the way the state “off” is entered or
exited. In particular, the alarm time will be always represented in decimal format while in
the “off” state and in binary format outside the “off” state.

(7) The alarm component keeps receiving the TIME event from the AlarmClock
container. AlarmClock conveniently provides the current_time event
parameter, which the Alarm component can directly compare to its
me->alarm_time extended-state variable.

(8) When the Alarm component detects the alarm time, it notifies the container by
posting an event to it. Here I am using a global pointer APP_alarmClock to the
container active objects. An often used alternative is to store the pointer to the
container inside each component.

Listing 5.8 AlarmClock state machine definition (file comp.c )

#include "gp_port.h"
#include "bsp.h"

(1) #include "alarm.h"
#include "clock.h"

/S */
typedef struct AlarmClockTag { /* the AlarmClock active object */

(3) QActive super; /* derive from QActive */
uint32_t current_time; /* the current time in seconds */
QTimeEvt timeEvt; /* time event generator (generates time ticks) */

(4) Alarm alarm; /* Alarm orthogonal component */

} AlarmClock;

void AlarmClock_ctor (AlarmClock *me) ; /* default ctor */
/* hierarchical state machine ... */

QState AlarmClock_initial (AlarmClock *me, QEvent const *e) ;

QState AlarmClock_timekeeping (AlarmClock *me, QEvent const *e) ;

QState AlarmClock_model2hr (AlarmClock *me, QEvent const *e) ;

QState AlarmClock_mode24hr (AlarmClock *me, QEvent const *e) ;

QState AlarmClock_final (AlarmClock *me, QEvent const *e) ;

Continued onto next page
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void AlarmClock_ctor (AlarmClock *me) { /* default ctor */
QActive_ctor (&me->super, (QStateHandler)&AlarmClock_initial);
(5) Alarm ctor (&me->alarm); /* orthogonal component ctor */
QTimeEvt_ctor (&me->timeEvt, TICK_SIG) ; /* private time event ctor */
}
/*HSMdefinition ——————————— - */
QState AlarmClock_initial (AlarmClock *me, QEvent const *e) {
(void)e; /* avoid compiler warning about unused parameter */
me->current_time = 0;
(6) Alarm init(&me->alarm) ; /* the initial transition in the component * /
return Q_TRAN (&AlarmClock_timekeeping) ;
}
L e e e e e e e e e e e e e e e e e e e e e e e e e */
QState AlarmClock_final (AlarmClock *me, QEvent const *e) {
(void)me; /* avoid the compiler warning about unused parameter */
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("-> final\nBye!Bye!\n");
BSP_exit () ; /* terminate the application */
return Q HANDLED() ;
}
}
return Q_SUPER (&QHsm_top) ;
}
/2 */
QState AlarmClock_timekeeping (AlarmClock *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
/* periodic timeout every second */

QTimeEvt_fireEvery (&me->timeEvt,
(QActive *)me, BSP_TICKS_PER_SEC) ;
return Q_HANDLED() ;
}
case Q_EXIT SIG: {
QTimeEvt_disarm(&me->timeEvt) ;
return Q_HANDLED () ;
}
case Q_INIT SIG: {
return Q_TRAN (&AlarmClock_mode24hr) ;
}
case CLOCK_12H_SIG: {
return Q_TRAN (&AlarmClock_model2hr) ;
}
case CLOCK_24H_SIG: {
return Q_TRAN (&AlarmClock_mode24hr) ;
}
case ALARM_SIG: {
printf ("Wake up!!!\n");




State Patterns 241

return Q_HANDLED () ;
}
case ALARM_SET_SIG:
case ALARM_ON_SIG:
case ALARM_OFF_SIG: {
/* synchronously dispatch to the orthogonal component */
(7) Alarm dispatch (&me->alarm, e);
return Q_HANDLED () ;
}
case TERMINATE_SIG: {
return Q_TRAN (&AlarmClock_final) ;

}
return Q_SUPER (&QHsm_top) ;

QState AlarmClock_mode24hr (AlarmClock *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
printf ("*** 24-hour mode\n") ;
return Q_HANDLED() ;

}

case TICK_SIG: {

(8) TimeEvt pe; /* temporary synchronous event for the component */

if (++me->current_time == 24*60) { /* roll over in 24-hr mode? */
me->current_time = 0;
}
printf ("%021d:%021d\n",
me->current_time/60, me->current_time%60) ;

(9) ( (QEvent *)&pe)->sig = TICK_SIG;
(10) pe.current_time = me->current_time;
/* synchronously dispatch to the orthogonal component */
(11) Alarm dispatch(&me->alarm, (QEvent *)&pe) ;

return Q_HANDLED() ;

}
return Q_SUPER (&AlarmClock_timekeeping) ;

QState AlarmClock_model2hr (AlarmClock *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
printf ("*** 12-hour mode\n") ;
return Q_HANDLED() ;

}

case TICK_SIG: {
TimeEvt pe; /* temporary synchronous event for the component */
uint32_t h; /* temporary variable to hold hour */

Continued onto next page
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if (++me->current_time == 12*60) { /* roll over in 12-hr mode? */
me->current_time = 0;

}

h = me->current_time/60;

printf("%$021d:%021d $s\n", (h%12) ? (h% 12) : 12,

me->current_time % 60, (h/ 12) ? "PM" : "AM");
( (QEvent *) &pe)->sig = TICK_SIG;
pe.current_time = me->current_time;

/* synchronously dispatch to the orthogonal component */
Alarm dispatch(&me->alarm, (QEvent *) &pe) ;
return Q_HANDLED() ;
}

}
return Q_SUPER (&AlarmClock_timekeeping) ;

(1,2) The AlarmClock container includes its own interface clock.h as well as all
interfaces to the component(s) it uses.

(3) The AlarmClock state machine derives from the QF class QActive that
combines an HSM, an event queue, and a thread of execution. The QActive
class actually derives from QHsm, which means that A1armClock also indirectly
derives from QHsm.

(4) The container physically aggregates all the components.
(5) The container must explicitly instantiate the components (in C).

(6) The container is responsible for initializing the components in its topmost initial
transition.

(7) The container is responsible for dispatching the events of interest to the
components. In this line, the container simply dispatches the current event e.

NOTE

The container’s thread does not progress until the dispatch() function returns. In other
words, the component state machine executes its RTC step in the container’s thread. This
type of event processing is called synchronous.

(8) The temporary TimeEvt object to be synchronously dispatched to the
component can be allocated on the stack. Note that the ‘pe’ variable represents
the whole TimeEvt instance, not just a pointer.
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(9,10) The container synthesizes the TimeEvt object on the fly and provides the

current time.

(11) The temporary event is directly dispatched to the component.

5.4.5 Consequences

The Orthogonal Component state pattern has the following consequences.

It partitions independent islands of behavior into separate state machine objects.
This separation is deeper than with orthogonal regions because the objects
have both distinct behavior and distinct data.

Partitioning introduces a container—component (also known as parent—child or
master—slave) relationship. The container implements the primary functionality
and delegates other (secondary) features to the components. Both the container
and the components are state machines.

The components are often reusable with different containers or even within the
same container (the container can instantiate more than one component of a

given type).
The container shares its execution thread with the components.

The container communicates with the components by directly dispatching
events to them. The components notify the container by posting events to it,
never through direct event dispatching.

The components typically use the Reminder state pattern to notify the
container (i.e., the notification events are invented specifically for internal
communication and are not relevant externally). If there are more components
of a given type, the notification events must identify the originating
component (the component passes its ID number in a parameter of the
notification event).

The container and components can share data. Typically, the data is a
data member of the container (to allow multiple instances of different
containers). The container typically grants friendship to the selected
components.
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o The container is entirely responsible for its components. In particular, it must
explicitly trigger initial transitions in all components® as well as explicitly
dispatch events to the components. Errors may arise if the container “forgets” to
dispatch events to some components in some of its states.

e The container has full control over the dispatching of events to the components.
It can choose not to dispatch events that are irrelevant to the components. It
can also change event types on the fly and provide some additional information
to the components.

o The container can dynamically start and stop components (e.g., in certain states
of the container state machine).

e The composition of state machines is not limited to just one level. Components
can have state machine subcomponents; that is, the components can be
containers for lower-level subcomponents. Such a recursion of components can
proceed arbitrarily deep.

5.4.6 Known Uses

The Orthogonal Component state pattern is popular in GUI systems. For example,
dialog boxes are the containers that aggregate components in the form of dialog controls
(buttons, check boxes, sliders, etc.). Both dialog boxes and dialog controls are event-
driven objects with state behavior (e.g., a button has “depressed” and “released” states).
GUISs also use the pattern recursively. For instance, a custom dialog box can be a
container for the standard File-Select or Color-Select dialog boxes, which in turn
contain buttons, check boxes, and so on.

The last example points to the main advantage of the Orthogonal Component state
pattern over orthogonal regions. Unlike an orthogonal region, you can reuse a reactive
component many times within one application and across many applications.

® In C, the container also must explicitly instantiate all components by calling their
“constructors.”
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5.5 Transition to History

5.5.1 Intent

Transition out of a composite state, but remember the most recent active substate so you
can return to that substate later.

5.5.2 Problem

State transitions defined in high-level composite states often deal with events that
require immediate attention; however, after handling them, the system should return to
the most recent substate of the given composite state.

For example, consider a simple toaster oven. Normally the oven operates with its
door closed. However, at any time, the user can open the door to check the food or to
clean the oven. Opening the door is an interruption; for safety reasons, it requires
shutting the heater off and lighting an internal lamp. However, after closing the door,
the toaster oven should resume whatever it was doing before the door was opened. Here
is the problem: What was the toaster doing just before the door was opened? The
state machine must remember the most recent state configuration that was active before
opening the door in order to restore it after the door is closed again.

UML statecharts address this situation with two kinds of history pseudostates: shallow
history and deep history (see Section 2.3.12 in Chapter 2). This toaster oven example
requires the deep history mechanism (denoted as the circled H* icon in Figure 5.12).
The QEP event processor does not support the history mechanism automatically for all
states because it would incur extra memory and performance overheads. However, it
is easy to add such support for selected states.

5.5.3 Solution

Figure 5.12 illustrates the solution, which is to store the most recently active

leaf substate of the “doorClosed” state in the dedicated data member
doorClosed_history . Subsequently, the

Transition to History of the “doorOpen” state (transition to the circled H*) uses the
attribute as the target of the transition.
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Figure 5.12: The Transition to History state pattern.

5.5.4 Sample Code

The sample code for the Transition to History state pattern is found in the directory
<gp>\gpc\examples\80x86\dos\tcppl0l\1l\history\. You can execute the
application by double-clicking the file HISTORY . EXE file in the dbg\ subdirectory.
Figure 5.13 shows the output generated by the HISTORY . EXE application. The
application prints the actions as they occur. The legend of the keystrokes at the top of
the screen describes how to generate events for the application. For example, you
open the door by typing o and close the door by typing c.
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Figure 5.13: Annotated output generated by HISTORY . EXE.

Listing 5.9 shows the implementation of the Transition to History pattern.
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Listing 5.9 The Transition to History sample code (file history.c)

(1) #include "gep_port.h"

/20 */
enum ToasterOvenSignals {
OPEN_SIG = Q _USER_SIG,

CLOSE_SIG,

TOAST_SIG,

BAKE_SIG,

OFF_SIG,

TERMINATE_SIG /* terminate the application */
}i
L e e e e e e e e e e e e e e e e e e e e e e e e e e e e e */
typedef struct ToasterOvenTag {

QHsm super; /* derive from QHsm */

(2) QStateHandler doorClosed history; /* history of the doorClosed state */

} ToasterOven;

void ToasterOven_ctor (ToasterOven *me) ; /* default ctor */
QState ToasterOven_initial (ToasterOven *me, QEvent const *e) ;
QState ToasterOven_doorOpen (ToasterOven *me, QEvent const *e);
QState ToasterOven_off (ToasterOven *me, QEvent const *e) ;
)

QState ToasterOven_heating ToasterOven *me, QEvent const *e
QState ToasterOven_toasting ToasterOven *me, QEvent const *e) ;

(
(
QState ToasterOven_baking (ToasterOven *me, QEvent const *e) ;
(
(

QState ToasterOven_doorClosed (ToasterOven *me, QEvent const *e) ;

QState ToasterOven_final ToasterOven *me, QEvent const *e) ;

/2 */

void ToasterOven_ctor (ToasterOven *me) { /* default ctor */
QHsm_ctor (&me->super, (QStateHandler)&ToasterOven_initial) ;

/* HSM definition - --- - - - - - - - - - - - - - - */
QState ToasterOven_initial (ToasterOven *me, QEvent const *e) {

(void)e; /* avoid compiler warning about unused parameter */

(3) me->doorClosed history = (QStateHandler) &ToasterOven_off;

return Q_TRAN (&ToasterOven_doorClosed) ;
}
/2 */
QState ToasterOven_final (ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */
switch (e->sig) {
case Q_ENTRY_SIG: {
printf("-> final\nBye!Bye!\n") ;
_exit(0);
return Q_HANDLED() ;

Continued onto next page
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}
return Q_SUPER (&QHsm_top) ;

QState ToasterOven_doorClosed (ToasterOven *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("door-Closed; ") ;
return Q_HANDLED() ;
}
case Q_INIT SIG: {
return Q_TRAN (&ToasterOven_off) ;
}
case OPEN_SIG: {
return Q_TRAN (&ToasterOven_doorOpen) ;
}
case TOAST_SIG: {
return Q_TRAN (&ToasterOven_toasting) ;
}
case BAKE_SIG: {
return Q_TRAN (&ToasterOven_baking) ;
}
case OFF_SIG: {
return Q_TRAN (&ToasterOven_off) ;
}
case TERMINATE_SIG: {
return Q_TRAN (&ToasterOven_final) ;

}

return Q_SUPER (&QHsm_top) ;
}
/2 */
QState ToasterOven_off (ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("toaster-0Off;");
(4) me->doorClosed history = (QStateHandler) &ToasterOven_ off;
return Q_HANDLED() ;

}

return Q_SUPER (&ToasterOven_doorClosed) ;
}
/2 */
QState ToasterOven_heating (ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("heater-0On;");
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return Q_HANDLED() ;

}

case Q_EXIT SIG: {
printf ("heater-0Off;");
return Q_HANDLED() ;

}
return Q_SUPER (&ToasterOven_doorClosed) ;

QState ToasterOven_toasting (ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */

switch (e->sig) {
case Q_ENTRY_SIG: {

printf ("toasting;") ;
me->doorClosed history = (QStateHandler) &ToasterOven_toasting;

(5)
return Q HANDLED () ;
}
}
return Q_SUPER (&ToasterOven_heating) ;
}
2o */
QState ToasterOven_baking (ToasterOven *me, QEvent const *e) {
(void)me; /* avoid compiler warning about unused parameter */
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("baking; ") ;
(6) me->doorClosed history = (QStateHandler) &ToasterOven baking;
return Q_HANDLED() ;
}
}
return Q_SUPER (&ToasterOven_heating) ;
}
o */
QState ToasterOven_doorOpen (ToasterOven *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
printf ("door-Open, lamp-0On; ") ;
return Q _HANDLED () ;
}
case Q_EXIT SIG: {
printf ("lamp-Off;");
return Q_HANDLED() ;
}
case CLOSE_SIG: {
(7) return Q TRAN (me->doorClosed history); /* transition to HISTORY */

}
return Q_SUPER (&QHsm_top) ;
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(1) Every QEP application needs to include gep_port.h (see Section 4.8 in
Chapter 4).
(2) The ToasterOven state machine declares the history of the “doorClosed” state
as a data member.
(3) The doorClosed_history variable is initialized in the topmost initial
transition according to the diagram in Figure 5.12.

(4-6) The entry actions to all /eaf substates of the “doorClosed” state record the history
of entering those substates in the doorClosed_history variable. A leaf
substate is a substate that has no further substates (see Section 2.3.8 in Chapter 2).

(7) The transition to history is implemented with the standard macro Q_TRAN (),

where the target of the transition is the doorClosed_history variable.

5.5.5 Consequences

The transition to history state pattern has the following consequences:

It requires that a separate QHsmState pointer to the state-handler function
(history variable) is provided for each composite state to store the history of this
state.

The Transition to History pseudostate (both deep and shallow history) is coded
with the regular _ TRAN () macro, where the target is specified as the history
variable.

Implementing the deep history pseudostate (see Section 2.3.12 in Chapter 2)
requires explicitly setting the history variable in the entry action of each leaf
substate of the corresponding composite state.

Implementing the shallow history pseudostate (see Section 2.3.12 in Chapter 2)
requires explicitly setting the history variable in each exit action from the
desired level. For example, shallow history of the “doorClosed” state

in Figure 5.12 requires setting doorClosed_history to
&ToasterOven_toasting in the exit action from “toasting” and likewise to
&ToasterOven_baking in the exit action from “baking,” and so on for all
direct substates of “doorClosed.”
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®  You can explicitly clear the history of any composite state by resetting the
corresponding history variable.

5.5.6 Known Uses

As a part of the UML specification, the history mechanism qualifies as a widely used
pattern. The ROOM method [Selic+ 94] describes a few examples of transitions to
history in real-time systems, whereas Horrocks [Horrocks 99] describes how to apply
the history mechanism in the design of GUIs.

5.6 Summary

As Gamma and colleagues [GoF 95] observe: “One thing expert designers know not to
do is solve every problem from first principles.” Collecting and documenting design
patterns is one of the best ways of capturing and disseminating expertise in any domain,
not just in software design.

State patterns are specific design patterns that are concerned with optimal (according to
some criteria) ways of structuring states, events, and transitions to build effective state
machines. This chapter described just five such patterns and a few useful idioms for
structuring state machines. The first two patterns, Ultimate Hook and Reminder, are at a
significantly lower level than the rest, but they are so fundamental and useful that they
belong in every state machine designer’s bag of tricks.

The other three patterns (Deferred Event, Orthogonal Component, and Transition to
History) are alternative, lightweight realizations of features supported natively in the
UML state machine package [OMG 07]. Each one of these state patterns offers
significant performance and memory savings compared to the full UML-compliant
realization.
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PART Il REAL-TIME FRAMEWORK

The concept of a modern hierarchical state machine introduced in Part I is to event-
driven programming as the invention of a wheel is to transportation. But just as wheels
are useless without the infrastructure of roads, state machines are useless without an
event-driven infrastructure that provides, at a minimum, a run-to-completion execution
context for each state machine, queuing of events, and event-based timing services.

In Part II of this book, I describe such a reusable infrastructure for executing
concurrent state machines in the form of a real-time framework called QF. QF is
tailored specifically for developing real-time embedded (RTE) applications and in many
respects resembles a real-time operating system (RTOS). Part II begins with Chapter 6,
which introduces the real-time framework concepts. Chapter 7 describes the QF
structure and implementation. Chapter 8 is devoted to porting and configuring QF,
providing examples of using QF in a bare-metal system, with a traditional RTOS, and
with a conventional OS (Linux). Chapter 9 describes how to develop QP applications
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that utilize both the QF framework and the QEP event processor described in Part I of
this book. Chapter 10 presents a tiny preemptive, run-to-completion, real-time kernel
called QK that beautifully complements QF. Chapter 11 describes a testing and
debugging strategy based on software-tracing instrumentation built into all QP
components. Chapter 12 concludes the book by presenting an ultralight version of the
framework and the hierarchical event processor called QP-nano.
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“Don’t call us, we’ll call you” (Hollywood Principle)
—Richard E. Sweet, The Mesa Programming Environment, 7985

When you start combining multiple UML state machines into systems, you’ll quickly
learn that the problem is not so much in coding the state machines—Part I of this
book showed that this is actually a nonissue. The next main challenge is to generate
events, queue the events, and write all the code around state machines to make

them execute and communicate with one another in a timely fashion and without
creating concurrency hazards.

Obviously, you can develop all this “housekeeping”’ code from scratch for each
event-driven system at hand. But you could also reuse an event queue, an event
dispatcher, or a time event generator across many projects. Ultimately, however, you
can do much better than merely reusing specific elements as building blocks—you can
achieve even greater leverage by reusing the whole infrastructure surrounding state
machines. Such a reusable infrastructure is called a framework.

In this chapter I introduce the concepts associated with event-driven, real-time
application frameworks. Most of the discussion is general and applicable to a wide
range of event-driven frameworks. However, at times when I need to give more specific
examples, I refer to the QF real-time framework, which is part of the QP platform
and has been specifically designed for real-time embedded (RTE) systems. I begin with
explaining why most event-driven infrastructures naturally take the form of a

! Published estimates claim that anywhere from 60 to 90 percent of an application is common
“housekeeping” code that can be reused if properly structured [Douglass 99].
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framework rather than a toolkit. Next, I present an overview of various CPU
management policies and their relationship to the real-time framework design. In
particular, I describe the modern active object computing model. Next, I discuss event
management, memory management, and time management policies. I conclude with
error- and exception-handling policies for a real-time framework.

6.1 Inversion of Control

Event-driven systems require a distinctly different way of thinking than traditional
sequential programs. When a sequential program needs some incoming event, it waits
in-line until the event arrives. The program remains in control all the time and
because of this, while waiting for one kind of event, the sequential program cannot
respond (at least for the time being) to other events.

In contrast, most event-driven applications are structured according to the Hollywood
principle, which essentially means “Don’t call us, we’ll call you.” So, an event-driven
application is not in control while waiting for an event; in fact, it’s not even active. Only once
the event arrives, the event-driven application is called to process the event and then it quickly
relinquishes the control again. This arrangement allows an event-driven program to wait

for many events in parallel, so the system remains responsive to all events it needs to handle.

This scheme implies that in an event-driven system the control resides within the
event-driven infrastructure, rather than in the application code. In other words, the
control is inverted compared to a traditional sequential program. Indeed, as Ralph
Johnson and Brian Foote observe [Johnson+ 88], this inversion of control gives the
event-driven infrastructure all the defining characteristics of a framework.

“One important characteristic of a framework is that the methods defined by the user to tailor the
framework will often be called from within the framework itself, rather than from the user’s appli-
cation code. The framework often plays the role of the main program in coordinating and sequenc-
ing application activity. This inversion of control gives frameworks the power to serve as
extensible skeletons. The methods supplied by the user tailor the generic algorithms defined in
the framework for a particular application.”

—Ralph Johnson and Brian Foote

Inversion of control is key part of what makes a framework different from a toolkit.
A toolkit, such as a traditional real-time operating system (RTOS), is essentially a
set of predefined functions that you can call. When you use a toolkit, you write the main
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body of the application and call the various functions from the toolkit. When you use a
framework, you reuse the main body and provide the application code that it calls, so
the control resides in the framework rather than in your code.

Inversion of control is a common phenomenon in virtually all event-driven architectures
because it recognizes the plain fact that the events are controlling the application,

not the other way around. That’s why most event-driven infrastructures naturally take
the form of a framework rather than a toolkit.

6.2 CPU Management

An event-driven framework can work with a number of execution models, that is,
particular policies of managing the central processor unit (CPU). In this section, I
briefly examine the basic traditional CPU management policies and point out how they
relate to the real-time framework design.

6.2.1 Traditional Sequential Systems

A traditional sequential program controls the CPU at all times.” Functions called
directly or indirectly from the main program issue requests for external input and then
wait for it; when input arrives, control resumes within the function that made the

call. The location of the program counter, the tree of function calls on the stack, and
local stack variables define the program state at any given time.

In the embedded space, the traditional sequential system corresponds to the background
loop in the simple foreground/background architecture (a.k.a. super-loop or main
+ISRs). As the name suggests, the foreground/background architecture consists of two
main parts: the interrupt service routines (ISRs) that handle external interrupts in a
timely fashion (foreground) and an infinite main loop that calls various functions
(background). Figure 6.1 shows a typical flow of control within a background loop.
This particular example depicts the control flow in the Quickstart application described
in Section 1.9 in Chapter 1. The dashed boxes represent function calls. The heavy lines
indicate the most frequently executed paths through the code.

2 Except when the CPU processes asynchronous interrupts, but the interrupts always return control to the
point of preemption.
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Figure 6.1: Flow of control in a typical background loop. The heavy lines indicate
the most frequently executed paths through the code.

The major advantage of the traditional sequential control is that it closely matches the
way the conventional procedural languages work. C and C++, for example, are
exactly designed to represent the flow of control in the rich set of control statements,
function call tree, and local stack variables. The main disadvantage is that a sequential
system is unresponsive while waiting, which is actually most of the time. Asynchronous
events cannot be easily handled within the background loop because the loop must
explicitly poll for inputs. Flexible control systems, communication software, or user
interfaces are hard to build using this style [Rumbaugh+ 91].

Due to the explicit polling for events scattered throughout the background code, the
traditional sequential architecture is not compatible with the event-driven paradigm.
However, it can be adapted to implement a single event-loop, as described in
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Section 6.2.3. The simple sequential control flow is also an important stepping stone for
understanding other, more advanced CPU management policies.

6.2.2 Traditional Multitasking Systems

Multitasking is the process of scheduling and switching the CPU among several
sequential programs called tasks or threads. Multitasking is like foreground/background
with multiple backgrounds [Labrosse 02]. Tasks share the same address space” and,
just like the backgrounds, are typically structured as endless loops. In a multitasking
system, control resides concurrently in all the tasks comprising the application.

A specific software component of a multitasking system, called the kernel, is
responsible for managing the tasks in such a way as to create an illusion that each task
has a dedicated CPU all to itself, even though the computer has typically only one
CPU. The kernel achieves this by frequently switching the CPU from one task to the
next in the process called context switching. As shown in Figure 6.2, each task is
assigned its own stack area in memory and its own data structure, called a rask control
block (TCB). Context switching consists of saving the CPU registers into the current
task’s stack and restoring the registers from the next task’s stack. Some additional

TCB TCB TCB
Task Control Blocks
29 L9~~~ 7 (TCBs) Ilr———— sp_O
stack stack stack
-—— == -I per-task stacks |¥— -———-
Memory
Sl cPUregisters o
sr o - — 1 status register
sp o - — { stack pointer
context save——— P
context restore————p> i -
pc o |- — { program counter [\,

Figure 6.2: Multiple tasks with per-task stacks and task control blocks (TCBs).

3 By sharing a common address space, tasks (threads) are much lighter than heavyweight processes, which
execute in separate address spaces and contain one or more lightweight threads.
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bookkeeping information is also updated in the TCBs. Context switches are generally
transparent to the tasks and are activated from asynchronous interrupts (in case of a
preemptive kernel) as well as synchronously from explicit calls to the kernel.

The multitasking kernel works hard behind the scenes to preserve the same state for
each task as the state maintained automatically by a simple sequential program. As you
can see in Figure 6.2, for each task the context-switching mechanism preserves the
CPU registers, including the program counter as well as the whole private stack with the
tree of nested function calls and local stack variables.

A big advantage of multitasking is better CPU utilization because when some tasks are
waiting for events, other tasks can continue execution, so fewer CPU cycles are
wasted on polling for events. The kernel enables the efficient waiting for events by
providing special mechanisms for blocking tasks, such as semaphores, event flags,
message mailboxes, message queues, timed blocking, and many others. A blocked task
is simply switched away to memory and does not consume any CPU cycles.

Multiple tasks can wait on multiple events in parallel, so a multitasking system as a
whole appears to be more responsive than a single background loop. The responsiveness
of the system depends on how a kernel determines which task to run next.
Understanding of these mechanisms is important for any real-time system, including a
real-time framework.

Most kernels allow assigning static priorities to tasks according to their urgency.
Figure 6.3 shows execution profiles of the two most popular priority-based kernel types.
Panel (A) shows a nonpreemptive kernel that gets control only through explicit calls
from the tasks to the kernel. Panel (B) shows a preemptive kernel that additionally gets
control upon exit from every ISR. The following explanation section illuminates the
interesting points (see also [Labrosse 02]).

(1a) A low-priority task under a nonpreemptive kernel is executing. Interrupts are
enabled. A higher-priority task is blocked waiting for an event.

(2a) An interrupt occurs and the hardware suspends the current task and jumps to the
ISR.

(3a) ISR executes and, among other things, makes the high-priority task ready to run.

(4a) The interrupt returns by executing a special interrupt-return instruction, which
resumes the originally preempted task (the low-priority task) at the machine
instruction following the interrupted instruction.
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Figure 6.3: Execution profiles of a nonpreemptive kernel (A)
and a preemptive kernel (B).

(5a) The low-priority task executes until it makes an explicit blocking call to the
kernel or an explicit yield, just to give the kernel a chance to run.

(6a) The kernel runs and determines that the high-priority task is ready to run, so
it performs a context switch to that task. The time delay between making the
high-priority task ready to run in step (2a) and actually starting the task is called
the task-level response.

The task-level response of a nonpreemptive kernel is nondeterministic because it
depends on when other tasks voluntarily call the kernel. In other words, tasks must
collaborate to share the CPU. Therefore, this form of multitasking is called cooperative
multitasking. The upside is a much easier sharing of resources among the tasks. The
kernel has an opportunity to perform a context switch only in explicitly known calls to
the kernel, so tasks can safely access shared resources between any two kernel calls.
In contrast, the execution profile of a preemptive kernel is as follows:

(1b) A low-priority task under a preemptive kernel is executing. Interrupts are
enabled. A higher-priority task is blocked waiting for an event.
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(2b)
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(4b)

(5b)
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An interrupt occurs and the hardware suspends the current task and jumps to
the ISR. Suspending a task typically involves saving at least part of the CPU
register file to the current task’s stack.

ISR executes and unblocks the high-priority task.

Before the interrupt returns, the preemptive kernel is called to determine

which task to return to. The kernel finds out that the high-priority task is ready to
run. Therefore, the kernel first completes the context save for the current task
(the low-priority task) and then performs a context switch to the high-priority
task. The tricky part of this process is to arrange the new stack frame and the
CPU registers so that they look exactly as though the high-priority task was the
one preempted by the interrupt.

The kernel executes the special interrupt-return instruction. Because of the
careful preparations made in the previous step, the interrupt returns to the
high-priority task. The low-priority task remains preempted.

The high-priority task executes until it blocks via a call to the kernel.

The kernel determines that the low-priority task is still preempted and needs to
run. The tricky part of resuming the low-priority task is to fake an interrupt
stack frame and an interrupt CPU context to resume the low-priority task that
has been preempted by an interrupt, even though the kernel is invoked via a
regular function call.

NOTE

A preemptive kernel must actually make every context switch look like an interrupt return,
even though some context switches occur from regular function calls to the kernel and don’t
involve asynchronous interrupts.

A preemptive kernel can guarantee a deterministic task-level response of the highest-
priority tasks because the lower-priority tasks can always be preempted* and so it
does not matter that they even exist. But this determinism comes at a huge price of
increased complexity in sharing resources. A preemptive kernel can perform a context

4 Using some kernel blocking mechanisms can lead to the situation in which a ready-to-run higher-priority
task cannot preempt a lower-priority task. This condition is called priority inversion.
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switch at any point of the task’s code as long as the scheduler is not locked and
interrupts are enabled. Any unexpected context switch might lead to corruption of
shared memory or other shared resources, and kernels provide a special mechanism
(such as mutexes or monitors) to guarantee a mutually exclusive access to shared
resources. Unfortunately, programmers typically vastly underestimate the risks and
skills needed to use these mechanisms safely and therefore underestimate the true costs
of their use.

In summary, perhaps the most important benefit of multitasking is partitioning of the
original problem into smaller, more manageable pieces (the tasks). In this respect,
multitasking is a very powerful divide-and-conquer strategy. Multitasking kernels carefully
preserve the private stack contents of each task so that tasks are as close as possible to simple
sequential programs and thus map well to the traditional languages like C or C++.

Ultimately, however, when it comes to handling events, tasks have the same
fundamental limitations as the simple sequential programs. A blocked task waiting for
an event is unresponsive to all other events. Also, the whole intervening code around a
blocking call is typically designed to handle only the one event that it explicitly

waits for. To get a picture of what a task control flow might look like, you can simply
replace the heavy polling loops in Figure 6.1 with blocking calls. Adding new events
to such code is hard and typically requires deep changes to the whole task structure.

Due to the explicit blocking calls scattered throughout the task code, which the kernel
encourages by providing a rich assortment of blocking mechanisms, the traditional
multitasking architecture is not compatible with the event-driven paradigm. However, it
can be adapted (actually simplified) for executing concurrent active objects, as I describe in
the upcoming Section 6.3. Especially valuable in this respect is the thread-safe intertask
communication mechanism based on message queues that most kernels or RTOSs provide.
Message queues can typically be easily customized for sending events to active objects.

6.2.3 Traditional Event-Driven Systems

A traditional event-driven system is clearly divided into the event-driven infrastructure
and the application (see Figure 6.4). The event-driven infrastructure consists of an
event loop, an event dispatcher, and an event queue. The application consists of
event-handler functions that all share common data.

All events in the system originating from asynchronous interrupts or from the
event-handler functions are always inserted first into the event queue. The control
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Figure 6.4: Traditional event-driven system with event loop
and a single event queue.

resides within the event dispatcher that polls the event queue in the infinite event loop.
For every event extracted from the queue the dispatcher calls the event-handler function
associated with this event type. All event-handler functions contain essentially linear
code that returns to the main event loop as quickly as possible. In particular, the
event-handler functions don’t poll for events and don’t access the event queue. All the
polling and event queuing is centralized and encapsulated within the dispatcher.

To keep the system responsive, the dispatcher must be able to check for events
continuously and frequently. This implies that the event-handler functions must execute
quickly. An errant event-handler function can halt the entire application, so care must
be taken to avoid any “blocking” code or simply long-running code. The application
cannot preserve its state using the program counter and stack because the stack contents
disappear when the event-handler functions return control to the event loop. The
application must rely on static variables to maintain state.

The event-loop architecture automatically guarantees that every event-handler function
runs to completion, because the dispatcher can dispatch a new event only after the last
event-handler function returns to the event loop. The need for an event queue is the direct
consequence of the run-to-completion event processing. Queuing prevents losing events that
arrive while the event-handler functions are running to completion and the dispatcher is
unable to accept new events. The event queue is an essential part of the design.
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The traditional event-driven architecture is immensely popular in event-driven
graphical user interface (GUI) frameworks such as MFC, OWL, Delphi, Tcl/Tk,
X-Windows, SunView, or, more recently, Java/AWT/Swing, ActionScript, Qt, .NET,
and many, many others. The countless variations of the technique have mostly to

do with the creative ways of associating events with event-handler functions, but all of
them are ultimately based on the prevalent event-action paradigm, in which event
types are mapped to the code that is supposed to be executed in response.

However, as explained in Chapter 2, the system response to an event depends as much on
the event type as on the application context (state) in which the event arrives. The prevalent
event-action paradigm recognizes only the dependency on the event type and leaves the
handling of the context to largely ad hoc techniques. State machines provide very strong
support for handling the context (state), but unfortunately, the event-action paradigm is
incompatible with state machines because a single event-handler function contains pieces
of many states. (That’s exactly why event-handler functions become convoluted and
brittle as they grow and evolve.) The complementary relation between the event-action
paradigm and state machines is best visible in the state-table representation of a state
machine (see Table 3.1 in Chapter 3), in which an event-handler function corresponds to
the vertical cut through all the states in the state table along a given event column.

To summarize, the traditional event-driven architecture permits more flexible patterns
of control than any sequential system [Rumbaugh+ 91]. Also, compared to any
traditional sequential technique, an event-driven scheme uses the CPU more efficiently
and tends to consume less stack space, which are all very desirable characteristics for
embedded systems. However, the traditional event-driven architecture is not quite
suitable for real-time frameworks. The remaining problems are at least threefold:

1. Responsiveness. The single event queue does not permit any reasonable
prioritization of work. Every event, regardless of priority, must wait for
processing until all events that precede it in the queue are handled.

2. No support for managing the context of the application. The prevalent event-
action paradigm neglects the application context in responding to events, so
application programmers improvise and end up creating “spaghetti”’ code.
Unfortunately, the event-action paradigm is incompatible with state machines.

3. Global data. In the traditional event architecture all event-handler functions
access the same global data. This hinders partitioning of the problem and can
create concurrency hazards for any form of multitasking.
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6.3 Active Object Computing Model

The active object computing model addresses most problems of the traditional event-
driven architecture, retaining its good characteristics. As described in the sidebar “From
Actors to Active Objects,” the term active object comes from the UML and denotes
“an object having its own thread of control” [OMG 07]. The essential idea of this model
is to use multiple event-driven systems in a multitasking environment.

FROM ACTORS TO ACTIVE OBJECTS

The concept of autonomous software objects communicating by message passing dates back
to the late 1970s, when Carl Hewitt and colleagues [Hewitt 73] developed a notion of an
actor. In the 1980s, actors were all the rage within the distributed artificial intelligence com-
munity, much as agents are today. In the 1990s, methodologies like ROOM [Selic+ 94]
adapted actors for real-time computing. More recently, the UML specification has introduced
the concept of an active object that is essentially synonymous with the notion of a ROOM
actor [OMG 07].

In the UML specification, an active object is “an object having its own thread of control”
[OMG 07] that processes events in a run-to-completion fashion and that communicates with
other active objects by asynchronously exchanging events. The UML specification further
proposes the UML variant of state machines with which to model the behavior of event-
driven active objects.

Active objects are most commonly implemented with real-time frameworks. Such frame-
works have been in extensive use for many years and have proven themselves in a very wide
range of real-time embedded (RTE) applications. Today, virtually every design automation
tool that supports code synthesis for RTE systems incorporates a variant of a real-time frame-
work. For instance, Real-time Object-Oriented Modeling (ROOM) calls its framework the
“ROOM virtual machine” [Selic+ 94]. The VisualSTATE tool from IAR Systems calls it a
“VisualSTATE engine” [TAR 00]. The UML-compliant design automation tool Rhapsody
from Telelogic calls it “Object Execution Framework (OXF)” [Douglass 99].

Figure 6.5 shows a minimal active object system. The application consists of multiple
active objects, each encapsulating a thread of control (event loop), a private event
queue, and a state machine.

Active object = (thread of control + event queue + state machine).

The active object’s event loop, shown in Figure 6.5(B), is a simplified version of the
event loop from Figure 6.4. The simplified loop gets rid of the dispatcher and directly
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extracts events from the event queue, which efficiently blocks the loop as long as the
queue is empty. For every event obtained from the queue, the event loop calls the
dispatch () function associated with the active object. The dispatch () function
performs both the dispatching and processing of the event, similarly to the
event-handler functions in the traditional event-driven architecture.
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Figure 6.5: Active-object system (A) and active object’s event loop (B).

6.3.1 System Structure

The event queues, event loops, and the event processor for state machines are all
generic and as such are part of a generic real-time framework. The application

consists of the specific state machine implementations, which the framework invokes
indirectly through the dispatch ()’ state machine operation.

Figure 6.6 shows the relationship between the application, the real-time framework, and
the real-time kernel or RTOS. I use the QF real-time framework as an example, but
the general structure is typical for any other framework of this type. The design is
layered, with an RTOS at the bottom providing the foundation for multitasking and
basic services like message queues and deterministic memory partitions for storing

5 The dispatch () operation is understood here generically and denotes any state machine
implementation method, such as any of the techniques described in Chapters 3 or 4.
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Figure 6.6: Package diagram illustrating the relationship among the real-time
framework, the kernel/RTOS, and the application.

events. Based on these services, the QF real-time framework supplies the QActive
class for derivation of active objects. The QActive class in turn derives from the QHsm
base class, which means that active objects are state machines and inherit the
dispatch () operation defined in the QHsm base class (see Chapter 4). Additionally,
QActive contains a thread of execution and an event queue, typically based on the
message queue of the underlying RTOS. An application extends the real-time
framework by deriving active objects from the QActive base class and deriving events
with parameters from the QEvent class.

NOTE

Most frameworks rely heavily on the object-oriented concepts of classes and inheritance as
the key technique for extending and customizing the framework. If you program in C and
the concepts are new to you, refer to the sidebar “Single Inheritance in C” in Chapter 1. In
Chapter 7 you’ll see that the QF real-time framework and the applications derived from it
can be quite naturally implemented in standard, portable C.

The application uses the QF communication and timing services through the framework
API (indicated by the ball-and-socket UML notation); however, the application
typically should not need to directly access the RTOS API. Thus, a real-time framework
can serve as an RTOS abstraction layer. The framework effectively insulates
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applications from the underlying RTOS. Changing the RTOS on which the framework
is built requires porting the framework but does not affect applications. I’1l
demonstrate this aspect in Chapter 8, where I discuss porting QF.

6.3.2 Asynchronous Communication

As shown in Figure 6.5(A), active objects receive events exclusively through their event
queues. All events are delivered asynchronously, meaning that an event producer
merely posts an event to the event queue of the recipient active object but doesn’t wait
in line for the actual processing of the event.

The system makes no distinction between external events generated from interrupts and
internal events originating from active objects. As shown in Figure 6.5(A), an active
object can post events to any other active object, including to self. All events are treated
uniformly, regardless of their origin.

6.3.3 Run-to-Completion

Each active object processes events in run-to-completion (RTC) fashion, which is
guaranteed by the structure of the active object’s event loop. As shown in Figure 6.5(B),
the dispatch () operation must necessarily complete and return to the event loop
before the next event from the queue can be extracted. RTC event processing is the
essential requirement for proper execution of state machines.

In the case of active objects, where each object has its own thread of execution, it is
very important to clearly distinguish the notion of RTC from the concept of thread
preemption [OMG 07]. In particular, RTC does not mean that the active object thread
has to monopolize the CPU until the RTC step is complete. Under a preemptive
multitasking kernel, an RTC step can be preempted by another thread executing on the
same CPU. This is determined by the scheduling policy of the underlying multitasking
kernel, not by the active object computing model. When the suspended thread is
assigned CPU time again, it resumes its event processing from the point of preemption
and, eventually, completes its event processing. As long as the preempting and the
preempted threads don’t share any resources, there are no concurrency hazards.

6.3.4 Encapsulation

Perhaps the most important characteristic of active objects, from which active objects
actually derive their name, is their strict encapsulation. Encapsulation means that
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active objects don’t share data or any other resources. Figure 6.5(A) illustrates this aspect by
a thick, opaque encapsulation shell around each active object and by showing the internal
state machines in gray, since they are really not supposed to be visible from the outside.

As described in the previous section, no sharing of any resources (encapsulation) allows
active objects to freely preempt each other without the risk of corrupting memory or
other resources. The only allowed means of communication with the external world and
among active objects is asynchronous event exchange. The event exchange and queuing
are controlled entirely by the real-time framework, perhaps with the help of the
underlying multitasking kernel, and are guaranteed to be thread-safe.

Even though encapsulation has been traditionally associated with object-oriented
programming (OOP), it actually predates OOP and does not require object-oriented
languages or any fancy tools. Encapsulation is not an abstract, theoretical concept but simply
a disciplined way of designing systems based on the concept of information hiding.
Experienced software developers have learned to be extremely wary of shared (global) data
and various mutual exclusion mechanisms (such as semaphores). Instead, they bind the
data to the tasks and allow the tasks to communicate only via message passing. For example,
the embedded systems veteran, Jack Ganssle, offers the following advice [Ganssle 98].

“Novice users all too often miss the importance of the sophisticated messaging mechanisms that
are a standard part of all commercial operating systems. Queues and mailboxes let tasks commu-
nicate safely... the operating system’s communications resources let you cleanly pass a message
without fear of its corruption by other tasks. Properly implemented code lets you generate the
real-time analogy of object-oriented programming’s (OOP) first tenet: encapsulation. Keep all
of the task’s data local, bound to the code itself and hidden from the rest of the system.”
—Jack Ganssle

Although it is certainly true that the operating system mechanisms, such as message
queues, critical sections, semaphores, or condition variables, can serve in the
construction of a real-time framework, application programmers do not need to directly
use these often troublesome mechanisms. Encapsulation lets programmers implement
the internal structure of active objects without concern for multitasking. For example,
application programmers don’t need to know how to correctly use a semaphore or
even know what it is. Still, as long as active objects are encapsulated, an active object
system can execute safely, taking full advantage of all the benefits of multitasking,
such as optimal responsiveness to events and good CPU utilization.
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In Chapter 9 I will show you how to organize the application source code so that the
internal structure of active objects is hidden and inaccessible to the rest of the application.

6.3.5 Support for State Machines

Event-driven systems are in general more difficult to implement with standard
languages, such as C or C++, than procedure-driven systems [Rumbaugh+ 91]. The
main difficulty comes from the fact that an event-driven application must return control
after handling each event, so the code is fragmented and expected sequences of

events aren’t readily visible.

For example, Figure 6.7(A) shows a snippet of a sequential pseudocode, whereas
panel (B) shows the corresponding flowchart. The boldface statements in the code and

| wait4eventA();

/* process A */

while (...) {

wait4eventB();

/* process B */

| wait4eventC();

/* process C */
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Figure 6.7: Sequential pseudocode (A), flowchart (B), and state machine (C).



272 Chapter 6

heavy lines in the flowchart represent waiting for events (either polling or efficient
blocking). Both the sequential code and the flowchart show the expected sequence of
events (A, B...B, C) very clearly. Moreover, the sequential processing allows passing
data from one processing stage to the next in temporary stack variables. Traditional
programming languages and traditional multitasking kernels strongly support this style
of programming that relies heavily on stack-intensive nested function calls and
sophisticated flow of control (e.g., loops).

In contrast, the traditional event-driven code representing essentially the same behavior
consists of three event-handler functions onA (), onB (), and onC (), and it is not at
all clear that the expected sequence of calls should be onaA (), onB() ...onB(), onC().
This information is hidden inside the event-hander functions. Moreover, the functions
must use static variables to pass data from one function to the next, because the
stack context disappears when each function returns to the event loop. This
programming style is harder to implement with standard languages because you get
virtually no support for handling the execution context stored in static variables.

And this is where state machines beautifully complement the traditional programming
languages. State machines are exactly designed to represent the execution context
(state and extended-state variables) in static data. As you can see in Figure 6.7(C), the
state machine clearly shows the expected event sequence, so this program structure
becomes visible again. But unlike the sequential code, a state machine does not rely on
the stack and the program counter to preserve the context from one state to the next.
State machines are inherently event-driven.

NOTE

You can think of state machines, and specifically of the hierarchical event processor imple-
mentation described in Chapter 4, as an essential extension of the C and C++ programming
languages to better support event-driven programming.

As opposed to the traditional event-driven architecture, the active object computing
model is compatible with state machines. The active object event loop specifically
eliminates the event dispatcher (Figure 6.5(B)) because demultiplexing events based on
the event signal is not a generic operation but instead always depends on the internal
state of an active object. Therefore, event dispatching must be left to the specific active
object’s state machine.
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6.3.6 Traditional Preemptive Kernel/RTOS

In the most common implementations of the active object computing model, active
objects map to threads of a traditional preemptive RTOS or OS. For example, the real-
time framework inside the Telelogic Rhapsody design automation tool provides
standard bindings to VxWorks, QNX, and Linux, to name a few [Telelogic 07]. In this
standard configuration the active object computing model can take full advantage of the
underlying RTOS capabilities. In particular, if the kernel is preemptive, the active

object system achieves exactly the same optimal task-level response as traditional tasks.

Consider how the preemptive kernel scenario depicted in Figure 6.3(B) plays out in an
active object system. The scenario begins with a low-priority active object executing its
RTC step and a high-priority active object efficiently blocked on its empty event queue.

NOTE

The priority of an active object is the priority of its execution thread.

At point (2b) in Figure 6.3(B), an interrupt preempts the low-priority active object.
The ISR executes and, among other things, posts an event to the high-priority active
object (3b). The preemptive kernel called upon the exit from the ISR (4b) detects that
the high-priority active object is ready to run, so it switches context to that active
object (5b). The interrupt returns to the high-priority active object that extracts the
just-posted event from its queue and processes the event to completion (6b). When the
high-priority active object blocks again on its event queue, the kernel notices that

the low-priority active object is still preempted. The kernel switches context to the
low-priority active object (7b) and lets it run to completion.

Note that even though the high-priority active object preempted the low-priority one in
the middle of the event processing, the RTC principle hasn’t been violated. The
low-priority active object resumed its RTC step exactly at the point of preemption and
completed it eventually, before engaging in processing another event.

NOTE

In Chapter 8, I show how to adapt the QF real-time framework to work with a typical pre-
emptive kernel (LC/OS-II) as well as a standard POSIX operating system (e.g., Linux,
QNX, Solaris).
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6.3.7 Cooperative Vanilla Kernel

The active object computing model can also work with nonpreemptive kernels. In fact,
one particular cooperative kernel matches the active object computing model
exceptionally well and can be implemented in an absolutely portable manner. For lack
of a better name, I will call this kernel plain vanilla or just vanilla. I explain first
how the vanilla kernel works and later I compare its execution profile with the profile of
a traditional nonpreemptive kernel from Figure 6.3(A). Chapter 7 describes the QF
implementation of the vanilla kernel.

NOTE

The vanilla kernel is so simple that many commercial real-time frameworks don’t even call it
a kernel. Instead this configuration is simply referred to as without an RTOS.® However, if
you want to understand what it means to execute active objects “without an RTOS” and what
execution profile you can expect in this case, you need to realize that a simple cooperative
vanilla kernel is indeed involved.

¢ all queues empty
find highest-priority L (idle condition)

non-empty queue _“vanilla” scheduler |

T e |
L
priority = n ¢ priority = n-1 ¢ priority = 1 g pr'O”‘\IY; 0

. idle
/t\ processing

e = queue.get();

| e = queue.get(); | | e = queue.get(); |

I
| dispatch(e); | | dispatch(e); |

\E A

Figure 6.8: Active object system executing under the cooperative vanilla kernel.

dispatch(e);

% For example, the Interrupt Driven Framework (IDF) inside the Telelogic Rhapsody design automation
tool executes “without an RTOS.”
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Figure 6.8 shows the architecture of the simple cooperative vanilla kernel. The most
important element of the design is the scheduler, which is the part of a kernel
responsible for determining which task to run next. The vanilla scheduler operates in a
single loop. The scheduler constantly monitors all event queues of the active objects.
Each event queue is assigned a unique priority, which is the priority of the active object
that owns this queue. The scheduler always picks the highest-priority not-empty queue.

NOTE

The vanilla scheduler uses the event queues of active objects as priority queues and thus
embodies the standard priority queue algorithm [Cormen+ O1]. Chapter 7 shows how the
QF real-time framework implements the vanilla scheduler with a bitmask and a lookup table.

After finding the queue, the vanilla kernel extracts the event from the queue and
dispatches it to the active object that owns this queue. Note that the queue get ()
operation cannot block because at this point the queue is guaranteed to be not empty.
Of course, the vanilla kernel applies all the necessary safeguards to protect the
internal state of the scheduler and the event queues from corruption by asynchronous
interrupts, which can post events to the queues at any time.

The dispatch () operation always runs to completion and returns to the main loop.
The scheduler takes over and the cycle repeats. As usual in event-driven systems, the
main event loop and the event queues are all part of the vanilla kernel or the framework.
The application code is not supposed to poll or block.

The vanilla scheduler very easily detects the condition when all event queues are empty.
This situation is called the idle condition of the system. In this case, the scheduler
performs idle processing, which can be customized by the application.

NOTE

In an embedded system, the idle processing is the ideal place to put the CPU into a low-
power sleep mode. The power-saving hardware wakes up the CPU upon an interrupt, which
is exactly right because at this point only an interrupt can provide new event(s) to the system.

Now consider how the scenario depicted in Figure 6.3(A) plays out under the vanilla
kernel. The scenario begins with a low-priority active object executing its RTC step
(dispatch () function) and a high-priority active object having its event queue
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empty. At point (2a) an interrupt preempts the low-priority active object. The ISR
executes and, among other things, posts an event to the high-priority active object (3a).
The interrupt returns and resumes the originally preempted low-priority active object (4a).
The low-priority object runs to completion and returns to the main loop. At this point, the
vanilla scheduler has a chance to run and picks the highest-priority nonempty queue,
which is the queue of the high-priority active object (6a). The vanilla kernel calls the
dispatch () function of the high-priority active object, which runs to completion.

As you can see, the task-level response of the vanilla kernel is exactly the same as any
other nonpreemptive kernel. Even so, the vanilla kernel achieves this responsiveness without
per-task stacks or complex context switching. The active objects naturally collaborate to
share the CPU and implicitly yield to each other at the end of every RTC step. The
implementation is completely portable and suitable for low-end embedded systems.

Because typically the RTC steps are quite short, the kernel can often achieve adequate
task-level response even on a low-end CPU. Due to the simplicity, portability, and minimal
overhead, I highly recommend the vanilla kernel as your first choice. Only if this type of
kernel cannot meet your timing requirements should you move up to a preemptive kernel.

NOTE

The vanilla kernel also permits executing multiple active objects inside a single thread of a
bigger multitasking system. In this case, the vanilla scheduler should efficiently block when
all event queues are empty instead of wasting CPU cycles for polling the event queues. Post-
ing an event to any of the active object queues should unblock the kernel. Of course, this
requires integrating the vanilla kernel with the underlying multitasking system.

6.3.8 Preemptive RTC Kernel

Finally, if your task-level response requirements mandate a preemptive kernel, you can
consider a super-simple, run-to-completion preemptive kernel that matches perfectly
the active object computing model [Samek+ 06]. A preemptive RTC kernel implements
in software exactly the same deterministic scheduling policy for tasks as most
prioritized interrupt controllers implement in hardware for interrupts.

Prioritized interrupt controllers, such as the venerable Intel 8259A, the Motorola 68K
and derivatives, the interrupt controllers in ARM-based MCUs by various vendors,
the NVIC in the ARMv7 architecture (e.g., Cortex-M3), the M16C from Renesas, and
many others allow prioritized nesting of interrupts on a single stack.
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Figure 6.9: Systemwide priority of a single-stack kernel (A) and task structure (B).

In an RTC kernel tasks and interrupts are nearly symmetrical: both tasks and ISRs are
one-shot, RTC functions (Figure 6.9(A)). In fact, an RTC kernel views interrupts very
much like tasks of “super-high” priority, except that interrupts are prioritized in
hardware by the interrupt controller, whereas tasks are prioritized in software by the
kernel (Figure 6.9(B)).

NOTE

In all traditional kernels, tasks are generally structured as endless loops. An RTC kernel breaks
with this arrangement entirely. Under an RTC kernel, tasks are one-shot functions that run to
completion and return, very much like ISRs managed by a prioritized interrupt controller.

By requiring that all tasks run to completion and enforcing fixed-priority scheduling,
an RTC kernel can use the machine’s natural stack protocol. Whenever a task is
preempted by a higher-priority task (perhaps as a result of the currently running task
posting an event to a higher-priority task), the RTC kernel uses a regular C-function call
to build the higher-priority task context on top of the preempted-task stack context.
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Whenever an interrupt preempts a task, the kernel uses the already established interrupt
stack frame on top of which to build the higher-priority task context, again using a
regular C-function call. This simple form of context management is adequate because
every task, just like every ISR, runs to completion. Because the preempting task

must also run to completion, the lower-priority stack context will never be needed
until the preempting task (and any higher-priority task that might preempt it) has
completed—at which time the preempted task will naturally be at the top of the stack,
ready to be resumed. This simple mechanism works for exactly the same reason that
a prioritized hardware-interrupt system works [Samek+ 06].

NOTE

Such a close match between the active object computing model and prioritized, nested inter-
rupt handling implemented directly in hardware suggests that active objects are in fact quite a
basic concept. In particular, the RTC processing style and no need for blocking in active
objects map better to actual processor architectures and incur less overhead than traditional
blocking kernels. In this respect, traditional blocking tasks must be viewed as a higher-level,
more heavyweight concept than active objects.

One obvious consequence of the stack-use policy, and the most severe limitation of an
RTC kernel, is that tasks cannot block. The kernel cannot leave a high-priority task
context on the stack and at the same time resume a lower-priority task. The lower-
priority task context simply won’t be accessible on top of the stack unless the higher-
priority task completes. But as I keep repeating ad nauseam throughout this book,
event-driven programming is all about writing nonblocking code. Event-driven active
objects don’t have a need for blocking.

In exchange for not being able to block, an RTC kernel offers many advantages over
traditional blocking kernels. By nesting all task contexts in a single stack, the RTC
kernel can be super-simple because it doesn’t need to manage multiple stacks and all
their associated bookkeeping. The result is not just significantly less RAM required for
the stacks and task control blocks but a faster context switch and, overall, less CPU
overhead. At the same time, an RTC kernel is as deterministic and responsive as any
other fully preemptive priority-based kernel. In Chapter 10, I describe an RTC

kernel called QK, which is part of the QP platform. QK is a tiny preemptive, priority-
based RTC kernel specifically designed to provide preemptive multitasking support

to the QF real-time framework.
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If you are using a traditional preemptive kernel or RTOS for executing event-driven
systems, chances are that you’re overpaying in terms of CPU and memory

overhead. You can achieve the same execution profile and determinism with a much
simpler RTC kernel. The only real reason for using a traditional RTOS is compatibility
with existing software. For example, traditional device drivers, communication stacks
(such as TCP/IP, USB, CAN, etc.), and other legacy subsystems are often written
with the blocking paradigm. A traditional blocking RTOS can support both active
object and traditional blocking code, which the RTOS executes outside the real-time
framework.

NOTE

Creating entirely event-driven, nonblocking device drivers and communication stacks is cer-
tainly possible but requires standardizing on specific event-queuing and event-passing
mechanisms rather than blocking calls. Such widespread standardization simply hasn’t
occurred yet in the industry.

6.4 Event Delivery Mechanisms

One of the main responsibilities of every real-time framework is to efficiently deliver
events from producers to consumers. The event delivery is generally asynchronous,
meaning that the producers of events only insert them into event queues but do not wait
for the actual processing of the events.

In addition, any part of the system can usually produce events, not necessarily only the
active objects. For example, ISRs, device drivers, or legacy code running outside the
framework can produce events. On the other hand, only active objects can consume
events, because only active objects have event queues.

NOTE

A framework can also provide “raw” thread-safe event queues without active objects behind
them. Such “raw” thread-safe queues can consume events as well, but they never block and
are intended to deliver events to ISRs, that is, provide a communication mechanism from the
task level to the ISR level.
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Real-time frameworks typically support two types of event delivery mechanism (see

Figure 6.10):

1. The simple mechanism of direct event posting, when the producer of an event
directly posts the event to the event queue of the consumer active object.

2. A more sophisticated publish-subscribe event delivery mechanism, where a
producer “publishes” an event to the framework, and the framework then delivers
the event to all active objects that had “subscribed” to this event. The publish-
subscribe mechanism provides lower coupling between event producers and

consumers.
(o)
Active Active
Object 1 Object 2

direct
event posting

Active
Object N

publish-subscribe
“software bus”

.

ISR_1()

ISR_2()

Figure 6.10: Direct event posting and publish-subscribe event delivery coexisting

6.4.1 Direct Event Posting

in a single application.

The simplest mechanism lets producers post events directly to the event queue of the
recipient active object. This method requires minimal participation from the

framework. The framework merely provides a public operation (a function in the
framework API), which allows any producer to post an event directly to the given active
object. For example, the QF real-time framework provides the operation
QActive_postFIFO (), which is the operation of the Qactive class (see Figure 6.6).
Of course the framework is responsible for implementing this function in a thread-safe



Real-Time Framework Concepts 281

manner. Figure 6.10 illustrates this form of communication as thick, solid arrows
connecting event producers and the consumer active objects.

Direct event posting is a “push-style” communication mechanism, in which recipients
receive unsolicited events whether they want them or not. Direct event posting is ideal in
situations where a group of active objects, or an active object and an ISR, form a
subsystem delivering a particular service, such as a communication stack, GPS capability,
digital camera subsystem in a mobile phone, or the like. This style of event passing
requires that the event producers intimately “know” the recipients. The “knowledge” that
a sender needs is more than merely having a pointer to the recipient active object; the
sender must also know the kind of events the particular object might be interested in. This
intimate knowledge, distributed among the participating application components,

makes the coupling among the components quite strong and inflexible at runtime. For
example, it might be difficult to add new active objects to the subsystem, because existing
event producers won’t know about the newcomers and won’t send them events.

6.4.2 Publish-Subscribe

The publish—subscribe model is a popular way of decoupling the event producers from
the event consumers. Publish-subscribe is a “pull-style” communication mechanism in which
recipients receive only solicited events. The properties of the publish-subscribe model are:

® Producers and consumers of events don’t need to know each other (loose
coupling).

e The events exchanged via this mechanism must be publicly known and must
have the same semantics to all parties.

e A mediator’ is required to accept published events and to deliver them to
interested subscribers.

¢ Many-to-many interactions (object-to-object) are replaced with one-to-many
(object-to-mediator) interactions.

The publish-subscribe event delivery is shown in Figure 6.10 as a “software bus”
into which active objects “plug in” through the specified interface. Active objects
interested in certain events subscribe to one or more event signals by the framework.

7 The publish-subscribe event delivery is closely related to the Observer and Mediator design patterns [GoF 95].
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Event producers make event publication requests to the framework. Such requests can
originate asynchronously from many sources, not necessarily just active objects—for
example, from interrupts or device drivers. The framework manages all these
interactions by supplying the following services:

® Provide an API for active objects to subscribe and unsubscribe to particular
event signals. For example, the QF real-time framework provides functions
QActive_subscribe (), QActive_unsubscribe (), and
QActive_unsubscribeAll ().

e Provide a generally accessible interface for publishing events. For example, QF
provides QF_publish () function.

e Define and implement a thread-safe event delivery policy (including
multicasting events when an event is subscribed by multiple active objects).

One obvious implication of publish-subscribe is that the framework must store the
subscriber information, whereas it must allow associating more than one subscriber
active object with an event signal. The framework must also allow modifying the
subscriber information at runtime (dynamic subscribe and unsubscribe). The QF real-
time framework supports dynamic subscriptions and cancellations of subscriptions.

6.5 Event Memory Management

In any event-driven system, events are frequently produced and consumed, so by
nature they are highly dynamic. One of the most critical aspects of every real-time
framework is managing the memory used by events, because obviously this memory
must be frequently reused as new events are constantly produced. The main challenge
for the framework is to guarantee that the event memory is not reused until all active
objects have finished their RTC processing of the event. In fact, as described in Section
4.7.10 in Chapter 4, corrupting the current event while it is still in use constitutes a
violation of the RTC semantics and is one of the hardest bugs to resolve.

6.5.1 Copying Entire Events

Section 4.7.10 offered the general solution, which is to use event queues. Indeed, as
shown in Figure 6.11, entire events can be copied into an event queue and then
copied out of the queue again before they can be processed. Many RTOSs support this
style of event exchange through message queues. For example, the VxWorks RTOS



Real-Time Framework Concepts 283

provides functions msgQSend () to copy a chunk of memory (message) into a message
queue, and msgQReceive () to copy the entire message out of the queue to the
provided memory buffer.

|
|
| | - - -
\ L _ inserting an event extracting an event
:_ | into the queue out of the queue

——4-———1%opy- -
/
! | ,
new event /
| 2n copy

event queue
holding entire
events

o I current event
buffer

Figure 6.11: Copying entire events into the event queue and out of the event queue.

Copying entire events addresses all the potential problems with corrupting event
memory prematurely, but the approach is terribly expensive in both space and time. In
terms of space requirements, a message queue must typically be oversized so that all
locations in the queue are able to accept the largest expected event. Additionally, every
event producer needs an oversized memory buffer and every event consumer needs
another oversized buffer to hold copies of the events. In terms of CPU overhead, each
event passed through the queue requires making at least two copies of the data (see
Figure 6.11). Moreover, the queue is inaccessible while the lengthy copy operations
take place, which can negatively impact responsiveness of the system. Of course, the
high overheads of copying events only multiply when multicasting events is required.

To mitigate the costs of message queues, some authors advise sending just pointers

to larger chunks of data over a message queue and then let the recipient directly access
the data via the provided pointer [Li+ 03]. You should be very careful with this
approach. Due to the asynchronous nature of a message queue, the sender typically
cannot know when the event actually gets processed, and the sender all too easily can
prematurely corrupt the memory buffer by trying to reuse it for the next event. This is,
of course, the classic concurrency problem caused by a shared memory buffer.
Introducing such direct sharing of memory defeats the purpose of the message queue as
a safe mechanism for passing messages (events) from producers to consumers.
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6.5.2 Zero-Copy Event Delivery

The brute-force approach of copying entire events into message queues is the best a
traditional RTOS can do, because an RTOS does not control the events after they leave
the queue. A real-time framework, on the other hand, can be far more efficient because, due
to inversion of control, the framework actually manages the whole life cycle of an event.

As shown in Figures 6.5(B), 6.8, and 6.9(A) earlier in this chapter, a real-time framework
is in charge of extracting an event from the active object’s event queue and then
dispatching the event for RTC processing. After the RTC step completes, the framework
regains control of the event. At this point, the framework “knows” that the event has
been processed and so the framework can automatically recycle the event. Figure 6.12
shows the garbage collection step (event recycling) added to the active object life cycle.

V

“vanilla” 9_
| S scheduler \
| e = queue.get(); | e = queue.get(); . | e = queue.get();

A .
_ garbagei____ )
collection ’ \L

A B C

dispatch(e);

Figure 6.12: Adding garbage collection step to active object thread (A), to the
cooperative vanilla kernel (B), and to the one-shot task of an RTC kernel (C).

A real-time framework can also easily control the allocation of events. The framework
can simply provide an API function that application code must call to allocate new
events. The QF framework, for example, provides the macro Q_NEW () for this purpose.

With the addition of the event creation and automatic garbage collection steps, the
framework controls the life cycle of an event from cradle to grave. This in turn permits
the framework to implement controlled, thread-safe sharing of event memory, which
from the application standpoint is undistinguishable from true event copying. Such
memory management is called zero-copy event delivery.
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Figure 6.13 illustrates the zero-copy event delivery mechanism. The life cycle of an
event begins when the framework allocates the event from an event pool and returns a
pointer to this memory to the event producer, such as the ISR in Figure 6.13(1). The
producer then fills the event parameters, writing directly to the provided event pointer.
Next, the event producer posts just the pointer to the event to the queue of the recipient
active object (Figure 6.13(2)).

NOTE

In the “zero-copy” event delivery scheme, event queues hold only pointers or references to
events, not the entire events.

At some later time, the active object comes around to process the event. The active
object reads the event data via the pointer extracted from the queue. Eventually, the
framework automatically recycles the event in the garbage collection step. Note that
the event is never copied. At the same time the framework makes sure that the event is
not recycled prematurely. Of course, the framework must also guarantee that all these
operations are performed in a thread-safe manner.
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Figure 6.13: Passing events without copying them (zero-copy event delivery).
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6.5.3 Static and Dynamic Events

Not all events in the system have parameters or changing parameters. For example, the
TIME_TICK event or the PLAYER_TRIGGER button-press event in the “Fly ‘n’ Shoot”
game from Chapter 1 don’t really change. Such immutable event objects can be
shared safely and can be allocated statically once, rather than being created and
recycled every time. Figure 6.13(3) shows an example of a static event that does not
come from an event pool.

The “zero-copy” event delivery mechanism can very easily accommodate such

static events by simply not managing them at all. All static events must have a
unique signature that indicates to the garbage collector to ignore such events.
Conversely, events allocated dynamically must have a unique signature identifying
them as dynamic events that the framework needs to manage. The applications use static
and dynamic events in exactly the same way, except that static events are not allocated
dynamically.

6.5.4 Multicasting Events and the Reference-Counting Algorithm

In the publish-subscribe mechanism, it is common for multiple active objects to
subscribe to the same event signal. A real-time framework is then supposed to multicast
identical copies of an event to all registered active objects simultaneously, much as a
newspaper publisher sends out identical copies of a newspaper to all subscribers.

Of course, sending multiple identical copies of an event is not compatible with the zero-
copy event delivery policy. However, making identical copies of the event is not
really necessary because all subscribers can receive pointers to the same event. The
problem is rather to know when the last active object has completed processing of a
given event so that it can be recycled.

A simple expedient is to use the standard reference-counting algorithm (e.g., see
[Preiss 99]), which works in this case as follows: Every dynamic event object maintains
internally a counter of outstanding references to this event. The counter starts at zero
when the event is created. Each insertion of the event to any event queue increments the
reference count by one. Every attempt to garbage-collect the event decrements the
reference count by one. The event is recycled only when its reference count drops to
zero. Note that the reference counter is not decremented when the event is extracted
from a queue but only later, inside the garbage collection step. This is because an event
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must be considered referenced as long as it is being processed, not just as long as it sits
in a queue. Of course, the reference counting should only affect dynamic events and
must be performed in a thread-safe manner.

NOTE

The garbage collection step is not equivalent to event recycling. The garbage collector func-
tion always decrements the reference counter of a dynamic event but actually recycles the
event only when the counter reaches zero.

Reference counting allows more complex event exchange patterns than just
multicasting. For example, a recipient of an event might choose to post the received
event again, perhaps more than once. In any case, the reference-counting algorithm will
correctly spare the event from recycling at the end of the first RTC step and will
eventually recycle the event only when the last active object has finished processing the
event.

6.5.5 Automatic Garbage Collection

The garbage collection step is part of the active object life cycle controlled by the real-
time framework (Figure 6.12). The application has typically no need to recycle

events explicitly. In fact, some automatic garbage collection systems, most notably
Java, don’t even expose a public API for recycling individual objects.

However, a real-time framework might decide to provide a way to explicitly garbage-
collect an event object, but this is always intended for special purposes. For example, an
event producer might start to build a dynamic event but eventually decide to bail out
without posting or publishing the event. In this case the event producer must call the
garbage collector explicitly to avoid leaking of the event.

NOTE

The garbage collection step must be performed explicitly when receiving events from “raw”
thread-safe queues inside ISRs. The framework does not control ISRs and therefore ISRs are
entirely responsible for implementing the whole event life cycle, including the garbage col-
lection step.
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6.5.6 Event Ownership

The zero-copy event delivery mechanisms are designed to be transparent to the
application-level code. Even so, applications must obey certain ownership rules with
respect to dynamic events, similar to the rules of working with objects allocated
dynamically with malloc () or the C++ operator new.

SR e D
— (e =new_()—— | event owned by the
. application with
P put;l(l)ssl't](((ea\) write permission
< ’ (e->ref_count == 0)
< gc(e) J
event owned
by the framework Ve ~

—dispatch(e——————p{ event owned by the N\

active object with post(e)
read-only permission publish(e)
R

4—return-from-dispatch(e)—\ (e->ref_count > 0)

Figure 6.14: Transferring event ownership during the life cycle of a dynamic event.

Figure 6.14 illustrates the concept of event ownership and possible transfers of
ownership rights. All dynamic events are initially owned by the framework. An event
producer might gain ownership of a new event only by calling the new_ () operation.
At this point, the producer gains the ownership rights with the permission to write to
the event. The event producer might keep the event as long as it needs, but eventually
the producer must transfer the ownership back to the framework. Typically the producer
posts or publishes the event. As a special case, the producer might decide that the
event is not good, in which case the producer must call the garbage collector explicitly.
After any of these three operations, the producer loses ownership of the event and can
no longer access it.

The consumer active object gains ownership of the current event ‘e’ when the
framework calls the dispatch (e) operation. This time, the active object gains merely
the read-only permission to the current event. The consumer active object is also
allowed to post or publish the event any number of times. The ownership persists over
the entire RTC step. The ownership ends, however, when the dispatch () operation
returns to the framework. The active object cannot use the event in any way past the
RTC step.
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6.5.7 Memory Pools

The dynamic, reference-counted events could, in principle, be allocated and freed with
the standard malloc () and free () functions, respectively. However, as described in
the sidebar “A Heap of Problems,” using the standard heap for frequent allocation and
recycling of events causes simply too many problems for any high-performance system.

A HEAP OF PROBLEMS

If you have been in the embedded real-time software business for a while, you must have
learned to be wary of malloc () and free () (or their C++ counterparts new and delete)
because embedded real-time systems are particularly intolerant of heap problems, which
include the following pitfalls:

® Dynamically allocating and freeing memory can fragment the heap over time to the
point that the program crashes because of an inability to allocate more RAM. The total
remaining heap storage might be more than adequate, but no single piece satisfies a
specific malloc () request.

® Heap-based memory management is wasteful. All heap management algorithms must
maintain some form of header information for each block allocated. At the very least,
this information includes the size of the block. For example, if the header causes a
4-byte overhead, a 4-byte allocation requires at least 8 bytes, so only 50 percent of
the allocated memory is usable to the application. Because of these overheads and
the aforementioned fragmentation, determining the minimum size of the heap is diffi-
cult. Even if you were to know the worst-case mix of objects simultaneously allocated
on the heap (which you typically don’t), the required heap storage is much more than a
simple sum of the object sizes. As a result, the only practical way to make the heap
more reliable is to massively oversize it.

® Both malloc() and free() can be (and often are) nondeterministic, meaning that
they potentially can take a long (hard to quantify) time to execute, which conflicts
squarely with real-time constraints. Although many RTOSs have heap management
algorithms with bounded or even deterministic performance, they don’t necessarily
handle multiple small allocations efficiently.

Unfortunately, the list of heap problems doesn’t stop there. A new class of problems appears
when you use heap in a multithreaded environment. The heap becomes a shared resource and
consequently causes all the headaches associated with resource sharing, so the list goes on:

® Bothmalloc() and free() can be (and often are) nonreentrant; that is, they cannot
be safely called simultaneously from multiple threads of execution.

Continued onto next page
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A HEAP OF PROBLEMS—CONT’D

® The reentrancy problem can be remedied by protectingmalloc (), free(),realloc(),
and so on internally with a mutex, which lets only one thread at a time access the
shared heap. However, this scheme could cause excessive blocking of threads
(especially if memory management is nondeterministic) and can significantly reduce
parallelism. Mutexes can also be subject to priority inversion. Naturally, the heap
management functions protected by a mutex are not available to ISRs because ISRs
cannot block.

Finally, all the problems listed previously come on top of the usual pitfalls associated with
dynamic memory allocation. For completeness, I’ll mention them here as well.

® If you destroy all pointers to an object and fail to free it or you simply leave objects
lying about well past their useful lifetimes, you create a memory leak. If you leak
enough memory, your storage allocation eventually fails.

® Conversely, if you free a heap object but the rest of the program still believes that
pointers to the object remain valid, you have created dangling pointers. If you derefer-
ence such a dangling pointer to access the recycled object (which by that time might
be already allocated to somebody else), your application can crash.

® Most of the heap-related problems are notoriously difficult to test. For example, a
brief bout of testing often fails to uncover a storage leak that kills a program after a
few hours or weeks of operation. Similarly, exceeding a real-time deadline because
of nondeterminism can show up only when the heap reaches a certain fragmentation
pattern. These types of problems are extremely difficult to reproduce.

However, simpler, higher-performance, and safer options exist to the general-purpose,
variable-block-size heap. A well-known alternative, commonly supported by RTOSs,
is a fixed-block-size heap, also known as a memory partition or memory pool. Memory
pools are a much better choice for a real-time framework to manage dynamic event
allocation than the general-purpose heap.

Unlike the conventional (variable-block-size) heap, a memory pool has guaranteed
capacity. It is not subject to fragmentation, because all blocks are exactly the same size.
Because all blocks have identical size, no header is associated with each block
allocated, thus reducing the system overhead per block. Furthermore, allocation through
a memory pool can be very fast and completely deterministic. This aspect allows the
kernel to protect a memory pool with a critical section of code (briefly disabling
interrupts) rather than a mutex. In the case of a memory pool, the access is so fast
that interrupts need to be disabled only briefly (no longer than other critical sections in
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the system), which does not increase interrupt latency and allows access to a memory
pool, even from ISRs.

NOTE

A memory pool is no different from any other multitasking kernel object. For example.
accessing a semaphore also requires briefly turning off interrupts (after all, a semaphore is
also a shared resource). The QF real-time framework provides a native implementation of
a thread-safe memory pool.

The most obvious drawback of a memory pool is that it does not support variable-sized
blocks. Consequently, the blocks have to be oversized to handle the biggest possible
allocation. Such a policy is often too wasteful if the actual sizes of allocated objects
(events, in this case) vary a lot. A good compromise is often to use not one but a few
memory pools with blocks of different sizes. The QF real-time framework, for example,
can manage up to three event pools with different block sizes (e.g., small, medium, and
large, like shirt sizes).

When multiple memory pools are used, each dynamic event object must remember
which pool it came from, so that the framework can recycle the event to the same pool.
The QF real-time framework combines the pool ID and the reference count into

one data member “dynamic_" of the QEvent structure (see Listings 4.2 and 4.3 in
Chapter 4).

6.6 Time Management

Time management available in traditional RTOSs includes delaying a calling task
(sleep()) or timed blocking on various kernel objects (e.g., semaphores or event
flags). These blocking mechanisms are not very useful in active object-based systems
where blocking is not allowed. Instead, to be compatible with the active object
computing model, time management must be based on the event-driven paradigm in
which every interesting occurrence manifests itself as an event instance.

6.6.1 Time Events

A real-time framework manages time through time events, often called timers. Time
event is a UML term and denotes a point in time. At the specified time, the event occurs
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[OMG 07]. The basic usage model of these time events is as follows: An active object
allocates one or more time event objects (provides the storage for them). When the
active object needs to arrange for a timeout, it arms one of its time events to post itself
at some time in the future.

Figure 6.15 shows the time event facility in the QF real-time framework. The
QTimeEvt class derives from QEvent, which means that time events can be used in all
the same contexts as regular events. Time events can be further specialized to add more
information (event parameters).

QTimeEvt
QEvent postin();
sig :QSignal <& postEvery();
dynamic_ : uint8_t disarm():;
rearm();
optional derived time ____ 4
events
Time event specialized for MyComponentTimeEvt
delivering timeoutsto = F—————— component_id : uint8_t
components

Figure 6.15: QF class QTimeEvt derived from QEvent.

The time event provides public operations for that purpose: postIn () for a one-shot
timeout and postEvery () for a periodic timeout event. Each timeout request has a
different time event associated with it, so the application can make multiple parallel
requests (from the same or different active objects). When the framework detects that
the appropriate moment has arrived, the framework posts the requested time event
directly into the recipient’s event queue (direct event posting). The recipient then
processes the time event just like any other event.

The application can explicitly disarm any time event (periodic or one-shot) at any time using
the disarm () operation. After disarming (explicitly or implicitly, as in the case of the
one-shot time event), the time event can be reused for one-shot or periodic timeouts. In
addition, as long as the time event remains armed it can be rearmed with a different number
of ticks through the rearm () operation. For one-shot time events, rearming is useful, for
example, to implement watchdog timers that need to be periodically “tickled” to prevent
them from ever timing out. Rearming might also be useful to adjust the phasing of periodic
time events (often you need to extend or shorten one period).
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6.6.2 System Clock Tick

Every real-time system, including traditional blocking kernels, requires a periodic time
source called the system clock tick. The system clock tick is typically a periodic
interrupt that occurs at a predetermined rate, typically between 10Hz and 100Hz. You
can think of the system clock tick as the heartbeat of the system. The actual frequency
of the system clock tick depends on the desired tick resolution of your application.
The faster the tick rate, the more overhead the time management implies.

The system clock tick must call a special framework function to give the framework a
chance to periodically update the armed time events. The QF real-time framework,
for example, updates time events in the function QF_tick().

system clock
tick ISR

priority—>

time events
all higher-priority . - - processed
tasks bacI;—to—back

/
/

active object
receiving the | | | | |
time event

—t1— ——1t3—p t4
22— i

time=

Figure 6.16: Jitter of a periodic time event firing every tick.

The delivery of time events in a real-time framework is subject to various delays, as
is also the case with all real-time kernels or RTOSs [Labrosse 02]. Figure 6.16 shows
in a somewhat exaggerated manner the various delays of a periodic time event
programmed with one tick interval. As indicated by the varying time intervals in
Figure 6.16, the time event delivery is always subject to jitter. The jitter gets worse
as the priority of the recipient active object gets lower. In heavily loaded systems, the
jitter might even exceed one clock tick period.® In particular, a time event armed for
just one tick might expire immediately because the system clock tick is asynchronous
with respect to active object execution. To guarantee at least one tick timeout, you
need to arm a time event for two clock ticks. Note too that time events are generally

8 This might be indicative of incorrect system design.
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not lost due to event queuing. This is in contrast to clock ticks of a traditional RTOS,
which can be lost during periods of heavy loading.

6.7 Error and Exception Handling

A real-time framework, just like any piece of system-level software, must implement a
policy of handling erroneous conditions within the framework and—more important—
within the application based on the framework. Of course, a framework could use the
usual techniques, such as return error codes from the framework API calls, set error
codes in the standard errno facility, or throw C++ exceptions. In fact, most operating
systems and commercial RTOSs use these methods.

However, a real-time framework can do better than that. Due to inversion of control so
typical in all event-driven systems, a real-time framework controls many more aspects
of the application than a traditional operating system. A real-time framework is in a
much better position to monitor the application to make sure that it is performing
correctly, rather than the application to check error codes or catch exceptions
originating from the framework. In other words, a real-time framework could use an
error-handling policy that is consistent with the inversion of control between the
framework and the application.

6.7.1 Design by Contract

The Design by Contract’ (DbC) approach, pioneered by Bertrand Meyer [Meyer 97],
provides an excellent methodology for implementing a very robust error-handling
policy within a real-time framework that makes the most of the control inversion. The
DbC philosophy views a software system as a set of components whose collaboration
is based on precisely defined specifications of mutual obligations—the contracts.

The central idea of this method is to inherently embed the contracts in the code and
validate them automatically at runtime.

In C or C++, the most important aspects of DbC (the contracts) can be implemented
with assertions. The standard C-library macro assert () takes a Boolean argument and
terminates the application if the argument evaluates to FALSE. A real-time framework
can of course use a customized version of the macro, which would invoke an
application-specific handler function when the assertion fails (see upcoming Section
6.7.3), but the general idea of asserting certain conditions at runtime is the same.

° Design by Contract is a registered trademark of Interactive Software Engineering.
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Assertions built into a real-time framework are consistent with inversion of control
because through the assertions a real-time framework can enforce software contracts
without relying on the application to check error codes or catch thrown exceptions.

The most important point to realize about software contracts (assertions in C/C++) is
that they neither prevent errors nor really handle them, in the same way as contracts
between people do not prevent fraud. For example, the QF real-time framework asserts
that a published event signal is in the preconfigured range. Naturally, such an assertion
neither handles nor prevents the application from publishing an event out of range.
However, the assertion establishes a contract, which spells out that an attempt to publish
an event out of range is an error. And sure enough, the framework will quite brutally
abort the application that violates this contract. At first you might think that this must be
backward. Contracts not only do nothing to prevent (let alone handle) errors, but they
actually make things worse by turning every asserted condition, however benign, into
a fatal error! However, when you really think about it, you must admit that publishing
an event out of range is not really all right. It indicates that the application somehow
lost consistency of event signals, which is a sure sign of a larger problem (a broken
build, perhaps).

The DbC philosophy is the exact opposite of the popular defensive programming
strategy, which denotes a programming style that aims at making operations more
robust to errors, by accepting a wider range of inputs or allowing order of operations not
necessarily consistent with the object’s state. Defensive programming is often
advertised as a better coding style, but unfortunately, it often hides bugs. To use the
same example again, the QF framework could very easily make the publish ()
operation more “robust” simply by ignoring an event that is out of range. Defensive
programming is not necessarily harder to implement than DbC. Rather, the problem
with defensive programming is that it allows the code to “wander around,” silently
taking care of various invalid conditions. The DbC approach, in contrast, represents the
point of view that either a program is in full control of what’s going on or it isn’t,
whereas assertions define what it means that the program is in control. When any of
these safeguards fails, the method prescribes that it is better to face up to the problem
as soon as possible and put the system in a fail-safe state (whatever this might mean
for a particular system) than to let a runaway program continue. This practice is
especially advisable for safety-critical applications such as medical devices.

Due to their simplicity, assertions are sometimes viewed as too primitive error-checking
mechanisms—something that’s perhaps good enough for smaller programs but must
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be replaced with a “real” error handling in the industry-strength software. This view is
inconsistent with the DbC philosophy, which regards contracts as the integral part of
the software design. Software contracts embody important design decisions, namely
declaring certain conditions as errors rather than exceptional conditions, and therefore
embedding them in large-scale, mission-critical software is even more important than
in quick-and-dirty solutions. As Bertrand Meyer [Meyer 97b] observes:

“It is not an exaggeration to say that applying assertion-based development will completely
change your view of software construction ... It puts the whole issue of errors, the unsung part
of the software developer’s saga, in a completely different light.”

— Bertrand Meyer

6.7.2 Errors versus Exceptional Conditions

Another critical point to understand about the DbC philosophy is that the purpose of
software contracts is to detect errors but not to handle exceptional conditions.

An error (known otherwise as a bug) means a persistent defect due to a design or
implementation mistake (e.g., overrunning an array index or dereferencing a NULL pointer).
Software contracts (assertions in C/C++) should be used to document such logically
impossible situations to discover programming errors. If the “impossible” occurs, something
fundamental is clearly wrong and you cannot trust the program anymore.

In contrast to an error, an exceptional condition is a specific circumstance that can
legitimately arise during the system lifetime but is relatively rare and lies off the main
execution path of your software. You need to design and implement a recovery strategy
that handles the exceptional condition.

The distinction between errors and exceptional conditions is important because errors
require the exact opposite programming strategy from dealing with exceptional
conditions. The first priority in dealing with errors is to detect them as early as possible.
Any attempt to handle a bug as an exceptional condition only increases the risks of
damage that a runaway program can cause. It also tends to introduce immense
complications to the code only camouflaging the bug. In the worst case, the attempts to
“handle” a bug introduce new bugs.

A big often overlooked advantage of assertions is that they lead to considerable
simplification of the software by flagging many situations as errors (that you don’t need
to handle) rather than exceptional conditions (that you do need to handle). Often, the
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application code is much simpler when it does not need to check and handle error
codes returned by the framework but instead can rely on the framework policies
enforced by assertions (see Section 6.7.6).

NOTE

Assertions can be an important source of information for modern static source code analyzing
tools to test the correctness of your code.

6.7.3 Customizable Assertions in C and C++

Listing 6.1 shows the simple, customizable, embedded systems-friendly assertions
that I’ve found adequate for a wide range of projects, embedded or otherwise. These
simple assertions are consistently used in all QP components, such as the QF real-time
framework and the QEP event processor.

The gassert .h header file shown in Listing 6.1 is similar to the standard <assert.h>
header file, except (1) gassert .h allows customizing the error response, (2) it conserves
memory by avoiding proliferation of multiple copies of the filename string, and (3) it
provides additional macros for testing and documenting preconditions (Q_REQUIRE),
postconditions (Q_ENSURE), and invariants (Q_ INVARIANT). The names of these three latter
macros are a direct loan from Eiffel, the programming language that natively supports DbC.

Listing 6.1 The qassert.h header file

(1) #ifdef Q NASSERT /* Q NASSERT defined-assertion checking disabled* /

#define Q DEFINE_THIS_FILE
#define Q DEFINE THIS MODULE (name )
0)

#define Q ASSERT (test ) ((void)
#define Q ALLEGE (test ) ((void) (test ))
#define Q ERROR() ((void) 0)
telse /* Q_NASSERT not defined-assertion checking enabled */

/* callback invoked in case the condition passed to assertion fails*/
#ifdef cplusplus
extern "C"
#endif
(2) void Q onAssert (char const Q ROM* const Q ROM VAR file, int line);

Continued onto next page
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(3) #define Q DEFINE_THIS_FILE\
static char const Q ROMQ ROM VAR 1 this file[] =_ FILE_ ;
(4) #define Q DEFINE THIS MODULE (name ) \
static char const Q ROMQ ROM VAR 1 this file[] = #name ;
/* general purpose assertion */
(5) #define Q ASSERT (test ) \
if (test ) { \
A
else (Q_onAssert(l_this_ file, =~ LINE_ ))
/* general purpose assertion that ALWAYS evaluates the test argument */
(6) #define Q ALLEGE (test ) Q ASSERT (test )
/* Assertion that always fails */
(7) #define Q ERROR() \
(Q_onAssert (1l _this file, LINE ))
#endif /* Q NASSERT */
/* assertion that checks for a precondition */
(8)  #define Q REQUIRE (test ) QO ASSERT (test )
/* assertion that checks for a postcondition */
(9)  #define Q_ENSURE (test ) Q ASSERT (test )
/* assertion that checks for an invariant */
(10)  #define O INVARIANT (test ) O ASSERT (test )
/* compile-time assertion */
(11) #define Q ASSERT COMPILE (test ) \

extern char Q assert compile[ (test )]

#endif/ /* gassert_h*/

(1) Defining the macro Q_NASSERT disables assertions. When disabled, all assertion

macros except QALLEGE(), expand to empty statements that don’t generate any
code.

(2) The function Q_onAssert () prototyped in this line is invoked whenever an
assertion fails. This function is application-specific and you need to define it
somewhere in your program. In embedded systems, Q_onAssert () typically first
disables interrupts to monopolize the CPU, then possibly attempts to put the
system in a fail-safe state and eventually triggers a system reset. If possible, the
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function should also leave a “trail of bread crumbs” from the cause, perhaps by
storing the filename and line number in a nonvolatile memory. In addition,
Q_onAssert () is an ideal place to set a breakpoint during development and
debugging.

NOTE

The macros 0_ROM and Q_ROM_VAR used in the signature of Q_onaAssert () are explained in
Listing 4.14 in Chapter 4.

(3) The macro Q_DEFINE_THIS_FILE defines a static and constant string
1_this_filel] as the name of the source file provided in the standard macro
__FILE__ . You need to place the Q_DEFINE_THIS_FILE macro at the top of
every .C or .CPP file.

Compared to the standard assert (), the assertion macros defined in Listing 6.1
conserve memory (typically ROM) by using 1_this_file[] string as the first
argument to Q_onAssert () rather than the standard preprocessor macro _ FILE_ .
This avoids proliferation of the multiple copies of the _ FILE__ string for each use of
the assert () macro (see [Maguire 93]).

(4) This macro Q_DEFINE_THIS_MODULE () defines a static and constant string
1_this_filel] as the string provided in the argument. This macro provides an
alternative to Q_ DEFINE_THIS_FILE (so you use one or the other). The
__FILE__ macro often expands to the full path name of the translation unit,
which might be too long to log.

(5) The macro Q_ASSERT () defines a general-purpose assertion. The empty block in
the if statement might seem strange, but you need both the if and the else
statements to prevent unexpected dangling i f problems.

(6) When assertions are disabled by defining Q_NASSERT, the assertion macros don’t
generate any code; in particular, they don’t test the expressions passed as
arguments, so you should be careful to avoid any side effects required for
normal program operation inside the expressions tested in assertions. The macro
Q_ALLEGE () is a notable exception. This assertion macro always tests the
condition, although when assertions are disabled it does not invoke the
Q_onAssert () callback function. Q_ALLEGE () is useful in situations
where avoiding side effects of the test would require introducing temporary
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variables on the stack—something you often want to minimize in embedded
systems.

(7) The macro Q_ERROR () always fails. The use of this macro is equivalent to
Q_ASSERT (0) but is more descriptive.

(8-10) The macros Q_REQUIRE (), Q_ENSURE (), and Q_INVARIANT () are intended
for validating preconditions, postconditions, and invariants, respectively.
They all map to Q_ASSERT (). Their different names serve only to better
document the specific intent of the contract.

(11) The macro Q_ASSERT_COMPILE () validates a contract at compile time. The
macro exploits the fact that the dimension of an array in C cannot be zero. Note
that the macro does not actually allocate any storage, so there is no penalty in
using it (see [Murphy 0Ola]).

6.7.4 State-Based Handling of Exceptional Conditions

An exceptional condition is a specific situation in the lifetime of a system that calls for a
special behavior. In a state-driven active object, a change in behavior corresponds to a change
in state (state transition). Hence, in active object systems, the associated state machines

are the most natural way to handle all conditions, including exceptional conditions.

Using state hierarchy can be very helpful to separate the “exceptional” behavior from
the “normal” behavior. Such state-based exception handling is typically a combination
of the Ultimate Hook and the Reminder state patterns (Chapter 5) and works as follows:
A common superstate defines a high-level transition to the “exceptional” parts of the
state machine. The submachine of this superstate implements the ‘“normal” behavior.
Whenever an action within the submachine encounters an exceptional condition, it posts
a Reminder event to self to trigger the high-level transition to handle the exception.
The exit actions executed upon the high-level transition perform the cleanup of the
current context and cleanly enter the “exceptional” context.

State-based exception handling offers a safe and language-independent alternative to
the built-in exception-handling mechanism of the underlying programming language.
As described in Section 3.7.2 in Chapter 3, throwing and catching exceptions in C++ is
risky in any state machine implementation because it conflicts with the fundamental
RTC semantics of state machines. Stack unwinding inherent in propagating of thrown
exceptions is also less relevant in event-driven systems than traditional sequential code
because event-driven systems rely less on the stack and more on storing the state
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information in the static data. As Tom Cargill noticed in the seminal paper Exception
handling: A false sense of security [Cargill 94]:

“Counter-intuitively, the hard part of coding exceptions is not the explicit throws and catches. The
really hard part of using exceptions is to write all the intervening code in such a way that an arbi-
trary exception can propagate from its throw site to its handler, arriving safely and without dam-
aging other parts of the program along the way.”

—Tom Cargill

If you only can, consider leaving out the C++ throw-and-catch exception handling from
your event-driven software. If you cannot avoid it, make sure to catch all exceptions
before they can cause any damage.

6.7.5 Shipping with Assertions

The standard practice is to use assertions during development and testing but to disable
them in the final product. The often-quoted opinion in this matter comes from C.A.R.
Hoare, who considered disabling assertions in the final product like using a lifebelt
during practice but then not bothering with it for the real thing.

The question of shipping with assertions really boils down to two issues. First is the
overhead that assertions add to your code. Obviously, if the overhead is too big, you
have no choice. But then you must ask yourself how you will build and test your
application. It’s much better to consider assertions as an integral part of the software
and size the hardware adequately to accommodate them. As the prices of computer
hardware rapidly drop while the capabilities increase, it simply makes sense to trade a
small fraction of the raw CPU horsepower and some extra code memory for better
system integrity. In practice, assertions often pay for themselves by eliminating reams
of “error-handling” code that tries to camouflage bugs.

The other issue is the correct system response when an assertion fires in the field. This
response must be obviously designed carefully and safety-critical systems might require
some redundancy and recovery strategy. For many less critical applications a simple
system reset turns out to be the least inconvenient action from the user’s perspective—
certainly less inconvenient than locking up the application and denying service. You
should also try to leave some “bread crumbs” of information as to what went wrong. To
this end, assertions provide a great starting point for debugging and ultimately fixing the
root cause of the problem.
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6.7.6 Asserting Guaranteed Event Delivery

Traditional sequential systems communicate predominately by means of synchronous
function calls. When module A wants to communicate with module B, module A
calls a function in B. The communication is implicitly assumed to be reliable; that is,
the programmer takes for granted that the function call mechanism will work, that
the parameters will be passed to the callee, and that the return value will be delivered
to the caller. The programmer does not conceive of any recovery strategy to handle

a failure in the function call mechanism itself. But in fact, any function call can

fail due to insufficient stack space. Consequently, the reliability of synchronous
communication is in fact predicated on the implicit assumption of adequate

stack resource.

Event-driven systems communicate predominately by asynchronous event exchange.
When active object A wants to communicate with active object B, object A allocates an
event and posts it to the event queue of object B. The programmer should be able to
take for granted that the event delivery mechanism will work, that the event will be
available, and that the event queue will accept the event. However, in fact,
asynchronous communication can fail due to event pool depletion or insufficient queue
depth. Consequently, the reliability of asynchronous communication is in fact
predicated on the assumption of adequate event pool size and event queue depth. If
those two resources are sized properly, the asynchronous event posting in the same
address space should be as reliable as a synchronous function call.

NOTE

At this point, I limit the discussion to nondistributed systems executing in a single address
space. Distributed systems connected with unreliable communication media pose quite dif-
ferent challenges. In this case neither synchronous communications such as remote procedure
call (RPC) nor asynchronous communications via message passing can make strong
guarantees.

I hope that this argument helps you realize that event pools and event queues should be
treated on equal footing as the execution stacks in that depletion of any of these
resources represents an error. In fact, event pools and queues fulfill in event-driven
systems many responsibilities of the execution stacks in traditional multitasking
systems. For example, parameters passed inside events play the same role as the
parameters of function calls passed on the call stacks. Consequently, event-driven
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systems use less stack space than sequential systems but instead require event queues
and event pools.

A real-time framework can use assertions to detect event pool and event queue
overruns, in the same way that many commercial RTOSs detect stack overflows. For
example, the QF real-time framework asserts internally that a requested dynamic event
can always be allocated from one of the event pools. Similarly, the QF framework
asserts that an event queue can always accept a posted event. It’s up to the application
implementer to adequately size all event pools and event queues in the system in the
same exact way as it is the implementer’s responsibility to adequately size the execution
stacks for a multitasking kernel.

NOTE

Standard message queues available in traditional RTOSs allow many creative ways of cir-
cumventing the event delivery guarantee. For example, message queues allow losing events
when the queue is full or blocking until the queue can accept the event. The QF real-time
framework does not use these mechanisms. QF simply asserts that an event queue accepts
every event without blocking.

6.8 Framework-Based Software Tracing

A running application built of active objects is a highly structured affair where all
important system interactions funnel through the real-time framework and the event
processor executing the state machines. This arrangement offers a unique
opportunity for applying software-tracing techniques. In a nutshell, software tracing
is similar to peppering the code with printf () statements, which is called
instrumenting the code, to log interesting discrete events for subsequent retrieval
from the target system and analysis. Of course, a good software-tracing
instrumentation can be much less intrusive and more powerful than the primitive
printf ().

By instrumenting just the real-time framework code you can gain an unprecedented
wealth of information about the running system, far more detailed and
comprehensive than any traditional RTOS can provide. (This is, of course, yet
another benefit of control inversion.) The software trace data from the framework
alone allows you to produce complete, time-stamped sequence diagrams and
detailed state machine activity for all active objects in the system. This ability
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can form the foundation of the whole testing strategy for your application. In
addition, individual active objects are natural entities for unit testing, which you
can perform simply by injecting events into the active objects and collecting the
trace data. Software tracing at the framework level makes all this comprehensive
information available to you, even with no instrumentation added to the
application-level code.

Most commercial real-time frameworks routinely use software tracing to provide
visualization and animation of the state machines in the system. The QF real-time
framework is also instrumented, and the software trace data can be extracted by means
of the QS (Q-SPY) component, described in Chapter 11.

6.9 Summary

Event-driven programming requires a paradigm shift compared to traditional sequential
programming. This paradigm shift leads to inversion of control between the event-
driven application and the infrastructure on which it is based. The event-driven
infrastructure can be generic and typically takes the form of a real-time framework.
Using such a framework to implement your event-driven applications can spare you
reinventing the wheel for each system you implement.

A real-time framework can employ a number of various CPU management policies, so
it is important to understand the basic real-time concepts, starting from simple
foreground/background systems through cooperative multitasking to fully preemptive
multitasking. Traditionally, these execution models have been used with the blocking
paradigm. Blocking means that the program frequently waits for events, either hanging
in tight polling loops or getting efficiently blocked by a multitasking kernel. The
blocking model is not compatible with the event-driven paradigm, but it can be adapted.
The general strategy is to centralize and encapsulate all the blocking code inside the
event-driven infrastructure (the framework) so that the application code never blocks.

The active object computing model combines multiple traditional event loops with a
multitasking environment. In this model, applications are divided into multiple
autonomous active objects, each encapsulating an execution thread (event loop), an
event queue, and a state machine. Active objects communicate with one another
asynchronously by posting events to each other’s event queues. Within an active object,
events are always processed in run-to-completion (RTC) fashion while a real-time
framework handles all the details of thread-safe event exchange and queuing.
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The active object computing model can work with a traditional preemptive RTOS, with
just a basic cooperative vanilla kernel, or with the super-simple, preemptive, RTC
kernel. In all these configurations, the active object model can take full advantage of the
underlying CPU management policy, achieving optimal responsiveness and CPU
utilization. As long as active objects are strictly encapsulated (i.e., they don’t share
resources), they can be programmed internally without concern for multitasking. In
particular, the application programmer does not need to use or understand semaphores,
mutexes, monitors, or other such troublesome mechanisms.

Most real-time frameworks support the simple direct event posting, and some
frameworks also support the more sophisticated publish-subscribe event delivery
mechanism. Direct event posting is a “push-style” communication in which the
recipient active object gets unsolicited events, whether it wants them or not. Publish-
subscribe is a “pull-style” communication in which active objects subscribe to event
signals by the framework and then the framework delivers only the solicited events to
the active objects. Publish-subscribe promotes loose coupling between event producers
and event consumers.

Perhaps the biggest responsibility of a real-time framework is to guarantee thread-safe
RTC event processing within active objects. This includes event management policies
so that the current event is not corrupted over the entire RTC step. A simple but
horrendously expensive method to protect events from corruption is to copy entire
events into and out of event queues. A far more efficient way is for a framework to
implement a zero-copy event delivery. Zero-copy really means that the framework
controls thread-safe sharing of event memory, which at the application level is
indistinguishable from true event copying. A real-time framework can do it because the
framework actually controls the whole life cycle of events as well as active objects.

A real-time framework manages time through time events, also known as timers. Time
events are time-delayed requests for posting events. The framework can handle many

such requests in parallel. The framework uses the system clock tick to periodically gain
control to manage the time events. The resolution of time events is one system clock

tick, but it does not mean that the accuracy is also one clock tick due to various delays
that cause jitter.

A real-time framework can use the traditional error-handling policies such as returning
error-codes from framework API calls. However, a real-time framework can also use
error management that takes advantage of the inversion of control between the
framework and the application. Such techniques are based on assertions, or more
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generally on the Design by Contract (DbC) methodology. A framework can use
assertions to constantly monitor the application. Among others, a framework can
enforce guaranteed event delivery, which immensely simplifies event-driven application
design.

Finally, a real-time framework can use software-tracing techniques to provide more
detailed and comprehensive information about the running application than any
traditional RTOS. The software-tracing instrumentation of the framework can form the
backbone of a testing and debugging strategy for active-object systems.



Real-Time Framework Implementation

Let us change our traditional attitude to the construction of programs. Instead of imagining that our
main task is to instruct a computer what to do, let us concentrate rather on explaining to human
beings what we want a computer to do.

— Donald E. Knuth

In this chapter I describe the implementation of a lightweight real-time framework
called QF. As shown in Figure 7.1, QF is the central component of the QP event-driven
platform, which also includes the QEP hierarchical event processor (described in Part I

Application (Your Code)

QEP Hierarchical Event Processor
(Chapter 4)

— QP
QS Software Tracing QF Real-Time Framework

(Chapter 9) (Chapter 7)

“Vanilla” Cooperative Kernel (Chapter 7),
or QK Preemptive Kernel (Chapter 10), /

BSP or other Kernel / RTOS / OS (Chapter 8)

Target (Hardware)

Figure 7.1: QP Components (in gray) and their relationship to the target
hardware, board support package (BSP), and the application.
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of this book) as well as the preemptive run-to-completion (RTC) kernel (QK) and the
software tracing instrumentation (QS).

The focus of this chapter is on the generic, platform-independent QF source code. I
devote Chapter 8 entirely to describing the platform-specific code that depends on the
specific processor, compiler, and operating system/RTOS (including the case where QF
is used without an RTOS).

I describe QF in the top-down fashion beginning with an overview of the QF features,
then presenting the framework structure, both logical (partitioning into classes) and
physical (partitioning into files). In the remaining bulk of the chapter I explain the
implementation of the QF services. As usual, I mostly refer to the C source code
(located in the <gp>\gpc\ directory in the accompanying code). I mention the C++
version (located in the <gp>\gpcpp\ directory) only when the differences from C
become important.

7.1 Key Features of the QF Real-Time Framework

QF is a generic, portable, scalable, lightweight, real-time framework designed
specifically for the domain of real-time embedded systems (RTES). QF can manage up
to 63 concurrently executing active objects,' which are encapsulated tasks (each
embedding a state machine and an event queue) that communicate with one another
asynchronously by sending and receiving events.

The “embedded” design mindset means that QF is efficient in both time and space.
Moreover, QF uses only deterministic algorithms, so you can always determine the
upper bound on the execution time, the maximum interrupt disabling time, and the
required stack space of any given QF service. QF also does not call any external code,
not even the standard C or C++ libraries. In particular, QF does not use the standard
heap (malloc () or the C++ operator new). Instead, the framework leaves to the clients
the instantiation of any framework-derived objects and the initialization of the
framework with the memory it needs for operation. All this memory could be allocated
statically in hard real-time applications, but you could also use the standard heap or any
combination of memory allocation mechanisms in other types of applications.

' This does not mean that your application is limited to 63 state machines. Each active object can manage
an unlimited number of stateful components, as described in the “Orthogonal Component” state pattern
in Chapter 5.
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7.1.1 Source Code

The companion Website to this book at www.quantum-leaps.com/psicc2/

contains the complete source code for all QP components, including QF. I hope that you

will find the source code very clean and consistent. The code has been written in strict
adherence to the coding standard documented at www . quantum-leaps.com/resources/
AN_QL_Coding_Standard.pdf.

All QP source code is “lint-free.” The compliance was checked with PC-lint/FlexLint
static analysis tool from Gimpel Software (www.gimpel.com). The QP distribution
includes the <gp>\gpc\ports\lint\ subdirectory, which contains the batch script
make.bat for compiling all the QP components with PC-lint.

The QP source code is also 98 percent compliant with the Motor Industry Software
Reliability Association (MISRA) Guidelines for the Use of the C Language in Vehicle-
Based Software [MISRA 98]. MISRA created these standards to improve the reliability
and predictability of C programs in critical automotive systems. Full details of this
standard can be obtained directly from the MISRA Website at www.misra.org. uk.
The PC-lint configuration used to analyze QP code includes the MISRA rule checker.

Finally and most important, I believe that simply giving you the source code is not
enough. To gain real confidence in event-driven programming, you need to understand
how a real-time framework is ultimately implemented and how the different pieces fit
together. This book, and especially this chapter, provides this kind of information.

7.1.2 Portability

All QF source code is written in portable ANSI-C, or in the Embedded C++ subset” in
case of QF/C++, with all processor-specific, compiler-specific, or operating system-
specific code abstracted into a clearly defined platform abstraction layer (PAL).

In the simplest standalone configurations, QF runs on “bare-metal” target CPU
completely replacing the traditional RTOS. As shown in Figure 7.1, the QP event-
driven platform includes the simple nonpreemptive “vanilla” scheduler as well as the
fully preemptive kernel QK. To date, the standalone QF configurations have been
ported to over 10 different CPU architectures, ranging from 8-bit (e.g., 8051, PIC,

2 Embedded C++ subset is defined online at www.caravan. net/ec2plus/.
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AVR, 68H(S)08), through 16-bit (e.g., MSP430, M16C, x86-real mode) to 32-bit
architectures (e.g., traditional ARM, ARM Cortex-M3, Cold Fire Altera Nios II, x86).

The QF framework can also work with a traditional OS/RTOS to take advantage of the
existing device drivers, communication stacks, middleware, or any legacy code that
requires a conventional “blocking” kernel. To date, QF has been ported to six major
operating systems and RTOSs, including Linux (POSIX) and Win32.

As you’ll see in the course of this chapter, high portability is the main challenge in
writing a widely useable real-time framework like QF. Obviously, coming up with
an efficient PAL that would correctly capture all possible platform variances required
many iterations and actually porting the framework to several CPUs, operating
systems, and compilers. (I describe porting the QF framework in Chapter 8.) The
www . quantum-leaps.com Website contains the steadily growing number of QF
ports, examples, and documentation.

7.1.3 Scalability

All components of the QP event-driven platform, especially the QF real-time
framework, are designed for scalability so that your final application image contains
only the services that you actually use. QF is designed for deployment as a fine-
granularity object library that you statically link with your applications. This strategy
puts the onus on the linker to eliminate any unused code automatically at link time
instead of burdening the application programmer with configuring the QF code for each
application at compile time.

As shown in Figure 7.2, a minimal QP/C or QP/C++ system requires some 8KB of code
space (ROM) and about 1KB of data space (RAM) to leave enough room for a
meaningful application code and data. This code size corresponds to the footprint of a
typical, small, bare-bones RTOS application except that the RTOS approach typically
requires more RAM for the stacks.

NOTE

A typical, standalone QP configuration with QEP, QF, and the “vanilla” scheduler or the QK
preemptive kernel, with all major features enabled, requires around 2-4KB of code. Obvi-
ously you need to budget additional ROM and RAM for your own application code and data.
Figure 7.2 shows the application footprint.
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Figure 7.2: RAM/ROM footprints of QP, QP-nano, and other RTOS/OS.
The chart shows approximate total system size as opposed to just the RTOS/OS
footprints. Note the logarithmic axes.

However, the event-driven approach scales down even further, beyond the reach of
any conventional RTOS. To address still smaller systems, a reduced QP version called
QP-nano implements a subset of features provided in QP/C or QP/C++. QP-nano has
been specifically designed to enable active object computing with hierarchical state
machines on low-end 8- and 16-bit embedded MCUs. As shown in Figure 7.2, a
meaningful QP-nano application starts from about 100 bytes of RAM and 2KB of
ROM. I describe QP-nano in Chapter 11.

On the opposite end of the complexity spectrum, QP applications can also scale up

to very big systems with gigabytes of RAM and multiple or multicore CPUs. The
large-scale applications, such as various servers, have often large numbers of

stateful components to manage, so the efficiency per component becomes critical. It
turns out that the lightweight, event-driven, state machine-based approach easily scales
up and offers many benefits over the traditional thread-per-component paradigm.
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7.1.4 Support for Modern State Machines

As shown in Figure 7.1, the QF real-time framework is designed to work closely
with the QEP hierarchical event processor (Chapter 4). The two components
complement each other in that QEP provides the UML-compliant state machine
implementation, whereas QF provides the infrastructure of executing such state
machines concurrently.

The design of QF leaves a lot of flexibility, however. You can configure the base
class for derivation of active objects to be either the QHsm hierarchical state
machine (Section 4.5 in Chapter 4), the simpler QF sm nonhierarchical state machine
(Section 3.6 in Chapter 3), or even your own base class not defined in the

QEP event processor. The latter option allows you to use QF with your own

event processor.

7.1.5 Direct Event Posting and Publish-Subscribe Event Delivery

The QF real-time framework supports direct event posting to specific active objects
with first-in, first-out (FIFO) and last-in, first-out (LIFO) policies. QF also supports
the more advanced publish-subscribe event delivery mechanism, as described in
Section 6.4 in Chapter 6. Both mechanisms can coexist in a single application.

7.1.6 Zero-Copy Event Memory Management

Perhaps the most valuable feature provided by the QF real-time framework is the
efficient “zero-copy” event memory management, as described in Section 6.5 in
Chapter 6. QF supports event multicasting based on the reference-counting algorithm,
automatic garbage collection for events, efficient static events, “zero-copy” event
deferral, and up to three event pools with different block sizes for optimal memory
utilization.

7.1.7 Open-Ended Number of Time Events

QF can manage an open-ended number of time events (timers). QF time events are
extensible via structure derivation (inheritance in C++). Each time event can be
armed as a one-shot or a periodic timeout generator. Only armed (active) time events
consume CPU cycles.
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7.1.8 Native Event Queues

QF provides two versions of native event queues. The first version is optimized for active
objects and contains a portability layer to adapt it for either blocking kernels, the

simple cooperative “vanilla” kernel (Section 6.3.7), or the QK preemptive kernel
(Section 6.3.8 in Chapter 6). The second native queue version is a simple “thread-safe”
queue not capable of blocking and designed for sending events to interrupts as well

as storing deferred events. Both native QF event queue types are lightweight, efficient,
deterministic, and thread-safe. They are optimized for passing just the pointers to

events and are probably smaller and faster than full-blown message queues available in
a typical RTOS.

7.1.9 Native Memory Pool

QF provides a fast, deterministic, and thread-safe memory pool. Internally, QF uses
memory pools as event pools for managing dynamic events, but you can also use
memory pools for allocating any other objects in your application.

7.1.10 Built-in “Vanilla” Scheduler

The QF real-time framework contains a portable, cooperative “vanilla” kernel, as described
in Section 6.3.7 of Chapter 6. Chapter 8 presents the QF port to the “vanilla” kernel.

7.1.11 Tight Integration with the QK Preemptive Kernel

The QF real-time framework can also work with a deterministic, preemptive,
nonblocking QK kernel. As described in Section 6.3.8 in Chapter 6, run-to-completion
kernels, like QK, provide preemptive multitasking to event-driven systems at a fraction
of the cost in CPU and stack usage compared to traditional blocking kernels/RTOSs.
I describe QK implementation in Chapter 10.

7.1.12 Low-Power Architecture

Most modern embedded microcontrollers (MCUs) provide an assortment of low-power
sleep modes designed to conserve power by gating the clock to the CPU and various
peripherals. The sleep modes are entered under the software control and are exited upon
an external interrupt.
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The event-driven paradigm is particularly suitable for taking advantage of these
power-saving features because every event-driven system can easily detect situations
in which the system has no more events to process, called the idle condition

(Section 6.3.7). In both standalone QF configurations, either with the cooperative
“vanilla” kernel or with the QK preemptive kernel, the QF framework provides callback
functions for handling the idle condition. These callbacks are carefully designed to
place the MCU into a low-power sleep mode safely and without creating race
conditions with active interrupts.

7.1.13 Assertion-Based Error Handling

The QF real-time framework consistently uses the Design by Contract (DbC)
philosophy described in Section 6.7 in Chapter 6. QF constantly monitors the
application by means of assertions built into the framework. Among others, QF
uses assertions to enforce the event delivery guarantee, which immensely simplifies
event-driven application design.

7.1.14 Built-in Software Tracing Instrumentation

As described in Section 6.8 in Chapter 6, a real-time framework can use
software-tracing techniques to provide more comprehensive and detailed
information about the running application than any traditional RTOS. The QF
code contains the software-tracing instrumentation so it can provide

unprecedented visibility into the system. Nominally the instrumentation is inactive,
meaning that it does not add any code size or runtime overhead. But by defining
the macro Q_SPY, you can activate the instrumentation. I devote all of Chapter 11
to software tracing.

NOTE

The QF code is instrumented with QS (Q-Spy) macros to generate software trace output from
active object execution. However, the instrumentation is disabled by default and for better
clarity will not be shown in the listings discussed in this chapter. Refer to Chapter 11 for
more information about the QS software-tracing implementation.
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7.2 QF Structure

Figure 7.3 shows the main QF classes and their relation to the application-level
code, such as the “Fly ‘n’ Shoot” game example from Chapter 1.

QF provides the central base class QActive for derivation of active

object classes. The QActive class is abstract, which means that it is not intended for
direct instantiation but rather only for derivation of concrete® active object classes,
such as Ship, Missile, and Tunnel shown in Figure 7.3.

«abstract» QEP event processor
QHsm
= state : QHsmState QEvent
init() Configurable to derive sig : QSignal <
dispatch() from other classes with dynamic_ : uint8_t
? — _ —| the compatible interface Zr
QF real-time framework
«abstract» QTimeEvt
QActive
thread thread ctr
eQueue @———=| Thread postin()
prio
eQueue z_ostEvery()
start() @——— Queue isarm()
postFIFO() rearm()
postLIFO()
| % T | Fly and Shoot application
Ship Missile Tunnel @—
n ¢
Mine1 |
n | ObjectPosEvt | | ObjectimageEvt
Mine2

Figure 7.3: QEP event processor, QF real-time framework,
and the “Fly ‘n’ Shoot” application.

3 Concrete class is the OOP term and denotes a class that has no abstract operations or protected
constructors. Concrete class can be instantiated, as opposed to abstract class, which cannot be instantiated.
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By default, the gactive class derives from the QHsm hierarchical state machine
class defined in the QEP event processor (Chapter 4). This means that by virtue
of inheritance active objects are HSMs and inherit the init () and dispatch ()
state machine interface. QActive also contains a thread of execution and an
event queue, which can be native QF classes, or might be coming from the
underlying RTOS.

QF uses the same QEvent class for representing events as the QEP event processor.
Additionally, the framework supplies the time event class QTimeEvt, with which
the applications make timeout requests.

QF provides also several services to the applications, which are not shown in the
class diagram in Figure 7.3. These additional QF services include generating new
dynamic events (Q_NEW () ), publishing events (QF_publish () ), the native QF
event queue class (QEQueue), the native QF memory pool class (QMPoo1l), and the
built-in cooperative “vanilla” kernel (see Chapter 6, Section 6.3.7).

7.2.1 QF Source Code Organization

Listing 7.1 shows the platform-independent directories and files comprising the QF
real-time framework in C. The structure of the C++ version is almost identical except
that the implementation files have the .cpp extension.

Listing 7.1 Platform-independent QF source code organization

gpc\ - QP/C root directory (gpcpp for QP/C++)
|
+-doxygen\ - QP/C documentation generated with Doxygen
| +-html\ - “QP/C Reference Manual” in HTML format

| +-index.html - The starting HTML page for the “QP/C Reference Manual”
| +- . ..

|

|

| +-Doxyfile - Doxygen configuration file to generate the Manual
| +-gpc.chm - “QP/C Reference Manual” in CHM Help format

| +-gpc_rev.h - QP/C revision history

|

+-include\ - QP platform-independent header files

| +-gf.h - QF platform-independent interface

| +-gequeue.h - QF native event queue facility

| +-gmpool.h - QF native memory pool facility
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+-gpset.h
+-gvanilla.h

+
| +-af_pkg.h
| +-ga_defer.
| +-ga_ctor.c
| +-ga_fifo.c
| +-ga_fifo_.
| +-ga_get_.c
| +-ga_lifo.c
| +-ga_lifo_.
| +-ga_sub.c
| +-ga_usub.c
| +-ga_usuba.
| +-geqg fifo.
| +-geq_get.c
| +-geqg_init.
| +-geqg_lifo.
| +-qgf_act.c
| +-gf_gc.c

| +-gf_log2.c
| +-gf_new.c
| +-gf_pool.c
| +-gf_psini.
| +-qaf_pspub.
| +-gf_pwr2.c
| +-gf_tick.c
| +-gmp_get.c
| +-gmp_init.
| +-gmp_put.c
| +-gte_arm.c
| +-gte_ctor.
| +-gte_darm.
| +-gte_rarm.
| +-gvanilla.
|

-examples\

(¢}

(¢}

(¢}

(¢]

C

C
C

C
C

(¢]

Q0 Q

- QF native priority set facility

- QF native “vanilla” cooperative kernel interface

- QF real-time framework

- QF platform-independent source code (*.C files)
internal, interface for the QF implementation
definition of QActive_defer () /QActive_recall ()

definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition
definition

of QActive_ctor ()

of QActive_postFIFO()
of QActive_postFIFO_ ()
of QActive_get_ ()

of QActive_postLIFO()
of QActive_postLIFO_ ()
of QActive_subscribe ()
of QActive_unsubscribe ()
of QActive_unsubscribeAll ()
of QEQueue_postFIFO()
of QEQueue_get ()

of QEQueue_init ()

of QEQueue_postLIFO()
of QF_active_[]

of QF_gc_ ()

of QF_log2Lkup|[]

of QF_new_ ()

of QF_poolInit ()

of QF_psInit()

of QF_publish ()

of QF_pwr2Lkup_ []

of QF_tick()

of QMPool_get ()

of QMPool_init ()

of QMPool_put ()

of QTimeEvt_arm_ ()

of QTimeEvt_ctor ()

of QTimeEvt_disarm()
of QTimeEvt_rearm()

“vanilla” cooperative kernel implementation

QF options for lint
| +-opt_gf.lnt - PC-1lint options for linting QF

- Platform-specific QP ports

- Platform-specific QP examples
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The QF source files contain typically just one function or a data structure definition per
file. This design aims at deploying QF as a fine-granularity library that you statically
link with your applications. Fine granularity means that the QF library consists of
several small, loosely coupled modules (object files) rather than a single module that
contains all functionality. For example, a separate module ga_1ifo.c implements
the QActive_postLIFO () function; therefore, if your application never calls this
function, the linker will not pull in the ga_1lifo.obj module. This strategy puts the
burden on the linker to do the “heavy lifting” of automatically eliminating any
unused code at link time, rather than on the application programmer to configure the
QF code for each application at compile time.

7.3 Critical Sections in QF

QF, just like any other system-level software, must protect certain sequences of
instructions against preemptions to guarantee thread-safe operation. The sections of
code that must be executed indivisibly are called critical sections.

In an embedded system environment, QF uses the simplest and most efficient way
to protect a section of code from disruptions, which is to lock interrupts on entry to
the critical section and unlock interrupts at the exit from the critical section. In
systems where locking interrupts is not allowed, QF can employ other mechanisms
supported by the underlying operating system, such as a mutex.

NOTE

The maximum time spent in a critical section directly affects the system’s responsiveness to
external events (interrupt latency). All QF critical sections are carefully designed to be as
short as possible and are of the same order as critical sections in any commercial RTOS.
Of course, the length of critical sections depends on the processor architecture and the quality
of the code generated by the compiler.

To hide the actual critical section implementation method available for a particular
processor, compiler, and operating system, the QF platform abstraction layer includes
two macros, QF_INT_LOCK () and QF_INT_UNLOCK (), to lock and unlock interrupts,
respectively.
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7.3.1 Saving and Restoring the Interrupt Status

The most general critical section implementation involves saving the
interrupt status before entering the critical section and restoring the status upon
exit from the critical section. Listing 7.2 illustrates the use of this critical section

type.

Listing 7.2 Example of the “saving and restoring interrupt status” policy

{

(1) unsigned int lock_key;
(2) lock_key = get_int_status() ;
(3) int_lock() ;
(4) /* critical section of code */
(5) set_int_status (lock_key) ;
}
(1) The temporary variable 1ock_key holds the interrupt status across the critical
section.
(2) Right before entering the critical section, the current interrupt status is
obtained from the CPU and saved in the 1ock_key variable. Of course,
the name of the actual function to obtain the interrupt status can be different
in your system. This function could actually be a macro or inline assembly
statement.
(3) Interrupts are locked using the mechanism provided by the compiler.
(4) This section of code executes indivisibly because it cannot be interrupted.
(5) The original interrupt status is restored from the lock_key variable. This step

unlocks interrupts only if they were unlocked at step 2. Otherwise, interrupts
remain locked.

Listing 7.3 shows an example of the “saving and restoring interrupt status” policy.
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Listing 7.3 QF macro definitions for the “saving and restoring interrupt
status” policy

(1) #define QF_INT_KEY_ TYPE unsigned int
(2) #define QF_INT_LOCK (key_) do { \
(key_) = get_int_status(); \
int_lock(); \
} while (0)

(3) #define QF_INT_UNLOCK (key_) set_int_status(key_)

(1) The macro QF_INT_KEY_TYPE denotes a data type of the “interrupt key”
variable, which holds the interrupt status. Defining this macro in the gf_port.h
header file indicates to the QF framework that the policy of “saving and restoring
interrupt status” is used, as opposed to the policy of “unconditional locking and
unlocking interrupts” described in the next section.

(2) The macro QF_INT_LOCK () encapsulates the mechanism of interrupt locking.
The macro takes the parameter key_, into which it saves the interrupt lock
status.

NOTE

The do {...} while (0) loop around the QF INT_LOCK () macro is the standard practice for
syntactically correct grouping of instructions. You should convince yourself that the macro
can be used safely inside the if-else statement (with the semicolon after the macro) with-
out causing the “dangling-else” problem. I use this technique extensively in many QF
macros.

(3) The macro QF_INT_UNLOCK () encapsulates the mechanism of restoring the
interrupt status. The macro restores the interrupt status from the argument key_ .

The main advantage of the “saving and restoring interrupt status” policy is the ability
to nest critical sections. The QF real-time framework is carefully designed to never
nest critical sections internally. However, nesting of critical sections can easily occur
when QF functions are invoked from within an already established critical section, such
as an interrupt service routine (ISR). Most processors lock interrupts in hardware upon
the interrupt entry and unlock upon the interrupt exit, so the whole ISR is a critical
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section. Sometimes you can unlock interrupts inside ISRs, but often you cannot. In the
latter case, you have no choice but to invoke QF services, such as event posting or
publishing, with interrupts locked. This is exactly when you must use this type of
critical section.

7.3.2 Unconditional Locking and Unlocking Interrupts

The simpler and faster critical section policy is to always unconditionally unlock
interrupts in QF_INT_UNLOCK (). Listing 7.4 provides an example of the QF macro
definitions to specify this type of critical section.

Listing 7.4 QF macro definitions for the “unconditional interrupt locking
and unlocking” policy

(1) /* QF_INT_ LOCK_KEY not defined */
(2) #define QF_INT_KEY_TYPE (key_) int_lock ()
(3) #define QF_INT_UNLOCK (key_) int_unlock ()

(1) The macro QF _INT_KEY_TYPE is not defined in this case. The absence of the
QF_INT_KEY_TYPE macro indicates to the QF framework that the interrupt
status is not saved across the critical section.

(2) The macro QF_INT LOCK () encapsulates the mechanism of interrupt locking.
The macro takes the parameter key_, but this parameter is not used in this case.

(3) The macro QF_INT_UNLOCK () encapsulates the mechanism of unlocking
interrupts. The macro always unconditionally unlocks interrupts. The parameter
key_ is ignored in this case.

The policy of “unconditional locking and unlocking interrupts” is simple and fast, but
it does not allow nesting of critical sections, because interrupts are always unlocked
upon exit from a critical section, regardless of whether interrupts were already

locked on entry.

The inability to nest critical sections does not necessarily mean that you cannot nest
interrupts. Many processors are equipped with a prioritized interrupt controller, such as
the Intel 8259A Programmable Interrupt Controller (PIC) in the PC or the Nested
Vectored Interrupt Controller (NVIC) integrated inside the ARM Cortex-M3. Such
interrupt controllers handle interrupt prioritization and nesting before the interrupts
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reach the processor core. Therefore, you can safely unlock interrupts at the processor
level, thus avoiding nesting of critical sections inside ISRs. Listing 7.5 shows the
general structure of an ISR in the presence of an interrupt controller.

Listing 7.5 General structure of an ISR in the presence of a prioritized
interrupt controller

(1) void interrupt ISR (void) { /* entered with interrupts locked in hardware * /
(2) Acknowledge the interrupt to the interrupt controller (optional)

(3) Clear the interrupt source, if level triggered

(4) QF INT UNLOCK (dummy) ; /* unlock the interrupts at the processor level */
(5) Handle the interrupt, useQF calls, e.g., QF_tick (), Q_NEWor QF_publish()
(6) QF INT LOCK (dummy) ; /* lock the interrupts at the processor level */
(7) Write End-Of-Interrupt (EOI) instruction to the Interrupt Controller
(8) }

(1) Most processors enter the ISR with interrupts locked in hardware.

(2) The interrupt controller must be notified about entering the interrupt. Often this
notification happens automatically in hardware before vectoring (jumping) to
the ISR. However, sometimes the interrupt controller requires a specific
notification from the software. Check your processor’s datasheet.

(3) You need to explicitly clear the interrupt source, if it is level triggered.
Typically you do it before unlocking interrupts at the CPU level, but a
prioritized interrupt controller will prevent the same interrupt from preempting
itself, so it really does not matter if you clear the source before or after unlocking
interrupts.

(4) Interrupts are explicitly unlocked at the CPU level, which is the key step of this
ISR. Enabling interrupts allows the interrupt controller to do its job, that is, to
prioritize interrupts. At the same time, enabling interrupts terminates the critical
section established upon the interrupt entry. Note that this step is only necessary
when the hardware actually locks interrupts upon the interrupt entry (e.g., the
ARM Cortex-M3 leaves interrupts unlocked).

(5) The main ISR body executes outside the critical section, so QF services can be
safely invoked without nesting critical sections.
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NOTE

The prioritized interrupt controller remembers the priority of the currently serviced interrupt
and allows only interrupts of higher priority than the current priority to preempt the ISR.
Lower- and same-priority interrupts are locked at the interrupt controller level, even though
the interrupts are unlocked at the processor level. The interrupt prioritization happens in the
interrupt controller hardware until the interrupt controller receives the end-of-interrupt (EOI)
instruction.

(6) Interrupts are locked to establish critical sections for the interrupt exit.

(7) The end-of-interrupt (EOI) instruction is sent to the interrupt controller to stop
prioritizing this interrupt level.

(8) The interrupt exit synthesized by the compiler restores the CPU registers from
the stack, which includes restoring the CPU status register. This step typically
unlocks interrupts.

7.3.3 Internal QF Macros for Interrupt Locking/Unlocking

The QF platform abstraction layer (PAL) uses the interrupt locking/unlocking
macros QF_INT_ LOCK (), QF _INT_ UNLOCK (), and QF _INT_KEY_ TYPE in a
slightly modified form. The PAL defines internally the parameterless macros,
shown in Listing 7.6. Please note the trailing underscores in the internal macros’
names.

Listing 7.6 Internal macros for interrupt locking/unlocking
(file <gp>\agpc\gf\source\gf_pkg.h)

#ifndef QF_INT_KEY_ TYPE /* simple unconditional interrupt locking/unlocking */
#define QF_INT_LOCK_KEY__
#define QF_INT_LOCK_ () QF_INT_LOCK (ignore)
#define QF_INT UNLOCK_ () QF_INT_UNLOCK (ignore)

#else /* policy of saving and restoring interrupt status */
#define QF_INT_LOCK_KEY_ QF_INT_KEY_TYPE intLockKey_;
#define QF_INT_LOCK_ () QF_INT_LOCK (intLockKey_ )
#define QF_INT_UNLOCK_ () QF_INT_UNLOCK (intLockKey_ )

#endif
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The internal macros QF_INT LOCK_KEY_,QF_INT_LOCK_ (),and QF _INT_ UNLOCK_ ()
enable writing the same code for the case when the interrupt key is defined and when it is
not. The following code snippet shows the usage of the internal QF macros. Convince
yourself that this code works correctly for both interrupt-locking policies.

void QF_service_xyz (arguments) {
QF_INT_LOCK_KEY_

QF_INT_LOCK_ () ;
/* critical section of code */

QF_INT_UNLOCK_ () ;

7.4 Active Objects

As shown in Figure 7.3, the QF real-time framework provides the base structure
Qactive for deriving application-specific active objects. QActive combines the
following three essential elements:

e [t is a state machine (derives from QHsm or some other class with a compatible
interface).

e |t has an event queue.
e |t has an execution thread with a unique priority.

Listing 7.7 shows the declaration of the QActive base structure and related functions.

Listing 7.7 The QActive base class for derivation of active objects
(file <ap>\gpc\include\gf.h)

(1) #ifndef QF ACTIVE_ SUPER_
(2) #define QF_ACTIVE_SUPER_ QHsm
(3) #define QF _ACTIVE_CTOR_ (me_, initial_) QHsm ctor((me_), (initial_))
(4) #define QF_ACTIVE_INIT (me_, e_) QHsm_init((me_), (e_))
(5) #define QF_ACTIVE_DISPATCH_ (me_, e_) QHsm_dispatch((me_), (e_))
(6) #define QF_ACTIVE_STATE_ QState

#endif

typedef struct QActiveTag {
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(7) QF_ACTIVE_SUPER_ super; /* derives from QF _ACTIVE_SUPER_ */
(8) QF_EQUEUE_TYPE eQueue; /* event queue of active object */
#ifdef QF_OS_OBJECT_TYPE
(9) QF_0S_OBJECT_TYPE osObject;/* 0S-object for blocking the queue */
#endif
#ifdef QF_THREAD_TYPE
(10) QF_THREAD_TYPE thread; /* execution threadof the active object */
#endif
(11) uint8_t prio; /* QF priority of the active object */
(12) uint8_t running; /* flag indicating if the A0 is running */
} QActive;
(13) wvoid QActive_start (QActive *me, uint8_t prio,
QEvent const *gSto[], uint32_t glLen,
void *stkSto, uint32_t stkSize,
QEvent const *ie);
(14) wvoid QActive_postFIFO(QActive *me, QEvent const *e);
(15) wvoid QActive_postLIFO(QActive *me, QEvent const *e);
(16) wvoid QActive_ctor (QActive *me, QState initial);
(17) wvoid QActive_stop (QActive *me) ;
(18) wvoid QActive_subscribe (QActive const *me, QSignal sig) ;
(19) wvoid QActive_unsubscribe (QActive const *me, QSignal sig) ;
(20) wvoid QActive_unsubscribeAll (QActive const *me) ;
(21) wvoid QActive_defer (QActive *me, QEQueue *eq, QEvent const *e) ;
(22) QEvent const *QActive_recall (QActive *me, QEQueue *eq) ;
(23) QEvent const *QActive_get_ (QActive *me) ;

(1) The macro QF_ACTIVE_SUPER_ specifies the ultimate base class for deriving
active objects. This macro lets you define (in the QF port) any base class for
QActive as long as the base class supports the state machine interface.

(See Chapter 3, “Generic State Machine Interface.”)

(2) When the macro QF_ACTIVE_SUPER_ is not defined in the QF port, the default is
the QHsm class provided in the QEP hierarchical event processor.

(3) The macro QF_ACTIVE_CTOR_ () specifies the name of the base class

constructor.
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(4) The macro QF_ACTIVE_INIT_() specifies the name of the base class init ()
function.

(5) The macro QF_ACTIVE_DISPATCH_ () specifies the name of the base class
dispatch() function.

(6) The macro QF_ACTIVE_STATE_ specifies the type of the parameter for the base

class constructor.

By defining the macros QF_ACTIVE_XXX_ to your own class, you can eliminate the
dependencies between the QF framework and the QEP event processor. In other
words, you can replace QEP with your own event processor, perhaps based on

one of the techniques discussed in Chapter 3, or not based on state machines at
all (e.g., you might want to try protothreads [Dunkels+ 06]). Consider the
following definitions:

#define QF_ACTIVE_SUPER_ MyClass

#define QF_ACTIVE_CTOR_ (me_, ini_) MyClass_ctor((me_), (ini_))
#define QF_ACTIVE_INIT_ (me_, e_) MyClass_init ((me_), (e_))
#define QF_ACTIVE_DISPATCH_ (me_, e_) MyClass_dispatch((me_), (e_))
#define QF_ACTIVE_STATE_ void*

(7

®)

)]

The first member super specifies the base class for QActive (see the sidebar
“Single Inheritance in C” in Chapter 1).

The type of the event queue member eQueue is platform-specific. For example,
in the standalone QF configurations, the macro QF _EQUEUE_TYPE is defined

as the native QF event queue QEQueue (see Section 7.8). However, when QF is
based on an external RTOS, the event queue might be implemented with a
message queue of the underlying RTOS.

The data member osObject is used in some QF ports to block the native QF
event queue. The osObject data member is necessary when the underlying

OS does not provide an adequate queue facility, so the native QF queue must be
used. In that case the osObject data member holds an OS-specific

primitive to efficiently block the native QF event queue when the queue is empty.
See Section 8.4, QF Port to Linux (Conventional POSIX-Compliant OS), for an
example of using the osObject data member.
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10)

(1)

(12)

13)

(14)

15)

(16)

The data member thread is used in some QF ports to hold the thread handle
associated with the active object.

The data member prio holds the priority of the active object. In QF, each active
object has a unique priority. The lowest possible task priority is 1 and higher-
priority values correspond to higher-urgency active objects. The maximum
allowed active object priority is determined by the macro QF_MAX_ACTIVE,
which currently cannot exceed 63.

The data member running is used in some QF ports to represent whether the
active object is running. In these ports, writing zero to the running member
causes exit from the active object’s event loop and cleanly terminates the active
object thread.

The function QActive_start () starts the active object thread. This function is
platform-specific and is explained in Section 7.4.3.

The function QActive_postFIFO () is used for direct event posting to the
active object’s event queue using the FIFO policy.

The function QActive_postLIFO () is used for direct event posting to the
active object’s event queue using the LIFO policy.

The function QActive_ctor () is the “constructor” of the QActive
class. This constructor has the same signature as the constructor of QHsm
or QFsm (see Section 4.5.1 in Chapter 4). In fact, the main job of the
QActive constructor is to initialize the state machine base class (the
member super).

NOTE

In the C++ version, the QActive constructor is protected. This prevents direct instan-
tiation of the Qactive class, since it is intended only for derivation (the abstract
class).

a7

The function QActive_stop () stops the execution thread of the active object.
This function is platform-specific and is discussed in Chapter 8. Not all QF ports
need to define this function.



328 Chapter 7

NOTE

In the C++ version, QActive: :stop () is not equivalent to the active object destructor. The
function merely causes the active object thread to eventually terminate, which might not hap-
pen immediately.

(18-20) The functions QActive_subscribe (), QActive_usubscribe (), and
QActive_unsubscribeall () are used for subscribing and unsubscribing
to events. I discuss these functions in the upcoming Section 7.6.2.

(21,22) The functions QActive_defer () and QActive_recall () are used for
efficient (“zero copy”) deferring and recalling of events, respectively. I
describe these functions in the upcoming Section 7.5.4.

(23) The function QActive_get_ () is used to remove one event at a time from
the active object’s event queue. This function is used only inside QF and never
at the application level. In some QF ports the function QActive_get_ ()
can block. I describe this function in the upcoming Section 7.4.2.

7.4.1 Internal State Machine of an Active Object

As shown in Figure 7.3, every concrete active object, such as Ship, Missile, or
Tunnel in the “Fly ‘n’ Shoot” game example from Chapter 1, is a state machine because
it derives indirectly from the QHsm base class or a class that supports a generic state
machine interface (see the data member super in Listing 7.7(7)). Derivation means
simply that every pointer to QAct ive or a structure derived from QActive can always be
safely used as a pointer to the base structure QHsm. Such a pointer can therefore always
be passed to any function designed to work with the state machine structure. At the
application level, you can mostly ignore the other aspects of your active objects and view
them predominantly as state machines. In fact, your main job in developing a QF
application consists of elaborating the state machines of your active objects.

7.4.2 Event Queue of an Active Object

Event queues are essential components of any event-driven system because they
reconcile the asynchronous production of events with the RTC semantics of their
consumption. An event queue makes the corresponding active object appear to always
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be responsive to events, even though the internal state machine can accept events only
between RTC steps. Additionally, the event queue provides buffer space that protects
the internal state machine from bursts in event production that can, at times, exceed
the available processing capacity.

You can view the active object’s event queue as an outer rind that provides an external
interface for injecting events into the active object and at the same time protects the
internal state machine during RTC processing. To perform these functions, the event
queue must allow any thread of execution (as well as an ISR) to asynchronously post
events, but only one thread—the local thread of the active object—needs to be able
to remove events from the queue. In other words, the event queue in QF needs
multiple-write but only single-read access.

From the description so far, it should be clear that the event queue is quite a
sophisticated mechanism. One end of the queue—the end where producers insert
events—is obviously shared among many tasks and interrupts and must provide an
adequate mutual exclusion mechanism to protect the internal consistency of the queue.
The other end—the end from which the local active object thread extracts events—must
provide a mechanism for blocking the active object when the queue is empty. In
addition, an event queue must manage a buffer of events, typically organized as a
ring buffer.

As shown in Figure 6.13 in Chapter 6, the “zero copy” event queues do not store actual
events, only pointers to event instances. Typically these pointers point to event
instances allocated dynamically from event pools (see Section 7.5.2), but they can
also point to statically allocated events. You need to specify the maximum number of
event pointers that a queue can hold at any one time when you start the active object
with the QActive_start () function (see the next section). The correct sizing of
event queues depends on many factors and generally is not a trivial task. I discuss
sizing event queues in Chapter 9.

Many commercial RTOSs natively support queuing mechanisms in the form of
message queues. Standard message queues are far more complex than required by
active objects because they typically allow multiple-write as well as multiple-read
access (the QF requires only single-read access) and often support variable-length data
(not only pointer-sized data). Usually message queues also allow blocking when the
queue is empty and when the queue is full, and both types of blocking can be timed
out. Naturally, all this extra functionality, which you don’t really need in QF, comes
at an extra cost in CPU and memory usage. The QF port to the pC/OS-II RTOS
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described in Chapter 8 provides an example of an event queue implemented with a
message queue of an RTOS. The standalone QF ports to x86/DOS and ARM
Cortex-M3 (used in the “Fly ‘n” Shoot” game from Chapter 1) provide examples of
using the native QF event queue. I discuss the native QF active object queue
implementation in Section 7.8.3.

7.4.3 Thread of Execution and Active Object Priority

Every QF active object executes in its own thread. The actual control flow within the
active object thread depends on the multitasking model actually used, but the event
processing always consists of the three essential steps shown in Listing 7.8.

Listing 7.8 The three steps of an active object thread

(1) QEvent const *e = QActive_get_(a); /* get the next event for AO ‘a’ */
(2) QF_ACTIVE_DISPATCH_ (&a->super, e); /* dispatch to the AO ‘a’ */
(3) QF_gc(e); /* determine if event ‘e’ is garbage and collect it if so */

(1) The event is extracted from the active object’s event queue by means of
the function QActive_get_ (). This function might block in blocking kernels.
In Section 7.8.3 I describe the implementation of QActive_get_ () for the native
QF active object queue. In Chapter 8 I describe the Qactive_get_ ()
implementation when a message queue of an RTOS is used instead of the
native QF event queue.

(2) The event is dispatched to the active object’s state machine for processing (see
Listing 7.7(5) for the definition of the QF _ACTIVE_DISPATCH_ () macro).

NOTE

Step 2 constitutes the RTC processing of the active object’s state machine. The active
object’s thread continues only after step 2 completes.

(3) The event is passed to the QF garbage collector for recycling. As described in
Section 6.5.5 in Chapter 6, the garbage collector actually recycles the event only
when it determines that the event is no longer referenced.
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In the presence of a traditional RTOS (e.g., VxWorks) or a multitasking
operating system (e.g., Linux), the three event processing steps just explained
are enclosed by the usual endless loop, as shown in Figure 6.12(A) in Chapter 6.
Under a cooperative “vanilla” kernel (Figure 6.12(B)) or an RTC kernel

(Figure 6.12(C)), the three steps are executed in one-shot fashion for

every event.

The Qactive_start () function creates the active object’s thread and notifies QF to
start managing the active object. A QF application needs to call the QActive_start ()
function on behalf of every active object in the system. In principle, active objects

can be started and stopped (with QActive_stop () ) multiple times during the lifetime of
the application. However, in most cases, all active objects are started just once during
the system initialization.

The Qactive_start () function is one of the central elements of the framework,
but obviously it strongly depends on the underlying multitasking kernel. Listing 7.9
shows the pseudocode of QActive_start().

Listing 7.9 QActive_start () function pseudocode
(1) wvoid QActive_start (QActive *me,
(2) uint8_t prio, /* the unique priority */
(3) QEvent const *gSto[], uint32_t glLen, /* event queue */
(4) void *stkSto, uint32_t stkSize, /* per-task stack */
(5) QEvent const *ie) /* the initialization event */
{
(6) me->prio = prio; /* set the QF priority */
(7) QF_add_ (me) ; /* make QF aware of this active object */
(8) QF_ACTIVE_INIT_ (me, ie); /* execute the initial transition */
(9) Initialize the event queue object ‘me->eQueue’ using gSto and gLen
(10) Create and start the thread ‘me->thread’ of the underlying kernel
}

(1) The argument ‘me’ is the pointer to the active object being started.

(2) The argument ‘prio’ is the priority you assign to the active object. In QF,
every active object must have a unique priority, which you assign at startup and
cannot change later. QF uses a priority numbering system in which priority 1 is
the lowest and higher numbers correspond to higher priorities.
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NOTE

You can think of QF priority 0 as corresponding to the idle task, which has the absolute
lowest priority not accessible to the application-level tasks.

(3) The arguments ‘gSto’ and ‘gLen’ are a pointer to the storage for the event queue
buffer and the length of that buffer (in units of QEvent®), respectively. If the
underlying RTOS cannot accept externally allocated storage for the queue, the
‘gsto’ pointer should be set to NULL.

(4) The argument ‘stkSto’ is the pointer to the storage for the private stack, and
the argument ‘stkSize’ is the size of that stack (in bytes).
If the underlying kernel/RTOS does not need per-task stacks or cannot accept
externally allocated storage for the stack, the ‘stkSto’ pointer should be set
to NULL.

(5) The argument ‘ie’ is a pointer to initialization event for the topmost initial
transition in the active object state machine. This argument is very specific to
the active object being initialized and can be NULL.

NOTE

9 ¢

The “initialization event” ‘ie’ gives you an opportunity to provide some information to the active
object, which is only known later in the initialization sequence (e.g., a window handle in a GUI
system). Note that the active object constructor runs even before main () (in C++), at which time
you typically don’t have all the information to initialize all aspects of an active object.

(6) The QF priority of the active object is set.

(7) The active object is registered with the QF framework. The QF_add_ () function
asserts that the priority of the active object is in range and is not already used
(unique priority).

(8) The topmost initial transition in the active object’s state machine is taken (see
Listing 7.7(4) for the definition of the QF _ACTIVE_INIT_ () macro). Note that
the initial transition is executed in the same thread that called QActive_start (),
which often is the main () thread.
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NOTE

s

This design allows the initialization event (passed to QActive_start() as the ‘ie
pointer) to be allocated on the stack of the caller. Note that the initialization event is not
recycled.

(9) The Qactive_start () function initializes the event queue attribute
me->eQueue, typically using the storage for the queue buffer (gSto[]), and
the length of this buffer (qgLen) .

(10) Finally, the thread (task) of the active object is created and the further
execution of the active object occurs in that newly created task context.
The priority of the thread should correspond to the relative QF priority
passed as the argument ‘prio’ to QActive_start (). If the underlying
scheduler uses a different priority numbering scheme, the concrete
implementation of QActive_start () must remap the QF priority to
the priority required by the scheduler before invoking the platform-specific
thread creation routine.

7.5 Event Management in QF

QF implements the efficient “zero-copy” event delivery scheme, as described in
Section 6.5 in Chapter 6. QF supports two kinds of events: (1) dynamic events
managed by the framework, and (2) other events (typically statically allocated)
not managed by QF. For each dynamic event, QF keeps track of the reference
counter of the event (to know when to recycle the event) as well as the event
pool from which the dynamic event was allocated (to recycle the event back to
the same pool).

7.5.1 Event Structure

QF uses the same event representation as the QEP event processor described in
Part I. Events in QF are represented as instances of the QEvent structure

(shown in Listing 7.10), which contains the event signal sig and a byte dynamic
to represent the internal “bookkeeping” information about the event.
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Listing 7.10 QEvent structure defined in <gp>\gpc\include\gevent.h

typedef struct QEventTag { /* QEvent base structure */
QSignal sig; /* public signal of the event instance */
uint8_t dynamic_; /* attributes of a dynamic event (0 for static event) */
} QEvent;

As shown in Figure 7.4, the QF framework uses the QEvent .dynamic_ data byte
in the following way.* The six least-significant bits [0..5] represent the reference
counter of the event, which has the dynamic range of 0..63. The two most
significant bits [6..7] represent the event pool ID of the event, which has the
dynamic range of 1..3. The pool ID of zero is reserved for static events, that is,
events that do not come from any event pool. With this representation, a static
event has a unique, easy-to-check signature (QEvent.dynamic_ == 0).
Conversely, the signature (QEvent.dynamic_ != 0) unambiguously identifies

a dynamic event.

QEvent . dynamic_: 716 5141321 0

event pool ID (1..3); ] L reference counter (0..63)

event pool ID of 0 identifies a static event

Figure 7.4: Allocation of bits in the QEvent.dynamic_ byte.

NOTE

The QEvent data member dynamic_ is used only by the QF framework for managing
dynamic events (see the following section). For every static event, you must initialize this
member to zero. Otherwise, the QEvent . dynamic_ data member should never be of interest
to the application code.

“ I avoid using bit fields because they are not quite portable. Also, the use of bit fields would be against the
required MISRA rule 111.
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7.5.2 Dynamic Event Allocation

Dynamic events allow reusing the same memory over and over again for passing
different events. QF allocates such events dynamically from one of the event pools
managed by the framework. An event pool in QF is a fixed-block-size heap, also known
as a memory partition or memory pool.

The most obvious drawback of a fixed-block-size heap is that it does not support
variable-sized blocks. Consequently, the blocks have to be oversized to handle the
biggest possible allocation. A good compromise to avoid wasting memory is to use
not one but a few heaps with blocks of different sizes. QF can manage up to three
event pools (e.g., small, medium, and large events, like shirt sizes).

Event pools require initialization through QF_poolInit () function shown in
Listing 7.11. An application may call this function up to three times to initialize up
to three event pools in QF.

Listing 7.11 Initializing an event pool to be managed by QF
(file <gp>\agpc\gf\source\gf_pool.c)

/* Package-scope objects —————-—— o mm oo */
(1) QF_EPOOL_TYPE_ QF_pool_[31; /* allocate 3 event pools */
(2) uint8_t QF_maxPool_; /* number of initialized event pools */
L e e e e e e e e e e e e e e e e e e e e e e e e e e e e */

(3) void QF_poolInit (void *poolSto, uint32_t poolSize, QEventSize evtSize) {
/* cannot exceed the number of available memory pools */

(4) Q_REQUIRE (QF_maxPool_ < (uint8_t)Q DIM(QF_pool_));
/* please initialize event pools in ascending order of evtSize: */
(5) Q_REQUIRE ( (QF_maxPool_ == (uint8_t)O0)

| | (QF_EPOOL_EVENT SIZE_(QF pool [ OF maxPool -1]) <evtSize));
/* perform the platform-dependent initialization of the pool */
(6) QF EPOOL_ INIT (QF pool [ QF maxPool ], poolSto, poolSize, evtSize);
++QF_maxPool_; /* one more pool */

(1) The macro QF_EPOOL_TYPE_ represents the QF event pool type. This macro
lets the QF port define a particular memory pool (fixed-size heap) implementation
that might be already provided with the underlying kernel or RTOS. If QF is
used standalone or if the underlying RTOS does not provide an adequate
memory pool, the QF framework provides the efficient native QMPoo1l class.
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Note that an event pool object is quite small because it does not contain the
actual memory managed by the pool (see Section 7.9).

(2) The variable QF_maxPool_ holds the number of pools actually used, which can
be 0 through 3.

NOTE

All QP components, including the QF framework, consistently assume that variables without
an explicit initialization value are initialized to zero upon system startup, which is a require-
ment of the ANSI-C standard. In embedded systems, this initialization step corresponds to
clearing the .BSS section. You should make sure that in your system the .BSS section is
indeed cleared before main () is called.

(3) According to the general policy of QF, all memory needed for the framework
operation is provided to the framework by the application. Therefore, the first
parameter ‘poolSto’ of QF_poolInit () is a pointer to the contiguous chunk of
storage for the pool. The second parameter ‘poolSize’ is the size of the pool
storage in bytes, and finally, the last parameter ‘evtSize’ is the maximum
event size that can be allocated from this pool.

NOTE

The number of events in the pool might be smaller than the ratio poolSize/evtSize
because the pool might choose to internally align the memory blocks. However, the pool is
guaranteed to hold events of at least the specified size evtSize.

(4) This precondition (see Section 6.7.3, “Customizable Assertions in C/C++") asserts
that the application does not attempt to initialize more than the supported number
of event pools (currently three).

(5) For possibly quick event allocation, the event pool array QF_pool_[]
must be sorted in ascending order of block sizes. This precondition asserts
that the application initializes event pools in the increasing order of the
event sizes. This assertion significantly simplifies the QF_poolInit ()
function without causing any true inconvenience for the application
implementer.
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NOTE

The subsequent calls to QF_poolInit () function must be made with progressively increas-
ing values of the evtSize parameter.

(6) The macro QF_EPOOL_INIT_ () specifies the initialization function for the event
pool object. In case of the native QF memory pool, the macro is defined as the
OMPool_init () function.

(7) Finally, the variable QF_maxPool_ is incremented to indicate that one more pool
has been initialized.

Listing 7.12 shows the implementation of the QF _new_ () function, which allocates a
dynamic event from one of the event pools managed by QF. The basic policy is to allocate
the event from the first pool that has a block size big enough to fit the requested event size.

Listing 7.12 Simple policy of allocating an event from the smallest event-size
pool (file <gp>\agpc\gf\source\gf_new.c)

(1) OQEvent *QF_new_ (QEventSize evtSize, QSignal sig) {
QEvent *e;
/* £find the pool id that fits the requested event size ... */
uint8_t idx = (uint8_t)O0;

(2) while (evtSize > QF EPOOL_EVENT SIZE (QF pool [ idx])) {
++idx;
(3) Q_ASSERT (idx < QF_maxPool_); /* cannot run out of registered pools */
}
(4) QF EPOOL_GET_(QF pool [idx], e); /* get e -- platform-dependent * /
(5) Q_ASSERT (e != (QEvent *)0) ; /* pool must not run out of events */
(6) e->sig = sig; /* set signal for this event */

/* store the dynamic attributes of the event:
* the pool ID and the reference counter ==
*/

(7) e->dynamic_ = (uint8_t) ((idx + 1) << 6);

(8) return e;

(1) The function QF_new_ () allocates a dynamic event of the requested size
‘evtSize’ and sets the signal ‘sig’ in the newly allocated event. The function
returns a pointer to the event.
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(2) This while loop scans through the QF_pool_[] array starting from pool id = 0
in search of a pool that would fit the requested event size. Obtaining the event
size of a pool is a platform-specific operation because various RTOSs that support
fixed-size heaps might report the event size in a different way. This platform
dependency is hidden in the QF code by the indirection layer of the macro
QF_EPOOL_EVENT_SIZE_() .

(3) This assertion fires when the while loop runs out of the event pools, which means
that the requested event is too big for all initialized event pools.

(4) The macro QF_EPOOL_GET_ () obtains a memory block from the pool found in
the previous step.

(5) The assertion fires when the pool returns the NULL pointer, which indicates
depletion of this pool.

NOTE

The QF framework treats the inability to allocate an event as an error. The assertions in lines
3 and 5 are part of the event delivery guarantee policy. It is the application designer’s respon-
sibility to size the event pools adequately so that they never run out of events.

(6) The signal of the event is initialized.

(7) The two most significant bits of the e->dynamic_ byte are set to the pool ID,
whereas the pool ID is the index into the QF_pool_[] array incremented by one
to fall in the range 1..3. At the same time, the reference counter of the event in
the six least significant bits of the e->dynamic_ byte is set to zero.

(8) The event is returned to the caller.

Typically, you will not use QF_new_ () directly but through the Q_NEW () macro
defined as follows:

#define Q_NEW (evtT_, sig_ ) ((evtT_ *)QF_new_(sizeof (evtT_ ), (sig_)))

The 0_NEW () macro dynamically creates a new event of type evT_ with the signal
sig_. It returns a pointer to the event already cast to the event type (evtT_*) Here is
an example of dynamic event allocation with the macro Q_NEW ():
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MyEventXYZ *e_xyz = Q NEW (MyEventXYZ, XYZ_SIG); /* dynamicallyallocate*/
/* NOTE: no need to check for validity of the event pointer */

e_xyz->foo =...; /* £ill the event parameters... */
QF_publish( (QEvent *)e_xyz) ; /* publish the event */
The assertions inside QF_new_ () guarantee that the pointer is valid, so you don’t

need to check the pointer returned from Q_NEW (), unlike the value returned
from malloc (), which you should check.

NOTE

In C++, the 9_NEW () macro does not invoke the constructor of the event. This is not a prob-
lem for the QEvent base struct and simple structs derived from it. However, you need
to keep in mind that subclasses of QEvent should not introduce virtual functions because the
virtual pointer won’t be set up during the dynamic allocation through Q_NEw ().’

7.5.3 Automatic Garbage Collection

Most of the time, you don’t need to worry about recycling dynamic events, because
QF does it automatically when it detects that an event is no longer referenced.

NOTE

The explicit garbage collection step is necessary only in the code that is out of the frame-
work’s control, such as ISRs receiving events from “raw” thread-safe queues (see upcoming
Section 7.8.4).

QF uses the standard reference-counting algorithm to keep track of the outstanding
references to each dynamic event managed by the framework. The reference
counter for each event is stored in the six least significant bits of the event attribute
dynamic_. Note that the data member dynamic_ of a dynamic event cannot be
zero because the two most significant bits of the byte hold the pool ID, with valid
values of 1, 2, or 3.

5 A simple solution would be to use the placement new () operator inside the _NEW () macro to enforce
full instantiation of an event object, but it is currently not used, for better efficiency and compatibility
with older C++ compilers, which might not support placement new ().
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The reference counter of each event is always updated and tested in a critical section
of code to prevent data corruption. The counter is incremented whenever a dynamic
event is inserted into an event queue. The counter is decremented by the QF garbage
collector, which is called after every RTC step (see Listing 7.8(3)). When the
reference counter of a dynamic event drops to zero, the QF garbage collector
recycles the event back to the event pool number stored in the two most significant
bits of the dynamic_ attribute.

(1)
(2)
(3)

void QF_gc (QEvent const *e) {
if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */
QF_INT_LOCK_KEY__

QF_INT_LOCK_ () ;

if ((e->dynamic_ & 0x3F) > 1) { /* isn’t this the last reference? */
--((QEvent *)e)->dynamic_; /* decrement the reference counter */
QF_INT_UNLOCK_ () ;

}

else { /* this is the last reference to this event, recycle it */
uint8_t idx = (uint8_t) ( (e->dynamic_ >>6) - 1);

(10) QF_INT_UNLOCK_ () ;
(11) Q_ASSERT (idx < QF_maxPool_) ; /* index must be in range */
(12) QF EPOOL PUT (QF pool [idx], (QEvent *)e);
}
}
}

(1) The function QF_gc () garbage-collects one event at a time.

(2) The function checks the unique signature of a dynamic event. The garbage
collector handles only dynamic events.

(3) The critical section status is allocated on the stack (see Section 7.3.3).

(4) Interrupts are locked to examine and decrement the reference count.

(5) If the reference count (lowest 6 bits of the e->dynamic_ byte) is greater than 1,
the event should not be recycled.

(6) The reference count is decremented. Note that the const attribute of the event
pointer is “cast away,” but this is safe after checking that this must be a dynamic
event (and not a static event possibly placed in ROM).

(7) Interrupts are unlocked for the if-branch.
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(8) Otherwise, reference count is becoming zero and the event must be recycled.

(9) The pool ID is extracted from the two most significant bits of the e->dynamic_
byte and decremented by one to form the index into the QF_pool_[] array.

(10) Interrupts are unlocked for the else branch. It is safe at this point because you
know for sure that the event is not referenced by anybody else, so it is
exclusively owned by the garbage collector thread.

(11) The index must be in the expected range of initialized event pools.

(12) The macro QF_EPOOL_PUT_ ()recycles the event to the pool QF_pool_[idx].
The explicit cast removes the const attribute.

7.5.4 Deferring and Recalling Events

Event deferral comes in very handy when an event arrives in a particularly inconvenient
moment but can be deferred for some later time, when the system is in a much better
position to handle the event (see “Deferred Event” state pattern in Chapter 5). QF
supports very efficient event deferring and recalling mechanisms consistent with the
“zero-copy” policy.

QF implements explicit event deferring and recalling through Qactive class functions
QActive_defer () and QActive_recall (), respectively. These functions work

in conjunction with the native “raw” event queue provided in QF (see upcoming
Section 7.8.4). Listing 7.13 shows the implementation.

Listing 7.13 QF event deferring and recalling
(file <gp>\gpc\gf\source\ga_defer.c)
void QActive_defer (QActive *me, QEQueue *eq, QEvent const *e) {
(void)me; /* avoid compiler warning about ‘me’ not used */
(1) QEQueue_postFIFO(eq, e); /* increments ref-count of a dynamic event */
}
L e e e e e e e e e e e e e e e e e e e e e e */
(2) OQEvent const *QActive_recall (QActive *me, QEQueue *eq) ({
(3) QEvent const *e = QEQueue_get (eq) ; /* get an event from deferred queue */
if (e != (QEvent *)0) { /* event available? */
QF_INT LOCK_KEY_
(4) QActive_postLIFO (me, e); /* post it to the front of the A0’s queue */
(5) QF_INT_LOCEK_ () ;
(6) if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

Continued onto next page
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(7) Q_ASSERT ( (e->dynamic_ & 0x3F) > 1) ;
--((QEvent *)e)->dynamic_; /* decrement the reference counter */
}
(9) QF_INT_UNLOCK_ () ;
}
(10) return e; /*pass the recalled event to the caller (NULL if not recalled) */
}

(1) The function QActive_defer () posts the deferred event into the given
“raw” queue ‘eq.’ The event posting increments the reference counter of a
dynamic event, so the event is not recycled at the end of the current RTC step
(because it is referenced by the “raw” queue).

(2) The function QActive_recall () attempts recalling an event from the provided
“raw” thread-safe queue ‘eq.’ The function returns the pointer to the recalled
event or NULL if the provided queue is empty.

(3) The event is extracted from the queue. The “raw” queue never blocks and returns
NULL if it is empty.

(4) If an event is available, it is posted using the last-in, first-out (LIFO) policy
into the event queue of the active object. The LIFO policy is employed to
guarantee that the recalled event will be the very next to process. If other
already queued events were allowed to precede the recalled event, the state
machine might transition to a state where the recalled event would no longer
be convenient.

(5) Interrupts are locked to decrement the reference counter of the event, to account
for removing the event from the “raw” thread-safe queue.

(6) The unique signature of a dynamic event is checked.

(7) The reference counter must be at this point at least 2 because the event is
referenced by at least two event queues (the deferred queue and the active
object’s queue).

(8) The reference counter is decremented by one to account for removing the event
from the deferred queue.

(9) Interrupts are unlocked.

(10) The recalled event pointer is returned to the caller.
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NOTE

Even though you can “peek” inside the event right at the point it is recalled, you should
typically handle the event only after it arrives through the active object’s queue. See the
“Deferred Event” state pattern in Chapter 5.

7.6 Event Delivery Mechanisms in QF

QF supports only asynchronous event exchange within the application, meaning
that the producers post events into event queues, but do not wait for the

actual processing of the events. QF supports two types of asynchronous event
delivery:

1. The simple mechanism of direct event posting, when the producer of
an event directly posts the event to the event queue of the consumer active
object.

2. A more sophisticated publish-subscribe event delivery mechanism,
where the producers of events publish them to the framework and the
framework then delivers the events to all active objects that had subscribed
to this event.

7.6.1 Direct Event Posting

QF supports direct event posting through the QActive_postFIFO() and
QActive_postLIFO () functions. These functions depend on the active object’s
employed queue mechanism. In the upcoming Section 7.8.3, I show how these
functions are implemented when the native QF active object queue is used.

In Chapter 8, I demonstrate how to implement these functions to use a message
queue of a traditional RTOS.

NOTE

Direct event posting should not be confused with event dispatching. In contrast to asynchro-
nous event posting through event queues, direct event dispatching is a simple synchronous
function call. Event dispatching occurs when you call the QHsm_dispatch() function, as
in Listing 7.8(2), for example.
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Direct event posting is illustrated in the “Fly ‘n’ Shoot” example from Chapter 1, when
an ISR posts a PLAYER_SHIP_MOVE event directly to the Ship active object:

QActive_postFIFO(AO_Ship, (QEvent *)e); /* postevent ‘e’ tothe ShipAO */

Note that the producer of the event (ISR) in this case must only “know” the recipient
(Ship) by an “opaque pointer” QActive*, and the specific definition of the Ship active
object structure is not required. The A0_Ship pointer is declared in the game.h
header file as:

extern QActive * const AO_Ship; /* opaque pointer to the Ship AO */

The ship structure definition is in fact entirely encapsulated in the ship.c module and
is inaccessible to the rest of the application. I recommend using this variation of the
“opaque pointer” technique in your applications.

7.6.2 Publish-Subscribe Event Delivery
QF implements publish-subscribe event delivery through the following services:
e The function QF_psInit () to initialize the publish-subscribe mechanism

e Functions QActive_subscribe (), QActive_unsubscribe (), and
QActive_unsubscribeAll () for active objects to subscribe and unsubscribe
to particular event signals

e The function QF_publish () for publishing events

Delivering events is the most frequently performed function of the framework;
therefore, it is important to implement it efficiently. As shown in Figure 7.5,
QF uses a lookup table indexed by the event signal to efficiently find all
subscribers to a given signal. For each event signal index (e->sig), the
lookup table stores a subscriber list. A subscriber list (typedef’d to
QSubscrList) is just a densely packed bitmask where each bit corresponds
to the unique priority of the active object. If the bit is set, the corresponding
active object is the subscriber to the signal, otherwise the active object is not
the subscriber.
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QF _subscrList O [ (63 bit-31 bit-0 Prio 16 subscribed (1)
1 — Prio 15 not subscribed (0)
H Prio 14 not subscribed (0)
(3]
[Q_USER_SIG] )
o Byte 1 (bits 8..15)
[e->sig] 1 0 0 1 0 0 0 1

[QF_maxSignal _-1] 16 15 14 13 12 11 10 9

priority (bit number + 1)

T
QSubscrList

Figure 7.5: Signal to Subscriber-List lookup table OF _subscrList_[].

The actual size of the QSubscrList bitmask is determined by the macro
QF_MAX_ACTIVE, which specifies the maximum active objects in the system (the
current range of QF_MAX_ACTIVE is 1..63). Subscriber list type QSubscrList
is typedef’ed in Listing 7.14.

Listing 7.14 QF _psInit () (file <gp>\gpc\include\gf.h)

typedef struct QSubscrListTag {
uint8_t bits[((QF_MAX_ ACTIVE -1) / 8) +11;
} QSubscrlList;

To reduce the memory taken by the subscriber lookup table, you have options to reduce
the number of published signals and reduce the number of potential subscribers
QF_MAX_ACTIVE. Typically, however, the table is quite small. For example, the table
for a complete real-life GPS receiver application with 50 different signals and up to
eight active objects costs 50 bytes of RAM.

NOTE

Not all signals in the system are published. To conserve memory, you can enumerate the
published signals before other nonpublished signals and thus arrive at a lower limit for the
number of published signals.
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Before you can publish any event, you need to initialize the subscriber lookup table
by calling the function QF_psInit (), which is shown in Listing 7.15. This
function simply initializes the pointer to the lookup table QF_subscrList_ and
the number of published signals QF_maxSignal_.

Listing 7.15 QF_psInit () (file <gp>\gpc\gf\source\gf_psini.c)

QSubscrList *QF_subscrList_; /* initialized to zero per C-standard */
QSignal QF_maxSignal_; /* initialized to zero per C-standard */

void QF _psInit (QSubscrList *subscrSto, QSignal maxSignal) {
QF_subscrList_ = subscrSto;
QF_maxSignal_ = maxSignal;

Active objects subscribe to signals through Qactive_subscribe (), shown in
Listing 7.16.

Listing 7.16 QActive_subscribe() function
(file <gp>\gpc\gf\source\ga_sub.c)

(1) wvoid QActive_subscribe (QActive const *me, QSignal sig) {
uint8_t p = me->prio;

(2) uint8_t i = Q_ROM_BYTE (QF_div8Lkup[p]) ;
QF_INT LOCK_KEY_

(3) O_REQUIRE( ( (0Signal)Q USER_SIG <= sig)
&& (sig < QF_maxSignal_)
&& ((uint8_t)0 < p) && (p <= (uint8_t)QF_MAX_ ACTIVE)
&& (QF_active_[p] ==me)) ;

QF_INT_LOCK_ () ;
(4) QF_subscrList_[sig].bits[i] |= Q_ROM_BYTE (QF_pwr2Lkup[p]) ;
QF_INT_UNLOCK_ ()

I

(1) The function QActive_subscribe () subscribes a given active object ‘me’ to
the event signal ‘sig.’.

(2) The index ‘i’ represents the byte index into the multibyte QSubscrList bitmask
(see Listing 7.14). The array QF_div8Lkup[] is a lookup table that stores the
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precomputed values of the following expression: QF _div8Lkup[p] = (p - 1) /8,
where 0 < p < 64. The QF_div8Lkup[] lookup table is defined in the file
<gp>\gpc\gf\source\gf_pwr2.c and occupies 64 bytes of ROM.

NOTE

Obviously, you don’t want to use precious RAM for storing constant lookup tables. However,
some compilers for Harvard architecture MCUs (e.g., GCC for AVR) cannot generate code
for accessing data allocated in the program space (ROM), even though the compiler can allo-
cate constants in ROM. The workaround for such compilers is to explicitly add assembly
code to access data allocated in the program space. The macro Q_ROM_BYTE () retrieves a
byte from the given ROM address. This macro is transparent (i.e., copies its argument) for
compilers that can correctly access data in ROM.

(3) This precondition asserts that the signal is in range and that the priority of the
active object is in range as well. In addition, the assertion makes sure that the
active object is known to the framework under the priority it claims (the active
object becomes known to the framework through QActive_start (), which
invokes QF_add()).

(4) The bit corresponding to the active object’s priority is set in the subscriber list
within a critical section. The array QF_pwr2Lkup [] is a lookup table that stores
the precomputed values of the following expression: QF_pwr2Lkup [p] =
1<< ((p-1) %8),where 0 <p < 64. The QF_pwr2Lkup[] lookup table is
defined in the file <gp>\agpc\gf\source\qgf_pwr2.c and occupies 64 bytes
of ROM.

I don’t explicitly discuss the mirror function QActive_unsubscribe (), but it is
virtually identical to QActive_subscribe () except that it clears the appropriate
bit in the subscriber bitmask. Note that both QActive_ subscribe () and
QActive_unsubscribe () require an active object as the first parameter ““ me,’
which means that only active objects are capable of subscribing or unsubscribing
to events.

’

The QF real-time framework implements event publishing with the function
QF_publish() shown in Listing 7.17. This function performs efficient “zero-copy”
event multicasting. QF_publish () is designed to be callable from both the task level
and the interrupt level.
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Listing 7.17 QF_publish () function
(file <gp>\agpc\gf\source\gf_pspub.c)

(1)

(15)

void QF_publish (QEvent const *e) {
QF_INT_LOCK_KEY__

/* make sure that the published signal is within the configured range */
Q_REQUIRE (e->sig < QF_maxSignal_) ;

QF_INT_ LOCK_() ;

if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */
/*1lint -el773 Attempt to cast away const */
++ ( (QEvent *)e)->dynamic_; /* increment reference counter, NOTEO1l */

}
QF_INT_UNLOCK_ () ;

#1if (QF_MAX_ACTIVE <= 8)
{
uint8_t tmp = QF_subscrList_[e->sig] .bits[0];

while (tmp != (uint8_t)0) {
uint8_t p = Q_ROM_BYTE (QF_log2Lkup[tmp]) ;
tmp &= Q_ROM_BYTE (QF_invPwr2Lkup [p]); /* clear subscriber bit */
Q_ASSERT(QF_active_[p] != (QActive *)0); /* must be registered */

/* internally asserts if the queue overflows */
QActive_postFIFO(QF_active_|[p], e);

}
#else
{
uint8_t i = Q_DIM(QF_subscrList_[0].bits);
do { /* go through all bytes in the subscription list */
uint8_t tmp;
——i;
tmp = QF_subscrList_[e->sig] .bits[i];
while (tmp != (uint8_t)0) {
uint8_t p = Q_ROM_BYTE (QF_log2Lkup[tmp]) ;
tmp &= Q_ROM_BYTE (QF_invPwr2Lkup[p]) ; /*clear subscriber bit */
p = (uint8_t) (p + (1 << 3)); /* adjust the priority */
Q_ASSERT (QF_active_[p] != (QActive *)0); /*must beregistered*/
/* internally asserts if the queue overflows */
QActive_postFIFO(QF_active_|[pl, e);
}
} while (i !'= (uint8_t)O0);
}
#endif

QF_gc (e) ; /* run the garbage collector, see NOTEO1 */
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(1) The function QF_publish () publishes a given event ‘e’ to all subscribers.

(2) The precondition checks that the published signal is in initialized range (see
Listing 7.15).

(3) The reference counter of a dynamic event is incremented in a critical section. This
y
protects the event from being prematurely recycled before it reaches all
subscribers.

The QF_publish () function must ensure that the event is not recycled by a subscriber
before all the subscribers receive the event. For example, consider the following
scenario: A low-priority active object dynamically allocates an event with Q_NEW ()
and publishes it by calling QF_publish () in its own thread of execution. In the course
of multicasting the event, QF_publish () posts the event to a high-priority active
object, which immediately preempts the current thread and starts processing the event.
After the RTC step, the high-priority active object calls the garbage collector (see
Listing 7.8(3)). If oF _publish() did not increment the event counter in step 3, the
counter would be only 1 because the event has only been posted once. The high-priority
active object would recycle the event. After resuming the low-priority thread, the
QF_publish () might want to keep posting the event to some other subscribers, but the
event would be already recycled.

(4) The conditional compilation is used to distinguish the simpler and faster case of
single-byte QSubscrList (see Listing 7.14).

(5) The entire subscriber bitmask is placed in a temporary byte.

(6) The while loop runs over all 1 bits set in the subscriber bitmask until the bitmask
becomes empty.

(7) The log-base-2 lookup quickly determines the most significant 1 bit in the
bitmask, which corresponds to the highest-priority subscriber. The structure of
the lookup table QF log2Lkup[tmp], where 0 < tmp <= 255, is shown
in Figure 7.6. The QF_log2Lkup[] lookup table is defined in the file
<gp>\agpc\gf\source\gf_log2.c and occupies 256 bytes of ROM.

NOTE

To avoid priority inversions, the event is multicast starting from the highest-priority subscriber.
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(8) The highest-priority subscriber bit is cleared in the temporary bitmask.
(9) The assertion makes sure that the active object with the given priority has been
registered in the QF framework.

(10) The event is posted to the subscriber, which always increments the reference
counter of a dynamic event.

(11) This conditional compilation branch is taken when the subscriber list contains
more than 1 byte. The algorithm in this case requires an additional loop to
run over all the bytes in the subscriber list.

(12) The counter of the loop over the bytes is initialized. The loop starts with the
highest-order bytes, which correspond to highest-priority subscribers.

(13) The algorithm in this case is essentially the same as for the single-byte
bitmask except that additional loop is added to run over all the bytes in the
subscriber list.

(14) The active object priority is adjusted by the byte number times 8, equivalent
to (i << 3).

(15) The garbage collection step balances the incrementing of the reference counter
in step 3. The call to garbage collector also covers the case when the event is
not subscribed by any active object, in which case the event needs to be
recycled right away.

3 8"
27|
gs|
5
% 2|
€11 . : : :
e : —— o : —t
01' 2 4 8 16 32 64 128 byte value 25

Figure 7.6: The binary logarithm lookup table QF_log2Lkup[] maps byte

value to the most significant 1-bit number (bits are numbered starting with 1

for the LSB).
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7.7 Time Management

QF manages time through time events, as described in Section 6.6.1 of Chapter 6. In the
current QF version, time events cannot be dynamic and must be allocated statically.
Also, a time event must be assigned a signal upon instantiation (in the constructor) and
the signal cannot be changed later. This latter restriction prevents unexpected changes
of the time event while it still might be held inside an event queue.

7.7.1 Time Event Structure and Interface

QF represents time events as instances of the QTimeEvt class (see Figure 7.3).
QTimeEvt, as all events in QF, derives from the QEvent base structure. Typically,
you will instantiate the QTimeEvt structure directly, but you might also further
derive more specialized time events from it to add some more data members and/or
specialized functions that operate on the derived time events. Listing 7.18 shows
the QTimeEvt class, that is, the QTimeEvt structure declaration and the functions
to manipulate it.

Listing 7.18 QTimeEvt structure and interface
(file <gp>\gpc\include\gf.h)

typedef struct QTimeEvtTag {

(1) QEvent super; /* derives from QEvent */

(2) struct QTimeEvtTag *prev;/* link to the previous time event in the list */

(3) struct QTimeEvtTag *next; /* 1link to the next time event in the list */

(4) QActive *act; /* the active object that receives the time event */

(5) QTimeEvtCtr ctr; /* the internal down-counter of the time event */

(6) QTimeEvtCtr interval; /* the interval for the periodic time event */
} QTimeEvt;

(7) wvoid QTimeEvt_ctor (QTimeEvt *me, QSignal sig) ;

(8) #define QTimeEvt_postIn(me_, act_, nTicks_) do { \

(me_)->interval = (QTimeEvtCtr)0; \
QTimeEvt_arm_((me_), (act_), (nTicks_)); \
} while (0)

(9) #define QTimeEvt_postEvery(me_, act_, nTicks_) do { \

(me_) ->interval = (nTicks_); \
QTimeEvt_arm_( (me_), (act_), (nTicks_)); \
} while (0)

Continued onto next page
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uint8_t QTimeEvt_disarm(QTimeEvt *me) ;
uint8_t QTimeEvt_rearm(QTimeEvt *me, QTimeEvtCtr nTicks) ;

/* private helper function */
void QTimeEvt_arm_ (QTimeEvt *me, QActive *act, QTimeEvtCtr nTicks) ;

)
(2.3)

4
(&)

(6)

(N

®)

®)

The OTimeEvt structure derives from QEvent.

The two pointers ‘prev’ and ‘next’ are used as links to chain the time events
into a bidirectional list (see Figure 7.7).

The active object pointer ‘act’ stores the recipient of the time event.

The member ‘ctr’ is the internal down-counter decremented in every
QF_tick () invocation (see the next section). The time event is posted when
the down-counter reaches zero.

The member ‘interval’ is used for the periodic time event (it is set to zero for the
one-shot time event). The value of the interval is reloaded to the ‘ctr’ down-counter
when the time event expires, so the time event keeps timing out periodically.

Every time event must be initialized with the constructor QTimeEvt_ctor ().
You should call the constructor exactly once for every time event object
before arming the time event. The most important action performed in this
function is assigning a signal to the time event. You can reuse the time event
any number of times, but you should not change the signal. This is because

a pointer to the time event might still be held in an event queue and changing
the signal could lead to subtle and hard-to-find errors.

The macro QTimeEvt_postIn() arms a time event ‘me_’ to fire once in
‘nTicks_’ clock ticks (a one-shot time event). The time event gets directly
posted (using the FIFO policy) into the event queue of the active object ‘act_ .
After posting, a one-shot time event gets automatically disarmed and can be
reused for a one-shot or periodic timeout requests.

B

The macro QTimeEvt_postEvery () arms a time event ‘me_’ to fire
periodically every ‘nTicks_’ clock ticks (periodic time event). The time event
gets directly posted (using the FIFO policy) into the event queue of the active
object ‘act_’. After posting, the periodic time event gets automatically rearmed
to fire again in the specified ‘nTicks_’ clock ticks.
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(10) The function QTimeEvt_disarm() explicitly disarms any time event (one-shot
or periodic). The time event can be reused immediately after the call to
QTimeEvt_disarm() . The function returns the status of the disarming
operation: 1 if the time event has been actually disarmed and O if the time event
has already been disarmed.

(11) The function QTimeEvt_rearm() reloads the down-counter ‘ctr’ with the
specified number of clock ticks. The function returns the status of the rearming
operation: 1 if the time event has been actually armed and O if the time event
has been disarmed. In the latter case, the QTimeEvt_rearm() function arms the
time event.

(12) The helper function QTimeEvt_arm_ () inserts the time event into the linked list
of armed timers. This function is used in the QTimeEvt_postIn() and
QTimeEvt_postEvery () macros.

NOTE

An attempt to arm an already armed time event (one-shot or periodic) raises an assertion. If
you're not sure that the time event is disarmed, call the QTimeEvt_disarm() function
before reusing the time event.

——O QF timeEvtListHead armed Time Events BL NULL
. o~ — o7 E— I —
:TimeEvt :TimeEvt :TimeEvt :TimeEvt

next O next O next O—f+—> - |next O—
|;—o prev O prev O prev| - &£<—+—0O prev

NULL :TimeEvt NULL :TimeEvt

/ \ next /t next
—O prev —O prev
p— —| disarmed Time Events I%— ——

Figure 7.7: Armed QTimeEvt objects linked in a bidirectional linked list
and disarmed time events outside the list.
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Figure 7.7 shows the internal representation of armed and disarmed time events. QF
chains all armed time events in a bidirectional linked list. The list is scanned from the
head at every system clock tick. The list is not sorted in any way. Newly armed time
events are always inserted at the head. When a time event gets disarmed, either
automatically when a one-shot timer expires or explicitly when the application calls
QTimeEvt_disarm(), the time event is simply removed from the list. Removing

an object from a bidirectional list is a quick, deterministic operation. In particular,

the list does not need to be rescanned from the head. Disarmed time events remain
outside the list and don’t consume any CPU cycles.

7.7.2 The System Clock Tick and the QF_tick () Function

To manage time events, QF requires that you invoke the QF_tick () function from a
periodic time source called the system clock tick (see Chapter 6, “System Clock Tick”).
The system clock tick typically runs at a rate between 10Hz and 100Hz.

Listing 7.19 shows the implementation of QF_tick (). This function is designed to
be called from both the interrupt context and the task-level context, in case the
underlying OS/RTOS does not allow accessing interrupts or you want to keep the ISRs
very short. QF _tick () must always run to completion and never preempt itself.

In particular, if QF_tick () runs in an ISR context, the ISR must not be allowed

to preempt itself. In addition, QF_tick () should not be called from two different
ISRs, which potentially could preempt each other. When executed in a task context,
QF_tick() should be called by one task only, ideally by the highest-priority task.

Listing 7.19 QF_tick() function (file <gp>\gpc\gf\source\gf_tick.c)

void QF_tick(void) { /* see NOTEOQO1 */
QTimeEvt *t;
QF_INT_LOCK_KEY_

(1) QF_INT LOCK_ () ;

(2) t = QF_timeEvtListHead_; /* start scanning the list from the head */
(3) while (t != (QTimeEvt *)0) {

(4) if (--t->ctr == (QTimeEvtCtr)0) { /* is time evt about to expire? */
(5) if (t->interval != (QTimeEvtCtr)0) { /* is it periodic timeout? */
(6) t->ctr = t->interval; /* rearm the time event */

}
(7) else { /* one-shot timeout, disarm by removing it from the list */

(8) if (t == QF_timeEvtListHead_) {
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(9) QF_timeEvtListHead_ = t->next;
}
(10) else {
(11) if (t->next != (QTimeEvt *)0) { /* not the last event? */
(12) t->next->prev = t->prev;
}
(13) t->prev->next = t->next;
}
(14) t->prev = (QTimeEvt *)0; /* mark the event disarmed */
}
(15) QF_INT_UNLOCK_ ();/* unlock interrupts before calling QF service */
/* postFIFO () asserts internally that the event was accepted */
(16) QActive_postFIFO(t->act, (QEvent *)t);
}
(17) else {
static uint8_t volatile dummy;
(18) QF_INT UNLOCK_ () ;
(19) dummy = (uint8_t)0; /* execute a few instructions, see NOTEQ2 */
}
(20) QF _INT_LOCK_ () ; /* lock interrupts again to advance the link */
(21) t = t->next;
}
(22) QF_INT_UNLOCK_ () ;
(1) Interrupts are locked before accessing the linked list of time events.
(2) The internal QF variable QF _timeEvtListHead_ holds the head of the linked
list.
(3) The loop continues until the end of the linked list is reached (see Figure 7.7).
(4) The down-counter of each time event is decremented. When the counter
reaches zero, the time event expires.
(5) The ‘interval’ member is nonzero only for a periodic time event.
(6) The down-counter of a periodic time event is simply reset to the interval value.
The time event remains armed in the list.
(7) Otherwise the time event is a one-shot and must be disarmed by removing it
from the list.
(8-13) These lines of code implement the standard algorithm of removing a node from

a bidirectional list.
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(14) A time event is internally marked as disarmed by writing NULL to the ‘prev’
link.

(15) Interrupts can be unlocked after the bookkeeping of the linked list is done.
(16) The time event posts itself to the event queue of the active object.

(17) The else branch is taken when the time event is not expiring on this tick.
(18) Interrupts can be unlocked.

(19) On many CPUs, the interrupt unlocking takes effect only on the next machine
instruction, which happens here to be an interrupt lock instruction (line (20)). The
assignment of the volatile ‘dummy’ variable requires a few machine instructions,
which the compiler cannot optimize away. This ensures that the interrupts
actually get unlocked so that the interrupt latency stays low.

NOTE

The critical section lasts for only one time event, not for the whole list.

(20) Interrupts are locked again for another pass through the loop.
(21) The time event node pointer is advanced to the next timer in the list.

(22) Interrupts are unlocked before the function returns.

7.7.3 Arming and Disarming a Time Event

Listing 7.20 shows the helper function QTimeEvt_arm_ () for arming a time event.
This function is used inside the macros QTimeEvt_postIn() and
QTimeEvt_postEvery () for arming a one-shot or periodic time event, respectively.

Listing 7.20 QTimeEvt_arm_() (file <gp>\gpc\gf\source\gte_arm.c)

void QTimeEvt_arm_ (QTimeEvt *me, QActive *act, QTimeEvtCtr nTicks) {
QF_INT_LOCK_KEY_
Q_REQUIRE ( (nTicks > (QTimeEvtCtr)0) /* cannot arm a timer with 0 ticks */
&& (((QEvent *)me)->sig >= (QSignal)Q_USER_SIG)/*valid signal */
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(1) && (me->prev == (QTimeEvt *)0) /* time evt must NOT be used */
&& (act !'= (QActive *)0)); /* active object must be provided */

me->ctr = nTicks;
(2) me->prev = me; /* mark the timer in use */

me->act = act;

QF_INT_LOCK_ () ;

(3) me->next = QF_timeEvtListHead_;
(4) if (QF_timeEvtListHead_  != (QTimeEvt *)0) {
(5) QF_timeEvtListHead_->prev = me;
}
(6) QF_timeEvtListHead_ = me;

QF_INT_UNLOCK_ () ;

(1) The preconditions include checking that the time event is not already in use.
A used time event has always the ‘prev’ pointer set to non-NULL value.

(2) The ‘prev’ pointer is initialized to point to self, to mark the time event in
use (see also Figure 7.7).

(3) Interrupts are locked to insert the time event into the linked list. Note that
until that point the time event is not armed, so it cannot unexpectedly change
due to asynchronous tick processing.

(3-6) These lines of code implement the standard algorithm of inserting a link into
a bidirectional list at the head position.

Listing 7.21 shows the function QTimeEvt_disarm() for explicitly disarming a
time event.

Listing 7.21 QTimeEvt_disarm()
(file <gp>\gpc\gf\source\gte_darm.c)

uint8_t QTimeEvt_disarm(QTimeEvt *me) {
uint8_t wasArmed;
QF_INT_LOCK_KEY__

(1) QF_INT_LOCK_ () ;

(2) if (me->prev != (QTimeEvt *)0) { /* is the time event actually armed? */
wasArmed = (uint8_t)1;

(3) if (me == QF_timeEvtListHead ) {

QF_timeEvtListHead_ = me->next;

}

Continued onto next page
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(5) else {
if (me->next != (QTimeEvt *)0) { /* not the last in the list? */
(7) me->next->prev = me->prev;
}
(8) me->prev->next = me->next;
}
(9) me->prev = (QTimeEvt *)0; /* mark the time event as disarmed */
}
else { /* the time event was not armed */

wasArmed = (uint8_t)0;
}
QF_INT_UNLOCK_ () ;
(10) return wasArmed;

(1) Ceritical section is established right away.
(2) The time event is still armed if the ‘prev’ pointer is not NULL.

(3-8) These lines of code implement the standard algorithm of removing a node from a
bidirectional list (compare also Listing 7.19(8-13)).

(9) A time event is internally marked as disarmed by writing NULL to the ‘prev’
link.

(10) The function returns the status: 1 if the time event was still armed at the time of
the call and O if the time event was disarmed before the function
OTimeEvt_disarm() was called. In other words, the return value of 1 ensures
the caller that the time event has not been posted and never will be, because
disarming takes effect immediately. Conversely, the return value of 0 informs
the caller that the time event has been posted to the event queue of the recipient
active object and was automatically disarmed.

The status information returned from QTimeEvt_disarm() could be useful in the state
machine design. For example, consider a state machine fragment shown in Figure 7.8.
The entry action to “stateA” arms a one-shot time event me->timerl. Upon expiration,
the time event generates signal TIMER1, which causes some internal or regular
transition. However, another event, say BUTTON_PRESS, triggers a transition to
“stateB.” The events BUTTON_PRESS and TIMER1 are inherently set up to race each
other and so it is possible that they arrive very close in time. In particular, when the
BUTTON_PRESS event arrives, the TIMER1 event could potentially follow very shortly
thereafter and might get queued as well. If that happens, the state machine receives both
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events. This might be a problem if, for example, the next state tries to reuse the time
event for a different purpose.

Figure 7.8 shows the solution. The exit action from “stateA” stores the return value of
QTimeEvt_disarm() in the extended state variable me->g1. Subsequently, the
variable is used as a guard condition on transition TIMER1 in “stateB.” The guard
allows the transition only if the me->g1 flag is set. However, when the flag is zero, it
means that the TIMER1 event was already posted. In this case the TIMER1 event sets
only the flag but otherwise is ignored. Only in the next TIMER1 instance is the true
timeout event requested in “stateB.”

4 stateA A
entry / QTimeEvt_postin(&me->timer1, me, 10);
Qxit / me->g1 = QTimeEvt_disarm(&me->timer1))

BUTTON_PRESS
- stateB AV A
ad

entry / QTimeEvt_postin(&me->timer1, me, 20);
exit / QTimeEvt_disarm(&me->timer1);

\TIMER1 [! me->g1]/ me->g1 = TRUE;

TIMER1T—»

/—TIMER1 [else] /...

Figure 7.8: Reusing a one-shot time event.

7.8 Native QF Event Queue

Many RTOSs natively support message queues, which provide a superset of
functionality needed for event queues of active objects. QF is designed up front for easy
integration of such external message queues. However, in case no such support exists
or the available implementation is inefficient or inadequate, QF provides a robust

and efficient native event queue that you can easily adapt to virtually any underlying
operating system or kernel.

The native QF event queues come in two flavors, which share the same data
structure (QEQueue) and initialization but differ significantly in behavior. The first
variant is the event queue specifically designed and optimized for active objects
(see Section 7.8.3). The implementation omits several commonly supported features
of traditional message queues, such as variable-size messages (native QF event
queues store only pointers to events), blocking on a full queue (QF event queue
cannot block on insertion), and timed blocking on empty queues (QF event queues



360 Chapter 7

block indefinitely), to name just a few. In exchange, the native QF event queue
implementation is small and probably faster than any full-blown message queue
of an RTOS.

The other, simpler variant of the native QF event queue is a generic “raw” thread-safe
queue not capable of blocking but useful for thread-safe event delivery from active
objects to other parts of the system that lie outside the framework, such as ISRs or
device drivers. I explain the “raw” queue in Section 7.8.4.

7.8.1 The QEQueue Structure

The QEQueue structure is used in both variants of the native QF event queues.

Figure 7.9 shows the relationships between the various elements of the QEQueue
structure and the ring buffer managed by the event queue. The available queue storage
consists of the external, user-allocated ring buffer plus an extra location frontEvt
inside the QEvent structure. The QEQueue event queue holds only pointers to events
(QEvent *), not the actual event instances.

, > outgoing event
:QEQueue ‘/ e -
ring O |

—
—

clockwise B
movement of head

and tail indices

around the ring buffer

end O

head O user-allocated AN
— | ring buffer of

al pointers to events

nFree L

nMin O——> index

O——p» pointer

Figure 7.9: The relationship between the elements of the QEQueue structure
and the ring buffer.

As indicated by the dashed lines in Figure 7.9, all outgoing events must pass through the
frontEvt data member. This extra location outside the ring buffer optimizes queue

operation by allowing it to frequently bypass the buffering because very often queues
alternate between empty and nonempty states with just one event present in the queue at
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a time. In addition, the frontEvt pointer serves as a queue status indicator, whereas
the NULL value of frontEvt indicates that the queue is empty. The indices head,
tail, and end are relative to the ring pointer. Events are always extracted from the
buffer at the tail index. New events are typically inserted at the head index. Inserting
events at the head and extracting from the tail corresponds to FIFO queuing (the
PostFIFO () operation). QEQueue also allows inserting new events at the tail, which
corresponds to LIFO queuing (the postLIFO () operation). Either way, the tail
always decrements when the event is extracted, as does the head index when an
event is inserted. The index O limits the range of the head and tail indices that must
“wrap around” to end once they reach 0. The effect is a counterclockwise movement
of the indices around the ring buffer, as indicated by the arrow in Figure 7.9. Other
data members of the QEQueue structure include the current number of free events in
the buffer (nFree) and the minimum number of free events ever present in the

buffer (nMin). The nMin member tracks the worst-case queue utilization (the
low-watermark of free events in the queue), which provides a valuable data point for
fine-tuning the ring buffer size.

Listing 7.22 shows the declaration of the QEQueue structure. The QEQueueCtr data
type determines the dynamic range of the queue indices and counters. It is
typedef’ed to uint8_t, uintlé6_t, or uint32_t, depending on the macro
QF_EQUEUE_CTR_SIZE. You can define the macro QF_EQUEUE_CTR_SIZE in the QF
port file gf_port.h in the correct port directory. If the macro is not defined, the
default size of 1 byte is assumed, which results in QEQueueCtr data type being
typdef’ed to uint8_t (up to 255 events in the ring buffer).

Listing 7.22 QEQueue structure (file <gp>\gpc\include\gequeue.h)

#ifndef QF _EQUEUE_CTR_SIZE
#define QF_EQUEUE_CTR_SIZE 1
#endif
#if (QF_EQUEUE_CTR_SIZE == 1)
typedef uint8_t QEQueueCtr;
#elif (QF_EQUEUE_CTR_SIZE == 2)
typedef uintl6_t QEQueueCtr;
#elif (QF_EQUEUE_CTR_SIZE == 4)
typedef uint32_t QEQueueCtr;
#else
#error “QF_EQUEUE_CTR_SIZE defined incorrectly, expected 1l, 2, or 4”
#endif

Continued onto next page
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typedef struct QEQueueTag {
QEvent const *frontEvt; /* pointer to event at the front of the queue */
QEvent const **ring; /* pointer to the start of the ring buffer */

QEQueueCtr end; /* offset of the end of the ring buffer from the start */

QEQueueCtr head; /* of fset to where next event will be inserted */
QEQueueCtr tail; /* offset of where next event will be extracted */
QEQueueCtr nFree; /* number of free events in the ring buffer */

QEQueueCtr nMin; /* minimumnumber of free events ever in the buffer */
} QEQueue;

7.8.2 Initialization of QEQueue

Listing 7.23 shows the event queue initialization function QEQueue_init (). The
function takes the preallocated contiguous storage for the ring buffer (an array of
QEvent* pointers, gSto[]) and the length of the buffer gLen, which is the number
of preallocated event pointers. The function sets the QEQueue data members to
emulate an empty event queue. The body of the function is not protected with a critical
section because the application should never access a queue before it is initialized.

Listing 7.23 QEQueue_init () (file <gp>\gpc\gf\source\geq init.c)

void QEQueue_init (QEQueue *me, QEvent const *gSto[], QEQueueCtr gLen) {
me->frontEvt = (QEvent *)O0; /* no events in the queue */
me->ring = &gSto[0];
me->end = gLen;
me->head = (QEQueueCtr)0;

me->tail = (QEQueueCtr)0;
me->nFree = glLen; /* all events are free */
me->nMin = gLen; /* the minimum so far */

Note that you can initialize an event queue with parameters gSto == NULL and
gLen == 0. Such an event queue will still be able to hold one event because the
frontEvt location also counts toward the queue capacity.

7.8.3 The Native QF Active Object Queue

The QEQueue structure is not quite complete to serve as the event queue of an active
object because it does not provide any data member for implementing blocking of
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the active object thread when the queue is empty. Such a mechanism is always
platform-specific and typically it is an operating-system primitive, such as a semaphore,
a condition variable in POSIX, or a Win32 object that can be used with the
WaitForSingleObject () and SetEvent () Win32 APIs.

The OS-specific blocking primitive is intentionally not included in the QEQueue structure to

enable using this structure for both the active object event queue and the generic “raw”
thread-safe queue discussed in the next section. Instead, the OS-specific thread-blocking

primitive is included directly in the higher-level QActive structure as the datamember osObject
of type QF_0S_OBJECT_TYPE (Listing 7.7(9)). The macro QF_0S_OBJECT_TYPE is

obviously part of the platform abstraction layer and is defined differently for different QF

ports. The osObject member is initialized in the platform-specific QActive_start ()

function (see Listing 7.9). You can think of the native QF active object queue as the

aggregate of the QEQueue structure and the QActive.osObject data member.

The interface of the active object event queue consists of three functions:
QActive_postFIFO(), QActive_postLIFO(), and QActive_get_ (). The
implementation of these functions is located in the files ga_fifo.c, ga_lifo.c, and
ga_get_.c, respectively. These files should be included in the QF port only when the
port uses the native event queue. Otherwise, the functions QActive_postFIFO(),
QActive_postLIFO(), and QActive_get_ () should be implemented differently,
perhaps with the RTOS-specific message queue.

Listing 7.24 shows how the QActive_get_ () function extracts events from the queue.
This function is called only from the thread routine of the active object that owns this
queue (see Listing 7.8(1)). You should never call Qactive_get_ () from the
application-level code (hence the trailing underscore in the function name).

Listing 7.24 Extracting events from the event queue with QActive_get_ ()
(file <gp>\agpc\gf\source\ga_get_.c)

(1) OQEvent const *QActive_get_(QActive *me) {
QEvent const *e;
QF_INT_LOCK_KEY_
QF_INT_LOCK_ () ;

(2) QACTIVE_EQUEUE WAIT (me); /* wait for event queue to get an event */

(3) e = me->eQueue. frontEvt;

Continued onto next page
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(4) if (me->eQueue.nFree !=me->eQueue.end) { /* any events in the buffer? */
/* remove event from the tail */
(5) me->eQueue. frontEvt = me->eQueue.ring[me->eQueue.taill;
(6) if (me->eQueue.tail == (QEQueueCtr)0) { /* need to wrap the tail? */
(7) me->eQueue.tail = me->eQueue.end; /* wrap around */
}
(8) --me->eQueue.tail;
(9) ++me->eQueue.nFree; /* one more free event in the ring buffer */
}
(10) else {
(11) me->eQueue. frontEvt = (QEvent *)0; /* queue becomes empty */
12) QACTIVE EQUEUE_ONEMPTY (me);
}
QF_INT_UNLOCK_ () ;
(13) return e;
}
(1) The function QActive_get_ () returns a pointer to a read-only (const) event

2)

3)

)

®)

(6)
(N

that has been previously posted to the active object ‘me .’ The function always
returns a valid event pointer.

In some QF ports, the function must block until an event arrives. Blocking is
always a platform-specific operation and the function handles it through the
platform-specific macro QACTIVE_EQUEUE_WAIT_ (). Note that this macro

is invoked from the critical section. The macro might unlock interrupts
momentarily, but it must restore critical section before it returns. I describe

the implementation of the QACTIVE_EQUEUE_WAIT_ () macro for POSIX threads
in Chapter 8.

At this point the queue cannot be empty anymore—it either was not empty to
begin with or it just received an event after blocking. The event at the front
of the queue is copied for delivery to the caller from the front event.

If not all events in the buffer are free, the buffer must contain some events.

The event pointer is copied from the tail index in the buffer to the front
event.

The tail index is checked for a wraparound.

If wraparound is required, the tail index is moved to the end of the buffer. This
makes the buffer circular.
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®)

©)
(10)
)
(12)

(13)

The tail index is always decremented, including just after the wraparound.
I’ve chosen to decrement the tail (and also the head) index because it leads to
a more efficient implementation than incrementing the indices. The
wraparound occurs in this case at zero rather than at the end. Comparing a
variable to a constant zero is more efficient than any other comparison.

The nFree counter is incremented to account for freeing one event in the buffer.
Otherwise the queue is becoming empty.
The front event is set to NULL.

Additionally, a platform-specific macro QACTIVE_EQUEUE_ONEMPTY_ () is
called. The job of this macro is to inform the underlying kernel that the queue
is becoming empty, which is required in some QF ports. I show this macro
implementation for the QF port to the cooperative “vanilla” kernel discussed
in Chapter 8 as well as in the QF port to the preemptive run-to-completion QK
kernel that I cover in Chapter 10.

The event pointer is returned to the caller. This pointer can never be NULL.

Listing 7.25 shows the implementation of the QActive_postFIFO() queue
operation. This function is used for posting an event directly to the recipient active

object. Direct event posting can be performed from any part of the application,
including interrupts.

Listing 7.25 Inserting events into the event queue with QActive_postFIFO ()
(file <ap>\gpc\gf\source\ga_fifo.c)

void QActive_postFIFO (QActive *me, QEvent const *e) {

QF_INT_LOCK_KEY_
QF_INT_LOCK_ () ;

if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */
++ ( (QEvent *)e)->dynamic_; /* increment the reference counter */
}
if (me->eQueue.frontEvt == (QEvent *)0) { /* empty queue? */
me->eQueue. frontEvt = e; /* deliver event directly */
QACTIVE_EQUEUE_ SIGNAL (me); /* signal the event queue */
}
else { /* queue is not empty, insert event into the ring-buffer */
/* the queue must be able to accept the event (cannot overflow) */
Q_ASSERT (me->eQueue.nFree != (QEQueueCtr)0) ;

/* insert event into the ring buffer (FIFO) */

Continued onto next page
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(8) me->eQueue.ring[me->eQueue.head] = e;

(9) if (me->eQueue.head == (QEQueueCtr)0) { /* need to wrap the head? */
(10) me->eQueue.head = me->eQueue.end; /* wrap around */

}

(11) --me->eQueue.head;
(12) --me->eQueue.nFree; /* update number of free events */
(13) if (me->eQueue.nMin > me->eQueue.nFree) {
(14) me->eQueue.nMin = me->eQueue.nFree; /* update min so far */

}
}
QF_INT_UNLOCK_ () ;

(1) The whole function body runs in a critical section.

(2) The reference count of a dynamic event is incremented to account for another
outstanding reference to the event.

NOTE

Incrementing the reference count is essential and must be performed in every QActive_
pPOostFIFO () implementation, including implementations not based on the native QF event
queue but, for example, on a message queue of an RTOS.

(3) If the front event is NULL, the queue is empty.

(4) The event pointer is copied directly to the front event, bypassing the whole
buffering mechanism.

(5) Additionally, a platform-specific macro QACTIVE_EQUEUE_SIGNAL_ () is
called. The job of this macro is to signal the thread waiting on the event queue.
Note that this macro is invoked from the critical section. I describe the
implementation of the QACTIVE_EQUEUE_SIGNAL_ () macro for
POSIX-threads in Chapter 8.

(6) Otherwise, the queue is not empty, so the event must be inserted into the ring
buffer.

(7) The assertion makes sure that the queue can accept this event.
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NOTE

The QF framework treats the inability to post an event as an error. This assertion is part of
the event delivery guarantee policy. It’s the application designer’s responsibility to size the
event queues adequately for the job at hand.

)

)
(10)

(1)

(12)
(13,14)

The event is inserted at the head index. This corresponds to the FIFO
queuing policy.

The head index is checked for a wraparound.

If wraparound is required, the head index is moved to the end of the buffer.
This makes the buffer circular.

The head index is always decremented, including just after the wraparound.
I’ve chosen to decrement the head (and also the tail) index because it leads to
a more efficient implementation than incrementing the indices. The wraparound
occurs in this case at zero rather than at the end. Comparing a variable to a
constant zero is more efficient than any other comparison.

The nFree counter is decremented to account for using one event in the buffer.

Finally, the function updates the low-watermark nMin of the queue.
This step is not necessary for the correct operation of the queue, but the
low-watermark provides valuable empirical data for proper sizing of
the event queue.

The QF framework provides also the QActive_postLIFO () queue operation.

I don’t discuss the code (located in the file <gp>\gpc\gf\source\ga_lifo.c)
because it is very similar to QActive_postFIFO () except that the event is
inserted at the tail index.

7.8.4 The “Raw” Thread-Safe Queue

The QEQueue structure can be used directly as the native QF “raw” thread-safe queue. The
basic operations of the “raw” thread-safe queue are QEQueue_postFIFO (),
QEQueue_postLIFO (), and QEQueue_get (). None of these functions can

block. This type of queue is employed for deferring events (see Section 7.5.4) and also can
be very useful for passing events from active objects to ISRs, as shown in Listing 7.26.
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Listing 7.26 Using the “raw” thread-safe queue to send events to an ISR

/* Application header file ——————————————— - */
#include “gequeue.h”

(1) extern QEQueue APP_isrQueue; /* global “raw” queue */

(2) typedef struct IsrEvtTag { /* event with parameters to be passed to the ISR */
QEvent super;

} IsrEvt;

/* ISRmOodule ——=———————m */
(3) QEQueue APP_isrQueue; /* definition of the “raw” queue */

void interrupt myISR() {
QEvent const *e;

(4) e = QEQueue_get (&APP_isrQueue); /* get an event from the “raw” queue * /
(5) if (e != (QEvent *)0) { /* event available? */
(6) Process the event e (could be dispatching to a state machine)
(7) QF gc(e); /* explicitly recycle the event */
}
}
/* Active object module —=--------------oo oo */

QState MyAO_stateB(MyAO *me, QEvent const *e) {
switch (e->sig) {

case SOMETHING_INTERESTING_SIG: {
IsrEvt *pe = Q NEW(IsrEvt, ISR_SIG) ;
pe->...=... /* set the event attributes */
(8) QEQueue_postFIFO (&APP_isrQueue, (QEvent *)pe);
return (QSTATE)O;

}
return (QState)&MyAO_statel;

/*main module ——-=-----------—- */
static QEvent *1_isrQueueSto[10]; /* allocate a buffer for the “raw” queue */
main() {

/* initialize the “raw” queue */
(9) QEQueue_init (&APP_isrQueue, 1 _isrQueueSto, Q DIM(1l_isrQueueSto));
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(1) In the application header file, you declare the external “raw” event queue so
that various parts of the code can access the queue.

(2) In the same header file, you’ll typically also declare all event types that the raw
queue can accept.

(3) In the ISR module, you define the “raw” queue object.

(4) Inside an ISR, you call QEQueue_get () to get an event.

NOTE

The function QEQueue_get () uses internally a critical section of code. If you are using the
simple unconditional interrupt-locking policy (see Section 7.3.2), you must be careful not to
call QEQueue_get () with interrupts locked, as might be the case inside an ISR.

(5) If the event is available, the returned pointer is not NULL.
(6) You process the event. Please note that you have read-only access to the event.

(7) After the processing, you must not forget to call the QF garbage collector,
because now QF is no longer in charge of event processing and you are solely
responsible for not leaking the event.

(8) In an active object state machine you call QEQueue_postFIFO() or
QEQueue_postLIFO() to post an event(dynamic or static).

(9) You must not forget to initialize the “raw” queue object, which is typically
done upon system startup.

The actual implementation of the QEQueue functions QEQueue_postFIFO (),
QEQueue_postLIFO (), and QEQueue_get () is very straightforward since

no platform-specific macros are necessary. All these functions are reentrant
because they preserve the integrity of the queue by using critical sections of code.

7.9 Native QF Memory Pool

In Section 7.5.2, I introduced the concept of an event pool—a fixed block—size
heap specialized to hold event instances. Some RTOSs natively support such fixed
block—size heaps (often called memory partitions or memory pools). However, many
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platforms don’t. This section explains the native QF implementation of a memory pool
based on the QMPool structure.

The native QF memory pool is generic and can be used in your application
for storing any objects, not just events. All native QF memory pool functions
are reentrant and deterministic. They can be used in any parts of the code,
including the ISRs. Figure 7.10 explains the relationships between the
various elements of the QMPool structure and the memory buffer managed by
the memory pool.

:QMPool user_—allocated
contiguous buffer

start of memory

I
d 1 |

free

blockSize used used

nTot \ hS 2 2 <
nFree PN > / ~ \ NULL

nMin :\_J t t t t »

Figure 7.10: The relationship between QMPool structure elements
and the memory buffer.

L

The native QF memory pool requires the actual pool storage to be allocated
externally and provided to the pool upon initialization. Internally, the memory
pool tracks memory by dividing it into blocks of the requested size and

linking all unused memory blocks in a singly-linked list (the free list originating
at the QMPool. free pointer). This technique is standard for organizing stack-like
data structures, where the structure is accessed from one end only (LIFO).
QMPool also uses a handy trick to link free blocks together in the free list without
consuming extra storage for the pointers. Because the blocks in the free list

are not used for anything else, QMPool can reuse the blocks as linked list
pointers. This use implies that the block size must be big enough to hold a
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pointer [Lafreniere 98, Labrosse 02]. Listing 7.27 shows the declaration of
the QMPool structure.

Listing 7.27 QMPool structure (file <gp>\gpc\include\ampool.h)
typedef struct QMPoolTag {
(1) void *free; /* the head of the linked list of free blocks */
(2) void *start; /* the start of the original pool buffer */
(3) void *end; /* the last block in this pool */
(4) QMPoolSize blockSize; /* maximum block size (in bytes) */
(5) QOMPoolCtr nTot; /* total number of blocks */
(6) QMPoolCtr nFree; /* number of free blocks remaining */
(7) QMPoolCtr nMin; /*minimumnumber of freeblocks ever in thispool */
} QMPool;

(1) The only data member strictly required for allocating and freeing blocks in
the pool is the head of the free list ‘free.’ The other data members are
for making the memory pool operations more robust.

(2,3) The start and end pointers are used as delimiters of the valid range
of memory blocks managed by this pool. I have specifically added
them to enable writing an assertion to ensure that every memory
block returned to the pool is in the range of memory managed
by the pool.

(4) The member blockSize holds the block size of this pool in bytes.

(5) The member nTot holds the total number of blocks in the pool. This member
allows me to assert the invariant that the number of free blocks in the pool
at any given time cannot exceed nTot.

(6) The member nFree holds the current number of free blocks in the pool.

(7) The member nMin holds the lowest number of free blocks ever present in the
pool.

The QMPoolSize data type is typedef’ed as uint8_t, uintl6_t, or uint32_t,
configurable by the macro QF_MPOOL_SIZ_SIZE. The dynamic range of the
QMPoolSize data type determines the maximum size of blocks that can be managed
by the native QF event pool. Similarly, the QMPoolCtr data type is typedef’ed
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as uint8_t, uintlé_t, or uint32_t, depending on the macro
QF_MPOOL_CTR_SIZE. The dynamic range of the gMPoolCtr data type determines
the maximum number of blocks that can be stored in the pool. The macros
QF_MPOOL_SIZ_SIZE and QF_MPOOL_CTR_SIZE should be defined in the QF port
file gf_port.h in the correct port directory. If the macros are not defined, the
default size of 2 is assumed for both of them, which results in QMPoolSize and
QMPoolCtr data types typedef’ed to uintlé6_t.

7.9.1 |Initialization of the Native QF Memory Pool

You must initialize a memory pool before you can use it by calling the function
QMPool_init (), to which you provide the pool storage, the size of the

storage, and the block size managed by the pool. A general challenge in writing
this function is portability, because storage allocation is intrinsically
machine-dependent [Kernighan 88]. Perhaps the trickiest aspect here is the proper
and optimal alignment of the blocks within the contiguous memory buffer.

In particular, the alignment of blocks must be such that every new block can be
treated as a pointer to the next block. The code in listing 7.28 illustrates

how to control the machine dependencies, at the cost of extensive but careful
typecasting.

NOTE

Many CPU architectures put special requirements on the proper alignment of pointers.
For example, the ARM processor requires a pointer to be allocated at an address divisible
by 4. Other CPUs, such as the Pentium, can accept pointers allocated at odd addresses but
perform substantially better when pointers are aligned at addresses divisible by 4.

To achieve better portability and optimal alignment of blocks, the QF memory

pool implementation uses internally a helper structure QFreeBlock, which represents a
node in the linked-list of free blocks. QFreeBlock is declared as follows in the file
<gp>\gpc\gf\source\gf_pkg.h:

typedef struct QFreeBlockTag {
struct QFreeBlockTag *next; /* 1link to the next free block */

} QFreeBlock;
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Listing 7.28 Initialization of the QF memory pool with QMPool_init ()
(file <gp>\agpc\gf\source\gmp_init.c)

void QMPool_init (QMPool *me, void *poolSto,
uint32_t poolSize, QMPoolSize blockSize)

QFreeBlock *fb;
uint32_t corr;
uint32_t nblocks;

/* The memory block must be valid
* and the poolSize must fit at least one free block
* and the blockSize must not be too close to the top of the dynamic range

*/
(1) Q_REQUIRE ( (poolSto != (void *)0)
(2) && (poolSize >= (uint32_t)sizeof (QFreeBlock))
(3) && ((QMPoolSize) (blockSize + (QMPoolSize)sizeof (QFreeBlock))
> blockSize)) ;
/*1lint -e923 ignore MISRA Rule 45 in this expression */
(4) corr = ((uint32_t)poolSto & ( (uint32_t)sizeof (QFreeBlock) - (uint32_t)1));
(5) if (corr !'= (uint32_t)0) { /* alignment needed? */
(6) corr = (uint32_t)sizeof (QFreeBlock) - corr;/*amount to align poolSto*/
(7) poolSize -= corr; /* reduce the available pool size */
}
/*lint -e826 align the head of free list at the free block-size boundary*/
(8) me->free = (void *) ( (uint8_t *)poolSto + corr) ;
/* round up the blockSize to fit an integer # free blocks, no division */
(9) me->blockSize = (QMPoolSize)sizeof (QFreeBlock); /* start with just one */
(10) nblocks = (uint32_t)1; /* # free blocks that fit in one memory block */
(11) while (me->blockSize < blockSize) {
(12) me->blockSize += (QMPoolSize)sizeof (QFreeBlock) ;
(13) ++nblocks;
}
(14) blockSize = me->blockSize; /* use the rounded-up value from now on */
/* the pool buffer must fit at least one rounded-up block */
(15) Q_ASSERT (poolSize >= (uint32_t)blockSize) ;
/* chain all blocks together in a free-list... */
(16) poolSize -= (uint32_t)blockSize;/*don’t link the last block to the next */
(17) me->nTot = (QMPoolCtr)1l; /* the last block already in the pool */
(18) fb = (QFreeBlock *)me->free; /*start at the head of the free list */
(19) while (poolSize >= (uint32_t)blockSize) { /* can fit another block? */
(20) fb->next = &fb[nblocks]; /* point the next link to the next block */
fb = fb->next; /* advance to the next block */
poolSize -= (uint32_t)blockSize; /* reduce the available pool size */
++me->nTot; /* increment the number of blocks so far */
}

Continued onto next page
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(21) fb->next = (QFreeBlock *)O0; /* the last link points to NULL */
(22) me->nFree = me->nTot; /* all blocks are free */
(23) me->nMin = me->nTot; /* the minimum number of free blocks */
(24) me->start = poolSto; /* the original start this pool buffer */
(25) me->end = fb; /* the last block in this pool */

(1) The precondition requires a valid pointer to the pool storage.

(2) The pool size must be able to fit at least one free block. Later, after aligning
the pool storage and rounding up the block size, this assertion will be
strengthened (see label (15)).

(3) The argument blockSize must not be too close to the upper limit of its
dynamic range, to avoid unexpected wraparound at rounding up the block
size.

(4) The expression assigned to corr computes the misalignment of the
provided storage poolSto with respect to free block (pointer) size
boundary.

(5) Nonzero value of corr indicates misalignment of the pool storage.

(6) Now corr holds the correction needed to align poolSto.

(7) The available pool size is reduced by the amount of the correction.

(8) The head of the free list is set at the start of the pool storage aligned at the
nearest free block boundary.

(9-14) To achieve alignment of all blocks in the pool, I round up the specified

blockSize to the nearest integer multiple of QFreeBlock size. With the
head of the free list already aligned at the QFreeBlock size and all blocks
being integer multiples of the QFreeBlock size, I can be sure that every
block is aligned as well. Note that instead of computing the number of

free blocks going into the blockSize as (nblocks = (blockSize + sizeof
(QFreeBlock) — 1) /sizeof (QFreeBlock) + 1), I compute the

value iteratively in a loop. I decided to do this to avoid integer division,
which would be the only division in the whole QP code base. On many
CPUs division requires a sizable library function and I didn’t want to pull
this code.
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(15) For the correctness of the following algorithm, the pool must fit at least one
rounded-up block.

(16) The very last memory block is not linked to the next, so it is excluded.

(17) The total count of blocks in the pool starts with one, to account for the
last block.

(18) The free block pointer starts at the head of the free list.

(19) The loop chains all free blocks in a single-linked list until the end of the
provided buffer storage.

(20) The next link points to the free block, which is an integer multiple of the
free block size nblocks, computed at step 13.

(21) The last link is explicitly pointed to NULL.
(22,23) Initially, all blocks in the pool are free.
(24) The original pool buffer pointer is stored in me->start.

(25) The pointer to the last block is stored in me->end.

7.9.2 Obtaining a Memory Block from the Pool

The implementation of the QMPool_get () function shown in Listing 7.29 is
straightforward. The function returns a pointer to a new memory block or NULL if the
pool runs out of blocks. This means that when you use QMPool directly as a general-
purpose memory manager, you must validate the pointer returned from gMPool_get ()
before using it in your code. Note, however, that when QF uses gMPool internally

as the event pool, the framework asserts that the pointer is valid (see Listing 7.12(5) in
Section 7.5.2). QF considers running out of events in an event pool as an error.

Listing 7.29 Obtaining a block from a pool with QMPool_get ()
(file <gp>\agpc\gf\source\gmp_get.c)

void *QMPool_get (QMPool *me) {
QFreeBlock *fb;
QF_INT_LOCK_KEY_

QF_INT_LOCK_ () ;

Continued onto next page
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fb = (QFreeBlock *)me->free; /* get a free block or NULL */
if (fb !'= (QFreeBlock *)0) { /* free block available? */
me->free = fb->next; /* adjust 1list head to the next free block */
--me->nFree; /* one less free block */

if (me->nMin > me->nFree) {
me->nMin = me->nFree; /* remember the minimum so far */

}
QF_INT_UNLOCK_ () ;
return fb; /* return the block or NULL pointer to the caller */

7.9.3 Recycling a Memory Block Back to the Pool

Listing 7.30 shows the QMPool_put () function for recycling blocks back to the
pool. The most interesting aspects of this implementation are the preconditions.
Assertion at label (1) makes sure that the recycled block pointer lies in range of a
memory buffer managed by the pool (see Figure 7.10). Assertion 2 checks that the
number of free blocks is less than the total number of blocks (a new block is just
about to be inserted into the pool).

NOTE

The C standard guarantees meaningful pointer comparisons, such as the precondition (1) in
Listing 7.30, only if compared pointers point to the same array. Strictly speaking, this is only
the case when the pointer ‘b’ is indeed in range. When pointer ‘b’ is out of range, the
comparison might not be meaningful, and theoretically the precondition might not catch
the foreign block being recycled into the pool.

Listing 7.30 Recycling a block back to the pool with gMPool_put ()
(file <ap>\gpc\gf\source\gmp_put.c)

void QMPool_put (QMPool *me, void *b) {
QF_INT_LOCK_KEY_

(1) Q_REQUIRE ( (me->start <=Db) && (b <=me->end) /* must be in range */
(2) && (me->nFree <= me->nTot)) ; /* # free blocks must be < total */

QF_INT_LOCK_ () ;
( (QFreeBlock *)b) ->next = (QFreeBlock *)me->free; /* link into free list */
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me->free = b; /* set as new head of the free list */
++me->nFree; /* one more free block in this pool */
QF_INT_UNLOCK_ () ;

7.10 Native QF Priority Set

The QF native priority set is generally useful for representing sets of up to 64
elements numbered 1..64. For example, you can use such a set to represent groups
of GPS satellites (numbered 1..32) or any other elements. The set provides
deterministic and efficient operations for inserting, removing, and testing elements
as well as determining the largest-number element in the set. The latter operation
is very helpful for quickly finding out the highest-priority active object ready to
run, and I use it inside the cooperative “vanilla” kernel (see the next Section 7.11)
and also inside the preemptive run-to-completion QK kernel (see Chapter 10).

The QF priority set implementation is adapted from the algorithm described in
[Bal Sathe 88 and Labrosse 02]. Listing 7.31 shows the declaration of the QPSet64
data structure.

Listing 7.31 QPSet64 structure

typedef struct QPSet64Tag {

uint8_t bytes; /* condensed representation of the priority set */
uint8_t bits[8]; /* bitmasks representing elements in the set */
} QPSet64;

QPSet64 . bits[8] 3

T 7 6 5 4 3 2 1 0
bitso}] 8 | 7 | 6 | 5| 4|3 |21

bits[1{H 16 |15 |14 |13 |12 |11 |10 | 9
bits[2}H 24 | 23 |22 |21 |20 | 19 | 18 | 17
bits[3}H 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25
bits[4]H 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33

QPSet64 . bytes : N
TTe s la s 21107 "~ Greass omei
A A

\ bits[5H 48 | 47 | 46 | 45 [ 44 | 43 | 42 | 41
K bits[6}- 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49
bits[7}- 64 | 63 | 62 | 61 | 60 | 59 | 58 | 57

Figure 7.11: Dependency between QpPSet64.bits[] and QPSet64.bytes.
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Figure 7.11 graphically summarizes the semantics of QPSet64 data members. The bits
of the array QPSet64.bits[8] correspond to the set elements as follows:

QPSet64.bits[0] represent elements 1..8
QPSet64.bits[1l] represent elements 9..16

QPSet64.bits[7] represent elements 57..64

In addition, to speed up access to the bitmasks, the redundant summary of the
bitmasks is stored in the member QPSet64 .bytes with the following semantics of
the bits:

bit 0 in QPSet64.bytes is 1 when any bit in QPSet64.bits[0] is 1
bit 1 in QPSet64.bytes is 1 when any bit in QPSet64.bits[1] is 1

bit 7 in QPSet64.bytes is 1 when any bit in QPSet64.bits[7] is 1

With this data representation, all operations on the set are fast and deterministic,
meaning that the operations always take the same number of CPU cycles to execute,
regardless of how many elements are in the set. All QPSet64 operations are
implemented “inline” as macros to avoid the overhead of a function call.

For example, determining whether the set is not empty is remarkably simple:

#define QPSet64_notEmpty (me_) ((me_)->bytes != (uint8_t)0)

Also, finding the largest element in the set is deterministic and looks as follows:

#define QPSet64_findMax(me_, n_) do { \

(n_) = (uint8_t) (QF_log2Lkup| (me_)->bytes] - 1); \
(n_) = (uint8_t) (((n_) << 3) + QF_log2Lkup|[ (me_) ->bits[n_11); \
} while (0)

The QPSet64_findMax () macro assumes that the set ‘me_’ is not empty. It assigns
the number of the largest element in the set to the parameter ‘n_." The algorithm uses
the binary logarithm lookup table (see Figure 7.6) twice: first the largest 1 bit in the
QPSet64 .bytes bitmask and the second time on the QPSet64.bits[n_] bitmask to
determine the largest 1 bit in the bitmask. The largest set element is the combination
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of the bit number returned by the lookup (a number in the range 1..8) plus the index
multiplied by 8, to account for the byte position in the bits[] array.

Inserting an element ‘n_’ into the set ‘me_’ is implemented as follows:

#define QPSet64_insert(me_, n_) do { \

(me_)->bits[QF_div8Lkup[n_]] |= QF pwr2Lkup[n_]; \
(me_)->bytes |= QF_pwr2Lkup[QF_div8Lkup[n_] + 11; \
} while (0)

B

Finally, here is the macro for removing an element ‘n_’ from the set ‘me_’:

#define QPSet64_remove (me_, n_) do { \
(me_) ->bits[QF_div8Lkup[n_]] &= QF_invPwr2Lkup[n_]; \
if ((me_)->bits[QF_div8Lkup[n_]] == (uint8_t)0) { \
(me_) ->bytes &= QF_invPwr2Lkup [QF_div8Lkup[n_] + 11; \
A
} while(0)

7.11 Native Cooperative “Vanilla” Kernel

QF contains a simple cooperative “vanilla” kernel, which works as I described in
Section 6.3.7 in Chapter 6. The “vanilla” kernel is implemented in two files: the
gvanilla.h header file located in <gp>\gpc\include\ directory and the
gvanilla.c source file found in <gp>\gpc\gf\source\ directory.

The “vanilla” kernel operates by constantly polling all event queues of active objects in
an endless loop. The kernel always selects the highest-priority active object ready to
run, which is the highest-priority active object with a nonempty event queue (see
Figure 6.8 in Chapter 6). The scheduler maintains the global status of all event queues
in the application in the priority set called the QF _readySet_. As shown in

Figure 7.12, QF_readySet_ represents a “ready-set” of all nonempty event queues
in the system. For example, an element number ‘p’ is present in the ready-set if and
only if the event queue of the active object with priority ‘p’ is nonempty. With this
representation, posting an event to an empty queue with priority ‘p’ inserts the element
number ‘p’ to the QF_readySet_ set. Conversely, retrieving the last event from

the queue with priority ‘g’ removes the element number ‘g’ from the ready-set
QF_readySet_.
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Figure 7.12: Representing state of all event queues
in the QF_readySet_ priority set.

7.11.1 The gvanilla.c Source File

Listing 7.32 shows the complete implementation of the “vanilla” kernel.

Listing 7.32 The “vanilla” kernel implementation
(<ap>\gpc\gf\source\gvanilla.c)

(1) #include “gf_pkg.h”
#include “gassert.h”

/* Package-scope objects ———=-=----------- - */
(2) QPSet64 volatile QF_readySet_; /* QF-ready set of active objects */
/e */

void QF_init (void) {
/* nothing to do for the “vanilla” kernel */
}

(3) wvoid QF_stop(void) {
/* nothing to cleanup for the “vanilla” kernel */

QF_onCleanup() ; /* cleanup callback */

}
/2 */
(4) wvoid QF_run(void) { /* see NOTEOQ1 */

uint8_t p;




Real-Time Framework Implementation 381

QActive *a;
QEvent const *e;
QF_INT_LOCK_KEY__

(5) QF_onStartup() ; /* invoke the QF startup callback */
(6) for (;;) { /* the background loop */
(7) QF_INT_LOCK_ () ;
(8) if (QPSet64_notEmpty (&QF_readySet_)) {
(9) QPSet64_findMax (&QF_readySet_, p);
(10) a =QF active_[p];
(11) QF_INT_UNLOCK_ () ;
(12) e = QActive_get_(a); /* get the next event for this A0 */
(13) QF_ACTIVE_DISPATCH_ (&a->super, e); /* dispatch to the A0 */
(14) QF_gc(e); /* determine if event is garbage and collect it if so */
}
(15) else { /* all active object queues are empty */
#ifndef QF_INT_KEY TYPE
(16) QF_onIdle() ; /* see NOTEQ2 */
#else
(17) QF_onIdle (intLockKey_) ; /* see NOTEQ2 */
#endif /* QF_INT_KEY_TYPE */
}
}
}
/2P */
(18) void QActive_start (QActive *me, uint8_t prio,

QEvent const *gSto[], uint32_t glLen,
void *stkSto, uint32_t stkSize,
QEvent const *ie)

(19) Q_REQUIRE( ((uint8_t)0 < prio) && (prio <= (uint8_t)QF_ MAX_ACTIVE)
&& (stkSto == (void *)0)); /* does not need per-actor stack */
(void) stkSize; /* avoid the “unused parameter” compiler warning */
(20) QEQueue_init (&me->eQueue, gSto, (QEQueueCtr)qglLen);/* initialize QEQueue */
(21) me->prio = prio; /* set the QF priority of this active object */
(22) QF_add_ (me) ; /* make QF aware of this active object */
(23) QF_ACTIVE_INIT_ (&me->super, ie); /* execute initial transition */

}

L e e e e e e e e e e e e e e */

void QActive_stop (QActive *me) {
QF_remove_ (me) ;

(1) Asevery QF source file, the gvanilla. c file includes to the wider “package-scope”
QF interface gf_pkg.h, located in <gp>\gpc\af\source\. The gf_pkg.h
header file includes the platform-specific QF port header file gf _port .h, but it
additionally defines some internal macros and objects shared only internally within QF.
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QF_readySet_ priority set represents the ready-set of the scheduler.

I declared it volatile to inform the compiler to never cache this variable
because it can change unexpectedly in interrupts (e.g., when ISRs post or
publish events).

The function QF_stop () stops execution of the QF framework. In the case of
the “vanilla” kernel, this function has nothing to do except invoke the
QF_onCleanup () callback function to give the application a chance to clean
up and exit to the underlying operating system (e.g., consider a “vanilla”
kernel running on top of DOS). I summarize all QF callback functions in
Section 8.1.8 in Chapter 8.

Applications call the function QF_run () from main () to transfer the
control to the framework. This function implements the entire “vanilla”
kernel.

The QF_onStartup () callback function configures and starts interrupts.
This function is typically implemented at the application level (in the BSP).
I summarize all QF callback functions in Section 8.1.8 in Chapter 8.

This is the event loop of the “vanilla” kernel.
Interrupts are locked to access the QF_readySet_ ready-set.

If the ready-set QF_readySet_ is not empty, the “vanilla” kernel has some
events to process.

The QF priority set quickly discovers the highest-priority, not-empty event
queue, as described in Section 7.10.

The active object pointer ‘a’ is resolved through the QF_active_[] priority-
to-active object lookup table maintained internally by QF.

Interrupts can be unlocked.
These are the three steps of the active object thread (see Listing 7.8).

The else branch is taken when all active object event queues are empty,
which is by definition the idle condition of the “vanilla” kernel.

The “vanilla” kernel calls the QF_onIdle () callback function to give the
application a chance to put the CPU to a low-power sleep mode or to perform
other processing (e.g., software-tracing output; see Chapter 11). The
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QF_onIdle() function is typically implemented at the application level (in
the BSP). Note that the signature of QF_onIdle () depends on the critical
section mechanism you choose. The function takes no parameters when the
simple “unconditional interrupt unlocking” policy is used but needs the
interrupt status parameter when the “saving and restoring interrupt status”
policy is used (see Section 7.3).

NOTE

Most MCUs provide software-controlled low-power sleep modes, which are designed to
reduce power dissipation by gating the clock to the CPU and various peripherals. To ensure
a safe transition to a sleep mode, the “vanilla” kernel calls QF_onIdle () with interrupts
locked. The QF_onIdle() function must always unlock interrupts internally, ideally atom-
ically with the transition to a sleep mode.

(18) The Qactive_start () function initializes the event queue and starts the active
object thread under the “vanilla” kernel.

(19) The precondition asserts that the provided priority is within range and that the
stack pointer is NULL because the “vanilla” kernel does not need the per-task stack.

(20) The “vanilla” kernel uses the native QF event queue QEQueue, which needs to
be initialized with the function QEQueue_init () .

(21) The QF priority of the active object is set inside the active object.
(22) The active object is added to the QF framework.
(23) The internal state machine of the active object is initialized.

Figure 7.13 shows a typical execution scenario in the “vanilla” kernel. As long as events
are available, the event loop calls various active objects to process the events in
run-to-completion fashion. When all event queues run out of events, the event loop calls
the QF _onIdle () function to give the application a chance to switch the MCU to

a low-power sleep mode. The “vanilla” kernel must invoke QF_onIdle () with
interrupts locked. If the interrupts were enabled after the event loop determines that the
ready-set is empty (Listing 7.32(8)), but before calling QF _onIdle() (where the
switching to the low-power mode actually takes place), an interrupt could preempt the
event loop at this exact point and an ISR could post new events to active objects,
thus invalidating the idle condition.
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By the simplistic nature of the “vanilla” kernel, the event loop always resumes exactly
at the point it was interrupted, so the event loop would enter the low-power sleep
mode while events would be waiting for processing! The MCU will be stopped for a
nondeterministic period of time until the next interrupt wakes it up. Thus unlocking
interrupts before transitioning to a low-power state opens a time window for a race
condition between any enabled interrupt and the transition to the low-power mode.

QF _onldle() QF_onldle() Iﬁ QF_onldle() Iﬁ

called called called

I - NAVAN - W -

/
/

event (77K
loop m CPU stopped CPU stopped |

} } } } t t +time—>

Figure 7.13: Entering low-power sleep modes in the “vanilla” kernel.

Entering a sleep mode while interrupts are disabled poses a chicken-and-egg problem
for waking the system up, because only an interrupt can terminate the low-power sleep
mode. To operate in the “vanilla” kernel, the MCU must allow entering the low-power
sleep mode and enabling the interrupts at the same time, without creating the race
condition described above.

Many MCUs indeed allow such an atomic transition to the sleep mode. Other MCUs
support multiple levels of disabling interrupts and can accomplish low-power transitions
with interrupts disabled at one level. Yet another class of MCUs doesn’t provide any way
of entering the low-power mode with interrupts disabled and requires some different
approaches. Refer the ESD article “Use an MCU’s low-power modes in foreground/
background systems” [Samek 07b] for an overview of safe sleep mode transitions in
various popular MCUs.

7.11.2 The gvanilla.h Header File

The gvanilla.h header file, shown in Listing 7.33, integrates the “vanilla” kernel into
the QF framework. The most important function of this header file is to codify the
updates to the ready-set (QF_readySet_) as events are posted and removed from the
active object event queues.
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Listing 7.33 The “vanilla” kernel interface
(<ap>\gpc\include\gvanilla.h)

#ifndef gvanilla_h
#define gvanilla_h

(1) #include “gequeue.h” /* “Wanilla” kernel uses the native QF event queue */
(2) #include “gmpool.h” /* “Wanilla” kernel uses the native QF memory pool */
(3) #include “gpset.h” /* “Wanilla” kernel uses the native QF priority set */
/* the event queue and thread types for the “Vanilla” kernel */
(4) #define QF_EQUEUE_TYPE QEQueue
/* native QF event queue operations */
(5) #define QACTIVE_EQUEUE_WAIT (me_) \
Q_ASSERT ( (me_)->eQueue. frontEvt != (QEvent *)0)
(6) #define QACTIVE_EQUEUE_SIGNAL_ (me_) \
QPSet64_insert (&QF_readySet_, (me_)->prio)
(7) #define QACTIVE_EQUEUE_ONEMPTY_ (me_) \
QPSet64_remove (&QF_readySet_, (me_)->prio)
/* native QF event pool operations */
(8) #define QF_EPOOL_TYPE_ QMPool
(9) #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \
QMPool_init (&(p_), poolSto_, poolSize_, evtSize_)
(10) #define QF_EPOOL_EVENT_SIZE_ (p_) ((p_) .blockSize)
(11) #define QF_EPOOL_GET_ (p_, e_) ((e_) = (QEvent *)QMPool_get (&(p_)))
(12 #define QF_EPOOL_PUT_(p_, e_) (QMPool_put (&(p_), e_))
(13) extern QPSet64 volatile QF_readySet_; /** QF-ready set of active objects */
#endif /* gvanilla_h */
(1) The “vanilla” kernel uses the native QF event queue, so it needs to include the
gequeue.h header file.
(2) The “vanilla” kernel uses the native QF memory pool, so it needs to include the
gmpool . h header file.
(3) The “vanilla” kernel uses the native QF priority set, so it needs to include the
gpset .h header file.
i ueue i j
4) The “vanilla” kernel uses QE as the event queue for active objects (see also

Listing 7.7(8)).
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The “vanilla” kernel never blocks. It calls Qactive_get_ () only when it knows
for sure that the event queue contains at least one event (see Listing 7.32(12)).
Since this is certainty in this type of kernel, the QACTIVE_EQUEUE_WAIT_ ()
macro (see Listing 7.24(2)) asserts that the event queue is indeed not empty.

The macro QACTIVE_EQUEUE_SIGNAL_ () is called from
QActive_postFIFO() and QActive_postLIFO () when an event is posted
to an empty queue (see Listing 7.25(5)). This is exactly when the priority of
the active object needs to be inserted into the ready-set QF _readySet_.
Note that QF _readySet_ is modified within a critical section.

The macro QACTIVE_EQUEUE_ONEMPTY_ () is called from QActive_get_ ()
when the queue is becoming empty (see Listing 7.24(12)). This is exactly when
the priority of the active object needs to be removed from the ready-set
QF_readySet_ . Note that OF _readySet_ is modified within a critical
section.

The “vanilla” kernel uses gMPoo1l as the QF event pool. The platform
abstraction layer (PAL) macros are set to access the QMPool operations (see
Section 7.9).

The QF_readySet_ is declared as volatile because it can change
asynchronously in an ISR.

QP Reference Manual

The source code available from the companion Website to this book at

www . quantum-leaps.com/psicc?2 /contains the complete “QP Reference Manual” in
HTML and CHM-Help formats (see Figure 7.14). The Reference Manual has

been generated by Doxygen (www.doxygen.org), which is an open-source
documentation-generation system for C, C++, Java, and other languages. The HTML
documentation is found in <gp>\gpc\doxygen\html\, while the CHM Help format
18 located in <gp>\gpc\gpc.chm.

NOTE

The “QP/C++ Reference Manual” for the QP/C++ version is located in <gp>\gpcpp\ .
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Figure 7.14: Screen shots of the “QP/C Reference Manual,” which is available
in HTML and CHM Help formats.

The “QP Reference Manual” is quite detailed. Every file, structure (class), function,
macro, and typedef is documented. The Doxygen tool does a superb job in cross-
referencing the manual, so you can find information quickly. The manual also
contains plenty of examples and useful code snippets that you can conveniently

cut and paste into your own code. Finally, if you choose to modify the QP source
code, you can regenerate the Doxygen documentation by yourself because I
provide the Doxyfile.

7.13 Summary

QF is a generic, portable, scalable, lightweight, deterministic, real-time framework for
embedded systems. QF supports many advanced features, such as “zero-copy” event
management, publish-subscribe event delivery, and automatic garbage collection for
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events. All QF code is written in portable ANSI-C (or Embedded C++ subset in case of
QF/C++) with processor-specific, compiler-specific, and operating system-specific
code abstracted into a clearly defined platform abstraction layer (PAL). The high
portability was one of the main concerns and challenges in designing and
implementing QF.

QF can run on “bare-metal” CPUs, MCUs, and DSPs, completely replacing a traditional
RTOS. The framework can also work with a conventional OS/RTOS to take
advantage of the existing device drivers, communication stacks, and legacy code.

Overall, the QF represents a minimal and efficient realization of the active object—
based computing model. The framework design avoids all potentially risky or
nondeterministic programming techniques internally but does not limit the application
designer to only real-time embedded systems. The QF framework has a small
memory footprint of about 2-4KB, including the QEP hierarchical event processor,
which is of the same order as a small, bare-bones RTOS. QF has been successfully used
in hundreds of commercial products in consumer, medical, industrial, wireless,
networking, research, defense, robotics, automotive, space exploration, and many
other application types worldwide.
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As a rule, software systems do not work well until they have been used, and have failed repeatedly,
in real applications.
—David Parnas

In this chapter I describe how to adapt the QF real-time framework to various
processors, compilers, and operating systems, which is a process called porting.
Porting QF is relatively easy because QF has been designed from the ground up to
be portable. In particular, QF contains a clearly defined platform abstraction layer
(PAL), which encapsulates all the platform-specific code and cleanly separates

it from the platform-neutral code. Depending on the chosen RTOS/OS, the CPU
architecture, and the compiler, porting QF might require writing or modifying
between 5 and 100 lines of code within the PAL.

This chapter starts with a summary of the files, macros, and functions comprising the
PAL. Next, I describe the following three QF ports:

e The QF port to the “vanilla” cooperative kernel built into QF

e The QF port to the pC/OS-1I RTOS as an example of using QF with a traditional
real-time, preemptive, priority-based RTOS

e The QF port to Linux as an example of using QF with a conventional POSIX-
compliant operating system

Note that the QF ports I discuss in this chapter do not include the port to the QK
preemptive kernel. That’s because I devote the whole of Chapter 10 to QK.
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8.1 The QP Platform Abstraction Layer

All software components of the QP event-driven platform, such as the QEP event
processor and the QF real-time framework, contain a PAL. The PAL is an indirection
layer that hides the differences in hardware and software environments in which
QP operates so that the QP source code does not need to be changed to run in a
different environment. Instead, all the changes required to adapt QP are confined

to the PAL.

In the previous Chapter 7, you already saw quite a few PAL macros, such as macros for
locking and unlocking interrupts or macros for hiding the data types of operating
system-specific objects like threads or event queues. However, the abstraction layer
consists of more than just macros and typedef’s. The PAL also includes the directory
structure to hold all the platform variations, platform-specific header files, platform-
specific source files, and build scripts or Makefiles.

8.1.1 Building QP Applications

The PAL actually serves a dual purpose. Obviously, its goal is to ease the porting effort.
But even more important, the other objective of the PAL is to simplify the use of
QP in the applications.

Figure 8.1 shows the process of building a QP application. Each QP component requires
inclusion of only one platform-specific header file and linking one platform-specific
library. For example, to use the QF real-time framework, you need to include the
af_port.h header file' and you need to link the gf . 1ib library file from the specific
QP port directory. It really doesn’t get any simpler than that.

NOTE

All QP components are designed to be deployed in fine-granularity object libraries. QP
libraries allow the linker to eliminate any unreferenced QP code at link time, which results
in automatic scaling of every QP component for a wide range of applications. This approach
eliminates the need to manually configure and recompile the QP source code for each appli-
cation at hand.

! You typically include gf_port.h indirectly via the gp_port.h, discussed in Section 8.1.7.
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The QP port you are using is determined by the directory branch in which the
af_port.h header file and the QF library file are located. Listing 8.1 in Section 8.1.3
shows some examples of such port directories. Typically you need to instruct the
C/C++ compiler to include header files from the specific QP port directory and

also from the platform-independent include directory <gp>\gpc\include\. I strongly
discourage hardcoding full pathnames of the include files in your source code. You
should simply include the QP port header file (#include "gf_port.h" ) without any
path. Then you specify to the compiler to search the QP port directory for include files,
typically through the -I option.

:_ e ! IV ~ Application | :_ © 3dparty |
| ! | (Your Code) | | Code |
| | platform-specific compiler L !
I | QP header files I options : | :
I | (one per component) ' I ! |
| | T | application | | |
' & | | header P! |
: gep_port.h —=—> C/C++ | files I : 3rd party I
Compiler t header |
: qf_port.h —:—} P ! application | | : files |
| | | source . '
| | | files : | :
I | platform-specific object files ' ; !
| | QP libraries linker 5 N |
: (one per component) : script | : d |
| ] ; | || 3 pany |
| L ! T e | |
| . | es |
: [ Linker/ I Application | | : [
| —:_> Locator | libraries /| | F —~ |
| | } | ; 3rd party |
| | | : | libraries :

Figure 8.1: Building a QP-based application.

8.1.2 Building QP Libraries

Figure 8.2 illustrates the steps required to build the QF library. The process of building
other QP components, such as QEP or QK, is essentially identical.
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The key point of the design is that all platform-independent QF source files include the
same gf_port.h header file as the application source files (see Figure 8.2). At this
point you can clearly see that the PAL plays the dual role of facilitating the porting of
QP as well as using it in the applications.

Figure 8.2 also shows that every QP component, such as QF, can contain a platform-
specific source file (qf_port.c in this case). The platform-specific source file is
optional and many ports don’t require it.

[ aQPport r ap | I
. N\ ' platform-independent '
: compiler I : code [
options in the |
: make scipt | : \gpclinclude\ '
| ! | gevent.h '
| [
[ /e [ af.h |
I ++ | gequeue.h |
| Compiler | |
| | |
| I | |
| . . |
| object files | :
| I + I | \gpc\gfisource\ |
' platform-specific | gf_pkg.h |
: QF source file | Librarian : ga_fifo.c |
| | (optional) : | ga_lifo.c :
| | | qf.c |
| —— | e |
' | ' |
| |

Figure 8.2: Building the QF library.

8.1.3 Directories and Files

The PAL uses a consistent directory structure that allows you to find the QP port to a
given CPU, operating system, and compiler quite easily. Listing 8.1 shows the platform-
specific QP code organization.
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Listing 8.1 Platform-specific QP code organization

(1)

(9)
(10)
(11)

(12)

(13)

(14)

(15)

- QP/C root directory (gpcpp\ for QP/C++)
|
+-ports\ - Platform-specific QP ports
| +-80x86\ - Ports to the 80x86 processor
| | +-dos\ - Ports to DOS with the "vanilla" cooperative kernel
| | | +-tcppl01\ - Ports with the Turbo C++ 1.01 compiler
[ ] +-1\ - Ports using the Large memory model
|1 +-dbg\ - Debug build
[ ] | +-gf.1lib - QF library
[ ] ] | +-gep.lib - QEP library
[ ] +-rel\ - Release build
. +-spy\ - Spy build (with software instrumentation)
[ ] +-make.bat - batch script for building the QP libraries
|1 +-gep_port.h - QEP platform-dependent include file
[ ] +-gf_port.h - QF platform-dependent include file
|1 +-gs_port.h - QS platform-dependent include file
[ ] +-gp_port.h - QP platform-dependent include file
[ ]
| | +-agk\ - Ports to the QK preemptive kernel
[ 1]+
L]
| | +-ucos2\ - Ports to the uC/0S-II RTOS
| | | +-tcpplOl\ - Ports with the Turbo C++ 1.01 compiler
[ 1] | +-1\ - Ports using the Large memory model
|| | | | +-ucos2.86\ - uC/0S-II v2.86 object code and header files
[ | | | | +-sxre\ - Port-specific source files
|1 | | | | +-gf_port.c - QF port to uC/0S-II source file
N R
[
| | +-linux\ - Ports to the Linux operating system (POSIX)
| +-gnu\ - Ports with the GNU compiler
| | | | +-szrc\ - Port-specific source files
| | | | | +-gf_port.c - QF port to Linux source file
| - ..
||
| +-cortex-m3\ - Ports to the Cortex-M3 processor
| | +-vanilla\ - Ports to the "vanilla" cooperative kernel
| | | +-iar\ - Ports with the IAR compiler
|1 | +-dbg\ - Debug build
|| | +-rel\ - Release build
|1 | +-spy\ - Spy build (with software instrumentation)
|| | +-make.bat - batch script for building QP libraries
[ 1] | +-gep_port.h - QEP platform-dependent include file
[ ] | +-gf_port.h - QF platform-dependent include file
|1 | +-gs_port.h - 0S platform-dependent include file
|| | +-gp_port.h - QP platform-dependent include file
(N

apc\

Continued onto next page
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| | +-gk\ - Ports to the QK preemptive kernel
| | +-iar\ - Ports with the IAR compiler
| +-. - Ports to other CPUs
|
(16) +-examples\ - Platform-specific QP examples
| +-80x86\ - Examples for the 80x86 processor
| | +-dos\ - Examples for DOSwith the "vanilla" cooperative kernel
| +-tcppl01\ - Examples with the Turbo C++ 1.01 compiler
| +-1\ - Examples using the Large memory model
(17) | +-dpp\ - DPP example
(18) | | +-dbg\ - Debug build
| ] | | +-dpp.exe - Debug executable
| ] | +-rel\ - Release build
| | | +-dpp.exe - Release executable
| | +-spy\ - Spy build (with software instrumentation)
| | | +-dpp.exe - Spy executable
| ] | +-DPP-DBG.PRJ - Turbo C++ project to build the Debug version
| +-game\ - "Fly 'n’ Shoot" game example
|| -
| +-cortex-m3\ - Examples for the Cortex-M3 processor
| | +-vanilla\ - Examples for the "vanilla" cooperative kernel
| || +-1iar\ - Examples with the IAR compiler
| ] +-dpp\ - DPP example
| +-game\ - "Fly 'n’ Shoot" game example
| | +- - Other examples
| +- - Examples for other CPUs
|
(19) +-include\ - Platform independent QP header files
| +-gep.h - QEP platform-independent interface
| +-gf.h - QF platform-independent interface
| +-gk.h - QK platform-independent interface
| +-gs.h - QS platform-independent interface
| +-. . - Other platform-independent QP header files
|
(20) +-gep\ - QEP event processor
| +-source\ - QEP platform-independent source code (*.C files)
| ] +-. .
(21) +-qgf\ - QF real-time framework
| +-source\ - QF platform-independent source code (*.C files)
| ] +-. .
(22) +-ak\ - QK preemptive kernel
| +-source\ - QK platform-independent source code (*.C files)
| ] +-. .
(23) +-gs\ - QS software tracing
|
|
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Every QP version such as QP/C and QP/C++ resides in the separate directory branch,
called henceforth the QP Root Directory. The essential element of the design is that
the QP Root Directory can be “plugged into”” any branch of a hierarchical file system
and you can move the QP Root Directory around, or even have multiple versions

of the QP Root Directories. You can also freely choose the name of the QP Root
Directory, although I recommend the directory names <gp>\qgpc\ for QP/C and
<gp>\agpcpp\ for QP/C++. The ability to relocate the QP Root Directory means that
only relative paths should be used in the Makefiles, build scripts, workspaces, or
project files.

The directory ports\ contains platform-specific header files and libraries to

be used by QP applications. This directory structure is the most complicated
because of the large number of choices available, such as CPU architectures,
compilers, operating systems, and compiler options. Each of those choices is
represented as a separate level of nesting in a hierarchical directory tree, so

each dimension in the multidimensional space of options can be extended
independently from the others. In addition, the directory branch for each port is
individually customizable, so each branch can represent only choices relevant for
a given CPU, operating system, compiler, etc.

I’ve decided to put the CPU architecture as the first level of nesting within the
ports\ directory. Examples of CPU architectures are 80x86, Cortex-M3, ARM,
AVR, MSP430, and M16C. Note that a separate directory is needed whenever
the CPU architecture is significantly different. For example, even though the
traditional ARM and the new ARM Cortex-M3 are related, the differences are
significant enough to require a separate directory branch for ARM and Cortex-M3.

The second level of nesting under the CPU architecture is the operating system
used. For example, in the 80x86 architecture, QP can operate under DOS (with
the “vanilla” cooperative kernel), under the QK preemptive kernel, under the
pUC/OS-II RTOS, or under Linux (and perhaps other OSs such as Win32).

NOTE

The ordering of directory levels reflects the embedded focus in the QF design. In most stan-
dalone QF applications the CPU architecture is typically more important than the RTOS/OS.
For general-purpose operating systems such as Linux, the reversed order (operating system at
a higher level than the CPU architecture) would perhaps feel more natural.
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The next level of nesting, under each operating system directory, is the directory
for the compiler used. For example, the DOS port can be compiled with the
Turbo C++ 1.01 or perhaps with Visual C++ 1.52. Similarly, the port to
Cortex-M3 with QK kernel can be compiled with the IAR, RealView, or GNU
compilers.

In some ports, the compiler can emit code for various modes of the CPU.
For example, a compiler for 80x86 under DOS can produce small, compact,
large, or huge memory models. These different modes result in incompatible
object code, and therefore each of them requires a separate branch. Note
that the compiler options level is optional. For example, the Cortex-M3 CPU
branch does not need the compiler options level.

Finally, the QP libraries can be compiled with different compile-time switches
and optimization options. For example, the dbg\ directory holds the Debug
configuration, which contains the symbolic debug information.

Each specific build directory contains the QP library files. The actual library
names should comply with the conventions used on a particular platform.
For example, on Linux the libraries are typically named 1ib???.a (e.g.,
libgep.a, libgf.a, etc.).

The rel\ directory holds the Release configuration, which typically does not
contain debug information but might use aggressive optimizations for best
performance.

The spy\ directory holds the Spy configuration, which uses the QS software-
tracing instrumentation (see Chapter 11).

The standard QP ports often contain a simple make.bat script or a Makefile
for building all the QP libraries for the port. You typically can choose the build
configuration by providing a target to the make.bat script or to the Makefile.
The default target is “dbg.” Other possible targets are “rel” and “spy.”

Table 8.1 summarizes the targets accepted by the make.bat scripts or the
Makefiles.

The gf_port.h header file is the most important part of the port. This header
file contains the definitions of the PAL macros and typedef s as well as other
elements. I discuss the gf_port.h header file in detail in Section 8.1.5.
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Table 8.1: Build targets accepted by make.bat
scripts or Make

Build Configuration Build Command
Debug make

Release make rel

Spy make spy

The subdirectory ucos2 .86\ contains the headers and object files of
pnC/OS-1II v2.86, compiled for 80x86 with the Turbo C++ 1.01 compiler. This
directory is provided only to allow you to rebuild the example applications
based on the QF port to pC/OS-II. Typically, however, you will need to
obtain the pC/OS-II source code to rebuild it for the actual processor you're
using. Refer to Section 8.3 for more details about the pC/OS-II port.

QP ports to an external RTOS or OS such as pC/OS-II or Linux require some
“glue-code” to bolt the QF framework to the external RTOS/OS. This
source code is placed in the file gf_port.c in the subdirectory src\.

The examples\ directory contains the application examples that accompany
the ports. The structure of the examples\ branch closely mirrors the
structure of the ports\ directory, except that it adds one more level for
various example applications.

For example, the dpp\ directory contains the “Dining Philosopher Problem”
application example for this particular port. I describe the DPP test
application in Chapter 9.

The dpp\dbg\ directory contains the object files and the executable for the
Debug configuration of the DPP application build.

The include\ directory contains the platform-independent header files. You
always need to include this directory in the compiler’s search path to build
applications.

The platform-independent source code of each QP component is located in
the separate directory. The source files are only needed to rebuild QP
libraries, but you don’t need to include these directories in the compiler’s
search path to build applications.
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8.1.4 The gep_port.h Header File

The header file gep_port.h adapts and configures the QEP event processor
component of QP. I already discussed this header file in Section 4.8 of Chapter 4.
However, gep_port.h also provides macros and typedef’s that affect all the other
QP components. Therefore, for the completeness of the PAL description, I decided
to include here again the explanation of this important header file.

Listing 8.2 The gep_port.h header file

#ifndef gep_port_h
#define gep_port_h
/* special keyword used for ROM objects */

(1) #define Q_ROM 2?2?77
/* specific pointer variant for accessing const objects in ROM */
(2) #define Q_ROM_VAR ?27?7?7
/* platform-specific access to constant data bytes in ROM */
(3) #define Q_ROM_BYTE (rom_var_) 2?27?2727
/* size of the QSignal data type */
(4) #define Q_SIGNAL_SIZE ?
/* exact-width integer types */
(5) #include <stdint.h> /* WG14/N843 C99 Standard, Section 7.18.1.1 */
(6) typedef signed char int8_t; /* signed 8-bit integer */
(7) typedef signed short intl6_t; /* signed 16-bit integer */
(8) typedef signed long int32_t; /* signed 32-bit integer */
(9) typedef unsigned char uint8_t; /* unsigned 8-bit integer */
(10) typedef unsigned short uintlé_t; /* unsigned 16-bit integer */
(11) typedef unsigned long uint32_t; /* unsigned 32-bit integer */
(12) #include "gep.h" /* QEP platform-independent public interface */
#endif /* gep_port_h */
(1) The o_ROM macro allows enforcing placement of the constant objects, such as

lookup tables, constant strings, and the like, in ROM rather than in the precious
RAM. On CPUs with the Harvard architecture (such as 8051 or the Atmel

AVR), the code and data spaces are separate and are accessed through different
CPU instructions. Various compilers often provide specific extended keywords
to designate code or data space, such as the “__code” extended keyword in the
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IAR 8051 compiler. You don’t need to provide this macro, in which case it will
be defined to nothing in the gep.h platform-independent header file.

(2) The macro Q_ROM_VAR specifies the kind of the pointer to be used to access the
ROM objects because many compilers provide different size pointers for
accessing objects in various memories. Constant objects allocated in ROM often
mandate the use of specific-size pointers (e.g., far pointers) to get access to
ROM objects. An example of a valid Q_ROM_VAR macro definition is __far
(Freescale HC(S)08 compiler). You don’t need to provide this macro, in which
case it will be defined to nothing in the gep . h platform-independent header file.

NOTE

Note that macros Q_ROM and Q_ROM_VAR refer to the different parts of the object declaration.
The macro Q_ROM specifies the ROM memory type to allocate an object. This allows
compilers to generate different instructions for accessing such ROM objects for CPUs
with the Harvard architecture. On the other hand, the macro Q_ROM_VAR specifies the size
of the pointer (e.g., “far” pointer) to access the ROM data, so it refers just to the size of
the object’s address, not to the object itself. The Q_ROM_VAR macro is useful for the von
Neumann machines.

If you don’t define macros Q_ROM or Q_ROM_VAR, the gep . h header file will provide default
empty definitions, which means that no special extended keywords are necessary to correctly
allocate and access the constant objects.

(3) The macro Q_ROM_BYTE () encapsulates a custom mechanism of retrieving a
data byte from the given ROM address, which is useful for some compilers
for Harvard architecture CPUs (e.g., GCC for AVR). Some compilers cannot
generate code for accessing data allocated in the program space (ROM) when
data and program spaces require different machine instructions, even though
the compiler can allocate constants in ROM. The workaround for such
compilers is to explicitly add custom assembly code to access data allocated
in the program space. The Q_ROM_BYTE () macro is really for special occasions
and you typically don’t need to define it. The default that QF provides assumes
a compiler capable of correctly accessing data objects in ROM.

(4) The macro Q_SIGNAL_SIZE configures the size of the event signal (the
QSignal data type). If the macro is not defined, the default of 1 byte will be
chosen in gep.h. The valid Q_SIGNAL_SIZE values 1, 2, or 4 correspond to
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QSignal of uint8_t, uintl6_t, and uint32_t, respectively. The
QSignal data type determines the dynamic range of numerical values of
signals in your application. The default for Q_SIGNAL_SIZE is 1 (256 signals).

(5) Porting QEP and any other QP component requires providing the C99-standard
exact-width integer types that are consistent with the CPU and compiler
options used. For newer C and C++ compilers, you can simply include the
standard header file <stdint.h> provided by the compiler vendor.

(6-11) For prestandard compilers that don’t provide the <stdint . h> header file, you
need to typedef the six basic exact-width integer types used in QP. Consult
your compiler documentation to find out which combination of the basic
C data types map to the C99-standard integer types. Also note that the mapping
might depend on the compiler options you’re using (e.g., the memory model).

(12) The gep_port .h platform-specific header file must include the gep . h
platform-independent header file.

8.1.5 The gf_port.h Header File

The gf_port.h header file contains the definitions of the PAL macros, typedef’s,
include files, as well as constants for porting and configuring the QF real-time
framework. This is by far the most complex and important file in the whole QP PAL.

Listing 8.3 shows the general layout of the gf_port.h header file. Note that I have
placed all elements into this example file for completeness, even though some sections
of the file are mutually exclusive. In the text immediately following the listing, I clarify
the purpose of each gf_port.h section and explain when you should use it. The
concrete QF ports described later in this chapter provide the examples of valid
af_port.h header files.

Listing 8.3 The gf_port.h header file

#ifndef gf_port_h
#define gf_port_h

/* Types of platform-specific QActive data members *****xxkk k& xhkkkkxhkkkkxk /
(1) #define QF_EQUEUE_TYPE ????
(2) #define QF_OS_OBJECT_TYPE 2?77?72
(3) #define QF_THREAD_TYPE ???7?
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(10)
(11)
(12)
(13)
(14)

(15)
(16)
(17)

(18)
(19)
(20)
(21)
(22)
(23)

(24)
(25)
(26)

(27)
(28)
(29)
(30)
(31)

/* Base class for derivation of QActive HK KK KK KKK KKK KK KKK KKK K K KKKk Kk kR Kk ok kK

#define QF_ACTIVE_SUPER_ 7?7
#define QF_ACTIVE_CTOR_ (me_, initial_) ????
#define QF_ACTIVE_INIT_(me_, e_) 2?27?27
#define QF_ACTIVE_DISPATCH_ (me_, e_) aarars
#define QF_ACTIVE_STATE_ 2?77

/* The maximum number of active objects in the application ******xkkkkkxkkxk* /
#define QF_MAX_ACTIVE aarers

/* Various object sizes within the QF framework ***xxkkk &k kkkk &k kkkkkkkkkk*/
#define QF_EVENT_SIZ_SIZE
#define QF_EQUEUE_CTR_SIZE
#define QF_MPOOL_SIZ_SIZE
#define QF_MPOOL_CTR_SIZE
#define QF_TIMEEVT_CTR_SIZE

DN RN

/*QFCriticalSectionmechanism *****************************************/

#define QF_INT_KEY TYPE 2?77
#define QF_INT_LOCK (key_) 2?2727
#define QF_INT_ UNLOCK (key_) 2?77

/* Include files useélby this QF‘port *************************************/

#include <???27?.h> /* underlying OS/RTOS/Kernel interface */
#include "gep_port.h" /* QEP port */
#include "gequeue.h" /* native QF event-queue */
#include "gmpool.h" /* native QF memory-pool */
#include "gvanilla.h" /* native QF "vanilla" kernel */
#include "qgf.h" /* platform-independent QF interface */

/**********************************************************************

* Interface used only inside QF, but not in applications

*/

/* Active object event qUeue Operations * * % %%k x k& xkkkkkx kkkkkxxkkkkxxk k% /
#define QACTIVE_EQUEUE_WAIT_ (me_) 2?27?27

#define QACTIVE_EQUEUE_SIGNAL_ (me_) 2?77

#define QACTIVE_EQUEUE_ONEMPTY_ (me_) 2?7?27

/* QF event pool Operations **********************************************/

#define QF_EPOOL_TYPE_ ????
#define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) ??7??
#define QF_EPOOL_EVENT_SIZE_(p_) 2?2?27
#define QF_EPOOL_GET_ (p_, e_) 2?27?27
#define QF_EPOOL_PUT_ (p_, e_) ararard

/* Global ObjeCtS requiredbytheQFport ***********************************/
extern ???7?;

#endif /* gf_port_h */
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Types of Platform-Specific QActive Data Members

This section is required only when QF is ported to an external OS/RTOS. All standalone
QF ports, such as the port to the native “vanilla” cooperative kernel or the QK
preemptive kernel, do not need this section.

(1)  You must tell QF the data type of the event queue for active objects. The event
queue can be implemented with a message queue of the RTOS/OS. But it is also
possible to use the native QF event queue QEQueue type if the underlying RTOS/
OS does not provide an adequate queue.

(2) The QF_0S_OBJECT_TYPE data member is necessary when the underlying OS does
not provide an adequate queue facility, so the native QF queue QEQueue must be used.
In this case the QF_0S_OBJECT_TYPE data member holds an operating system-
specific primitive to efficiently block the native QF event queue when the queue is
empty. Section 8.4, QF Port to Linux (Conventional POSIX-Compliant OS) provides an
example of specifying the QF _0S_OBJECT_TYPE data type.

(3) The data type QF _THREAD_TYPE holds the thread handle associated with the
active object.

Base Class for Derivation of QActive

This section is required only when you want to derive the QActive base class from a
class different than QHsm, which is the default. The macros in this section allow you
to replace the QEP component with your own event processor. The macros defined

in this segment should generally not be used in the applications. I apply the naming
convention of terminating such macro names with an underscore, which you should
consider as a red flag to avoid using them in the application code.

(4) The macro QF_ACTIVE_SUPER_ specifies the ultimate base class for deriving
active objects. This macro lets you define any base class for Qactive, as long as
the base class supports the state machine interface (see Chapter 3, “Generic State
Machine Interface”). If you don’t provide this macro, QF will default to the QHsm
base class.

(5) The macro QF_ACTIVE_CTOR_ () specifies the name of the base class
constructor.

(6) The macro QF_ACTIVE_INIT_ () specifies the name of the base class init ()
function.



Porting and Configuring OF 403

(7) The macro QF_ACTIVE_DISPATCH_ () specifies the name of the base class
dispatch () function.

(8) The macro QF_ACTIVE_STATE_ specifies the type of the parameter for the base
class constructor.

NOTE

The macros QF_ACTIVE_CTOR_ (), QF_ACTIVE_INIT_ (), and QF_ACTIVE_DISPATCH_ ()
are not needed in the C++ version of QF. Instead of providing these macros, the base class
specified with QF _ACTIVE_SUPER_ must provide the constructor, init (), and dispatch ()
member functions with signatures compatible with the QHsm class interface.

The Maximum Number of Active Objects in the Application

(9) The macro QF_MAX_ACTIVE determines the maximum number of active objects,
which at the same time is the maximum active object priority in the system.
Currently QF_MAX_ACTIVE cannot exceed 63. Defining QF_MAX_ACTIVE to 8 or
less results in a slightly better performance of the native “vanilla” scheduler, the QK
scheduler, and the QF_publish () function.

NOTE

You need to always define QF_MAX_ACTIVE at the QF port level because QF provides no
default value.

Various Object Sizes Within the QF Framework

This section defines various object sizes within the QF framework. All macros in this
section have default values as specified, so you don’t need to define these macros
if the defaults are adequate.

(10) The macro QF_EVENT_SIZ_SIZE determines the size (in bytes) of the event-size
representation in the QF. Valid values: 1, 2, or 4; default 2.

(11) The macro QF_EQUEUE_CTR_SIZE determines the size (in bytes) of the
ring-buffer counters used in the native QF event queue implementation. Valid
values: 1, 2, or 4; default 1.
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(12) The macro QF_MPOOL_SIZ_SIZE determines the size (in bytes) of the block-size
representation in the native QF memory pool. Valid values: 1, 2, or 4; default 2.

(13) The macro QF_MPOOL_CTR_SIZE determines the size (in bytes) of the
block-counter representation in the native QF memory pool. Valid values: 1, 2, or
4; default 2.

(14) The macro QF_TIMEEVT_CTR_SIZE determines the size (in bytes) of the time

event-counter representation in the QTimeEvt struct. Valid values: 1, 2, or 4;
default 2.

OF Critical Section Mechanism

This section defines the critical section mechanism used within the QF framework,
which you always need to provide. Refer to Section 7.3, “Critical Sections in QF,” in
Chapter 7 for the detailed discussion of critical sections in QF.

15)

(16)

7)

The macro QF_INT_KEY_TYPE defines the data type of the “interrupt key” variable,
which holds the interrupt status. When you define this macro, you indicate to the QF
framework that the policy of “saving and restoring interrupt status” is used.
Conversely, when you don’t define the macro, the QF framework assumes the policy
of “unconditional locking and unlocking interrupts.”

The macro QF_INT_LOCK () encapsulates the mechanism of interrupt locking.
The macro takes a parameter into which it saves the interrupt lock status. The
parameter is not used if you use the simple policy of “unconditional locking and
unlocking interrupts.”

The macro QF_INT_ UNLOCK () encapsulates the mechanism of unlocking
interrupts. The macro takes a parameter from which it restores the interrupt lock
status. The parameter is not used if you use the simple policy of “unconditional
locking and unlocking interrupts.”

Include Files Used by this QF Port

In this section you include the header files actually used in this particular QF port. Note
that you generally don’t include all files listed in this section at the same time.

(18)

You include the header file(s) of the underlying operating system, RTOS, or
kernel on which you base this QF port. If you use the simple cooperative
“vanilla” kernel, you need to include the gvanilla.h header file (see
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Section 8.2). If you use the QK preemptive kernel, you need to include the
gk_port.h header file (see Chapter 10).

(19) You include the gep_port.h header file (see Section 8.1.4) if you derive
QActive from QHsm or QFsm. Since the QHsm base class is the default, most of
the time you need to include gep_port.h.

NOTE

If you choose to replace QEP with your own event processor, you need to include the
gevent .h header file instead of gep_port.h. In addition, you might need to include the
<stdint.h> header file and define the macros described in Listing 8.2.

(20)

2D

(22)

(23)

You need to include the gequeue.h header file if you use the native QF event
queue for active objects. You might also want to include gequeue.h if your
applications use the “raw” thread-safe queues (see Section 7.8.4 in Chapter 7) or
event deferral via QActive_defer () /QActive_recall () mechanism (see
Section 7.5.4 in Chapter 7).

You need to include the gmpool . h header file if you use the native QF memory
pool for event pools. You might also want to include gmpool.h if your
applications use the native QF memory pools for allocating memory (see Section
7.9 in Chapter 7).

You need to include the gvanilla.h header file only if you are using the native
QF “vanilla” kernel. Note that gvanilla.h already includes gequeue.h,
gmpool . h, and gpset.h, so you don’t need to repeat them again.

You always need to include the platform-independent QF header file gf . h.
Typically, you include gf.h as the last header file because it generally depends
on the other header files. For example, the type definitions of the operating
system-dependent data members of QActive must be defined before the
QActive class declaration located in gf . h.

Interface Used Only Inside QF, But Not in Applications

Below this line, you specify the elements of the PAL that are used only inside QF to
adapt the framework source code to the particular platform. These elements are
generally not used in the applications. I apply the naming convention of terminating



406 Chapter 8

such internal elements with an underscore, which you should consider a red flag to
avoid using them in the application code.

Active Object Event Queue Operations

This section is required only when you use the native QF active object event queue with a
traditional blocking operating system or RTOS. Chapter 7, “The Native QF Active
Object Queue,” explains the context in which these macros are used in the QF source code.

(24) The macro QACTIVE_EQUEUE_WAIT_ () encapsulates the mechanism of
blocking the native QF event queue. Note that this macro is invoked from the
critical section. The macro might unlock interrupts momentarily, but it must
restore critical section before it returns. I provide an example of this macro in the
Linux port (Section 8.4).

(25) The macro QACTIVE_EQUEUE_SIGNAL_ () encapsulates the mechanism of
signaling the thread waiting on the event queue. Note that this macro is invoked
from the critical section. The macro must exit the critical section before it
returns. I provide an example of this macro in the Linux port (Section 8.4).

(26) The macro QACTIVE_EQUEUE_ONEMPTY_ () informs the underlying kernel
that the active object event queue is becoming empty. Such notification is
required by the cooperative “vanilla” kernel discussed in Section 8.2 as well as in
the QF port to the preemptive run-to-completion QK kernel that I cover in
Chapter 10.

OF Event Pool Operations

This section is required only when QF is ported to an external OS/RTOS. All standalone
QF ports, such as the port to the native “vanilla” cooperative kernel or the QK
preemptive kernel, do not need this section. I provide an example of this section that
uses the memory partitions of the nC/OS-II RTOS in Section 8.3.

(27) The macro QF_EPOOL_TYPE_ specifies the data type of the event pool used in
this port.

(28) The macro QF_EPOOL_INIT_ () specifies the initialization function for the
event pool object.

(29) The macro QF_EPOOL_EVENT_SIZE_ () returns the block size of a given event
pool.
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(30) The macro QF_EPOOL_GET_ () obtains a memory block from a given event
pool.

(31) The macro QF_EPOOL_PUT_ () recycles a memory block to a given event
pool.

8.1.6 The gf_port.c Source File

The gf_port.c source file defines platform-specific code for the QF port. Not all QF
ports require this file. In fact, only the ports to the external RTOS or OS usually need
some “glue-code” to bolt the framework to the external OS/RTOS. In particular, you
don’t need to provide any such “glue-code” for the simple “vanilla” kernel because it is
totally portable and is already fully integrated with the QF (see Section 7.11 in
Chapter 7). The QK preemptive kernel might require porting, just like any other
preemptive real-time kernel, but in this case you will port QK and not QF (see
Chapter 10). Again, gf_port.c won’t be necessary for QK. Listing 8.4 shows the
general layout of the gf_port.c source file for an external RTOS/OS.

Listing 8.4 The gf_port.c source file

(1) #include "gf_pkg.h"
(2) #include "gassert.h"

(3) Q_DEFINE_THIS_MODULE (gf_port)

/* Global objects ~=====-------------- */
/* Local ObjeCts————m— s e */
L e e e e e e e e e e e e e e e e e e e e e e e */
(4) char const Q_ROM * Q_ROM_VAR QF_getPortVersion (void) {
static const char Q_ROM Q_ROM_VAR version[] = "4.0.00";

return version;
}
/2 */

/o */
(6) wvoid QF_run(void) {

}

Continued onto next page
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/2 */
(7) wvoid QF_stop(void) {
}
/2 */

(8) wvoid QActive_start (QActive *me,

uint8_t prio, /* the unique priority */

QEvent const *gSto[], uint32_t gLen, /* event queue */

void *stkSto, uint32_t stkSize, /* per-task stack */

QEvent const *ie) /* the initialization event */
{

(9) me->prio = prio; /* set the QF priority */
(10) QF_add_ (me) ; /* make QF aware of this active object */
(11) QF_ACTIVE_INIT_ (me, ie); /* execute the initial transition */
(12) /* Initialize the event queue object 'me->eQueue’ using gSto and gLen */
(13) /* Create and start the thread 'me->thread’ of the underlying RTOS */

}
/2 */
(14) void QActive_stop (QActive *me) {
(15) /* Cleanup me->eQueue or me->o0sObject */
}
/2 */
/* You need to define QActive_postFIFO(), QActive_postLIFO(), and
* QActive_get_ () only if your QF port uses the queue facility from
* the underlying OS/RTOS.
*/
void QActive_postFIFO (QActive *me, QEvent const *e) {
(16) QF_INT_LOCK_KEY_
(17) QF_INT_LOCK_ () ;
(18) if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */
(19) ++ ( (QEvent *)e) ->dynamic_; /* increment the reference counter */
}
(20) QF_INT_UNLOCK_ () ;

/* Post event pointer ‘e’ to the message queue of the RTOS 'me->eQueue’
* using the FIFO policy without blocking. Also assert that the queue

* accepted the event pointer.

*/

void QActive_postLIFO (QActive *me, QEvent const *e) {

QF_INT_LOCK_KEY__

QF_INT_LOCK_ () ;

if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */
++ ( (QEvent *)e) ->dynamic_; /* increment the reference counter */

}

QF_INT_UNLOCK_ () ;

/* Post event pointer ‘e’ to the message queue of the RTOS 'me->eQueue’

* using the LIFO policy without blocking. Also assert that the queue




Porting and Configuring OF 409

* accepted the event pointer.
*/

QEvent const *QActive_get_ (QActive *me) {
/* Get the next event from the active object queue 'me->eQueue’ .
* Block indefinitely as long as the queue is empty. Assert no errors
* in the queue operation. Return the event pointer to the caller.
*/

(1) The gf_port.c source file is considered a part of the QF source code, and as
such it needs access to the wider “package-scope” QF interface gf_pkg.h,
located in <gp>\gpc\gf\source\. The gf_pkg.h header file includes
qgf_port.h, but it additionally defines some internal macros and objects shared
only internally within the QF component.

(2) Typically, the gf_port.c source files uses QP assertions.

(3) As described in Section 6.7.3, “Customizable Assertions in C and C++,” in
Chapter 6, the macro Q_ DEFINE_THIS_MODULE () defines the name of the
module, which is subsequently referenced in all assertions implemented in this
module.

(4) If you want to track the version of this particular QF port, you can define the
function QF_getPortVersion () that returns the version string number. The
string number is typically placed in ROM.

(5) The function QF_init () handles the specific initialization of the underlying
OS/RTOS.

(6) The function QF_run () transfers control to QF to run the application. QF_run ()
is typically called from main () after you initialize the QF and start at least one
active object with QActive_start (). QF_run () does not return to the caller as
long as QF is in control.

(7) The function QF_stop () stops execution of the QF framework. The effect of
this function might not be immediate. For example, it might only set an internal
flag to terminate a loop inside QF_run() if QF_run() is implemented that
way. When you design QF_stop (), you should also make sure that the callback
QF_onCleanup () is called before the control is transferred back to the
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®)

&)
(10)

(1)

(12)

13)

underlying OS/RTOS. The specific QF ports described later in this chapter give
examples of QF_stop () implementations. I discuss QF callback functions in
the upcoming Section 8.1.8.

The function QActive_start () creates the active object’s thread and notifies
QF to start managing the active object. The argument ‘me’ is the pointer to

the active object being started. The argument ‘prio’ is the QF priority you
assign to the active object. In QF, every active object must have a unique
priority, which you assign at startup and cannot change later. QF uses a priority
numbering in which priority 1 is the lowest and higher numbers correspond to
higher priorities. The arguments ‘gqSto’ and ‘gLen’ are a pointer to the storage
for the event queue buffer and the length of that buffer (in units of QEvent*),
respectively. If the underlying RTOS cannot accept externally allocated storage
for the queue, the ‘gSto’ pointer should be set to NULL. The argument ‘stkSto’
is the pointer to the storage for the private stack, and the argument ‘stkSize’ is
the size of that stack (in bytes). If the underlying kernel/RTOS does

not need per-task stacks or cannot accept externally allocated storage for the
stack, the ‘stksto’ pointer should be set to NULL. Finally, the argument ‘ie’ is a
pointer to the initialization event for the topmost initial transition in the active
object state machine. This argument is very specific to the active object being
initialized and can be NULL.

The function QActive_start () must always set the active object priority.

The function QActive_start () must always notify QF to add this active
object at the priority level set previously.

The function QActive_start () must trigger the initial transition in the active
object’s state machine (see also Listing 8.3(6)).

The function QActive_start () must initialize the OS-specific event queue
object.

The function QActive_start () must start the active object’s thread. Note that
the priority of thread should correspond to the relative QF priority passed

as the argument ‘prio’ to QActive_start (). If the underlying scheduler uses
a different priority numbering scheme than QF, the concrete implementation

of QActive_start () must remap the QF priority to the priority required by
the underlying scheduler before invoking the OS-specific thread creation routine.
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(14) The function QActive_stop () stops the active object’s thread and performs
cleanup after the active object.

(15) The function QActive_stop () must perform the OS-specific cleanup of
the event queue or the OS-specific object for blocking the native QF event queue.

NOTE

You need to define the functions QActive_postFIFO(), QActive_postLIFO(), and
QActive_get_ () only if your QF port uses the queue facility from the underlying OS/RTOS.
As you define these functions in gf_port . ¢, you should exclude the following three QF source
files from the QF library build: ga_fifo.c, ga_lifo.c,and ga_get_.c (see also Table 8.2).
The upcoming QF port to LC/OS-II (Section 8.3) provides an example of such a QF port.

(16-20) The function QActive_postFIFO () (as well as QActive_postLIFO())
must increment the reference counter of a dynamic event exactly as shown.

8.1.7 The gp_port.h Header File

Every application C-file needs to include platform-specific header files for all QP
components used in this application, as illustrated in Figure 8.1. To simplify this even
further, you can combine all QP components used in the port so that the applications
need to include just one gp_port . h header file. Listing 8.5 provides an example of the
ap_port.h file. Typically, if you use the standard QP components, you don’t need
to change it much, although you might want to add to the gqp_port.h file some
elements that you always use with your QP applications.

Note that the gp_port.h header file is intended exclusively for the applications and is
not used at all in building the QP libraries for the port.

Listing 8.5 The gp_port.h header file

#ifndef gp_port_h
#define gp_port_h

#include "gf_port.h" /* includes gep_port.h and gk_port.h, if used */
#include "gassert.h" /* QP assertions */

#endif /* gp_port_h */




412 Chapter 8

8.1.8 Platform-Specific QF Callback Functions

A QF port cannot and should not define all the functions that it calls, because this would
render the port too inflexible. Some functionality is simply much better left to the
application, or perhaps to the Board Support Package (BSP). The functions that QF calls
but doesn’t actually implement are referred to as callback functions. All these functions
in QF (as well as all other QP components) are easily identifiable by the “on”
preposition used in the function name (e.g., QF_onStartup () ). This section
summarizes all QF callback functions.

void QF_onStartup (void)

This callback function is called just before the QF takes over control of the application.
The main intent of the QF_onStartup () callback is to initialize and start interrupts.
The timeline for calling QF _onStartup () depends on the particular QF port.
However, in most cases, QF_onStartup () is called from QF_run (), right before
starting any multitasking kernel or the background loop.

void QF_onCleanup (void)

QF_onCleanup () is called in some QF ports before QF returns to the underlying
operating system or RTOS. The intent of the QF_onCleanup () callback is to give
the application a chance to perform cleanup before exiting. This function might be
empty, if the particular application has nothing to clean up or if the application never
returns.

void QF_onIdle (void) or void QF_onIdle (QF_INT KEY_TYPE
lockKey)

QF_onIdle () is called by the cooperative “vanilla” kernel built into QF. The signature
of this callback depends on the interrupt-locking policy used in the QF port.

I discussed the QF _onIdle () callback in Section 7.11.1 of Chapter 7 as well as in
Section 8.2.4 in this chapter.

void Q_onAssert (char const Q_ROM * const Q_ROM_VAR file,
int line)

The callback Q_onassert () is used by all QP components, not just QF. This callback
is invoked in case the condition passed to Q_ASSERT (), Q_REQUIRE (), Q_ENSURE (),
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Q_ERROR (), or Q_ALLEGE () evaluates to FALSE. The parameter ‘£ile’ denotes the
filename where the assertion failed. The parameter ‘1ine’ holds the line number at
which the assertion failed. I discuss the Q_onAssert () callback in Section 6.7.3 in
Chapter 6.

8.1.9 System Clock Tick (Calling 0F_tick())

As you design your port, you must decide how you are going to provide the system
clock tick to call the QF_tick() function (see Section 7.7.2 in Chapter 7). Ideally,
QF_tick() should be called from a periodic interrupt running at a rate between
10Hz and 100Hz. In case you can use the system clock interrupt, you don’t need

to do anything special at the QF port level. Simply don’t forget to call QF_tick()
from the system clock tick interrupt service routine (ISR) in your application.
Naturally, your application can use the system clock tick ISR for other purposes

as well.

However, in QF ports to the general-purpose operating systems, such as Linux or
Windows, you cannot easily access the system clock tick ISR. In this case, you can call
QF_tick() from the task level.? Typically, you dedicate a separate thread (the
“ticker thread”), which is structured as an endless loop that calls QF_tick () and
goes to sleep for the rest of the time slice. If you use this technique, you should
implement the “ticker thread” in the gf_port.c source file. The Linux port in
Section 8.4 provides an example of this approach.

8.1.10 Building the QF Library

A QP port should include a make.bat script, a Makefile, or a workspace/project file
to build the QP libraries (see Listing 8.1(11)). Whichever way you actually provide
to build the QF library, you should remember that not all QF source files need to be
incorporated in every port. Table 8.2 contains the list of source files that you might need
to exclude from the final QF build to avoid multiply defined symbols while linking
the applications:

2 As described in Section 7.7.2 in Chapter 7, QF_tick () is designed to be called from an interrupt or from
the task level.
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Table 8.2: QF source files that you might need to leave out

Filename Comments
qa_fifo.c Include in the build only if the port uses the native QF active object event

- queue. Do not include in the build if you provide definitions of functions
qa_lifo.c QActive_postFIFO(), QActive_postLIFO(), and QActive_get_ () in the
qa_get_.c qf_port.c source file.
gvanilla.c Include in the build only when you use the “vanilla” cooperative kernel.

8.2 Porting the Cooperative “Vanilla” Kernel

In Section 7.11 of Chapter 7 I described the native QF cooperative “vanilla” kernel.
When you use QF with the “vanilla” kernel, you don’t need to port the framework to the
kernel—I already did it for you in Chapter 7. But you still need to port the “vanilla”
kernel itself to the target CPU and compiler that you are using. Fortunately, this is quite
easy due to the simplistic nature of the “vanilla” kernel. All you need to provide is
the compiler-specific exact-width integer types in gep_port.h and the interrupt-
locking policy in gf_port.h. You typically don’t need to provide any platform-
specific source files.

In this section I show two examples of “vanilla” kernel ports, both of

which you already used in Chapter 1 to run the “Fly ‘n’ Shoot” game example.
The first one is for the 80x86 CPU under DOS, with the legacy Turbo C++ 1.01
compiler configured to generate code for “large” memory model. This port

is located in <gp>\gpc\ports\80x86\dos\tcppl01\1\. The second
“vanilla” port is for the ARM Cortex-M3 CPU with the latest IAR compiler
and is located in <gp>\gpc\ports\cortex-m3\vanilla\iar\

(see Listing 8.1).

8.2.1 The gep_port.h Header File

Listing 8.6 shows the gep_port.h header file for 80x86/DOS/Turbo C++ 1.01/Large
memory model. The legacy Turbo C++ 1.01 is a prestandard compiler, so I typedef
the six platform-specific exact-with integer types used in QP.
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Listing 8.6 The gep_port.h header file for 80x86/DOS/Turbo C++
1.01/Large memory model

#ifndef gep_port_h
#define gep_port_h

/* Exact-width integer types for DOS/Turbo C++ 1.01/Large memory model */
typedef signed char int8_t;
typedef signed int intlé6_t;
typedef signed long int32_t;
typedef unsigned char uint8_t;
typedef unsigned int wuintlé_t;
typedef unsigned long uint32_t;

#include "gep.h" /* QEP platform-independent public interface */

#endif /* gep_port_h */

Listing 8.7 shows the gep_port .h header file for Cortex-M3/IAR. The IAR compiler
is a standard C99 compiler, so I simply include the <stdint.h> header file that
defines the platform-specific exact-width integer types.

Listing 8.7 The gep_port.h header file for Cortex-M3/IAR

#ifndef gep_port_h
#define gep_port_h

#include <stdint.h> /* C99-standard exact-width integer types */
#include "gep.h" /* QEP platform-independent public interface */
#endif /* gep_port_h */

8.2.2 The gf_port.h Header File

The most important porting decision you need to make in the gf_port .h header file is
the policy for locking and unlocking interrupts. To make this decision correctly, you
need to learn a bit about your target CPU and the compiler to find out the most efficient
way of enabling and disabling interrupts from C or C++. Generally, your first safe
choice should be the more advanced policy of “saving and restoring the interrupt status”
(Section 7.3.1 in Chapter 7). However, if you find out that it is safe to unlock interrupts
within ISRs because your target processor can prioritize interrupts in hardware, you
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can use the simple and fast policy of “unconditional interrupt unlocking” (Section 7.3.2
in Chapter 7). With the fast policy you must always make sure that no QF functions
are invoked with interrupts already locked, or more generally, that critical sections
don’t nest. Note that interrupts could be implicitly locked in the ISRs.

Listing 8.8 shows the gf_port.h header file for 80x86/DOS/Turbo C++ 1.01/Large
memory model. I decided to use the simple “unconditional interrupt unlocking” policy
because the standard PC has an external 8259A Programmable Interrupt Controller
(PIC) and the Turbo C++ 1.01 compiler provides the pair of functions disable () and
enable () to unconditionally lock and unlock interrupts, respectively. With this
simple interrupt-locking policy, I need to be careful in calling QF services from ISRs.
Listing 8.10 later in this section shows an example of the system clock tick ISR in
this case. The QF port to pC/OS-II discussed in the upcoming Section 8.3 demonstrates
the “saving and restoring the interrupt status” for the same CPU/compiler
combination.

Listing 8.8 The gf_port.h header file for 80x86/DOS/Turbo C++
1.01/Large memory model

#ifndef gf_port_h
#define gf_port_h

/* DOS critical section entry/exit */
/* QF_INT_KEY TYPEnotdefined: "unconditional interruptunlocking" policy */
#define QF_INT_LOCK (dummy) disable()
#define QF_INT_UNLOCK (dummy) enable ()

#include <dos.h> /* DOS API, including disable()/enable() prototypes */
#undef outportb /*don’'t use themacro because it has abug in Turbo C++ 1.01*/

#include "gep_port.h" /* QEP port */
#include "gvanilla.h" /* The "Vanilla" cooperative kernel */
#include "gf.h" /* QF platform-independent public interface */
#endif /* gqf_port_h */

Listing 8.9 shows the gf_port.h header file for Cortex-M3/IAR. Again, I use the
simple “unconditional interrupt unlocking” policy because Cortex-M3 is equipped with
the standard nested vectored interrupt controller (NVIC) and generally runs ISRs

with interrupts unlocked.
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Listing 8.9 The gf_port.h header file for Cortex-M3/IAR

#ifndef gf_port_h
#define gf_port_h

/* QF critical section entry/exit */
/* QF _INT_KEY_TYPE not defined: "unconditional interrupt unlocking" policy */

#define QF_INT_LOCK (dummy) _ _disable_interrupt ()

#define QF_INT_ UNLOCK (dummy) __enable_interrupt ()

#include <intrinsics.h> /* IAR intrinsic functions */
#include "gep_port.h" /* QEP port */
#include "gvanilla.h" /* The "Vanilla" cooperative kernel */
#include "gf.h" /* QF platform-independent public interface */
#endif /* gqf_port_h */

8.2.3 The System Clock Tick (QF_tick())

Strictly speaking, the “vanilla” QF port usually does not contain the system clock tick
ISR because it is more convenient to place this ISR in the application. However, when
developing any QF port, you need to have a pretty good idea how you are going to
handle interrupts in general and the system clock interrupt in particular.

Listing 8.10 shows the system clock tick ISR for DOS, which is triggered by channel-O
of the 8253/8254 timer-counter chip connected to IRQO.

Listing 8.10 The system clock tick ISR in 80x86/DOS/Turbo C++ 1.01/Large
memory model

(1) wvoidinterrupt ISR_tmr0 (void) { /* enteredwith interrupts LOCKED */

(2) QF_INT UNLOCK (dummy) ; /* unlock interrupts */
(3) QF_tick();

/* do some application-specific work ... */
(4) QF_INT LOCK(dummy) ; /* lock interrupts again */
(5) outportb (0x20, 0x20) ; /* write EOI to the master 8259A PIC */

(1)  The Turbo C++ 1.01 compiler provides an extended keyword “interrupt” that
enables you to program ISRs in C/C++.
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(2) The 80x86 processor locks interrupts in hardware before vectoring to the ISR.
The interrupts can be unlocked right away, though, because the 8259A
programmable interrupt controller prioritizes interrupts before they reach
the CPU.

(3) The QF _tick() service is called outside of critical section.
(4) Interrupts are locked before exiting from the ISR.

(5) The end-of-interrupt (EOI) instruction is sent to the master 8259A PIC so that it
ends prioritization of this interrupt level.

Listing 8.11 shows the system clock tick ISR for Cortex-M3, which is triggered by
the periodic timer called SysTick specifically designed for that purpose. In Cortex-M3
ISRs don’t require any special instructions on entry or exit, so it is exceptionally easy
to program ISR directly in C (isn’t that nice?). This is actually unusual for most
processor architectures. Furthermore, because Cortex-M3 enters ISRs with interrupts
unlocked, there is no need to unlock interrupts to avoid nesting critical sections.
Finally, the NVIC interrupt controller receives the EOI instruction implicitly by the
special interrupt return code deposited in the LR register before the ISR entry, which
means that you don’t need to code EOI explicitly. All this enables using QF_tick()
directly as the system clock tick ISR by placing it directly into the Cortex-M3 vector
table. Typically, however, you need to add some more application-specific
functionality to the SysTick interrupt than just QF_tick (), so I keep it as a

separate function.

Listing 8.11 The SysTick ISR for Cortex-M3/IAR

void ISR_SysTick(void) { /* entered with interrupts UNLOCKED */
QF_tick();
/* do some application-specific work ... */

8.2.4 Idle Processing (QF_onIdle())

The “vanilla” kernel calls the OF_onIdle () callback function whenever it detects that
all active object event queues in the system are empty. As I explained at the end of
Section 7.11.1, the QF_onIdle () callback is invoked with interrupts locked and must
always unlock interrupts; otherwise the system locks up.
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Similarly to the system clock tick, the QF _onIdle () callback function usually is not
part of the QF port because it is more convenient to place the idle processing in the
application. However, idle processing is such an important issue to the “vanilla” kernel
that I must mention it here.

Listing 8.12 shows the QF _onIdle () function for 80x86/DOS. The function simply unlocks
interrupts because there is no standard way of turning low-power sleep mode for 80x86.

Listing 8.12 The QF_onIdle() callback for 80x86/DOS

void QF_onIdle (void) { /* entered with interrupts LOCKED */
QF_INT_UNLOCK (dummy) ; /* always unlock interrupts */
/* do some more application-specific work ... */

In contrast, the Cortex-M3 processor can be put into a low-power mode, as shown in
Listing 8.13.

Listing 8.13 The OF_onIdle() callback for Cortex-M3/IAR

void QF_onIdle (void) { /* entered with interrupts LOCKED */
(1) #ifdef NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* NOTE: You might need to customize the clock management for your
* application, by gating the clock to the selected peripherals.
* See the datasheet for your particular Cortex-M3 MCU.

*/
(2) __asm("WFI"); /* Wait-For-Interrupt */
#endif
(3) QF_INT UNLOCK (dummy) ; /* always unlock interrupts */
/* optionally do some application-specific work ... */

(1) I use conditional compilation to enter low-power sleep mode only when not
debugging (NDEBUG defined). The transition to low-power sleep mode typically
stops the CPU clock, which often makes debugging impossible.

(2) The Thumb-2 instruction set used in Cortex-M3 provides a special instruction
WFI (Wait-For-Interrupt) for stopping the CPU clock. As described in the
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“ARMv7-M Reference Manual” [ARM 06a], the WFI instruction can be
executed with the PRIMASK bit set (interrupts locked). The Cortex-M3 core
stops executing code immediately after the WFI instruction. Even so, any
asynchronous exception (e.g., an interrupt) can wake the CPU by restarting the
clock. The CPU resumes code execution but can handle the interrupt only when
interrupts are unlocked.

(3) Interrupts are always unlocked. If an interrupt woke up the CPU from low-power
sleep mode, the interrupt would be serviced only after interrupts get unlocked.

NOTE

Cortex-M3 allows entering the WFI mode atomically (with interrupts disabled), which is
exactly how it should be done in the “vanilla” kernel or, more generally, in any fore-
ground/background architecture.

8.3 QF Port to pC/OS-Il (Conventional RTOS)

The QF real-time framework can work with virtually any traditional real-time operating
system (RTOS), such as VxWorks, Nucleus, pC/OS-II, eCos, RTOS-32, and others
alike. Combined with a conventional RTOS, QF takes full advantage of the multitasking
capabilities of the RTOS by executing each active object in a separate task (see
Section 6.3.6 in Chapter 6). The QF PAL includes an abstract RTOS interface to enable
tight integration between QF and the underlying RTOS. Specifically, the PAL allows
adapting most message queue variants as event queues of active objects as well as
most memory partitions as QF event pools.

The most important reason why you should consider using a traditional blocking RTOS
for executing event-driven QF applications is compatibility with the existing software. For
example, most communication stacks (TCP/IP, USB, CAN) are designed for a

traditional blocking kernel. In addition, a lot of legacy code requires blocking mechanisms,
such as semaphores. A conventional RTOS allows you to run the existing software
components as regular “blocking” tasks in parallel to the event-driven QF application.

On the other hand, if your project does not include legacy software or if you can afford to
rewrite it in a nonblocking way, a conventional blocking RTOS could be an unnecessary
complication and overkill for an event-driven system. You don’t need an RTOS to

partition the application into tasks, because active objects already achieve this goal. If the
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responsiveness of the simple “vanilla” kernel is not sufficient, you can employ a
nonblocking, run-to-completion (RTC) preemptive kernel. As described in Section 6.3.8
in Chapter 6, such an RTC kernel provides deterministic, preemptive priority-based
execution of event-driven systems at a fraction of the cost, complexity, and porting effort
associated with any conventional blocking RTOS. In Chapter 10, I describe a lightweight,
preemptive RTC kernel called QK, which is part of the QP event-driven platform.

In this section I describe porting QF to the pC/OS-II RTOS. I have chosen nC/OS-II as
an example because it provides an excellent case study of a traditional priority-based,
preemptive RTOS that is superbly documented in the book Micro-C/OS-II: The
Real-Time Kernel, by Jean J. Labrosse [Labrosse 02].

To focus the discussion of the port, I employ identical configuration to that described in the
Micro-C/OS-II book. I use a standard 80x86-based PC running any variant of Windows
and the Borland Turbo C++ 1.01 compiler® configured to generate code for “large” memory
models. This configuration allows you to easily try the working port on your desktop
without any investment in embedded hardware or the specific compiler. The QF port to pC/
OS-II is located in the <gp>\gpc\ports\80x86\ucos2\tcppl01\1\ directory.

NOTE

pC/OS-II is a commercial product of Micrium Inc. (www.micrium.com). With the kind per-
mission from Micrium, the code accompanying this book contains precompiled object-modules
for pC/OS-II v2.86 (the latest version as of this writing) as well as the external header files (see
Listing 8.1(13) for the location of these files). Note that the version 2.86 is several generations
newer than the version 2.60 published in the Micro-C/OS-II book. You need to contact Micrium
Inc. to obtain the latest pC/OS-II source code and documentation.

Even though I had to settle on a concrete CPU and compiler to actually let you execute
the code, I have carefully designed the provided QF port to pC/OS-II to be generic
and applicable to most CPUs and compilers to which pC/OS-II has been ported. In the
case of porting QF to an external RTOS (uC/OS-II in this case), the RTOS forms an
indirection layer that insulates QF from the CPU and the nonportable compiler
extensions. What this means is that you still need to port the RTOS to the specific CPU
and compiler, but you don’t need to modify the QF port to the RTOS because the
RTOS API does not change.

3 The Micro-C/OS-II book uses the newer Borland C++ 4.5 compiler.
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One specific note I need to make at this point is that pC/OS-II employs a
diametrically different porting and configuring policy than QF. Whereas QF is
deployed as a fine-granularity library that allows the linker to eliminate any unused
object modules at link time, pC/OS-II is configured mostly at compile time via
configuration macros located in the os_cfg.h header file [Labrosse 02]. Most of
the PC/OS-II code is compiled into just one monolithic object module
(ucos_ii.obj), which the linker cannot chop into pieces easily.* The point to
remember is that you need to recompile the QF library whenever you change the
LC/OS-II configuration (the os_cfg.h file), because QF relies on some of this
configuration.

8.3.1 The gep_port.h Header File

The platform-specific gep_port.h header file, shown in Listing 8.14, reuses the
LC/OS-II configuration defined in the os_cpu.h header file. You typically don’t need
to modify gep_port.h to work with any other pnC/OS-II port.

Listing 8.14 The gep_port.h header file for pC/OS-II

#ifndef gep_port_h
#define gep_port_h

(1) #include "ucos_1ii.h" /*uC/0S-II include file */

/* Exact-width integer types, as defined in uC/0S-II */
(2) typedef INT8S int8_t;
typedef INT16S intlé6_t;
typedef INT32S int32_t;
typedef INT8U uint8_t;
typedef INT16U uintl6_t;
typedef INT32U uint32_t;

(3) #include "gep.h" /* QEP platform-independent public interface */

#endif /* gep_port_h */

4 Some linkers can still remove unused code, even from a single object module, but most linkers simply
pull in the entire object module.
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(1) The ucos_ii.h header file contains the platform-independent nC/OS-1I API as
well as platform-specific declarations, such as pC/OS-II portable integer data
types defined in the os_cpu.h header file.

(@)

3)

I decided to define the C99-standard exact-width integers in terms of pC/OS-II
portable integer data types. The idea is to consistently reuse the same data types
that you need to define for pC/OS-II anyway.

As always, the platform-specific gep_port.h header file must include the
platform-independent QEP interface.

8.3.2 The gf_port.h Header File

The integration between QF and pC/OS-II occurs at a higher level than in the “vanilla”
port. The QF port to pC/OS-II uses less of the native QF facilities and more
UC/OS-II services. Listing 8.15 shows the gf_port.h header file for nC/OS-II.

The only piece of this file that you need to potentially adapt from one pC/OS-II port
to another is the QF critical section definition.

Listing 8.15 The gf_port.h header file for pC/OS-Il. The pC/OS-Il API
calls are shown in boldface

(10)

#ifndef gqf_port_h
#define gf_port_h

#define QF_EQUEUE_TYPE
#define QF_THREAD_TYPE

/* The maximum number of active objects in the application */

#define QF_MAX_ACTIVE

/* uC/0S-II critical section operations (critical section method 3) */

#define QF_INT KEY_TYPE
#define QF_INT_LOCK (key_)
#define QF_INT_ UNLOCK (key_)

#include "gep_port.h" /* QEP port, includes the master uC/0S-II include */
#include "gequeue.h" /* native QF event queue for deferring events */
#include "gf.h" /* QF platform-independent public interface */

/***********************************************************************

* interface used only inside QF, but not in applications

*/

typedef struct UCosMemPartTag {

/* uC/0S-ITI event queue and thread types */
OS_EVENT *
INT8U

OS_MAX_TASKS
OS_CPU_SR

((key_) = OSCPUSaveSR())
OSCPURestoreSR (key )

/* uC/0S-II memory pool and block-size */

Continued onto next page
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OS_MEM *pool; /* uC/0S-1II memory pool */
QEventSize block_size; /* the block size of the pool */
} UCosMemPart;
/* uC/0S-1II event pool operations */
(11) #define QF_EPOOL_TYPE_ UCosMemPart
#define QF_EPOOL_INIT_ (p_, poolSto_, poolSize_, evtSize_ ) do { \
INT8U err; \
(12) (p_) .block_size = (evtSize_); \
(p_) .pool = OSMemCreate (poolSto_, (INT32U) ((poolSize_)/(evtSize_)), \
(INT32U) (evtSize_ ), &err); \
Q_ASSERT (err == OS_NO_ERR) ; \
} while (0)
(13) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).block_size)
#define QF_EPOOL_GET_(p_, e_) do { \
INT8U err; \
((e_) = (QEvent *)OSMemGet ( (p_) .pool, &err)); \
} while (0)
#define QF_EPOOL_PUT_(p_, e_) OSMemPut((p_).pool, (void *) (e_))
#endif /* gf_port_h */
(1) The active object event queue type is set to the pC/OS-II message queue.
(2) In pC/OS-II, the task (thread) is unambiguously identified by its priority typed as
INT8U.
(3) The maximum number of active object QF_MAX_ACTIVE is set to the maximum

number of pC/OS-II tasks, configured in os_cfg.h.

Most of pC/OS-II ports use the critical section method 3 [Labrosse 02]. You specify the
critical section method in the os_cpu.h header file for that port. The pC/OS-II critical
section method 3 corresponds exactly to the “saving and restoring interrupt status”
policy in QF. (Incidentally, the uC/OS-II critical section method 1 corresponds
precisely to the QF policy of “unconditional interrupt locking and unlocking”.)

(4) The policy of “saving and restoring interrupt status” is established by defining

(&)

QF_INT_KEY_TYPE to the pC/OS-II type OS_CPU_SR.

The QF_INT_LOCK () macro is defined consistently with the pC/OS-II
OS_ENTER_CRITICAL () macro from os_cpu.h. Note that I cannot use the
macro OS_ENTER_CRITICAL () directly because it hardcodes the interrupt lock
key as cpu_sr.
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(6) The QF_INT_UNLOCK () macro is defined consistently with the pC/OS-II
OS_EXIT CRITICAL () macro from os_cpu.h.

(7) Since this port uses QEP, the gep_port .h header file is included (see Listing 8.3
(19)).

(8) I also decided to include the gequeue.h header file to be able to include the QF
facilities for deferring and recalling events. Note that the native QF event queue is
not used for posting events to active objects, which is accomplished with the
pC/OS-1I message queue.

(9) The gf_port.h header file must always include the platform-independent QF
interface (see Listing 8.3(23)).

This QF port uses the pC/OS-II memory partitions as event pools. In principle, you
could define the QF _EPOOL_TYPE directly to 0S_MEM*. The nC/OS-II memory
partition provides all services that QF needs. In particular, you could get access to block
size of the partition directly through the 0S_MEM.0SMemB1k data member. However,
memory partitions in other RTOSs often do not provide a way to obtain the block
size managed by the partition (e.g., eCos). Therefore, in this QF port I decided to
demonstrate a general solution, which is to combine the memory partition with the
block-size data member into a single structure.

(10) The UCosMemPart structure combines the pC/OS-II memory partition handle
with the block size data member.
(11) The QF_EPOOL_TYPE data type is defined to the UCosMemPart structure.

(12) The initialization of an event pool includes storing the block size in the
UCosMemPart.block_size data member.

(13) The block-size information is available in the UCosMemPart .block_size data
member.

8.3.3 The gf_port.c Source File

The QF port to pC/OS-II, as most QF ports to external RTOSs, require some
glue-code to bolt the framework to the external RTOS. You place such code in the
gf_port.c source file, which is shown in Listing 8.16. You typically don’t need
to change this file for different nC/OS-II ports.
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Listing 8.16 The gf_port.c source file for nC/OS-Il; the nwC/OS-1I API
calls are shown in boldface

#include "qgf_pkg.h"
#include "gassert.h"

Q_DEFINE_THIS_MODULE (gf_port)

/2P */
void QF_init (void) {
(1) OSInit():; /* initialize uC/0S-ITI */
}
/2 S */
void QF_run(void) {
(2) OSstart(); /* start uC/0S-II multitasking */
}
2 */
void QF_stop (void) {
(3) QF_onCleanup () ; /* call the QF cleanup callback */
}
2 */
(4) static void task_function(void *pdata) { / * the expected signature */
(5) ((QActive *)pdata)->running = (uint8_t)1; /* enable the thread-loop */
(6) while (((QActive *)pdata)->running) { /* event loop */
(7) QEvent const *e = QActive_get_((QActive *)pdata) ;
(8) QF_ACTIVE_DISPATCH_ (& ( (QActive *)pdata)->super, e);
(9) QF_gc (e) ; /* check if the event is garbage, and collect it if so */
}
(10) QF_remove_ ( (QActive *)pdata); /* remove this object from the framework */
OSTaskDel (0OS_PRIO_SELF); /* make uC/0S-II forget about this task */
}
/28 */
void QActive_start (QActive *me, uint8_t prio,
QEvent const *gSto[], uint32_t gLen,
void *stkSto, uint32_t stkSize,
QEvent const *ie)
{
INT8U err;
(12) me->eQueue = OSQCreate ( (void **)gSto, gqLen) ;
(13) Q_ASSERT (me->eQueue != (OS_EVENT *)0) ; /* uC/0S-1I queue created */
(14) me->prio = prio; /* save the QF priority */
(15) QF_add_ (me) ; /* make QF aware of this active object */
(16) QF_ACTIVE_INIT (&me->super, ie); /* execute initial transition */
/* uC/0S task is represented by its unique priority */
(17) me->thread = (uint8_t) (QF_MAX_ACTIVE - me->prio); /* map touC/0S prio. */
(18) err = OSTaskCreateExt (&task_function, /* the task function */
me, /* the 'pdata’ parameter */

& (((OS_STK *)stksSto) [ (stkSize / sizeof (0S_STK)) - 1]1), /* ptos */
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me->thread, /* uC/0S-I1I task priority */
me->thread, /*id */
(OS_STK *)stkSto, /* pbos */
stkSize/sizeof (OS_STK), /* size of the stack in OS_STK units */
(void *)o0, /* pext */
(INT16U)OS_TASK_OPT_STK_CLR) ; /* opt */
(19) Q_ASSERT (err == OS_NO_ERR) ; /* uC/0S-II task created */
}
/P */
void QActive_stop(QActive *me) {
INT8U err;
(20) ((QActive *)me)->running = (uint8_t)O0; /* stop the thread loop */
(21) 0SQDel ( ( (QActive *)pdata)->eQueue, OS_DEL_ALWAYS, &err);/*cleanup queue */
(22) Q_ASSERT (err == OS_NO_ERR) ; /*uC/0S-1II queue deleted */
}
/2 */
void QActive_postFIFO (QActive *me, QEvent const *e) {
(23) QF_INT LOCK_KEY_
(24) QF_INT_LOCK_ () ;
(25) if (e->dynamic_ != (uint8_t)0) {
(26) ++ ( (QEvent *)e)->dynamic_;
}
(27) QF_INT UNLOCK_ () ;
(28) Q_ALLEGE (OSQPost ( (OS_EVENT *)me->eQueue, (void *)e)== OS_NO_ERR) ;
}
/2 */
void QActive_postLIFO (QActive *me, QEvent const *e) {
QF_INT_LOCK_KEY__
QF_INT_LOCK_ () ;
if (e->dynamic_ != (uint8_t)0) {
++ ( (QEvent *)e)->dynamic_;
}
QF_INT_UNLOCK_ () ;
(29) Q_ALLEGE (OSQPostFront ( (OS_EVENT *)me->eQueue, (void *)e) == OS_NO_ERR) ;
}
/2P */
QEvent const *QActive_get_ (QActive *me) {
INT8U err;
(30) QEvent const *e = (QEvent *)0SQPend( (OS_EVENT *)me->eQueue, 0, &err);
(31 Q_ASSERT (err == OS_NO_ERR) ;

return e;

(1) The function QF_init () initializes the framework. In the case of QF port to

2

pUC/OS-II, the function must initialize the underlying RTOS by the pC/OS-II
call oSInit ().

The function QF_run () transfers control to the framework to run the application.

In the case of QF port to pC/OS-II, the function starts multitasking by the
pC/OS-II call osstart ().
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NOTE

Note that neither QF_init () nor QF_run () call the QF_onStartup () callback to enable
interrupts. This is intentional in the pC/OS-II port. As described in Section 3.11 of the
Micro-C/OS-1I book [Labrosse 02], nC/OS-II requires you to start interrupts, including the
system clock tick, only after you start multitasking with osStart (). The recommended
method is to start interrupts from a pC/OS-II task. The example application located in
<gp>\gpc\examples\80x86\ucos2\tcppl01\1\dpp)\ illustrates this aspect.

3)

“)

&)

(6)
(7-9)

(10)
a1
(12)

13)

(14)
15)
(16)
A7)

The function QF_stop () stops the framework. There is nothing you can do to
stop pC/OS-II, you simply abort. Therefore the only action is to call the
cleanup callback.

Under a traditional RTOS, all active object threads execute the same function
task_function (), which has the structure shown in Figure 6.12(A) in
Chapter 6. The task function has the exact signature expected by pC/OS-II. The
parameter pdata is set to the active object owning the task.

The task function sets the QActive.running flag to continue the local event
loop.

The event loop continues as long as the QActive.running flag is set.

These are the three steps of the active object thread (see Listing 7.8 in
Chapter 7).

After the event loop terminates, the active object is removed from the framework.
The task is deleted by the nC/OS-II call 0STaskDel ().

The first step in starting an active object is creating the event queue by the
nC/OS-II call 0sQCreate ().

The queue creation must be successful; otherwise the application cannot
continue.

The active object’s priority is set.
The active object is registered with the QF framework.
The active object’s state machine is initialized.

The QF priority is mapped to the pC/OS-II task priority.
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pnC/OS-II uses a priority numbering scheme in which O represents the highest possible
priority and higher numerical values represent lower priority of the tasks. This
happens to be exactly the opposite of the QF priority numbering scheme.

(18)

The active object thread is created by the pC/OS-II call 0STaskCreateExt ().

NOTE

Traditional RTOSs, such as pC/OS-II, require per-task stacks. The QActive_start () para-
meters ‘stkSto’ and ‘stkSize’ are designed specifically to support conventional RTOSs.

(19)
(20)

21
(22)

The task creation must be successful; otherwise the application cannot continue.

Clearing the QActive.running flag terminates the event loop and exits the
active object thread (see line (5)).

The event queue is deleted by the pC/OS-II call 0sQDel ().

The deletion of the queue must be successful.

The QF port to pC/OS-II does not use the native QF active object queues. Therefore, the
QF implementation of QActive_postFIFO (), QActive_postLIFO (), and
QActive_get_ () must be replaced by the pC/OS-II-specific code. The rest of the
af_port.c source file defines these three functions for pC/OS-II (see also Section 8.1.6).

(23-27)

(28)

(29)

Posting an event to a queue must always increment the reference counter of a
dynamic event. This must happen exactly as shown.

The event pointer is posted to the pC/OS-II message queue with the pC/OS-I1
call 0sQPost (), which uses the standard FIFO policy. Note that pC/OS-II
message queues are designed to accept only pointer-size objects. This is
exactly what QF needs. The function is called inside the assertion macro
Q_ALLEGE (), to make sure that the operation always succeeds (this is part of
the QF’s event delivery guarantee). Note that Q_ALLEGE () evaluates its
argument even if assertions are disabled (see Section 6.7.3 in Chapter 6).

The event pointer is posted to the pC/OS-II message queue with the pC/OS-I1
call 0sQpostFront (), which uses the LIFO policy. Again, the assertion
makes sure that the event is posted successfully.
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NOTE

You should make sure that the message-posting operation you’re using is callable from ISRs.
The pC/OS-II functions 0SQPost () and 0OSQPostFront () are callable from ISRs.

(30) The event is retrieved from the message queue with the pC/OS-II call 0SQPend ().
The second argument to this function is the timeout, where a timeout of
0 indicates indefinite waiting on an empty event queue.

(31) The pending operation must not fail.

8.3.4 Building the pnC/OS-Il Port

The QF port to pC/OS-II comes with the build script make.bat located in the port
directory <gp>\gpc\ports\80x86\ucos2\tcppl01\1\. The most important aspect
of the script is that none of the files listed in Table 8.2 are included in the QF library
build, because this functionality is provided in the source file gf_port.c (Listing
8.16).

8.3.5 The System Clock Tick (QF_tick())

In nC/OS-I1, the system clock tick interrupt is coded in assembly (see the pC/OS-II port
file os_cpu_a.asm). Generally, you should not touch such assembly files. pC/OS-II
provides, however, a customizable “hook” function 0STimeTickHook (), which is called
from the system clock tick ISR and is the ideal place to invoke QF_tick().

Rather than defining the 0STimeTickHook () in gf_port.c, I decided to let the
application define the 0STimeTickHook () callback so that you can easily add some
more processing to it. You should not forget to invoke QF_tick (). I'd like to remind
you again that pC/OS-II requires you to actually start the clock tick interrupt only from
the task level in your application.

void OSTimeTickHook (void) {
QF tick():;
/* optionally, do some application-specific work ... */
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8.3.6 Idle Processing

Finally, I’d like to mention the idle processing and the proper use of MCUs low-power
modes with a preemptive kernel, such as pC/OS-II, because it is fundamentally
different than in a nonpreemptive case like the “vanilla” kernel. A preemptive kernel
performs a context switch to a special idle task when all other tasks are blocked.
Most kernels provide a way to customize the idle task (e.g., pC/OS-II provides a
callback function 0STaskIdleHook ()) so that you can conveniently implement

the transition to a low-power MCU state from the idle task. The main difference
between a preemptive kernel and a nonpreemptive foreground/background system or
the “vanilla” kernel is that as long as tasks are ready to run, the preemptive kernel
never switches the context back to the idle task. Consequently the transition to a
low-power mode from the idle task is much simpler because it does not need to
occur with interrupts locked. In fact, the 0STaskIdleHook () callback is always
invoked with interrupts unlocked.

8.4 QF Port to Linux (Conventional
POSIX-Compliant OS)

Programming for a general-purpose operating system (OS) such as Linux or Windows is
very different from working with a typical RTOS or a “bare metal” embedded
processor. A “big” OS strictly limits you to a given API, whether the POSIX API for
Linux or the Win32 API for Windows.

In particular, the general-purpose APIs don’t let you lock and unlock interrupts, so you
need to employ a different mutual-exclusion mechanism to implement the QF critical
section. Also surprisingly, the “big” APIs don’t support a lightweight message queue,
so you need to build your own out of the native QF event queue and a blocking
mechanism supported in the given APL

In this section I describe a QF port to Linux, which should be also directly applicable
on any POSIX-compliant OS, as it strictly adheres to the POSIX 1003.1cn1995
standard [Butenhof 97]. In this port, a QF application runs as a single process, with
each QF active object executing in a separate lightweight POSIX thread (Pthread).
The port uses a Pthread mutex to implement the QF critical section and the
Pthread condition variables to provide the blocking mechanism for event queues

of active objects.
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8.4.1 The gep_port.h Header File

Listing 8.17 shows the gep_port.h header file for Linux. The GNU gcc compiler
supports the C99 standard, so I simply include the <stdint.h> file. I have also
increased the event signal size to 2 bytes, which gives you 64K different signals. With
this configuration, the size of QEvent base structure is just 3 bytes, which most
32-bit compilers will pad to 4 bytes.

Listing 8.17 The gep_port.h header file for Linux

#ifndef gep_port_h
#define gep_port_h

/* 2-byte (64K) signal space */
#define Q SIGNAL_SIZE 2

#include <stdint.h> /* C99-standard exact-width integers */
#include "gep.h" /* QEP platform-independent public interface */
#endif /* gep_port_h */

8.4.2 The gf_port.h Header File

Listing 8.18 shows the gf_port.h header file for Linux. You typically should not need
to change this file as you move to a different POSIX-compliant OS.

Listing 8.18 The gf_port.h header file for Linux; boldface indicates
elements of the Pthread API

#ifndef gf_port_h
#define gf_port_h
/* Linux event queue and thread types */

(1) #define QF_EQUEUE_TYPE QEQueue
(2) #define QF_OS_OBJECT_TYPE pthread_cond_t
(3) #define QF_THREAD_TYPE pthread_t

/* The maximum number of active objects in the application */
(4) #define QF_MAX_ ACTIVE 63
/* various QF object sizes configuration for this port */
) #define QF_EVENT_SIZ_SIZE 4
) #define QF_EQUEUE_CTR_SIZE 4
(7) #define QF_MPOOL_SIZ_SIZE 4
) #define QF_MPOOL_CTR_SIZE 4
) #define QF_TIMEEVT_CTR_SIZE 4
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/* QF critical section entry/exit for Linux, see NOTEQ1 */

(10) /* QF_INT_KEY_ TYPE not defined, "unconditional interrupt locking" policy */
(11) #define QF_INT_LOCK (dummy) pthread mutex_lock (&QF pThreadMutex_)
(12) #define QF_INT_UNLOCK (dummy)pthread_mutex_unlock (&QF_ pThreadMutex_ )
(13) #include <pthread.h> /* POSIX-thread API */
(14) #include "gep_port.h" /* QEP port */
(15) #include "gequeue.h" /* Linux needs event-queue */
(16) #include "gmpool.h" /* Linux needs memory-pool */
(17) #include "qgf.h" /* QF platform-independent public interface */
/************************************************************************
* interface used only inside QF, but not in applications
*/
/* 0S-object implementation for Linux */
(18) #define QACTIVE_EQUEUE_WAIT_ (me_) \
while ((me_)->eQueue.frontEvt == (QEvent *)0) \
pthread_cond_wait (& (me_)->0sObject, &QF pThreadMutex_)
(19) #define QACTIVE_EQUEUE_SIGNAL_ (me_) \
pthread_cond_signal (& (me_)->osObject)
(20) #define QACTIVE_EQUEUE_ONEMPTY_ (me_) ((void)O0)
/* native QF event pool operations */
(21) #define QF_EPOOL_TYPE_ QMPool
(22) #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \
QMPool_init (&(p_), poolSto_, poolSize_, evtSize_)
(23) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).blockSize)
(24) #define QF_EPOOL_GET_ (p_, e_) ((e_) = (QEvent *)QMPool_get (&(p_)))
(25) #define QF_EPOOL_PUT_ (p_, e_) (QMPool_put (&(p_), e_))
(26) extern pthread_mutex_t QF_pThreadMutex_; /* mutex for QF critical section */
(1) The Linux port employs the QF native QEQueue as the event queue for active
objects.
(2) The Pthread condition variable is used for blocking the QF native event queue.
Note that each active object has its own private condition variable.
(3) Each active object also holds a handle to its Pthread.
(4) The Linux port is configured to use the maximum allowed number of active
objects.
(5-9) Linux requires a 32-bit CPU, so I configure all sizes of internal QF objects to

4 bytes.
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(10) The QF_INT_KEY_ TYPE macro is not defined. This means that the interrupt
status is not preserved across the QF critical section.

(11) The QF critical section is implemented with a single global Pthread mutex
QF_pThreadMutex_. The mutex is locked upon entry to a critical section.

(12) The global mutex QF_pThreadMutex_ is unlocked upon exit from a critical
section.

NOTE

The global mutex QF_pThreadMutex_ is configured as a normal “fast” Pthread mutex
that cannot handle nested locks. Consequently, the QF port to Linux does not support
nesting of critical sections. This QF port is designed to never nest critical sections internally,
but you should be careful not to call QF services from critical sections at the application
level.

(13) The system header file <pthread.h> contains the Pthread APIL.
(14) This QF port uses the QEP event processor.

(15) This QF port uses the native QF event queue QEQueue.

(16) This QF port uses the native QF memory pool QMPool.

(17) The platform-independent gf .h header file must be always included.

The following three macros QACTIVE_EQUEUE_WAIT_ (), QACTIVE_EQUEUE_
SIGNAL_ (), and QACTIVE_EQUEUE_ONEMPTY_ () customize the native QF event
queue to use the Pthread condition variable for blocking and signaling the active object’s
thread. (See Section 7.8.3 in Chapter 7 for the context in which QF calls these macros.)

(18) As long as the queue is empty, the private condition variable osObject
blocks the calling thread. Note that the macro ACTIVE_EQUEUE_WAIT_ ()
is called from critical section, that is, with the global mutex
QF _pThreadMutex_ locked.

The behavior of the pthread_cond_wait () function requires explanation. Here is the
description from the POSIX-thread standard:
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“The function pthread_cond_wait () atomically releases the associated mutex and causes
the calling thread to block on the condition variable. Atomically here means ‘atomically with
respect to access by another thread to the mutex and then the condition variable.” That is, if
another thread is able to acquire the mutex after the about-to-block thread has released it,
then a subsequent call to pthread_cond_signal () or pthread_cond_broadcast () in
that thread behaves as if it were issued after the about-to-block thread has blocked.”

The bottom line is that the global mutex QF_pThreadMutex_ remains unlocked only as
long as pthread_cond_wait () blocks. The mutex gets locked again as soon as the
function unblocks. This means that the macro ACTIVE_EQUEUE_WAIT_ () returns within
critical section, which is exactly what the intervening code in QActive_get_ () expects.

The while -loop around the pthread_cond_wait () call is necessary because of the
following comment in the POSIX-thread documentation:

“Since the return from pthread_cond_wait () does not imply anything about the value of
the predicate, the predicate should be re-evaluated upon such return.”

(19) The macro QACTIVE_EQUEUE_SIGNAL_ () is called when an event is
inserted into an empty event queue (so the queue becomes not-empty). Note
that this macro is called from a critical section.

(20) The macro QACTIVE_EQUEUE_ONEMPTY_ () is called when the queue is
becoming empty. This macro is defined to nothing in this port.

(21-25) The Linux port uses QMPool as the QF event pool. The platform abstraction
layer (PAL) macros are set to access the QMPool operations (see Section 7.9
in Chapter 7).

(26) The global mutex QF_pThreadMutex_ is declared as an external variable.

8.4.3 The gf_port.c Source File

The gf_port.c source file shown in Listing 8.19 provides the “glue-code” between
QF and the POSIX API. The general assumption I make here is that QF is going to be
used in real-time applications (perhaps “soft real-time”). This means that I'm trying
to use as much as possible the real-time features available in the standard POSIX APIL.
Since some of these features require the “superuser” privileges, the actual real-time
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behavior of the application will depend on the privilege level at which it is launched.
As always with a general-purpose OS used for real-time applications, your actual
mileage may vary.

Listing 8.19 The gf_port.c header file for Linux; boldface indicates
elements of the Pthread API

#include "qgf_pkg.h"
#include "gassert.h"

#include <sys/mman.h> /* for mlockall() */
#include <sys/select.h> /* for select () */
Q_DEFINE_THIS_MODULE (gf_port)

/* Global objects ——=====-=----——-— */
(1) pthread_mutex_t QF pThreadMutex_ = PTHREAD MUTEX INITIALIZER;

/* Local objects ——----—-—---------o oo */
static uint8_t 1_running;

/2P */
void QF_init (void) {

/* lock memory so we'’re never swapped out to disk */
(2) /*mlockall (MCL_CURRENT | MCL_FUTURE) ; uncomment when supported */

/S */
(3) wvoid QF_run(void) {
struct sched_param sparam;
struct timeval timeout = { 0 }; /* timeout for select() */

(4) QF_onStartup() ; /* invoke startup callback */

/* try to maximize the priority of the ticker thread, see NOTE01l */
(5) sparam.sched priority = sched_get_priority max(SCHED_FIFO);
(6) if (pthread_setschedparam(pthread _self (), SCHED FIFO, &sparam) ==0) {
/* success, this application has sufficient privileges */
}
else {
/* setting priority failed, probably due to insufficient privileges */
}

1_running = (uint8_t)1;

(7) while (1_running) {
QF_tick(); /* process the time tick */
(9) timeout.tv_usec = 8000;

(10) select (0, 0, 0, 0, &timeout); /* sleep for the full tick, NOTEO05 */
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(11)
(12)
(13)

(14)

(15)
(16)
(17)
(18)
(19)
(20)

(21)

(22)

(23)

(24)
(25)

(26)

(27)
(28)

(29)
(30)

(31)

(32)
(33)

(34)

QF_onCleanup() ; /* invoke cleanup callback */
pthread_mutex_ destroy (&QF_ pThreadMutex );
}
L e e e e e e e e e e e e e e e e e e e e e e */
void QF_stop (void) {
1_running = (uint8_t)O0; /* stop the loop in QF_run () */
}
L e e e e e e e e e e e e e e e e e e */
static void *thread_routine(void *arg) ({ /* the expected POSIX signature */
((QActive *)arg)->running = (uint8_t)1; /* allow the thread loop to run */
while (((QActive *)arg)->running) { /* QActive_stop() stops the loop */
QEvent const *e = QActive_get_( (QActive *)arg) ;/*wait for the event */
QF_ACTIVE_DISPATCH_ (& ( (QActive *)arg)->super, e); /* dispatch to SM */
QF_gc(e); /* check if the event is garbage, and collect it if so */
}
QF_remove_ ((QActive *)arg) ;/* remove thisobject fromany subscriptions */
return (void *)O0; /* return success */
}
L e e e e e e e e e e e e e e e e e e e */

void QActive_start (QActive *me, uint8_t prio,
QEvent const *gSto[], uint32_t glLen,
void *stkSto, uint32_t stkSize,
QEvent const *ie)

pthread_attr_t attr;
struct sched_param param;

Q_REQUIRE (stkSto == (void *)0); /* p-threads allocate stack internally */

QEQueue_init (&me->eQueue, gSto, (QEQueueCtr)glLen) ;
pthread_cond_init (&me->o0sObject, 0);

me->prio = prio;
QF_add_ (me) ; /* make QF aware of this active object */
QF_ACTIVE_INIT_(&me->super, ie); /* execute the initial transition */

/* SCHED_FIFO corresponds to real-time preemptive priority-based scheduler
* NOTE: This scheduling policy requires the superuser privileges
*/
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
/* see NOTE04 */
param.sched_priority = prio
+ (sched _get_priority max(SCHED_FIFO)
- QF_MAX_ ACTIVE - 3);

pthread_attr_setschedparam(&attr, &param);
pthread_attr_ setdetachstate(&attr, PTHREAD CREATE_ DETACHED) ;

if (pthread_create(&me->thread, &attr, &thread_routine, me) !=0) {

Continued onto next page
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/* Creating the p-thread with the SCHED_FIFO policy failed.
* Most probably this application has no superuser privileges,
* so we just fall back to the default SCHED_OTHER policy
* and priority 0.
*/
pthread_attr_setschedpolicy(&attr, SCHED_ OTHER) ;
param.sched _priority =0;
pthread_attr_ setschedparam(&attr, &param);
Q_ALLEGE (pthread_create(&me->thread, &attr, &thread routine, me)==0) ;
}
pthread_attr_destroy(&attr);
}

void QActive_stop (QActive *me) {
me->running = (uint8_t)0; /* stop the event loop in QActive_run() */
pthread_cond_destroy (&me->osObject); /* cleanup the condition variable */

ey

2

3

“)

(5.6)

The global Pthread mutex QF_pThreadMutex_ variable for the QF critical
section is defined.

On POSIX systems that support it, you might want to call the mlockall ()
function to lock in physical memory all of the pages mapped by the address
space of a process. This prevents nondeterministic swapping of the process

memory to disk and back. The standard desktop Linux does not

support mlockall (), so it is commented out.

The oF_run () function is called from main () to let the framework execute the
application. In this QF port, the QF_run () function is used as the
“ticker thread” to periodically call the QF_tick () function.

The callback function QF_onStartup () is called to give the application a
chance to perform startup.

These two lines of code attempt to set the current thread (the “ticker thread”) to
the SCHED_FIFO scheduling policy and to the maximum priority within that
policy.

In Linux, the scheduler policy closest to real time is the SCHED_FIFO policy, available
only with the “superuser” privileges. QF _run () attempts to set this policy to
maximize its priority so that the system clock tick occurs in the most timely manner.
However, setting the SCHED_FIFO policy might fail, most probably due to insufficient
privileges.
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(7) The “ticker” thread runs in loop, as long as the 1_running flag is set.
(8) The “ticker” thread calls QF_tick () outside of any critical section.
(9,10) The “ticker” thread is put to sleep for the rest of the time slice.

I use the select () system call as a fairly portable way to sleep because it seems to
deliver the shortest sleep time of just one clock tick. The timeout value passed to
select () is rounded up to the nearest tick (10 milliseconds on desktop Linux). The
timeout cannot be too short, because the system might choose to busy-wait for very
short timeouts. An obvious alternative—the POSIX nanosleep system call—seems to
be unable to block for less than two clock ticks (20 milliseconds).

Also according to the man pages, the function select () on Linux modifies the timeout
argument to reflect the amount of time not slept. Most other implementations do not
do this. I handle this quirk in a portable way by always setting the microsecond part of
the structure before each select () call (see line (9)).

(11)  When the loop exits, the callback function QF_onCleanup () is called to give
the application a chance to perform cleanup.

(12) The global Pthread mutex QF_pThreadMutex_ is cleaned up before exit.

(13) The QF_run () function exits, which causes themain () function to exit. The system
terminates the process and shuts down all Pthreads spawned from main ().

(14) The exit sequence just described is triggered when the application calls
QF_stop (), which stops the loop in QF_run ().

The following static function thread_routine () specifies the thread function of all
active objects.

(15) In this POSIX port, all active object threads execute the same function
thread_routine (), which has the structure shown in Figure 6.12(A) in
Chapter 6. The thread routine has the exact signature expected by POSIX API
pthread_create (). The parameter arg is set to the active object owning
the thread.

(16) The thread routine sets the QActive.running flag to continue the local event
loop.

(17) The event loop continues as long as the QActive.running flag is set.
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(18-20) These are the three steps of the active object thread (see Listing 7.8 in
Chapter 7).

(21) After the event loop terminates, the active object is removed from the
framework.

(22) The return from the thread routine cleans up the POSIX thread.

(23) The pthread_create () function allocates the stack space for the thread
internally. This assertion makes sure that the stack storage is not provided,
because that would be wasteful.

(24) The native QF event queue of the active object is initialized.
(25) The Pthread condition variable is initialized.

(26) The active object’s priority is set.

(27) The active object is registered with the QF framework.

(28) The active object’s state machine is initialized.

(29-33) The attribute structure for the active object thread is initialized. In the first
attempt, the thread is created with the SCHED_FIFO policy.

According to the man pages (for pthread_attr_setschedpolicy ()) the only

value supported in the Linux Pthread implementation is PTHREAD_SCOPE_SYSTEM,
meaning that the threads contend for CPU time with all processes running on the
machine. In particular, thread priorities are interpreted relative to the priorities of all
other processes on the machine. This is good, because it seems that if we set the
priorities high enough, no other process (or threads running within) can gain control
over the CPU. However, QF limits the number of priority levels to QF_MAX_ACTIVE.
Assuming that a QF application will be real time, this port reserves the three highest
Linux priorities for the system threads (e.g., the ticker, I/O), and the rest of the highest-
priorities for the active objects.

(34) The active object Pthread is created. If the thread creation fails, it is most
likely due to insufficient privileges to use the real-time policy SCHED_FIFO.

(35-37) The thread attributes are modified to use the default scheduling policy
SCHED_OTHER and priority zero.
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(38) The Pthread creation is attempted again. This time it must succeed or the
application cannot continue.

(39) The Pthread attribute structure is cleaned up.

(40) To stop an active object, the QActive_stop () function clears the QActive.
running flag. This stops the active object event loop at line (17) and causes the
thread routine to exit.

(41) The condition variable is cleaned up.

8.5 Summary

Portability of system-level software, such as the QF real-time framework, is critical to
its usability, especially in the real-time embedded systems (RTES) domain. QF has
been designed from the ground up to be highly adaptable to various CPU architectures,
operating systems, and compilers. Without a doubt, the ease of portability has been
the most difficult, tedious, and time-consuming aspect of the framework’s design,
implementation, and testing.

QF contains a clearly defined platform abstraction layer (PAL), which encapsulates all
platform-specific code and cleanly separates it from the platform-independent code.
The QF PAL must be more flexible than the hardware abstraction layers (HALs) found
in various RTOSs. On one hand, the PAL must allow easy porting of the QF
framework to “bare metal” CPUs and compilers. This kind of portability is used in the
standalone QF configurations, such as the cooperative “vanilla” kernel, and the QK
preemptive kernel that I describe in Chapter 10. On the other hand, the QF PAL

must also allow integration between the QF and any RTOS/OS, which occurs at the
level of the API provided in the external RTOS/OS.

The proper structure and completeness of the PAL becomes apparent only after the
framework has been ported to a wide range of different actual targets, including
peculiar CPUs and not always standard compilers. To date, the standalone QF
configurations have been ported to over 10 different CPU architectures, ranging from
8-bit (e.g., 8051, PIC, AVR, 68HC(S)08, Cypress M8C/PSoC), through 16-bit (e.g.,
MSP430, M16C, x86-real mode), to 32-bit architectures (e.g., traditional ARM, ARM
Cortex-M3, Altera Nios II, x86). QF has been also ported to six major operating
systems and RTOSs, including Linux (POSIX), Windows (Win32), and VxWorks.
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Check the Website www . quantum-1leaps . com for a list of available QF ports because
new ports are added frequently.

After downloading a QF port or developing your own, you need to test the port to verify
that it works on your particular target system with your specific operating system

and compiler. At this point, you will need a test application, simple enough so that you
will essentially test the QF framework all by itself, yet not completely trivial so that
it will put most of the QF mechanisms through the paces. In the next chapter I describe
a simple test application that historically I use to test all QF ports.


http://www.quantum-leaps.com

Developing OP Applications

Example is not the main thing in influencing others. It is the only thing.
—Albert Schweitzer

In the previous two chapters, I explained the internal workings of the QF real-time
framework and issues related to porting QF to various CPUs, operating systems, and
compilers. However, I want you to realize that the way the QF framework itself is
implemented internally is very different from the way you develop applications running
on top of the framework.

A real-time framework, as any piece of system-level software, must internally employ
many low-level mechanisms, such as critical sections and various blocking APIs of
the underlying RTOS, if you use an RTOS. These mechanisms are always tricky to use
correctly and programmers often underestimate the true risks and costs of their use.

But the good news is that this traditional approach to concurrent programming is
contained within the framework. Once the framework is built and thoroughly tested, it
offers you a faster, safer, and more reliable way of developing concurrent, event-driven
software. A QF application has no more need to fiddle directly with critical sections,
semaphores, or other such mechanisms. You can program active objects effectively and
safely without even knowing what a semaphore is. Yet your application as a whole can
reap all the benefits of multitasking, such as optimal, deterministic responsiveness and
good CPU utilization.

My goal in this chapter is to explain how to develop a QP application that uses both
the QF real-time framework and the QEP event processor described in Part I of this
book. I begin with some general rules and heuristics for developing robust and
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maintainable QP applications. Next I describe the test application that historically

I have used to verify all QP ports. I walk you through all steps required to design and
implement this application. As you go over these steps, you might also flip back to
the “Fly ‘n’ Shoot” game in Chapter 1, which is a bit more advanced example than the
one I use here. In the chapter, I explain how to adapt the test application to all three
QF ports discussed in Chapter 8. The chapter concludes with guidelines for sizing event
queues and event pools.

9.1 Guidelines for Developing QP Applications

The QP event-driven platform enables building efficient and maintainable event-driven
applications in C and C++. However, it is also possible to use QP incorrectly,
basically defeating its advantages. This section summarizes the main rules and
heuristics for making the most out of active object computing implemented

with QP.

9.1.1 Rules

When developing active object—based applications, you should try to heed the following
two rules, without exception:

e Active objects should interact only through an asynchronous event exchange
and should not share memory or other resources

® Active objects should not block or busy-wait for events in the middle of
RTC processing.

I strongly recommend that you take these rules seriously and follow them religiously.
In exchange, the QF real-time framework can guarantee that your application is free
from the traditional perils of preemptive multitasking, such as race conditions,
deadlocks, priority inversions, starvation, and nondeterminism. In particular, you will
never need to use mutexes, semaphores, monitors, or other such troublesome
mechanisms at the application level. Even so, your QP applications can be fully
deterministic and can handle hard real-time deadlines efficiently.

The rules of using active objects impose a certain programming discipline. In
developing your QP applications, you will certainly be tempted to circumvent the rules.
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Occasionally, sharing a variable among different active objects or a mutually
exclusive blocking active object threads might seem like the easiest solution. However,
you should resist such quick fixes. First, you should convince yourself that the rules
are there for a good reason (e.g., see Chapters 6 and 7). Second, you must trust that it
is possible to arrive at a good solution without breaking the rules.

I repeatedly find that obeying the rules ultimately results in a better design and
invariably pays dividends in the increased flexibility and robustness of the final
software product. In fact, I propose that you treat every temptation to break the rules as
an opportunity to discover something important about your application. Perhaps
instead of sharing a variable, you will discover a new signal or a crucial event
parameter that conveys some important information.

Many examples from other arts and crafts demonstrate that discipline can be good
for art. Indeed, an artist’s aphorism says, ‘“Form is liberating.” As Fred Brooks
[Brooks 95] eloquently writes: “Bach’s creative output hardly seems to have been
squelched by the necessity of producing a limited-form cantata each week.”

I am firmly convinced that the external provision of architecture such as the QF
real-time framework enhances, not cramps, creativity.

9.1.2 Heuristics

Throughout Part II of this book, you can find several basic guidelines for constructing
active object—based systems. Here is the quick summary.

¢ Event-driven programming requires a paradigm shift from traditional sequential
programming. In the traditional approach, you concentrate on shared
resources and various blocking mechanisms, such as semaphores, to signal
events. Event-driven programming is all about writing nonblocking code and
returning quickly to the event loop.

® Your main goal is to achieve loose coupling among active objects. You seek
a partitioning of the problem that avoids resource sharing and requires minimal
communication (in terms of number and size of exchanged events).

¢ The main strategy for avoiding resource sharing is to encapsulate the resources in
dedicated active objects that manage the resources for the rest of the system.
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The responsiveness of an active object is determined by the longest RTC step
of its state machine. To meet hard real-time deadlines, you need to either
break up longer processing into shorter steps or move such processing to other,
lower-priority active objects.

A good starting point in developing an active object—based application is to
draw sequence diagrams for the primary use cases. These diagrams help you
discover signals and event parameters, which, in turn, determine the structure of
active objects.

As soon as you have the first sequence diagrams, you should build an
executable model of it. The QP event-driven platform has been specifically
designed to enable the construction and execution of vastly incomplete
(virtually empty) prototypes. The high portability of QP enables you to
build the models on a different platform than your ultimate target

(e.g., your PC).

Most of the time you can concentrate only on the internal state machines of
active objects and ignore their other aspects (such as threads of execution and
event queues). In fact, developing a QP application consists mostly of
elaborating on the state machines of active objects. The generic QEP
hierarchical event processor (Chapter 4) and the basic state patterns (Chapter 5)
can help you with that part of the problem.

9.2 The Dining Philosophers Problem

The test application that I historically have been using to verify QF ports is based on the
classic Dining Philosophers Problem (DPP) posed and solved by Edsger Dijkstra back
in 1971 [Dijkstra 71]. The DPP application is simpler than the “Fly ‘n’ Shoot” game
described in Chapter 1 and can be tested only with a couple of LEDs on your target
board, as opposed to the graphic display required by the “Fly ‘n’ Shoot” game. Still,
DPP contains six concurrent active objects that exchange events via publish-subscribe
and direct event-posting mechanisms. The application uses five time events (timers) as
well as dynamic and static events.
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9.2.1 Step 1: Requirements

First, you always need to understand what your application is supposed to accomplish.
In the case of a simple application, the requirements are conveyed through the
problem specification, which for the DPP is as follows.

Five philosophers are gathered around a table with a big plate of spaghetti in the middle
(see Figure 9.1). Between each two philosophers is a fork. The spaghetti is so
slippery that a philosopher needs two forks to eat it. The life of a philosopher consists of
alternate periods of thinking and eating. When a philosopher wants to eat, he tries to
acquire forks. If successful in acquiring two forks, he eats for a while, then puts down
the forks and continues to think. The key issue is that a finite set of tasks (philosophers)
is sharing a finite set of resources (forks), and each resource can be used by only

one task at a time. (An alternative Oriental version replaces spaghetti with rice and
forks with chopsticks, which perhaps explains better why philosophers need

two chopsticks to eat.)

Figure 9.1: The Dining Philosophers Problem.

9.2.2 Step 2: Sequence Diagrams

A good starting point in designing any event-driven system is to draw sequence
diagrams for the main scenarios (main-use cases) identified from the problem
specification. To draw such diagrams, you need to break up your problem into active
objects with the main goal of minimizing the coupling among active objects. You seek a
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partitioning of the problem that avoids resource sharing and requires minimal
communication in terms of number and size of exchanged events.

DPP has been specifically conceived to make the philosophers contend for the forks,
which are the shared resources in this case. In active object systems, the generic
design strategy for handling such shared resources is to encapsulate them inside a
dedicated active object and to let that object manage the shared resources for the rest
of the system (i.e., instead of directly sharing the resources, the rest of the
application shares the dedicated active object). When you apply this strategy to DPP,
you will naturally arrive at a dedicated active object to manage the forks. I named
this active object Table.

The sequence diagram in Figure 9.2 shows the most representative event exchanges
among any two adjacent Philosophers and the Table active objects.
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Figure 9.2: The sequence diagram of the DPP application.

(1) Each Philosopher active object starts in the “thinking” state. Upon the entry to
this state, the Philosopher arms a one-shot time event to terminate the thinking.

(2) The QF framework posts the time event (timer) to Philosopher[m].
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(3) Upon receiving the TIMEOUT event, Philosopher[m] transitions to “hungry”
state and posts the HUNGRY(m) event to the Table active object. The parameter
of the event tells the Table which Philosopher is getting hungry.

(4) The Table active object finds out that the forks for Philosopher[m] are available
and grants it permission to eat by publishing the EAT(m) event.

(5) The permission to eat triggers the transition to “eating” in Philosopher[m]. Also,
upon the entry to “eating,” the Philosopher arms its one-shot time event to
terminate the eating.

(6) The Philosopher[n] receives the TIMEOUT event and behaves exactly as
Philosopher[m], that is, transitions to “hungry” and posts HUNGRY(n) event to
the Table active object.

(7) This time the Table active object finds out that the forks for Philosopher[n] are
not available, and so it does not grant the permission to eat. Philosopher[n]
remains in the “hungry” state.

(8) The QF framework delivers the timeout for terminating the eating to Philosopher
[m]. Upon the exit from “eating,” Philosopher[m] publishes event DONE(m) to
inform the application that it is no longer eating.

(9) The Table active object accounts for free forks and checks whether any direct
neighbors of Philosopher[m] are hungry. Table posts event EAT(n) to
Philosopher[n].

(10) The permission to eat triggers the transition to “eating” in Philosopher[n].

9.2.3 Step 3: Signals, Events, and Active Objects

Sequence diagrams like Figure 9.2 help you discover events exchanged among

active objects. The choice of signals and event parameters is perhaps the most important
design decision in any event-driven system. The signals affect the other main
application components: events and state machines of the active objects.

In QP, signals are typically enumerated constants and events with parameters are
structures derived from the QEvent base structure. Listing 9.1 shows signals and events
used in the DPP application. The DPP sample code for the DOS version (in C) is located
in the <gp>\gpc\examples\80x86\dos\tcppl01\1\dpp\ directory, where <qp>
stands for the installation directory you chose to install the accompanying software.
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NOTE

In this section, I describe the platform-independent code of the DPP application. This code is
actually identical in all DPP versions, such as the Linux version, pC/OS-II version, Cortex-
M3 versions, and the QK version described in Chapter 10.

Listing 9.1 Signals and events used in the DPP application (file dpp . h)
#ifndef dpp h
#define dpp_h

(1) enum DPPSignals {

(2) EAT SIG =Q USER SIG, /* published by Table to let a philosopher eat */
DONE_SIG, /* published by Philosopher when done eating * /
TERMINATE SIG, /* published by BSP to terminate the application */

(3) MAX PUB_SIG, /* the last published signal */

(4) HUNGRY SIG, /* posted directly from hungry Philosopher to Table */

5) MAX SIG /* the last signal */
b
typedef struct TableEvtTag {
(6) QEvent super; /* derives from QEvent */
uint8_ t philoNum; /* Philosopher number */
} TableEvt;
enum{ N _PHILO =5} ; /* number of Philosophers */

(7) void Philo ctor (void); /* ctor that instantiates all Philosophers */

(8) wvoid Table ctor (void);

(9) extern QActive * const AO Philo[N PHILO]; /* "opaque" pointers to Philo AOs */

(10) extern QActive * const AO Table; /* "opaque" pointer to Table AO */
#endif /* dpp_h*/
(1) For smaller applications such as the DPP, I define all signals in one
enumeration (rather than in separate enumerations or, worse, as preprocessor
#define macros). An enumeration automatically guarantees the uniqueness
of signals.
(2) Note that the user signals must start with the offset Q_USER_SIG to avoid

overlapping the reserved QEP signals.
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(3) Ilike to group all the globally published signals at the top of the enumeration,
and I use the MAX_PUB_SIG enumeration to automatically keep track of the
maximum published signals in the application.

(4) 1 decided that the Philosophers will post the HUNGRY event directly to the
Table object rather than publicly publish the event (perhaps a Philosopher is
“embarrassed” to be hungry, so does not want other Philosophers to know
about it). That way, I can demonstrate direct event posting and publish-
subscribe mechanisms coexisting in a single application.

(5) Tusethe MAX_ SIG enumeration to automatically keep track of the total number
of signals used in the application.

(6) Every event with parameters, such as the TableEvt, derives from the QEvent
base structure.

I like to keep the code and data structure of every active object strictly encapsulated
within its own C-file. For example, all code and data for the active object Table are
encapsulated in the file table.c, with the external interface consisting of the function
Table_ctor () and the pointer A0_Table.

(7,8) These functions perform an early initialization of the active objects in the
system. They play the role of static “constructors,” which in C you need to call
explicitly, typically at the beginning of main ().

(9,10) These global pointers represent active objects in the application and are used
for posting events directly to active objects. Because the pointers can be initialized
at compile time, I like to declare them const so that they can be placed in
ROM. The active object pointers are “opaque” because they cannot access the
whole active object, but only the part inherited from the QActive structure.

9.2.4 Step 4: State Machines

At the application level, you can mostly ignore such aspects of active objects as the
separate task contexts or private event queues and view them predominantly as state
machines. In fact, your main job in developing your QP application consists of
elaborating the state machines of your active objects.

Figure 9.3(A) shows the state machines associated with Philosopher active object, which
clearly shows the life cycle consisting of states “thinking,” “hungry,” and “eating.”
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Figure 9.3: State machines associated with the Philosopher active object (A),
and Table active object (B).

This state machine generates the HUNGRY event on entry to the “hungry” state and the
DONE event on exit from the “eating” state, because this exactly reflects the semantics
of these events. An alternative approach—to generate these events from the corresponding
TIMEOUT transitions—would not guarantee the preservation of the semantics in
potential future modifications of the state machine. This actually is the general guideline
in state machine design.

GUIDELINE

Favor entry and exit actions over actions on transitions.

Figure 9.3(B) shows the state machine associated with the Table active object. This
state machine is trivial because Table keeps track of the forks and hungry philosophers
by means of extended state variables rather than by its state machine. The state diagram
in Figure 9.3(B) obviously does not convey how the Table active object behaves,
since the specification of actions is missing. I decided to omit the actions because
including them required cutting and pasting most of the Table code into the diagram,
which would make the diagram too cluttered. In this case, the diagram simply does
not add much value over the code.

As I mentioned before, I like to strictly encapsulate each active object inside a dedicated
source file (.C file). Listing 9.2 shows the declaration (active object structure) and complete
definition (state-handler functions) of the Table active object in the file table. c. In the
explanation section immediately following this listing, I focus on the techniques of
encapsulating active objects and using QF services. I don’t repeat here the recipes for coding
state machine elements, which I already gave in Part I of this book (Chapters 1 and 4).
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LEFT(LEFT(n))——————RIGHT(n)

Figure 9.4: Numbering of philosophers and forks (see the macros
LEFT () and RIGHT () in Listing 9.2).

Listing 9.2 Table active object (file table.c); boldface indicates
the QF services

(10)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"

Q DEFINE THIS FILE

/* Active object class ——————————— - - - - */
typedef struct TableTag {
QActive super; /* derives from QActive */
uint8 t fork [N PHILO] ; /* states of the forks */
uint8 t isHungry [N PHILO] ; /* remembers hungry philosophers */
} Table;
static QState Table initial (Table *me, QEvent const *e); /* pseudostate */
static QState Table serving(Table *me, QEvent const *e); /* state handler */
#define RIGHT (n_) ((uint8 t) (((n_) + (N PHILO - 1)) $ N _PHILO))
#define LEFT (n_) ((uint8 t) (((n_) +1) $ N PHILO))
enum ForkState { FREE, USED} ;
/* Local objects ————————— == —mm oo */
static Table 1 table; /* the single instance of the Table active object */
/* Global-scope objects ———————— == - - oo */
QActive * const AO_Table = (QActive *)&l table; /* "opaque" AO pointer */
L e e e e e e ettt e e e e e e */
void Table ctor(void) {
uint8 t n;

Table *me = &1 _table;
QActive_ ctor (&me->super, (QStateHandler)&Table initial);

Continued onto next page
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(11) for (n=0; n<N_ PHILO; ++n) {
me->fork [n] = FREE;
me->isHungry[n] = 0;
}
}
/Y */
QState Table initial (Table *me, QEvent const *e) {
(void)e; /* avoid the compiler warning about unused parameter */
(12) QActive_subscribe ( (QActive *)me, DONE_SIG) ;
(13) QActive_subscribe ( (QActive *)me, TERMINATE SIG) ;
(14) /* signal HUNGRY SIG is posted directly */

return Q TRAN (&Table serving);

QState Table serving(Table *me, QEvent const *e) {
uint8 tn, m;
TableEvt *pe;

switch (e->sig) {
case HUNGRY SIG: {

(15) BSP_busyDelay () ;
n = ((TableEvt const *)e)->philoNum;
/* phil ID must be in range and he must be not hungry */
(1l6) Q ASSERT ((n < N_PHILO) && (!me->isHungryl[n]));
(17) BSP_displyPhilstat (n, "hungry ");
m = LEFT (n) ;
if ((me->fork[m] == FREE) && (me->fork[n] == FREE)) {

me—>fork[m] =me->fork[n] = USED;
pe = Q_NEW(TableEvt, EAT SIG);
pe->philoNum = n;
QF publish((QEvent *)pe) ;
BSP displyPhilStat (n, "eating ");
}
else {
me->isHungry[n] =1;
}
return Q HANDLED () ;
}
case DONE_SIG: {
BSP busyDelay () ;

n = ((TableEvt const *)e)->philoNum;
/* phil ID must be in range and he must be not hungry * /
(18) Q ASSERT ((n < N_PHILO) && (!me->isHungryl[n]));

BSP_displyPhilStat (n, "thinking");
m=LEFT (n) ;
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/* both forks of Phil [n] must be used */
(19) Q ASSERT ( (me->fork[n] == USED) && (me->fork[m] == USED));

me->fork [m] =me->fork[n] = FREE;

m = RIGHT (n); /* check the right neighbor */
if (me->isHungry[m] && (me->fork[m] == FREE)) {

me->fork[n] =me->fork[m] = USED;

me->isHungry [m] = 0;

pe = Q NEW(TableEvt, EAT SIG);
pe—>philoNum = m;
(20) QF publish((QEvent *)pe) ;
BSP displyPhilStat (m, "eating ");
}

m=LEFT (n) ; /* check the left neighbor */
n = LEFT (m) ; /* left fork of the left neighbor */
if (me->isHungry[m] && (me->fork[n] == FREE)) {

me->fork[m] =me->fork[n] = USED;

me->isHungry [m] = 0;

pe = Q NEW(TableEvt, EAT_SIG);
pe->philoNum = m;
(21) QF publish((QEvent *)pe) ;
BSP_displyPhilStat (m, "eating ");
}
return Q HANDLED () ;
}
case TERMINATE SIG: {
(22) QF stop();
return Q HANDLED () ;
}
}
return Q SUPER (&QHsm_top) ;

(1) To achieve true encapsulation, I place the declaration of the active object structure
in the source file (.C file).

(2) Each active object in the application derives from the QActive base structure.

(3) The Table active object keeps track of the forks in the array fork[]. The forks
are numbered as shown in Figure 9.4.

(4) Similarly, the Table active object needs to remember which philosophers are
hungry, in case the forks aren’t immediately available. Table keeps track of
hungry philosophers in the array isHungry[]. Philosophers are numbered as
shown in Figure 9.4.
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The helper macros LEFT () and RIGHT () access the left and right
philosopher or fork, respectively, as shown in Figure 9.4.

I statically allocate the Table active object. By defining this object as static
I make it inaccessible outside the .C file.

Externally, the Table active object is known only through the “opaque”
pointer AO_Table. The pointer is declared ‘const’ (with the const after
the ‘*’), which means that the pointer itself cannot change. This ensures that
the active object pointer cannot change accidentally and also allows the
compiler to allocate the active object pointer in ROM.

The function Table_ctor () performs the instantiation of the Table active
object. It plays the role of the static “constructor,” which in C you need to call
explicitly, typically at the beginning of main ().

NOTE

In C++, static constructors are invoked automatically before main (). This means that in the
C++ version of DPP (found in <gp>\gpcpp\examples\80x86\dos\tcppl01\1\dpp\),
you provide a regular constructor for the Table class and don’t bother with calling it explic-
itly. However, you must make sure that the startup code for your particular embedded target
includes the additional steps required by the C++ initialization.

(10) The constructor must first instantiate the QActive superclass.
(11) The constructor can then initialize the internal data members of the active
object.
(12,13) The active object subscribes to all interesting signals in the topmost initial
) g s1g P
transition.
NOTE

I often see new QP users forget subscribing to events, and then the application appears
“dead” when you first run it.

(14)

Note that Table does not subscribe to the HUNGRY event, because this event
is posted directly.
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(15) I sprinkled the state machine with calls to the function BSP_busyDelay ()
to artificially prolong the RTC processing. The function
BSP_busyDelay () busy-waits in a counted loop, whereas you can adjust
the number of iterations of this loop from the command line or through
a debugger. This technique lets me increase the probability of various
preemptions and thus helps me use the DPP application for stress-testing
various QP ports.

(16,18,19) The Table state machine extensively uses assertions to monitor correct
execution of the DPP application. For example, in line (19) both forks of a
philosopher who just finished eating must be used.

(17) The output to the screen is a BSP (board support package) operation. The
different BSPs implement this operation differently, but the code of the
Table state machine does not need to change.

(20,21) It is possible that the Table active object publishes two events in a single
RTC step.

(22) Upon receiving the TERMINATE event, the Table active object calls
QF_stop () to stop QF and return to the underlying operating system.

The Philosopher active objects bring no essentially new techniques, so I don’t reproduce
the listing of the philo.c file here. The only interesting aspect of philosophers that
I’d like to mention is that all five philosopher active objects are instances of the same
active object class. The philosopher state machine also uses a few assertions to monitor
correct execution of the application according to the problem specification.

9.2.5 Step 5: Initializing and Starting the Application

Most of the system initialization and application startup can be written in a platform-
independent way. In other words, you can use essentially the same main () function for
the DPP application with many QP ports.

Typically, you start all your active objects from main (). The signature of the
QActive_start () function forces you to make several important decisions about
each active object upon startup. First, you need to decide the relative priorities of the
active objects. Second, you need to decide the size of the event queues you preallocate
for each active object. The correct size of the queue is actually related to the priority,
as I discuss in the upcoming Section 9.4. Third, in some QF ports, you need to give
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each active object a separate stack, which also needs to be preallocated adequately. And
finally, you need to decide the order in which you start your active objects.

The order of starting active objects becomes important when you use an OS or RTOS,
in which a spawned thread starts to run immediately, possibly preempting the main ()
thread from which you launch your application. This could cause problems if, for
example, the newly created active object attempts to post an event directly to another
active object that has not been yet created. Such a situation does not occur in DPP, but
if it is an issue for you, you can try to lock the scheduler until all active objects are
started. You can then unlock the scheduler in the QF_onStartup () callback, which
is invoked right before QF takes over control. Some RTOSs (e.g., pC/OS-II) allow you
to defer the start of multitasking until after you start active objects. Another alternative
is to start active objects from within other active objects, but this design increases
coupling because the active object that serves as the launch pad must know the
priorities, queue sizes, and stack sizes for all active objects to be started.

Listing 9.3 Initializing and starting the DPP application (file main.c)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"

/* Local-scope objects ———————————-— - */
(1) static QEvent const *1 tableQueueSto [N _PHILO] ;
(2) static QEvent const *1 philoQueueSto [N PHILO][N PHILO] ;
(3) static QSubscrList 1 subscrSto[MAX PUB_SIC] ;

(4) static union SmallEvent {

(5) void*min size;
TableEvt te;
(6) /* other event types to go into this pool */
} 1 _smlPoolSto [2*N PHILO] ; /* storage for the small event pool */
PR */

int main (int argc, char *argv[]) {
uint8 t n;

(8) Philo ctor(); /* instantiate all Philosopher active objects */
Table ctor(); /* instantiate the Table active object */

(10) BSP_init (argc, argv); /* initialize the Board Support Package */
(11) QF init(); /* initialize the framework and the underlying RT kernel */

(12) QF psInit(l_subscrSto, Q DIM(1 subscrSto)); /* init publish-subscribe */
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/* initialize event pools... */
(13) QF poolInit (1l smlPoolSto, sizeof (1l _smlPoolSto), sizeof (1 _smlPoolStol[0]));
for (n=0; n<N_PHILO; ++n) { /* start the active objects... */
(14) QActive start (A0 _Philo[n], (uint8 t) (n+1),
1 philoQueuesto[n] , Q DIM(1 philoQueueSto([n]),
(void*)0, O, /* no private stack */
(QEvent *)0) ;
}
(15) QActive start (AO_Table, (uint8 t) (N_PHILO +1),
1 tableQueueSto, Q DIM(1l tableQueueSto),
(void*)0, 0, /* no private stack */
(QEvent *)0) ;
(16) QF run(); /* run the QF application */
return 0;
(1,2) The memory buffers for all event queues are statically allocated.
(3) The memory space for subscriber lists is also statically allocated. The
MAX_PUB_SIG enumeration comes in handy here.
(4) The union SmallEvent contains all events that are served by the “small” event
pool.
(5) The union contains a pointer-size member to make sure that the union size will
be at least that big.
(6) You add all events that you want to be served from this event pool.
(7) The memory buffer for the “small” event pool is statically allocated.
(8,9) The main () function starts with calling all static “constructors” (see Listing 9.1
(7-8)). This step is not necessary in C++.
(10) The target board is initialized.
(11) QF is initialized together with the underlying OS/RTOS.
(12) The publish-subscribe mechanism is initialized. You don’t need to call
QF_psInit () if your application does not use publish-subscribe.
(13) Up to three event pools can be initialized by calling QF_poolInit () up to

three times. The subsequent calls must be made in the order of increasing
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block sizes of the event pools. You don’t need to call QF _poolInit () if
your application does not use dynamic events.

(14,15) All active objects are started using the “opaque” active object pointers (see
Listing 9.1(9-10)). In this particular example, the active objects are started
without private stacks. However, some RTOSs, such as pC/OS-II, require
preallocating stacks for all active objects.

(16) The control is transferred to QF to run the application. QF_run () might
never return.

9.2.6 Step 6: Gracefully Terminating the Application

Terminating an application is not really a big concern in embedded systems because
embedded programs almost never have a need to terminate gracefully. The job of

a typical embedded system is never finished, and most embedded software runs
forever or until the power is removed, whichever comes first.

NOTE

You still need to carefully design and test the fail-safe mechanism triggered by a CPU
exception or assertion violation in your embedded system. However, such a situation repre-
sents a catastrophic shutdown, followed perhaps by a reset. The subject of this section is the
graceful termination, which is part of the normal application life cycle.

However, in desktop programs, or when embedded applications run on top of a general-
purpose operating system, such as Linux, Windows, or DOS, the shutdown of a QP
application becomes important. The problem is that to terminate gracefully, the
application must clean up all resources allocated by the application during its lifetime.
Such a shutdown is always application-specific and cannot be preprogrammed
generically at the framework level.

The DPP application uses the following mechanism to shut down: When the user
decides to terminate the application, the global TERMINATE event is published. In
DPP, only the Table active object subscribes to this event (Listing 9.2(13)), but in
general all active objects that need to clean up anything before exiting should subscribe
to the TERMINATE event. The last subscriber, which is typically the lowest-priority
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subscriber, calls the QF_stop () function (Listing 9.2(22)). As described in Chapter 8,
QF_stop () is implemented in the QF port. Often, QF_stop () causes the QF_run ()
function to return. Right before transferring control to the underlying operating
system, QF invokes the QF_onCleanup () callback. This callback gives the application
the last chance to clean up globally (e.g., the DOS version restores the original DOS
interrupt vectors).

Finally, you can also stop individual active objects and let the rest of the application
continue execution. The cleanest way to end an active object’s thread is to have it
stop itself by calling QActive_stop (me), which should cause a return from the active
object’s thread routine. Of course, to “commit a suicide” voluntarily, the active

object must be running and cannot be waiting for an event. In addition, before
disappearing, the active object should release all the resources acquired during its
lifetime. Finally, the active object should unsubscribe from receiving all signals and
somehow should make sure that no more events will be posted to it directly.
Unfortunately, all these requirements cannot be preprogrammed generically and always
require some work on the application programmer’s part.

9.3 Running DPP on Various Platforms

I generally use the same DPP source code to test the QP ports on various CPUs,
operating systems, and compilers. The only platform-dependent file is the board
support package (BSP) definition and sometimes the main () function. In this section
I describe what needs to be done to execute the DPP application with the “vanilla”
kernel (I cover two versions: for 80x86 and Cortex-M3), as well as pC/OS-II on DOS
and Linux.

9.3.1 “Vanilla” Kernel on DOS

The code for the DPP port to 80x86 with the “vanilla” kernel is located in the directory
<gp>\gpc\examples\80x86\dos\tcppl01\1\dpp\. The directory contains the
Turbo C++ 1.01 project files to build the application. You can execute the application
by double-clicking the executables in the dbg\, rel\, or spy\ subdirectories.

Figure 9.5 shows the output generated by the DPP executable. Listing 9.4 shows the
BSP for this version of DPP.
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Figure

9.5: DPP test application running in a DOS console.

Listing 9.4 BSP for the DPP application with the “Vanilla” kernel on DOS
(file <gp>\gpc\examples\80x86\dos\tcppl01\1\dpp\bsp.c)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"

#define TMR VECTOR 0x08
#define KBD_VECTOR 0x09

/* Local-scope objects——————=———— - */
static void interrupt (*1 dosTmrISR) ();
static void interrupt (*1 dosKbdISR) ()

static uint32 t 1 delay= 0UL; /* limit for the loop counter in busyDelay () */

PRt */
(1) void interrupt ISR tmr (void) {
(2) QF INT UNLOCK (dummy) ; /* unlock interrupts */
(3) QF tick(); /* call QF tick() outside of critical section */
(4) QF INT LOCK (dummy) ; /* lock interrupts again */
(5) outportb (0x20, 0x20) ; /* write EOI to the master 8259A PIC * /

}

/Pt */
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(10)
(11)

(12)

(13)

void interrupt ISR kbd(void) {
uint8_t key;
uint8 t kcr;

QF INT UNLOCK (dummy) ; /* unlock interrupts */
key = inport (0x60) ; /*key scan code from the 8042 kbd controller */
kcr = inport (0x61) ; /* get keyboard control register */
outportb (0x61, (uint8 t) (kcr | 0x80)); /* toggle acknowledge bit high */
outportb (0x61, kcr); /* toggle acknowledge bit low */
if (key == (uint8 t)129) { /* ESC key pressed? */
static QEvent term = { TERMINATE SIG, 0} ; /* static event */
QF publish (&term) ; /* publish to all interested AOs */
}
QF INT_ LOCK (dummy) ; /* lock interrupts again */
outportb (0x20, 0x20) ; /* write EOI to the master 8259A PIC * /
}
/P */
void QF onStartup (void) {
/* save the origingal DOS vectors ... */
1 dosTmrISR = getvect (TMR_VECTOR) ;
1 _dosKbdISR = getvect (KBD_VECTOR) ;
QF INT_LOCK (dummy) ;
setvect (TMR VECTOR, &ISR tmr);
setvect (KBD_VECTOR, &ISR_kbd) ;
QF INT_ UNLOCK (dummy) ;
}
/o */
void QF onCleanup (void) { /* restore the original DOS vectors ... */
QF INT LOCK (dummy) ;
setvect (TMR_VECTOR, 1 dosTmrISR);
setvect (KBD VECTOR, 1 dosKbdISR) ;
QF INT UNLOCK (dummy) ;
_exit(0); /* exit to DOS */
}
/I */
void QF onIdle (void) { /* called with interrupts LOCKED * /
QF INT UNLOCK (dummy) ; /* always unlock interrutps */
}
/o */
void BSP_init (int argc, char *argv([]) {
if (argc>1) {
1 delay =atol(argv(l]); /* set the delay counter for busy delay */

}

printf ("Dining Philosopher Problem example"
"\ nQEP $s\nQF %s\n"
"Press ESC to quit...\n",
QEP_getVersion(),
QF getVersion());

Continued onto next page
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void BSP_busyDelay (void) {
uint32_t volatile i =1 delay;
(14) while (i-> 0UL) { /* busy-wait loop */
}
}
S e e e */
void BSP_displyPhilStat (uint8 t n, char const *stat) {
(15) printf ("Philosopher %2d is %s\n", (int)n, stat);
}
S e e */
void Q onAssert (char const Q ROM* const Q ROM VAR file, int line) {
QF INT LOCK (dummy) ; /* cut-off all interrupts */
fprintf (stderr, "Assertion failed in %s, line %d", file, line);
(16) QF_stop ()
}

(1) The compiler-supported Turbo C++ 1.01 compiler provides an extended
keyword “interrupt” that enables you to program ISRs in C/C++. The
compiler-supported ISRs are adequate for the “vanilla” kernel.

(2) The 80x86 processor locks interrupts in hardware before vectoring to the ISR.
The interrupts can be unlocked right away, though, because the 8259A
programmable interrupt controller prioritizes interrupts before they reach
the CPU.

(3) The QF_tick() service is called outside of the critical section. You cannot
call any QF services within a critical section, because this “vanilla” port uses
the simple “unconditional interrupt locking and unlocking” policy, which
precludes nesting critical sections.

(4) Interrupts are locked before the interrupt is exited.

(5) The end-of-interrupt (EOI) instruction is sent to the master 8259A PIC, so

that it ends prioritization of this interrupt level.

(6,7) The original DOS interrupts vectors are saved to be restored upon cleanup.

(8,9) The customized interrupts are set for this port. This must happen in a critical

section.

(10,11) Upon cleanup, the original DOS interrupts are restored.
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(12)

(13,14)

(15)

(16)

9.3.2

In the “vanilla” kernel, the QF_idle () callback is invoked with
interrupts locked and must always unlock interrupts (see Section 8.2.4
in Chapter 8).

The loop counter for the BSP_busyDelay () function is set from the
first command-line parameter. You should not go overboard with this
parameter, because you might overload the CPU by creating an
unschedulable set of tasks. In this case QF will eventually assert on
overflowing an event queue.

The output of the philosopher status is implemented as a printf () statement
(see Figure 9.5). Note that the output occurs only from the context of the
Table active object.

Upon an assertion failure, the application is stopped and cleanly exits to
the DOS prompt.

“Vanilla” Kernel on Cortex-M3

The code for the DPP port to Cortex-M3 with the “vanilla” kernel is located in

the directory <gp>\gpc\examples\cortex-m3\vanilla\iar\dpp\.

The directory contains the IAR EWARM v5.11 project files to build the application
and download it to the EV-LM3S811 board. Figure 9.6 shows the display of the
board while it is executing the application. Listing 9.5 shows the BSP for this
version of DPP.

-
-t
-~
-
~
-
- -
D
-
-
- -
-
-

AARARARERRT:

HInmine

Figure 9.6: DPP test application running on the EV-LM3S811 board
(Cortex-M3). The status of each Philosopher is displayed as “t” (thinking),

“e” (eating), or “h” (hungry).
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Listing 9.5 BSP for the DPP application with the “vanilla” kernel on bare

metal Cortex-M3 (file <gp>\gpc\examples\cortex-m3\vanilla\iar
\dpp-ev-1m3s811\bsp.c)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"

(1) #include "hw_ints.h"
/* other Luminary Micro driver library include files */

/* Local-scope objects ——————————---—— oo */
static uint32 t 1 delay = OUL; /* limit for the loop counter in busyDelay () */

(2) wvoid ISR SysTick(void) {
QF tick(); /* process all armed time events */
/* add any application-specific clock-tick processing, as needed*/

/e */
void BSP_init (int argc, char *argv[]) {
(void)argc; /* unused: avoid the complier warning */
(void) argv; /* unused: avoid the compiler warning */

/* Set the clocking to run at 20MHz from the PLL. */
(3) SysCtlClockSet (SYSCTL SYSDIV 10 | SYSCTL USE PLL
| SYSCTL_OSC_MAIN | SYSCTL XTAL 6MHZ) ;

/* Enable the peripherals used by the application. */
(4) SysCtlPeripheralEnable (SYSCTL PERIPH GPIOA);
SysCtlPeripheralEnable (SYSCTL_ PERIPH GPIOC);

/* Configure the LED, push button, and UART GPIOs as required. */
(5) GPIODirModeSet (GPIO_PORTA BASE, GPIO_PIN 0 | GPIO_PIN 1,
GPIO DIR MODE_HW) ;
GPIODirModeSet (GPIO PORTC BASE, PUSH BUTTON, GPIO DIR MODE IN);
GPIODirModeSet (GPIO PORTC BASE, USER_LED, GPIO DIR MODE OUT);
GPIOPinWrite (GPIO PORTC BASE, USER LED, 0);

/* Initialize the OSRAM OLED display. */

(6) OSRAMInit (1) ;
(7) OSRAMStringDraw ("Dining Philos", 0, 0);
(8) OSRAMStringDraw ("0 ,1 ,2 ,3 ,4", 0, 1);
}
/o */

void BSP displyPhilStat (uint8 t n, char const *stat) {
char str[2] ;
str[0] = stat[0] ;
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(17)

(18)

(19)

str[l] = \0 ;
OSRAMStringDraw (str, (3*6*n+ 6), 1);

void BSP busyDelay (void) {
uint32 t volatile i =1 delay;
while (i—> OUL) { /* busy-wait loop */

void QF onStartup (void) {
/* Set up and enable the SysTick timer. It will be used as a reference
* for delay loops in the interrupt handlers. The SysTick timer period
* will be set up for BSP_TICKS PER SEC.

*/
SysTickPeriodSet (SysCtlClockGet () / BSP_TICKS PER SEC);
SysTickEnable () ;
IntPrioritySet (FAULT SYSTICK, 0xCO); /* set the priority of SysTick*/
SysTickIntEnable () ; /* Enable the SysTick interrupts */
QF INT UNLOCK (dummy) ; /* set the interrupt flag in PRIMASK * /
}
L e e e e e e e e e e e et et e */
void QF onCleanup (void) {
}
L e e e e e e e e e e e e e e */
void QF onIdle(void) { /* entered with interrupts LOCKED, see NOTEO1 * /
/* toggle the User LED on and then off, see NOTEQ2 * /
GPIOPinWrite (GPIO_ PORTC BASE, USER LED, USER_LED) ; /* User LED on * /
GPIOPinWrite (GPIO_PORTC BASE, USER_LED, 0); /* User LED off */

#ifdef NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* youmight need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M3 MCU.

*/

__asm("WFI"); /* Wait-For-Interrupt */
#endif

QF INT_UNLOCK (dummy) ; /* always unlock the interrupts */
}
L e e e e e e e e e e e e */
void Q onAssert (char const Q ROM* const Q ROM VAR file, int line) {

(void) file; /* avoid compiler warning * /

(void) line; /* avoid compiler warning */

QF INT_LOCK (dummy) ; /* make sure that all interrupts are disabled*/

for (;;) { /* NOTE: replace the loop with reset for the final version */

}
}
/* error routine that is called if the Luminary library encounters an error */
void error_ (char *pcFilename, unsigned long ulLine) {

Q onAssert (pcFilename, ulLine);
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(3-5)

(6-8)
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(10)

(11
(12)

(13)

(14)

15)

(16-18)

19)

The BSP for Cortex-M3 relies on the driver library provided by Luminary
Micro with the EV-LM3S811 board.

As described in Section 8.2.3 in Chapter 8, ISRs in Cortex-M3 are just regular
C functions. The system clock tick is implemented with the Cortex-M3
SysTick interrupt, specifically designed for that purpose. Note that the
Cortex-M3 enters ISRs with interrupts unlocked, so there is no need to unlock
interrupts before calling QF services, such as QF_tick().

The board initialization includes enabling all peripherals used in the DPP
application.

The graphic OLED display driver is initialized and the screen is prepared for
the DPP application.

The output of the philosopher status is implemented as drawing a single letter
on the screen (see Figure 9.6). Note that the output occurs only from the
context of the Table active object.

Upon startup, the hardware system clock tick rate is set.
The system clock tick hardware is enabled.

The Cortex-M3 performs prioritization of all interrupts in hardware, and it is
highly recommended to explicitly set the priority of every interrupt used by the
application. The Cortex-M3 represents an ISR priority in the three most significant
bits of a byte, whereas OXEQ is the lowest and 0x00 is the highest hardware priority.
Priority 0xCO corresponds to the second-lowest priority in the system.

The system clock tick interrupt is enabled in hardware.
The interrupts are enabled.

The DPP application running on the EV-LM3S811 board operates on “bare
metal” and has no operating system to return to. The cleanup callback is not
used in this case.

In Section 8.2.4, I have already discussed idle processing for the “vanilla”
kernel running on Cortex-M3.

The assertion handler enters a forever loop in the DPP application. You need
to replace this loop with the fail-safe shutdown, followed perhaps by a reset in
the production version of your application.
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(20) The function __error__ () isused inside the Luminary Micro driver library. This
function has the same purpose and signature as Q_onAssert ().

9.3.3 pC/OS-lI

The code for the DPP port to 80x86 with the pC/OS-II RTOS is located in the directory
<gp>\gpc\examples\80x86\ucos2\tcppl01\1\dpp\. The directory contains

the make .bat batch file to build the application. You can execute the DPP application
by double-clicking the executables in the dbg\, rel\, or spy\ subdirectories.

Figure 9.7 shows the output generated by the DPP executable.

=~ Command Prompt - spy\dpp - |of x|

Dining Philosophers Example
QEP/C
QF/C
uCs08-11
Active Object
Philosopher
Philozopher thinking

Philosopher eating
Philosopher thinking
Philoszopher thinking
Tabhle serving
ucosTask active

* Copyright ¢c? Quantum Leaps, LLC * www.guantum—leaps.com =

Figure 9.7: DPP test application running in a DOS console on top
of wC/OS-Il v2.86.

As shown in Listing 9.6, in case of pC/OS-II, you need to modify the main.c source
file to supply the private stacks for the active object tasks. This is one of the big-ticket
items in terms of RAM usage required by a traditional preemptive kernel. You also
need to create a dedicated pC/OS-II task to start the interrupts, as described in the
Micro-C/OS-1I book [Labrosse 02]. Listing 9.7 shows the customization of the
pUC/OS-II hooks (callbacks) to call the QF clock tick processing.
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Listing 9.6 main () function for the DPP application with the wC/OS-II

RTOS on DOS (file <gp>\gpc\examples\80x86\ucos2\tcppl01\1
\dpp\main.c)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"

/* Local-scope objects ——————————--——- oo */
(1) static OS_STK 1l philoStk[N_PHILO] [256]; /* stacks for the Philosophers */
(2) static OS_STK 1_tableStk[256]; /* stack for the Table */
(3) static OS_STK 1 ucosTaskStk[256]; /* stack for the ucosTask */
PP */
int main (int argc, char *argv[]) {

for (n=0; n<N PHILO; ++n) {
QActive start (A0 _Philo[n], (uint8 t)(n+1),
1 philoQueueSto[n], Q DIM(1 philoQueueSto([n]),

(4) 1 philoStk[n], sizeof (1_philoStk[n]), (QEvent *)O0);

}

OActive start (A0 _Table, (uint8 t) (N_PHILO +1),

1 tableQueueSto, Q DIM(1l tableQueueSto),

(5) 1 tableStk, sizeof (1_tableStk), (QEvent *)O0);

/* create a uC/0S-1ITI task to start interrupts and poll the keyboard */
OSTaskCreate (&ucosTask,

(void *) 0, /* pdata */

(6) &1 ucosTaskStk[Q DIM(1 ucosTaskStk) - 1],
0); /* the highest uC/0S-II priority */
QF run(); /* run the QF application */

return 0;

}

(1-3)  You need to statically allocate the private stacks for all pC/OS-II tasks that you
use in the application. Here, I have oversized all stacks to have 256 16-bit
stack entries (see definition of OS_STK in the pC/OS-II port file os_cpu.h).
However, nC/OS-II allows each stack to have a different size.

(4,5) The stack storage is passed to the active objects through the stkSto and
stkSize parameters of the Qactive_start () function.

(6) I also create additional “raw” pC/OS-II task ucosTask () that starts all
interrupts and polls the keyboard to find out when to terminate the application.
The body of the ucosTask () function is shown in Listing 9.7.
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Listing 9.7 BSP for the DPP application for the uC/OS-Il RTOS on DOS
(file <gp>\gpc\examples\80x86\ucos2\tcppl01\1\dpp\bsp.c)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"
#include "video.h"

I */
(1) wvoid ucosTask (void *pdata) {
(void)pdata; /* avoid the compiler warning about unused parameter * /
(2) QF onStartup() ; /* start interrupts including the clock tick, NOTEOL * /
for (i) {
(3) OSTimeDly (OS_TICKS PER SEC/10); /* sleep for 1/10 s */
if (kbhit()) { /* poll for a new keypress */
uint8 t key = (uint8 t)getch();
if (key == 0x1B) { /* is this the ESC key? */
(4) QF publish(Q NEW(QEvent, TERMINATE SIG));
}
else { /* other key pressed */

Video printNumAt (30, 13 + N _PHILO, VIDEO FGND YELLOW, key);

}

void OSTimeTickHook (void) {
(5) QF tick();
/* add any application-specific clock-tick processing, as needed*/
}
L e e e e e e e e e e e e e e ettt */
void OSTaskIdleHook (void) {
(6) /* put the MCU to sleep, if desired */

(1) The BSP contains a “raw” pC/OS-II task with the main responsibility of starting
the interrupts, which in pC/OS-II must occur only after the 0SStart () function
is called from QF_run () (see [Labrosse 02]).

(2) The QF_onStartup () callback starts interrupts and is identical in this case as in
Listing 9.4(6-9).

(3) As any conventional task, ucosTask () must call some blocking RTOS function.
In this case, the task blocks on the timed delay.
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(4) Every time the task wakes up, it polls the keyboard and checks whether the
user hit the Esc key. If so, the pC/OS-II task publishes the static TERMINATE
event. This call provides an example of how to generate QP events from external,
third-party code.

(5) The QF_tick() processing is invoked from the pC/OS-II hook. Note that this
particular pC/OS-II port uses the “saving and restoring interrupt status” policy
(LC/OS-II critical section type 3). This means that it’s safe to call a QF service,
even though pC/OS-II calls 0STimeTickHook () with interrupts locked.

(6) Under a preemptive kernel such as pC/OS-II, a transition to a low-power sleep
mode does not need to occur atomically (as it must in the nonpreemptive “vanilla”
kernel). Refer to Section 8.3.6 in Chapter 8 for the discussion of idle processing
under a preemptive kernel.

9.3.4 Linux

The code for the DPP port to Linux is located in the directory <gp>\gpc\examples
\80x86\1inux\gnu\dpp\. The directory contains the Makefile to build the
application. You can execute the application from a console, as shown in Figure 9.8.
The real-time behavior of the application depends on the privilege level. If you launch

| o

3 miro@localhost~/software/gpc/examples/B0x86/linux/gnu/dpp.. PI=IEd
File Edit View Terminal Go Help

BOP

[miro@localhost qdppl$ dbg/adpp [~
Quantum DPP
QEP 4.0.00
QF 4.0.00, QF/Linux port 4.0.00
Press ESC to quit...
Philosopher 4 is hungry

T Philosopher 4 is eating

G Philosopher 3 is hungry

Philosopher 2 is hungry
Philosopher 2 is eating
Philosopher 1 is hungry
Philosopher ¢ is hungry
Philosopher 2 1is thinking
Philosopher 1 is eating
Philosopher 4 is thinking

Figure 9.8: DPP test application running in Linux (Redhat 9).
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the application with the “superuser” privileges, the QF port will use the SCHED_FIFO
real-time scheduler and will prioritize active object threads high (see Section 8.4 in
Chapter 8). Otherwise, the application will execute under the default SCHED_OTHER
scheduler without a clear notion of priorities for active objects or the “ticker” task.
Listing 9.8 shows the BSP for Linux.

Listing 9.8 BSP for the DPP application for Linux
(file <gp>\gpc\examples\80x86\1linux\gnu\dpp\bsp.c)

#include "gp port.h"
#include "dpp.h"
#include "bsp.h"

#include <sys/select.h>

Q DEFINE THIS FILE

/* Local objects ———==———mmmmm e */

(1) static struct termios 1 tsav; /* structure with saved terminal attributes */
static uint32 t 1 delay; /* limit for the loop counter in busyDelay () */
/o */

(2) static void *idleThread (void *me) { /* the expected P-Thread signature * /

for (;7) {
struct timeval timeout ={ 0} ; /* timeout for select () */
fd_set con; /* FD set representing the console */

FD ZERO (&con) ;
FD SET (0, &con);
timeout.tv _usec = 8000;

/* sleep for the full tick or until a console input arrives */

(3) if (0 !'=select(l, &con, 0, 0, &timeout)) { /* any descriptor set? */
char ch;
read (0, &ch, 1);
if (ch == “\33) { /* ESC pressed? */
(4) QFipublish (Q_NEW (QEvent, TERMINATE SIG)) ;
}
}
}
return (void*)O0; /* return success */
}
L e e e e e e e e e e e et e et e e e e */

void BSP_init (int argc, char *argv([]) {
printf ("Dining Philosopher Problem example"
"\ nQEP $s\nQF %s\n"
"Press ESC to quit...\n",
QEP_getVersion(),

Continued onto next page
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QF getVersion());
if (argc>1) {

1 delay =atol(argvI[l]); /* set the delay from the argument * /
}
}
L e e e e e e e e e e e e e e e e e e e e e e e */
void QF onStartup (void) { /* startup callback */
struct termios tio; /* modified terminal attributes */

pthread attr t attr;
struct sched param param;
pthread t idle;

(5) tcgetattr (0, &1 tsav); /* save the current terminal attributes */
tcgetattr (0, &tio); /* obtain the current terminal attributes */
(6) tio.c_lflag &= ~ (ICANON | ECHO) ; /* disable the canonical mode & echo */
tcsetattr (0, TCSANOW, &tio); /* set the new attributes */

/* SCHED FIFO corresponds to real-time preemptive priority-based scheduler
* NOTE: This scheduling policy requires the superuser priviledges

*/

pthread attr init (&attr);

pthread attr setschedpolicy(&attr, SCHED FIFO);

param.sched priority=sched get priority min(SCHED_ FIFO) ;

pthread attr setschedparam(&attr, &param);
pthread_attr_ setdetachstate(&attr, PTHREAD CREATE_DETACHED) ;

(7) if (pthread create(&idle, &attr, &idleThread, 0) !=0) {
/* Creating the p-thread with the SCHED FIFO policy failed.
* Most probably this application has no superuser privileges,
* sowe just fall back to the default SCHED OTHER policy
* and priority 0.
*/
pthread attr_ setschedpolicy(&attr, SCHED OTHER) ;
param.sched priority =0;
pthread attr setschedparam(&attr, &param);
(8) Q ALLEGE (pthread create(&idle, &attr, &idleThread, 0) ==0);
}
pthread attr destroy(&attr);

2 */
void QF onCleanup (void) { /* cleanup callback */
printf ("\nBye! Bye!\n");
(9) tcsetattr (0, TCSANOW, &1 tsav); /* restore the saved terminal attributes*/
QS _EXIT(); /* perform the QS cleanup */
}
2 */

void BSP displyPhilStat (uint8 t n, char const *stat) {
(10) printf ("Philosopher %$2d is $s\n", (int)n, stat);
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(11)

void BSP_busyDelay (void) {
uint32 t volatile i =1 delay;
while (i-> 0UL) {
}
}
e */
void Q onAssert (char const Q ROM* const Q ROM VAR file, int line) {
fprintf (stderr, "Assertion failed in %s, line %d", file, line);
QF stop ()

ey

2

3

“)

&)
(6)

(N

®)

®

The standard configuration of a Linux console does not allow collecting user
keystrokes asynchronously. The mode of the terminal can be changed but needs
to be restored upon exit. The BSP uses the local variable 1_tsav to save the
terminal settings.

The BSP contains a “raw” POSIX-thread idleThread () with the main
responsibility of polling the console for asynchronous input and terminating the
application when the user presses the Esc key.

The idleThread () uses the select () POSIX call as the main blocking
mechanism.

The idleThread () generates and publishes the TERMINATE event when it
detects the Esc keypress.

Upon startup the terminal attributes are saved into the static variable 1_tsav.

The canonical mode of the terminal is switched off to allow collecting keystrokes
asynchronously.

The idle thread is first created with the real-time SCHED_FIFO scheduling
policy and the lowest possible priority. Using the SCHED_FIFO policy requires
“superuser” privileges and might fail if the application is launched without
these privileges.

If creating the thread under SCHED_FIFO fails, the thread is created under the
default SCHED_OTHER policy. This time, the thread must be created
successfully; otherwise, the application cannot continue, and hence the assertion.

The cleanup callback restores the saved terminal attributes.
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(10) The output of the philosopher status is implemented as a printf () statement
(see Figure 9.8). Note that the output occurs only from the context of the
Table active object.

(11) Upon an assertion failure, the application is stopped and cleanly exits
to Linux.

9.4 Sizing Event Queues and Event Pools

Event queues and event pools are the necessary burden you need to accept when you
work within the event-driven paradigm. They are the price to pay for the convenience
and speed of development.

The main problem with event queues and event pools is that they consume your
precious memory. To minimize that memory, you need to size them appropriately.
In this respect, event queues and pools are no different from execution stacks—these
data structures all trade some memory for the convenience of programming.

The adequate sizing of event queues and event pools is especially important in QF
applications because QF raises an assertion when an event queue overflows or an event
pool runs out of events. QF treats both these situations as first-class bugs equally bad as
overflowing the stack.

Note that the problem with sizing event queues and event pools is common to all active
object-based frameworks, not specifically to QF. For instance, application frameworks
that accompany design automation tools have this problem as well. However, the
tools handle the problem behind the scenes by using massively oversized defaults.

In fact, you should do exactly the same thing: Create oversized event queues and
event pools in the early stages of development.

The minimization of memory consumed by event queues, event pools, and execution
stacks is like shrink-wrapping your event-driven application. You should do it toward
the end of application development because it stifles the flexibility you need in the
earlier stages. Note that any change in processing time, interrupt load, or event
production patterns can invalidate both your static analysis and the empirical
measurements of queue and pool usage. However, that doesn’t mean that you shouldn’t
care at all about event queues and event pools throughout the design and early
implementation phase. To the contrary, understanding the general rules for sizing event



Developing OP Applications 477

queues and pools helps you conserve memory by avoiding unnecessary bursts in event
production or by breaking up excessively long RTC steps. These techniques are
analogous to the ways execution stack space is conserved by avoiding deep call nesting
and big automatic variables.

9.4.1 Sizing Event Queues

One basic fact that you need to understand about event queues is that they work
only when the average event production rate <P(t)> does not exceed the average
event consumption rate <C(t)>. If this condition is not satisfied, the event queue is
of no use and always eventually overflows, no matter how big you make it. This fact
does not mean that the production rate P(t) cannot occasionally exceed the
consumption rate C(¢), but such a burst of event production can persist for only a
short time. The bursts should also be sufficiently spread out over time to allow
cleanup of the queue.

Some software designers try to work around these fundamental limitations by using
message queues in a more “creative” way. For example, designers either allow blocking
of the producer threads when the queue is full, effectively reducing the production rate
P(t), or allow messages to be lost, effectively boosting the consumption rate C(t).

The QF views both techniques as an abuse of event queues and simply asserts a
contract violation. The basic premise behind this policy is that such a creative use of
event queues destroys the event-delivery guarantee (see Chapter 6).

The empirical method is perhaps the simplest and most popular technique used

to determine the required capacity of event queues, or any other buffers for that
matter (e.g., execution stacks). This technique involves running the system for a
while and then stopping it to examine how much of various buffers has been used.
The QF implementation of the event queue (the QEQueue class) maintains the
nMin data member specifically for this purpose (see Listing 7.25(12-14) in
Chapter 7). You can inspect this low-watermark easily using a debugger or through
a memory dump.

The alternative technique relies on a static analysis of event production and event
consumption. The QF framework uses event queues in a rather specific way (e.g., there
is only one consumer thread); consequently, the production rate P(¢) and the
consumption rate C(t) are strongly correlated.
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For example, consider a QF application running under a preemptive, priority-based
kernel.! Assume further that the highest-priority active object receives events only from
other active objects (but not from ISRs). Whenever any of the lower-priority active
objects posts or publishes an event for the highest-priority object, the kernel
immediately assigns the CPU to the recipient. The kernel makes the context switch
because, at this point, the recipient is the highest-priority thread ready to run. The
highest-priority active object awakens and runs to completion, consuming any event
posted to it. Therefore, the highest-priority active object really doesn’t need to queue
events (the maximum depth of its event queue is 1).

When the highest-priority active object receives events from ISRs, more events can
queue up for it. In the most common arrangement, an ISR produces only one event
per activation. In addition, the real-time deadlines are typically such that the
highest-priority active object must consume the event before the next interrupt. In this
case, the object’s event queue can grow, at most, to two events: one from a task and the
other from an ISR.

You can extend this analysis recursively to lower-priority active objects. The maximum
number of queued events is the sum of all events that higher-priority threads and ISRs
can produce for the active object within a given deadline. The deadline is the longest
RTC step of the active object, including all possible preemptions by higher-priority
threads and ISRs. For example, in the DPP application, all Philosopher active objects
perform very little processing (they have short RTC steps). If the CPU can complete
these RTC steps within one clock tick, the maximum length of the Philosopher queue
would be three events: one from the clock-tick ISR and two from the Table active
object (Table can sometimes publish two events in one RTC step).

The rules of thumb for the static analysis of event queue capacity are as follows.

e The size of the event queue depends on the priority of the active object.
Generally, the higher the priority, the shorter the necessary event queue. In
particular, the highest-priority active object in the system immediately
consumes all events posted by the other active objects and needs to queue only
those events posted by ISRs.

' The following discussion also pertains approximately to foreground/background systems with priority
queues (see Section 7.11 in Chapter 7). However, the analysis is generally not applicable to desktop
systems (e.g., Linux or Windows), where the concept of thread priority is much fuzzier.
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e The queue size depends on the duration of the longest RTC step, including all
potential (worst-case) preemptions by higher-priority active objects and ISRs.
The faster the processing, the shorter the necessary event queue. To minimize
the queue size, you should avoid very long RTC steps. Ideally, all RTC steps of
a given active object should require about the same number of CPU cycles to
complete.

® Any correlated event production can negatively affect queue size. For example,
sometimes ISRs or active objects produce multiple event instances in one
RTC step (e.g., the Table active object occasionally produces two permissions
to eat). If minimal queue size is critical in your application, you should avoid
such bursts by, for example, spreading event production over many RTC steps.

Remember also that the static analysis pertains to a steady-state operation after the
initial transient. On startup, the relative priority structure and the event production
patterns might be quite different. Generally, it is safest to start active objects in the
order of their priority, beginning from the lowest-priority active objects because they
tend to have the biggest event queues.

9.4.2 Sizing Event Pools

The size of event pools depends on how many events of different kinds you can sink in
your system. The obvious sinks of events are event queues because as long as an event
instance waits in a queue, the instance cannot be reused. Another potential sink of
events is the event producer. A typical event-generation scenario is to create an event
first (assigning a temporary variable to hold the event pointer), then fill in the event
parameters and eventually post or publish the event. If the execution thread is
preempted after event creation but before posting it, the event is temporarily lost

for reuse.

In the simplest case of just one event pool (one size of events) in the system, you can
determine the event pool size by adding the sizes of all the event queues plus the
number of active objects in the system.

When you use more event pools (the QF allows up to three event pools), the analysis
becomes more involved. Generally, you need to proceed as with event queues. For
each event size, you determine how many events of this size can accumulate at any
given time inside the event queues and can otherwise exist as temporaries in the system.
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9.4.3 System Integration

An important aspect of QF-based applications is their integration with the rest of
the embedded real-time software, most notably with the device drivers and the
I/O system.

Generally, this integration must be based on the event-driven paradigm. QF allows you
to post or publish events from any piece of software, not necessarily from active
objects. Therefore, if you write your own device drivers or have access to the device
driver source code, you can use the QF facilities for creating and publishing or posting
events directly.

You should view any device as a shared resource and, therefore, restrict its access to
only one active object. This method is safest because it evades potential problems with
reentrancy. As long as access is strictly limited to one active object, the RTC execution
within the active object allows you to use nonreentrant code. Even if the code is
protected by some mutual exclusion mechanism, as is often the case for commercial
device drivers, limiting the access to one thread avoids priority inversions and
nondeterminism caused by the mutual blocking of active objects.

Accessing a device from just one active object does not necessarily mean that you need
a separate active object for every device. Often, you can use one active object to
encapsulate many devices.

9.5 Summary

The internal implementation of the QF real-time framework uses a lot of low-level
mechanisms such as critical sections, mutexes, and message queues. However, after the
infrastructure for executing active objects is in place, the development of QF-based
applications can proceed much easier and faster. The higher productivity comes from
encapsulated active objects that can be programmed without the troublesome low-level
mechanisms traditionally associated with multitasking programs. Yet, the application as
a whole can still take full advantage of multithreading.

Developing a QP application involves defining signals and event classes, elaborating
state machines of active objects, and deploying the application on a concrete platform.
The high portability of QP software components enables you to develop large portions
of the code on a different platform than the ultimate target.
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Programming with active objects requires some discipline on the part of the
programmer because sharing memory and resources is prohibited. The experience of
many software developers has shown that it is possible to write efficient applications
without breaking this rule. Moreover, the discipline actually helps create software
products that are safer, more robust, and easier to test and maintain.

You can view event queues and event pools as the costs inherently associated with
event-driven programming paradigm. These data structures, like execution stacks, trade
some memory for programming convenience. You should start application development
with oversized queues, pools, and stacks and shrink them only toward the end of
product development. You can combine basic empirical and analytical techniques for
minimizing the size of event queues and event pools.

When integrating the QP application with device drivers and other software
components, you should avoid sharing any nonreentrant or mutex-protected code
among active objects. The best strategy is to localize access to such code in a dedicated
active object.

Active object-based applications tend to be much more resilient to change than
traditional blocking tasks because active objects never block and thus are more
responsive than blocked tasks. Also, the higher adaptability of event-driven systems is
rooted in the separation of concerns of signaling events and state of the object. In
particular, active objects use state machines instead of blocking to represent modes of
operation and use event passing instead of unblocking to signal interesting occurrences.

The active object-based computing model has been around long enough for
programmers to accumulate a rich body of experience about how to best develop such
systems. For example, the Real-Time Object-Oriented Modeling (ROOM) method of
Selic and colleagues [Selic+ 94] provides a comprehensive set of related development
strategies, processes, techniques, and tools. Douglass [Douglass 99, 02, 06] presents
unique state patterns, safety-related issues, plenty of examples, and software process
applicable to real-time development.



Preemptive Run-to-Completion
Kernel

Simplicity is the soul of efficiency.
—R. Austin Freeman (in The Eye of Osiris)

In Section 6.3.8 of Chapter 6 I mentioned a perfect match between the active object
computing model and a super-simple, run-to-completion (RTC) preemptive kernel. In
this chapter I describe such a kernel, called QK, which is part of the QP event-driven
platform and is tightly integrated with the QF real-time framework.

I begin this chapter by enumerating good and bad reasons for choosing a preemptive
kernel in the first place. I then follow with an introduction to RTC kernels. Next I
describe the implementation of the QK preemptive kernel and how it integrates with the
QF real-time framework. I then move on to the advanced QK features, such as the
priority-ceiling mutex, extended context switch to support various coprocessors (e.g.,
the 80x87 floating point coprocessor), and thread-local storage (e.g., used in the
Newlib standard library). Finally, I describe how to port the QK kernel to various
CPUs and compilers. As usual, I illustrate all the features by means of executable
examples that you can actually run on any x86-based PC.

10.1 Reasons for Choosing a Preemptive Kernel

Before I go into the details of QK, let me make absolutely clear that preemptive
multitasking opens up an entirely new dimension of complexity in the design and
debugging of the application, to say the least. It’s simply much easier to analyze and
debug a program in which tasks cannot preempt each other at every instruction and
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instead can only yield to one other after each RTC step. Allowing task preemptions can
lead to a variety of tricky problems, all ultimately rooted in resource sharing among
tasks. You must be extremely careful because the resource sharing might be more
camouflaged than you think. For example, without realizing it, you might be using
some nonreentrant code from the standard libraries or other sources. Moreover,
preemptive multitasking always costs more in terms of the stack usage (RAM) and
CPU cycles for scheduling and context switching than does nonpreemptive
scheduling, such as the “vanilla” cooperative kernel (see Section 7.11 in Chapter 7).

When you choose a preemptive kernel, such as QK or any other preemptive RTOS
for that matter, I want you to do it for good reasons. Let me begin with the bad reasons
for choosing a preemptive kernel. First, in active object computing model you don’t
need a preemptive kernel for partitioning the problem. Though this is by far the most
common rationale for choosing an RTOS in the traditional sequential programming
model, it’s not a valid reason in a system of active objects. Active objects already
divide the original problem, regardless of the underlying kernel or RTOS.

Second, you don’t need a preemptive kernel to implement efficient blocking because
event-driven systems generally don’t block (see Chapter 6). Third, since event-driven
systems don’t poll or block, the RTC steps tend to be naturally quite short. Therefore,
chances are that you can achieve adequate task-level response with the simple
nonpreemptive kernel (I discuss the execution profile of a nonpreemptive kernel in
Section 7.11 in Chapter 7). Often you can easily improve the task-level response of
the vanilla kernel by breaking up long RTC steps into short enough pieces by using
the “Reminder” state pattern described in Chapter 5. And finally, you don’t need

a preemptive kernel to take advantage of the low-power sleep modes of your MCU.
As described in Section 7.11.1 in Chapter 7, the cooperative vanilla kernel allows
you to use low-power sleep modes safely.

Having said all this, however, I must also say that a preemptive kernel can be a
very powerful and an indispensable tool—for a specific class of problems.

A preemptive kernel executes higher-priority tasks virtually independently of tasks of
lower priority. When a high-priority task needs to run, it simply preempts right
away any lower-priority task that might be currently running, so the low-priority
processing becomes effectively transparent to all tasks of higher priority.

Therefore, a preemptive, priority-based kernel decouples high-priority tasks from
the low-priority tasks in the time domain. This unique ability is critical in
control-type applications.
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In Chapter 1, I mentioned a GPS receiver example in which the hard real-time
control loops of GPS signal tracking must execute in parallel to slow, floating point-
intensive number crunching, graphic LCD access, and other 1/O. This type of
application is not well served by a nonpreemptive kernel, in which the task-level
response is the longest RTC step in the whole system. It is simply impractical to
identify and break up all the low-priority RTC steps into short enough pieces to
meet the tight timing constraints of the control loops. Using a nonpreemptive kernel
would also result in a fragile design because any change in the low-priority task
could impact the timing of high-priority control tasks. In contrast, with a preemptive
kernel you can be sure that high-priority processing is virtually insensitive to
changes in the low-priority tasks. If you have a control application like that, a
preemptive kernel might be actually the simplest, most elegant, and most robust way
to design and implement your system.

NOTE

The choice of a kernel type is really a tradeoff between the coupling in the time domain and
sharing of resources. A nonpreemptive kernel permits you to share resources among tasks but
couples the tasks in the time domain. A preemptive kernel decouples the tasks in the time
domain but is unforgiving for sharing resources among tasks. Under a preemptive kernel,
any mechanism that allows you to share resources safely (such as a mutex) introduces some
coupling among tasks in the time domain.

10.2 Introduction to RTC Kernels

All event-driven systems handle events in discrete RTC steps. Ironically, most
conventional RTOSs force programmers to model these simple, one-shot event
reactions using tasks structured as continuous endless loops. This serious mismatch is
caused by the sequential programming paradigm underlying all traditional blocking
kernels (see Section 6.2.2 in Chapter 6).

Though the event-driven, active object computing model can be made to work with a
traditional blocking kernel, as described in Section 6.3 in Chapter 6, it really does not
use the capabilities of such a kernel efficiently. An active object task structured as

an endless event loop (Figure 6.5(B)) blocks really in just one place in the loop and
under one condition only—when the event queue is empty. Thus, it is obviously
overkill to use sophisticated machinery capable of blocking at any number of places in
the task’s execution path to block at just one a priori known point.
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The event-driven paradigm calls for a different, much simpler, type of truly event-
driven, run-to-completion kernel. A kernel of this type breaks entirely with the loop
structure of the tasks and instead uses tasks structured as one-shot, discrete,
run-to-completion functions, very much like ISRs [Samek+ 06]. In fact, an RTC kernel
views interrupts very much like tasks of a “super-high” priority, except that interrupts
are prioritized in hardware by the interrupt controller, whereas tasks are prioritized

in software by the RTC kernel (see Figure 6.9 in Chapter 6).

NOTE

The one-shot RTC tasks correspond directly to active objects, as described in Section 6.3.8 in
Chapter 6. Therefore, in the following discussion I use the terms active object and task
interchangeably.

10.2.1 Preemptive Multitasking with a Single Stack

To be able to efficiently block anywhere in the task code, a conventional real-time
kernel maintains relatively complex execution contexts—including separate stack
spaces—for each running task, as shown in Figure 6.2 in Chapter 6. Keeping track of
the details of these contexts and switching among them requires lots of bookkeeping
and sophisticated mechanisms to implement the context switch magic. In contrast, an
RTC kernel can be ultra simple because it doesn’t need to manage multiple stacks
and all the associated bookkeeping.

By requiring that all tasks run to completion and enforcing fixed-priority scheduling, an
RTC kernel can instead manage all context information using the machine’s natural
stack protocol. Whenever a task posts an event to a higher-priority task, an RTC kernel
uses a regular C function call to build the higher-priority task context on top of the
preempted-task context. Whenever an interrupt preempts a task and the interrupt posts
an event to a higher-priority task, the RTC kernel uses the already established interrupt
stack frame on top of which to build the higher-priority task context, again using a
regular C function call.

This simple form of context management is adequate because every task, just like every
ISR, runs to completion. Because the preempting task must also run to completion, the
lower-priority context will never be needed until the preempting task (and any higher-
priority tasks that might preempt it) has completed and returned—at which time the
preempted task will, naturally, be at the top of the stack, ready to be resumed.
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At this point, it is interesting to observe that most prioritized interrupt controllers
(e.g., the 8259A inside the PC, the AIC in AT91-based ARM MCUs from Atmel, the
NVIC in ARM Cortex-M3, and many others) implement in hardware the same
asynchronous scheduling policy for interrupts as an RTC kernel implements in
software for tasks. In particular, any prioritized interrupt controller allows only
higher-priority interrupts to preempt currently serviced interrupt. All interrupts must
run to completion and cannot “block.” All interrupts nest on the same stack.

This close similarity should help you understand the operation of an RTC kernel
because it is based on exactly the same principle widely used and documented in
hardware design (just pick up a datasheet of any aforementioned microprocessors).
Also, the similarity further reinforces the symmetry between RTC tasks and interrupts
illustrated in Figure 6.9 in Chapter 6.

10.2.2 Nonblocking Kernel

One obvious consequence of the simplistic stack-management policy, and the most
severe limitation of an RTC kernel, is that the RTC tasks cannot block. The kernel
cannot leave a high-priority task context on the stack and at the same time resume a lower-
priority task. The lower-priority task context simply won’t be accessible on top of the
stack unless the higher-priority task completes. Of course the inability to block
disqualifies an RTC kernel for use with the traditional sequential programming paradigm,
which is all about blocking and waiting for events at various points in the task’s code.

But the inability to block in the middle of an RTC step is not really a problem for
event-driven active objects because they don’t need to block anyway. In other words, an
active object computing model can benefit from the simplicity and excellent performance
of an RTC kernel while being insensitive to the limitations of such a kernel.

10.2.3 Synchronous and Asynchronous Preemptions

As a fully preemptive multitasking kernel, an RTC kernel must ensure that at all times
the CPU executes the highest-priority task that is ready to run. Fortunately, only two
scenarios can lead to readying a higher-priority task:

1. When a lower-priority task posts an event to a higher-priority task, the kernel
must immediately suspend the execution of the lower-priority task and start the
higher-priority task. This type of preemption is called synchronous preemption
because it happens synchronously with posting an event to the task’s event queue.
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When an interrupt posts an event to a higher-priority task than the interrupted
task, upon completion of the ISR the kernel must start execution of the higher-
priority task instead of resuming the lower-priority task. This type of
preemption is called asynchronous preemption because it can happen
asynchronously, any time interrupts are not explicitly locked.

Figure 10.1 illustrates the synchronous preemption scenario caused by posting an event
from a low-priority task to a high-priority task.

-:‘% priority ¢ function
IS call
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o A return
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Figure 10.1: Synchronous preemption by a high priority task in an RTC kernel.
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The low-priority task is executing.

At some point during normal execution, a low-priority task posts or publishes an
event to a high-priority task, thus making it ready to run. Posting an event to a
queue engages the scheduler of the RTC kernel.

The scheduler detects that a high-priority task becomes ready to run, so it calls the
high-priority task function. Note that the scheduler does not return.

The high-priority task runs, but at some time it too posts an event to the lower-
priority task than itself.

Event posting engages the RTC scheduler, but this time the scheduler does not
find any higher-priority tasks than the current priority. The scheduler returns to the
high-priority task.

The high-priority task runs to completion.
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(7) The high-priority task naturally returns to the RTC scheduler invoked at step 2.

(8) The scheduler checks once more for a higher-priority task to start, but it finds
none. The RTC scheduler returns to the low-priority task

(9) The low-priority task continues.

Obviously, the synchronous preemption is not limited to only one level. If the
high-priority task posts or publishes events to a still higher-priority task in point 5 of
Figure 10.1, the high-priority task will be synchronously preempted and the scenario

will recursively repeat itself at a higher level of nesting.

Figure 10.2 illustrates the asynchronous preemption scenario caused by an interrupt.
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Figure 10.2: Asynchronous preemption by an interrupt and a high-priority task

in an RTC kernel.

(1) A low-priority task is executing and interrupts are unlocked.

(2) An asynchronous event interrupts the processor. The interrupt immediately

preempts any executing task.

(3) The interrupt service routine (ISR) executes the RTC kernel-specific entry,
which saves the priority of the interrupted task into a stack-based variable and
raises the current priority of the RTC kernel to the ISR level (above any task).
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The raising of the current priority informs the RTC kernel that it executes in the
ISR context.

The ISR continues to perform some work and, among other things, posts or
publishes an event to the high-priority task. Posting an event engages the RTC
scheduler, which immediately returns because no task has a higher priority than
the current priority.

The ISR continues and finally executes the RTC kernel-specific exit.

The RTC kernel-specific ISR exit sends the end-of-interrupt (EOI'") instruction to
the interrupt controller, restores the saved priority of the interrupted task into the
current priority, and invokes the RTC scheduler.

Now the RTC scheduler detects that a high-priority task is ready to run, so it
enables interrupts and calls the high-priority task. Note that the RTC scheduler
does not return.

The high-priority task runs to completion, unless it also gets interrupted.

After completion, the high-priority task naturally returns to the scheduler, which
now executes at a task priority level because the EOI instruction to the interrupt
controller issued at step 5 lowered the hardware priority. Note that the system

priority is at task level, even though the interrupt return hasn’t been executed yet.

The original interrupt executes the interrupt return (IRET?) instruction. The IRET
restores the context of the low-priority task, which has been asynchronously
preempted all that time. Note that the interrupt return matches the interrupt
preemption in step 2.

Finally, the low-priority task continues and eventually runs to completion.

It is important to point out that conceptually the interrupt handling ends in the RTC
kernel-specific interrupt exit (5), even though the interrupt stack frame still remains on
the stack and the IRET instruction has not been executed yet. The interrupt ends
because the EOI instruction is issued to the interrupt controller. Before the EOI
instruction, the interrupt controller allows only interrupts of higher priority than the

! The EOI instruction is understood here generically and denotes a specific machine instruction to stop
prioritizing the current interrupt nesting level.

2 The IRET instruction is understood here generically and denotes a specific machine instruction for
returning from an interrupt.
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currently serviced interrupt. After the EOI instruction followed by the call to the RTC
scheduler, the interrupts get unlocked and the interrupt controller allows all interrupt
levels, which is exactly the behavior expected at the task level.

NOTE

Some processor architectures (e.g., ARM Cortex-M3) hardwire the EOI and the IRET instructions
together, meaning that EOI cannot be issued independently from IRET. (Note that I treat the
instructions EOI and IRET generically in this discussion.) In this case an extra dummy interrupt
stack frame must be synthesized, so the EOI/IRET instruction will leave the original interrupt
stack frame on the stack. However, such CPU architectures are actually rare, and most processors
allow lowering the hardware interrupt priority level without issuing the IRET instruction.

Consequently, the asynchronous preemption is not limited to only one level. The
high-priority task runs with interrupts unlocked (Figure 10.2(8)), so it too can be
asynchronously preempted by an interrupt, including the same level interrupt as the
low-priority task in step 2. If the interrupt posts or publishes events to a still higher-
priority task, the high-priority task will be asynchronously preempted and the scenario
will recursively repeat itself at a higher level of nesting.

10.2.4 Stack Utilization

Charting the stack utilization over time provides another, complementary view of the
synchronous and asynchronous preemption scenarios depicted in Figures 10.1 and 10.2,
respectively. To demonstrate the essential behavior, I ignore the irrelevant function calls
and other unrelated stack activity.

Figure 10.3 illustrates the stack utilization across the synchronous preemption scenario.
The timeline and labels used in Figure 10.3 are identical to those used in Figure 10.1
to allow you to easily correlate these two diagrams.

(1) Initially, the stack pointer points to the low-priority task stack frame.

(2) At some point during normal execution, a low-priority task posts or publishes an
event to a high-priority task, which calls the RTC scheduler. A stack frame of
the scheduler is pushed on the stack.

(3) The scheduler detects that a high-priority task becomes ready to run, so it calls the
high-priority task. A stack frame of the high-priority task is pushed on the stack.
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Figure 10.3: Stack utilization during the synchronous preemption scenario.

High-priority task executes and at some point posts an event to the low-
priority task.

Event posting engages the RTC scheduler, so another scheduler stack frame is
pushed on the stack. The scheduler does not find any higher-priority tasks ready to
run, so it immediately returns.

The high-priority task runs to completion.

The high-priority task naturally returns to the RTC scheduler invoked at step 2, so
the task’s stack frame is popped off the stack.

The scheduler checks once more for a higher-priority task to start, but it finds
none, so the RTC scheduler returns to the low-priority task popping off its stack
frame.

The low-priority task continues.

Figure 10.4 illustrates the stack utilization during the asynchronous preemption
scenario. The time-line and labels used in Figure 10.4 are identical to those used in
Figure 10.2 to enable easy correlating of these two diagrams.

ey
2

Initially, the stack pointer points to the low-priority task stack frame.

An asynchronous event interrupts the processor. The interrupt immediately
preempts any executing task and the hardware arranges for pushing the interrupt
stack frame onto the stack (zigzag arrow). The interrupt service routine (ISR)
starts executing and possibly pushes some more context onto the stack (dashed
up-arrow). The ISR stack frame is fully built.
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Figure 10.4: Stack utilization during the asynchronous preemption scenario.

(3-5) The ISR runs to completion and executes the RTC kernel-specific exit, which
sends the EOI command to the interrupt controller.

(6) The RTC scheduler is called, which pushes its stack frame on the stack.

(7) The scheduler detects that a high-priority task is ready to run, so it enables
interrupts and calls the high-priority task. The call to high-priority task function
pushes the task’s stack frame on the stack.

(8) The high-priority task runs to completion and returns to the scheduler. The
return pops the task’s function stack frame off the stack.

(9) The scheduler resumes and checks for more high-priority tasks to execute but
does not find any and returns popping its stack frame off the stack.

(10) The ISR stack frame gets popped off the stack (the dashed down-arrow). Next
the hardware executes the IRET instruction, which causes the interrupt stack
frame to pop off the stack.

(11) The interrupt return exposes the preempted low-priority stack, which is now
resumed and continues to run.

As you can see, all context (both the interrupt and task contexts) are kept in a single
stack. This forces the kernel to be nonblocking. The scheduler can never access
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anything but the topmost context in the stack. Thus, the scheduler can only choose from
two alternatives: launch a new task or resume the topmost task context saved in the
stack.

10.2.5 Comparison to Traditional Preemptive Kernels

If you have some experience with traditional preemptive kernels, an RTC kernel will
require some getting used to and perhaps rethinking some basic semantics of the
“task” and “interrupt” concepts.

Conventional preemptive kernels maintain separate stack spaces for each running
task, as explained in Chapter 6. Keeping track of the details of these contexts and
switching among them requires a lot of bookkeeping and sophisticated mechanisms
to implement the context switch. In general, an ISR stores the interrupt context on
one task’s stack and restores the context from another task’s stack. After restoring
the task’s context into the CPU registers, the traditional scheduler always issues

the IRET" instruction. The key point is that the interrupt context remains saved

on the preempted task’s stack, so the saved interrupt context outlives the duration of
the interrupt handler. Therefore, defining the duration of an interrupt from saving the
interrupt context to restoring the context is problematic.

The situation is not really that much different under an RTC kernel, such as QK. An
ISR stores the interrupt context on the stack, which happens to be common for all tasks
and interrupts. After some processing, the ISR issues the EOI* instruction to the
interrupt controller and calls the RTC scheduler. If no higher-priority tasks are ready to
run, the scheduler exits immediately, in which case the ISR restores the context from
the stack and executes the IRET instruction to return to the original task exactly at the
point of preemption. Otherwise, the RTC scheduler unlocks interrupts and calls a
higher-priority task. The interrupt context remains saved on the stack, just as in the
traditional kernel.

The point here is that the ISR is defined from the time of storing interrupt context to the
time of issuing the EOI instruction and enabling interrupts inside the RTC scheduler,
not necessarily to the point of restoring the interrupt context via the IRET instruction.

3 The IRET instruction is understood here generically and means the instruction that causes the return from
interrupt.

4 The EOI instruction is understood here generically and denotes a specific machine instruction to stop
prioritizing the current interrupt nesting level.
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This definition is more precise and universal because under any kernel the interrupt
context remains stored on one stack or another and typically outlives the duration of an
interrupt processing.

NOTE

The definition of ISR duration is not purely academic but has tangible practical impli-
cations. In particular, ROM monitor-based debugging at the ISR level is much more
challenging than debugging at the task level. Even though all context nests on the same
stack, debugging RTC tasks is as easy as debugging the main () task, because the inter-
rupts are unlocked and the hardware interrupt priority at the interrupt controller level is
set to the task level.

By managing all task and interrupt contexts in a single stack, an RTC kernel can
run with far less RAM® than a typical blocking kernel. Because tasks don’t have
private stacks, there is no unused private stack space associated with suspended
tasks. Furthermore, a traditional kernel does not distinguish between the
synchronous and asynchronous preemptions and makes all preemptions look like
the more stack-intensive asynchronous preemptions. Finally, an RTC kernel does
not need to maintain the task control blocks (TCBs; see Figure 6.2 in Chapter 6)
for each task.

Because of this simplicity, context switches in an RTC kernel (especially the
“synchronous preemptions”) can involve much less stack space and CPU overhead
than in any traditional kernel. But even the “asynchronous preemptions” in an RTC
kernel end up typically using significantly less stack space and fewer CPU cycles.

A traditional kernel must typically save all CPU registers in strictly defined order and
in “one swoop” onto the private task stack, to be able to restore the registers in an
orderly fashion, also in “one swoop.” In contrast, an RTC kernel doesn’t really care
about the order of registers stored and whether they are stored in “one swoop” or
piecemeal. The only relevant aspect is that the CPU state be restored exactly to the
previous status, but it’s irrelevant how this happens. This means that the basic ISR entry
and exit sequences that most embedded C compilers are capable of generating are

3 In one case of a specialized GPS receiver application, an RTC kernel brought almost 80 percent reduction
of the stack space compared to a traditional preemptive kernel running the same event-driven
application [Montgomery 06].
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typically adequate for an RTC kernel while being inadequate for most traditional
kernels. The C compiler is in a much better position to optimize interrupt stack frames
for specific ISRs by saving only the actually clobbered registers and not saving the
preserved registers. In this respect, an RTC kernel can take advantage of the C compiler
capabilities whereas a traditional kernel can’t.

The last point is perhaps best illustrated by a concrete example. All C compilers for
ARM processors (I mean the traditional ARM architecture®) adhere to the ARM
Procedure Call Standard (APCS) that prescribes which registers must be preserved
across a C function call and which can be clobbered. The C compiler-generated ISR
entry initially saves only the registers that might be clobbered in a C function,
which is less than half of all ARM registers. The rest of the registers get saved later,
inside C functions invoked from the ISR, if and only if such registers are actually
used. This is an example of a context save occurring “piecemeal,” which is perfectly
suitable for an RTC kernel. In contrast, a traditional kernel must save all ARM
registers in “one swoop” upon ISR entry, and if an ISR calls C functions (which it
typically does), many registers are saved again. Needless to say, such policy requires
more RAM for the stacks and more CPU cycles for a context switch (perhaps by a
factor of two) than an RTC kernel.

10.3 QK Implementation

QK is a lightweight, priority-based, RTC kernel specifically designed to provide
preemptive multitasking capabilities to the QF real-time framework. QK is not a
standalone kernel but rather is just an add-on to QF, similar to the “vanilla” kernel
described in Chapter 7. QK is provided as one of the components of the QP event-
driven platform.

In this section, I describe the platform-independent QK source code, whereas I focus
on the basic kernel functions, such as keeping track of tasks and interrupts,
scheduling, and context switching.

S The new ARMv7 architecture (e.g., Cortex-M3) saves registers in hardware upon interrupt entry, so a
C compiler is not involved. However, even in this case the hardware-generated interrupt stack frame
takes into account the APCS because the hardware pushes only the eight clobbered ARM registers

on the stack.
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10.3.1 QK Source Code Organization

Listing 10.1 shows the directories and files comprising the QK preemptive kernel in C.
The structure of the C++ version is almost identical, except the implementation files
have the . cpp extension. The general source code organization of all QP components is

described in Section 8.1.3 in Chapter 8.

Listing 10.1 QK source code organization

|
|
|
|
|
|
|
|
|
|
|
|
|
.

<gp>\gpc\

+-include\

+-opt_gk.lnt

+-make.bat
+-gep_port.h
+-gf_port.h
+-gk_port.h
+-gs_port.h
+-gp_port.h

cortex-m3\

- QP/C root directory (<gp>\gpcpp for QP/C++)

- QP platform-independent header files

PC-1int options for linting QK

| +-gk.h - QK platform-independent interface

| +-

|

+-gk\ - QK preemptive kernel

| +-source\ - QKplatform-independent sourcecode (*.Cfiles)
| | +-gk_pkg.h - internal, interface for the QK implementation
| | +-agk.c - definitionofQK_getVersion () andQActive_start ()
| | +-gk_sched.c - definition of QK_schedule_ ()

| | +-gk_mutex.c - definition of QK_mutexLock () /QK_mutexUnlock ()

| | +-gk_ext.c - definition of QK_scheduleExt_ ()

||

| +-1int\ - QK options for lint

|

|

+-ports\ - Platform-specific QP ports
| +-80x86\ - Ports to the 80x86 processor
| | +-gk\ - Ports to the QK preemptive kernel
| +-tcppl01\ - Ports with the Turbo C++ 1.01 compiler
| +-1\ - Ports using the Large memory model
+-dbg\ - Debug build
| +-qf.1lib - QF library
| +-gep.1lib - QEP library
+-rel\ - Release build
+-spy\ - Spy build (with software instrumentation)

— batch script for building the QP libraries
- QEP platform-dependent include file
- QF platform-dependent include file
- QK platform-dependent include file
- QS platform-dependent include file
- QP platform-dependent include file
Ports to the Cortex-M3 processor

Continued onto next page
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| | +-gk\ - Ports to the QK preemptive kernel

| | | +-iaxr\ - Ports with the IAR compiler

||

+-examples\ - Platform-specific QP examples

| +-80x86\ - Examples for the 80x86 processor

| | +-gk\ - Examples for the QK preemptive kernel
[ ]|+ ...

| +- cortex m3\ - Examples for the Cortex-M3 processor
| | +-gk\ - Examples for the QK preemptive kernel
| [+

| +-

10.3.2 The gk.h Header File

The gk.h header file, shown in Listing 10.2, integrates the QK kernel with the QF
framework. The structure of gk.h closely resembles the vanilla kernel header file
gvanilla.h discussed in Section 7.11.2 in Chapter 7. The QK kernel uses many of
the same basic building blocks provided in QF. Specifically, the QK kernel uses the
native QF active object event queues (see Section 7.8.3 in Chapter 7), the QF native
memory pool (see Section 7.9), and the QF priority set (see Section 7.10) to keep
track of all active object event queues. Additionally, the central element of the QK
design is the current systemwide priority, which is just a byte. Figure 10.5 shows
the QK data elements.

:QActive :QActive :QActive
prio == 59 prio == prio ==

5

[o]o]ofo]o[1].] ] [.[.]-]o].].]-]1] [ QK_currPrio_: uint8_t |

T
QK_readySet_ : QPSet64

Figure 10.5: Data elements used by the QK preemptive kernel.
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Listing 10.2 The QK preemptive kernel interface (<gp>\gpc\include\gk.h)

(1)
(2)
(3)

(4)
(5)
(6)

#ifndef gk h
#define gk_h

#include "gequeue.h" /* The QK kernel uses the native QF event queue */
#include "gmpool.h" /* The QK kernel uses the native QF memory pool */
#include "gpset.h" /* The QK kernel uses the native QF priority set */

/* public-scope objects */

extern QPSet64 volatile QK readySet ; /**< QK ready-set */
extern uint8 t volatile QK currPrio_; /**< current task/interrupt priority*/
extern uint8 t volatile QK intNest ; /**< interrupt nesting level */

[ ok sk sk ke e e ek ke ke ke ok ke ke ke ok sk ke ok stk ok stk ok kst ok okt kot ok sk ok ok kR Rk sk ok kool stk sk sk skl sk sk sk sk sk sk sk sk sk s s sk s e sk s s sk ke ok /

/* QF configuration for QK */
#define QF EQUEUE_TYPE QEQueue

#1if defined (QK_TLS) || defined (QK_EXT SAVE)
#define QF_OS_OBJECT_TYPE uint8_t
#define QF THREAD_TYPE void *
#endif /* QK _TLS || QK EXT SAVE */

/* QK active object queue implementation. .ot i e ettt tn e e eneeneeneneennn */
#define QACTIVE EQUEUE WAIT (me ) \
Q_ASSERT ( (me_) ->eQueue. frontEvt != (QEvent *)0)

#define QACTIVE EQUEUE SIGNAL (me ) \
QPSet64 insert (&QK readySet , (me )->prio); \
if (QK_intNest == (uint8_t)0) {\
QK SCHEDULE_ () ; \
I
else ((void)0)

#define QACTIVE EQUEUE ONEMPTY (me ) \
QPSet64 remove (&QK_readySet , (me_ )->prio)

/* QK eVent POOL OPEIraAtiONS . v v vttt ettt it ettt ettt ee e ee et */
#define QF EPOOL TYPE QMPool
#define QF EPOOL_INIT (p_, poolSto , poolSize , evtSize )\

OMPool init(&(p_ ), poolSto , poolSize , evtSize )

#define QF EPOOL_EVENT_SIZE (p_) ((p_).blockSize)

#define QF EPOOL GET (p , e ) ((e_) = (QEvent *)QMPool get (& (p_)))
#define QF EPOOL PUT (p_, e ) (QMPool put(&(p_), (e_)))

void QK init (void); /* QK initialization */
void QK onIdle (void); /* QK idle callback */

char const Q ROM* Q ROM VAR QK getVersion (void);

Continued onto next page
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(24) typedef uint8 t QMutex; /* QK priority-ceiling mutex */

(25) OQMutex QK mutexLock (uint8 t prioCeiling);

(26) void QK mutexUnlock (QMutex mutex) ;

/* QK scheduler and extended scheduler * /

(27) #ifndef QF INT KEY TYPE

(28) void QK schedule (void);

(29) void QK scheduleExt (void); /* QK extended scheduler */

(30) #define QK SCHEDULE () QK schedule ()

#else

(31) void QK schedule (QF INT KEY TYPE intLockKey);

(32) void QK scheduleExt (QF INT KEY TYPE intLockKey); /* extended scheduler*/

(33) #define QK SCHEDULE () QK schedule (intLockKey )

#endif
#endif /* gk _h*/

(1) The QK kernel uses the native QF event queue, so it needs to include the
gequeue . h header file.

(2) The QK kernel uses the native QF memory pool, so it needs to include the
gmpool . h header file.

(3) The QK kernel uses the native QF priority set, so it needs to include the
gpset .h header file.

(4) The global variable QK_readySet_ is a priority set that maintains the
global status of all active object event queues, as shown in Figure 10.5.
QK_readySet_ is declared as volatile because it can change asynchronously
in ISRs.

(5) The global variable QK_currPrio_ represents the global systemwide priority
of the currently running task or interrupt. QK_currPrio_ is declared as
volatile because it can change asynchronously in ISRs.

(6) The global variable QK_intNest_ represents the global systemwide interrupt
nesting level. QK_intNest_ is declared as volatile because it can change
asynchronously in ISRs.

(7) The QK kernel uses QEQueue as the event queue for active objects (see also
Listing 7.7(8)).

(8) In QK, the gactive data member osObject is used as a bitmask of flags

representing various properties of the thread. For example, a bit of osObject
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bitmask might contain the information whether the thread uses a particular
coprocessor. (Refer to Section 10.4.3.)

(9) In QK, the gAactive data member thread is used to point to the thread local
storage for that thread. (Refer to Section 10.4.2.)

(10) The QK kernel never blocks. The QK scheduler calls Qactive_get_ () only
when it knows for sure that the event queue contains at least one event (see
Listing 10.4(22)). Since this is certainty in this type of kernel, the
QACTIVE_EQUEUE_WAIT_ () macro (see Listing 7.24(2) in Chapter 7) asserts
that the event queue is indeed not empty.

(11) The macro QACTIVE_EQUEUE_SIGNAL_ () is called from
QActive_postFIFO() or QActive_postLIFO () when an event is posted
to an empty queue (see Listing 7.25(5) in Chapter 7). Note that the macro is
invoked inside a critical section. (Also, because I know exactly the context
in which the macro is used, I don’t bother surrounding the macro body
with the do {...} while(0) loop.)

(12) The active object becomes ready to run, so its priority is inserted into the
ready-set QK_readySet_.

(13) This if statement tests the QK interrupt nesting level because if the event
posting occurs at the task level, the QK scheduler must be invoked to handle a
potential synchronous preemption (see Section 10.2.3). The scheduler is not
called from an interrupt, because a task certainly cannot preempt an interrupt.

(14) The QK scheduler is called via the macro QK_SCHEDULE_ (), defined in lines
(30) or (33), depending on the interrupt-locking policy used.

NOTE

The QK scheduler is always called from a critical section, that is, with interrupts locked. The
scheduler might unlock interrupts internally, but always returns with interrupts locked.

(15) The macro QACTIVE_EQUEUE_ONEMPTY_ () is called from QActive_get_ ()
when the queue is becoming empty (see Listing 7.24(12) in Chapter 7).
This is exactly when the priority of the active object needs to be removed
from the ready-set QK_readySet_ because the active object is no longer
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ready to run. Note that QACTIVE_EQUEUE_ONEMPTY_ () is called from a
critical section.

(16-20) The QK kernel uses gMPool as the QF event pool. The platform abstraction
layer (PAL) macros are set to access the QMPool operations (see Section 7.9
in Chapter 7).

(21) The QK kernel initialization is invoked from QF_init (). The QK_init ()
performs CPU-specific initialization and is defined at the QK port level.

(22) The QK idle loop calls the Qk_onIdle () callback to give the application a
chance to customize the idle processing.

NOTE

The Qx_onIdle () callback is distinctively different from the QF_onIdle () callback used
by the cooperative vanilla kernel, because a preemptive kernel handles idle processing differ-
ently than a nonpreemptive one. Specifically, the QK_onIdle () callback is always called
with interrupts unlocked and does not need to unlock interrupts.

(23) The 0K_getVersion () function allows you to obtain the current version of the
QK kernel as a constant string “x.y.zz,” where x is the one-digit major number
(e.g., 3), y is the one-digit minor number (e.g., 5), and zz is the two-digit release
number (e.g., 00).

(24) This typedef defines the QMutex type for the priority-ceiling mutex.
I describe the QK mutex implementation in Section 10.4.1.

(25,26) The functions QK_mutexLock () and QK_mutexUnlock () perform mutex
locking and unlocking, respectively. Again, I describe them in Section 10.4.1.

The QK kernel, just like any other real-time kernel, uses the simplest and most efficient
way to protect critical sections of code from disruptions, which is to lock interrupts
on entry to the critical section and unlock interrupts again on exit. QK uses the same
critical section mechanism as the QF real-time framework, and in fact, QK defines the
critical section mechanism for QF in the file gk_port.h. (See Section 7.3 in Chapter 7
for the description of the QF critical section policies and macros.)

(27) As I mentioned at step 14, the QK scheduler is always invoked from a critical
section but might need to unlock interrupts internally. Therefore, the signature
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of the QK scheduler function depends on the interrupt-locking policy used,
which is determined by the QF _INT_KEY_ TYPE, as described in Section 7.3
in Chapter 7.

(28) When QF_INT_KEY_TYPE is not defined, the simple “unconditional interrupt
locking and unlocking” policy is used, in which case the QK scheduler
QK_schedule_ () takes no parameters.

(29) Similarly, the extended QK scheduler QK_scheduleExt_ () takes no
parameters. I discuss the extended QK scheduler in the upcoming Section 10.4.3.

(30,33) The macro QK_SCHEDULE_ () invokes the QK scheduler hiding the actual
interrupt policy used.

(31) When QF_INT KEY_TYPE is defined, the policy of “saving and restoring
interrupt status” is used, in which case the QK scheduler QK_schedule_ ()
takes the interrupt status key as a parameter.

(32) Similarly, he extended QK scheduler QK_scheduleExt_ () takes the same
interrupt status key as the parameter. I discuss the extended QK scheduler in
the upcoming Section 10.4.3.

10.3.3 Interrupt Processing

Interrupt processing is always specific to your particular application, so obviously it
cannot be programmed generically in a platform-independent manner. However,
handling interrupts is critical to understanding how the QK kernel works, so here 1
explain it in general terms.

The most important thing you need to understand about interrupt processing under any
preemptive kernel, not just QK, is that the kernel must be notified about entering

and exiting an interrupt. Specifically, every interrupt must call the QK scheduler upon
exit, to give the kernel a chance to handle the asynchronous preemption, as described
in Section 10.2.3.

Unlike most conventional preemptive kernels, QK can typically work with interrupt
service routines synthesized by the C compiler, which most embedded C cross-
compilers support. Listing 10.3 shows the pseudocode for an ISR; Figure 10.6 shows
the timeline for executing this code.
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Listing 10.3 ISRs in QK; boldface indicates QK-specific interrupt
entry and exit

(1) void interrupt YourISR(void) { /* typically enteredwith interrupts locked*/
(2) Clear the interrupt source, if necessary

(3) ++QK_intNest_; /* account for one more interrupt nesting level */
(4) Unlock interrupts (depending on the interrupt policy used)

(5) Execute ISR body, including calling QF services, such as:

Q NEW(), QActive postFIFO (), QActive postLIF (), QF publish(), or QF tick()

6) Lock interrupts, if they were unlocked in step (4)

7) Send the EOI instruction to the interrupt controller

8) —QOK intNest_; /* account for one less interrupt nesting level */
9) if (QK_intNest == (uint8_t)0) { /* coming back to the task level? */
0) QK schedule () /* handle potential asynchronous preemption */

}

(1) An ISR must usually be defined with a special extended keyword (such as
“ interrupt” in this case). Typically, an ISR is entered with interrupts locked,
but some processor architectures (e.g., ARM Cortex-M3) don’t lock interrupts.
(Check your device’s datasheet.)

(2) If the interrupt source needs clearing, it’s best to do it right away.

(3) You need to tell QK that you are servicing an ISR, so that QK won’t try to handle
preemption at the ISR level. You inform the kernel by incrementing the global
interrupt nesting level QK_intNest_. This must be done in a critical section, so if
your processor does not lock interrupts automatically upon ISR entry (see line (1)),
you need to explicitly lock interrupts before incrementing the nesting level.

(4) Depending on the interrupt-locking policy used (see Section 7.3 in Chapter 7) and when
an interrupt controller is present, you might need to unlock the interrupt at this point.

NOTE

Steps 3 and 4 constitute the QK-specific interrupt entry, and you can encapsulate them in a
macro QK_ISR_ENTRY (), as shown in Section 10.5.

(5) Execute the ISR body, including calling the indicated QF services. Note that all
these services use critical sections internally. Therefore, if your interrupt-locking
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policy does not support nesting of critical sections, you must make sure that
interrupts are not locked.

(6) You need to lock interrupts if you unlocked them in line (4), because the
following code must execute atomically.

(7)  You need to send the EOI instruction to the interrupt controller to inform the
hardware to stop prioritizing this interrupt level.

(8) The interrupt nesting level QK_intNest_ is decremented to account for leaving
the interrupt.

(9) If the interrupt nesting level indicates that the interrupt returns to the task level,
as opposed to another interrupt . ..

(10) The QK scheduler is called to handle potential asynchronous preemption. Note
that the scheduler is called with interrupts locked.

NOTE

Steps 6-10 constitute the QK-specific interrupt exit, and you can encapsulate them in a
macro QK_ISR_EXIT (), as shown in Section 10.5.

task-level

A
A

P  high-priority task running l

response interrupts 7
unlocked function call overhead /

. run QK_schedule_() /

interrupt interrupts interrupts .

response unlocked locked

restore QK priority asynchronous
send EOI preemption

send EOI no preemption AN

decrement interrupt nesting \\

run QK_schedule_() \

restoring interrupt context

ISR body
increment interrupt nesting

saving interrupt context

vectoring

interrupts locked in QF, QK,

I . \
or the application return from interrupt \

interrupt \ t t locked
request n erlrup S unioc "T’ . . low-priority task running T
0 1 2 3 4 5 time

Figure 10.6: Timeline of servicing an interrupt and asynchronous preemption
in QK. Black rectangles represent code executed with interrupts locked.
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Figure 10.6 shows the timeline of interrupt servicing and asynchronous preemption
under the QK preemptive kernel. I'd like to highlight two interesting points. First,
the interrupt response under the QK kernel is as fast as under any other preemptive
kernel and is mostly dominated by the longest critical section in the system and
how long it takes the hardware to save the interrupt context to the stack. Second,
the task-level response of the high-priority task is generally faster than any
conventional preemptive kernel because the interrupt context does not need to be
restored entirely from the stack and the interrupt return does not need to be executed
to start the high-priority task. In the RTC kernel, all this is replaced by a function
call, which typically is much faster than restoring the whole register set from the
stack and executing the IRET instruction.

10.3.4 The gk_sched.c Source File (QK Scheduler)

The source file gk_sched.c implements the QK scheduler, which is the most
important part of the QK kernel. As explained in Section 10.2.3, the QK scheduler is
called at two junctures: (1) when an event is posted to an event queue of an active
object (synchronous preemption), and (2) at the end of ISR processing (asynchronous
preemption). In the gk . h header file (Listing 10.2(14)), you saw how the QK scheduler
gets invoked to handle the synchronous preemptions. In the previous section, you

also saw how the scheduler gets called from an interrupt context to handle the
asynchronous preemption. Here, I describe the QK scheduler itself.

The QK scheduler is simply a regular C-function QK_schedule_ (), whose job is to
efficiently find the highest-priority active object that is ready to run and to execute it, as
long as its priority is higher than the currently serviced QK priority. To perform this
job, the QK scheduler relies on two data elements: the set of tasks that are ready to
run QK_readySet_ (Listing 10.2(4)) and the currently serviced priority
QK_currPrio_ (Listing 10.2(5)).

Figure 10.5 shows the relationship between the QK data elements and QF active
objects. The variable QK_currPrio_ is an integer of type uint8_t that holds the
value of the currently serviced priority level. The QK ready-set QK_readySet_ is of
type QPSet64 (see Section 7.10 in Chapter 7), which is capable of representing up to
64 elements numbered 1 through 64. As shown in Figure 10.5, each bit in the
QK_readySet_ priority set represents one QF active object. The bit number #n in
QK_readysSet_ is 1 if the event queue of the active object of priority #n is not empty.
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Conversely, bit number m in QK_readySet_ is O if the event queue of the active
object of priority m is empty or the priority level m is not used. Both variables
QK_currPrio_ and QK_readySet_ are always accessed in a critical section to
prevent data corruption.

Listing 10.4 shows the complete implementation of the QK_schedule_ () function.

Listing 10.4 QK scheduler implementation
(<ap>\gpc\gk\source\gk_sched.c)

(1)

(2)

(10)

(11)
(12)

(13)
(14)

(15)

(16)

(17)

(18)

#include "gk pkg.h"

/* Public-scope objects ——————————————————-—— oo */

QPSet64 volatile QK readySet ; /* QK ready-set */
/* start with the QK scheduler locked */

uint8 t volatile QK currPrio_= (uint8_ t) (QF MAX ACTIVE + 1);

uint8 t volatile QK intNest ; /* start with nesting level of 0 */

/P */

/* NOTE: the QK scheduler is entered and exited with interrupts LOCKED * /
#ifndef QF INT KEY TYPE
void QK schedule (void) {

#else
void QK schedule (QF INT KEY TYPE intLockKey ) {
#endif
uint8 t p;
/* the QK scheduler must be called at task level only */
0 REQUIRE (QK_intNest == (uint8 t)O0);

if (QPSet64 notEmpty (&QK readySet )) {
/* determine the priority of the highest-priority task ready to run */
QPSet64 findMax (&QK readySet , p);

if (p> QK _currPrio ) { /* do we have a preemption? */
uint8 t pin = QK currPrio_; /* save the initial priority*/
QActive *a;
#ifdef QK TLS /* thread-local storage used? */
uint8 t pprev =pin;
#endif
do {
QEvent const *e;
a =QF_active [p] ; /* obtain the pointer to the AO */
QK _currPrio_ =p; /* this becomes the current task priority */
#ifdef QK _TLS /* thread-local storage used? */
if (p !=pprev) { /* are we changing threads? */

Continued onto next page
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(28)
(29)
(30)

(31)
(32)
(33)

(34)

QK_TLS (a) ; /* switch new thread-local storage */
pprev =p;
}
#endif
QK_INT UNLOCK_(); /* unlock the interrupts */

e = QActive get_(a); /* get the next event for this AO */
QF ACTIVE DISPATCH_(&a->super, e); /* dispatch to the AO */
QF gc(e); /* garbage collect the event, if necessary */

QK _INT LOCK ();
/* determine the highest-priority A0 ready to run */

if (QPSet64 notEmpty (&QK readySet )) {

QPSet64 findMax (&QK readySet , p);
}
else{
p= (uint8 t)0;

}
} while (p> pin); /* is the new priority higher than initial? */
QK currPrio =pin; /* restore the initial priority*/

#ifdef QK TLS /* thread-local storage used? */
if (pin != (uint8 t)0) { /* no extended context for idle loop */

a=QF active [pin];
QK_TLS(a); /* restore the original TLS */

#endif
}
}

ey

2

3)

4

(&)

As every QK source file, the gk_sched. c file includes the wider
“package-scope” QK interface gk_pkg.h, located in <gp>\gpc\gk\source\.
The gk_pkg.h header file includes the platform-specific QK port header file
gk_port.h, but it additionally defines some internal macros and objects
shared only internally within QK.

The global variable QK_readySet_ is a priority set that maintains the global
status of all active object event queues, as shown in Figure 10.5.

The global variable QK_currPrio_ represents the global systemwide priority of
the currently running task or interrupt.

The global variable QK_intNest_ represents the global systemwide interrupt
nesting level.

The QK scheduler is always invoked with interrupts locked but might need to
unlock interrupts internally. Therefore, the signature of the QK scheduler



Preemptive Run-to-Completion Kernel 509

function depends on the interrupt-locking policy used, which is determined by
the QF _INT_KEY_TYPE, as described in Section 7.3 in Chapter 7.

(6) When QF_INT_KEY_TYPE is not defined, the simple “unconditional interrupt
locking and unlocking” policy is used, in which case the QK scheduler
QK_schedule_ () takes no parameters.

(7) When QF_INT_KEY_TYPE is defined, the policy of “saving and restoring
interrupt status” is used, in which case the QK scheduler Qk_schedule_ ()
takes the interrupt status key as the parameter.

(8) The QK scheduler should only be called at the task level.
(9) Iftheready-setQK_readySet_ isnotempty, the QK kernel has some events to process.

(10) The priority set quickly discovers the highest-priority, not-empty event queue, as
I described in Section 7.10 in Chapter 7.

(11) The QK scheduler can preempt the currently running task only when the new
priority is higher than the priority of the currently executing task.

NOTE

The QK scheduler is an indirectly recursive function. The scheduler calls task functions, which
might post events to other tasks, which calls the scheduler. However, this recursion can continue
only as long as the priority of the tasks keeps increasing. Posting an event to a lower- or equal-
priority task (posting to self) stops the recursion because of the i f statement in line (11).

(12) To handle the preemption, the QK scheduler will need to increase the current
priority. However, before doing this, the current QK priority is saved into a stack
variable pin.

(13) If the macro QK_TLsS is defined, the QK kernel manages the thread-local storage
(TLS). I discuss TLS management in QK in the upcoming Section 10.4.2.

(14) For TLS, the variable pprev holds the previous task priority to help QK
determine when a task change occurs.

(15) The do loop continues as long as the QK scheduler finds ready-to-run tasks of
higher priority than the initial priority pin.
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(16) The active object pointer * a’ is resolved through the QF _active_[]
priority-to-active object lookup table maintained internally by QF.
(17) The current QK priority is raised to the level of the highest-priority task that
is about to be started.
(18) If TLS management is enabled, the scheduler checks whether the task change
is about to occur.
(19) If so, the QK_TLS () macro changes the TLS to the new task.
(20) Also, the pprev variable is updated so that QK can discover when the next
task change occurs.
(21) Interrupts are unlocked to run the RTC task.
(22-24) These are the three steps of the active object thread (see Listing 7.8 in Chapter 7).
NOTE

Steps 22-24 represent the body of the one-shot, RTC task in QK. Note that the RTC task is
executed with interrupts unlocked.

(25)

(26)

27

(28)

(29)

(30)

Interrupts are locked so that the scheduler can check again for highest-priority
active objects ready to run. The status of the QK ready set could have changed
during the RTC step just executed.

If the ready-set QK_readySet_ is not empty, the QK kernel has still some
events to process.

The priority set quickly discovers the new highest-priority, not-empty event
queue based on the potentially changed QK_readySet_.

If the QK_readySet_ turns out to be empty, the QK kernel has nothing
more to do. The variable p is set to zero to terminate the do-while loop
in the next step.

The while condition loops back to step (15) as long as the QK scheduler still
finds ready-to-run tasks of higher priority than the initial priority pin.

After the loop terminates, the current QK priority must go back to the initial
level.
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(31) The TLS needs to be restored only if a task has been preempted. The priority
‘pin’ of zero corresponds to the QK idle loop. I assume that the idle loop
does not use the TLS.

(32) The pointer to the preempted active object is resolved through the
QF_active_[] priority-to-active object lookup.

(33) The Qr_TLS () macro restores the TLS of the original preempted task.

(34) The QK scheduler always returns with interrupts locked.

10.3.5 The gk.c Source File (QK Startup and Idle Loop)

The gk.c source file, shown in Listing 10.5, defines the QK initialization, cleanup,
startup, and idle loop.

Listing 10.5 QK startup and idle loop (<gp>\gpc\gk\source\gk.c)

(1) #include "gk pkg.h"
#include "gassert.h"

Q DEFINE THIS MODULE (gk)

void QF init (void) {
/* nothing to do for the QK preemptive kernel */

(2) OK init(); /* might be defined in assembly * /
}
/P */
void QF stop(void) {

(3) QF onCleanup () ; /* cleanup callback */

/* nothing else to do for the QK preemptive kernel */
}
/TP */
(4) void QF run(void) {
QK_INT LOCK_KEY

QK_INT LOCK_();
(5) OK currPrio = (uint8 t)0; /* set the priority for the QK idle loop */
(6) QK_SCHEDULE_ () ; /* process all events produced so far */
QK_INT UNLOCK_ ();
(7) QF onStartup(); /* startup callback */

(8) for (;;) { /* the QK idle loop */

Continued onto next page
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(10) void QActive start (QActive *me, uint8 t prio,

(11) void *tls,
(12) uint32 t flags,

(13) QEQueue init (&me->eQueue, gSto, (QEQueueCtr)glen);
(14) me->prio = prio;
(15) QF add_ (me) ; /* make QF aware of this active object */
#if defined (QK _TLS) || defined (QK EXT SAVE)
(16) me->osObject = (uint8 t)flags; /* osObject contains the thread flags*/
(17) me->thread = tls; /* contains the pointer to the thread-local storage */
felse
Q ASSERT ((tls == (void *)0) && (flags == (uint32 t)0));
fendif
(18) QF ACTIVE INIT (&me->super, ie); /* execute initial transition */
}
P */
void QActive stop (QActive *me) {
QF remove (me); /* remove this active object from the QF * /

OK onIdle(); /* invoke the QK on-idle callback */

QEvent const *gSto[ ], uint32_t glLen,

QEvent const *ie)

Q REQUIRE (((uint8 t)0 < prio) && (prio <= (uint8 t)QF MAX ACTIVE));

}

ey

2

3)

As every QK source file, the gk. c file includes the wider “package-scope”
QK interface gk_pkg.h, located in <gp>\apc\gk\source\. The gk_pkg.h
header file includes the platform-specific QK port header file gk_port.h, but
it additionally defines some internal macros and objects shared only internally
within QK.

The function QF_init () initializes the QF framework and the underlying kernel.
In case of the QK kernel, this function has nothing to do, except invoking the
QK_init () function to give the QK kernel a chance to initialize. QK_init () is
defined in the QK port.

The function QF_stop () stops execution of the QF framework. In case of
the QK kernel, this function has nothing to do except invoke the
QF_onCleanup () callback function to give the application a chance to
clean up and exit to the underlying operating system (e.g., consider QK
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kernel running on top of DOS). All QF callback functions are summarized in
Section 8.1.8 in Chapter 8.

(4) Applications call the function QF_run () from main () to transfer the control to
the framework. This function implements the startup and idle loop of the QK
kernel.

(5) The current QK priority is reduced from the initial value of QF_MAX_ACTIVE+1
(see Listing 10.4(3)) to zero, which corresponds to the priority of the QK idle loop.

NOTE

The QK current priority value of QF_Max_ACTIVE+1 effectively locks the QK scheduler, so
the scheduler is not even called upon event posting or exit from ISRs.

(6) After reducing the priority level, the scheduler is invoked to process all events that
might have been posted during the initialization of active objects. Note that
the scheduler is called with interrupts locked.

(7) The QF_onstartup () callback function configures and starts interrupts. This
function is typically implemented at the application level (in the BSP). All
QF callback functions are summarized in Section 8.1.8 in Chapter 8.

(8) This is the idle loop of the QK kernel.

NOTE

When no interrupts are running and all event queues are empty, the QK kernel has nothing to
do. The kernel then executes the idle loop. The idle loop is the only “task” structured as an
endless loop in QK. The QK priority associated with the idle loop is zero and is the absolute
lowest priority level in the system, which is not accessible to the RTC tasks. The task prio-
rities in QK start at 1.

(9) The idle loop continuously calls the Qk_onIdle () callback function to give the

application a chance to put the CPU to a low-power sleep mode or to perform other
processing (e.g., software-tracing output, see Chapter 11). The QK_onIdle()
function is typically implemented at the application level (in the BSP).
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NOTE

As a preemptive kernel, QK handles idle processing differently than a nonpreemptive vanilla
kernel. Specifically, the Ok_onIdle () callback is always called with interrupts unlocked
and does not need to unlock interrupts (as opposed to the QF_onIdle () callback). Further-
more, a transition to a low-power sleep mode inside QK_onIdle () does not need to occur
with interrupts locked. Such a transition is safe and does not cause any race conditions,
because a preemptive kernel never switches the context back to the idle loop as long as
events are available for processing.

(10) The gactive_start () function initializes the event queue and starts the active
object QK task.

(11) For conventional kernels, the fifth and sixth parameters of QActive_start ()
represent the private stack memory and the size of that memory. The QK
kernel does not need a per-task stack. Instead, the fifth parameter of
QActive_start () is used as a pointer to the thread-local storage (TLS) for
the QK task.

(12) The sixth parameter is used as a bitmask of flags representing properties of the
task, such as whether the task uses a coprocessor. I discuss a generic coprocessor
context switch in QK in the upcoming Section 10.4.3.

(13) The QK kernel uses the native QF event queue QEQueue, which needs to be
initialized with the function QEQueue_init ().

(14) The QF priority of the active object is set inside the active object.
(15) The active object is added to the QF framework.

(16) The task flags are stored in the osObject data member. I show an example of
using the task flags in the upcoming Section 10.4.3.

(17) The pointer to the TLS for this task is stored in the thread data member.

(18) The internal state machine of the active object is initialized.

10.4 Advanced QK Features

Simple as it is, the QK kernel supports quite advanced features, which you find only in
the more sophisticated real-time kernels. In this section I cover mutual exclusion that is



Preemptive Run-to-Completion Kernel 515

robust against priority inversions, thread-local storage useful for thread-safe libraries,
and extended context switching to support various coprocessors. If you happen to know
how other kernels implement these features, I hope you’ll appreciate the simple
elegance of the QK implementation.

NOTE

All advanced QK features covered in this section are only necessary when you must share
resources among multiple QK tasks (active objects). If you use strict encapsulation (as
advised in Chapter 9) and never share memory, nonreentrant libraries, or coprocessors among
active objects, you don’t need to use any of these advanced features.

10.4.1 Priority-Ceiling Mutex

QK is a preemptive kernel, and as with all such kernels, you must be very careful
with any resource sharing among QK tasks. Ideally, the QF active objects (i.e., QK
tasks) should communicate exclusively via events and otherwise should not share
any resources, which I have been advocating all along (see Chapter 9). This

ideal situation allows you to program all active objects without ever worrying
about mutual exclusion mechanisms to protect shared resources.

However, at the cost of increased coupling among active objects, you might
choose to share selected resources. If you go this path, you take the burden on
yourself to interlock the access to such resources (shared memory or devices).

One powerful method of guaranteeing mutually exclusive access to resources at your
disposal is the critical section mechanism implemented with the QF macros

QF_INT LOCK () and QF_INT_UNLOCK (), as described in Section 7.3 in Chapter 7.
For very short accesses this might well be the most efficient synchronization
mechanism.

However, you can also use a much less intrusive mechanism available in QK.
QK supports a priority-ceiling mutex to prevent task-level preemptions while
accessing a shared resource. Priority-ceiling mutex is immune to priority
inversions [Kalinsky 05] but is a more selective mechanism than interrupt
locking because all tasks (and interrupts) of priority higher than the priority
ceiling run as usual. Listing 10.6 shows an example of using a QK mutex to
protect a shared resource.
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Listing 10.6 Protecting a shared resource with a QK priority-ceiling mutex

void your_function (arguments) {

(1) QMutex mutex;

(2) mutex = QK mutexLock (PRIO_CEILING) ;

(3) You can safely access the shared resource here
(4) QK mutexUnlock (mutex) ;

(1) You need to provide a temporary mutex variable of type QMutex (which is just a
byte).

(2) You lock the mutex by calling QK_mutexLock (). This function requires
the priority ceiling parameter, which you choose to be the priority of the highest-
priority task that may use the shared resource you want to protect. Typically,
this priority is known at compile time because all QK tasks have fixed priorities
assigned statically usually at system startup.

(3) You access the shared resource.
(4) You unlock the mutex by calling QK_mutexUnlock ().

As you can see, the mutex variables are used only temporarily, and there is no limitation
on how many mutexes you can use in your application. In principle, mutex locks can
even nest, so your code in Listing 10.6(3) could use another priority-ceiling mutex.
Note that I mention this only as a theoretical possibility, not necessarily as a good or
recommended design.

Before explaining how the QK protects the resource and why it is a nonblocking
mechanism, I simply show in Listing 10.7 how it is implemented.

Listing 10.7 QK mutex (<gp>\gpc\gk\source\gk_mutex.c)

QMutex QK_mutexLock (uint8_t prioCeiling) {
uint8_t mutex;
OK_INT_LOCK_KEY_
QK_INT_LOCK_ () ;
(1) mutex = QK_currPrio_; /* the original QK priority to return */
(2) if (QK_currPrio_ < prioCeiling) {
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(3) QK_currPrio_ =prioCeiling; /* raise the QK priority */
}
QK_INT_ UNLOCK_ () ;

(4) return mutex;

}

void QK_mutexUnlock (QMutex mutex) {
QK_INT_LOCK_KEY__
QK_INT_LOCK_ () ;

(5) if (QK_currPrio_ > mutex) {
(6) QK_currPrio_ = mutex; /* restore the saved priority */
(7) QK_SCHEDULE_ () ;

}
QK_INT_UNLOCK_ () ;

(1) Inside a critical section, the current QK priority is saved in the temporary variable
mutex to be returned from the QK_mutexLock ().

(2) If the priority ceiling provided as the function argument exceeds the current QK
priority ...

(3) The current QK priority is raised to the priority ceiling.
(4) The original QK priority is returned to the caller.

(5) Inside a critical section, the current QK priority is compared to the mutex
argument.

(6) If the current priority exceeds the mutex, the current QK priority is reduced to the
level of the mutex.

(7) Reducing the current QK priority might “expose” some ready-to-run tasks that
have a higher priority than the reduced QK_currpPrio_ level. The QK scheduler
is called to process these potential synchronous preemptions. Note that the
scheduler is called with interrupts locked.

As you can see, locking the mutex boils down to raising the current QK priority to
the priority ceiling level. Recall that the QK scheduler can only launch tasks with
priorities higher than the initial priority with which the scheduler was entered
(Listing 10.4(11)). This means that temporarily increasing the current QK priority
prevents preemptions from all tasks with priorities lower than or equal to the
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priority ceiling. This is exactly what a priority ceiling mutex is supposed to do to
protect your resource.

Note that the QK mutex is a nonblocking mechanism. If a task that needs to protect

a shared resource is running at all, it means that all tasks of higher priority have no
events to process. Consequently, simply preventing launch of higher-priority tasks that
might access the resource is sufficient to guarantee the mutually exclusive access to

the resource. Of course, you don’t need to worry about any lower-priority tasks that might
be preempted because they never resume until the current task runs to completion.

10.4.2 Thread-Local Storage

Thread-local storage (TLS) is a mechanism by which variables are allocated such

that there is one instance of the variable per extant thread. The canonical example of
when TLS could be useful is the popular Newlib’ standard C runtime library

intended for use in embedded devices. Newlib’s facilities are reentrant, but only when
properly integrated into a multithreaded environment [Gatliff 01]. Because QK is a
preemptive kernel, care must be taken to preserve the reentrant character of Newlib.

For example, consider the errno facility specified in the ANSI C standard. The runtime
library sets errno when an error occurs within the library. Once set, errno’s value
persists until the application clears it, which simplifies error notification by the library
but can create reentrancy problems when multiple threads are using the library at the
same time. If errno would be just a single global variable shared among all threads,
neither thread would know who generated the error.

Newlib addresses this problem by redefining errno as a macro that (indirectly)
references a global pointer called _impure_ptr (see Figure 10.7). The Newlib’s
_impure_ptr points to a structure of type struct _reent. This structure contains
the traditional errno value specified by ANSI, but it also contains a lot of other
elements, including signal handler pointers and file handles for standard input, output,
and error streams.

The central idea of the Newlib design is that every thread in the application has its own
copy of the _reent structure (shown as TLS in Figure 10.7) and that the
_impure_ptr pointer is switched during context switches to always point at the

7 www.sourceware.org/newlib/
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Figure 10.7: Pointer to thread-local storage (TLS) switched around by the kernel.

_reent structure of the currently active thread. Obviously, to perform the switching of
the _impure_ptr, you need a helping hand from the kernel.

QK supports the TLS concept by providing a context-switch hook QK_TLS (),
which is invoked every time a different task priority is processed (see Listing 10.4
(19,33)). The macro QK_TLS () receives from the kernel a pointer to the current
active object. The following code fragment from gk_port.h defines the macro
QK_TLS () for re-assigning the Newlib’s _impure_ptr during context switches:

#define QK_TLS (act_) (_impure_ptr = (struct _reent *) (act_)->thread)

Though the Qk_TLS () macro will switch the _impure_ptr automatically, you are
responsible for allocating the _reent structure in each active object. You also need to tell
QK where the TLS is for every active object during startup by passing the pointer to the
TLS as the fifth parameter of the Qactive_start () function (see Listing 10.5(17)).

NOTE

The current implementation of the TLS in QK assumes that the thread-local storage is
accessed neither in the ISRs nor in the idle loop (inside the QK_onIdle () callback function).
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The TLS support in QK is generic and allows you to handle any number of libraries like
Newlib. In the upcoming Section 10.6, I provide the dining philosophers application
example for QK, which demonstrates the switching of two “impure pointers” for two
hypothetical reentrant libraries.

10.4.3 Extended Context Switch (Coprocessor Support)

The C compiler-generated context save and restore for interrupts typically includes
only the CPU core registers but does not include the registers of various coprocessors,
such as floating-point coprocessors, specialized DSP engines, dedicated baseband
processors, video accelerators, or other specialized coprocessors (perhaps implemented
in FPGAs) that surround the CPU core. This ever-growing conglomerate of complex
register architectures extends far beyond the core CPU registers, which poses a
problem for a preemptive kernel if the various coprocessors are used by multiple
tasks. The solution offered by advanced preemptive kernels is to include the various
coprocessor registers in the context switch process, thus allowing sharing of the
coprocessors among multiple tasks.

The QK kernel supports such extended context switch in a generic way, which you
can easily customize for various coprocessors and hardware accelerators. The QK
design of the extended context switch carefully minimizes the added overhead by
saving and restoring the extended context only when necessary. The basic
simplifying assumption is that neither ISRs, nor the QK idle loop use the
coprocessor(s). Consequently, the extended context needs to be preserved only
when a task preempts another task. Moreover, synchronous context switches
generally don’t need to be extended, because the context switch is in this case just
a simple function call (see Section 10.2.3), which cannot happen in the middle of
accessing a coprocessor.

This leaves only the asynchronous preemptions as really requiring the extended
context switch. As described in Section 10.3.3, asynchronous preemptions are
handled upon the exit from interrupts in the QK_ISR_EXIT () macro. Listing 10.8
shows pseudocode of the QK_TISR_EXIT () macro, which calls the extended
scheduler QK_scheduleExt_ () instead of QK_schedule_ () , as shown in
Listing 10.3(10).
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Listing 10.8 QK_ISR_EXIT () macro with the extended context switch

#define QK_ISR_EXIT() do { \
Lock interrupts \
Send the EOI instruction to the interrupt controller \

--QK_intNest_; \
if (QK_intNest_ ==0) {\
OK scheduleExt () ; \
A\
} while (0)
Active Object Active Object Active Object
0sObject o0sObject 0sObject
thread o——| thread o thread o——l
<
TLS < TLS
oxt. oo e ext. ctxt.
ext. ctxt.

Memory

Coprocessor registers
\ ¥ extended context save
extended context restore —p

Figure 10.8: Extended context switch saves and restores coprocessor registers
in the TLS area.

o
|

Figure 10.8 shows the additional extended context save and restore steps implemented
in the extended scheduler QK_scheduleExt_ (). The per-active object extended
context is simply added to the TLS area, which is accessible via the thread data
member of the QActive class.

Listing 10.9 shows the extended scheduler QK_scheduleExt_ (). In the
explanation section following this listing, I describe only the highlighted differences
from the regular scheduler QK_schedule_() , which I already explained in
Listing 10.4.
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Listing 10.9 QK extended scheduler implementation
(<ap>\gpc\gk\source\gk_ext.c)

(1)

(3)
(4)
(5)
(6)

#ifndef QF INT KEY TYPE
void QK scheduleExt (void) {
#else
void QK scheduleExt (QF INT KEY TYPE intLockKey ) {
#endif
uint8 t p;
/* the QK scheduler must be called at task level only */
Q REQUIRE (QK_intNest == (uint8 t)0);

if (QPSet64 notEmpty (&QK readySet )) {
/* determine the priority of the highest-priority task ready to run */
QPSet64 findMax (&QK readySet , p);

if (p> QK_currPrio_ ) { /* do we have a preemption? */
uint8 t pin = QK currPrio ; /* save the initial priority*/
QActive *a;
#ifdef QK_TLS /* thread-local storage used? */
uint8 t pprev =pin;
#endif
#ifdef QK EXT SAVE /* extended context-switch used? */
if (pin != (uint8_t)0) { /*no extended context for the idle loop */
a=QF active_ [pin]; /* the pointer to the preempted AO * /
QK EXT SAVE(a) ; /* save the extended context */
}
#endif
do {
QEvent const *e;
a=QF active [p]; /* obtain the pointer to the AO */
QK _currPrio_=p; /* this becomes the current task priority */
#ifdef QK TLS /* thread-local storage used? */
if (p !=pprev) { /* are we changing threads? */
OK_TLS(a) ; /* switch new thread-local storage */
pprev = p;
}
#endif
QK_INT UNLOCK_(); /* unlock the interrupts */
e = QActive get (a); /* get the next event for this AO */
QF ACTIVE DISPATCH (&a->super, €); /* dispatch to the AO */
QF gc(e); /* garbage collect the event, if necessary */

QK _INT LOCK ();
/* determine the highest-priority A0 ready to run */
if (QPSet64 notEmpty (&QK readySet )) {




Preemptive Run-to-Completion Kernel 523

QPSet64 findMax (&QK readySet , p);
}
else {
p= (uint8_t)0;
}
} while (p > pin); /* is the new priority higher than initial? */
QK currPrio =pin; /* restore the initial priority */

(7) #if defined(QK TLS) || defined (QK_EXT RESTORE)

(8) if (pin != (uint8_t)0) {/*no extended context for the idle loop */
(9) a=QF active_[pin]; /* the pointer to the preempted AO * /
#ifdef QK TLS /* thread-local storage used? */
QK TLS (a); /* restore the original TLS */
fendif
#ifdef QK EXT RESTORE /* extended context-switch used? */
(10) QK EXT RESTORE (a) ; /* restore the extended context */
#endif
}
#endif

}

(1,2) The signature of the extended scheduler depends on the interrupt locking policy
used, just like the regular scheduler.

(3) If the macro QK_EXT_SAVE () is defined, the extended scheduler invokes the
macro to save the extended context.

(4) The extended context needs to be saved only if a task has been preempted. The
priority ‘pin’ of zero corresponds to the QK idle loop. I assume that the
idle loop does not to use the coprocessor(s).

NOTE

The idle loop does not correspond to an active object, so it does not have the TLS memory
area to save the extended context.

(5) The pointer to the preempted active object is resolved through the QF _active_[]
priority-to-active object lookup.

(6) The QK_EXT_SAVE () macro saves the extended context of the original preempted
active object.

(7) The following code is only needed when either TLS or extended context is used.
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(8) The TLS or the extended context needs to be restored only if a task has been
preempted. The priority ‘pin’ of zero corresponds to the QK idle loop. I assume
that the idle loop uses neither TLS nor the coprocessor(s).

(9) The pointer to the preempted active object is resolved through the
QF_active_[] priority-to-active object lookup.

(10) The QK_EXT_RESTORE () macro restores the extended context of the original
preempted active object.

The QK_EXT_ SAVE () and QK_EXT_RESTORE () macros allow you to save and
restore as many coprocessor contexts as necessary for a given task. As shown in
Figure 10.8, you need to provide per-task memory for all the extended contexts that
you use. In the next section, I describe the QK port to 80x86 with the 80x87 floating
point coprocessor (FPU) and I provide examples of the macros QK_EXT_SAVE ()

and QK_EXT_RESTORE () for the 80x87 FPU.

10.5 Porting QK

When you use QF with the QK preemptive kernel, you don’t need to port the QF
framework to the kernel because QF and QK are already integrated. However, you still
need to port the QK kernel to the target CPU and compiler that you are using. Fortunately,
this is quite easy due to the simplistic nature of the QK kernel. All you need to provide
is the compiler-specific exact-width integer types in gep_port.h , configure QF in
af_port.h, and finally provide the interrupt-locking policy and interrupt entry/exit in
gk_port.h. You often don’t need to write any platform-specific QK source files because
most of the time QK can work with the ISRs generated by the C compiler.

Note that the preemptive QK kernel puts more demands on the target CPU and the
compiler than the simple vanilla kernel described in Chapter 7. Generally, QK can be
ported to a processor and compiler, if they satisfy the following requirements:

1. The processor supports a hardware stack that can accommodate a fair amount of
data (at least 256 bytes or more).

2. The C or C++ compiler can generate reentrant code. In particular, the compiler
must be able to allocate automatic variables on the stack.

3. Interrupts can be locked and unlocked from C.

4. The system provides a clock tick interrupt (typically 10 to 100Hz).
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For example, some older CPU architectures, such as the 8-bit PIC microcontrollers,
don’t have a C-friendly stack architecture and consequently cannot easily run QK. Note,
however, that in most cases you can use the nonpreemptive vanilla kernel.

In this section I show an example of QK kernel port to 80x86 CPU under DOS, with
the legacy Turbo C++ 1.01 compiler configured to generate code for “large” memory
model. The port will also demonstrate the advanced features, such as thread-local
storage, and extended context switch for the 80x87 FPU. This port is located in
<gp>\gpc\ports\80x86\gk\tcpplO01\1\.

10.5.1 The gep_port.h Header File

Listing 10.10 shows the gep_port .h header file for 80x86/QK/Turbo C++ 1.01/Large
memory model. The legacy Turbo C++ 1.01 is a prestandard compiler, so I typedef
the six platform-specific exact-width integer types used in QP.

Listing 10.10 The gep_port.h header file for 80x86/QK/Turbo C++ 1.01/
Large memory model

#ifndef gep_port_h
#define gep_port_h

/* Exact-width integer types for DOS/Turbo C++ 1.01/Large memory model */
typedef signed char int8_t;
typedef signed int intlé_t;
typedef signed long int32_¢t;
typedef unsigned char uint8_t;
typedef unsigned int uintl6_t;
typedef unsigned long uint32_t;

#include "gep.h" /* QEP platform-independent public interface */

#endif /* gep_port_h */

10.5.2 The gf_port.h Header File

Listing 10.11 shows the gf_port.h header file for 80x86/QK/Turbo C++ 1.01/Large
memory model. You always need to configure the maximum number of active
objects QF_MAX_ACTIVE and you need to include gep_port.h, gk_port.h , and
gf .h header files.
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Listing 10.11 The gf_port.h header file for 80x86/QK/Turbo C++ 1.01/
Large memory model

#ifndef gf_port_h
#define gf_port_h

/* The maximum number of active objects in the application */

#define QF_MAX_ACTIVE 63

#include "gep_port.h" /* QEP port */
#include "gk_port.h" /* QK port */
#include "qgf.h" /* QF platform-independent interface */
#endif /* gf_port_h */

10.5.3 The gk_port.h Header File

The actual porting of QK to the CPU/Compiler of your choice happens in the
gk_port.h header file. The first porting decision you need to make is the policy
for locking and unlocking interrupts. To make this decision correctly, you need to
learn a bit about your target CPU and the compiler to find out the most efficient
way of enabling and disabling interrupts from C or C++. Generally, your first
choice should be the safe policy of “saving and restoring the interrupt status”
(Section 7.3.1 in Chapter 7). However, if you find out that it is safe to unlock
interrupts inside ISRs because your target system can prioritize interrupts in
hardware, you can use the simple and fast policy of “unconditional interrupt
unlocking” (Section 7.3.2 in Chapter 7). With the fast policy you must always
make sure that QF functions are invoked with interrupts unlocked, or more
generally, that critical sections don’t nest.

The next decision, related to the first, is the QK-specific interrupt entry and exit. Again,
you need find out whether your CPU enters ISRs with interrupts locked or unlocked
(most CPUs lock interrupts before vectoring to ISRs). If you decided to use the fast
interrupt-locking policy, you must unlock interrupts in QK_ISR_ENTRY () and lock
them again in QK_ISR_EXIT () to avoid nesting of critical sections when you call any
QF services. If your system has an interrupt controller, you might decide to unlock
interrupts inside ISRs even if you’re using the safe policy of “saving and restoring
interrupt context.” I would generally recommend leaving interrupts locked throughout
the whole ISR on systems that don’t have interrupt controllers. Obviously, in the latter
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case you must be using the safe policy of “saving and restoring interrupt context,”
because most QF services that you call from ISRs use a critical section internally.

Finally, you need to customize the advanced features, such as the TLS and the
extended context switch, if you plan to use them in your applications. Here, you need
to find out which libraries require TLS support (e.g., Newlib). You also need to find
what kind of coprocessors you want to support and how to save and restore their
registers from C.

Listing 10.12 shows the gk_port.h header file for 80x86/QK/Turbo C++ 1.01/Large
memory model. I decided to use the simple “unconditional interrupt unlocking”
policy because the standard PC is equipped with the external 8259A Programmable
Interrupt Controller (PIC) and the Turbo C++ 1.01 compiler provides the pair of
functions disable () and enable (), to unconditionally lock and unlock interrupts,
respectively. With this simple interrupt-locking policy, I must unlock interrupts in
QK_ISR_ENTRY () and lock them againin QK_ISR_EXIT ().l alsouse the 80x87 floating
point coprocessor (FPU) and two libraries that require TLS support.

Listing 10.12 The gk_port.h header file for 80x86/QK/Turbo C++ 1.01/
Large memory model

#ifndef gk_port_h
#define gk_port_h
/* QF critical section entry/exit */
(1) /* QF INT KEY TYPE not defined* /
(2) #define QF INT LOCK (dummy) disable ()
(3) #define QF INT UNLOCK (dummy) enable ()

/* QK-specific ISR entry and exit */
(4) #define QK ISR ENTRY () do{ \
++QK_intNest ; \
(5) enable () ; \
} while (0)

(6) #define QK ISR EXIT() do{ \

(7) disable(); \
(8) outportb (0x20, 0x20) ; \
- -QK intNest ; \
if (QK intNest ==0) { \
(9) OK_scheduleExt_ (); \
P\
} while (0)
/* demonstration of advanced QK features: TLS and extended context switch */

Continued onto next page
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(10) typedef struct Libl contextTag { /* an example of a library context */
double x;
} Libl context;
(11) extern Libl context * volatile impure ptrl;
(12) typedef struct Lib2 contextTag { /* an example of a library context */
double vy;
} Lib2 context;
(13) extern Lib2 context * volatile impure ptr2;
(14) typedef union FPU contextTag {
uint32 t align;
(15) uint8 t x87[108] ; /* the x87 FPU context takes 108-bytes */
} FPU_context;
(16) typedef struct ThreadContextTag {
Libl context 1libl; /* libraryl context */
Lib2 context 1ib2; /* library2 context */
FPU_context fpu; /* the FPU context */
} ThreadContext;
(17) enum QKTaskFlags {
QK _LIB1 THREAD = 0x01,
QK_LIB2 THREAD = 0x02,
QK_FPU_THREAD = 0x04
b
/* QK thread-local storage */
(18) #define QK TLS(act ) \
(19) impure ptrl = &((ThreadContext *) (act_)->thread)->1ibl; \
(20) impure ptr2 = & ((ThreadContext *) (act_)->thread)->1ib2
/* QK extended context (FPU) save/restore */
(21) #define QK EXT SAVE (act ) \
(22) if (((act_)->osObject & QK FPU THREAD) !=0) \
(23) FPU save (& ( (ThreadContext *) (act )->thread)->fpu)
(24) #define QK_EXT RESTORE (act ) \
(25) if (((act_)->osObject & QK _FPU THREAD) !=0) \
(26) FPU restore (& ((ThreadContext *) (act ) ->thread) ->fpu)
(27) void FPU_save (FPU_context *fpu); /* defined in assembly */
(28) wvoid FPU restore (FPU _context * fpu); /* defined in assembly */
#include <dos.h> /* see NOTEQL * /
#undef outportb  /*don't use the macro because it has a bug in Turbo C++ 1.01*/
(29) #include "gk.h" /* QK platform-independent public interface */
(30) #include "gf.h" /* QF platform-independent public interface */
#endif /* gk_port_h*/




Preemptive Run-to-Completion Kernel 529

ey

2)

3)

)

(&)

(6)

)

®)

©)

The macro QF_INT_KEY_TYPE is not defined, meaning that the fast policy
of “unconditional interrupt locking and unlocking” is used. This is

possible because the standard PC is equipped with the 8259A
Programmable Interrupt Controller (PIC), which allows unlocking interrupts
inside ISRs.

The macro QF _INT LOCK () is defined as the Turbo C++ function
disable().

The macro QF_INT UNLOCK () is defined as the Turbo C++ function
enable ().

As described in Section 10.3.3, the macro QK_ISR_ENTRY () is called upon the
entry to every ISR.

The 80x86 CPU enters ISRs with interrupts locked. However, interrupts must
be unlocked before any QF or QK service can be used in the ISR body,
because the fast interrupt-locking policy does not support nesting critical
sections.

As described in Section 10.3.3, the macro QK_ISR_EXIT () is called upon exit
from every ISR.

The interrupts unlocked upon entry must be locked again to prevent corruption
of the QK variables.

This output statement writes the EOI instruction to the master 8259A interrupt
controller.

As described in Section 10.3.3, the QK scheduler must be called at the exit
from every interrupt to handle the asynchronous preemption. Here I use the
extended QK scheduler because this port supports the extended context switch
for the 80x87 FPU.

NOTE

If you don’t define the macros QK_EXT_SAVE () and QK_EXT RESTORE (), the extended QK
scheduler is equivalent to the regular scheduler Qk_schedule_ (). You can always use the
extended scheduler in the QK_ISR_EXIT () macro without any performance penalty, but if
you want to save a little code space, you might want to use the regular scheduler.
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(10) This typedef specifies the per-thread context used by a hypothetical reentrant
library 1ib1. I use this library to demonstrate the TLS switching capability
of the QK kernel.

(11) The impure_ptrl pointer points to the per-thread context of library 1ib1.

(12) This typedef specifies the per-thread context used by a hypothetical reentrant
library 1ib2. I use this library to demonstrate that the TLS implementation can
handle multiple reentrant libraries.

(13) The impure_ptr2 pointer points to the per-thread context of library 1ib2.

(14) This typedef specifies the per-thread FPU context.

(15) The 80x87 FPU requires 108 bytes to store its context.

(16) This typedef specifies the entire per-thread context, which includes the contexts
of the libraryl, library2, and the FPU.

(17) This enumeration defines the thread flags.

(18) The macro QK_TLS () is the context-switch hook in which you customize TLS
management.

(19) The impure pointer for the reentrant library 1ib1 is switched to the current
active object.

(20) The impure pointer for the reentrant library 1ib2 is switched to the current
active object.

(21) The macro QK_EXT_SAVE () saves the extended context in asynchronous
preemption.

(22) The FPU context must only be saved for a task that actually uses the FPU.

(23) The FPU context is saved to the active object’s private location by calling the
function FPU_save ().

(24) The macro QK_EXT_RESTORE () restores the extended context in asynchronous
preemption.

(25) The FPU context must only be restored for a task that actually uses the FPU.

(26) The FPU context is restored from the active object’s private location by calling

the function FPU_restore ().
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, e prototypes for the functions FPU_save () and FPU_restore () are
(27,28) The p ypes for the functi d
provided. These functions are defined in assembly.

(29) The gk_port.h header file must always include the QK platform-
independent gk .h header file.

(30) The gk_port.h header file must always include the QF platform-
independent gf . h header file.

10.5.4 Saving and Restoring FPU Context

The functions FPU_save () and FPU_restore (), declared in Listing 10.12(27,28),
are part of the QK port. They are defined in the assembly file <gp>\gpc\ports\
80x86\gk\tcppl01\1l\src\fpu.asm. Both these functions are just shells for
executing the 80x87 machine instructions FSAVE and FRSTOR, respectively.

10.6 Testing the QK Port

As usual, I use the dining philosopher problem (DPP) application to test the port.

For QK, I have extended the basic DPP application discussed in Chapter 9 to
demonstrate and test the advanced QK features, such as the priority-ceiling mutex,
thread-local storage for multiple reentrant libraries, and the extended context switch for
the 80x87 FPU. The DPP application for QK is located in the directory <gp>\gpc\
examples\80x86\gk\tcppl01\1\dpp\.

10.6.1 Asynchronous Preemption Demonstration

As it turns out, an interesting asynchronous preemption is not that easy to observe in the
DPP application. By an interesting preemption, I mean a task asynchronously
preempting another task, as opposed to simply a task asynchronously preempting the
idle loop. Figure 10.9 illustrates why. The DPP application is mostly driven by the
system clock tick interrupt (ISR_tmr), which posts the time events to the Philosopher
active objects. Typically, the interrupts and state machines execute so quickly that all
processing happens very close to the clock tick and the CPU goes quickly back to
executing the QK idle loop. With the code executing so fast, the ISR_tmr () has no
chance to actually preempt any QK task, just the idle loop. Consequently an
asynchronous preemption cannot happen.
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Therefore, to increase the odds of asynchronous preemptions in this application,

I have added the second interrupt (the ISR_kbd triggered by the keyboard), which is
asynchronous with respect to the clock tick and always posts an event to the

Table active object. I also added some artificial CPU loading in the form of various
busy-wait functions called from to the state machines and interrupts (I show
examples of these functions later in this section). Finally, I’ve instrumented the ISRs
to report preemptions caused by interrupts to the screen.

Since I cannot foresee the speed of your CPU, I have provided a command-line
parameter to the DPP application that determines the delay incurred by the
various busy-wait functions. On my 2GHz PC, I’ve been using the value of

100 iterations, which allowed me to easily catch several asynchronous
preemptions. You should be careful not to go overboard with this parameter,
though, because you can overload the CPU, or more scientifically stated, you can
create an unschedulable set of tasks. In this case, QF will eventually overflow an
event queue and assert.

priority
ISR_tmr ‘

______ ____‘!._______1!________A________E________
ISR_kbd ! ’
______ A G b di A
Table E T]
______ SN 5 S S _4;_______________

v(1;) v
Philo[0..4] j (2)D

______ it et Al Al S AR AR AN

QK idle loop :|

: : : : =
0 5 10 15 20 time

Figure 10.9: Execution profile of the DPP application with QK.

With all this scaffolding, you actually have a chance to observe an interesting
asynchronous preemption, such as the instance shown in Figure 10.9(1). You need
to run the DPP application (with the command-line parameter of 100 or so). As
explained before, you will never get asynchronous preemptions unless you start
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typing on the keyboard. When the keyboard interrupt happens to come close
enough after the clock tick, it might just manage to preempt one of the philosopher
tasks. The keyboard ISR always posts an event to the Table object, and because
Table has the highest priority in the system, upon the exit from ISR_kbd (), QK
performs an asynchronous context switch to the Table active object. When this
happens, you’ll see that the preemption counter for one of the Philosopher tasks
will increment on the screen (see Figure 10.10).

= Command Prompt - spy\DPP-SPY.EXE 100

Delay counter
(from command-line

q e
Dining Philosophers Prohlem (DPPF>
QEP/C 4.08.008
QF~C 4.8.808
QK- C 4.0.008
fictive Object Call Preemptions

Philosopher hungry khdISR 1912
Philosopher eating tmrISR 835

Philosopher thinking
Philosopher eating

Philosopher thinking
Table seruing

Number of

preemptions by
* Copyright <c> Quantum Leaps. interrupts

Figure 10.10: DPP application with QK running in a DOS console.

If you want to examine an asynchronous preemption closer, you can use the
debugger built into the Turbo C++ IDE. You load the project DPP-DBG. PRJ
(located in <gp>\gpc\examples\80x86\gk\tcppl01\1\dpp\) into the IDE
and open the file gk_ext.c that I have specifically added to this project,

even though it is already included in the gk.1ib library. You set a breakpoint
inside QK_scheduleExt_ () indicated as label (1) in Figure 10.11 (see also
Listing 10.12(9)). Next, select Run | Arguments... to define a command-line
argument around 100. Now you can run the program. When you start typing on the
keyboard, eventually you should hit the breakpoint (asynchronous preemption).
You can step through the code from there. Figure 10.11 shows an example of
my debug session.
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Figure 10.11: Asynchronous preemption examined in the Turbo C++ debugger.
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The original breakpoint is set at the instruction that is only executed when a task
preempts another task, but not the idle loop (inside QK_scheduleExt_ ()).

When you step into the QF_ACTIVE_DISPATCH_ () macro, you get inside the
function QHsm_dispatch () . Keep stepping (F7) until you reach the highlighted line.
This line calls the current state-handler function of the high-priority active object.

When you step into again, you end up inside the Table active object.

The Call Stack window shows the call tree information, which is a nice byproduct
of QK using just a single stack. You see that the extended QK scheduler is
engaged and detects preemption, so it calls QHsm_dispatch () for the Table active
object. Finally, the Table_serving () state handler processes the TEST event.
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NOTE

This example should convince you that debugging QK tasks is straightforward, even though
they nest on the interrupt stack frame, as shown in the Call Stack window (see Section
10.2.5). In contrast, debugging ISRs is hard because the Turbo C++ debugger freezes when
interrupts are locked at the CPU or the 8259A PIC level.

10.6.2 Priority-Ceiling Mutex Demonstration

To demonstrate the QK priority-ceiling mutex, I’ve extended the Philosopher active
object to allow random think and eat timeouts for philosophers rather than fixed
timeouts used in the basic implementation. To implement the feature, I use the
pseudorandom number (PRN) generator provided in Turbo C++ 1.01 ( random()).
This generator, like most PRN generators, is not reentrant because it must preserve
its state from one call to the next. To prevent corruption of this internal state, I
protect the generator with the QK mutex, as shown in Listing 10.13.

Listing 10.13 Protecting PRN generator with the priority-ceiling mutex
(file <gp>\gpc\examples\80x86\gk\tcppl01\1\dpp\philo.c)

QState Philo_thinking (Philo *me, QEvent const *e) {
switch (e->sig) {
case Q_ENTRY_SIG: {
QTimeEvtCtr think_time;
QOMutex mutex;

mutex = QK mutexLock (N_PHILO) ;
think_time = (QTimeEvtCtr) (random(THINK TIME) + 1);
QK _mutexUnlock (mutex) ;

QTimeEvt_postIn(&me->timeEvt, (QActive *)me, think_ time) ;
return (QState)0;

}
return (QState) &QHsm_top;

Note that I use the number of philosophers N_PHILO as the priority ceiling to lock
the mutex. This ceiling corresponds to the highest-priority Philosopher active object
that can access the PRN generator (Philosopher active objects have priorities
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1..N_PHILO). Since the priority of the Table active object (N_PHILO + 1) is above
the ceiling, the mutex does not affect Table, which is exactly what I wanted to achieve.
Table does not use the resource (PRN generator in this case), so it should not be
affected by the mutex.

10.6.3 TLS Demonstration

In the QK port header file gk_port.h (Listing 10.12), you saw the two contexts of two
hypothetical libraries 1ib1 and 1ib2, which need TLS support in the same way as
Newlib does. The QK port implemented the switching of the two “impure pointers” in
the macro QK_TLS (Listing 10.12(18)). At the application level, I need to add the
contexts to the active objects and I need to inform QK where these TLS contexts are
located. I also need to call the library functions so that they are shared among all
Philosopher active objects. Listing 10.14 shows these steps.

Listing 10.14 Incorporating the TLS context inside active objects
(file <ap>\gpc\examples\80x86\gk\tcppl01\1\dpp\philo.c)

typedef struct PhiloTag {

QActive super; /* derives from the QActive base class */
(1) ThreadContext context; /* thread context */
QTimeEvt timeEvt; /* for timing out thining or eating*/
} Philo;
L e e e e e e e e e e e e e e e et et e e */

void Philo_start (uint8 t n,
uint8 t p, QEvent const *gSto[ ], uint32 t gLen)
{
Philo *me = &1 philo[n] ;

Philo ctor (me); /* instantiate */
(2) impure ptrl = &me->context.libl; /* initialize reentrant libraryl */
(3) libl reent init(p);
(4) impure ptr2 = &me->context.lib2; /* initialize reentrant library2 */
(5) 1lib2_reent_init(p);

QActive start ((QActive *)me, p, gSto, glLen,
(6) &me->context,
(7) (uint8_t) (QK_LIB1_THREAD | QK LIB2_THREAD | QK_FPU_THREAD),

(QEvent *)0) ;
}
QState Philo thinking(Philo *me, QEvent const *e) {
switch (e->sig) {

case TIMEOUT SIG: {
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(8) 1libl_test() ;
(9) 1lib2_ test();
return (QState)0;

}

return Q SUPER (&QHsm top) ;
}
L e e e e e et e e e */
QState Philo hungry(Philo *me, QEvent const *e) {

switch (e->sig) {

case EAT SIG: {
if (((TableEvt const *)e)->philoNum == PHILO_ ID (me)) {
(10) libl test();
(11) 1lib2_test();
return (QState)0;
}

break;

}

return Q SUPER (&QHsm top) ;
}
L e e e e et e e */
QState Philo eating(Philo *me, QEvent const *e) {

switch (e->sig) {

case TIMEOUT SIG: {
libl_test():;
(13) 1lib2 test();
return Q TRAN (&Philo thinking);

[
N

}
return Q SUPER (&QHsm top) ;

(1) I place the data member context of ThreadContext type (defined in Listing
10.12(16)) directly inside the Philo class. That way I can be sure that every
Philo object has the private ThreadContext area.

(2) Upon the Philo active object initialization, I aim the “impure pointer” of
library 1ib1 at the TLS context for this library.

(3) I then let the library initialize the context.

(4,5) I repeat the same two steps for the library 1ib2.
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(6) I pass the pointer to the TLS as the fifth parameter to the QActive_start ()
function, to inform QK about the location of TLS for each active object
(see also Listing 10.5(17)).
(7) I set the thread attributes to inform QK that this active object uses libraryl,
library2, and the FPU.

(8-13) I pepper the Philo state machine with the calls to the libraries. These calls
take a long time to run and provide the CPU loading that was necessary to
test asynchronous preemptions.

NOTE

I made similar changes to the Table active object, so that it too shares the libraries with all
Philosophers.

Finally, I need to define the library functions 1ibl_test () and 1ib2_test () that
actually use the “impure pointers.” Listing 10.15 shows the test code.

(file

Listing 10.15 Using the TLS context inside the libraries

<gp>\gpc\examples\80x86\gk\tcppl01\1\dpp\bsp.c)

(2)
(3)
(4)

#include <math.h>

void 1ibl reent init (uint8_ t prio) {
impure_ptrl->x = (double)prio* (M_PI/ 6.0);
}
/N */
void 1ibl test (void) {
uint32 t volatile i =1 delay;
while (i-->0UL) {
volatile double r = sin (impure ptrl->x) * sin (impure ptrl->x)
+ cos (impure_ptr1—>x) * cos (impure_ptr1—>x) ;
Q ASSERT (fabs(r - 1.0) < 1e-99); /* assert the identity */

}

void 1ib2 reent init (uint8 t prio) {
impure ptr2->y = (double)prio* (M_PI / 6.0) +M_PI;
}
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void 1ib2 test (void) {
uint32 t volatile i =1 delay;
while (1-->0UL) {
volatile double r = sin (impure_ptr2->y) * sin (impure_ptr2->y)
+ cos (impure_ptr2->y) * cos (impure_ptr2->y);
Q ASSERT (fabs(r - 1.0) < 1e-99); /* assert the identity */

(1) I initialize the per-thread context of library 1ib1l (the x variable)
so it depends on the priority of the task, which is different for each task.

(2,3) The parameter 1_delayCtr is set from the command line (see Section 10.6.1)
and determines the number of iterations performed in this function (the
CPU loading that the function causes).

(4) I use a mathematical identity sinz(x)+cosz(x) == 1.0 to compute the value of
r based on the impure pointer impure_ptrl. This expression makes an
extensive use of the 80x87 FPU.

(5) I assert the identity. This assertion would fail if the impure pointer where
switched incorrectly or the FPU would compute the expression incorrectly.

(6) I initialize the per-thread context of library 1ib2 (the y variable) similarly
as 1ibl, except I add a phase shift, so that the per-thread values are
different that for 1ib1.

10.6.4 Extended Context Switch Demonstration

As discussed in Section 10.5.4, the 80x87 FPU context saving and restoring is
handled automatically in the QK extended scheduler. At the application level, you
need to include the per-thread FPU context in every active object, which is done in
Listing 10.14(1). You also need to set the QK_FPU_FLAG for every task that uses the
FPU (see Listing 10.14(7)). And finally, you must use the FPU to test it. Though
Listing 10.15 performs a lot of floating-point operations, it is also important to use
the correct compiler options to select the FPU. I’ve compiled both the QP libraries
and the DPP applications with the -£287 option, which instructs the Turbo C++
compiler to generate FPU hardware instructions.
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10.7 Summary

A certain class of real-time embedded (RTE) systems, such as control applications,
can vastly benefit from preemptive multitasking. The QP event-driven platform
contains a lightweight, priority-based, preemptive kernel called QK.

QK is a special kind of a preemptive kernel, called a run-to-completion (RTC) or
single-stack kernel, in which tasks are one-shot, RTC functions as opposed to
endless loops as in most conventional RTOSs. The biggest limitation of RTC kernels
is inability to block in the middle of a task, but this limitation is irrelevant for
executing event-driven active objects, because active objects don’t block in the
middle of RTC steps anyway.

When applied in active object applications, the QK kernel provides the same
execution profile as any other conventional, priority-based, preemptive kernel or
RTOS. In fact, QK most likely outperforms all conventional preemptive RTOSs in
all respects, such as speed, stack usage, code size (ROM footprint), complexity, ease
of use, or any other metrics you want to apply.

QK supports advanced features, such as priority-ceiling mutex, thread-local storage, and
extended context switch, which you can find only in sophisticated RTOSs. All these
advanced features are helpful when you need to share memory, libraries, or devices
among active object threads.

QK is also easier to port to new CPUs and compilers than most RTOSs, mainly because
QK can work with compiler-generated interrupts that virtually all embedded C/C++
compilers support. Most of the time, you can complete a QK port without writing
assembly code. In this chapter, I discussed the QK port to 80x86 CPU with the
legacy C compiler running in real mode. Although this port can be valuable in itself,
here I used it mostly to demonstrate QK capabilities. This book’s accompanying
Website at www . quantum-1leaps.com/psicc2 contains links to many other QK
ports to popular embedded processors and compilers.


http://www.quantum-leaps.com/psicc2

Software Tracing for Event-Driven
Systems

There has never been an unexpectedly short debugging period in the history of computers.
—Steven Levy

In any real-life project, getting the code written, compiled, and successfully linked is
only the first step. The system still needs to be tested, validated, and tuned for best
performance and resource consumption. A single-step debugger is frequently not
helpful because it stops the system and exactly hinders seeing /ive interactions within
the application. Clogging up high-performance code with printf () statements is
usually too intrusive and simply unworkable in most embedded systems, which
typically don’t have adequate screens to print to. So the questions are: How can you
monitor the behavior of a running real-time system without degrading the system itself?
How can you discover and document elusive, intermittent bugs that are caused by
subtle interactions among concurrent components? How do you design and execute
repeatable unit and integration tests of your system? How do you ensure that a system
runs reliably for long periods of time and gets top processor performance?

Techniques based on software tracing can answer many of these questions. Software
tracing is a method for obtaining diagnostic information in a /ive environment without
the need to stop the application to get the system feedback. Software tracing always
involves some form of a target system instrumentation to log interesting discrete events
for subsequent retrieval from the system and analysis.

Due to the inversion of a control, software tracing is particularly effective and
powerful in combination with the event-driven programming model. An instrumented
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event-driven framework can provide much more comprehensive and detailed
information than any traditional RTOS.

In this chapter, I describe the software-tracing system called Quantum Spy, which is
part of the QP event-driven platform. I begin with a quick introduction to software
tracing concepts. Next I walk you through an example of a software tracing session.

I then describe the target-resident software-tracing component, called QS, explaining in
detail the generation of trace data, the various filters, buffering, transmission protocol,
and porting QS. Subsequently, I present the QSPY host application for receiving,
displaying, storing, and analyzing the trace data. Finally I explain the steps required to
add the QS software tracing component to a QP application.

11.1 Software Tracing Concepts

In a nutshell, software tracing is similar to peppering the code with printf ()
statements for logging and debugging, except that software tracing is much less
intrusive and more selective than the primitive print£ (). This quick overview
introduces the basic concepts and describes some features you can expect from a
commercial-grade software-tracing system.

host receiving the trace
data for analysis and : ;
visualization R

e, sate )
e e enale ©
rcgerhilo bungry Mt le.sties

) 516, rocled, f 0) Gemiotsade O

communication
link to the host

Figure 11.1: Typical setup for collecting software trace data.
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Figure 11.1 shows a typical setup for software tracing. The embedded target system is
executing instrumented code, which logs the trace data into a RAM buffer inside the
target. From that buffer the trace data is sent over a data link to a host computer that
stores, displays, and analyzes the information. This configuration means that a software
tracing always requires two components: a target-resident component for collecting
and sending the trace data and a host-resident component to receive, decompress,
visualize, and analyze the data.

NOTE

Software-tracing instrumentation logs interesting discrete events that occur in the target
system. I will call these discrete events trace records, to avoid confusing them with the
application-level events.

A good tracing solution is minimally intrusive, which means that it can provide
visibility into the running code with minimal impact on the target system behavior.
Properly implemented and used, it will let you diagnose a live system without
interrupting or significantly altering the behavior of the system under investigation.

Of course, it’s always possible that the overhead of software tracing, no matter how
small, will have some effect on the target system behavior, which is known as the probe
effect (a.k.a. the Heisenberg effect). To help you determine whether that is occurring,
you must be able to configure the instrumentation in and out both at compile time

as well as at runtime.

To minimize the probe effect, a good trace system performs efficient, selective
logging of trace records using as little processing and memory resources of the target
as possible. Selective logging means that the tracing system provides user-definable,
fine-granularity filters so that the target-resident component only collects events of
interest—you can filter as many or as few instrumented events as you need. That way
you can make the tracing as noninvasive as necessary.

To minimize the RAM usage, the target-resident trace component typically uses a
circular trace buffer that is continuously updated, and new data overwrites the old when
the buffer “wraps around” due to limited size or transmission rate to the host. This
reflects the typically applied last-is-best policy in collecting the trace data. To focus on
certain periods of time, software tracing provides configurable software triggers that
can start and stop trace collection before the new data overwrites the old data of interest
in the circular buffer.
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To further maximize the amount of data collected in the trace buffer, the target-resident
component typically applies some form of data compression to squeeze more trace
information into the buffer and to minimize the bandwidth required to uplink the data
to the host.

However, perhaps the most important characteristic of a flexible software-tracing
system is the separation of trace logging (what information is being traced) from the
data transmission mechanism (how and when exactly the data is sent to the host). This
separation of concerns allows the transmissions to occur in the least time-critical
paths of the code, such as the idle loop. Furthermore, clients should be able to employ
any data transmission mechanism available on the target, meaning both the physical
transport layer (e.g., serial port, SPI, USB, Ethernet, etc.) as well as implementation
strategy (polling, interrupt, DMA, etc.). The tracing facility should tolerate and be able
to detect any RAM buffer overruns due to bursts of tracing data production rate or
insufficient transmission rate to the host.

Finally, the tracing facility must allow consolidating data from all parts of the system,
including concurrently executing threads and interrupts. This means that the
instrumentation facilities must be reentrant (i.e., both thread-safe and interrupt-safe).
Also, to be able to correlate all this data, most tracing systems provide precise
timestamping of the trace records.

11.2 Quantum Spy Software-Tracing System

As I mentioned in the introduction to this chapter, software tracing is especially
effective and powerful in combination with the event-driven active object computing
model (see Chapter 6). A running application built of active objects is a highly
structured affair where all important system interactions funnel through the real-time
framework and the state-machine engine. This offers a unique opportunity to instrument
these relatively small parts of the overall code to gain unprecedented insight into the
entire system.

Quantum Spy is a software-tracing system that enables live monitoring of event-driven
QP applications with minimal target system resources and without stopping or
significantly slowing down the code. The Quantum Spy system consists of the target-
resident component, called QS, and the application running on a host workstation,
called QSPY.
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Many operating systems provide software-tracing capabilities. However, Quantum Spy
takes software tracing to the entirely new level. Due to inversion of control, an
instrumented state machine framework, as opposed to merely an RTOS, is capable of
providing incomparably more comprehensive information about the running system,
even without adding any instrumentation to the application code. For example, the QS
trace data is thorough enough to produce complete sequence diagrams and detailed state
machine activity for all state machines in the system. You can selectively monitor all
event exchanges, event queues, event pools, and time events because all these elements
are controlled by the framework. Additionally, if you use one of the kernels built into
QP (the vanilla kernel or the preemptive QK kernel), you can obtain all the data
available to a traditional RTOS as well, such as context switches and mutex activity.

11.2.1 Example of a Software-Tracing Session

To show you how software-tracing works in practice, I present an example of a
software-tracing session. I use the dining philosophers problem (DPP) test application,
which I introduced in Chapter 9. All versions of the DPP application included in the
code accompanying this book contain the QS instrumentation. The tracing
instrumentation becomes active when you build the “Spy” configuration.

Figure 11.2 shows how to collect the software trace data from the QK/DOS version of
the DPP application located at <gp>\gpc\examples\80x86\qgk\
tcppl01\1\dpp\spy\dpp-spy . exe. You can rebuild the “Spy” configuration by
loading the DPP-SPY . PRJ project into the Turbo C++ IDE. You need to run the
DPP-SPY.EXE executable on a target PC with a serial port. You connect the serial port
of the target machine to the serial port of a Windows or a Linux host workstation via
a NULL-modem cable. On the host workstation, you need to start the QSPY host
application that decompresses and visualizes the QS trace data.

The Windows executable of the QSPY host application is located in the directory
<gp>\gpc\tools\gspy\win32\vc2005\Release\. Assuming that this directory is
your current directory or is in your path, you invoke this console application by typing
the following command at the command prompt:

gspy —¢ COM1 -b 115200

The first command-line parameter —c coM1 tells the QSPY host application to receive
the trace data from COMI. If your target is connected to a different COM port, you
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Figure 11.2: Collecting software trace data from a 80x86 target.

need to adjust the COM number. The second parameter configures the baud rate of the
serial port to 115200.

NOTE

In the particular case of a Windows PC, you can use the same machine as the target and the
host at the same time. You need to use a machine with two serial ports, which you connect
with a NULL modem cable. You can use one serial port for the DPP target application
running in a DOS-window and the other for the QSPY host application.

You might also use a Linux host machine. In case of Linux, you must first build the
executable by running the Makefile located in the directory <gp>/gpc/tools/gspy/
linux/gnu/. You invoke the Linux executable by typing the following command at
the command prompt:

gspy —c¢ /dev/ttyS0 -b 115200
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The first parameter —c /dev/ttysSo0 tells the QSPY application to receive the trace
data from the ttySO serial device. If you connected a different serial port to the target,
you need to adjust the ttyS number.

As I mentioned before, all DPP applications included in the code accompanying this
book are instrumented for software tracing, and I encourage you to try them all. For
example, you can collect trace data from the EV-LM3S811 board (see Figure 11.1). The
EV-LM3S811 board sends the QS trace data through the UARTO connected to the
Virtual COM Port (VCP) provided by the USB debugger, so the QSPY host application
can conveniently receive the trace data on the host PC. No additional serial cable is
needed.

11.2.2 The Human-Readable Trace Output

The QSPY host application is just a simple console-type program without any fancy
user interface. QSPY application displays the trace data in a human-readable textual
format. Listing 11.1 shows fragments of such a data log generated from the DOS/QK
version of the DPP application.

NOTE

The QSPY host application supports also exporting data to the powerful MATLAB environment,
as described in Section 11.5. MATLAB is a registered trademark of The Mathworks, Inc.

Listing 11.1 Fragments of the software trace log from the DOS/QK version
of the DPP application

gspy host application 3.5.00
Copyright (c) Quantum Leaps, LLC.
Mon Feb 25 12:20:13 2008

-T 4
-04
-F4
-S1
-E2
01
-P2
-B2
-c2

Continued onto next page
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0000461906 NEW

0000461941 AO.
0000461953 AO.
0000461965 AO.
0000461977 AO.
0000461987 AO.

0000462030 GC

: Evt (Sig=HUNGRY_SIG, size=
0000461862 MP.GET :
0000461874 AO.FIFO:
0000461886 AO.GETL:
: Evt (Sig=EAT_SIG, size=
0000461917 MP.GET :
0000461929 PUBLISH:
FIFO:
FIFO:
FIFO:
FIFO:
FIFO:
0000462001 GC-ATT :
0000462018 Intern :

16CA18D8->1_smlPoolSto
16CA1900->1_tableQueueSto
16CA1914->1_philoQueueSto[0]

Obj=1_tableQueueSto Len=5
Active=16CA1CB8 Prio= 6
16CA1CB8->&1_table
141E0006->&QHsm_top
12DA00CY9->&Table_initial
12DA020B->&Table_serving

00000008, 0bj=16CA1CB8 ->HUNGRY_SIG

Active=1_table Sig=TERMINATE_SIG
Obj=1_table Source=QHsm_top Target=Table_serving
Obj=1_table New=Table_serving

IsrNest= 1, CurrPrio=255

IsrNest= 1, CurrPrio=255
IsrNest= 1, CurrPrio=255

IsrNest= 1, CurrPrio=255

IsrNest= 1, CurrPrio=255

Obj=1_philo[1l].timeEvt Act=1_philo[1l]
Obj=1_philo[l].timeEvt Sig=TIMEOUT SIG Act=1_philo[1]

Obj=1_philo[1] Evt (Sig=TIMEOUT_SIG, Pool=0, Ref=0) Queue (nUsed= 5, nMax= 5)

IsrNest= 1, CurrPrio=255

Active= 1_philo[1l] Evt (Sig=TIMEOUT_SIG, Pool=0, Ref=0)

3)

Obj=1_smlPoolSto nFree= 9 nMin= 9

Obj=1_table Evt (Sig=HUNGRY_SIG, Pool=1, Ref= 0) Queue (nUsed=
Active= 1_table Evt (Sig=HUNGRY_SIG, Pool=1, Ref=1)

3)
Obj=1_smlPoolSto nFree= 8 nMin= 8
Evt (Sig=EAT_SIG, Pool=1, Ref= 0)
Obj=1_philo[4] Evt (Sig=EAT_SIG, Pool=1,
Obj=1_philo[3] Evt (Sig=EAT_SIG, Pool=1,
Obj=1_philo[2] Evt (Sig=EAT_SIG, Pool=1,
Obj=1_philo[1l] Evt (Sig=EAT_SIG, Pool=1,
Obj=1_philo[0] Evt (Sig=EAT_SIG, Pool=1,
Evt (Sig=EAT_SIG, Pool=1, Ref=5)
Obj=1_table Sig=HUNGRY_SIG Source=Table_serving

5, nMax=

Ref=1
Ref=2

) Queue (nUsed=
)
Ref=3)
)
)

Queue (nUsed=

Ref=4
Ref=5

Queue (nUsed=

%
i

( 5
( 5
Queue (nUsed= 5,
( 5
( 5

Queue (nUsed=

: Evt (Sig=HUNGRY_SIG, Pool=1, Ref=1)
0000462042 MP.PUT :
0000462054 AO.GETL:
0000462065 Intern :
0000462077 GC-ATT :
0000462089 AO.GETL:
0000462101 Intern :

Obj=1_smlPoolSto nFree= 9

Active= 1_philo[4] Evt (Sig=EAT_SIG, Pool=1, Ref=5)
Obj=1_philo[4] Sig=EAT_SIG Source=Philo_thinking
Evt (Sig=EAT_SIG, Pool=1, Ref=4)

Active= 1_philo[3] Evt (Sig=EAT SIG, Pool=1, Ref= 4)
Obj=1_philo[3] Sig=EAT_SIG Source=Philo_thinking
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0000462111 GC-ATT : Evt (Sig=EAT_SIG, Pool=1, Ref= 3)
0000462123 AO.GETL: Active= 1_philo[2] Evt (Sig=EAT SIG, Pool=1, Ref= 3)
0000462135 Intern : Obj=1_philo[2] Sig=EAT_SIG Source=Philo_thinking
0000462146 GC-ATT : Evt (Sig=EAT_SIG, Pool=1, Ref=2)
Q_ENTRY: Obj=1_philo[1l] State=Philo_hungry
0000462159 ==>Tran: Obj=1_philo[1l] Sig=TIMEOUT_ SIG Source=Philo_thinking New=Philo_hungry
0000462171 AO.GETL: Active= 1_philo[1l] Evt (Sig=EAT_SIG, Pool=1l, Ref= 2)
0000462183 QK_muxL: OrgPrio= 2, CurrPrio= 5
0000462195 QK_muxU: OrgPrio= 2, CurrPrio= 5
0000462207 TE.ARM : Obj=1_philo[l].timeEvt Act=1_philo[1l] nTicks= 8 Interval= 0
Q_ENTRY: Obj=1_philo[1l] State=Philo_eating
0000462219 ==>Tran: Obj=1_philo[1l] Sig=EAT_SIG Source=Philo_hungry New=Philo_eating
0000462231 GC-ATT : Evt (Sig=EAT_SIG, Pool=1, Ref=1)
0000462243 AO.GETL: Active=1_philo[0] Evt (Sig=EAT_ SIG, Pool=1l, Ref=1)
0000462255 Intern : Obj=1_philo[0] Sig=EAT_SIG Source=Philo_thinking
0000462265 GC : Evt (Sig=EAT_SIG, Pool=1, Ref=1)
0000462277 MP.PUT : Obj=1_smlPoolSto nFree= 10
0000527134 QF_isrE: IsrNest= 1, CurrPrio=255
TICK : Ctr= 8
0000527153 QF_isrX: IsrNest= 1, CurrPrio=255
0000592283 QF_isrE: IsrNest= 1, CurrPrio=255

The QS trace log shown in Listing 11.1 contains quite detailed information because
most QS records are enabled (not blocked in the QS filters). The following bullet items
highlight the most interesting parts of the trace and illustrate how you can interpret
the trace data:

¢ The QS log always contains the QSPY application version number, the date and
time of the run, and all the configuration options used by the QSPY host
application.

® A log typically starts with the dictionary records that provide a mapping
between addresses of various objects in memory and their symbolic names. The
dictionary entries don’t have timestamps.

e After the dictionaries, you see the active object initialization. For example, the
EQ.INIT record indicates event queue initialization with the 1_tableQueueSto
buffer. After this the AO.ADD trace record you see adding the Table object
with priority 6. At this point, the time-tick interrupt is not configured, so
all timestamps are 0000000000 (timestamps are always placed in the first
ten columns).
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Active object initialization can contain dictionary entries for items that are
encapsulated within the active object. For example, initialization of Table
inserts an object dictionary entry for 1_table object and three function
dictionary entries for state handlers QHsm_top, Table_initial and
Table_serving. Finally, the topmost initial transition is taken from
QHsm_top to Table_serving.

After the active object initialization, interrupts are enabled, and the first Tick
interrupt arrives at the timestamp 0000070346. You can find out the type of the
interrupt by the unique priority number. For example, the priority of the Tick
interrupt is OxFF == 255.

The Tick interrupt occurs seven times. You can determine the ticking rate by
comparing the timestamps between interrupt entry of Tick 1 and 2, which is
((0000135566 — 0000070346) = 65220 ~= 0x10000). In the case of the DPP
application, the timestamp is provided from counter-0 of the 8254 timer/
counter, which is driven from the oscillator running at 1.193182MHz. The same
counter-0 of the 8254 also generates time tick interrupts every 0x10000 number
of counts (the 18.2Hz DOS tick).

In the Tick 7 interrupt entered at timestamp 0000461783, you see that a time
event posts TIMEOUT_SIG events to the 1_philo[1] active objects. This
triggers a lot of activity in the application. In fact, over 42 trace records occur
before the next Tick 8.

NOTE

The QSPY human-readable format contains many cryptic names for various trace records.
The “QSPY Reference Manual” available in the code accompanying this book (see Section
11.6.6) contains documentation of all predefined QS trace records and their parameters.

11.3 QS Target Component

The target-resident component of the Quantum Spy tracing system is called QS. The QS
target component consists of the ring buffer, the QS filters, and the instrumentation
added to QEP, QF, QK, and the application, as shown in Figure 11.3.
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Figure 11.3: Structure of the QS target component.

Software tracing with QS is incomparably less intrusive than the primitive printf ()
statements because all the data formatting is removed from the target system and is
done after the fact in the host. Additionally, the data-logging overhead incurred in the
time-critical path of the target code is reduced to just storing the data into the trace
buffer but typically does not include the overhead of sending the data out of the target
device. In QS, data logging and sending to the host are separated so that the target
system can typically perform the transmission outside of the time-critical path—for
example, in the idle loop of the target CPU.

A nice byproduct of removing the data formatting from the target is a natural data
compression compared to a formatted output. For example, ASCII representation of a
single byte takes two hexadecimal digits (and three decimal digits), so avoiding the
formatting gives at least a factor of two improvement in data density. On top of this natural
compression, QS uses such techniques as data dictionaries, and compressed format
information, which in practice result in a compression factor of 4 to 5 compared to the
expanded human-readable format.

Obviously, QS cannot completely eliminate the overhead of software tracing. But with
the fine-granularity filters available in QS, you can make this impact as small as
necessary. For greatest flexibility, QS uses two complementary levels of filters

(see Figure 11.3). The first level is filtering based on trace record type, such as entry to
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a state, or publishing an event. This level works globally for all state machines and
event publications in the entire system. The second level of filtering is
component-specific. You can set up a filter to trace only a specific state machine
object, for example. Combination of such two complementary filtering criteria results
in very selective tracing capabilities.

Most QS trace records are timestamped. QS provides an efficient API for obtaining
platform-specific timestamp information. Given the right timer-counter resource in your
target system, you can provide QS with as precise timestamp information as required.
The timestamp size is configurable to 1, 2, or 4 bytes.

One of its greatest QS strengths is the data transmission protocol. The QS protocol is
very lightweight but has many the elements of the High-Level Data Link Control
(HDLC) protocol [HDLC 07] defined by the International Standards Organization (ISO).
The protocol has provisions for detecting transmission errors and allows for
instantaneous resynchronization after any error, such as data dropouts due to RAM
buffer overruns.

Finally, QS contains a lightweight API for implementing data transmission to

the host. The API supports any implementation strategy (polling, interrupt,

DMA, etc.) and any physical transport layer (e.g., serial port, SPI, USB, Ethernet,
data file, etc.)

11.3.1 QS Source Code Organization

Listing 11.2 shows the platform-independent directories and files comprising the QS
software-tracing component in C. The structure of the C++ version is almost identical,
except the implementation files have the .cpp extension.

Listing 11.2 Platform-independent QS source code organization

<gp>\gpc\ - QP/C root directory (<gp>\gpcpp for QP/C++)
|
+-include/ - QP platform-independent header files
| +-gs.h - QS platform-independent active interface
| +-gs_dummy . h - QS platform-independent inactive interface
|
+-gs/ - QS target component

| +-source/ - QS platform-independent source code (*.C files)
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| | +-as_pkg.h - internal, packet-scope interface for QS implementation
| | +-as.c - internal ring buffer and formatted output functions

| | +-gs_.c - definition of basic unformatted output functions

| | +-as_blk.c - definition of block-oriented interface QS_getBlock ()
| | +-gs_byte.c - definition of byte-oriented interface QS_getByte ()

| | +-as_£32.c - definition of 32-bit floating point output QS_f£32()

| | +-as_£f64.c - definition of 64-bit floating point output QS_£64()

| | +-gs_mem.c - definition of memory-block output

| | +-gs_str.c - definition of zero-terminated string output

|

+-ports\ - Platform-specific QP ports

| +- . ..

+-examples\ - Platform-specific QP examples

|

+- . ..

The QS source files contain typically just one function or a data structure definition per
file. This design aims at deploying QS as a fine-granularity library that you statically
link with your applications. Fine granularity means that the QS library consists of
several small loosely coupled modules (object files) rather than a single module that
contains all functionality.

11.3.2 The QS Platform-Independent Header Files
gs.h and gs_dummy .h

As most software tracing systems for C or C++, QS relies heavily on the C preprocessor
for the tracing instrumentation to be enabled or disabled at compile time without
changing the instrumented source code.

NOTE

Most QS facilities are provided in form of preprocessor macros. Depending on the global
macro Q_SPY, the QS facilities are either defined to provide actual QS services or are
“dummied-out” to prevent any code generation when the global macro Q_spY is not defined.
That way, the QS instrumentation can be left in the code at all times but becomes active only
when the code is compiled with the macro Q_sPyY defined. You typically define the macro
0_spy externally through the compiler option (usually -D).

Listing 11.3 shows the platform-independent header file <gp>\gpc\include\gs.h,
which specifies the active interface to all QS facilities. The platform-independent
header file <gp>\gpc\include\gs_dummy.h, shown in Listing 11.4, specifies the
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inactive QS interface. Typically, you never need to explicitly include either of these
header files in your application, because they are already included by all instrumented
QP components. If the macro Q_sPvY is defined, the QP components include the gs.h
header file; otherwise they include the gs_dummy .h header file.

Listing 11.3 Active QS interface (fragments of the header file
<gp>\gpc\include\gs.h)

#ifndef gs_h
#define gs_h

#ifndef Q_SPY
(1) #error "Q_SPY must be defined to include gs.h"
#endif

(2) enum QSpyRecords {
/* QEP records */

(3) QS_QEP_STATE_ENTRY, /**< a state was entered */
QS_QEP_STATE_EXIT, /**< a state was exited */

/* QF records */

(4) QS_QF_ACTIVE_ADD, /**< an AO has been added to QF (started) */
QS_QF_ACTIVE_REMOVE, /**< an AO has been removed from QF (stopped) */
QS_QF_ACTIVE_SUBSCRIBE, /**< an AO subscribed to an event */
QS_QF_ACTIVE_UNSUBSCRIBE, /**< an AO unsubscribed to an event */

QS_QF_ACTIVE_POST FIFO, /**< an event was posted (FIFO) directly to AO */

/* QK records */

(5) Q0S_QK_MUTEX_LOCK, /**< the QK mutex was locked */
QS_QK_MUTEX_UNLOCK, /**< the QK mutex was unlocked */
QS_QK_SCHEDULE, /**< the QK scheduled a new task to execute */

/* Miscellaneous QS records */

(6) QS_SIG_DICTIONARY, /**< gignal dictionary entry */
QS_OBJ_DICTIONARY, /**< object dictionary entry */
QS_FUN_DICTIONARY, /**< function dictionary entry */
QS_ASSERT, /** assertion failed */

/* User records */

(7) QS_USER /**< the first record available for user QS records */
}i
/* Macros for adding QS instrumentation to the clientcode ................. */
(8) #define QS_INIT (arg_) QS_onStartup(arg_)
(9) #define QS_EXIT() QS_onCleanup ()
(10) #define QS_FILTER_ON (rec_) QS_filterOn(rec_)
(11) #define QS_FILTER_OFF (rec_) QS_filterOff (rec_)
(12) #define QS_FILTER_SM OBJ (obj_) (QS_smObj_ = (obj_))
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#define QS_FILTER_AO_OBJ (obj_) (QS_aoObj_ = (obj_))
#define QS_FILTER_MP_OBJ (obj_) (QS_mpObj_ = (obj_))
#define QS_FILTER_EQ_OBJ (obj_) (QS_egObj_ = (obj_))
#define QS_FILTER_TE_OBJ (obj_) (QS_teObj_ = (obj_))
#define QS_FILTER_AP_OBJ (obj_) (QS_apObj_ = (obj_))
/* Macros to generate user QS records (formatted data output) .............. */
(13) #define QS_BEGIN(rec_, obj_)
(14) #define QS_END() e
(15) #define QS_BEGIN_NOLOCK (rec_, obj_) . . .
(16) #define QS_END_NOLOCK ()
(17) #define QS_I8 (w_, d_) 0S_u8((uint8_t) (((w_) <<4)) | QS_I8_T, (d_))
(18) #define QS_U8 (w_, d_) QS_u8((uint8_t) (((w_) << 4)) | QS _U8_T, (d_))
#define QS_TI16 (w_, d_) QS_ul6 ((uint8_t) (((w_) <<4)) | QS_T16_T, (d_))
#define QS_Ul6 (w_, d_) QS_ul6 ((uint8_t) (((w_) << 4)) \ QS_Ule6_T, (d_))
#define QS_TI32(w_, d_) 0S_u32 ((uint8_t) (((w_) <<4)) | 0S_I32_T, (d_))
#define QS_U32 (w_, d_) QS_u32((uint8_t) (((w_) << 4)) | QS_U32_T, (d_))
(19) #define QS_F32(w_, d_) QS_f£32((uint8_t) (((w_) << 4)) | QS_F32_T, (d_))
(20) #define QS_F64 (w_, d_) QS_f64d ((uint8_t) (((w_) <<4)) | QS_F64_T, (d_))
(21) #define QS_STR(str_ QS_str(str_)
(22) #define QS_STR_ROM(str_) QS_str_ROM(str_)
(23) #define QS_MEM (mem_, size_) QS_mem( (mem_), (size_))
#if (QS_OBJ_PTR_SIZE == 1)
(24) #define QS_OBJ (obj_) QS_u8(QS_OBJ_T, (uint8_t) (obj_))
#elif (QS_OBJ_PTR_SIZE == 2)
(25) #define QS_OBJ (obj_) Q0S_ul6(QS_OBJ_T, (uintl6_t) (obj_))
#elif (QS_OBJ_PTR_SIZE == 4)
(26) #define QS_OBJ (obj_) 0S_u32(QS_OBJ_T, (uint32_t) (obj_))
#else
(27) #define QS_OBJ (obj_) 0S_u32(QS_OBJ_T, (uint32_t) (obj_))
#endif
#if (QS_FUN_PTR_SIZE == 1)
(28) #define QS_FUN(fun_) QS_u8 (QS_FUN_T, (uint8_t) (fun_))
#elif (QS_FUN_PTR_SIZE == 2)
#endif
#if (Q_SIGNAL_SIZE ==1)
(29) #define QS_SIG(sig_, obj_) QS_u8 (QS_SIG_T, (sig_)); QS_OBJ_(obj_)
#elif (Q_SIGNAL_SIZE == 2)
#endif
/* DICLIONAYY TECOTAS & v it it ettt et e e et et et e e e e e e e e e e e e */
(30) #define QS_OBJ_DICTIONARY (obj_) . . .
(31) #define QS_FUN_DICTIONARY (fun_) . . .
(32) #define QS_SIG_DICTIONARY (sig_, obj_) . . .

Continued onto next page
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/* Macros used only internally inthe QP code . .... ..t */
(33) #define QS_BEGIN_ (rec_, obj_)
(34) #define QS_END_ () C
(35) #define QS_BEGIN_NOLOCK_ (rec_, obj_) . . .
(36) #define QS_END_NOLOCK_ ()
/* QS functions for managing the QS tracebuffer ........ ... ... ... */
(37) wvoid QS_initBuf (uint8_t sto[], uint32_t stoSize);
(38 uintl6_t QS_getByte(void) ; /* byte-oriented interface */
(39 uint8_t const *QS_getBlock (uintl6_t *pNbytes); /* block-oriented interface */
/* QS callback functions, typically implemented intheBSP ................. */
(40) uint8_t QS_onStartup (void const *arg) ;
(41) wvoid QS_onCleanup (void) ;
(42) wvoid QS_onFlush (void) ;
(43) QSTimeCtr QS_onGetTime (void) ;
#endif /*gs_h */
(1) A compile-time error is reported if the gs.h header file is included without
defining the Q_SPY macro (see also Listing 11.4(1)).
(2) The enumeration QSpyRecords defines all the standard QS record types.
(3-5) Each QP component generates specific QS record types. For example,
standard QS records are designed for entering a state (3), adding an active
object to the framework (4), or locking a QK mutex (5).
(6) Standard QS records include also miscellaneous records, like the dictionary
records (see Section 11.3.8).
(7) The list QS records can be extended by adding user-defined records. The user
records must start at the numerical value determined by QS_USER. Currently,
QS supports up to 256 records, from which the first 70 are reserved for the
standard, predefined records. This leaves 186 records for application-specific
records. I discuss application-specific records in Section 11.3.9.
(8,9) As I mentioned before, all QS services are defined as preprocessor macros.
That way, you can leave them in the code, even if software tracing is disabled.
Here the services for initializing and terminating QS are specified.
(10,11) These two macros implement the global QS filter, which turns tracing of a

given QS trace record on or off. I discuss QS filters in Section 11.3.5.
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(12) This macro implements the local QS filter. This filter type allows you selectively
trace only specified state machine object. I discuss QS filters in Section 11.3.5.

(13,14) These macros open and close an application-specific QS trace record.
I discuss the application-specific records in Section 11.3.9.

(15,16) These macros also open and close an application-specific QS trace record,
except they don’t lock and unlock interrupts. These macros are supposed to be
used inside an already established critical section.

NOTE

The QS trace buffer is obviously a shared resource, which must be protected against corrup-
tion. QS uses interrupt locking (critical section) as the mutual exclusion mechanism. The
macro QS_BEGIN () locks interrupts and the macro QS_END () unlocks interrupts, so the
whole QS record is saved to the QS buffer in one critical section. You should avoid produc-
ing big trace records because this could extend interrupt latency.

(17,18) These macros are used to output an unsigned 8-bit integer and a signed 8-bit
integer in an application-specific trace record.

(19,20) These two macros output a 32-bit and 64-bit IEEE floating-point numbers,
respectively, to an application-specific trace record.

(21) This macro outputs a zero-terminated string to an application-specific trace
record.

(22) This macro outputs a zero-terminated string allocated in ROM to an
application-specific trace record.

NOTE

Some Harvard CPU architectures use different instructions to access data in program mem-
ory (ROM) than in RAM.

(23) This macro outputs a memory block of specified length to an application-
specific trace record. The block size cannot exceed 255 bytes.

(24-27) The macro QS_OBJ () outputs an object pointer to an application-specific
trace record. Note how the actual macro definition depends on the object
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pointer size defined by the macro QS_0BJ_PTR_SIZE. This idiom is used
quite often in QS.

(28) The macro QS_FUN () outputs a function pointer to an application-specific
trace record. Note how the actual macro definition depends on the function
pointer size defined by the macro QS_FUN_PTR_SIZE.

(29) The macro QS_SIG() outputs a signal value to an application-specific trace
record. Note how the actual macro definition depends on the signal size
defined by the macro Q_SIGNAL_SIZE.

NOTE

The macro QS_SIG () outputs both the signal value and state machine object pointer. This is
done to avoid ambiguities, when numerical signal values are reused in different state machines.

(30-32)

(33,34)
(35,36)

(37)

(38)

(39)

(40)

(41)

These macros output various dictionary trace records to the QS trace buffer.
I discuss dictionary trace records in Section 11.3.8.

These internal QS macros open and close an internal QS trace record.

These internal macros also open and close an internal QS trace record, except
they don’t lock and unlock interrupts. These macros are supposed to be used
inside an already established critical section.

The function QS_initBuf () initializes the QS buffer. The caller must
provide the storage for the buffer and its size. The function must be called
before QS trace buffer can be used, typically from QS_onStartup ().

The function QS_getByte () obtains 1 byte from the QS trace buffer (see
Section 11.3.7).

The function QS_getBlock () obtains a contiguous block of data in QS trace
buffer (see Section 11.3.7).

The 0S_onsStartup () callback function initializes the QS tracing output
and the trace buffer (see QS_initBuf ()). The function returns the status of
initialization. It is called from the macro QS_INIT().

The QS_onCleanup () callback function cleans up the QS tracing output.
The function is called from the macro QS_EXIT ().



Software Tracing for Event-Driven Systems 559

(42) The 9s_onFlush () callback function flushes the QS trace buffer to the host. The
function typically busy-waits until the whole buffer is transmitted to the host.
QS_onFlush () is called at the end of each dictionary record (see Section 11.3.8),
but you can also call it explicitly via macro QS_FLUSH (). I provide an example of
the QS_onFlush () callback implementation in Section 11.6.2.

(43) The QS_onGetTime () callback function returns the timestamp for a QS record.
I provide an example of the QS_onGetTime () callback implementation in
Section 11.6.3.

Listing 11.4 Inactive QS interface (fragments of the header file
<gp>\gpc\include\gs_dummy.h)
#ifndef gs_dummy_h
#define gs_dummy_h
#ifdef Q_SPY
(1) #error "Q_SPY must NOT be defined to include gs_dummy.h"
#endif
(2) #define QS_INIT (arg ) ((uint8_t)1)
(3) #define QS_EXIT() ((void)0)
#define QS_DUMP () ((void)0)
#define QS_FILTER_ON(rec_) ((void)0)
#define QS_FILTER_OFF (rec_) ((void)0)
#define QS_FILTER_SM_OBJ (obj_) ((void)0)
(4) #define QS_GET_BYTE (pByte_) ((uintl6é_t) OXFFFF)
(5) #define QS_GET_BLOCK (pSize_) ((uint8_t *)0)
(6) #define QS_BEGIN(rec_, obj_) if (0) {
(7) #define QS_END() }
#define QS_BEGIN_NOLOCK (rec_, obj_) QS_BEGIN(rec_, obj_)
#define QS_END_NOLOCK () QS_END ()
#define QS_I8 (width_, data_) ((void)0)
#define QS_US8 (width_, data_) ((void)0)
#define QS_SIG(sig_, obj_) ((void)0)
#define QS_OBJ (obj_) ((void)0)
#define QS_FUN(fun_) ((void)0)
#define QS_SIG_DICTIONARY (sig_, obj_) ((void)O0)
#define QS_OBJ_DICTIONARY (obj_) ((void)0)

Continued onto next page
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#define QS_FUN_DICTIONARY (fun_) ((void)0)
#define QS_FLUSH() ((void)0)
4.#e.n<;1if /* gs_dummy_h */

(1) A compile-time error is reported if the gs_dummy . h header file is included
when the Q_SPY macro is defined (see also Listing 11.3(1)).

(2) The dummy QS initialization always returns 1, meaning successful
initialization.

(3) Most other QS dummy macros are defined as ( (void) 0), which is a valid
empty C expression that can be terminated with a semicolon.

(4) The dummy QS macro for obtaining a byte from the trace buffer always returns
OxFFFF, which means that end of data is reached. I discuss QS API for
accessing the trace buffer in Section 11.3.7.

(5) The dummy QS macro for obtaining a block of data to output always returns a
NULL pointer, which means that there is no data in the buffer. I discuss
QS API for accessing the trace buffer in Section 11.3.7.

(6,7) The dummy QS macros for opening and closing a trace record compile as
if (0) {...}.Any active code between the braces is eliminated because of the
FALSE condition of the if statement.
NOTE

Some trace records might contain temporary variables and expressions that are only used for
the trace output. The “if (0) {” statement establishes a new scope to define such temporary
variables.

11.3.3 QS Ciritical Section

The QS target component must protect the internal integrity of the trace buffer, which is
shared among concurrently running tasks and interrupts (see Figure 11.3). To guarantee
mutually exclusive access to the trace buffer, QS uses the same mechanism as the
rest of the QP platform, that is, QS locks interrupts on entry to the critical section of
code and unlocks interrupts again on exit.
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When QS detects that the QF critical section macros QF_INT_LOCK ()/
QF_INT_UNLOCK () are defined, QS uses the provided definitions for its own critical
section. However, when you use QS without the QF real-time framework, you need
to define the platform-specific interrupt locking/unlocking policy of QS in the
gs_port.h header file, as shown in Listing 11.5.

NOTE

QS can be used with just the QEP component or even completely standalone, without any
other QP components. In these cases, QS must provide its own, independent critical section
mechanism.

Listing 11.5 QS macros for interrupt locking and unlocking (file gs_port.h)

#define QS_INT KEY_TYPE
#define QS_INT_LOCK (key_)
#define QS_INT_ UNLOCK (key_)

The QS macros are exactly analogous to the QF macros QF_INT_KEY_TYPE,
QF_INT_LOCK (), and QF_INT_ UNLOCK (), respectively. Refer to Section 7.3 in
Chapter 7 for more details.

11.3.4 General Structure of QS Records

Like all software-tracing systems, QS logs the tracing data in discrete chunks called QS
trace records. These trace records have the general structure shown in Listing 11.6.

Listing 11.6 General structure of a QS record

QS_BEGIN_xxx (record_type) /* trace record begin */
QS_vyyy (data) ; /* QS data element */
QS_zzz (data) ; /* QS data element */
. /* QS data element */

QS_END_xxx () /* trace record end */

Each trace record always begins with one variant of the macro QS_BEGIN_xxx () and
ends with the matching macro QS_END_xxx ().
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NOTE

The macros QS_BEGIN_xxx () and QS_END_xxx () are not terminated with the semicolon.

Sandwiched between these two macros are the data-generating macros that actually
insert individual data elements into the QS trace buffer. QS provides four variants of the
begin/end macro pairs for different purposes (Listing 11.3(13-16 and 33-36)).

The first two variants (Listing 11.3(13-16)) are for creating application-specific QS
records (see Section 11.3.9). The QS_BEGIN () /QS_END () pair locks interrupts at the
beginning of the record and unlocks at the end. The pair QS_BEGIN_NOLOCK () /
QS_END_NOLOCK () 1is for application-specific records without entering the QS critical
section and should be used only within an already established critical section.

The third and fourth variants of the begin-record/end-record QS macros (Listing 11.3
(33-36)) are for internal use within QP components to generate the predefined QS
records. Such predefined records are generated with QS_BEGIN_ () /QS_END_ () or
QS_BEGIN_NOLOCK_ () /QS_END_NOLOCK_ () macro pairs, depending whether a
critical section must be entered or not.

11.3.5 QS Filters

One of the main roles of the begin-record macros QS_BEGIN_xxx () is to implement the
filtering of QS records before they reach the trace buffer. QS provides two complementary
levels of filtering: the global on/off filter and local filters (see Figure 11.3).

Global On/Off Filter

The global on/off filter is based on the record IDs. The gs.h header file provides the
enumeration of all the predefined internal trace records IDs that are already
instrumented into the QP components (Listing 11.3(2)). The enumeration of the
predefined records ends with the QS_USER value, which is the first numerical value
available for application-specific trace records. I discuss the application-specific trace
records in Section 11.3.9.

The global on/off filter is efficiently implemented by means of an array of bitmasks
QS_glbFilter_[], where each bit represents one trace record. Currently the
QS_glbFilter_[] array contains 32 bytes for a total of 32*8 bits for 256 different
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trace records. A little more than a quarter of these records are already taken by the
predefined QP trace records. The remaining three quarters are available for
application-specific use.

The macro QS_BEGIN () for opening a trace record shows how the global on/off filter is
implemented:

#define QS_BEGIN(rec_, obj_) \
if (((QS_glbFilter [(uint8_t) (rec_) >> 3U] \
& (1lU << ((uintS_t) (rec_) & 70))) '=0) .. .\

The global on/off filter works by checking the state of the bit corresponding to the given
trace record argument “rec_.” This check is accomplished by the familiar expression
(bitmask & bit) != pwhere the bitmask is 0S_glbFilter_ [ (uint8_t)

(rec_) >> 3U] and the bit is (1U << ( (uint8_t) (rec_) & 7U) ). Note that for any
constant value of the argument rec_, both the bitmask and the bit are compile-time
constants. For example, a global filter check for a record ID of 46, say, costs as much as
the expression ( (QS_glbFilter_ [5] & 0x40) != 0).

NOTE

The global filter is specifically implemented to use byte-size computations only to be effi-
cient even on §-bit machines.

QS provides a simple interface for setting and clearing individual bits in the
QS_glbFilter_[] bitmask array. The macro QS_FILTER_ON (rec_) turns on the bit
corresponding to record “rec_.” Conversely, the macro QS_FILTER_OFF (rec_)
turns off the bit corresponding to record “rec_.” In both cases, the special constant
QS_ALL_RECORDS affects all records. Specifically, QS_FILTER_ON
(QS_ALL_RECORDS) turns on all records, and QS_FILTER_OFF (QS_ALL_RECORDS)
turns off all records. Examples of these macros are provided in Listing 11.16.

Just after QS initialization, the global on/off filter is set to OFF for all record types.
You need to explicitly turn the filter ON for some records to enable the tracing.
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NOTE

Globally disabling all records through QS_FILTER_OFF (QS_ALL_RECORDS) is a useful way
of implementing a software-tracing trigger. You can use this trigger to rapidly stop the
tracing after an interesting event, to prevent new trace data from overwriting interesting data
in case the data uplink to the host cannot keep up with the production rate of new trace data.

Local Filters

The local filters allow generation of trace records only for specified objects. For
example, you might set up a local filter to log only activities of a given state machine
object. Independently, you might set up another local filter to log only activities of a
given memory pool.

The Table 11.1 summarizes all specified local filters and the predefined QS records
controlled by these filters.

Table 11.1: Local filter summary

Object
Local Filter Type Example Applies to QS Records

QS_FILTER_SM_OBJ() State QS_FILTER_SM_OB]J QS_QEP_STATE_EMPTY,
machine (&_ghsmTst); QS_QEP_STATE_ENTRY,
QS_QEP_STATE_EXIT,
QS_QEP_STATE_INIT,
QS_QEP_INIT_TRAN,
QS_QEP_INTERN_TRAN,
QS_QEP_TRAN,
QS_QEP_IGNORED

QS_FILTER_AO_OBJ() Active QS_FILTER_AO_OB| QS_QF_ACTIVE_ADD,

object (&l_philo[3]); QS_QF_ACTIVE_REMOVE,
QS_QF_ACTIVE_SUBSCRIBE,
QS_QF_ACTIVE_UNSUBSCRIBE,
QS_QF_ACTIVE_POST_FIFO,
QS_QF_ACTIVE_POST_LIFO,
QS_QF_ACTIVE_GET,
QS_QF_ACTIVE_GET_LAST

QS_FILTER_M P_OBJ()1 Memory QS_FILTER_MP_OB) QS_QF_MPOOL_INIT,
pool (I_regPoolSto); QS_QF_MPOOL_GET
QS_QF_MPOOL_PUT,
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Table 11.1: Local filter summary—Cont’d

Object
Local Filter Type Example Applies to QS Records
QS_FILTER_EQ_OBJ()? Event QS_FILTER_EQ_OB| QS_QF_EQUEUE_INIT,
queue (I_philQueueSto[3]); QS_QF_EQUEUE_POST_FIFO,
QS_QF_EQUEUE_POST_LIFO,
QS_QF_EQUEUE_GET,
QS_QF_EQUEUE_GET_LAST
QS_FILTER_TE_OB() Time event QS_FILTER_TE_OB| QS_QF_TICK,
(&I_philo[3]. QS_QF_TIMEEVT_ARM,
timeEvt); QS_QF_TIMEEVT_AUTO_DISARM,
QS_QF_TIMEEVT_DISARM_ATTEMPT,
QS_QF_TIMEEVT_DISARM,
QS_QF TIMEEVT_REARM,
QS_QF_TIMEEVT_POST,
QS_QF_TIMEEVT_PUBLISH
QS_FILTER_AP_OBJ() Generic QS_FILTER_AP_OB]J Application-specific records starting
application (&myAppObject); with QS_USER
object

"Memory pool is referenced by the memory buffer managed by the pool.
’Event queue is referenced by the ring buffer managed by the queue.

The first column of Table 11.1 enlists the QS macros you need to use to set/clear the
local filters. For example, you specify the state machine local filter by invoking:

QS_FILTER_SM_OBJ (aStateMachinePointer) ;

where aStateMachinePointer is the pointer to the state machine object you want to
trace.

You deactivate any local filter by passing the NULL pointer to the appropriate QS
macro. For example, to open up the local filter for all state machine objects, you write
the following code:

QS_FILTER_SM_OBJ(0) ;

Just after QS initialization, all local filters are set to NULL , meaning that the local filters
are open for all objects.
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The highlighted code in the QS_BEGIN_NOLOCK () macro definition shows the actual
implementation of the local filter for the application-specific objects:

#define QS_BEGIN_NOLOCK (rec_, obj_) \
if (((QS_glbFilter_[ (uint8_t) (rec_) >> 3U] \
& (1U << ((uint8_t) (rec_) & 7U))) !=0) \
&& ((QS_apObj_ == (void *)0) || (QS_apObj_ == (obj_)))) \
{\

The QS local filters are closely related to the object dictionary records (see Section
11.3.8) and both facilities consistently use the same conventions.

11.3.6 QS Data Protocol

The data transmission protocol used in QS to transmit trace data from the target to the
host is one of its greatest strengths. The protocol is very lightweight but has many
elements of the HDLC protocol defined by the ISO.

The QS protocol has been specifically designed to simplify the data management
overhead in the target yet allow detection of any data dropouts due to the trace buffer
overruns. The protocol has not only provisions for detecting gaps in the data and
other errors but allows for instantaneous resynchronization after any error, to minimize
data loss.

Rec
D Data
Bytes: 1 1 N (=0,1,..) 1 1

Figure 11.4: QS transmission protocol.
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The QS protocol transmits each trace record in an HDLC-like frame. The upper part
of Figure 11.4 shows the serial data stream transmitted from the target containing frames
of different lengths. The bottom part of Figure 11.4 shows the details of a single frame:

1. Each frame starts with the Frame Sequence Number byte. The target QS
component increments the Frame Sequence Number for every frame inserted
into the circular buffer. The Sequence Number naturally rolls over from 255 to
0. The Frame Sequence Number allows the QSPY host component to detect
any data discontinuities.

2. Following the Frame Sequence Number is the Record ID byte, which is one of
the predefined QS records (see Listing 11.3(2)) or an application-specific
record (see Section 11.3.9).

3. Following the Record ID is zero or more data bytes.

4. Following the data is the Checksum. The Checksum is computed over the
Frame Sequence Number, the Record ID, and all the data bytes. The next
section gives the detailed checksum computation formula.

5. Following the Checksum is the HDLC Flag, which delimits the frame. The HDLC
Flag is the 01111110 binary string (0x7E hexadecimal). Note that the QS protocol
uses only one HDLC Flag at the end of each frame and no HDLC Flag at the
beginning of a frame. In other words, only one Flag is inserted between frames.

The QS target component performs the HDLC-like framing described above at the
time the bytes are inserted into the circular trace buffer. This means that the data in the
buffer is already cleanly divided into frames and can be transmitted in any chunks,
typically not aligned with the frame boundaries.

Transparency

One of the most important characteristics of HDLC-type protocols is establishing very
easily identifiable frames in the serial data stream. Any receiver of such a protocol can
instantaneously synchronize to the frame boundary by simply finding the Flag byte.
This is because the special Flag byte can never occur within the content of a frame.
To avoid confusing unintentional Flag bytes that can naturally occur in the data stream
with an intentionally sent Flag, HDLC uses a technique known as transparency (a.k.a.
byte stuffing or escaping) to make the Flag bytes transparent during the transmission.
Whenever the transmitter encounters a Flag byte in the data, it inserts a 2-byte escape
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sequence to the output stream. The first byte is the Escape byte, defined as binary
01111101 (hexadecimal 0x7D). The second byte is the original byte XOR-ed with 0x20.

Of course, now the Escape byte itself must also be transparent to avoid interpreting an
unintentional Escape byte as the 2-byte escape sequence. The procedure of escaping
the Escape byte is identical to that of escaping the Flag byte.

The transparency of the Flag and Escape bytes complicates slightly the computation
of the Checksum. The transmitter computes the Checksum over the Frame Sequence
Number, the Record ID, and all data bytes before performing any byte stuffing.

The receiver must apply the exact reversed procedure of performing the byte unstuffing
before computing the Checksum.

An example might make this clearer. Suppose that the following trace record needs to
be inserted to the trace buffer (the transparent bytes are shown in bold):

Record ID = 0x7D, Record Data = 0x7D 0x08 0x01

Assuming that the current Frame Sequence Number is, say, Ox7E, the Checksum will be
computed over the following bytes:

Checksum == (uint8_t) (~(0x7E + 0x7D + 0x7D + 0x08 + 0x01)) == OxX7E

and the actual frame inserted into the QS trace buffer will be as follows:

0x7D 0x5E 0x7D 0x5D 0x7D 0x5D 0x08 0x01 0x7D 0x5E 0xX7E

Obviously, this is a degenerated example, where the Frame Sequence Number, the
Record ID, a data byte, and the Checksum itself turned out to be the transparent bytes.
Typical overhead of transparency with real trace data is one escape sequence per several
trace records.

Endianness

In addition to the HDLC-like framing, the QS transmission protocol specifies the
endianness of the data to be little endian. All multibyte data elements, such as 16- and
32-bit integers, pointers, and floating-point numbers, are inserted into the QS trace
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buffer in the little-endian byte order (least significant byte first). The QS data inserting
macros (see Listing 11.3(17-23)) place the data in the trace buffer in a platform-neutral
manner, meaning that the data is inserted into the buffer in the little-endian order
regardless of the endianness of the CPU. Also, the data-inserting macros copy the data
to the buffer 1 byte at a time, thus avoiding any potential data misalignment problems.
Many embedded CPUs, such as ARM, require certain alignment of 16- and 32-bit
quantities.

11.3.7 QS Trace Buffer

As described in the previous section, the QS target component performs the
HDLC-like framing at the time the bytes are inserted into the QS trace buffer. This
means that only complete frames are placed in the buffer, which is the pivotal point in
the design of the QS target component and has two important consequences.

First, the use of HDLC-formatted data in the trace buffer allows decoupling the data
insertion into the trace buffer from the data removal out of the trace buffer. You can
simply remove the data in whichever chunks you like, without any consideration for
frame boundaries. You can employ just about any physical data link available

on the target for transferring the trace data from the target to the host.

Second, the use of the formatted data in the buffer enables the “last is best” tracing
policy. The QS transmission protocol maintains both the Frame Sequence Number and
the Checksum over each trace record, which means that any data corruption caused by
overrunning the old data with the new data can be always reliably detected. Therefore,
the new trace data is simply inserted into the circular trace buffer, regardless of whether
it perhaps overwrites the old data that hasn’t been sent out yet or is in the process of
being sent. The burden of detecting any data corruption is placed on the QSPY host
component. When you start missing the frames (which the host component easily
detects by discontinuities in the Frame Sequence Number), you have several options.
You can apply some additional filtering, increase the size of the buffer, or improve the
data transfer throughput.

Initializing the QS Trace Buffer QS_initBuf ()

Before you can start producing trace data, you must initialize the QS trace buffer
by calling the QS_initBuf () function. Typically, you invoke this function from
the 0S_onStartup () callback, which you typically define in your application.
Listing 11.7 shows an example of initializing the QS trace buffer.
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Listing 11.7 Initializing QS trace buffer with QS_initBuf ()

(1) #ifdef Q_SPY /* define QS callbacks */

(2) uint8_t QS_onStartup (void const *arg) {
(3) static uint8_t gsBuf[2*1024]; /* buffer for Quantum Spy * /
(4) QS_initBuf (gsBuf, sizeof (gsBuf)) ;

Initialize the QS data link
return success; /* return 1 for success and 0 for failure */

}
#endif /* Q_SPY */

(1) The QS callback functions (such as QS_onStartup () ) are defined only when QS
tracing is enabled.

(2) At a minimum, the QS_onStartup () callback function must initialize the QS
trace buffer.

(3) You need to statically allocate the storage for the QS trace buffer. The size of the
buffer depends on the nature of your application and the data link to the host.
Obviously, a bigger buffer is needed if you want to trace events occurring at a high
rate and producing a higher volume of trace data. On the other hand, using a
higher-bandwidth data link to the host allows you to reduce the size of the trace
buffer.

(4) The @s_initBuf () function initializes internal QS variables to use the provided
trace buffer.

NOTE

QS can work with a trace buffer of any size, but smaller buffers will lose data if the buffer
“wraps around.” You will always know when any data loss occurs, however, because the
QS data protocol maintains a sequence number in every trace record (see Section 11.3.6).
When the QSPY host application detects a discontinuity in the sequence numbers, it produces
the following message:

*** Tncorrect record past seg=xxx

*** Dropped yy records
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You have several options to avoid losing trace records due to data overruns. You can
increase the size of the trace buffer (Listing 11.7(3)) or apply more filtering to reduce
the amount of trace data produced (see Section 11.3.5). You can also employ a faster
data link to the host. Finally, sometimes you can improve the data throughput by
changing the policy of sending trace data to the host. For example, using only the idle
processing might not utilize the full available bandwidth of the data link if the idle
processing executes too infrequently.

Byte-Oriented Interface: QS_getByte ()

The lack of any constraints on removing the data from the trace buffer means that you
can remove 1 byte at a time at arbitrary time instances. QS provides the function

QS_getByte () for such byte-oriented interfaces. The signature of QS_getByte () is
shown in Listing 11.3(38). Listing 11.8 shows an example of how to use this function.

The QS_getByte () function returns the byte in the least significant 8 bits of the 16-bit
return value if the byte is available. If the trace buffer has no more data, the function
returns QS_EOD (end-of-data), which is defined in gs.h as ((uintl16_t) OXFFFF).

NOTE

The function QS_getByte () does not lock interrupts internally and is not reentrant. You
should always design your software such that QS_getByte() is called with interrupts
locked. In addition, an application should consistently use either the byte-oriented interface
QS_getByte () or the block-oriented interface QS_getBlock () (see the next subsection),
but never both at the same time.

Listing 11.8 Using 0S_getByte () to output data
to a 16550-compatible UART

(1) wvoid QF_onIdle (void) { /* called with interrupts LOCKED */
(2) QF_INT_UNLOCK (dummy) ; /* always unlock interrupts */
(3) #ifdef Q_SPY

(4) if ((inportb(l_uart_base +5) & (1 <<5)) I=0) { /* THR Empty? */
(5) uint8_t fifo = UART _16550_TXFIFO_DEPTH; /*depth of the 16550 Tx FIFO */
(6) uintl6é_t b;

(7) QF_INT_LOCK (dummy) ;

Continued onto next page
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(8) while ((fifo !=0)
(9) && ((b=QS _getByte()) !=QS_EOD)) /* get the next byte */
{
(10) QF_INT_UNLOCK (dummy) ;
(11) outportb(l_base + 0, (uint8_t)b); /* insert byte into TX FIFO */
(12) --fifo;
(13) QF_INT_LOCK (dummy) ;
}
(14) QF_INT_UNLOCK (dummy) ;
}
#endif
}
(1) Idle processing is ideal for implementing trace data output. In this example, I use
the QF _onIdle () idle callback of the cooperative vanilla kernel (see Section
8.2.4 in Chapter 8).
(2) As explained at the end of Section 7.11.1 in Chapter 7, the QF_onIdle () idle
callback is invoked with interrupts locked and it always must unlock interrupts.
(3) The QS trace buffer output is performed only when QS is active, that is, when the
macro Q_SPY is defined.
(4) The Transmitter Holding Register Empty bit of the 16550 UART is checked.
(5) The 16550 UART can accept up to the TX FIFO depth bytes (typically 16).
(6) The temporary variable ‘b’ will hold the return value from QS_getByte (). Note
that it is 2 bytes wide.
(7) Interrupts are locked before calling QS_getByte().
(8) The loop continues until there is room in the TX FIFO.
(9) The Qs_getByte() function is called to obtain the next trace byte to transmit.
The return value of 0S_EOD indicates end of data.
(10) Interrupts can be unlocked.
(11) The trace byte is written to the Transmitter Holding Register.
(12) One less byte is available in the TX FIFO.
(13) Interrupts are locked to make another call to QS_getByte().
(14) Interrupts are unlocked before returning to the caller.
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Block-Oriented Interface: QS_getBlock ()

QS also provides an alternative block-oriented interface for obtaining a contiguous
block of data at a time. QS provides the function QS_getBlock () for such block-
oriented interface. The signature of QS_getBlock () is shown in Listing 11.3(39).
Such a block-oriented interface is very useful for DMA-type transfers. Listing 11.9
shows an example of how to use this function.

If any bytes are available at the time of the call, the function returns the pointer to the
beginning of the data block within the QS trace buffer and writes the number of
contiguous bytes in the block to the location pointed to by pNbytes. The value of
*pNbytes is also used as input to limit the maximum size of the data block that the
caller can accept. Note that the bytes are not copied from the trace buffer.

If no bytes are available in the QS buffer when the function is called, the function
returns a NULL pointer and sets the value pointed to by pNbytes to zero.

You should not assume that the QS trace buffer becomes empty after QS_getBlock ()
returns a data block with fewer bytes than the initial value of *pNbytes. Sometimes the
data block falls close to the end of the trace buffer and you need to call 0S_getBlock ()
again to obtain the rest of the data that “wrapped around” to the beginning of the QS data
buffer. After the 0S_getBlock () returns a memory block to the caller, the caller

must transfer all the bytes in the returned block before calling 9S_getBlock () again.

NOTE

The function QS_getBlock () does not lock interrupts internally and is not reentrant. You
should always design your software such that 0S_getBlock() is called with interrupts
locked.

Listing 11.9 Using 0S_getBlock () to output data
to a 16550-compatible UART

(1) void QF_onIdle(void) { /* called with interrupts LOCKED */
(2) QF_INT_UNLOCK (dummnmy) ; /* always unlock interrupts */
(3) #ifdef Q_SPY

(4) if ((inportb(l_uart_base +5) & (1 <<5)) I=0) { /* THR Empty? */
(5) uintl6é_t fifo = UART 16550 TXFIFO DEPTH; /* 16550 Tx FIFO depth */
(6) uint8_t const *block;

Continued onto next page
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(7) QF_INT_LOCK (dummy) ;
(8) block = QS _getBlock (&fifo) ; /* try to get next block to transmit */
(9) QF_INT_UNLOCK (dummy) ;
(10) while (fifo--1!=0) { /* any bytes in the block? */
(11) outportb(1l_uart_base + 0, *block++) ;
}
}
#endif
}
(1) Idle processing is ideal for implementing trace data output. In this example, I use
the QF _onIdle () idle callback of the cooperative vanilla kernel (see Section
8.2.4 in Chapter 8).
(2) As explained at the end of Section 7.11.1 in Chapter 7, the QF_onIdle () idle
callback is invoked with interrupts locked and it always must unlock interrupts.
(3) The QS trace buffer output is performed only when QS is active, that is, when the
macro Q_SPY is defined.
(4) The Transmitter Holding Register Empty bit of the 16550 UART is checked.
(5) The 16550 UART can accept up to the TX FIFO depth bytes (typically 16).
(6) The temporary pointer ‘block’ will hold the return value from
QS_getBlock().
(7) Interrupts are locked before calling QS_getBlock().
(8) The 0s_getBlock () function is called to obtain the contiguous block of trace
data to transmit.
(9) Interrupts can be unlocked.
(10) The loop continues while there is room in the TX FIFO.
(11) The trace byte is written to the Transmitter Holding Register.

11.3.8 Dictionary Trace Records

By the time you compile and load your application image to the target, the symbolic
information about the object names, function names, and signal names is stripped from the
code. Therefore, if you want to have the symbolic information available to the QSPY host-
resident component, you need to supply it somehow to the software-tracing system.
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QS provides special trace records designed expressly for including the symbolic
information about the target code in the trace itself. The dictionary records included in
the trace for the QSPY host application are very much like the symbolic information
embedded in the object files for the traditional single-step debugger.

The dictionary trace records are not absolutely required to generate the trace in the same
way as the symbolic information in the object files is not absolutely required to debug
code. However, in both cases, the availability of the symbolic information greatly
improves productivity in working with the software trace or the debugger.

QS supports three types of dictionary trace records: object dictionary, function
dictionary, and signal dictionary. The following subsections cover these types in detail.

NOTE

As all QS trace records, the dictionary trace records are generated in a critical section of code,
that is, interrupts are locked for the time the data is inserted into the QS trace buffer. Addition-
ally, after unlocking interrupts, the callback function QS_onFlush () is invoked at the end of
each dictionary record. This callback function typically busy-waits until all data are sent out
to the host, which might take considerable time. For that reason, dictionary entries should be
generated only during the system initialization, when the real-time constraints do not yet apply.

Object Dictionaries

Object dictionaries are generated with the macro QS_0OBJ_DICTIONARY () that
associates the address of the object in memory with its symbolic name. Listings 11.19
and 11.20 provide some examples of how you use this macro. The
QS_OBJ_DICTIONARY () macro takes only one argument, the address of the object, and
uses internally the “stringizing” preprocessor operator to convert the provided argument
to a C string. Therefore, you should invoke the QS_OBJ_DICTIONARY () macro

with meaningfully named persistent objects, such as &1_table, or &1_philo[3], and
not generic pointers, such as “me” (or “this” in C++), because the latter will not
help you much in recognizing the object name in the trace.

Table 11.2 enlists object dictionaries you can provide to furnish the symbolic
information used by the QSPY data output. Note that QS identifies memory pools by
the memory buffer managed by the memory pool, because the actual memory pool
objects are buried inside the QF framework and are not accessible to the application
developer. In addition, event queues are identified by the ring buffer managed by the
queue, not by the queue object itself.
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Table 11.2: Object dictionaries required for the predefined QS records

Object Type

Example(s)

QS Records

State machine

QS_OBJ_DICTIONARY
(&l_table); See Listing
11.19(3)

QS_QEP_STATE_EMPTY,
QS_QEP_STATE_ENTRY,
QS_QEP_STATE_EXIT,
QS_QEP_STATE_INIT,
QS_QEP_INIT_TRAN,
QS_QEP_INTERN_TRAN,
QS_QEP_TRAN,
QS_QEP_IGNORED

Active object

QS_OBJ_DICTIONARY
(&l_philo[0]); See Listing
11.20(4)

QS_QF_ACTIVE_ADD,
QS_QF_ACTIVE_REMOVE,
QS_QF_ACTIVE_SUBSCRIBE,
QS_QF_ACTIVE_UNSUBSCRIBE,
QS_QF_ACTIVE_POST_FIFO,
QS_QF_ACTIVE_POST_LIFO,
QS_QF_ACTIVE_GET,
QS_QF_ACTIVE_GET_LAST

Memory pool’

QS_OBJ_DICTIONARY
(I_smlPoolSto); See Listing
11.16(7)

QS_QF_MPOOL_INIT,
QS_QF_MPOOL_GET
QS_QF_MPOOL_PUT,

Event queue2

QS_OBJ_DICTIONARY
(I_philQueueSto[0]); See
Listing 11.16(9)

QS_QF_EQUEUE_INIT,
QS_QF_EQUEUE_POST_FIFO,
QS_QF_EQUEUE_POST_LIFO,
QS_QF_EQUEUE_GET,
QS_QF _EQUEUE_GET_LAST

Time event

QS_OBJ_DICTIONARY
(&l_philo[0].timeEvt); See
Listing 11.20(5)

QS_QF_TICK,
QS_QF_TIMEEVT_ARM,

QS_QF_TIMEEVT_AUTO_DISARM,
QS_QF_TIMEEVT_DISARM_ATTEMPT,

QS_QF_TIMEEVT_DISARM,
QS_QF_TIMEEVT_REARM,
QS_QF_TIMEEVT_POST,
QS_QF_TIMEEVT_PUBLISH

"Memory pool is referenced by the memory buffer managed by the pool.

2Event queue is referenced by the ring buffer managed by the queue.

The object dictionary records are closely related to the QS local filters (see Section
11.3.5). Both facilities consistently use the same conventions. For example, a local filter
for a specific memory pool is selected by means of the QS_FILTER_MP_OBJ () macro,
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which accepts a pointer to the memory buffer managed by the memory pool.
Similarly, a local filter for a specific event queue is selected by means of the
QS_FILTER_EQ_OBJ () macro, which accepts a pointer to the ring buffer managed by
the event queue.

Function Dictionaries

Function dictionaries are generated with the macro QS_FUN_DICTIONARY (), which
associates the address of the function in memory with its symbolic name. Listing 11.19
(4-6) provides examples of how you use this macro. The main purpose of the function
dictionaries is to provide symbolic names for state-handler functions.

The QS_FUN_DICTIONARY () macro takes only one argument: the address of the
function, and uses internally the “stringization” preprocessor operator to convert the
provided argument to a C string.

Signal Dictionaries

Signal dictionaries are generated with the macro QS_SIG_DICTIONARY () that
associates the numerical value of the event signal and the state machine object to the
symbolic name of the signal.

The reason for using both the signal value and the state machine object rather than just
the signal value is that a signal value alone is not sufficient to uniquely identify the
symbolic signal. Only the globally published signals are required to be systemwide
unique. Other signals, used only locally, can have completely different meanings for
different state machines in the system.

The QS_SIG_DICTIONARY () macro takes two arguments: the numerical value of the
signal and the address of the state machine object. The macro uses internally the
“stringization” preprocessor operator to convert the provided signal argument to a
string. The state machine object is not converted to a string, so the actual variable name
you use is irrelevant.

Listing 11.19(7-10) provides examples of how you use the QS_SIG_DICTIONARY ()
macro. Listing 11.19(7-9) shows how to specify globally published signals that are
associated with multiple state machines. In this case, you specify NULL as the state
machine object. In contrast, Listing 11.19(10) shows a dictionary entry for the local
signal TIMEOUT_SIG. This signal is associated only with the Philosopher state
machines.
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11.3.9 Application-Specific QS Trace Records

The application-specific QS records allow you to generate tracing information from the
application-level code. You can think of the application-specific records as an
equivalent to printf () but with much less overhead. Listing 11.10 shows an example
of an application-specific QS record.

Listing 11.10 Example of an application-specific trace record

QS_BEGIN(MY_QS_RECORD, myObjectPointer) /* trace record begin */
QS_STR("Hello") ; /* string data element */
QS_U8(3, n); /* uint8_t data, 3-decimal digits format */
/* QS data */
QS_MEM (buf, sizeof (buf)); /* memory block of a given size */

QS_END () /* trace record end */

In most cases, the application-specific records are enclosed with the QS_BEGIN() /
QS_END () pair of macros. This pair of macros locks interrupts at the beginning and
unlocks at the end of each record (see Section 11.3.3). Occasionally you would want to
generate trace data from within already established critical sections or ISRs. In such
rare occasions, you would use the macros QS_BEGIN_NOLOCK ()/QS_END_NOLOCK ()
to avoid nesting of critical sections.

The record-begin macro QS_BEGIN () takes two arguments. The first argument (e.g.,
MY_QS_RECORD) is the enumerated record type, which is used in the global on/off filter
(Section 11.3.5) and is part of the each record header. The application-specific record
types must start with the value QS_USER to avoid overlap with the predefined QS
records already instrumented into the QP components.

The second argument (e.g., myObjectPointer) is used for the local filter, which
allows you to selectively log only specific application-level objects. Listing 11.21
shows an example of an application-specific trace record, including the use of the
second parameter of the QS_BEGIN () macro.

NOTE

If you don’t want to use the local filter for a given application-specific trace record, you can
use NULL as the second argument to the macros QS_BEGIN () or QS_BEGIN_NOLOCK (). That
way, the trace record will always be produced, regardless of the setting of the application-
specific local filter.
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Sandwiched between the QS_BEGIN ()/QS_END () macros are data elements that you
want to store in the trace record. The macros for generating the data elements are shown
in Listing 11.3(17-23). The supported data elements include signed and unsigned
integers of 8-bit, 16-bit, and 32-bit size; floating-point numbers of 32-bit and 64-bit
size; zero-terminated strings; and variable-size memory blocks. Special macros are also
provided for inserting platform-dependent elements, such as event signals, object
pointers, and function pointers. For these configurable or platform-specific data
elements, QS logs only the minimal number of bytes required on the given platform.

Rec Time 7

D stamp e | 1 o \0 n

I T I
QS_TIME_SIZE QS_STR(“Hello”); QS_U8(3, n)

MY_QS_RECORD
L’ . buf | buf | buf
size

[o1 | [11 | [2]

T
QS_MEM(buf, sizeof(buf))

Figure 11.5: Encoding of the application-specific trace record from Listing 11.10
(escaping bytes are omitted for clarity).

The biggest challenge in supporting arbitrary trace records is that the host-resident
component (the QSPY application) doesn’t “know” the structure of such records, so the
data type information must be stored with the data itself. Figure 11.5 shows the
encoding of the application-specific trace record from Listing 11.10. The application-
specific trace record, like all QS records, starts with the Sequence Number and the
Record ID (see Section 11.3.6). Every application-specific trace record also contains the
timestamp immediately following the Record ID. The number of bytes used by the
timestamp is configurable by the macro QS_TIME_SIZE. After the timestamp, you see
the data elements, such as the “Hello” string, an unsigned byte ‘n,” some other data, and
finally a memory block. Each of these data elements starts with a format byte, which
actually contains both the data-type information (in the lower nibble) and the format
width for displaying that element (in the upper nibble). For example, the data element
Q0S_U8 (3, n) will cause the value ‘n’ to be encoded as uint8_t with the format width
of 3 decimal digits. The maximum allowed format width is 15 decimal digits.
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As shown in Listing 11.10, you can place many data elements of any kind in any order
inside an application-specific record. The only limitation is that a complete record
must fit in the QS trace buffer. Of course, you should avoid big trace records anyway, to
keep the critical sections short (QS records are always placed in the buffer in a
critical section of code). Furthermore, you might want to conserve the buffer space.

11.3.10 Porting and Configuring QS

When you use QS in your application, you are responsible for adapting QS to the CPU,
compiler, and kernel/RTOS of your choice. Such adaptation is called a port.

The code accompanying this book contains the QS ports and application examples

for 80x86 (vanilla, QK, uC/OS-II, and Linux) as well as for Cortex-M3 (vanilla

and QK kernels).

The source code for a QS port is organized in the same way as any other port of a QP
component, as described in Chapter 8. The QS platform-specific code consists only
of gs_port.h and QS callback functions defined typically in the board support
package (bsp.c) of your application. Listing 11.11 shows an example of the
gs_port.h header file for 80x86, QK/DOS, large memory model. Section 11.6
provides examples of the QS callback functions such as QS_onStartup (),
QS_onCleanup (), QS_onFlush(), and QS_onGetTime ().

Listing 11.11 QS port header file for 80x86, QK/DOS, large memory model
(<ap>\gpc\ports\80x86\gk\tcppl01\1l\gs_port.h)

#ifndef gs_port_h
#define gs_port_h

(1) #define QS_OBJ_PTR_SIZE 4

(2) #define QS_FUN_PTR_SIZE 4

(3) #define QS_TIME_SIZE 4

(4) #include "gf_port.h" /* use QS with QF */

(5) #include "gs.h" /* QS platform-independent public interface */
#endif /* gs_port_h */

(1) The macro QS_0OBJ_PTR_SIZE specifies the size (in bytes) of an object pointer on
the particular platform.
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(2) The macro QS_FUN_PTR_SIZE specifies the size (in bytes) of a function pointer
on the particular platform.

(3) The macro QS_TIME_SIZE configures the size (in bytes) of the QS time stamp
QSTimeCtr (see also Listing 11.3(43)).

(4) The QF port header file gf_port.h is included if QS is used together with the QF
real-time framework.

NOTE

When QS is combined with QF, the QS critical section is the same as it is defined in the
gf_port.h header file. However, QS can also be used with just the QEP component, or
even completely standalone. In these cases, QS must provide its own, independent critical
section mechanism by defining the macros QS_INT KEY TYPE, QS_INT LOCK(), and
QS_INT_UNLOCK () (see Section 11.3.3).

(5) The platform-independent gs . h header file must always be included in the
gs_port .h header file.

11.4 The QSPY Host Application

As described in Section 11.2, the host-resident component for the Quantum Spy
software-tracing system is the QSPY host application. QSPY is a simple console
application without any fancy GUI because its purpose is to provide only the QS data
parsing, storing, and exporting to such powerful tools as MATLAB. QSPY has been
designed from the ground up to be platform-neutral. The application is written in
portable C++ and ports to Linux and Windows with various compilers are provided.

QSPY is easily adaptable to various target-host communication links. Out of the box,
the QSPY host application supports serial (RS232), TCP/IP, and file communication
links. Adding other communication links is easy because the data link is accessed only
through a generic hardware abstraction layer (HAL).

The QSPY application accepts several command-line parameters to configure the data
link and all target dependencies, such as pointer sizes, signal sizes, and the like. This
means that the single QSPY host application can process data from any embedded
target. The application has been tested with a wide range of 8-, 16-, or 32-bit CPUs.
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QSPY provides a simple consolidated, human-readable textual output to the screen. If
the QS trace data contains dictionary trace records (see Section 11.3.8), QSPY applies
this symbolic information to output the provided identifiers for objects, signals, and

states. Otherwise, QSPY outputs the hexadecimal values of various pointers and signals.

Finally, QSPY can export the trace data in the matrix format readable by MATLAB.
A special MATLAB script to import QSPY trace data to MATLAB is provided. Once
the data is available in MATLAB matrices, it can be conveniently manipulated and
visualized with this powerful tool.

QSPY comes with a Reference Manual in electronic format (see Section 11.6.6), which
contains detailed explanations of all command-line options, the human-readable format,
and the MATLAB interface.

11.4.1 Installing QSPY

The QSPY host application is included in the code accompanying this book in the
directory <gp>\gpc\tools\gspy\ (for QP/C) and also in <gp>\gpcpp\tools\
aspy\ (for QP/C++). The two versions are actually identical except that QSPY for QP/
C includes the C-version of the gs . h header file, whereas the QP/C++ version includes
the C++ version of gs.h. Listing 11.12 shows the contents of the QP Root Directory
after the installation of QS component.

NOTE

The QSPY host application includes the header file <gp>\gpc\include\gs.h. The gs.h
header file provides the link between the QS target-resident component and the QSPY
host-resident component.

Listing 11.12 Source code organization for the QSPY host application

<gp>\gpc\ - QP/C root directory (<gp>\gpcpp for QP/C++)
+-doxygen\ - QP/C documentation generated with Doxygen
| +-html\ - "QP/C Reference Manual" in HTML format
| +-index.html - The starting HTML page for the "QP/C Reference Manual"

|

[ ] (contains the "QSPY Reference Manual")
[+ ..

| +-gpc.chm - "QP/C Reference Manual" in CHM Help format
| (contains the "QSPY Reference Manual")
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include/

+—

gs.h

+-dict.h

+-hal.h

+-tcp.cpp

+-dpp . spy

+-philo_timing.m - example MATLAB script to generate timing diagrams

QP platform-independent header files
0S platform-independent header file (used by QSPY)

Tools directory

QSPY host application
platform-independent include
dictionary class header file
command-line option parser
Hardware Abstraction Layer header file
QSPY parser header file
platform-independent sources (C++)
dictionary class implementation
command-1line option parser

main () entry point

QSpy parser

Linux version of QSPY

GNU compiler

debug build directory

release build directory

serial port HAL for Linux

TCP/IP port HAL for Linux

make file to build QSPY for Linux

Win32 (Windows) version of QSPY
MinGW compiler (GNU)

debug build directory

release build directory

— QSPY executable

serial port HAL for Win32

TCP/IP port HAL for Win32

Simple batch script to build QSPY

Visual C++ 2005 toolset

debug build directory

release build directory

- QSPY executable

serial port HAL for Win32

TCP/IP port HAL for Win32

Visual C++ Solution to build QSPY for Win32

MATLAB scripts
MATLAB script to import the QS data into MATLAB

Example of a QS binary file from DPP application

for the DPP example
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11.4.2 Building QSPY Application from Sources

The QSPY source code is written in portable C++, with ports to Windows and Linux
already provided (see Listing 11.12). Note that the QSPY host application is coupled
with the QS target component through the header file <gp>\gpc\include\gs.h,
which enumerates the predefined QS records.

Building QSPY for Windows with Visual C++ 2005

The Win32 executable of the QSPY application is provided in the file <gp>\gpc\
tools\gspy\win32\vc2005\Release\gspy.exe. This executable should run on
any version of 32-bit Windows.

If you want to rebuild the application, the directory <gp>\gpc\tools\gspy\win32\
vc2005\ contains the Microsoft Visual C++ 2005 solution file gspy.s1n to build
the QSPY application. You simply load the solution file to the Visual C++ 2005 IDE
and start the build by pressing F7.

Building QSPY for Windows with MinGW

Alternatively, you can use the open source MinGW (Minimalist GNU for Windows)
toolset available from www.mingw.org to build the QSPY executable. The directory
<gp>\gpc\tools\gspy\win32\mingw\ contains a simple batch file make.bat

to build the QSPY application. You probably need to modify the definition of the
MINGW symbol at the top of the batch file to point it to the location where you
installed the MinGW toolset. By default, make.bat produces the debug version of
the application in the directory <gp>\gpc\tools\gspy\win32\mingw\dbg\.

To produce the release version, add the ‘rel’ parameter to the make.bat script
(make rel). The release version is produced in the release directory: <gp>\gpc\
tools\gspy\win32\mingw\rel\.

Building QSPY for Linux

The directory <gp>\gpc\tools\gspy\linux\gnu\ contains the Makefile for
building QSPY for Linux. By default, the Makefile produces the debug version of the
application in the directory <gp>\gpc\tools\gspy\linux\gnu\dbg\. To produce
the release version, add the ‘rel’ target to the make (make rel). The release version is
produced in the release directory: <gp>\gpc\tools\gspy\linux\gnu\rel\.


http://www.mingw.org
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11.4.3

Invoking QSPY

The QSPY host application is designed to work with all possible target CPUs and data
links, which requires a wide range of configurability. For example, for any given
target CPU, the QSPY application must “know” the size of object pointers, function
pointers, event signals, timestamp size, and so on. You provide this information to
QSPY by means of command-line parameters, which are summarized in Table 11.3
and also in the “QSPY Reference Manual” (see Section 11.6.6). Note that the options
are case sensitive.

Table 11.3: Summary of QSpy command-line options

Must Match QP Macro

Option Example Default (QP Port Header File) Comments

-h -h Help; prints the summary
of options

-q -q Quiet mode (no stdout
output)

-0 -0 gs.txt Produces output to the
specified file

-s -s gs.spy Saves the binary input to
the specified file; not
compatible with -f

-m -m gs.mat Generates MATLAB
output to the specified
file

-c -c COM2 com1 COM port selection; not
compatible with -t, -p, -f

-b -b 115200 38400 Baud rate selection; not
compatible with -t, -p, -f

-t -t TCP/IP input selection;
not compatible with -c,
-b, -f

-p -p 6602 6601 TCP/IP server port

number; not compatible
with —c, -b, -f

Continued onto next page
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Table 11.3: Summary of QSpy command-line options—Cont’d

Must Match QP Macro
Option Example Default (QP Port Header File) Comments
-f -f gs.spy File input selection; not
compatible with -c, -b, -t,
P
-T -T2 4 QS_TIME_SIZE Time stamp size in bytes;
(gs_port.h) valid values: 1, 2, 4
-O -0 2 4 QS_OBJ_PTR_SIZE Object pointer size in
(gs_port.h) bytes; valid values: 1, 2, 4
-F -F2 4 QS_FUN_PTR_SIZE Function pointer size in
(gs_port.h) bytes; valid values: 1, 2, 4
-S S2 1 Q_SIGNAL_SIZE Signal size in bytes; valid
(qep_port.h) values: 1, 2, 4
-E -E 1 2 QF_EVENT_SIZ_SIZE Event-size size in bytes
(gf_port.h) (i.e., the size of variables
that hold event size);
valid values: 1, 2, 4
-Q -Q1 2 QF_EQUEUE_CTR_SIZE Queue counter size in
(gf_port.h) bytes; valid values 1, 2, 4
-P -P 4 2 QF_MPOOL_CTR_SIZE Pool counter size in
(gf_port.h) bytes; valid values: 1, 2, 4
-B -B 1 2 QF_MPOOL_SIZ_SIZE Block size size in bytes
(gf_port.h) (i.e., the size of variables
that hold memory block
size); valid values 1, 2, 4
-C -C4 2 QF_TIMEEVT_CTR_SIZE Time event counter size;
(qf_port.h) valid values: 1, 2, 4

Your main concern when invoking QSPY is to match exactly the target system you are
using. The fourth column of Table 11.3 lists the configuration macros used by the
target system as well as the platform-specific QP header files where those macros are
defined. You need to use the corresponding QSPY command-line option only when
the QP macro differs from the default. The default values assumed by QSPY are
consistent with the defaults used in QP.
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NOTE

When you do not match the QSPY host application with the QS target component, the QSPY
application will be unable to correctly parse the mismatched trace records and will start gen-
erating the following errors:

FAKKxxxxkA% 028: Error xx bytes unparsed

Frxxxxxxx% 014 Error -yy bytes unparsed

The number in front of the error indicates the Record ID of the trace record that could not be
parsed.

11.5 Exporting Trace Data to MATLAB

The QSPY host application can also export trace data to MATLAB, which is a popular
numerical computing environment and a high-level technical programming language.
Created by The MathWorks, Inc., MATLAB allows easy manipulation and plotting of
data represented as matrices.

Figure 11.6 summarizes the interface between the QSPY host application and
MATLAB. The interface consists of the QSPY MATLAB output file, the gspy .m
MATLAB script, and MATLAB matrices generated by the script in the current
MATLAB workspace. The following sections explain these elements.

Target
instrumented MATLAB
with QS
MAT
l QsPY QsP :
s =P VAT —p qspy.m = b m:t::l
icati output
application P works

Figure 11.6: Exporting trace data to MATLAB.

11.5.1 Analyzing Trace Data with MATLAB

When you invoke QSPY with the -m <file name> option, the QSPY application
generates a MATLAB-readable file of the specified name in addition to the human-
readable format discussed in the previous section.
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The MATLAB output file is an ASCII file that contains all the trace records formatted
for MATLAB. However, the various trace records in the MATLAB file are still in
the same order as they were produced in the target and don’t yet form proper MATLAB
matrices, which are the most natural way of representing data within MATLAB.

You can find an example of a QSPY MATLAB output in the file <gp>\gpc\
examples\80x86\gk\tcpplO0l\1\dpp\dpp.mat.

The directory <gp>\gpc\tools\gspy\matlab\ contains the MATLAB script
aspy .m, which reads in the QSPY MATLAB file and converts the data into several
MATLAB matrices in the current workspace. Assuming that the directory <gp>\gpc\
tools\gspy\matlab\ is included in the MATLAB path, you invoke the script
from the MATLAB command window as follows:

Q_FILE='<gp>\gpc\examples\80x86\gk\tcppl0l\1l\dpp\dpp.mat’; dspy

The variable Q_FILE is set to the file name of the QSPY MATLAB file. Note that

the gspy . m script is intentionally not a MATLAB function because its main purpose is to
fill the current workspace with matrices that remain after the script is done, which is not
possible with a function that runs in a separate temporary workspace.

At this point you have all the data conveniently represented in MATLAB matrices. After
filling in the matrices, the gspy .m script executes the ‘whos’ command to show the
created objects. The matrices with the prefix Q_ contain the time-ordered trace data. All
MATLAB matrices are documented in the “QSPY Reference Manual,” which is
available in electronic format in the code accompanying this book (see Section 11.6.6).

Just to demonstrate what you can do with the data, the Figure 11.7 shows the timing
diagrams for all Philosopher state machines in the DPP application.

The plots shown in Figure 11.7 have been generated by running the script philo_timing.m
provided in the <gp>\gpc\tools\gspy\matlab\ directory. Assuming that this
directory is in the MATLAB path, you simply type the script’s name at the MATLAB prompt:

» philo_timing

The philo_timing.m script displays the data from the MATLAB matrix Q_STATE,
which you generated by running the gspy . m script. The Q_STATE matrix contains all the
state machine information. Section 11.5.4 explains how this plot has been generated.
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Figure 11.7: MATLAB plot showing timing diagrams of the five Philosophers
generated from the QS trace data. The vertical axis represents states “thinking”
(lowest), “hungry” (middle), and “eating” (top).

11.5.2 MATLAB Output File

The QSPY MATLARB file is in ASCII format and Listing 11.13 shows a snippet of the
QSPY MATLAB file generated from the DPP application (see also Section 11.2.1).

Listing 11.13 Fragment of the QSPY MATLAB file for the DPP application

62 Philo_initial= 308543675;
62 Philo_thinking= 308544589;
62 Philo_hungry= 308544835;
62 Philo_eating= 308545073;

60 HUNGRY_SIG=[ 8 382343546];
60 TIMEOUT_SIG=[ 10 382343546];
12 0 4 382343546

3 382343546 337510406 308544589
50 0 64 64
51 0 64 64

Continued onto next page
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32 0 382343694 382343546 9 0
1 382343546 308544589
4 0 382343546 308544589
33 382344192 382344044
37 528197 382344192 10 382344044
14 528208 10 382344044 0 0 5 5
33 382343860 382343712
37 528222 382343860 10 382343712
14 528234 10 382343712 0 0 5 5
42 528249 1 255
17 528262 10 382344044 0 0
28 528276 3 8
24 528287 382343384 9 9
14 528299 8 382344376 1 0 5 5
17 528312 8 382344376 1 1
28 528333 3 4
24 528343 382343384 8 8
26 528355 4 1
14 528367 4 382344210 1 1 5 5
14 528379 4 382344044 1 2 5 5
14 528391 4 382343878 1 3 5 5
14 528403 4 382343712 1 4 5 5
14 528415 4 382343546 1 5 5 5

The QSPY MATLARB file is stored in portable ASCII format for cross-platform
portability, but is really not intended to be human-readable. The purpose of Listing 11.13
is simply to demonstrate that the data is mostly numerical, with the only exception of
the “dictionary” entries, which actually are stored as MATLAB commands.

The MATLAB output file shown in Listing 11.13 contains all the trace records
formatted for MATLAB. However, the various records at this stage are still in the same
order as they were produced in the target and don’t yet form proper MATLAB matrices,
which are the most natural way of representing data within MATLAB.

11.5.3 MATLAB Script gspy .m

The MATLAB script gspy . m, located in the directory <gp>\agpc\tools\gspy\
matlab\, is designed to read the QSPY MATLAB file and sort the different records
into various MATLAB matrices for subsequent analysis. In Section 11.5.1, I described
how to invoke the script from MATLAB. Here I discuss the gspy . m script itself,
which is shown in Listing 11.14.
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Listing 11.14 Script gspy .m for Importing QSPY trace data to MATLAB

(1) % the string Q _FILE must be defined
(2) fid = fopen(Q_FILE, 'r’);

if fid == -1
(3) error (’file not found’)

end

(4) Q_STATE = sateentry/exit, init, tran, internal tran, ignored

o° oP

Q_EQUEUE = ; QEQueue

Q_MPOOL = ; % QMPool

Q_NEW = ; $ new/gc

Q_ACTIVE = ; % active add/remove, subscribe/unsubscribe
Q_PUB = ; publish/publish attempt

Q_TIME = ; time event arm/disarm/rearm, clock tick

O_INT LOCK =
Q_ISR_LOCK =

oe

interrupt locking/unlocking
ISR entry/exit

e T R R R
P
o o

o° 0P o°

Q_MUTEX = ; QK mutex locking/unlocking
Q_SCHED = ; % QK scheduler events
Q_TOT = 0; % total number of records processed

(5) while feof (fid) ==
line = fgetl (£id) ;
Q_TOT = Q_TOT+1;

(6) rec = gsscanf(line, '%d’, 1); % extract the record type
(7) switch rec % discriminate based on the record type

% QEP trace records

(8) case 1 % QS_QEP_STATE_ENTRY
Q_STATE(size(Q_STATE,1)+1,:) = ...
[NaN 1 sscanf(line, "$*u%u%u’)’' NaN 1];

case 2 % QS_QEP_STATE_EXIT
Q_STATE (size(Q_STATE,1)+1,:) = ...
[NaN 2 sscanf (line, "%$*u %$u %u’)’' NaN 1] ;

case 3 % OS_QEP_STATE_INIT
Q_STATE(size(Q_STATE,1)+1,:) = ...
[NaN 3 sscanf (line, "%$*u %u %u %u’)’ 11;

case 4 % QS_QEP_INIT_TRAN
tmp = sscanf(line, '%$*u %u %u %u’) ’;
Q_STATE (size(Q_STATE,1)+1,:) = ...

Continued onto next page
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[tmp (1) 3 tmp(2) NaN tmp(3) 17;
case 5 % QS_QEP_INTERN_TRAN
Q_STATE(size(Q_STATE,1)+1,:) = ...
[sscanf (line, ’"%*u %u %u %u %u’)’ NaN 1];
case 6 % QS_QEP_TRAN
Q_STATE(size(Q_STATE,1)+1,:) = ...
[sscanf (line, ’‘%*u %u %u %u %u’)’ 11;
case 7 % QS_QEP_IGNORED
Q_STATE (size (Q_STATE,1)+1,:) = ...
[sscanf (line, ’"%*u %u %u %u %u’)’ NaN 0] ;
% QF trace records
case 10 % QS_QF_ACTIVE_ADD
tmp = sscanf (line,’%$*u %u %u %u %u’) ’;
Q_ACTIVE (size(Q_ACTIVE,1)+1,:) =[tmp(1l) NaNtmp(2) tmp(3) 171;
% Miscallaneous QS records
case 60 % QS_SIG_DICTIONARY
eval (line(5:end)) ;
case 61 % QS_OBJ_DICTIONARY
eval (line(5:end)) ;
case 62 % QS_FUN_DICTIONARY
eval (line(5:end)) ;
% User records
(9) %
end
end
% cleanup ...
(10) fclose(fid);
clear fid;
clear line;
clear rec;
clear tmp;
% display status info