

Preface
To create a usable piece of software, you have to fight for every fix, every feature, every little
accommodation that will get one more person up the curve. There are no shortcuts. Luck is involved, but
you don’t win by being lucky, it happens because you fought for every inch.
—Dave Winer

For many years, I had been looking for a book or a magazine article that would describe

a truly practical way of coding modern state machines (UML1 statecharts) in a

mainstream programming language such as C or C++. I have never found such a

technique.

In 2002, I wrote Practical Statecharts in C/C++: Quantum Programming for

Embedded Systems (PSiCC), which was the first book to provide what had been missing

thus far: a compact, efficient, and highly maintainable implementation of UML state

machines in C and C++ with full support for hierarchical nesting of states. PSiCC was

also the first book to offer complete C and C++ source code of a generic, state machine-

based, real-time application framework for embedded systems.

To my delight, PSiCC continues to be one of the most popular books about

statecharts and event-driven programming for embedded systems. Within a year of

its publication, PSiCC was translated into Chinese, and a year later into Korean.

I’ve received and answered literally thousands of e-mails from readers who successfully

used the published code in consumer, medical, industrial, wireless, networking,

research, defense, robotics, automotive, space exploration, and many other

applications worldwide. In 2003 I started to speak about the subject matter at
1 UML stands for Unified Modeling Language and is the trademark of Object Management Group.

www.newnespress.com

xviii Preface
the Embedded Systems Conferences on both U.S. coasts. I also began to consult to

companies. All this gave me additional numerous opportunities to find out firsthand

how engineers actually use the published design techniques in a wide range of

application areas.

What you’re holding in your hands is the second edition of PSiCC. It is the direct result

of the plentiful feedback I’ve received as well as five years of the “massive parallel

testing” and scrutiny that has occurred in the trenches.
What’s New in the Second Edition?

As promised in the first edition of PSiCC, I continued to advance the code and refine

the design techniques. This completely revised second edition incorporates these

advancements as well the numerous lessons learned from readers.
New Code

First of all, this book presents an entirely new version of the software, which is now

called Quantum Platform (QP) and includes the hierarchical event processor (QEP) and

the real-time framework (QF) as well as two new components. QP underwent several

quantum leaps of improvement since the first publication six years ago. The

enhancements introduced since the first edition of PSiCC are too numerous to list here,

but the general areas of improvements include greater efficiency and testability and

better portability across different processors, compilers, and operating systems. The two

new QP components are the lightweight, preemptive, real-time kernel (QK) described

in Chapter 10 and the software-tracing instrumentation (QS) covered in Chapter 11.

Finally, I’m quite excited about the entirely new, ultralight, reduced-feature version of

QP called QP-nano that scales the approach down to the lowest-end 8- and 16-bit

MCUs. I describe QP-nano in Chapter 12.
Open Source and Dual Licensing

In 2004, I decided to release the entire QP code as open source under the terms of the

GNU General Public License (GPL) version 2, as published by the Free Software

Foundation. Independent of the open-source licensing, the QP source code is also

available under the terms of traditional commercial licenses, which expressly supersede

the GPL and are specifically designed for users interested in retaining the proprietary
www.newnespress.com

xixPreface
status of their applications based on QP. This increasingly popular strategy of

combining open source with commercial licensing, called dual licensing, is explained

in more detail in Appendix A.
C as the Primary Language of Exposition

Most of the code samples in the first edition of PSiCC pertained to the C++

implementation. However, as I found out in the field, many embedded software

developers come from a hardware background (mostly EE) and are often unnecessarily

intimidated by C++.

In this edition, I decided to exactly reverse the roles of C and C++. As before, the

companion Website contains the complete source code for both C and C++ versions.

But now, most of the code examples in the text refer to the C version, and the C++ code

is discussed only when the differences between it and the C implementation become

nontrivial and important.

As far as the C source code is concerned, I no longer use the C+ object-oriented

extension that I’ve applied and documented in the first edition. The code is still

compatible with C+, but the C+ macros are not used.
More Examples

Compared to the first edition, this book presents more examples of event-driven

systems and the examples are more complete. I made a significant effort to come up

with examples that are not utterly trivial yet don’t obscure the general principles in too

many details. I also chose examples that don’t require any specific domain knowledge,

so I don’t need to waste space and your attention explaining the problem specification.
Preemptive Multitasking Support

An event-driven infrastructure such as QP can work with a variety of concurrency

mechanisms, from a simple “superloop” to fully preemptive, priority-based

multitasking. The previous version of QP supported the simple nonpreemptive

scheduling natively but required an external RTOS to provide preemptive multitasking,

if such capability was required.

In Chapter 10, I describe the new real-time kernel (QK) component that provides

deterministic, fully preemptive, priority-based multitasking to QP. QK is a very special,
www.newnespress.com

xx Preface
super-simple, run-to-completion, single-stack kernel that perfectly matches the

universally assumed run-to-completion semantics required for state machine execution.
Testing Support

A running application built of concurrently executing state machines is a highly

structured affair where all important system interactions funnel through the event-

driven framework that ties all the state machines together. By instrumenting just this

tiny “funnel” code, you can gain unprecedented insight into the live system. In fact, the

software trace data from an instrumented event-driven framework can tell you much

more about the application than any traditional real-time operating system (RTOS)

because the framework “knows” so much more about the application.

Chapter 11 describes the new QS (“spy”) component that provides a comprehensive

software-tracing instrumentation to the QP event-driven platform. The trace data

produced by the QS component allows you to perform a live analysis of your running

real-time embedded system with minimal target system resources and without stopping

or significantly slowing down the code. Among other things, you can reconstruct

complete sequence diagrams and detailed, timestamped state machine activities for all

active objects in the system. You can monitor all event exchanges, event queues,

event pools, time events (timers), and preemptions and context switches. You can also

use QS to add your own instrumentation to the application-level code.
Ultra-Lightweight QP-nano Version

The event-driven approach with state machines scales down better than any

conventional real-time kernel or RTOS. To address really small embedded systems, a

reduced QP version called QP-nano implements a subset of features supported in QP/C

or QP/C++. QP-nano has been specifically designed to enable event-driven

programming with hierarchical state machines on low-end 8- and 16-bit

microcontrollers (MCUs), such as AVR, MSP430, 8051, PICmicro, 68HC(S)08, M16C,

and many others. Typically, QP-nano requires around 1-2KB of ROM and just a few

bytes of RAM per state machine. I describe QP-nano in Chapter 12.
Removed Quantum Metaphor

In the first edition of PSiCC, I proposed a quantum-mechanical metaphor as a way of

thinking about the event-driven software systems. Though I still believe that this
www.newnespress.com

xxiPreface
analogy is remarkably accurate, it hasn’t particularly caught on with readers, even

though providing such a metaphor is one of the key practices of eXtreme Programming

(XP) and other agile methods.

Respecting readers’ feedback, I decided to remove the quantum metaphor from this

edition. For historical reasons, the word quantum still appears in the names of the

software components, and the prefix Q is consistently used in the code for type and

function names to clearly distinguish the QP code from other code, but you don’t need

to read anything into these names.
What You Need to Use QP

Most of the code supplied with this book is highly portable C or C++, independent

of any particular CPU, operating system, or compiler. However, to focus the discussion

I provide executable examples that run in a DOS console under any variant of

Windows. I’ve chosen the legacy 16-bit DOS as a demonstration platform because it

allows programming a standard x86-based PC at the bare-metal level. Without leaving

your desktop, you can work with interrupts, directly manipulate CPU registers, and

directly access the I/O space. No other modern 32-bit development environment for the

standard PC allows this much so easily.

The additional advantage of the legacy DOS platform is the availability of mature and

free tools. To that end, I have compiled the examples with the legacy Borland Turbo

C++ 1.01 toolset, which is available for a free download from Borland.

To demonstrate modern embedded systems programming with QP, I also provide

examples for the inexpensive2

source code as the DOS counterparts and differ only in the board support package

(BSP). The Cortex-M3 examples require the 32KB-limited KickStart edition of the IAR

EWARM toolset, which is included in the Stellaris kit and is also available for a free

download from IAR.

Finally, some examples in this book run on Linux as well as any other POSIX-

compliant operating system such as BSD, QNX, Mac OS X, or Solaris. You can also

build the Linux examples on Windows under Cygwin.

ARM Cortex-M3-based Stellaris EV-LM3S811

evaluation kit from Luminary Micro. The Cortex-M3 examples use the exact same
2 At the time of this writing, the EKI-LM3S811 kit was available for $49 (www.luminarymicro.com).

www.newnespress.com

http:// www.luminarymicro.com

xxii Preface
The companion Website to this book at www.quantum-leaps .com/psicc2 provides

the links for downloading all the tools used in the book, as well as other resources.

The Website also contains links to dozens of QP ports to various CPUs, operating

systems, and compilers. Keep checking this Website; new ports are added frequently.
Intended Audience

This book is intended for the following software developers interested in event-driven

programming and modern state machines:

� Embedded programmers and consultants will find a complete, ready-to-use,

event-driven infrastructure to develop applications. The book describes both

state machine coding strategies and, equally important, a compatible real-time

framework for executing concurrent state machines. These two elements are

synergistically complementary, and one cannot reach its full potential without

the other.

� Embedded developers looking for a real-time kernel or RTOS will find that the

QP event-driven platform can do everything one might expect from an RTOS

and that, in fact, QP actually contains a fully preemptive real-time kernel as

well as a simple cooperative scheduler.

� Designers of ultra low-power systems, such as wireless sensor networks, will

find how to scale down the event-driven, state machine-based approach to fit the

tiniest MCUs. The ultra-light QP-nano version (Chapter 12) combines a

hierarchical event processor, a real-time framework, and either a cooperative or

a fully preemptive kernel in just 1–2KB of ROM.

� On the opposite end of the complexity spectrum, designers of very large-scale,

massively parallel server applications will find that the event-driven approach

combined with hierarchical state machines scales up easily and is ideal for

managing very large numbers of stateful components, such as client sessions.

As it turns out, the “embedded” design philosophy of QP provides the critical

per-component efficiency both in time and space.

� The open-source community will find that QP complements other open-source

software, such as Linux or BSD. The QP port to Linux (and more generally to

POSIX-compliant operating systems) is described in Chapter 8.
www.newnespress.com

http://www.quantum-leaps.com/psicc2

xxiiiPreface
� GUI developers and computer game programmers using C or C++ will find that

QP very nicely complements GUI libraries. QP provides the high-level “screen

logic” based on hierarchical state machines, whereas the GUI libraries handle

low-level widgets and rendering of the images on the screen.

� System architects might find in QP a lightweight alternative to heavyweight

design automation tools.

� Users of design automation tools will gain deeper understanding of the inner

workings of their tools. The glimpse “under the hood” will help them use the

tools more efficiently and with greater confidence.

Due to the code-centric approach, this book will primarily appeal to software

developers tasked with creating actual, working code, as opposed to just modeling.

Many books about UML already do a good job of describing model-driven analysis

and design as well as related issues, such as software development processes and

modeling tools.

This book does not provide yet another CASE tool. Instead, this book is about practical,

manual coding techniques for hierarchical state machines and about combining state

machines into robust event-driven systems by means of a real-time framework.

To benefit from the book, you should be reasonably proficient in C or C++ and have a

general understanding of computer architectures. I am not assuming that you have

prior knowledge of UML state machines, and I introduce the underlying concepts in

a crash course in Chapter 2. I also introduce the basic real-time concepts of

multitasking, mutual exclusion, and blocking in Chapter 6.
The Companion Websites

This book has a companion Website at www.quantum-leaps.com/psicc2 that

contains the following information:

� Source code downloads for QP/C, QP/C++, and QP-nano

� All QP ports and examples described in the book

� Reference manuals for QP/C, QP/C++, and QP-nano in HTML and CHM file

formats

� Links for downloading compilers and other tools used in the book
www.newnespress.com

http://www.quantum-leaps.com/psicc2

xxiv Preface
� Selected reviews and reader feedback

� Errata

Additionally, the Quantum Leaps Website at www.quantum-leaps.com has been

supporting the QP user community since the publication of the first edition of PSiCC in

2002. This Website offers the following resources:

� Latest QP downloads

� QP ports and development kits

� Programmer manuals

� Application notes

� Resources and goodies such as Visio stencils for drawing UML diagrams,

design patterns, links to related books and articles, and more

� Commercial licensing and technical support information

� Consulting and training in the technology

� News and events

� Discussion forum

� Newsletter

� Blog

� Links to related Websites

� And more

Finally, QP is also present on SourceForge.net—the world’s largest repository of open

source code and applications. The QP project is located at https://sourceforge.

net/projects/qpc/.
www.newnespress.com

http://www.quantum-leaps.com
http://sourceforge.net/projects/qpc/
http://sourceforge.net/projects/qpc/

Acknowledgments
First and foremost, I’d like to thank my wonderful family for the unfading support over

the years of creating the software and the two editions of this book.

I would also like to thank the team at Elsevier, which includes Rachel Roumeliotis and

Heather Scherer, and John (Jay) Donahue.

Finally, I’m grateful to all the software developers who contacted me with thought-

provoking questions, bug reports, and countless suggestions for improvements in the

code and documentation. As a rule, a software system only gets better if it is used and

scrutinized by many people in many different real-life projects.
www.newnespress.com

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright # 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights

Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,

E-m ail: permi ssions@el sevier. com. You may also com plete your reque st online

via the Else vier homepage (http://el sevier. com), by selecting “Suppor t & Contact”

then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-7506-8706-5

For information on all Newnes publications

visit our Web site at www.elsevierdirect.com

08 09 10 11 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

http://elsevier.com
http://www.elsevierdirect.com
mailto:permissions@elsevier.com

Introduction
Almost all computer systems in general, and embedded systems in particular, are event-

driven, which means that they continuously wait for the occurrence of some external or

internal event such as a time tick, an arrival of a data packet, a button press, or a mouse click.

After recognizing the event, such systems react by performing the appropriate computation

that may include manipulating the hardware or generating “soft” events that trigger other

internal software components. (That’s why event-driven systems are alternatively called

reactive systems.) Once the event handling is complete, the software goes back to waiting for

the next event.

You are undoubtedly accustomed to the basic sequential control, in which a program

waits for events in various places in its execution path by either actively polling for

events or passively blocking on a semaphore or other such operating system

mechanism. Though this approach to programming event-driven systems is functional

in many situations, it doesn’t work very well when there are multiple possible

sources of events whose arrival times and order you cannot predict and where it is

important to handle the events in a timely manner. The problem is that while a

sequential program is waiting for one kind of event, it is not doing any other work and

is not responsive to other events.

Clearly, what we need is a program structure that can respond to a multitude of possible

events, any of which can arrive at unpredictable times and in an unpredictable sequence.

Though this problem is very common in embedded systems such as home appliances,

cell phones, industrial controllers, medical devices and many others, it is also very

common in modern desktop computers. Think about using a Web browser, a word

processor, or a spreadsheet. Most of these programs have a modern graphical user

interface (GUI), which is clearly capable of handling multiple events. All developers of
www.newnespress.com

xxviii Introduction
modernGUI systems, andmany embedded applications, have adopted a common program

structure that elegantly solves the problem of dealing with many asynchronous events

in a timely manner. This program structure is generally called event-driven programming.
Inversion of Control

Event-driven programming requires a distinctly different way of thinking than

conventional sequential programs, such as “superloops” or tasks in a traditional RTOS.

Most modern event-driven systems are structured according to the Hollywood principle,

which means “Don’t call us, we’ll call you.” So an event-driven program is not in

control while waiting for an event; in fact, it’s not even active. Only once the event

arrives, the program is called to process the event and then it quickly relinquishes the

control again. This arrangement allows an event-driven system to wait for many events

in parallel, so the system remains responsive to all events it needs to handle.

This scheme has three important consequences. First, it implies that an event-driven

system is naturally divided into the application, which actually handles the events,

and the supervisory event-driven infrastructure, which waits for events and dispatches

them to the application. Second, the control resides in the event-driven infrastructure, so

from the application standpoint the control is inverted compared to a traditional

sequential program. And third, the event-driven application must return control after

handling each event, so the execution context cannot be preserved in the stack-based

variables and the program counter as it is in a sequential program. Instead, the

event-driven application becomes a state machine, or actually a set of collaborating

state machines that preserve the context from one event to the next in the

static variables.
The Importance of the Event-Driven Framework

The inversion of control, so typical in all event-driven systems, gives the event-driven

infrastructure all the defining characteristics of an application framework rather than

a toolkit. When you use a toolkit, such as a traditional operating system or an RTOS, you

write the main body of the application and call the toolkit code that you want to reuse.

When you use a framework, you reuse the main body and write the code it calls.

Another important point is that an event-driven framework is actually necessary if you

want to combine multiple event-driven state machines into systems. It really takes more

than “just” an API, such as a traditional RTOS, to execute concurrent state machines.
www.newnespress.com

xxixIntroduction
State machines require an infrastructure (framework) that provides, at a minimum,

run-to-completion (RTC) execution context for each state machine, queuing of events,

and event-based timing services. This is really the pivotal point. State machines cannot

operate in a vacuum and are not really practical without an event-driven framework.
Active Object Computing Model

This book brings together two most effective techniques of decomposing event-driven

systems: hierarchical state machines and an event-driven framework. The combination

of these two elements is known as the active object computing model. The term active

object comes from the UML and denotes an autonomous object engaging other

active objects asynchronously via events. The UML further proposes the UML variant

of statecharts with which to model the behavior of event-driven active objects.

In this book, active objects are implemented by means of the event-driven framework

called QF, which is the main component of the QP event-driven platform. The QF

framework orderly executes active objects and handles all the details of thread-safe

event exchange and processing within active objects. QF guarantees the universally

assumed RTC semantics of state machine execution, by queuing events and dispatching

them sequentially (one at a time) to the internal state machines of active objects.

The fundamental concepts of hierarchical state machines combined with an event-

driven framework are not new. In fact, they have been in widespread use for at least two

decades. Virtually all commercially successful design automation tools on the market

today are based on hierarchical state machines (statecharts) and incorporate internally a

variant of an event-driven, real-time framework similar to QF.
The Code-Centric Approach

The approach I assume in this book is code-centric, minimalist, and low-level. This

characterization is not pejorative; it simply means that you’ll learn how to map

hierarchical state machines and active objects directly to C or C++ source code, without

big tools. The issue here is not a tool—the issue is understanding.

The modern design automation tools are truly powerful, but they are not for everyone.

For many developers the tool simply can’t pull its own weight and gets abandoned. For

such developers, the code-centric approach presented in this book can provide a

lightweight alternative to the heavyweight tools.
www.newnespress.com

xxx Introduction
Most important, though, no tool can replace conceptual understanding. For example,

determining which exit and entry actions fire in which sequence in a nontrivial state

transition is not something you should discover by running a tool-supported animation

of your state machine. The answer should come from your understanding of the

underlying state machine implementation (discussed in Chapters 3 and 4). Even if

you later decide to use a design automation tool and even if that particular tool would

use a different statechart implementation technique than discussed in this book, you

will still apply the concepts with greater confidence and more efficiency because of

your understanding of the fundamental mechanisms at a low level.

In spite of many pressures from existing users, I persisted in keeping the QP event-

driven platform lean by directly implementing only the essential elements of the bulky

UML specification and supporting the niceties as design patterns. Keeping the core

implementation small and simple has real benefits. Programmers can learn and deploy

QP quickly without large investments in tools and training. They can easily adapt

and customize the framework’s source code to the particular situation, including

to severely resource-constrained embedded systems. They can understand, and indeed

regularly use, all the provided features.
Focus on Real-Life Problems

You can’t just look at state machines and the event-driven framework as a collection of

features, because some of the features will make no sense in isolation. You can only use

these powerful concepts effectively if you are thinking about design, not simply coding.

And to understand state machines that way, you must understand the problems with

event-driven programming in general.

This book discusses event-driven programming problems, why they are problems,

and how state machines and active object computing model can help. Thus, I begin

most chapters with the programming problems the chapter will address. In this way,

I hope to move you, a little at a time, to the point where hierarchical state machines

and the event-driven framework become a much more natural way of solving the

problems than the traditional approaches such as deeply nested IFs and ELSEs for

coding stateful behavior or passing events via semaphores or event flags of a

traditional RTOS.
www.newnespress.com

xxxiIntroduction
Object Orientation

Even though I use C as the primary programming language, I also extensively use

object-oriented design principles. Like virtually all application frameworks, QP uses the

basic concepts of encapsulation (classes) and single inheritance as the primary

mechanisms of customizing, specializing, and extending the framework to a particular

application. Don’t worry if these concepts are new to you, especially in C. At the C

language level, encapsulation and inheritance become just simple coding idioms, which

I introduce in Chapter 1. I specifically avoid polymorphism in the C version

because implementing late binding in C is a little more involved. Of course, the C++

version uses classes and inheritance directly and QP/C++ applications can use

polymorphism.
More Fun

When you start using the techniques described in this book, your problems will change.

You will no longer struggle with 15 levels of convoluted if–else statements, and you

will stop worrying about semaphores or other such low-level RTOS mechanisms.

Instead, you’ll start thinking at a higher level of abstraction about state machines,

events, and active objects. After you experience this quantum leap you will find,

as I did, that programming can be much more fun. You will never want to go back to

the “spaghetti” code or the raw RTOS.
How to Contact Me

If you have comments or questions about this book, the code, or event-driven

programming in general, I’d be pleased to hear from you. Please e-mail me at

miro@quantum-leaps.com.
www.newnespress.com

http://miro@quantum-leaps.com
http://miro@quantum-leaps.com

www.CartoonStock.com
PART I UML STATE MACHINES

State machines are the best-known formalism for specifying and implementing event-

driven systems that must react to incoming events in a timely fashion. The advanced

UML state machines represent the current state of the art in state machine theory

and notation.

Part I of this book shows practical ways of using UML state machines in event-driven

applications to help you produce efficient and maintainable software with well-

understood behavior, rather than creating “spaghetti” code littered with convoluted IFs

and ELSEs. Chapter 1 presents an overview of the method based on a working example.
www.newnespress.com

2 Part I
Chapter 2 introduces state machine concepts and the UML notation. Chapter 3 shows

the standard techniques of coding state machines, and Chapter 4 describes a generic

hierarchical event processor. Part I concludes with Chapter 5, which presents a mini-

catalog of five state design patterns. You will learn that UML state machines are a

powerful design method that you can use, even without complex code-synthesizing

tools.
www.newnespress.com

www.new
CHAP T E R 1
Getting Started with UML State
Machines and Event-Driven

Programming
It is common sense to take a method and try it. If it fails, admit it frankly and try another. But above all,
try something.
—Franklin D. Roosevelt

This chapter presents an example project implemented entirely with UML state

machines and the event-driven paradigm. The example application is an interactive

“Fly ‘n’ Shoot”-type game, which I decided to include early in the book so that you can

start playing (literally) with the code as soon as possible. My aim in this chapter is

to show the essential elements of the method in a real, nontrivial program, but without

getting bogged down in details, rules, and exceptions. At this point, I am not trying

to be complete or even precise, although this example as well as all other examples in

the book is meant to show a good design and the recommended coding style. I don’t

assume that you know much about UML state machines, UML notation, or event-driven

programming. I will either briefly introduce the concepts, as needed, or refer you to

the later chapters of the book for more details.

The example “Fly ‘n’ Shoot” game is based on the Quickstart application provided in source

code with the Stellaris EV-LM3S811 evaluation kit from Luminary Micro [Luminary 06].

I was trying to make the “Fly ‘n’ Shoot” example behave quite similarly to the original

Luminary Micro Quickstart application so that you can directly compare the event-driven

approach with the traditional solution to essentially the same problem specification.
nespress.com

4 Chapter 1
1.1 Installing the Accompanying Code

The companion Website to this book at www.quantum-leaps.com/psicc2 contains the

self-extracting archive with the complete source code of the QP event-driven platform

and all executable examples described in this book; as well as documentation,

development tools, resources, and more. You can uncompress the archive into any

directory. The installation directory you choose will be referred henceforth as the QP

Root Directory <qp> .
NOTE

Although in the text I mostly concentrate on the C implementation, the accompanying Web-

site also contains the equivalent C++ version of virtually every element available in C. The

C++ code is organized in exactly the same directory tree as the corresponding C code, except

you need to look in the <qp>\qpcpp\. . . directory branch.
Specifically to the “Fly ‘n’ Shoot” example, the companion code contains two versions1

of the game. I provide a DOS version for the standard Windows-based PC (see

Figure 1.1) so that you don’t need any special embedded board to play the game and

experiment with the code.
NOTE

I’ve chosen the legacy 16-bit DOS platform because it allows programming a standard PC at

the bare-metal level. Without leaving your desktop, you can work with interrupts, directly

manipulate CPU registers, and directly access the I/O space. No other modern 32-bit devel-

opment environment for the standard PC allows this much so easily. The ubiquitous PC run-

ning under DOS (or a DOS console within any variant of Windows) is as close as it gets to

emulating embedded software development on the commodity 80x86 hardware. Addition-

ally, you can use free, mature tools, such as the Borland C/C++ compiler.
I also provide an embedded version for the inexpensive2 ARM Cortex-M3-based

Stellaris EV-LM3S811 evaluation kit (see Figure 1.2). Both the PC and Cortex-M3
1 The accompanying code actually contains many more versions of the “Fly ‘n’ Shoot” game, but they are

not relevant at this point.
2 At the time of this writing the EV-LM3S811 kit was available for $49 (www.luminarymicro.com).

www.newnespress.com

http://www.quantum-leaps.com/psicc2
http://www.luminarymicro.com

5Getting Started with UML State Machines and Event-Driven Programming
versions use the exact same source code for all application components and differ only

in the Board Support Package (BSP).

1.2 Let’s Play

The following description of the “Fly ‘n’ Shoot” game serves the dual purpose of

explaining how to play the game and as the problem specification for the purpose of

designing and implementing the software later in the chapter. To accomplish these two

goals I need to be quite detailed, so please bear with me.

Your objective in the game is to navigate a spaceship through an endless horizontal

tunnel with mines. Any collision with the tunnel or the mine destroys the ship. You can

move the ship up and down with Up-arrow and Down-arrow keys on the PC (see

Figure 1.1) or via the potentiometer wheel on the EV-LM3S811 board (see Figure 1.2).

You can also fire a missile to destroy the mines in the tunnel by pressing the Spacebar

on the PC or the User button on the EV-LM3S811 board. Score accumulates for

survival (at the rate of 30 points per second) and destroying the mines. The game lasts

for only one ship.

The game starts in a demo mode, where the tunnel walls scroll at the normal pace

from right to left and the “Press Button” text flashes in the middle of the screen.

You need to generate the “fire missile” event for the game to begin (press Spacebar

on the PC or the User button on the EV-LM3S811 board).

You can have only one missile in flight at a time, so trying to fire a missile while it is

already flying has no effect. Hitting the tunnel wall with the missile brings you no

points, but you earn extra points for destroying the mines.

The game has two types of mines with different behavior. In the original Luminary

Quickstart application both types of mines behave the same, but I wanted to

demonstrate how state machines can elegantly handle differently behaving mines.

Mine type 1 is small, but can be destroyed by hitting any of its pixels with the missile.

You earn 25 points for destroying a mine type 1. Mine type 2 is bigger but is nastier

in that the missile can destroy it only by hitting its center, not any of the “tentacles.”

Of course, the ship is vulnerable to the whole mine. You earn 45 points for destroying

a mine type 2.

When you crash the ship, by either hitting a wall or a mine, the game ends and displays

the flashing “Game Over” text as well as your final score. After 5 seconds of flashing,
www.newnespress.com

6 Chapter 1
the “Game Over” screen changes back to the demo screen, where the game waits to be

started again.

Additionally the application contains a screen saver because the OLED display of the

original EV-LM3S811 board has burn-in characteristics similar to a CRT. The screen

saver only becomes active if 20 seconds elapse in the demo mode without starting

the game (i.e., the screen saver never appears during game play). The screen saver is

a simple random pixel type rather than the “Game of Life” algorithm used in the

original Luminary Quickstart application. I’ve decided to simplify this aspect of the

implementation because the more elaborate pixel-mixing algorithm does not contribute

any new or interesting behavior.

After a minute of running the screen saver, the display turns blank and only a single

random pixel shows on the screen. Again, this is a little different from the original

Quickstart application, which instead blanks the screen and starts flashing the User

LED. I’ve changed this behavior because I have a better purpose for the User LED (to

visualize the activity of the idle loop).
Ship Missile
Mine

Type 1 Explosion
Mine

Type 2
Tunnel
wall

Figure 1.1: The “Fly ‘n’ Shoot” game running in a DOS window under Windows XP.

www.newnespress.com

User
Switch

96 x 16
OLED Display

LM3S811
Cortex-M3 MCU

USB Cable
to PC

User
LED

Power
LED

Potentiometer
Wheel

LMI FTDI
Debugger

Reset
Switch

Figure 1.2: The “Fly ‘n’ Shoot” game running on the Stellaris EV-LM3S811
evaluation board.

7Getting Started with UML State Machines and Event-Driven Programming
1.2.1 Running the DOS Version

The “Fly ‘n’ Shoot” sample code for the DOS version (in C) is located in the

<qp>\qpc\examples\80x86\dos\tcpp101\l\game\ directory, where <qp> stands

for the installation directory in which you chose to install the accompanying software.

The compiled executable is provided, so you can run the game on any Windows-based

PC by simply double-clicking the executable game.exe located in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\game\dbg\. The first screen you

see is the game running in the demo mode with the text “Push Button” flashing in

the middle of the display. At the top of the display you see a legend of keystrokes

recognized by the application. You need to hit the SPACEBAR to start playing the game.

Press the ESC key to cleanly exit the application.

If you run “Fly ‘n’ Shoot” in a window under Microsoft Windows, the animation effects in

the game might appear a little jumpy, especially compared to the Stellaris version of the

same game. You can make the application execute significantly more smoothly if you

switch to the full-screen mode by pressing and holding the Alt key and then pressing the

Enter key. You go back to the window mode via the same Alt-Enter key combination.

As you can see in Figure 1.1, the DOS version uses simply the standard VGA text mode

to emulate the OLED display of the EV-LM3S811 board. The lower part of the DOS screen
www.newnespress.com

8 Chapter 1
is used as a matrix of 80� 16 character-wide “pixels,” which is a little less than the 96� 16

pixels of the OLED display but still good enough to play the game. I specifically avoid

employing any fancier graphics in this early example because I have bigger fish to fry for

you than to worry about the irrelevant complexities of programming graphics.

My main goal is to make it easy for you to understand the event-driven code and

experiment with it. To this end, I chose the legacy Borland Turbo C++ 1.01 toolset to

build this example as well as several other examples in this book. Even though Turbo

C++ 1.01 is an older compiler, it is adequate to demonstrate all features of both the

C and C++ versions. Best of all, it is available for a free download from the Borland

“Museum” at http://bdn.borland.com/article/0,1410,21751,00.html.

The toolset is very easy to install. After you download the Turbo C++ 1.01 files directly

from Borland, you need to unzip the files onto your hard drive. Then you run the

INSTALL.EXE program and follow the installation instructions it provides.
NOTE

I strongly recommend that you install the Turbo C++ 1.01 toolset into the directory

C:\tools\tcpp101\. That way you will be able to directly use the provided project files

and make scripts.
Perhaps the easiest way to experiment with the “Fly ‘n’ Shoot” code is to launch the Turbo

C++ IDE (TC.EXE) and open the provided project file GAME-DBG.PRJ, which is located

in the directory <qp>\qpc\examples\80x86\dos\tcpp101\l\game\. You can

modify, recompile, execute, and debug the program directly from the IDE. However, you

should avoid terminating the program stopped in the debugger, because this will not restore

the standard DOS interrupt vectors for the time tick and keyboard interrupts. You should

always cleanly exit the application by letting it freely run and pressing the Esc key.

The next section briefly describes how to run the embedded version of the game. If you

are not interested in the Cortex-M3 version, feel free to skip to Section 1.3, where I start

explaining the application code.

1.2.2 Running the Stellaris Version

In contrast to the “Fly ‘n’ Shoot” version for DOS running in the ancient real mode of

the 80x86 processor, the exact same source code runs on one of the most modern

processors in the industry: the ARM Cortex-M3.
www.newnespress.com

http://bdn.borland.com/article/0,1410,21751,00.html

9Getting Started with UML State Machines and Event-Driven Programming
The sample code for the Stellaris EV-LM3S811 board is located in the

<qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\ directory,

where <qp> stands for the root directory in which you chose to install the

accompanying software.

The code for the Stellaris kit has been compiled with the 32KB-limited Kickstart edition

of the IAR Embedded Workbench for ARM (IAR EWARM) v 5.11, which is provided

with the Stellaris EV-LM3S811 kit. You can also download this software free of charge

directly from IAR Systems (www.iar.com) after filling out an online registration.

The installation of IAR EWARM is quite straightforward, since the software comes

with the installation utility. You also need to install the USB drivers for the hardware

debugger built into the EV-LM3S811 board, as described in the documentation of

the Stellaris EV-LM3S811 kit.
NOTE

I strongly recommend that you install the IAR EWARM toolset into the directory C:\tools
\iar\arm_ks_5.11. That way you will be able to directly use the provided EWARM work-

space files and make scripts.
Before you program the “Fly ‘n’ Shoot” game to the EV-LM3S811 board, you might

want to play a little with the original Quickstart application that comes preprogrammed

with the EV-LM3S811 kit.

To program the “Fly ‘n’ Shoot” game to the Flash memory of the EV-LM3S811 board,

you first connect the EV-LM3S811 board to your PC with the USB cable provided in the

kit and make sure that the Power LED is on (see Figure 1.2). Next, you need to launch the

IAR Embedded Workbench and open the workspace game.eww located

in the <qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\

directory. At this point your screen should look similar to the screenshot shown in

Figure 1.3.

The game-ev-lm3s811 project is set up to use the LMI FTDI debugger, which is the

piece of hardware integrated on the EV-LM3S811 board (see Figure 1.2). You can

verify this setup by opening the “Options” dialog box via the Project | Options menu.

Within the “Options” dialog box, you need to select the Debugger category in the panel

on the left. While you’re at it, you could also verify that the Flash loading is enabled

by selecting the “Download” tab. The checked “Use flash loader(s)” check box means
www.newnespress.com

http://www.iar.com

10 Chapter 1
that the Flash loader application provided by IAR will be first loaded to the RAM of the

MCU, and this application will program the Flash with the image of your application.

To start the Flash programming process, select the Project | Debug menu, or simply

click the Debug button (see Figure 1.3) in the toolbar. The IAR Workbench should

respond by showing the Flash programming progress bar for several seconds, as shown

in Figure 1.3. Once the Flash programming completes, the IAR EWARM switches to

the IAR C-Spy debugger and the program should stop at the entry to main(). You can

start playing the game either by clicking the Go button in the debugger or you can

close the debugger and reset the board by pressing the Reset button. Either way, the

“Fly ‘n’ Shoot” game is now permanently programmed into the EV-LM3S811 board

and will start automatically on every powerup.
Build Configuration
Selection

QP Libraries

Application Sources

Debug
Button

Flash Programming
Progress

Figure 1.3: Loading the “Fly ‘n’ Shoot” game into the flash of LM3S811 MCU
with IAR EWARM IDE.

www.newnespress.com

11Getting Started with UML State Machines and Event-Driven Programming
The IAR Embedded Workbench environment allows you to experiment with the

“Fly ‘n’ Shoot” code very easily. You can edit the files and recompile the application

at a click of a button (F7). The only caveat is that the first time after the installation

of the IAR toolset you need to build the Luminary Micro driver library for the

LM3S811 MCU from the sources. You accomplish this by loading the workspace

ek-lm3s811.eww located in the directory <IAR-EWARM>\ARM\examples

\Luminary\Stellaris\boards\ek-lm3s811, where <IAR-EWARM> stands for the

directory name where you’ve installed the IAR toolset. In the ev-lm3s811.eww

workspace, you select the “driverlib - Debug” project from the drop-down list at

the top of the Workspace panel and then press F7 to build the library.

1.3 The main() Function

Perhaps the best place to start the explanation of the “Fly ‘n’ Shoot” application code is

the main() function, located in the file main.c. Unless indicated otherwise in this

chapter, you can browse the code in either the DOS version or the EV-LM3S811

version, because the application source code is identical in both. The complete main.c

file is shown in Listing 1.1.
NOTE

To explain code listings, I place numbers in parentheses at the interesting lines in the left

margin of the listing. I then use these labels in the left margin of the explanation section that

immediately follows the listing. Occasionally, to unambiguously refer to a line of a particular

listing from sections of text other than the explanation section, I use the full reference con-

sisting of the listing number followed by the label. For example, Listing 1.1(21) refers to

the label (21) in Listing 1.1.

Listing 1.1 The file main.c of the “Fly ‘n’ Shoot” game application

(1) #include "qp_port.h" /* the QP port */

(2) #include "bsp.h" /* Board Support Package */

(3) #include "game.h" /* this application */

/* Local-scope objects --*/

(4) static QEvent const * l_missileQueueSto[2]; /* event queue */

(5) static QEvent const * l_shipQueueSto[3]; /* event queue */

(6) static QEvent const * l_tunnelQueueSto[GAME_MINES_MAX + 5]; /* event queue */

Continued onto next page

www.newnespress.com

(7) static ObjectPosEvt l_smlPoolSto[GAME_MINES_MAX + 8]; /* small-size pool */

(8) static ObjectImageEvtl_medPoolSto[GAME_MINES_MAX + 8]; /* medium-size pool */

(9) static QSubscrList l_subscrSto[MAX_PUB_SIG]; /* publish-subscribe */

/*...*/

void main(int argc, char *argv[]) {

/* explicitly invoke the active objects’ ctors... */

(10) Missile_ctor();

(11) Ship_ctor();

(12) Tunnel_ctor();

(13) BSP_init(argc, argv); /* initialize the Board Support Package */

(14) QF_init(); /* initialize the framework and the underlying RT kernel */

/* initialize the event pools... */

(15) QF_poolInit(l_smlPoolSto,sizeof(l_smlPoolSto),sizeof(l_smlPoolSto[0]));

(16) QF_poolInit(l_medPoolSto,sizeof(l_medPoolSto),sizeof(l_medPoolSto[0]));

(17) QF_psInit(l_subscrSto, Q_DIM(l_subscrSto)); /* init publish-subscribe */

/* start the active objects... */

(18) QActive_start(AO_Missile,/* global pointer to the Missile active object */

1, /* priority (lowest) */

l_missileQueueSto,Q_DIM(l_missileQueueSto),/*evtqueue*/

(void *)0, 0, /* no per-thread stack */

(QEvent *)0); /* no initialization event */

(19) QActive_start(AO_Ship, /* global pointer to the Ship active object */

2, /* priority */

l_shipQueueSto, Q_DIM(l_shipQueueSto), /* evt queue */

(void *)0, 0, /* no per-thread stack */

(QEvent *)0); /* no initialization event */

(20) QActive_start(AO_Tunnel, /* global pointer to the Tunnel active object */

3, /* priority */

l_tunnelQueueSto, Q_DIM(l_tunnelQueueSto), /* evt queue */

(void *)0, 0, /* no per-thread stack */

(QEvent *)0); /* no initialization event */

(21) QF_run(); /* run the QF application */

}

12 Chapter 1
(1) The “Fly ‘n’ Shoot” game is an example of an application implemented with the

QP event-driven platform. Every application C-file that uses QP must include the

qp_port.h header file. This header file contains the specific adaptation of QP to

the given processor, operating system, and compiler, which is called a port. Each

QP port is located in a separate directory, and the C compiler finds the right

qp_port.h header file through the include search path provided to the compiler
www.newnespress.com

13Getting Started with UML State Machines and Event-Driven Programming
(typically via the –I compiler option). That way I don’t need to change the

application source code to recompile it for a different processor or compiler.

I only need to instruct the compiler to look in a different QP port directory

for the qp_port.h header file. For example, the DOS version includes the

qp_port.h header file from the directory <qp>\qpc\ports\80x86\dos

\tcpp101\l\, and the EV-LM3S811 version from the directory <qp>\qpc

\ports\cortex-m3\vanilla\iar\.

(2) The bsp.h header file contains the interface to the Board Support Package and

is located in the application directory.

(3) The game.h header file contains the declarations of events and other facilities

shared among the components of the application. I will discuss this header file

in the upcoming Section 1.6. This header file is located in the application

directory.

The QP event-driven platform is a collection of components, such as the QEP event

processor that executes state machines according to the UML semantics and the QF

real-time framework that implements the active object computing model. Active

objects in QF are encapsulated state machines (each with an event queue, a separate

task context, and a unique priority) that communicate with one another

asynchronously by sending and receiving events, whereas QF handles all the details of

thread-safe event exchange and queuing. Within an active object, the events are

processed by the QEP event processor sequentially in a run-to-completion (RTC)

fashion, meaning that processing of one event must necessarily complete before

processing the next event. (See also Section 6.3.3 in Chapter 6.)

(4-6) The application must provide storage for the event queues of all active objects

used in the application. Here the storage is provided at compile time

through the statically allocated arrays of immutable (const) pointers to

events, because QF event queues hold just pointers to events, not events

themselves. Events are represented as instances of the QEvent structure

declared in the qp_port.h header file. Each event queue of an active

object can have a different size, and you need to decide this size based

on your knowledge of the application. Event queues are discussed in

Chapters 6 and 7.

(7,8) The application must also provide storage for event pools that the framework

uses for fast and deterministic dynamic allocation of events. Each event pool
www.newnespress.com

14 Chapter 1
can provide only fixed-size memory blocks. To avoid wasting memory by

using oversized blocks for small events, the QF framework can manage up to

three event pools of different block sizes (for small, medium, and large

events). The “Fly ‘n’ Shoot” application uses only two out of the three

possible event pools (the small and medium pools).

The QF real-time framework supports two event delivery mechanisms: the simple

direct event posting to active objects and the more advanced mechanism called

publish-subscribe that decouples event producers from the consumers. In the publish-

subscribe mechanism, active objects subscribe to events by the framework. Event

producers publish the events to the framework. Upon each publication request, the

framework delivers the event to all active objects that had subscribed to that event

type. One obvious implication of publish-subscribe is that the framework must

store the subscriber information, whereas it must be possible to handle multiple

subscribers to any given event type. The event delivery mechanisms are described

in Chapters 6 and 7.

(9) The “Fly ‘n’ Shoot” application uses the publish-subscribe event delivery

mechanism supported by QF, so it needs to provide the storage for the

subscriber lists. The subscriber lists remember which active objects have

subscribed to which events. The size of the subscriber database depends on

both the number of published events, which is specified in the MAX_PUB_SIG

constant found in the game.h header file, and the maximum number of active

objects allowed in the system, which is determined by the QF configuration

parameter QF_MAX_ACTIVE.

(10-12) These functions perform an early initialization of the active objects in the

system. They play the role of static “constructors,” which in C you need to

invoke explicitly. (C++ calls such static constructors implicitly before

entering main()).

(13) The function BSP_init() initializes the board and is defined in the bsp.c

file.

(14) The function QF_init() initializes the QF component and the underlying

RTOS/kernel, if such software is used. You need to call QF_init() before

you invoke any QF services.

(15,16) The function QF_poolInit() initializes the event pools. The parameters of

this function are the pointer to the event pool storage, the size of this storage,
www.newnespress.com

15Getting Started with UML State Machines and Event-Driven Programming
and the block-size of this pool. You can call this function up to three times to

initialize up to three event pools. The subsequent calls to QF_poolInit()

must be made in the increasing order of block size. For instance, the small

block-size pool must be initialized before the medium block-size pool.

(17) The function QF_psInit() initializes the publish-subscribe event

delivery mechanism of QF. The parameters of this function are the pointer to

the subscriber-list array and the dimension of this array.

The utility macro Q_DIM(a) provides the dimension of a one-dimensional array a[]

computed as sizeof(a)/sizeof(a[0]), which is a compile-time constant. The use

of this macro simplifies the code because it allows me to eliminate many #define

constants that otherwise I would need to provide for the dimensions of various arrays.

I can simply hard-code the dimension right in the definition of an array, which is the

only place that I specify it. I then use the macro Q_DIM() whenever I need this

dimension in the code.

(18-20) The function QActive_start() tells the QF framework to start managing

an active object as part of the application. The function takes the following

parameters: the pointer to the active object structure, the priority of the active

object, the pointer to its event queue, the dimension (length) of that queue,

and three other parameters that I explain in Chapter 7 (they are not relevant at

this point). The active object priorities in QF are numbered from 1 to

QF_MAX_ACTIVE, inclusive, where a higher-priority number denotes higher

urgency of the active object. The constant QF_MAX_ACTIVE is defined in

the QF port header file qf_port.h and currently cannot exceed 63.

I like to keep the code and data of every active object strictly encapsulated within its

own C-file. For example, all code and data for the active object Ship are encapsulated in

the file ship.c, with the external interface consisting of the function Ship_ctor()

and the pointer AO_Ship.

(21) At this point, you have provided to the framework all the storage and

information it needs to manage your application. The last thing you must do is

call the function QF_run() to pass the control to the framework.

After the call to QF_run() the framework is in full control. The framework

executes the application by calling your code, not the other way around. The function

QF_run() never returns the control back to main(). In the DOS version of the
www.newnespress.com

16 Chapter 1
“Fly ‘n’ Shoot” game, you can terminate the application by pressing the Esc key, in

which case QF_run() exits to DOS but not to main(). In an embedded system, such

as the Stellaris board, QF_run() runs forever or till the power is removed, whichever

comes first.
NOTE

For best cross-platform portability, the source code consistently uses the UNIX end-of-line
convention (lines are terminated with LF only, 0xA character). This convention seems to

be working for all C/C++ compilers and cross-compilers, including legacy DOS-era tools.

In contrast, the DOS/Windows end-of-line convention (lines terminated with the CR,LF, or

0xD,0xA pair of characters) is known to cause problems on UNIX-like platforms, especially

in the multiline preprocessor macros.
1.4 The Design of the “Fly ‘n’ Shoot” Game

To proceed further with the explanation of the “Fly ‘n’ Shoot” application, I need to

step up to the design level. At this point I need to explain how the application has been

decomposed into the active objects and how these objects exchange events to

collectively deliver the functionality of the “Fly ‘n’ Shoot” game.

In general, the decomposition of a problem into active objects is not trivial. As usual

in any decomposition, your goal is to achieve possibly loose coupling among the

active object components (ideally no sharing of any resources), and you also strive

for minimizing the communication in terms of the frequency and size of exchanged

events.

In the case of the “Fly ‘n’ Shoot” game, I need to first identify all objects with reactive

behavior (i.e., with a state machine). I applied the simplest object-oriented technique of

identifying objects, which is to pick the frequently used nouns in the problem

specification. From Section 1.2, I identified Ship, Missile, Mines, and Tunnel. However,

not every state machine in the system needs to be an active object (with a separate

task context, an event queue, and a unique priority level), and merging them is a valid

option when performance or space is needed. As an example of this idea, I ended up

merging the Mines into the Tunnel active object, whereas I preserved the Mines as

independent state machine components of the Tunnel active object. By doing so

I applied the “Orthogonal Component” design pattern described in Chapter 5.
www.newnespress.com

17Getting Started with UML State Machines and Event-Driven Programming
The next step in the event-driven application design is assigning responsibilities and

resources to the identified active objects. The general design strategy for avoiding

sharing of resources is to encapsulate each resource inside a dedicated active object and

to let that object manage the resource for the rest of the application. That way, instead

of sharing the resource directly, the rest of the application shares the dedicated

active object via events.

So, for example, I decided to put the Tunnel active object in charge of the display.

Other active objects and state machine components, such as Ship, Missile, and Mines,

don’t draw on the display directly, but rather send events to the Tunnel object with

the request to render the Ship, Missile, or Mine bitmaps at the provided (x, y)

coordinates of the display.

With some understanding of the responsibilities and resource allocations to active

objects I can move on to devising the various scenarios of event exchanges among

the objects. Perhaps the best instrument to aid the thinking process at this stage is the

UML sequence diagram, such as the diagram depicted in Figure 1.4. This particular

sequence diagram shows the most common event exchange scenarios in the

“Fly ‘n’ Shoot” game (the primary use cases, if you will). The explanation section

immediately following the diagram illuminates the interesting points.
NOTE

A UML sequence diagram like Figure 1.4 has two dimensions. Horizontally arranged boxes

represent the various objects participating in the scenario, whereas heavy borders indicate

active objects. As usual in the UML, the object name is underlined. Time flows down the

page along the vertical dashed lines descending from the objects. Events are represented as

horizontal arrows originating from the sending object and terminating at the receiving object.

Optionally, thin rectangles around instance lines indicate focus of control.

NOTE

To explain diagrams, I place numbers in parentheses at the interesting elements of the dia-

gram. I then use these labels in the left margin of the explanation section that immediately

follows the diagram. Occasionally, to unambiguously refer to a specific element of a partic-

ular diagram from sections of text other than the explanation section, I use the full reference

consisting of the figure number followed by the label. For example, Figure 1.4(12) refers to

the element (12) in Figure 1.4.

www.newnespress.com

QPPlayer Ship Missile Mine[n]Tunnel

PLAYER_SHIP_MOVE(x,y)

TIME_TICK

SHIP_IMG(x,y,bmp)

(1) (2) (3) (4)

MINE_IMG

TIME_TICK (5)

MISSILE_FIRE(x,y)

TIME_TICK
SHIP_IMG

MISSILE_IMG

(12)

MISSILE_IMG

TIME_TICK

(13)
HIT_MINE(type)

SHIP_IMG

(8) (9)
(10)

(16)

TIME_TICK
SHIP_IMG

TIME_TICK

SHIP_IMG
HIT_WALL

DESTROYED_
MINE(score)

(17)

(6) (7)

(11)

PLAYER_TRIGGER

(14)(15)

(18)

Figure 1.4: The sequence diagram of the “Fly ‘n’ Shoot” game.

18 Chapter 1
(1) The TIME_TICK is the most important event in the game. This event is generated

by the QF framework from the system time tick interrupt at a rate of 30 times

per second, which is needed to drive a smooth animation of the display. Because

the TIME_TICK event is of interest to virtually all objects in the application,

it is published by the framework to all active objects. (The publish-subscribe

event delivery in QF is described in Chapter 6.)

(2) Upon reception of the TIME_TICK event, the Ship object advances its position by

one step and posts the event SHIP_IMG(x, y, bmp) to the Tunnel object. The
www.newnespress.com

19Getting Started with UML State Machines and Event-Driven Programming
SHIP_IMG event has parameters x and y, which are the coordinates of the Ship on

the display, as well as the bitmap number bmp to draw at these coordinates.

(3) The Missile object is not in flight yet, so it simply ignores the TIME_TICK event

this time.

(4) The Tunnel object performs the heaviest lifting for the TIME_TICK event. First,

Tunnel redraws the entire display from the current frame buffer. This action,

performed 30 times per second, provides the illusion of animation of the display.

Next, the Tunnel clears the frame buffer and starts filling it up again for the next

time frame. The Tunnel advances the tunnel walls by one step and copies the

walls to the frame buffer. The Tunnel also dispatches the TIME_TICK event to all

its Mine state machine components.

(5) Each Mine advances its position by one step and posts the MINE_IMG(x, y, bmp)

event to the Tunnel to render the appropriate Mine bitmap at the position (x, y) in

the current frame buffer. Mines of type 1 send the bitmap number MINE1_BMP,

whereas mines of type 2 send MINE2_BMP.

(6) Upon receipt of the SHIP_IMG(x, y, bmp) event from the Ship, the Tunnel

object renders the specified bitmap in the frame buffer and checks for any

collision between the ship bitmap and the tunnel walls. Tunnel also dispatches

the original SHIP_IMG(x, y, bmp) event to all active Mines.

(7) Each Mine determines whether the Ship is in collision with that Mine.

(8) The PLAYER_TRIGGER event is generated when the Player reliably presses the

button (button press is debounced). This event is published by the QF framework

and is delivered to the Ship and Tunnel objects, which both subscribe to the

PLAYER_TRIGGER event.

(9) Ship generates the MISSILE_FIRE(x, y) event to the Missile object. The

parameters of this event are the current (x, y) coordinates of the Ship, which are

the starting point for the Missile.

(10) Tunnel receives the published PLAYER_TRIGGER event as well because Tunnel

occasionally needs to start the game or terminate the screen saver mode based on

this stimulus.

(11) Missile reacts to the MISSILE_FIRE(x, y) event by starting to fly, whereas it

sets its initial position from the (x, y) event parameters delivered from the Ship.
www.newnespress.com

MINE(score)

20 Chapter 1
(12) This time around, the TIME_TICK event arrives while Missile is in flight. Missile

posts the MISSILE_IMG(x, y, bmp) event to the Tunnel.

(13) Tunnel renders the Missile bitmap in the current frame buffer and dispatches

the MISSILE_IMG(x, y, bmp) event to all the Mines to let the Mines test for the

collision with the Missile. This determination depends on the type of the Mine. In

this scenario a particular Mine[n] object detects a hit and posts the DESTROYED_

(score) event to the Missile. The Mine provides the score earned for destroying

this particular mine as the parameter of this event.

(14) Missile handles the HIT_MINE(score) event by becoming immediately ready to

launch again and lets theMine do the exploding. Because I decided to make the Ship

responsible for the scorekeeping, the Missile also generates the DESTROYED_MINE

(score) event to the Ship, to report the score for destroying the Mine.

(15) Upon reception of the DESTROYED_MINE(score) event, the Ship increments

the score by the value received from the Missile.

(16) The Ship object handles the PLAYER_SHIP_MOVE(x, y) event by updating its

position from the event parameters.

(17) When the Tunnel object handles the SHIP_IMG(x, y, bmp_id) event next time

around, it detects a collision between the Ship and the tunnel wall. In that case

it posts the event HIT_WALL to the Ship.

(18) The Ship responds to the HIT_WALL event by transitioning to the “exploding” state.

Even though the sequence diagram in Figure 1.4 shows merely some selected scenarios

of the “Fly ‘n’ Shoot” game, I hope that the explanations give you a big picture of

how the application works. More important, you should start getting the general idea

about the thinking process that goes into designing an event-driven system with

active objects and events.

1.5 Active Objects in the “Fly ‘n’ Shoot” Game

I hope that the analysis of the sequence diagram in Figure 1.4 makes it clear that actions

performed by an active object depend as much on the internal mode of the object as

on the events it receives. For example, the Missile active object handles the

TIME_TICK event very differently when the Missile is in flight (Figure 1.4(12))

compared to the time when it is not (Figure 1.4(3)).
www.newnespress.com

fangjiyk
Cross-Out

fangjiyk
Replacement Text
object as on the events it receives.

21Getting Started with UML State Machines and Event-Driven Programming
The best-known mechanism for handling such modal behavior is through state

machines because a state machine makes the behavior explicitly dependent on both the

event and the state of an object. Chapter 2 introduces UML state machine concepts

more thoroughly. In this section, I give a cursory explanation of the state machines

associated with each object in the “Fly ‘n’ Shoot” game.
1.5.1 The Missile Active Object

I start with the Missile state machine shown in Figure 1.5 because it turns out to be the

simplest one. The explanation section immediately following the diagram illuminates

the interesting points.
NOTE

A UML state diagram like Figure 1.5 preserves the general form of the traditional state tran-

sition diagrams, where states are represented as nodes and transitions as arcs connecting the

nodes. In the UML notation the state nodes are represented as rectangles with rounded cor-

ners. The name of the state appears in bold type in the name compartment at the top of

the state. Optionally, right below the name, a state can have an internal transition compart-

ment separated from the name by a horizontal line. The internal transition compartment

can contain entry actions (actions following the reserved symbol “entry”), exit actions

(actions following the reserved symbol “exit”), and other internal transitions (e.g., those trig-

gered by TIME_TICK in Figure 1.5(3)). State transitions are represented as arrows originating

at the boundary of the source state and pointing to the boundary of the target state. At a min-

imum, a transition must be labeled with the triggering event. Optionally, the trigger can be

followed by event parameters, a guard, and a list of actions.
(1) The state transition originating at the black ball is called the initial transition.

Such transition designates the first active state after the state machine object

is created. An initial transition can have associated actions, which in the

UML notation are enlisted after the forward slash (/). In this particular case,

the Missile state machine starts in the “armed” state and the actions executed

upon the initialization consist of subscribing to the event TIME_TICK. Subscribing

to an event means that the framework will deliver the specified event to the

Missile active object every time the event is published to the framework.

Chapter 7 describes the implementation of the publish-subscribe event delivery

in QF.
www.newnespress.com

armed

TIME_TICK [me->x + GAME_MISSILE_SPEED_X
 < GAME_SCREEN_WIDTH] /
 me->x += GAME_MISSILE_SPEED_X;
 QActive_postFIFO(Tunnel,
 MISSILE_IMG(me->x, me->y,
 MISSILE_BMP));

flying

entry /
 me->exp_ctr = 0;

TIME_TICK [(me->x >= GAME_SPEED_X)
 && (me->exp_ctr < 16)] /
 me->x -= GAME_SPEED_X;
 ++me->exp_ctr;
 QActive_postFIFO(Tunnel,
 EXPLOSION_IMG(me->x + 3, me->y -4,
 EXPLOSION0_BMP + (me->exp_ctr >> 2)));

exploding

/ QActive_subscribe(me, TIME_TICK);

MISSILE_FIRE(x, y) /
me->x = e->x;
me->y = e->y;

HIT_WALL

TIME_TICK [else]

 (5)

TIME_TICK [else]

(1)

(2)

(3)

(4)

(7)

(8)

(9)

(6)

DESTROYED_MINE(score) /
 QActive_postFIFO(Ship,

 DESTROYED_MINE(e->score));

Figure 1.5: Missile state machine diagram.

22 Chapter 1
(2) The arrow labeled with the MISSILE_FIRE(x, y) event denotes a state transition,

that is, a change of state from “armed” to “flying.” The MISSILE_FIRE(x, y)

event is generated by the Ship object when the Player triggers the Missile (see the

sequence diagram in Figure 1.4). In the MISSILE_FIRE event, Ship provides

Missile with the initial coordinates in the event parameters (x, y).
NOTE

The UML intentionally does not specify the notation for actions. In practice, the actions are

often written in the programming language used for coding the particular state machine. In

all state diagrams in this book, I assume the C programming language. Furthermore, in the

C expressions I refer to the data members associated with the state machine object through

the “me->” prefix and to the event parameters through the “e->” prefix. For example, the

action “me->x = e->x;” means that the internal data member x of the Missile active object

is assigned the value of the event parameter x.

www.newnespress.com

23Getting Started with UML State Machines and Event-Driven Programming
(3) The event name TIME_TICK enlisted in the compartment below the state name

denotes an internal transition. Internal transitions are simple reactions to

events performed without a change of state. An internal transition, as well as a

regular transition, can have a guard condition, enclosed in square brackets. Guard

condition is a Boolean expression evaluated at runtime. If the guard evaluates

to TRUE, the transition is taken. Otherwise, the transition is not taken and no

actions enlisted after the forward slash (/) are executed. In this particular case,

the guard condition checks whether the x-coordinate propagated by the Missile

speed is still visible on the screen. If so, the actions are executed. These actions

include propagation of the Missile position by one step and posting the

MISSILE_IMG event with the current Missile position and the MISSILE_BMP

bitmap number to the Tunnel active object. Direct event posting to an active object

is accomplished by the QF function QActive_postFIFO(), which I discuss

in Chapter 7.

(4) The same event TIME_TICK with the [else] guard denotes a regular state

transition with the guard condition complementary to the other occurrence of the

TIME_TICK event in the same state. In this case, the TIME_TICK transition to

“armed” is taken if the Missile object flies out of the screen.

(5) The event HIT_MINE(score) triggers another transition to the “armed” state.

The action associated with this transition posts the DESTROYED_MINE event with

the parameter e->score to the Ship object, to report destroying the mine.

(6) The event HIT_WALL triggers a transition to the “exploding” state, with the

purpose of animating the explosion bitmaps on the display.

(7) The label “entry” denotes the entry action to be executed unconditionally upon the

entry to the “exploding” state. This action consists of clearing the explosion

counter (me->exp_ctr) member of the Missile object.

(8) The TIME_TICK internal transition is guarded by the condition that the explosion

does not scroll off the screen and that the explosion counter is lower than 16. The

actions executed include propagation of the explosion position and posting the

EXPLOSION_IMG event to the Tunnel active object. Please note that the bitmap of

the explosion changes as the explosion counter gets bigger.

(9) The TIME_TICK regular transition with the complementary guard changes the

state back to the “armed” state. This transition is taken after the animation of the

explosion completes.
www.newnespress.com

24 Chapter 1
1.5.2 The Ship Active Object

The state machine of the Ship active object is shown in Figure 1.6. This state machine

introduces the profound concept of hierarchical state nesting. The power of state

nesting derives from the fact that it is designed to eliminate repetitions that otherwise

would have to occur.

One of the main responsibilities of the Ship active object is to maintain the current position

of the Ship. On the original EV-LM3S811 board, this position is determined by the

potentiometer wheel (see Figure 1.2). The PLAYER_SHIP_MOVE(x, y) event is generated

whenever the wheel position changes, as shown in the sequence diagram (Figure 1.4).

The Ship object must always keep track of the wheel position, which means that all states

of the Ship state machine must handle the PLAYER_SHIP_MOVE(x, y) event.

In the traditional finite state machine (FSM) formalism, you would need to repeat the

Ship position update from the PLAYER_SHIP_MOVE(x, y) event in every state. But

such repetitions would bloat the state machine and, more important, would represent

multiple points of maintenance both in the diagram and the code. Such repetitions go

against the DRY (Don’t Repeat Yourself) principle, which is vital for flexible and

maintainable code [Hunt+ 00].

Hierarchical state nesting remedies the problem. Consider the state “active”

that surrounds all other states in Figure 1.6. The high-level “active” state is called the

superstate and is abstract in that the state machine cannot be in this state directly but only

in one of the states nested within, which are called the substates of “active.” The UML

semantics associated with state nesting prescribe that any event is first handled in the

context of the currently active substate. If the substate cannot handle the event, the state

machine attempts to handle the event in the context of the next-level superstate.

Of course, state nesting in UML is not limited to just one level and the simple rule of

processing events applies recursively to any level of nesting.

Specifically to the Ship state machine diagram shown in Figure 1.6, suppose that the event

PLAYER_SHIP_MOVE(x, y) arrives when the state machine is in the “parked” state. The

“parked” state does not handle the PLAYER_SHIP_MOVE(x, y) event. In the traditional

finite state machine this would be the end of the story—the PLAYER_SHIP_MOVE(x, y)

event would be silently discarded. However, the state machine in Figure 1.6 has another layer

of the “active” superstate. Per the semantics of state nesting, this higher-level superstate

handles the PLAYER_SHIP_MOVE(x, y) event, which is exactly what’s needed. The same

exact reasoning applies for any other substate of the “active” superstate, such as “flying”
www.newnespress.com

25Getting Started with UML State Machines and Event-Driven Programming
or “exploding,” because none of these substates handle the PLAYER_SHIP_MOVE(x, y)

event. Instead, the “active” superstate handles the event in one single place,without repetitions.
parked

entry /
 me->score = 0;
 QActive_postFIFO(Tunnel, SCORE(me->score));

TIME_TICK /
 QActive_postFIFO(Tunnel,
 SHIP_IMG(me->x, me->y, SHIP_BMP));
 ++me->score;
 if ((me->score % 10) == 0)
 QActive_postFIFO(Tunnel, SCORE(me->score));

PLAYER_TRIGGER /
 QActive_postFIFO(Missile, MISSLE_FIRE(me->x, me->y));

DESTROYED_MINE(score) /
 me->score += e->score;

flying

entry /
 me->exp_ctr = 0;

TIME_TICK [me->exp_ctr < 16] /
 ++me->exp_ctr;
 QActive_postFIFO(Tunnel,
 EXPLOSION(me->x, me->y + SHIP_HEIGHT -1,
 EXPLOSION0_BMP + (me->exp_ctr >> 2)));

exploding

/ QActive_subscribe(me, TIME_TICK);
 QActive_subscribe(me, PLAYER_TRIGGER);

TAKE_OFF

HIT_WALL

HIT_MINE(type)

(1)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(13)

PLAYER_SHIP_MOVE(x, y) /
 me->x = e->x;
 me->y = e->y;

active

TIME_TICK [else] /
 QActive_postFIFO(Tunnel,
 GAME_OVER(me->score));

(2)

(12)

Figure 1.6: Ship state machine diagram.
(1) Upon the initial transition, the Ship state machine enters the “active” superstate

and subscribes to events TIME_TICK and PLAYER_TRIGGER.

(2) At each level of nesting, a superstate can have a private initial transition that

designates the active substate after the superstate is entered directly. Here the
www.newnespress.com

26 Chapter 1
initial transition of state “active” designates the substate “parked” as the initial

active substate.

(3) The “active” superstate handles the PLAYER_SHIP_MOVE(x, y) event as an

internal transition in which it updates the internal data members me->x and

me->y from the event parameters e->x and e->y, respectively.

(4) The TAKE_OFF event triggers transition to “flying.” This event is generated by

the Tunnel object when the Player starts the game (see the description of the

game in Section 1.2).

(5) The entry actions to “flying” include clearing the me->score data member and

posting the event SCORE with the event parameter me->score to the Tunnel

active object.

(6) The TIME_TICK internal transition causes posting the event SHIP_IMG with

current Ship position and the SHIP_BMP bitmap number to the Tunnel active

object. Additionally, the score is incremented for surviving another time tick.

Finally, when the score is “round” (divisible by 10) it is also posted to the Tunnel

active object. This decimation of the SCORE event is performed just to reduce

the bandwidth of the communication, because the Tunnel active object only

needs to give an approximation of the running score tally to the user.

(7) ThePLAYER_TRIGGER internal transition causes posting the event MISSILE_FIRE

with current Ship position to the Missile active object. The parameters (me->x,

me->y) provide the Missile with the initial position from the Ship.

(8) The DESTROYED_MINE(score) internal transition causes update of the score

kept by the Ship. The score is not posted to the Tunnel at this point, because the

next TIME_TICK will send the “rounded” score, which is good enough for giving

the Player the score approximation.

(9) The HIT_WALL event triggers transition to “exploding.”

(10) The HIT_MINE(type) event also triggers transition to “exploding.”

(11) The “exploding” state of the Ship state machine is very similar to the

“exploding” state of Missile (see Figure 1.5(7-9)).

(12) The TIME_TICK[else] transition is taken when the Ship finishes exploding. Upon

this transition, the Ship object posts the event GAME_OVER(me->score) to the

Tunnel active object to terminate the game and display the final score to the Player.
www.newnespress.com

27Getting Started with UML State Machines and Event-Driven Programming
1.5.3 The Tunnel Active Object

The Tunnel active object has the most complex state machine, which is shown in

Figure 1.7. Unlike the previous state diagrams, the diagram in Figure 1.7 shows only the

high level of abstraction and omits a lot of details such as most entry/exit actions,

internal transitions, guard conditions, or actions on transitions. Such a “zoomed out”

view is always legal in the UML because UML allows you to choose the level of detail

that you want to include in your diagram.

The Tunnel state machine uses state hierarchy more extensively than the Ship state

machine in Figure 1.6. The explanation section immediately following Figure 1.7

illuminates the new uses of state nesting as well as the new elements not explained yet

in the other state diagrams.
MINE_DISABLED(mine_id) /
 me->mines[e->mine_id] = NULL;

active

entry / QTimeEvt_postIn(&me->screenTimeEvt, me,
 BSP_TICKS_PER_SEC*20);

exit / QTimeEvt_disarm(&me->screenTimeEvt);

demo

playing
PLAYER_TRIGGER

PLAYER_QUIT

game_over
GAME_OVER

screen_saver

screen_saver_1_pixel

SCREEN_TIMEOUT

SCREEN_TIMEOUT

PLAYER_TRIGGER

SCREEN_TIMEOUT

screen_saver_n_pixels

(1)

(2)

(5)

(6)

(8)

(7)

(4)

(3)

Figure 1.7: Tunnel state machine diagram.

www.newnespress.com

28 Chapter 1
(1) An initial transition can target a substate at any level of state hierarchy, not

necessarily just the next-lower level. Here the topmost initial transition goes down

two levels to the substate “demo.”

(2) The superstate “active” handles the PLAYER_QUIT event as a transition to the final

state (see explanation of element (3)). Please note that the PLAYER_QUIT

transition applies to all substates directly or transitively nested in the “active”

superstate. Because a state transition always involves execution of all exit actions

from the states, the high-level PLAYER_QUIT transition guarantees the proper

cleanup that is specific to the current state context, whichever substate happens to

be active at the time when the PLAYER_QUIT event arrives.

(3) The final state is indicated in the UML notation as the bull’s-eye symbol and

typically indicates destruction of the state machine object. In this case, the

PLAYER_QUIT event indicates termination of the game.

(4) The MINE_DISABLED(mine_id) event is handled at the high level of the

“active” state, which means that this internal transition applies to the whole sub-

machine nested inside the “active” superstate. (See also the discussion of the Mine

object in the next section.)

(5) The entry action to the “demo” state starts the screen time event (timer)

me->screenTimeEvt to expire in 20 seconds. Time events are allocated by the

application, but they are managed by the QF framework. QF provides functions

to arm a time event, such as QTimeEvt_postIn() for one-shot timeout, and

QTimeEvt_postEvery() for periodic time events. Arming a time event is in effect

telling theQF framework, for instance, “Giveme a nudge in 20 seconds.” QF then posts

the time event (the event me->screenTimeEvt in this case) to the active object after

the requested number of clock ticks. Chapters 6 and 7 talk about time events in detail.

(6) The exit action from the “demo” state disarms the me->screenTimeEvt time

event. This cleanup is necessary when the state can be exited by a different event

than the time event, such as the PLAYER_TRIGGER transition.

(7) The SCREEN_TIMEOUT transition to “screen_saver” is triggered by the expiration

of the me->screenTimeEvt time event. The signal SCREEN_TIMEOUT is

assigned to this time event upon initialization and cannot be changed later.

(8) The transition triggered by PLAYER_TRIGGER applies equally to the two substates

of the “screen_saver” superstate.
www.newnespress.com

29Getting Started with UML State Machines and Event-Driven Programming
1.5.4 The Mine Components

Mines are also modeled as hierarchical state machines, but are not active objects. Instead,

Mines are components of the Tunnel active object and share its event queue and priority

level. The Tunnel active object communicates with the Mine components synchronously

by directly dispatching events to them via the function QHsm_dispatch(). Mines

communicate with Tunnel and all other active objects asynchronously by posting events

to their event queues via the function QActive_postFIFO().
NOTE

Active objects exchange events asynchronously, meaning that the sender of the event merely

posts the event to the event queue of the recipient active object without waiting for the com-

pletion of the event processing. In contrast, synchronous event processing corresponds to a

function call (e.g., QHsm_dispatch()), which processes the event in the caller’s thread of

execution.
As shown in Figure 1.8, Tunnel maintains the data member mines[], which is an array

of pointers to hierarchical state machines (QHsm *). Each of these pointers can point

either to a Mine1 object, a Mine2 object, or NULL, if the entry is unused. Note that

Tunnel “knows” the Mines only as generic state machines (pointers to the QHsm

structure defined in QP). Tunnel dispatches events to Mines uniformly, without

differentiating between different types of Mines. Still, each Mine state machine handles

the events in its specific way. For example, Mine type 2 checks for collision with the

Missile differently than with the Ship, whereas Mine type 1 handles both identically.
Tunnel

[0]

[1]

[2]

[3]

[4]

QHsm *mines[]

[0]

[1]

[2]

[3]

[4]

Mine2 mines2[]

[0]

[1]

[2]

[3]

[4]

Mine1 mines1[]

NULL

NULL

Figure 1.8: The Table active object manages two types of Mines.

www.newnespress.com

NOTE

The last point is actually very interesting. Dispatching the same event to different Mine

objects results in different behavior, specific to the type of the Mine, which in OOP is known

as polymorphism. I’ll have more to say about this in Chapter 3.

30 Chapter 1
Each Mine object is fairly autonomous. The Mine maintains its own position and is

responsible for informing the Tunnel object whenever the Mine gets destroyed or scrolls

out of the display. This information is vital for the Tunnel object so that it can keep

track of the unused Mines.

Figure 1.9 shows a hierarchical state machine of Mine2 state machine. Mine1 is very

similar, except that it uses the same bitmap for testing collisions with the Missile and

the Ship.

(1) The Mine starts in the “unused” state.

(2) The Tunnel object plants a Mine by dispatching the MINE_PLANT(x, y) event

to the Mine. The Tunnel provides the (x, y) coordinates as the original position of

the Mine.

(3) When the Mine scrolls off the display, the state machine transitions to

“unused.”

(4) When the Mine hits the Ship, the state machine transitions to “unused.”

(5) When the Mine finishes exploding, the state machine transitions to “unused.”

(6) When the Mine is recycled by the Tunnel object, the state machine transitions to

“unused.”

(7) The exit action in the “used” state posts the MINE_DISABLDED(mine_id)

event to the Tunnel active object. Through this event, the Mine informs the

Tunnel that it’s becoming disabled, so that Tunnel can update its mines[]

array (see also Figure 1.7(4)). The mine_id parameter of the event becomes

the index into the mines[] array. Note that generating the

MINE_DISABLDED(mine_id) event in the exit action from “used” is much

safer and more maintainable than repeating this action in each individual

transition (3), (4), (5), and (6).
www.newnespress.com

exit /
 QActive_postFIFO(Tunnel, MINE_DISABLED(MINE_ID(me)));

used

unused

planted

entry / me->exp_ctr = 0;

TIME_TICK [(me->x >= GAME_SPEED_X)
 && (me->exp_ctr < 16)] /
 me->x -= GAME_SPEED_X;
 ++me->exp_ctr;
 postFIFO(Tunnel, EXPLOSION(me->x + 3, me->y -4,
 EXPLOSION0_BMP + (me->exp_ctr >> 2)));

exploding

MINE_PLANT(x, y) /
 me->x = e->x;
 me->y = e->y;

TIME_TICK [else]

TIME_TICK [else]

MINE_RECYCLE

SHIP_IMG [do_bitmaps_overlap(
MINE2_BMP,
me->x, me->y,

e->bmp, e->x, e->y)] /
 postFIFO(Ship, HIT_MINE(2));

MISSILE_IMG [do_bitmaps_overlap(
MINE2_MISSILE_BMP,

me->x, me->y,`
e->bmp, e->x, e->y)] /

postFIFO(Missile, DESTROYED_MINE(45));

(1)

(2)

(3)

(4)

(5)

(6)

(7)

TIME_TICK [me->x >= GAME_SPEED_X]
 /
 me->x -= GAME_SPEED_X;
 postFIFO(Tunnel,
 MISSILE_IMG(me->x, me->y,
 MINE2_BMP));

Figure 1.9: Mine2 state machine diagram.

www.newnespress.com

31Getting Started with UML State Machines and Event-Driven Programming

32 Chapter 1
1.6 Events in the “Fly ‘n’ Shoot” Game

The key events in the “Fly ‘n’ Shoot” game have been identified in the sequence

diagram in Figure 1.4. Other events have been invented during the state machine design

stage. In any case, you must have noticed that events consist really of two parts. The

part of the event called the signal conveys the type of the occurrence (what happened).

For example, the TIME_TICK signal conveys the arrival of a time tick, whereas the

PLAYER_SHIP_MOVE signal conveys that the player wants to move the Ship. An event

can also contain additional quantitative information about the occurrence in form of

event parameters. For example, the PLAYER_SHIP_MOVE signal is accompanied by the

parameters (x, y) that contain the quantitative information as to where exactly to move

the Ship.

In QP, events are represented as instances of the QEvent structure provided by the

framework. Specifically, the QEvent structure contains the member sig, to represent

the signal of that event. Event parameters are added in the process of inheritance, as

described in the sidebar “Single Inheritance in C.”
SINGLE INHERITANCE IN C

Inheritance is the ability to derive new structures based on existing structures in order to

reuse and organize code. You can implement single inheritance in C very simply by literally

embedding the base structure as the first member of the derived structure. For example,

Figur e 1.10(A) show s the structure ScoreEvt derived from the base struct ure QEvent by

embedding the QEvent instance as the first member of ScoreEvt. To make this idiom better

stand out, I always name the base structure member super.

sig : QSignal

QEvent

score : uint16_t

ScoreEvt

typedef struct QEventTag {
 QSignal sig;
 . . .
} QEvent;

typedef struct ScoreEvtTag {
QEvent super;

 uint16_t score;
} ScoreEvt;

Members
added in

the derived
struct

Instance of the
base struct

super

me

A B C

Figure 1.10: (A) Derivation of structures in C, (B) memory alignment,
and (C) the UML class diagram.

www.newnespress.com

As shown in Figure 1.10(B), such nesting of structures always aligns the data member super

at the beginning of every instance of the derived structure, which is actually guaranteed by

the C standard. Specifically, WG14/N1124 Section 6.7.2.1.13 says: “... A pointer to a struc-

ture object, suitably converted, points to its initial member. There may be unnamed padding

within a structure object, but not at its beginning” [ISO/IEC 9899:TC2]. The alignment lets

you treat a pointer to the derived ScoreEvt structure as a pointer to the QEvent base struc-

ture. All this is legal, portable, and guaranteed by the C standard. Consequently, you can

always safely pass a pointer to ScoreEvt to any C function that expects a pointer to
QEvent. (To be strictly correct in C, you should explicitly cast this pointer. In OOP such

casting is called upcasting and is always safe.) Therefore, all functions designed for the
QEvent structure are automatically available to the ScoreEvt structure as well as other

structures derived from QEvent. Figure 1.10(C) shows the UML class diagram depicting

the inheritance relationship between ScoreEvt and QEvent structures.

QP uses single inheritance quite extensively not just for derivation of events with parameters,

but also for derivation of state machines and active objects. Of course, the C++ version of QP

uses the native C++ support for class inheritance rather than “derivation of structures.”

You’ll see more examples of inheritance later in this chapter and throughout the book.

33Getting Started with UML State Machines and Event-Driven Programming
Because events are explicitly shared among most of the application components, it is

convenient to declare them in the separate header file game.h shown in Listing 1.2. The

explanation section immediately following the listing illuminates the interesting points.
Listing 1.2 Signals, event structures, and active object interfaces
defined in file game.h

(1) enum GameSignals { /* signals used in the game */

(2) TIME_TICK_SIG = Q_USER_SIG, /* published from tick ISR */

PLAYER_TRIGGER_SIG, /* published by Player (ISR) to trigger the Missile */

PLAYER_QUIT_SIG, /* published by Player (ISR) to quit the game */

GAME_OVER_SIG, /* published by Ship when it finishes exploding */

/* insert other published signals here ... */

(3) MAX_PUB_SIG, /* the last published signal */

PLAYER_SHIP_MOVE_SIG, /* posted by Player (ISR) to the Ship to move it */

BLINK_TIMEOUT_SIG, /* signal for Tunnel’s blink timeout event */

SCREEN_TIMEOUT_SIG, /* signal for Tunnel’s screen timeout event */

TAKE_OFF_SIG, /* from Tunnel to Ship to grant permission to take off */

HIT_WALL_SIG, /* from Tunnel to Ship when Ship hits the wall */

HIT_MINE_SIG, /* from Mine to Ship or Missile when it hits the mine */

SHIP_IMG_SIG, /* from Ship to the Tunnel to draw and check for hits */
MISSILE_IMG_SIG, /* from Missile to the Tunnel to draw and check for hits */

MINE_IMG_SIG, /* sent by Mine to the Tunnel to draw the mine */

Continued onto next page

www.newnespress.com

MISSILE_FIRE_SIG, /* sent by Ship to the Missile to fire */

DESTROYED_MINE_SIG, /* from Missile to Ship when Missile destroyed Mine */

EXPLOSION_SIG, /* from any exploding object to render the explosion */

MINE_PLANT_SIG, /* from Tunnel to the Mine to plant it */

MINE_DISABLED_SIG, /* from Mine to Tunnel when it becomes disabled */

MINE_RECYCLE_SIG, /* sent by Tunnel to Mine to recycle the mine */

SCORE_SIG, /* from Ship to Tunnel to adjust game level based on score */

/* insert other signals here ... */

(4) MAX_SIG /* the last signal (keep always last) */

};

(5) typedef struct ObjectPosEvtTag {

(6) QEvent super; /* extend the QEvent class */

(7) uint8_t x; /* the x-position of the object */

(8) uint8_t y; /* new y-position of the object */

} ObjectPosEvt;

typedef struct ObjectImageEvtTag {

QEvent super; /* extend the QEvent class */

uint8_t x; /* the x-position of the object */

int8_t y; /* the y-position of the object */

uint8_t bmp; /* the bitmap ID representing the object */

} ObjectImageEvt;

typedef struct MineEvtTag {

QEvent super; /* extend the QEvent class */

uint8_t id; /* the ID of the Mine */

} MineEvt;

typedef struct ScoreEvtTag {

QEvent super; /* extend the QEvent class */

uint16_t score; /* the current score */

} ScoreEvt;

/* opaque pointers to active objects in the application */

(9) extern QActive * const AO_Tunnel;

(10) extern QActive * const AO_Ship;

(11) extern QActive * const AO_Missile;

/* active objects’ "constructors" */

(12) void Tunnel_ctor(void);

(13) void Ship_ctor(void);

(14) void Missile_ctor(void);

34 Chapter 1
(1) In QP, signals of events are simply enumerated constants. Placing all signals in

a single enumeration is particularly convenient to avoid inadvertent overlap

in the numerical values of different signals.
www.newnespress.com

35Getting Started with UML State Machines and Event-Driven Programming
(2) The application-level signals do not start from zero but rather are offset by the

constant Q_USER_SIG. This is because QP reserves the lowest few signals for

the internal use and provides the constant Q_USER_SIG as an offset from which

user-level signals can start. Also note that by convention, I attach the suffix

_SIG to all signals so that I can easily distinguish signals from other constants. I

drop the suffix _SIG in the state diagrams to reduce the clutter.

(3) The constant MAX_PUB_SIG delimits the published signals from the rest. The

publish-subscribe event delivery mechanism consumes some RAM, which is

proportional to the number of published signals. I save some RAM by providing

the lower limit of published signals to QP (MAX_PUB_SIG) rather than the

maximum of all signals used in the application. (See also Listing 1.1(9)).

(4) The last enumeration MAX_SIG indicates the maximum of all signals used in the

application.

(5) The event structure ObjectPosEvt defines a “class” of events that convey the

object’s position on the display in the event parameters.

(6) The structure ObjectPosEvt derives from the base structure QEvent, as

explained in the sidebar “Single Inheritance in C.”

(7,8) The structure ObjectPosEvt adds parameters x and y, which are coordinates of

the object on the display.
NOTE

Throughout this book I use the following standard exact-width integer types (WG14/N843

C99 Standard, Section 7.18.1.1) [ISO/IEC 9899:TC2]:

Exact Size Unsigned Signed

8-bits uint8_t int8_t

16-bits uint16_t int16_t

32-bits uint32_t int32_t

If your (pre-standard) compiler does not provide the <stdint.h> header file, you can

always typedef the exact-width integer types using the standard C data types such as
signed/unsigned char, short, int, and long.

www.newnespress.com

36 Chapter 1
(9-11) These global pointers represent active objects in the application and are used

for posting events directly to active objects. Because the pointers can be

initialized at compile time, I like to declare them const, so that they can be

placed in ROM. The active object pointers are “opaque” because they cannot

access the whole active object, only the part inherited from the QActive

structure. I’ll have more to say about this in the next section.

(12-14) These functions perform an early initialization of the active objects in the

system. They play the role of static “constructors,” which in C you need to

call explicitly, typically at the beginning of main(). (See also Listing 1.1

(10-12).)
1.6.1 Generating, Posting, and Publishing Events

The QF framework supports two types of asynchronous event exchange:

1. The simple mechanism of direct event posting supported through the functions

QActive_postFIFO() and QActive_postLIFO(), where the producer of an

event directly posts the event to the event queue of the consumer active object.

2. A more sophisticated publish-subscribe event delivery mechanism supported

through the functions QF_publish() and QActive_subscribe(), where the

producers of the events “publish” them to the framework, and the framework then

delivers the events to all active objects that had “subscribed” to these events.

In QF, any part of the system, not necessarily only the active objects, can produce

events. For example, interrupt service routines (ISRs) or device drivers can also produce

events. On the other hand, only active objects can consume events, because only active

objects have event queues.
NOTE

QF also provides “raw” thread-safe event queues (struct QEQueue), which can consume

events as well. These “raw” thread-safe queues cannot block and are intended to deliver

events to ISRs or device drivers. Refer to Chapter 7 for more details.
The most important characteristic of event management in QF is that the framework

passes around only pointers to events, not the events themselves. QF never copies the
www.newnespress.com

37Getting Started with UML State Machines and Event-Driven Programming
events by value (“zero-copy” policy); even in case of publishing events that often

involves multicasting the same event to multiple subscribers. The actual event instances

are either constant events statically allocated at compile time or dynamic events

allocated at runtime from one of the event pools that the framework manages. Listing 1.3

provides examples of publishing static events and posting dynamic events from the

ISRs of the “Fly ‘n’ Shoot” version for the Stellaris board (file <qp>\qpc\examples

\cortex-m3\vanilla\iar\game-ev-lm3s811\bsp.c). In Section 1.7.3 you will

see other examples of event posting from active objects in the state machine code.
Listing 1.3 Generating, posting, and publishing events from the ISRs
in bsp.c for the Stellaris board

(1) void ISR_SysTick(void) {

(2) static QEvent const tickEvt = { TIME_TICK_SIG, 0 };

(3) QF_publish(&tickEvt); /* publish the tick event to all subscribers */

(4) QF_tick(); /* process all armed time events */

}

/*...*/

(5) void ISR_ADC(void) {

static uint32_t adcLPS = 0; /* Low-Pass-Filtered ADC reading */

static uint32_t wheel = 0; /* the last wheel position */

unsigned long tmp;

ADCIntClear(ADC_BASE, 3); /* clear the ADC interrupt */

(6) ADCSequenceDataGet(ADC_BASE, 3, &tmp); /* read the data from the ADC */

/* 1st order low-pass filter: time constant ~= 2^n samples

* TF = (1/2^n)/(z-((2^n - 1)/2^n)),

* e.g., n=3, y(k+1) = y(k) - y(k)/8 + x(k)/8 => y += (x - y)/8

*/

(7) adcLPS += (((int)tmp - (int)adcLPS + 4) >> 3); /* Low-Pass-Filter */

/* compute the next position of the wheel */

(8) tmp = (((1 << 10) - adcLPS)*(BSP_SCREEN_HEIGHT - 2)) >> 10;

if (tmp != wheel) { /* did the wheel position change? */

(9) ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG);

(10) ope->x = (uint8_t)GAME_SHIP_X; /* x-position is fixed */

(11) ope->y = (uint8_t)tmp;

(12) QActive_postFIFO(AO_ship, (QEvent *)ope); /* post to the Ship AO */

wheel = tmp; /* save the last position of the wheel */

}

. . .

}

www.newnespress.com

38 Chapter 1
(1) In the case of the Stellaris board, the function ISR_SysTick() services the

system clock tick ISR generated by the Cortex-M3 system tick timer.

(2) The TIME_TICK event never changes, so it can be statically allocated just

once. This event is declared as const, which means that it can be placed in

ROM. The initializer list for this event consists of the signal TIME_TICK_SIG

followed by zero. This zero informs the QF framework that this event is

static and should never be recycled to an event pool.

(3) The ISR calls the framework function QF_publish(), which takes the

pointer to the tickEvt event to deliver to all subscribers.

(4) The ISR calls the function QF_tick(), in which the framework manages

the armed time events.

(5) The function ISR_ADC() services the ADC conversions, which ultimately

deliver the position of the Ship.

(6) The ISR reads the data from the ADC.

(7,8) A low-pass filter is applied to the raw ADC reading and the potentiometer

wheel position is computed.

(9) The QF macro Q_NEW(ObjectPosEvt, PLAYER_SHIP_MOVE_SIG)

dynamically allocates an instance of the ObjectPosEvt event from an event

pool managed by QF. The macro also performs the association between the

signal PLAYER_SHIP_MOVE_SIG and the allocated event. The Q_NEW()

macro returns the pointer to the allocated event.
NOTE

The PLAYER_SHIP_MOVE(x, y) event is an example of an event with changing parameters.

In general, such an event cannot be allocated statically (like the TIME_TICK event at label

(2)) because it can change asynchronously next time the ISR executes. Some active objects

in the system might still be referring to the event via a pointer, so the event should not be

changing. Dynamic event allocation of QF solves all such concurrency issues because every

time a new event is allocated. QF then recycles the dynamic events after it determines that all

active objects are done with accessing the events.
(10,11) The x and y parameters of the event are assigned.

(12) The dynamic event is posted directly to the Ship active object.
www.newnespress.com

39Getting Started with UML State Machines and Event-Driven Programming
1.7 Coding Hierarchical State Machines

Contrary to widespread misconceptions, you don’t need big design automation tools to

translate hierarchical state machines (UML statecharts) into efficient and highly

maintainable C or C++. This section explains how to hand-code the Ship state machine

from Figure 1.6 with the help of the QF real-time framework and the QEP hierarchical

processor, which is also part of the QP event-driven platform. Once you know how

to code this state machine, you know how to code them all.

The source code for the Ship state machine is found in the file ship.c located either in

the DOS version or the Stellaris version of the “Fly ‘n’ Shoot” game. I break the

explanation of this file into three steps.

1.7.1 Step 1: Defining the Ship Structure

In the first step you define the Ship data structure. Just as in the case of events, you use

inheritance to derive the Ship structure from the framework structure QActive (see

the sidebar “Single Inheritance in C”). Creating this inheritance relationship ties the

Ship structure to the QF framework.

The main responsibility of the QActive base structure is to store the information about the

current active state of the state machine as well as the event queue and priority level of

the Ship active object. In fact, QActive itself derives from a simpler QEP structure QHsm

that represents just the current active state of a hierarchical state machine. On top of that

information, almost every statemachine must also store other “extended-state” information.

For example, the Ship object is responsible for maintaining the Ship position as well as

the score accumulated in the game. You supply this additional information bymeans of data

members enlisted after the base structure member super, as shown in Listing 1.4.
Listing 1.4 Deriving the Ship structure in file ship.c

(1) #include "qp_port.h" /* the QP port */

(2) #include "bsp.h" /* Board Support Package */

(3) #include "game.h" /* this application */

/* local objects --*/

(4) typedef struct ShipTag {

(5) QActive super; /* derive from the QActive struct */

(6) uint8_t x; /* x-coordinate of the Ship position on the display */

(7) uint8_t y; /* y-coordinate of the Ship position on the display */

(8) uint8_t exp_ctr; /* explosion counter, used to animate explosions */

Continued onto next page

www.newnespress.com

(9) uint16_t score; /* running score of the game */

(10) } Ship; /* the typedef-ed name for the Ship struct */

/* state handler functions... */

(11) static QState Ship_active (Ship *me, QEvent const *e);

(12) static QState Ship_parked (Ship *me, QEvent const *e);

(13) static QState Ship_flying (Ship *me, QEvent const *e);

(14) static QState Ship_exploding(Ship *me, QEvent const *e);

(15) static QState Ship_initial (Ship *me, QEvent const *e);

(16) static Ship l_ship; /* the sole instance of the Ship active object */

/* global objects --*/

(17) QActive * const AO_ship = (QActive *)&l_ship; /* opaque pointer to Ship AO */

40 Chapter 1
(1) Every application-level C file that uses the QP platform must include the

qp_port.h header file.

(2) The bsp.h header file contains the interface to the Board Support Package.

(3) The game.h header file contains the declarations of events and other facilities

shared among the components of the application (see Listing 1.2).

(4) This structure defines the Ship active object.
NOTE

I like to keep active objects, and indeed all state machine objects (such as Mines), strictly

encapsulated. Therefore, I don’t put the state machine structure definitions in header files; rather,

I define them right in the implementation file, such as ship.c. That way I can be sure that the

internal data members of the Ship structure are not known to any other parts of the application.
(5) The Ship active object structure derives from the framework structure

QActive, as described in the sidebar “Single Inheritance in C.”

(6,7) The x and y data members represent the position of the Ship on the display.

(8) The exp_ctr member is used for pacing the explosion animation (see also the

“exploding” state in the Ship state diagram in Figure 1.6).

(9) The score member stores the accumulated score in the game.
www.newnespress.com

41Getting Started with UML State Machines and Event-Driven Programming
(10) I use the typedef to define the shorter name Ship equivalent to

struct ShipTag.

(11-14) These four functions are called state-handler functions because they correspond

one to one to the states of the Ship state machine shown in Figure 1.6. For

example, the Ship_active() function represents the “active” state. The

QEP event processor calls the state-handler functions to realize the UML

semantics of state machine execution. All state-handler functions have the same

signature. A state-handler function takes the state machine pointer and the

event pointer as arguments and returns the status of the operation back to the

event processor—for example whether the event was handled or not. The return

type QState of state-handler functions is typedef-ed to uint8_t as

QState in the header file <qp>\qpc\include\qep.h.
NOTE

I use a simple naming convention to strengthen the association between the structures and the

functions designed to operate on these structures. First, I name the functions by combining

the typedef’ed structure name with the name of the operation (e.g., Ship_active). Sec-

ond, I always place the pointer to the structure as the first argument of the associated func-

tion, and I always name this argument “me” (e.g., Ship_active(Ship *me, ...)).
(15) In addition to state-handler functions, every state machine must declare the

initial pseudostate, which QEP invokes to execute the topmost initial

transition (see Figure 1.6(1)). The initial pseudostate handler has a signature

identical to the regular state-handler function.

(16) In this line I statically allocate the storage for the Ship active object. Note

that the object l_ship is defined as static so that it is accessible only

locally at the file scope of the ship.c file.

(17) In this line I define and initialize the global pointer AO_Ship to the Ship

active object (see also Listing 1.2(10)). This pointer is “opaque” because it

treats the Ship object as the generic QActive base structure rather than the

specific Ship structure. The power of an “opaque” pointer is that it allows me

to completely hide the definition of the Ship structure and make it

inaccessible to the rest of the application. Still, the other application

components can access the Ship object to post events directly to it via the

QActive_postFIFO(QActive *me, QEvent const *e) function.
www.newnespress.com

42 Chapter 1
1.7.2 Step 2: Initializing the State Machine

The state machine initialization is divided into the following two steps for increased

flexibility and better control of the initialization timeline:

1. The state machine “constructor”; and

2. The top-most initial transition.

The state machine “constructor,” such as Ship_ctor(), intentionally does not execute

the topmost initial transition defined in the initial pseudostate because at that time

some vital objects can be missing and critical hardware might not be properly initialized

yet.3 Instead, the state machine “constructor” merely puts the state machine in the

initial pseudostate. Later, the user code must trigger the topmost initial transition

explicitly, which happens actually inside the function QActive_start() (see

Listing 1.1(18-20)). Listing 1.5 shows the instantiation (the “constructor” function)

and initialization (the initial pseudostate) of the Ship active object.
Listing 1.5 Instantiation and initialization of the Ship active object in ship.c

(1) void Ship_ctor(void) { /* instantiation */

(2) Ship *me = &l_ship;

(3) QActive_ctor(&me->super, (QStateHandler)&Ship_initial);

(4) me->x = GAME_SHIP_X;

(5) me->y = GAME_SHIP_Y;

}

/*..*/

(6) QState Ship_initial(Ship *me, QEvent const *e) { /* initialization */

(7) QActive_subscribe((QActive *)me, TIME_TICK_SIG);

(8) QActive_subscribe((QActive *)me, PLAYER_TRIGGER_SIG);

(9) return Q_TRAN(&Ship_active); /* top-most initial transition */

}

(1) The global function Ship_ctor() is prototyped in game.h and called at the

beginning of main().

(2) The “me” pointer points to the statically allocated Ship object (see Listing 1.4(16)).
3 In C++, the static constructors run even before main().

www.newnespress.com

43Getting Started with UML State Machines and Event-Driven Programming
(3) Every derived structure is responsible for initializing the part inherited from

the base structure. The “constructor” QActive_ctor() puts the state machine

in the initial pseudostate &Ship_initial (see Listing 1.4(15)).

(4,5) The Ship position is initialized.

(6) The Ship_initial() function defines the topmost initial transition in the

Ship state machine (see Figure 1.6(1)).

(7,8) The Ship active object subscribes to signals TIME_TICK_SIG and

PLAYER_TRIGGER_SIG, as specified in the state diagram in Figure 1.6(1).

(9) The initial state “active” is specified by returning the QP macro Q_TRAN().
NOTE

The macro Q_TRAN() must always follow the return statement.
1.7.3 Step 3: Defining State-Handler Functions

In the last step, you actually code the Ship state machine by implementing one state at

a time as a state-handler function. To determine what elements belong to any given

state-handler function, you follow around the state’s boundary in the diagram

(Figure 1.6). You need to implement all transitions originating at the boundary, any

entry and exit actions defined in the state, and all internal transitions enlisted directly

in the state. Additionally, if there is an initial transition embedded directly in the state,

you need to implement it as well.

Take for example the state “flying” shown in Figure 1.6. This state has an entry action

and two transitions originating at its boundary: HIT_WALL and HIT_MINE(type) as

well as three internal transitions TIME_TICK, PLAYER_TRIGGER, and

DESTROYED_MINE(score). The “flying” state nests inside the “active” superstate.

Listing 1.6 shows two state-handler functions of the Ship state machine from Figure 1.6.

The state-handler functions correspond to the states “active” and “flying,” respectively.

The explanation section immediately following the listing highlights the important

implementation techniques.
www.newnespress.com

Listing 1.6 State-handler functions for states “active” and “flying” in ship.c

(1) QState Ship_active(Ship *me, QEvent const *e) {

(2) switch (e->sig) {

(3) case Q_INIT_SIG: { /* nested initial transition */

(4) /* any actions associated with the initial transition */

(5) return Q_TRAN(&Ship_parked);

}

(6) case PLAYER_SHIP_MOVE_SIG: {

(7) me->x = ((ObjectPosEvt const *)e)->x;

(8) me->y = ((ObjectPosEvt const *)e)->y;

(9) return Q_HANDLED();

}

}

(10) return Q_SUPER(&QHsm_top); /* return the superstate */

}

/*...*/

QState Ship_flying(Ship *me, QEvent const *e) {

switch (e->sig) {

(11) case Q_ENTRY_SIG: {

(12) ScoreEvt *sev;

me->score = 0; /* reset the score */

(13) sev = Q_NEW(ScoreEvt, SCORE_SIG);

(14) sev->score = me->score;

(15) QActive_postFIFO(AO_Tunnel, (QEvent *)sev);

(16) return Q_HANDLED();

}

case TIME_TICK_SIG: {

/* tell the Tunnel to draw the Ship and test for hits */

ObjectImageEvt *oie = Q_NEW(ObjectImageEvt, SHIP_IMG_SIG);

oie->x = me->x;

oie->y = me->y;

oie->bmp = SHIP_BMP;

QActive_postFIFO(AO_Tunnel, (QEvent *)oie);

++me->score; /* increment the score for surviving another tick */

if ((me->score % 10) == 0) { /* is the score "round"? */

ScoreEvt *sev = Q_NEW(ScoreEvt, SCORE_SIG);

sev->score = me->score;

QActive_postFIFO(AO_Tunnel, (QEvent *)sev);

}

return Q_HANDLED();

}

case PLAYER_TRIGGER_SIG: { /* trigger the Missile */

ObjectPosEvt *ope = Q_NEW(ObjectPosEvt, MISSILE_FIRE_SIG);

ope->x = me->x;

ope->y = me->y + SHIP_HEIGHT - 1;

www.newnespress.com

44 Chapter 1

QActive_postFIFO(AO_Missile, (QEvent *)ope);

return Q_HANDLED();

}

case DESTROYED_MINE_SIG: {

me->score += ((ScoreEvt const *)e)->score;

/* the score will be sent to the Tunnel by the next TIME_TICK */

return Q_HANDLED();

}

(17) case HIT_WALL_SIG:

(18) case HIT_MINE_SIG: {

(19) /* any actions associated with the transition */

(20) return Q_TRAN(&Ship_exploding);

}

}

(21) return Q_SUPER(&Ship_active); /* return the superstate */

}

45Getting Started with UML State Machines and Event-Driven Programming
(1) Each state handler must have the same signature, that is, it must take two

parameters: the state machine pointer “me” and the pointer to QEvent.

The keyword const before the * in the event pointer declaration means that

the event pointed to by that pointer cannot be changed inside the state-handler

function (i.e., the event is read-only). A state-handler function must return

QState, which conveys the status of the event handling to the QEP event

processor.

(2) Typically, every state handler is structured as a switch statement that

discriminates based on the signal of the event e->sig.

(3) This line of code pertains to the nested initial transition Figure 1.6(2). QEP

provides a reserved signal Q_INIT_SIG that the framework passes to the state-

handler function when it wants to execute the initial transition.

(4) You can enlist any actions associated with this initial transition (none in this

particular case).

(5) You designate the target substate with the Q_TRAN() macro. This macro must

always follow the return statement, through which the state-handler function

informs the QEP event processor that the transition has been taken.
www.newnespress.com

NOTE

The initial transition must necessarily target a direct or transitive substate of a given state. An

initial transition cannot target a peer state or go up in state hierarchy to higher-level states,

which in the UML would represent a “malformed” state machine.

46 Chapter 1
(6) This line of code pertains to the internal transition PLAYER_SHIP_MOVE_SIG

(x, y) in Figure 1.6(3).

(7,8) You access the data members of the Ship state machine via the “me” argument

of the state-handler function. You access the event parameters via the “e”

argument. You need to cast the event pointer from the generic QEvent base

class to the specific event structure expected for the PLAYER_SHIP_MOVE_SIG,

which is ObjectPosEvt in this case.
NOTE

The association between the event signal and event structure (event parameters) is estab-

lished at the time the event is generated. All recipients of that event must know about this

association to perform the cast to the correct event structure.
(9) You terminate the case statement with “return QHANDLED ()”, which informs

the QEP processor that the event has been handled but no transition has been

taken.

(10) The final return from a state-handler function designates the superstate of that

state by means of the QEP macro Q_SUPER(). The final return statement

from a state-handler function represents the single point of maintenance for

changing the nesting level of a given state. The state “active” in Figure 1.6 has

no explicit superstate, which means that it is implicitly nested in the “top” state.

The “top” state is a UML concept that denotes the ultimate root of the state

hierarchy in a hierarchical state machine. QEP provides the “top” state as a

state-handler function QHsm_top(), and therefore the Ship_active() state

handler uses the pointer &QHsm_top as the argument of the macro Q_SUPER().
www.newnespress.com

NOTE

In C and C++, a pointer-to-function QHsm_top() can be written either as QHsm_top or
&QHsm_top. Even though the notation QHsm_top is more succinct, I prefer adding the amper-

sand explicitly, to leave absolutely no doubt that I mean a pointer-to-function &QHsm_top.

47Getting Started with UML State Machines and Event-Driven Programming
(11) This line of code pertains to the entry action into state “flying” (Figure 1.6(5)).

QEP provides a reserved signal Q_ENTRY_SIG that the framework passes to the

state-handler function when it wants to execute the entry actions.

(12) The entry action to “flying” posts the SCORE event to the Tunnel active object

(Figure 1.6(5)). This line defines a temporary pointer to the event structure

ScoreEvt.

(13) The QF macro Q_NEW(ScoreEvt, SCORE_SIG) dynamically allocates an

instance of the ScoreEvt from an event pool managed by QF. The macro

also performs the association between the signal SCORE_SIG and the

allocated event. The Q_NEW() macro returns the pointer to the allocated

event.

(14) The score parameter of the ScoreEvt is set from the state machine member

me->score.

(15) The sev event is posted directly to the Tunnel active object by means of the

QP function QActive_postFIFO(). The arguments of this function are

the recipient active object (AO_Tunnel in this case) and the pointer to the

event (the temporary pointer sev in this case).

(16) You terminate the case statement with return Q_HANDLED(), which

informs QEP that the entry actions have been handled.

(17,18) These two lines of code pertain to the state transitions from “flying” to

“exploding” (Figure 1.6(9, 10)).

(19) You can enlist any actions associated with the transition (none in this

particular case).

(20) You designate the target of the transition with the Q_TRAN() macro.
www.newnespress.com

48 Chapter 1
(21) The final return from a state-handler function designates the superstate of that

state. The state “flying” in Figure 1.6 nests in the state “active,” so the state

handler Ship_flying() returns the pointer &Ship_active.

When implementing state-handler functions you need to keep in mind that the

QEP event processor is in charge here rather than your code. QEP will invoke a

state-handler function for various reasons: for hierarchical event processing, for

execution of entry and exit actions, for triggering initial transitions, or even just to elicit

the superstate of a given state handler. Therefore, you should not assume that a state

handler would be invoked only for processing signals enlisted in the case statements.

You should avoid any code outside the switch statement, especially code that

would have side effects.

1.8 The Execution Model

As you saw in Listing 1.1(21), the main() function eventually gives control to the

event-driven framework by calling QF_run() to execute the application. In this

section, I briefly explain how QF allocates the CPU cycles to various tasks within the

system and what options you have in choosing the execution model.
1.8.1 Simple Nonpreemptive “Vanilla” Scheduler

The “Fly ‘n’ Shoot” example uses the simplest QF configuration, in which QF runs on a

bare-metal target processor without any underlying operating system or kernel.4 I call

such a QF configuration “plain vanilla” or just “vanilla.”

QF includes a simple nonpreemptive “vanilla” kernel, which executes one active object

at a time in the infinite loop (similar to the “superloop”). The “vanilla” kernel is

engaged after each event is processed in the run-to-completion (RTC) fashion to choose

the next highest-priority active object ready to process the next event. The “vanilla”

scheduler is cooperative, which means that all active objects cooperate to share a single

CPU and implicitly yield to each other after every RTC step. The kernel is

nonpreemptive, meaning that every active object must completely process an event

before any other active object can start processing another event.
4 The 80�86 version of the “Fly ‘n’ Shoot” game runs on top of DOS, but DOS does not provide any

multitasking support.

www.newnespress.com

49Getting Started with UML State Machines and Event-Driven Programming
The ISRs can preempt the execution of active objects at any time, but due to the

simplistic nature of the “vanilla” kernel, every ISR returns to exactly the preemption

point. If the ISR posts or publishes an event to any active object, the processing of this

event won’t start until the current RTC step completes. The maximum time an event for

the highest-priority active object can be delayed this way is called the task-level

response. With the nonpreemptive “vanilla” kernel, the task-level response is equal to

the longest RTC step of all active objects in the system. Note that the task-level

response of the “vanilla” kernel is still a lot better than the traditional “superloop”

(a.k.a. main+ISRs) architecture. I’ll have more to say about this in the upcoming

Section 1.9, where I compare the event-driven “Fly ‘n’ Shoot” example to the

traditionally structured Quickstart application.

The task-level response of the simple “vanilla” kernel turns out to be adequate for

surprisingly many applications because state machines by nature handle events quickly

without a need to busy-wait for events. (A state machine simply runs to completion

and becomes dormant until another event arrives.) Also note that often you can make

the task-level response as fast as you need by breaking up longer RTC steps into shorter

ones (e.g., by using the “Reminder” state pattern described in Chapter 5).

1.8.2 The QK Preemptive Kernel

In some cases, breaking up long RTC steps into short enough pieces might be very

difficult, and consequently the task-level response of the nonpreemptive “vanilla”

kernel might be too long. An example system could be a GPS receiver. Such a receiver

performs a lot of floating-point number crunching on a fixed-point CPU to calculate

the GPS position. At the same time, the GPS receiver must track the GPS satellite

signals, which involves closing control loops in submillisecond intervals. It turns out

that it’s not easy to break up the position-fix computation into short enough RTC steps

to allow reliable signal tracking.

But the RTC semantics of state machine execution do not mean that a state machine has

to monopolize the CPU for the duration of the RTC step. A preemptive kernel can

perform a context switch in the middle of the long RTC step to allow a higher-priority

active object to run. As long as the active objects don’t share resources, they can run

concurrently and complete their RTC steps independently (see also Section 6.3.3 in

Chapter 6).

The QP event-driven platform includes a tiny, fully preemptive, priority-based

real-time kernel component called QK, which is specifically designed for processing
www.newnespress.com

50 Chapter 1
events in the RTC fashion. Configuring QP to use the preemptive QK kernel is very

easy, but as with any fully preemptive kernel you must be very careful with any

resources shared among active objects.5 The “Fly ‘n’ Shoot” example has been

purposely designed to avoid any resource sharing among active objects, so the

application code does not need to change at all to run on top of the QK preemptive

kernel, or any other preemptive kernel or RTOS for that matter. The accompanying

code contains the “Fly ‘n’ Shoot” example with QK in the following directory:

<qp>\qpc\examples\80x86\qk\tcpp101\l\game\. You can execute this

example in a DOS-console on any standard Windows-based PC.
1.8.3 Traditional OS/RTOS

QP can also work with a traditional operating system (OS), such as Windows or Linux,

or virtually any real-time operating system (RTOS) to take advantage of the existing

device drivers, communication stacks, and other middleware.

QP contains a platform abstraction layer (PAL), which makes adapting QP to virtually

any operating system easy. The carefully designed PAL allows tight integration with

the underlying OS/RTOS by reusing any provided facilities for interrupt management,

message queues, and memory partitions. I cover porting QP in Chapter 8.
1.9 Comparison to the Traditional Approach

The “Fly ‘n’ Shoot” game behaves intentionally almost identically to the Quickstart

application provided in source code with the Luminary Micro Stellaris EV-LM3S811

evaluation kit [Luminary 06]. In this section I’d like to compare the traditional approach

represented by the Quickstart application with the state machine-based solution

exemplified in the “Fly ‘n’ Shoot” game.

Figure 1.11(A) shows schematically the flowchart of the Quickstart application;

Figure 1.11(B) shows the flowchart of the “Fly ‘n’ Shoot” game running on top of the

cooperative “vanilla” kernel. At the highest level, the flowcharts are similar in that they

both consist of an endless loop surrounding the entire processing. But the internal

structure of the main loop is very different in the two cases. As indicated by the heavy
5 QK provides a mutex facility for enforcing a mutually exclusive access to shared resources. The QK

mutex uses the priority-ceiling protocol to avoid priority inversions. Refer to Chapter 10 for more

information.

www.newnespress.com

51Getting Started with UML State Machines and Event-Driven Programming
lines in the flowcharts, the Quickstart application spends most of its time in the tight

“event loops” designed to busy-wait for certain events, such as the screen update event.

In contrast, the “Fly ‘n’ Shoot” application spends most of its time right in the main

loop. The QP framework dispatches any available event to the appropriate state

machine that handles the event and returns quickly to the main loop without ever

waiting for events internally.
ScreenSaver();

Busy-wait
for screen
update event

MainScreen()

PlayGame();

A

QHsm_dispatch();

B

QF_start();

event
available

Busy-wait
for screen
update event

QF_onIdle();

QF_run()

no
events

Figure 1.11: The control flow in the Quickstart application (A) and the
“Fly ‘n’ Shoot” example (B). The heavy lines represent the most frequently

exercised paths through the code.
The Quickstart application has much more convoluted flow of control than the

“Fly ‘n’ Shoot” example because the traditional solution is very specific to the problem

at hand whereas the state-machine approach is generic. The Quickstart application is

structured very much like a traditional sequential program that tries to stay in control
www.newnespress.com

52 Chapter 1
from the beginning to the end. From time to time, the application pauses to busy-wait

for a certain event, whereas the code is generally not ready to handle any other

events than the one it chooses to wait for. All this contributes to the inflexibility of the

design. Adding new events is hard because the whole structure of the intervening

code is designed to accept only very specific events and would need to change

dramatically to accommodate new events. Also, while busy-waiting for the screen

update event (equivalent to the TIME_TICK event in “Fly ‘n’ Shoot” example), the

application is really not responsive to any other events. The task-level response is hard

to characterize and generally depends on the event type. The timing established by

the hard-coded waiting for the existing events might not work well for new events.

In contrast, the “Fly ‘n’ Shoot” application has a much simpler control flow that is

purely event-driven and completely generic (see Figure 1.11(B)). The context of each

active object component is represented as the current state of a state machine, rather

than as a certain place in the code. That way, hanging in tight “event loops” around

certain locations in the code corresponding to the current context is unnecessary.

Instead, a state machine remembers the context very efficiently as a small data item (the

state-variable; see Chapter 3). After processing of each event, the state machine can

return to the common event loop that is designed generically to handle all kinds of

events. For every event, the state machine naturally picks up where it left off and moves

on to the next state, if necessary. Adding new events is easy in this design because

a state machine is responsive to any event at any time. An event-driven,

state-machine-based application is incomparably more flexible and resilient to change

than the traditional one.
NOTE

The generic event loop can also very easily detect the situation when no events are available,

in which case the QP framework calls the QF_onIdle() function (see Figure 1.11(B)). This

callback function is designed to be customized by the application and is the ideal place to put

the CPU in a low-power sleep mode to conserve the power. In contrast, the traditional

approach does not offer any single place to transition to the low-power sleep mode and con-

sequently is much less friendly for implementing truly low-power designs.
1.10 Summary

If you’ve never done event-driven programming before, the internal structure of the

“Fly ‘n’ Shoot” game must certainly represent a big paradigm shift for you. In fact,
www.newnespress.com

53Getting Started with UML State Machines and Event-Driven Programming
I hope that it actually blows your mind, because otherwise I’m not sure that you really

appreciate the complete reversal of control of an event-driven program compared to

the traditional sequential code. This reversal of control, known as the Hollywood

Principle (don’t call us, we’ll call you), baffles many newcomers, who often find it

“mind-boggling,” “backward,” or “weird.”

The “Fly ‘n’ Shoot” game is by no means a big application, but at the same time it is

definitely not trivial, either. You shouldn’t worry if you don’t fully understand it at

the first reading. In the upcoming chapters, I will provide a closer look at the state

machine design and coding techniques. In Part II, I discuss the features,

implementation, and porting of the QF real-time framework.

My main goal in this chapter was just to introduce you to the event-driven paradigm and

the modern state machines to convince you that these powerful concepts aren’t

particularly hard to implement directly in C or C++. Indeed, I hope you noticed that the

actual coding of the nontrivial “Fly ‘n’ Shoot” game wasn’t a big deal at all. All you

needed to know was just a few cookie-cutter rules for coding state machines and

familiarity with a few framework services for implementing the actions.

While the coding turned out to be essentially a nonissue; the bulk of the programming

effort was spent on the design of the application. At this point, I hope that the

“Fly ‘n’ Shoot” example helps you get the big picture of how the method works. Under

the event-driven model, the program structure is divided into two rough groups: events

and state machine components (active objects). An event represents the occurrence

of something interesting. A state machine codifies the reactions to the events, which

generally depend both on the nature of the event and on the state of the component.

While events often originate from the outside of your program, such as time ticks or

button presses in the “Fly ‘n’ Shoot” game, events can also be generated internally by

the program itself. For example, the Mine components generate notification events

when they detect a collision with the Missile or the Ship.

An event-driven program executes by constantly checking for possible events and,

when an event is detected, dispatching the event to the appropriate state machine

component (see Figure 1.11(B)). For this approach to work, the events must be checked

continuously and frequently. This implies that the state machines must execute quickly

so that the program can get back to checking for events. To meet this requirement, a

state machine cannot go into a condition where it is busy-waiting for some long or

indeterminate time. The most common example of this would be a while loop inside a

state-handler function, where the condition for termination was not under program
www.newnespress.com

54 Chapter 1
control—for instance, the button press. This kind of program structure, an indefinite

loop, is referred to as “blocking” code,6 and you saw examples of it in the Quickstart

application (see Figure 1.11(A)). For the event-driven programming model to work, you

must only write “nonblocking” code [Carryer 05].

Finally, the “Fly ‘n’ Shoot” example demonstrates the use of the event-driven platform

called QP, which is a collection of components for building event-driven

applications. The QF real-time framework component embodies the Hollywood

Principle by calling the application code, not the other way around. Such an

arrangement is very typical for event-driven systems and application frameworks

similar to QF are at the heart of virtually every design automation tool on the market

today.

The QF framework operates in the “Fly ‘n’ Shoot” game in its simplest configuration,

in which QF runs on a bare-metal target processor without any operating system. QF

QK (see Chapter 10) or can be easily ported to almost any traditional OS or RTOS

(see Chapter 8). In fact, you can view the QF framework itself as a high-level,

event-driven, real-time operating system.

can also be configured to work with the built-in preemptive real-time kernel called
6 In the context of a multitasking operating system the “blocking” code corresponds to waiting on a

semaphore, event flag, message mailbox, or other such operating system primitive.

www.newnespress.com

www.new
CHAP T E R 2
A Crash Course in UML
State Machines
One place we could really use help is in optimizing IF-THEN-ELSE constructs. Most programs start out
fairly well structured. As bugs are found and features are grafted on, IFs and ELSEs are added until no
human being really has a good idea how data flows through a function. Pretty printing helps, but does not
reduce the complexity of 15 nested IF statements.
—Jack Ganssle, “Break Points,” ESP Magazine, January 1991

Traditional, sequential programs can be structured as a single flow of control, using

standard constructs such as loops and nested function calls. Such programs represent

most of the execution context in the location of the program counter, in the procedure

call tree, and in the temporary variables allocated on the stack.

Event-driven programs, in contrast, require a series of fine-granularity event-handler

functions for handling events. These event-handler functions must execute quickly and

always return to the main event-loop, so no context can be preserved in the call tree and

the program counter. In addition, all stack variables disappear across calls to the

separate event-handlers. Thus, event-driven programs rely heavily on static variables to

preserve the execution context from one event-handler invocation to the next.

Consequently, one of the biggest challenges of event-driven programming lies in

managing the execution context represented as data. The main problem here is that the

context data must somehow feed back into the control flow of the event-handler code so

that each event handler can execute only the actions appropriate in the current context.

Traditionally, this dependence on the context very often leads to deeply nested

if-else constructs that direct the flow of control based on the context data.
nespress.com

56 Chapter 2
If you could eliminate even a fraction of these conditional branches (a.k.a. “spaghetti”

code), the software would be much easier to understand, test, and maintain, and the

sheer number of convoluted execution paths through the code would drop radically,

typically by orders of magnitude. Techniques based on state machines are capable of

achieving exactly this—a dramatic reduction of the different paths through the code and

simplification of the conditions tested at each branching point.

In this chapter I briefly introduce UML state machines that represent the current state of

the art in the long evolution of these techniques. My intention is not to give a complete,

formal discussion of UML state machines, which the official OMG specification [OMG 07]

covers comprehensively and with formality. Rather, my goal in this chapter is to lay a

foundation by establishing basic terminology, introducing basic notation,1 and clarifying

semantics. This chapter is restricted to only a subset of those state machine features

that are arguably most fundamental. The emphasis is on the role of UML state machines in

practical, everyday programming rather than mathematical abstractions.
2.1 The Oversimplification of the Event-Action
Paradigm

The currently dominating approach to structuring event-driven software is the

ubiquitous “event-action” paradigm, in which events are directly mapped to the code

that is supposed to be executed in response. The event-action paradigm is an important

stepping stone for understanding state machines, so in this section I briefly describe

how it works in practice.

I will use an example from the graphical user interface (GUI) domain, given that

GUIs make exemplary event-driven systems. In the book Constructing the User

Interface with Statecharts [Horrocks 99], Ian Horrocks discusses a simple GUI

calculator application distributed in millions of copies as a sample program with

Microsoft Visual Basic, in which he found a number of serious problems. As Horrocks

notes, the point of this analysis is not to criticize this particular program but to

identify the shortcomings of the general principles used in its construction.

When you launch the Visual Basic calculator (available from the companion Website,

in the directory <qp>\resources\vb\calc.exe), you will certainly find out that

most of the time it correctly adds, subtracts, multiplies, and divides (see Figure 2.1(A)).
1 Appendix B contains a comprehensive summary of the notation.

www.newnespress.com

57A Crash Course in UML State Machines
What’s not to like? However, play with the program for a while longer and you can

discover many corner cases in which the calculator provides misleading results, freezes,

or crashes altogether.
NOTE

Ian Horrocks found 10 serious errors in the Visual Basic calculator after only an hour of test-

ing. Try to find at least half of them.
For example, the Visual Basic calculator often has problems with the “–” event; just try

the following sequence of operations: 2, –, –, –, 2, =. The application crashes with a

runtime error (see Figure 2.1(B)). This is because the same button (–) is used to negate

a number and to enter the subtraction operator. The correct interpretation of the “–”

button-click event, therefore, depends on the context, or mode, in which it occurs.

Likewise, the CE (Cancel Entry) button occasionally works erroneously—try 2, x, CE,

3, =, and observe that CE had no effect, even though it appears to cancel the 2 entry

from the display. Again, CE should behave differently when canceling an operand than

canceling an operator. As it turns out, the application handles the CE event always

the same way, regardless of the context. At this point, you probably have noticed an
A B

Figure 2.1: Visual Basic calculator before the crash (A) and after a crash with a
runtime error (B).

www.newnespress.com

58 Chapter 2
emerging pattern. The application is especially vulnerable to events that require

different handling depending on the context.

This is not to say that the Visual Basic calculator does not attempt to handle the context.

Quite the contrary, if you look at the calculator code (available from the companion

Website, in the directory <qp>\resources\vb\calc.frm), you’ll notice that

managing the context is in fact the main concern of this application. The code is littered

with a multitude of global variables and flags that serve only one purpose: handling the

context. For example, DecimalFlag indicates that a decimal point has been entered,

OpFlag represents a pending operation, LastInput indicates the type of the last

button press event, NumOps denotes the number of operands, and so on. With this

representation, the context of the computation is represented ambiguously, so it is difficult

to tell precisely in which mode the application is at any given time. Actually, the

application has no notion of any single mode of operation but rather a bunch of tightly

coupled and overlapping conditions of operation determined by values of the global

variables and flags.

Listing 2.1 shows the conditional logic in which the event-handler procedure for the

operator events (+, – , *, and /) attempts to determine whether the – (minus) button-

click should be treated as negation or subtraction.
Listing 2.1 Fragment of Visual Basic code that attempts to determine
whether the – (minus) button-click event should be treated as negation or
subtraction

Private Sub Operator_Click(Index As Integer)
. . .
Select Case NumOps

Case 0
If Operator(Index).Caption = "-" And LastInput<> "NEG" Then

ReadOut = "-" & ReadOut
LastInput = "NEG"

End If
Case 1

Op1 = ReadOut
If Operator(Index).Caption = "-" And LastInput <> "NUMS" And

OpFlag <> "=" Then
ReadOut = "-"
LastInput = "NEG"

End If
. . .

www.newnespress.com

59A Crash Course in UML State Machines
The approach exemplified in Listing 2.1 is a fertile ground for the “corner case”

behavior (a.k.a. bugs) for at least three reasons:

� It always leads to convoluted conditional logic (a.k.a. “spaghetti” code).

� Each branching point requires evaluation of a complex expression.

� Switching between different modes requires modifying many variables, which

can easily lead to inconsistencies.

Convoluted conditional expressions like the one shown in Listing 2.1, scattered

throughout the code, are unnecessarily complex and expensive to evaluate at runtime.

They are also notoriously difficult to get right, even by experienced programmers, as

the bugs still lurking in the Visual Basic calculator attest. This approach is insidious

because it appears to work fine initially, but doesn’t scale up as the problem grows in

complexity. Apparently, the calculator application (overall only seven event handlers

and some 140 lines of Visual Basic code including comments) is just complex enough

to be difficult to get right with this approach.

The faults just outlined are rooted in the oversimplification of the event-action paradigm.

The Visual Basic calculator example makes it clear, I hope, that an event alone does

not determine the actions to be executed in response to that event. The current context

is at least equally important. The prevalent event-action paradigm, however, recognizes

only the dependency on the event-type and leaves the handling of the context to largely

ad hoc techniques that all too easily degenerate into spaghetti code.
2.2 Basic State Machine Concepts

The event-action paradigm can be extended to explicitly include the dependency on the

execution context. As it turns out, the behavior of most event-driven systems can be

divided into a relatively small number of chunks, where event responses within each

individual chunk indeed depend only on the current event-type but no longer on the

sequence of past events (the context). In other words, the event-action paradigm is still

applied, but only locally within each individual chunk.

A common and straightforward way of modeling behavior based on this idea is

through a finite state machine (FSM). In this formalism, “chunks of behavior” are called

states, and change of behavior (i.e., change in response to any event) corresponds to

change of state and is called a state transition. An FSM is an efficient way to specify

constraints of the overall behavior of a system. Being in a state means that the
www.newnespress.com

60 Chapter 2
system responds only to a subset of all allowed events, produces only a subset of

possible responses, and changes state directly to only a subset of all possible states.

The concept of an FSM is important in programming because it makes the event

handling explicitly dependent on both the event-type and on the execution context

(state) of the system. When used correctly, a state machine becomes a powerful

“spaghetti reducer” that drastically cuts down the number of execution paths through

the code, simplifies the conditions tested at each branching point, and simplifies the

transitions between different modes of execution.
2.2.1 States

A state captures the relevant aspects of the system’s history very efficiently. For

example, when you strike a key on a keyboard, the character code generated will be

either an uppercase or a lowercase character, depending on whether the Caps Lock is

active.2 Therefore, the keyboard’s behavior can be divided into two chunks (states):

the “default” state and the “caps_locked” state. (Most keyboards actually have an LED

that indicates that the keyboard is in the “caps_locked” state.) The behavior of a

keyboard depends only on certain aspects of its history, namely whether the Caps Lock

key has been pressed, but not, for example, on how many and exactly which other

keys have been pressed previously. A state can abstract away all possible (but

irrelevant) event sequences and capture only the relevant ones.

To relate this concept to programming, this means that instead of recording the event

history in a multitude of variables, flags, and convoluted logic, you rely mainly on just

one state variable that can assume only a limited number of a priori determined values

(e.g., two values in case of the keyboard). The value of the state variable crisply defines

the current state of the system at any given time. The concept of state reduces the

problem of identifying the execution context in the code to testing just the state variable

instead of many variables, thus eliminating a lot of conditional logic. Actually, in all but

the most basic state machine implementation techniques, such as the “nested-switch

statement” technique discussed in Chapter 3, even the explicit testing of the state

variable disappears from the code, which reduces the “spaghetti” further still (you

will experience this effect later in Chapters 3 and 4). Moreover, switching between

different states is vastly simplified as well, because you need to reassign just one state

variable instead of changing multiple variables in a self-consistent manner.
2 Ignore at this point the effects of the Shift, Ctrl, and Alt keys.

www.newnespress.com

61A Crash Course in UML State Machines
2.2.2 State Diagrams

FSMs have an expressive graphical representation in the form of state diagrams. These

diagrams are directed graphs in which nodes denote states and connectors denote

state transitions.3

For example, Figure 2.2 shows a UML state transition diagram corresponding to the

computer keyboard state machine. In UML, states are represented as rounded rectangles

labeled with state names. The transitions, represented as arrows, are labeled with the

triggering events followed optionally by the list of executed actions. The initial

transition originates from the solid circle and specifies the starting state when the

system first begins. Every state diagram should have such a transition, which should not

be labeled, since it is not triggered by an event. The initial transition can have

associated actions.
default caps_locked

CAPS_LOCK

CAPS_LOCK

initial
transition

states

trigger list of actions

ANY_KEY / send_lower_case_scan_code(); ANY_KEY / send_upper_case_scan_code();

state
transition

Figure 2.2: UML state diagram representing the computer keyboard state machine.
2.2.3 State Diagrams versus Flowcharts

Newcomers to the state machine formalism often confuse state diagrams with

flowcharts. The UML specification [OMG 07] isn’t helping in this respect because it

lumps activity graphs in the state machine package. Activity graphs are essentially

elaborate flowcharts.
3 Appendix B contains a succinct summary of the graphical notations used throughout the book, including

state transition diagrams.

www.newnespress.com

62 Chapter 2
Figure 2.3 shows a comparison of a state diagram with a flowchart. A state machine

(panel (A)) performs actions in response to explicit triggers. In contrast, the flowchart

(panel (B)) does not need explicit triggers but rather transitions from node to node in its

graph automatically upon completion of activities.
s1

A

s2

s3

do X

do Y do Z

B

E1 / action1();

E2 / action2();

E3 / action3(); do W

Figure 2.3: Comparison of (A) state machine (statechart) with (B) activity diagram
(flowchart).
Graphically, compared to state diagrams, flowcharts reverse the sense of vertices and

arcs. In a state diagram, the processing is associated with the arcs (transitions),

whereas in a flowchart, it is associated with the vertices. A state machine is idle when it

sits in a state waiting for an event to occur. A flowchart is busy executing activities

when it sits in a node. Figure 2.3 attempts to show that reversal of roles by aligning

the arcs of the statecharts with the processing stages of the flowchart.

You can compare a flowchart to an assembly line in manufacturing because the flowchart

describes the progression of some task from beginning to end (e.g., transforming source

code input into object code output by a compiler). A state machine generally has no

notion of such a progression. A computer keyboard, for example, is not in a more

advanced stage when it is in the “caps_locked” state, compared to being in the “default”

state; it simply reacts differently to events. A state in a state machine is an efficient way

of specifying a particular behavior, rather than a stage of processing.

The distinction between state machines and flowcharts is especially important

because these two concepts represent two diametrically opposed programming
www.newnespress.com

63A Crash Course in UML State Machines
paradigms: event-driven programming (state machines) and transformational

programming (flowcharts). You cannot devise effective state machines without

constantly thinking about the available events. In contrast, events are only a secondary

concern (if at all) for flowcharts.
2.2.4 Extended State Machines

One possible interpretation of state for software systems is that each state represents

one distinct set of valid values of the whole program memory. Even for simple

programs with only a few elementary variables, this interpretation leads to an

astronomical number of states. For example, a single 32-bit integer could contribute

to over 4 billion different states. Clearly, this interpretation is not practical, so

program variables are commonly dissociated from states. Rather, the complete

condition of the system (called the extended state) is the combination of a

qualitative aspect (the state) and the quantitative aspects (the extended state

variables). In this interpretation, a change of variable does not always imply a

change of the qualitative aspects of the system behavior and therefore does not lead

to a change of state [Selic+ 94].

State machines supplemented with variables are called extended state machines.

Extended state machines can apply the underlying formalism to much more complex

problems than is practical without including extended state variables. For instance,

suppose the behavior of the keyboard depends on the number of characters typed on it

so far and that after, say, 1,000 keystrokes, the keyboard breaks down and enters the

final state. To model this behavior in a state machine without memory, you would need

to introduce 1,000 states (e.g., pressing a key in state stroke123 would lead to state

stroke124, and so on), which is clearly an impractical proposition. Alternatively, you

could construct an extended state machine with a key_count down-counter variable.

The counter would be initialized to 1,000 and decremented by every keystroke

without changing state. When the counter reached zero, the state machine would

enter the final state.

The state diagram from Figure 2.4 is an example of an extended state machine, in which

the complete condition of the system (called the extended state) is the combination of a

qualitative aspect—the “state”—and the quantitative aspects—the extended state

variables (such as the down-counter key_count). In extended state machines, a change

of a variable does not always imply a change of the qualitative aspects of the system

behavior and therefore does not always lead to a change of state.
www.newnespress.com

64 Chapter 2
The obvious advantage of extended state machines is flexibility. For example,

extending the lifespan of the “cheap keyboard” from 1,000 to 10,000 keystrokes would

not complicate the extended state machine at all. The only modification required

would be changing the initialization value of the key_count down-counter in the

initial transition.
default

ANY_KEY / --key_count;

[key_count == 0][else] [key_count == 0]

ANY_KEY / --key_count;

[else]

CAPS_LOCK

CAPS_LOCK

/ key_count = 1000;

guard
conditions

caps_locked

choice
pseudostate

Figure 2.4: Extended state machine of “cheap keyboard” with extended state
variable key_count and various guard conditions.
2.2.5 Guard Conditions

This flexibility of extended state machines comes with a price, however, because of the

complex coupling between the “qualitative” and the “quantitative” aspects of the

extended state. The coupling occurs through the guard conditions attached to

transitions, as shown in Figure 2.4.

Guard conditions (or simply guards) are Boolean expressions evaluated dynamically

based on the value of extended state variables and event parameters (see the discussion

of events and event parameters in the next section). Guard conditions affect the

behavior of a state machine by enabling actions or transitions only when they evaluate

to TRUE and disabling them when they evaluate to FALSE. In the UML notation,

guard conditions are shown in square brackets (e.g., [key_count == 0]).

The need for guards is the immediate consequence of adding memory (extended state

variables) to the state machine formalism. Used sparingly, extended state variables

and guards make up an incredibly powerful mechanism that can immensely simplify
www.newnespress.com

65A Crash Course in UML State Machines
designs. But don’t let the fancy name (“guard”) and the concise UML notation fool you.

When you actually code an extended state machine, the guards become the same

IFs and ELSEs that you wanted to eliminate by using the state machine in the first

place. Too many of them, and you’ll find yourself back in square one (“spaghetti”),

where the guards effectively take over handling of all the relevant conditions in the

system.

Indeed, abuse of extended state variables and guards is the primary mechanism of

architectural decay in designs based on state machines. Usually, in the day-to-day

battle, it seems very tempting, especially to programmers new to state machine

formalism, to add yet another extended state variable and yet another guard condition

(another if or an else) rather than to factor out the related behavior into a new

qualitative aspect of the system—the state. From my experience in the trenches, the

likelihood of such an architectural decay is directly proportional to the overhead (actual

or perceived) involved in adding or removing states. (That’s why I don’t particularly

like the popular state-table technique of implementing state machines that I describe in

Chapter 3, because adding a new state requires adding and initializing a whole new

column in the table.)

One of the main challenges in becoming an effective state machine designer is to

develop a sense for which parts of the behavior should be captured as the “qualitative”

aspects (the “state”) and which elements are better left as the “quantitative” aspects

(extended state variables). In general, you should actively look for opportunities to

capture the event history (what happened) as the “state” of the system, instead of storing

this information in extended state variables. For example, the Visual Basic calculator

uses an extended state variable DecimalFlag to remember that the user entered the

decimal point to avoid entering multiple decimal points in the same number. However,

a better solution is to observe that entering a decimal point really leads to a distinct

state “entering_the_fractional_part_of_a_number,” in which the calculator ignores

decimal points. This solution is superior for a number of reasons. The lesser reason is

that it eliminates one extended state variable and the need to initialize and test it. The

more important reason is that the state-based solution is more robust because the

context information is used very locally (only in this particular state) and is discarded as

soon as it becomes irrelevant. Once the number is correctly entered, it doesn’t really

matter for the subsequent operation of the calculator whether that number had a decimal

point. The state machine moves on to another state and automatically “forgets” the

previous context. The DecimalFlag extended state variable, on the other hand, “lays

around” well past the time the information becomes irrelevant (and perhaps outdated!).
www.newnespress.com

66 Chapter 2
Worse, you must not forget to reset DecimalFlag before entering another number

or the flag will incorrectly indicate that indeed the user once entered the decimal

point, but perhaps this happened in the context of the previous number.

Capturing behavior as the quantitative “state” has its disadvantages and limitations, too.

First, the state and transition topology in a state machine must be static and fixed at

compile time, which can be too limiting and inflexible. Sure, you can easily devise

“state machines” that would modify themselves at runtime (this is what often actually

happens when you try to recode “spaghetti” as a state machine). However, this is

like writing self-modifying code, which indeed was done in the early days of

programming but was quickly dismissed as a generally bad idea. Consequently,

“state” can capture only static aspects of the behavior that are known a priori and are

unlikely to change in the future.

For example, it’s fine to capture the entry of a decimal point in the calculator as a

separate state “entering_the_fractional_part_of_a_number,” because a number can

have only one fractional part, which is both known a priori and is not likely to change

in the future. However, implementing the “cheap keyboard” without extended state

variables and guard conditions would be practically impossible. This example points

to the main weakness of the quantitative “state,” which simply cannot store too

much information (such as the wide range of keystroke counts). Extended state

variables and guards are thus a mechanism for adding extra runtime flexibility to state

machines.

2.2.6 Events

In the most general terms, an event is an occurrence in time and space that has

significance to the system. Strictly speaking, in the UML specification the term

event refers to the type of occurrence rather than to any concrete instance of that

occurrence [OMG 07]. For example, Keystroke is an event for the keyboard, but each

press of a key is not an event but a concrete instance of the Keystroke event.

Another event of interest for the keyboard might be Power-on, but turning the power

on tomorrow at 10:05:36 will be just an instance of the Power-on event.

An event can have associated parameters, allowing the event instance to convey not

only the occurrence of some interesting incident but also quantitative information

regarding that occurrence. For example, the Keystroke event generated by pressing a

key on a computer keyboard has associated parameters that convey the character scan

code as well as the status of the Shift, Ctrl, and Alt keys.
www.newnespress.com

67A Crash Course in UML State Machines
An event instance outlives the instantaneous occurrence that generated it and might

convey this occurrence to one or more state machines. Once generated, the event

instance goes through a processing life cycle that can consist of up to three stages. First,

the event instance is received when it is accepted and waiting for processing (e.g., it

is placed on the event queue). Later, the event instance is dispatched to the state

machine, at which point it becomes the current event. Finally, it is consumed when the

state machine finishes processing the event instance. A consumed event instance is no

longer available for processing.
2.2.7 Actions and Transitions

When an event instance is dispatched, the state machine responds by performing

actions, such as changing a variable, performing I/O, invoking a function, generating

another event instance, or changing to another state. Any parameter values associated

with the current event are available to all actions directly caused by that event.

Switching from one state to another is called state transition, and the event that causes

it is called the triggering event, or simply the trigger. In the keyboard example, if the

keyboard is in the “default” state when the Caps Lock key is pressed, the keyboard will

enter the “caps_locked” state. However, if the keyboard is already in the “caps_locked”

state, pressing Caps Lock will cause a different transition—from the “caps_locked” to the

“default” state. In both cases, pressing Caps Lock is the triggering event.

In extended state machines, a transition can have a guard, which means that the

transition can “fire” only if the guard evaluates to TRUE. A state can have many

transitions in response to the same trigger, as long as they have nonoverlapping guards;

however, this situation could create problems in the sequence of evaluation of the

guards when the common trigger occurs. The UML specification intentionally does not

stipulate any particular order; rather, UML puts the burden on the designer to devise

guards in such a way that the order of their evaluation does not matter. Practically, this

means that guard expressions should have no side effects, at least none that would

alter evaluation of other guards having the same trigger.
2.2.8 Run-to-Completion Execution Model

All state machine formalisms, including UML statecharts, universally assume that a

state machine completes processing of each event before it can start processing the next

event. This model of execution is called run to completion, or RTC.
www.newnespress.com

68 Chapter 2
In the RTC model, the system processes events in discrete, indivisible RTC steps. New

incoming events cannot interrupt the processing of the current event and must be

stored (typically in an event queue) until the state machine becomes idle again. These

semantics completely avoid any internal concurrency issues within a single state machine.

The RTC model also gets around the conceptual problem of processing actions associated

with transitions,4 where the state machine is not in a well-defined state (is between two

states) for the duration of the action. During event processing, the system is unresponsive

(unobservable), so the ill-defined state during that time has no practical significance.

Note, however, that RTC does not mean that a state machine has to monopolize the CPU

until the RTC step is complete. The preemption restriction only applies to the task context of

the state machine that is already busy processing events. In a multitasking environment,

other tasks (not related to the task context of the busy state machine) can be running,

possibly preempting the currently executing state machine. As long as other state machines

do not share variables or other resources with each other, there are no concurrency hazards.

The key advantage of RTC processing is simplicity. Its biggest disadvantage is that the

responsiveness of a state machine is determined by its longest RTC step.5 Achieving

short RTC steps can often significantly complicate real-time designs.
2.3 UML Extensions to the Traditional FSM Formalism

Though the traditional FSMs are an excellent tool for tackling smaller problems, it’s

also generally known that they tend to become unmanageable, even for moderately

involved systems. Due to the phenomenon known as state explosion, the complexity

of a traditional FSM tends to grow much faster than the complexity of the reactive

system it describes. This happens because the traditional state machine formalism

inflicts repetitions. For example, if you try to represent the behavior of the Visual Basic

calculator introduced in Section 2.1 with a traditional FSM, you’ll immediately notice

that many events (e.g., the Clear event) are handled identically in many states.

A conventional FSM, however, has no means of capturing such a commonality and

requires repeating the same actions and transitions in many states. What’s missing in the

traditional state machines is the mechanism for factoring out the common behavior

in order to share it across many states.
4 State machines that associate actions with transitions are classified as Mealy machines.
5 A state machine can improve responsiveness by breaking up the CPU-intensive processing into

sufficiently short RTC steps (see also the “Reminder” state pattern in Chapter 5).

www.newnespress.com

69A Crash Course in UML State Machines
The formalism of statecharts, invented by David Harel in the 1980s [Harel 87],

addresses exactly this shortcoming of the conventional FSMs. Statecharts provide a

very efficient way of sharing behavior so that the complexity of a statechart no longer

explodes but tends to faithfully represent the complexity of the reactive system it

describes. Obviously, formalism like this is a godsend to embedded systems

programmers (or any programmers working with event-driven systems) because it

makes the state machine approach truly applicable to real-life problems.

UML state machines, known also as UML statecharts [OMG 07], are object-based

variants of Harel statecharts and incorporate several concepts defined in ROOMcharts, a

variant of the statechart defined in the Real-time Object-Oriented Modeling (ROOM)

language [Selic+ 94]. UML statecharts are extended state machines with characteristics

of both Mealy and Moore automata. In statecharts, actions generally depend on both

the state of the system and the triggering event, as in a Mealy automaton. Additionally,

UML statecharts provide optional entry and exit actions, which are associated with

states rather than transitions, as in a Moore automaton.
2.3.1 Reuse of Behavior in Reactive Systems

All reactive systems seem to reuse behavior in a similar way. For example, the

characteristic look and feel of all GUIs results from the same pattern, which the Windows

guru Charles Petzold calls the “Ultimate Hook” [Petzold 96]. The pattern is brilliantly

simple: A GUI system dispatches every event first to the application (e.g., Windows calls

a specific function inside the application, passing the event as an argument). If not

handled by the application, the event flows back to the system. This establishes a

hierarchical order of event processing. The application, which is conceptually at a lower

level of the hierarchy, has the first shot at every event; thus the application can choose

to react in any way it likes. At the same time, all unhandled events flow back to the higher

level (i.e., to the GUI system), where they are processed according to the standard look

and feel. This is an example of programming by difference because the application

programmer needs to code only the differences from the standard system behavior.
2.3.2 Hierarchically Nested States

Harel statecharts bring the “Ultimate Hook” pattern to the logical conclusion by

combining it with the state machine formalism. The most important innovation of

statecharts over the classical FSMs is the introduction of hierarchically nested states
www.newnespress.com

70 Chapter 2
(that’s why statecharts are also called hierarchical state machines, or HSMs). The

semantics associated with state nesting are as follows (see Figure 2.5(A)): If a system is

in the nested state “s11” (called the substate), it also (implicitly) is in the surrounding state

“s1” (called the superstate). This state machine will attempt to handle any event in the

context of state “s11,” which conceptually is at the lower level of the hierarchy. However, if

state “s11” does not prescribe how to handle the event, the event is not quietly discarded

as in a traditional “flat” state machine; rather, it is automatically handled at the higher level

context of the superstate “s1.” This is what is meant by the system being in state “s11” as

well as “s1.” Of course, state nesting is not limited to one level only, and the simple rule

of event processing applies recursively to any level of nesting.
OPEN_DOOR

s1

s11

heating

toasting

baking
door_open

superstate

substate

A B

Figure 2.5: UML notation for hierarchically nested states (A), and a state model of
a toaster oven in which states “toasting” and “baking” share the common

transition from state “heating” to “door_open” (B).
States that contain other states are called composite states; conversely, states without

internal structure are called simple states or leaf states. A nested state is called a direct

substate when it is not contained by any other state; otherwise, it is referred to as a

transitively nested substate.

Because the internal structure of a composite state can be arbitrarily complex, any

hierarchical state machine can be viewed as an internal structure of some (higher-level)

composite state. It is conceptually convenient to define one composite state as the

ultimate root of state machine hierarchy. In the UML specification, every state machine

has a top state (the abstract root of every state machine hierarchy), which contains all

the other elements of the entire state machine. The graphical rendering of this all-

enclosing top state is optional [OMG 07].

As you can see, the semantics of hierarchical state decomposition are designed to

facilitate sharing of behavior through the direct support for the “Ultimate Hook”

pattern. The substates (nested states) need only define the differences from the
www.newnespress.com

71A Crash Course in UML State Machines
superstates (surrounding states). A substate can easily reuse the common behavior from

its superstate(s) by simply ignoring commonly handled events, which are then

automatically handled by higher-level states. In this manner, the substates can share all

aspects of behavior with their superstates. For example, in a state model of a toaster

oven shown in Figure 2.5(B), states “toasting” and “baking” share a common transition

DOOR_OPEN to the “door_open” state, defined in their common superstate “heating.”

The aspect of state hierarchy emphasized most often is abstraction—an old and

powerful technique for coping with complexity. Instead of facing all aspects of a

complex system at the same time, it is often possible to ignore (abstract away) some

parts of the system. Hierarchical states are an ideal mechanism for hiding internal

details because the designer can easily zoom out or zoom in to hide or show nested

states. Although abstraction by itself does not reduce overall system complexity, it is

valuable because it reduces the amount of detail you need to deal with at one time. As

Grady Booch [Booch 94] notes:

. . . we are still constrained by the number of things that we can comprehend at one time, but through
abstraction, we use chunks of information with increasingly greater semantic content.

However valuable abstraction in itself might be, you cannot cheat your way out of

complexity simply by hiding it inside composite states. However, the composite states

don’t simply hide complexity, they also actively reduce it through the powerful

mechanism of reuse (the “Ultimate Hook” pattern). Without such reuse, even a

moderate increase in system complexity often leads to an explosive increase in the

number of states and transitions. For example, if you transform the statechart from

Figure 2.5(B) to a classical flat state machine,6 you must repeat one transition (from

heating to “door_open”) in two places: as a transition from “toasting” to “door_open”

and from “baking” to “door_open.” Avoiding such repetitions allows HSMs to grow

proportionally to system complexity. As the modeled system grows, the opportunity for

reuse also increases and thus counteracts the explosive increase in states and transitions

typical for traditional FSMs.
2.3.3 Behavioral Inheritance

Hierarchical states are more than merely the “grouping of [nested] state machines

together without additional semantics” [Mellor 00]. In fact, hierarchical states have
6 Such a transformation is always possible because HSMs are mathematically equivalent to classical FSMs.

www.newnespress.com

72 Chapter 2
simple but profound semantics. Nested states are also more than just “great

diagrammatic simplification when a set of events applies to several substates”

[Douglass 99]. The savings in the number of states and transitions are real and go far

beyond less cluttered diagrams. In other words, simpler diagrams are just a side

effect of behavioral reuse enabled by state nesting.

The fundamental character of state nesting comes from the combination of abstraction and

hierarchy, which is a traditional approach to reducing complexity and is otherwise

known in software as inheritance. In OOP, the concept of class inheritance describes

relations between classes of objects. Class inheritance describes the “is a . . .” relationship

among classes. For example, class Bird might derive from class Animal. If an object

is a bird (instance of the Bird class), it automatically is an animal, because all operations

that apply to animals (e.g., eating, eliminating, reproducing) also apply to birds. But

birds are more specialized, since they have operations that are not applicable to animals

in general. For example, flying() applies to birds but not to fish.

The benefits of class inheritance are concisely summarized by Gamma and colleagues

[Gamma+ 95]:

Inheritance lets you define a new kind of class rapidly in terms of an old one, by reusing functionality
from parent classes. It allows new classes to be specified by difference rather than created from scratch
each time. It lets you get new implementations almost for free, inheriting most of what is common from
the ancestor classes.

As you saw in the previous section, all these basic characteristics of inheritance apply

equally well to nested states (just replace the word class with state), which is not

surprising because state nesting is based on the same fundamental “is a . . .”

classification as object-oriented class inheritance. For example, in a state model of a

toaster oven, state “toasting” nests inside state “heating.” If the toaster is in the

“toasting” state, it automatically is in the “heating” state because all behavior pertaining

to “heating” applies also to “toasting” (e.g., the heater must be turned on). But

“toasting” is more specialized because it has behaviors not applicable to “heating” in

general. For example, setting toast color (light or dark) applies to “toasting” but not to

“baking.”

In the case of nested states, the “is a . . .” (is-a-kind-of) relationship merely needs to be

replaced by the “is in . . .” (is-in-a-state) relationship; otherwise, it is the same

fundamental classification. State nesting allows a substate to inherit state behavior from

its ancestors (superstates); therefore, it’s called behavioral inheritance.
www.newnespress.com

NOTE

The term “behavioral inheritance” does not come from the UML specification. Note too that

behavioral inheritance describes the relationship between substates and superstates, and you

should not confuse it with traditional (class) inheritance applied to entire state machines.

73A Crash Course in UML State Machines
The concept of inheritance is fundamental in software construction. Class inheritance is

essential for better software organization and for code reuse, which makes it a

cornerstone of OOP. In the same way, behavioral inheritance is essential for efficient

use of HSMs and for behavior reuse, which makes it a cornerstone of event-driven

programming. In Chapter 5, a mini-catalog of state patterns shows ways to structure

HSMs to solve recurring problems. Not surprisingly, behavioral inheritance plays the

central role in all these patterns.
2.3.4 Liskov Substitution Principle for States

Identifying the relationship among substates and superstates as inheritance has many

practical implications. Perhaps the most important is the Liskov Substitution Principle

(LSP) applied to state hierarchy. In its traditional formulation for classes, LSP requires

that a subclass can be freely substituted for its superclass. This means that every

instance of the subclass should be compatible with the instance of the superclass and

that any code designed to work with the instance of the superclass should continue to

work correctly if an instance of the subclass is used instead.

Because behavioral inheritance is just a special kind of inheritance, LSP can be

applied to nested states as well as classes. LSP generalized for states means that the

behavior of a substate should be consistent with the superstate. For example, all states

nested inside the “heating” state of the toaster oven (e.g., “toasting” or “baking”) should

share the same basic characteristics of the “heating” state. In particular, if being in the

“heating” state means that the heater is turned on, then none of the substates should

turn the heater off (without transitioning out of the “heating” state). Turning the heater

off and staying in the “toasting” or “baking” state would be inconsistent with being in

the “heating” state and would indicate poor design (violation of the LSP).

Compliance with the LSP allows you to build better (more correct) state hierarchies and

make efficient use of abstraction. For example, in an LSP-compliant state hierarchy,

you can safely zoom out and work at the higher level of the “heating” state (thus
www.newnespress.com

74 Chapter 2
abstracting away the specifics of “toasting” and “baking”). As long as all the

substates are consistent with their superstate, such abstraction is meaningful. On the

other hand, if the substates violate basic assumptions of being in the superstate,

zooming out and ignoring the specifics of the substates will be incorrect.
2.3.5 Orthogonal Regions

Hierarchical state decomposition can be viewed as exclusive-OR operation applied to

states. For example, if a system is in the “heating” superstate (Figure 2.5(B)), it means

that it’s either in “toasting” substate OR the “baking” substate. That is why the

“heating” superstate is called an OR-state.

UML statecharts also introduce the complementary AND-decomposition. Such

decomposition means that a composite state can contain two or more orthogonal

regions (orthogonal means independent in this context) and that being in such a

composite state entails being in all its orthogonal regions simultaneously [Harel+ 98].

Orthogonal regions address the frequent problem of a combinatorial increase in the

number of states when the behavior of a system is fragmented into independent,

concurrently active parts. For example, apart from the main keypad, a computer

keyboard has an independent numeric keypad. From the previous discussion, recall the

two states of the main keypad already identified: “default” and “caps_locked”

(Figure 2.2). The numeric keypad also can be in two states—“numbers” and “arrows”—

depending on whether Num Lock is active. The complete state space of the keyboard

in the standard decomposition is the cross-product of the two components (main keypad

and numeric keypad) and consists of four states: “default–numbers,” “default–arrows,”

“caps_locked–numbers,” and “caps_locked–arrows.” However, this is unnatural

because the behavior of the numeric keypad does not depend on the state of the

main keypad and vice versa. Orthogonal regions allow you to avoid mixing the

independent behaviors as a cross-product and, instead, to keep them separate, as shown

in Figure 2.6.

Note that if the orthogonal regions are fully independent of each other, their combined

complexity is simply additive, which means that the number of independent states

needed to model the system is simply the sum k + l + m + . . ., where k, l, m, . . . denote

numbers of OR-states in each orthogonal region. The general case of mutual

dependency, on the other hand, results in multiplicative complexity, so in general, the

number of states needed is the product k � l � m �
www.newnespress.com

keyboard

default

caps_locked

CAPS_LOCK

CAPS_LOCK

numbers

arrows

NUM_LOCK

NUM_LOCK

main_keypad numeric_keypad

ANY_KEY

ANY_KEY

NUM_KEY

NUM_KEY

Figure 2.6: Two orthogonal regions (main keypad and numeric keypad) of a
computer keyboard.

75A Crash Course in UML State Machines
In most real-life situations, however, orthogonal regions are only approximately

orthogonal (i.e., they are not independent). Therefore, UML statecharts provide a

number of ways for orthogonal regions to communicate and synchronize their

behaviors. From these rich sets of (sometimes complex) mechanisms, perhaps the most

important is that orthogonal regions can coordinate their behaviors by sending event

instances to each other.

Even though orthogonal regions imply independence of execution (i.e., some kind of

concurrency), the UML specification does not require that a separate thread of

execution be assigned to each orthogonal region (although it can be implemented that

way). In fact, most commonly, orthogonal regions execute within the same thread.

The UML specification only requires that the designer not rely on any particular order

in which an event instance will be dispatched to the involved orthogonal regions.
NOTE

The HSM implementation described in this book (see Chapter 4) does not directly support

orthogonal regions. Chapter 5 describes the “Orthogonal Component” state pattern, which

emulates orthogonal regions by composition of HSMs.
2.3.6 Entry and Exit Actions

Every state in a UML statechart can have optional entry actions, which are executed

upon entry to a state, as well as optional exit actions, which are executed upon exit from
www.newnespress.com

76 Chapter 2
a state. Entry and exit actions are associated with states, not transitions.7 Regardless

of how a state is entered or exited, all its entry and exit actions will be executed.

Because of this characteristic, statecharts behave like Moore automata. The UML

notation for state entry and exit actions is to place the reserved word “entry” (or “exit”)

in the state right below the name compartment, followed by the forward slash and

the list of arbitrary actions (see Figure 2.7).

The value of entry and exit actions is that they provide means for guaranteed

initialization and cleanup, very much like class constructors and destructors in OOP.

For example, consider the “door_open” state from Figure 2.7, which corresponds to the

toaster oven behavior while the door is open. This state has a very important safety-

critical requirement: Always disable the heater when the door is open.8 Additionally,

while the door is open, the internal lamp illuminating the oven should light up.

Of course, you could model such behavior by adding appropriate actions (disabling the

heater and turning on the light) to every transition path leading to the “door_open”

state (the user may open the door at any time during “baking” or “toasting” or when the

oven is not used at all). You also should not forget to extinguish the internal lamp
entry / heater_on();
exit / heater_off();

heating

entry / arm_time_event(me->toast_color);
exit / disarm_time_event();

toasting DOOR_OPEN

entry / set_temperature(me->temperature);
exit / set_temperature(0);

baking

entry / internal_lamp_on();
exit / internal_lamp_off();

door_open

DOOR_CLOSE

DO_TOASTINGDO_BAKING

Figure 2.7: Toaster oven state machine with entry and exit actions.

7 State machines are classified as Mealy machines if actions are associated with transitions and as Moore

machines if actions are associated with states. UML state machines have characteristics of both Mealy

machines and Moore machines.
8 Commonly, such a safety-critical function is (and should be) redundantly safeguarded by mechanical

interlocks, but for the sake of this discussion, suppose you need to implement it entirely in software.

www.newnespress.com

77A Crash Course in UML State Machines
with every transition leaving the “door_open” state. However, such a solution would

cause the repetition of actions in many transitions. More important, such an approach is

error-prone in view of changes to the state machine (e.g., the next programmer

working on a new feature, such as top-browning, might simply forget to disable the

heater on transition to “door_open”).

Entry and exit actions allow you to implement the desired behavior in a much safer,

simpler, and more intuitive way. As shown in Figure 2.7, you could specify that the exit

action from “heating” disables the heater, the entry action to “door_open” lights up the

oven lamp, and the exit action from “door_open” extinguishes the lamp. The use of

entry and exit action is superior to placing actions on transitions because it avoids

repetitions of those actions on transitions and eliminates the basic safety hazard of

leaving the heater on while the door is open. The semantics of exit actions guarantees

that, regardless of the transition path, the heater will be disabled when the toaster is

not in the “heating” state.

Because entry actions are executed automatically whenever an associated state is

entered, they often determine the conditions of operation or the identity of the state,

very much as a class constructor determines the identity of the object being constructed.

For example, the identity of the “heating” state is determined by the fact that the heater

is turned on. This condition must be established before entering any substate of

“heating” because entry actions to a substate of “heating,” like “toasting,” rely on

proper initialization of the “heating” superstate and perform only the differences from

this initialization. Consequently, the order of execution of entry actions must always

proceed from the outermost state to the innermost state.

Not surprisingly, this order is analogous to the order in which class constructors are

invoked. Construction of a class always starts at the very root of the class hierarchy and

follows through all inheritance levels down to the class being instantiated. The

execution of exit actions, which corresponds to destructor invocation, proceeds in the

exact reverse order, starting from the innermost state (corresponding to the most derived

class).

2.3.7 Internal Transitions

Very commonly, an event causes only some internal actions to execute but does not

lead to a change of state (state transition). In this case, all actions executed comprise the

internal transition. For example, when you type on your keyboard, it responds by

generating different character codes. However, unless you hit the Caps Lock key, the
www.newnespress.com

78 Chapter 2
state of the keyboard does not change (no state transition occurs). In UML, this situation

should be modeled with internal transitions, as shown in Figure 2.8. The UML notation

for internal transitions follows the general syntax used for exit (or entry) actions, except

instead of the word entry (or exit) the internal transition is labeled with the triggering

event (e.g., see the internal transition triggered by the ANY_KEY event in Figure 2.8).
ANY_KEY / send_lower_case_scan_code();
default

ANY_KEY / send_upper_case_scan_code();
caps_locked

CAPS_LOCK CAPS_LOCK

trigger list of actions

internal
transitions

Figure 2.8: UML state diagram of the keyboard state machine with internal
transitions.
In the absence of entry and exit actions, internal transitions would be identical to self-

transitions (transitions in which the target state is the same as the source state). In fact, in

a classical Mealy automaton, actions are associated exclusively with state transitions,

so the only way to execute actions without changing state is through a self-transition

(depicted as a directed loop in Figure 2.2). However, in the presence of entry and exit

actions, as in UML statecharts, a self-transition involves the execution of exit and entry

actions and therefore it is distinctively different from an internal transition.

In contrast to a self-transition, no entry or exit actions are ever executed as a result of an

internal transition, even if the internal transition is inherited from a higher level of the

hierarchy than the currently active state. Internal transitions inherited from superstates at

any level of nesting act as if they were defined directly in the currently active state.
2.3.8 Transition Execution Sequence

State nesting combined with entry and exit actions significantly complicates the state

transition semantics in HSMs compared to the traditional FSMs. When dealing with

hierarchically nested states and orthogonal regions, the simple term current state can be

quite confusing. In an HSM, more than one state can be active at once. If the state
www.newnespress.com

79A Crash Course in UML State Machines
machine is in a leaf state that is contained in a composite state (which is possibly

contained in a higher-level composite state, and so on), all the composite states that

either directly or transitively contain the leaf state are also active. Furthermore, because

some of the composite states in this hierarchy might have orthogonal regions, the

current active state is actually represented by a tree of states starting with the single

top state at the root down to individual simple states at the leaves. The UML

specification refers to such a state tree as state configuration [OMG 07].
s

exit / b();
s1

exit / a();
s11 T1 [g()] / t(); / d();

entry / c();
s2

entry / e();
s21

LCA(s1, s2)
main source
of T1

main target
of T1

Active state
before transition

Active state
after transition

Figure 2.9: State roles in a state transition.
In UML, a state transition can directly connect any two states. These two states, which

may be composite, are designated as the main source and the main target of a transition.

Figure 2.9 shows a simple transition example and explains the state roles in that

transition. The UML specification prescribes that taking a state transition involves

executing the following actions in the following sequence [OMG 07, Section 15.3.13]:

1. Evaluate the guard condition associated with the transition and perform the

following steps only if the guard evaluates to TRUE.

2. Exit the source state configuration.

3. Execute the actions associated with the transition.

4. Enter the target state configuration.

The transition sequence is easy to interpret in the simple case of both the main source

and the main target nesting at the same level. For example, transition T1 shown in

Figure 2.9 causes the evaluation of the guard g(); followed by the sequence of actions:

a(); b(); t(); c(); d(); and e(), assuming that the guard g() evaluates to TRUE.
www.newnespress.com

80 Chapter 2
However, in the general case of source and target states nested at different levels of the state

hierarchy, it might not be immediately obvious how many levels of nesting need to be

exited. The UML specification prescribes that a transition involves exiting all nested states

from the current active state (which might be a direct or transitive substate of the main

source state) up to, but not including, the least common ancestor (LCA) state of the main

source and main target states. As the name indicates, the LCA is the lowest composite state

that is simultaneously a superstate (ancestor) of both the source and the target states. As

described before, the order of execution of exit actions is always from the most deeply

nested state (the current active state) up the hierarchy to the LCA but without exiting the

LCA. For instance, the LCA(s1, s2) of states “s1” and “s2” shown in Figure 2.9 is state “s.”

Entering the target state configuration commences from the level where the exit actions

left off (i.e., from inside the LCA). As described before, entry actions must be executed

starting from the highest-level state down the state hierarchy to the main target state.

If the main target state is composite, the UML semantics prescribes to “drill” into its

submachine recursively using the local initial transitions. The target state configuration

is completely entered only after encountering a leaf state that has no initial transitions.
NOTE

The HSM implementation described in this book (see Chapter 4) preserves the essential order

of exiting the source configuration followed by entering the target state configuration, but

executes the actions associated with the transition entirely in the context of the source state,

that is, before exiting the source state configuration. Specifically, the implemented transition

sequence is as follows:

1. Evaluate the guard condition associated with the transition and perform the following

steps only if the guard evaluates to TRUE.

2. Execute the actions associated with the transition.

3. Atomically exit the source state configuration and enter the target state configuration.

For example, the transition T1 shown in Figure 2.9 will cause the evaluation of the guard

g(); followed by the sequence of actions: t(); a(); b(); c(); d(); and e(),
assuming that the guard g() evaluates to TRUE.
One big problem with the UML transition sequence is that it requires executing actions

associated with the transition after destroying the source state configuration but

before creating the target state configuration. In the analogy between exit actions in
www.newnespress.com

81A Crash Course in UML State Machines
state machines and destructors in OOP, this situation corresponds to executing a

class method after partially destroying an object. Of course, such action is illegal in

OOP. As it turns out, it is also particularly awkward to implement for state machines.

Executing actions associated with a transition is much more natural in the context of the

source state—the same context in which the guard condition is evaluated. Only after

the guard and the transition actions execute, the source state configuration is exited and

the target state configuration is entered atomically. That way the state machine is

observable only in a stable state configuration, either before or after the transition, but

not in the middle.
2.3.9 Local versus External Transitions

Before UML 2, the only transition semantics in use was the external transition, in

which the main source of the transition is always exited and the main target of the

transition is always entered. UML 2 preserved the “external transition” semantics for

backward compatibility, but also introduced a new kind of transition called local

transition [OMG 07, Section 15.3.15]. For many transition topologies, external and

local transitions are actually identical. However, a local transition doesn’t cause exit

from the main source state if the main target state is a substate of the main source. In

addition, local state transition doesn’t cause exit and reentry to the target state if the

main target is a superstate of the main source state.

Figure 2.10 contrasts local (A) and external (B) transitions. In the top row, you see the

case of the main source containing the target. The local transition does not cause exit
A B

 Local transition External transitions

Figure 2.10: Local (A) versus external transitions (B). QP implements only the local
transitions.

www.newnespress.com

82 Chapter 2
from the source, while the external transition causes exit and re-entry to the source.

In the bottom row of Figure 2.10, you see the case of the target containing the source.

The local transition does not cause entry to the target, whereas the external transition

causes exit and reentry to the target.
NOTE

The HSM implementation described in Chapter 4 of this book (as well as the HSM imple-

mentation described in the first edition) supports exclusively the local state transition

semantics.
2.3.10 Event Types in the UML

The UML specification defines four kinds of events, each one distinguished by a

specific notation.

� SignalEvent represents the reception of a particular (asynchronous) signal.

Its format is signal-name ’(’ comma-separated-parameter-

list ’)’.

� TimeEvent models the expiration of a specific deadline. It is denoted with the

keyword ‘after’ followed by an expression specifying the amount of time.

The time is measured from the entry to the state in which the TimeEvent is used

as a trigger.

� CallEvent represents the request to synchronously invoke a specific operation.

Its format is operation-name ’(’ comma-separated-parameter-

list ’)’.

� ChangeEvent models an event that occurs when an explicit Boolean expression

becomes TRUE. It is denoted with the keyword ‘when’ followed by a

Boolean expression.

A SignalEvent is by far the most common event type (and the only one used in

classical FSMs). Even here, however, the UML specification extends traditional

FSM semantics by allowing the specified signal to be a subclass of another signal,

resulting in polymorphic event triggering. Any transition triggered by a given

signal event is also triggered by any subevent derived directly or indirectly from the

original event.
www.newnespress.com

NOTE

The HSM implementation described in this book (see Chapter 4) supports only the

SignalEvent type. The real-time framework described in Part II also adds support for the

TimeEvent type, but TimeEvents in QF require explicit arming and disarming, which is not com-

patible with the UML ‘after’ notation. The polymorphic event triggering for SignalEvents

is not supported, due to its inherent complexity and very high performance costs.

83A Crash Course in UML State Machines
2.3.11 Event Deferral

Sometimes an event arrives at a particularly inconvenient time, when a state machine is

in a state that cannot handle the event. In many cases, the nature of the event is such

that it can be postponed (within limits) until the system enters another state, in which it

is much better prepared to handle the original event.

UML state machines provide a special mechanism for deferring events in states.

In every state, you can include a clause ‘deferred / [event list]’. If an event in

the current state’s deferred event list occurs, the event will be saved (deferred) for

future processing until a state is entered that does not list the event in its deferred

event list. Upon entry to such state, the UML state machine will automatically recall

any saved event(s) that are no longer deferred and process them as if they have just

arrived.
NOTE

The HSM implementation described in this book (see Chapter 4) does not directly support

the UML-style event deferral. However, the “Deferred Event” state pattern presented in

Chapter 5 shows how to approximate this feature in a much less expensive way by explicitly

deferring and recalling events.
2.3.12 Pseudostates

Because statecharts started as a visual formalism [Harel 87], some nodes in the

diagrams other than the regular states turned out to be useful for implementing various

features (or simply as a shorthand notation). The various “plumbing gear” nodes are

collectively called pseudostates. More formally, a pseudostate is an abstraction that
www.newnespress.com

84 Chapter 2
encompasses different types of transient vertices (nodes) in the state machine graph.

The UML specification [OMG 07] defines the following kinds of pseudostates:

� The initial pseudostate (shown as a black dot) represents a source for initial

transition. There can be, at most, one initial pseudostate in a composite state.

The outgoing transition from the initial pseudostate may have actions but not a

trigger or guard.

� The choice pseudostate (shown as a diamond or an empty circle) is used for

dynamic conditional branches. It allows the splitting of transitions into multiple

outgoing paths, so the decision as to which path to take could depend on the

results of prior actions performed in the same RTC step.

� The shallow-history pseudostate (shown as a circled letter H) is a shorthand

notation that represents the most recent active direct substate of its containing

state. A transition coming into the shallow-history vertex (called a transition to

history) is equivalent to a transition coming into the most recent active substate

of a state. A transition can originate from the history connector to designate a

state to be entered in case a composite state has no history yet (has never been

active before).

� The deep-history pseudostate (shown as a circled H*) is similar to shallow-

history except it represents the whole, most recent state configuration of the

composite state that directly contains the pseudostate.

� The junction pseudostate (shown as a black dot) is a semantics-free vertex

that chains together multiple transitions. A junction is like a Swiss Army

knife: It performs various functions. Junctions can be used both to merge

multiple incoming transitions (from the same concurrent region) and to split

an incoming transition into multiple outgoing transition segments with

different guards. The latter case realizes a static conditional branch because the

use of a junction imposes static evaluation of all guards before the transition

is taken.

� The join pseudostate (shown as a vertical bar) serves to merge several

transitions emanating from source vertices in different orthogonal regions.

� The fork pseudostate (represented identically as a join) serves to split an

incoming transition into two or more transitions terminating in different

orthogonal regions.
www.newnespress.com

85A Crash Course in UML State Machines
2.3.13 UML Statecharts and Automatic Code Synthesis

UML statecharts provide sufficiently well-defined semantics for building executable

state models. Indeed, several design automation tools on the market support various

versions of statecharts (see the sidebar “Design Automation Tools Supporting

Statecharts”). The commercially available design automation tools typically not only

automatically generate code from statecharts but also enable debugging and testing of

the state models at the graphical level [Douglass 99].

But what does automatic code generation really mean? And more important, what kind

of code is actually generated by such statechart-based tools?

Many people understand automatic code synthesis as the generation of a program to

solve a problem from a statement of the problem specification. Statechart-based tools

cannot provide this because a statechart is just a higher-level (mostly visual) solution

rather than the statement of the problem.

As far as the automatically generated code is concerned, the statechart-based tools can

autonomously generate only so-called “housekeeping code” [Douglass 99]. The

modeler explicitly must provide all the application-specific code, such as action and

guard expressions, to the tool. The role of housekeeping code is to “glue” the various

action and guard expressions together to ensure proper state machine execution in

accordance with the statechart semantics. For example, synthesized code typically

handles event queuing, event dispatching, guard evaluation, or transition chain

execution (including exit and entry of appropriate states). Almost universally, the tools

also encompass some kind of real-time framework (see Part II of this book) that

integrates tightly with the underlying operating system.
DESIGN AUTOMATION TOOLS SUPPORTING STATECHARTS

Some of the computer-aided software-engineering (CASE) tools with support for statecharts

currently available on the market are (see also Queens University CASE tool index [Queens

07]):
� Tele logic Statem ate, www .telelogi c.com (the tool originally devel oped by I-Log ix,

Inc. acquired by Tele logic in 2006, which in turn is in the proce ss of being acqui red

by IBM)

� Telelogic Rhapsody, www.telelogic.com
Continued onto next page

www.newnespress.com

http://www.telelogic.com
http://www.telelogic.com

86 Chapter 2
9 Yo

ww
� Rational Suite Develo pment Studio Real- Time, Rational Software Corpor ation, www .

ibm.com /software/ rational (Rationa l was acqui red by IBM in 2006)

� ARTiSAN Studio, ARTiSAN Software Tools, Ltd., www.artisansw.com

� Stateflow, The Mathworks, www.mathworks.com

� VisualState, IAR Systems, www.iar.com
2.3.14 The Limitations of the UML State Diagrams

Statecharts have been invented as “a visual formalism for complex systems” [Harel 87],

so from their inception, they have been inseparably associated with graphical

representation in the form of state diagrams. However, it is important to understand

that the concept of HSMs transcends any particular notation, graphical or textual. The

UML specification [OMG 07] makes this distinction apparent by clearly separating

state machine semantics from the notation.

However, the notation of UML statecharts is not purely visual. Any nontrivial state machine

requires a large amount of textual information (e.g., the specification of actions and guards).

The exact syntax of action and guard expressions isn’t defined in the UML specification,

so many people use either structured English or, more formally, expressions in an

implementation language such as C, C++, or Java [Douglass 99b]. In practice, this means

that UML statechart notation depends heavily on the specific programming language.

Nevertheless, most of the statecharts semantics are heavily biased toward graphical

notation. For example, state diagrams poorly represent the sequence of processing, be it

order of evaluation of guards or order of dispatching events to orthogonal regions. TheUML

specification sidesteps these problems by putting the burden on the designer not to rely

on any particular sequencing. But, as you will see in Chapters 3 and 4, when you actually

implement UML state machines, you will always have full control over the order of

execution, so the restrictions imposed by UML semantics will be unnecessarily restrictive.

Similarly, statechart diagrams require a lot of plumbing gear (pseudostates, like joins, forks,

junctions, choicepoints, etc.) to represent the flow of control graphically. These elements

are nothing but the old flowchart in disguise, which structured programming techniques

proved far less significant9 a long time ago. In other words, the graphical notation does

not add much value in representing flow of control as compared to plain structured code.
u can find a critique of flowcharts in Brooks [Brooks 95].

w.newnespress.com

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational
http://www.artisansw.com
http://www.mathworks.com
http://www.iar.com

87A Crash Course in UML State Machines
This is not to criticize the graphical notation of statecharts. In fact, it is remarkably

expressive and can scarcely be improved. Rather, I want merely to point out some

shortcomings and limitations of the pen-and-paper diagrams.

The UML notation and semantics are really geared toward computerized design

automation tools. A UML state machine, as represented in a tool, is a not just the state

diagram, but rather a mixture of graphical and textual representation that precisely

captures both the state topology and the actions. The users of the tool can get several

complementary views of the same state machine, both visual and textual, whereas the

generated code is just one of the many available views.
2.3.15 UML State Machine Semantics: An Exhaustive Example

The very rich UML state machine semantics might be quite confusing to newcomers,

and even to fairly experienced designers. Wouldn’t it be great if you could generate the

exact sequence of actions for every possible transition so that you know for sure what

actions get executed and in which order?

In this section, I present an executable example of a hierarchical state machine shown in

Figure 2.11 that contains all possible transition topologies up to four levels of state

nesting. The state machine contains six states: “s,” “s1,” “s11,” “s2,” “s21,” and “s211.”

The state machine recognizes nine events A through I, which you can generate by

typing either uppercase or lowercase letters on your keyboard. All the actions of

these state machines consist only of printf() statements that report the status of

the state machine to the screen. The executable console application for Windows is

located in the directory <qp>\qpc\examples\80x86\dos\tcpp101\l\qhsmtst

\dbg\. The name of the application is QHSMTST.EXE.

Figure 2.12 shows an example run of the QHSMTST.EXE application. Note the line

numbers in parentheses at the left edge of the window, added for reference. Line (1)

shows the effect of the topmost initial transition. Note the sequence of entry actions and

initial transitions ending at the “s211-ENTRY” printout. Injecting events into the state

machine begins in line (2). Every generated event (shown on a gray background) is

followed by the sequence of exit actions from the source state configuration followed

by entry actions and initial transitions entering the target state configuration. From these

printouts you can always determine the order of transition processing as well as the

active state, which is the last state entered. For instance, the active state before injecting

event G in line (2) is “s211” because this is the last state entered in the previous line.
www.newnespress.com

entry /
exit /
I [me->foo] / me->foo = 0;

s
/ me->foo = 0;

entry /
exit /
I /

s1

entry /
exit /
I [!me->foo] / me->foo = 1;

s2

entry /
exit /

s11
entry /
exit /

s21

entry /
exit /

s211
G

F

F

C

A

B

D

H

B

E

A

D [!me->foo] /
 me->foo = 1;

H

G

C

TERMINATE

D [me->foo] /
 me->foo = 0;

Figure 2.11: Hypothetical state machine that contains all possible state transition
topologies up to four levels of state nesting.

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

(11)
(12)

(13)

Figure 2.12: QHSMTST.EXE example application running in the command window.
The line numbers in brackets to the right are added for reference.

www.newnespress.com

88 Chapter 2

89A Crash Course in UML State Machines
Per the semantics of UML state machines, the event G injected in line (2) is handled in

the following way. First, the active state (“s211”) attempts to handle the event.

However, as you can see in the state diagram in Figure 2.11, state “s211” does not

prescribe how to handle event G. Therefore the event is passed on to the next higher-

level state in the hierarchy, which is state “s21.” The superstate “s21” prescribes how to

handle event G because it has a state transition triggered by G. State “s21” executes

the actions associated with the transition (printout “s21-G;” in line (2) of Figure 2.12).

Next the state executes the transition chain that exits the source state configuration and

enters the target state configuration. The transition chain starts with execution of exit

actions from the active state through higher and higher levels of hierarchy. Next the

target state configuration is entered in exact opposite order, that is, starting from highest

levels of state hierarchy down to the lowest. The transition G from state “s21”

terminates at state “s1.” However, the transition chain does not end at the direct target

of the transition but continues via the initial transition defined in the direct target

state “s1.” Finally, a new active state is established by entering state “s11” that has

no initial transition.

In line (3) of Figure 2.12, you see how the statechart handles an internal transition.

Event I is injected while state machine is in state “s11.” Again, the active state does not

prescribe how to handle event I, so it is passed on to the next level of state hierarchy,

that is, to state “s1.” State “s1” has an internal transition triggered by I defined in its

internal transition compartment; therefore “s1” handles the event (printout “s1-I;” in

line (3)). And at this point the processing ends. No change of state ever occurs in the

internal transition, even if such transition is inherited from higher levels of state

hierarchy.

In the UML state machines internal transitions are different from self-transitions.

Line (4) of Figure 2.12 demonstrates the difference. The state machine is in state “s11”

when event A is injected. As in the case of the internal transition, the active state

“s11” does not prescribe how to handle event A, so the event is passed on to the

superstate “s1.” The superstate has a self-transition triggered by A and so it executes

actions associated with the transition (printout “s1-A;” in line (4)). This time, however,

a regular transition is taken, which requires exiting the source state configuration

and entering the target state configuration.

UML statecharts are extended state machines, meaning that in general, the actions

executed by the state machine can depend also on the value of the extended state

variables. Consider for example event D injected in line (5). The active state “s11” has
www.newnespress.com

90 Chapter 2

“[12.50]s[21.10]”
transition D, but this transition has a guard [me->foo]. The variable me->foo

is an extended state variable of the state machine from Figure 2.11. You can see

that me->foo is initialized to 0 on the topmost initial transition. Therefore the guard

[me->foo], which is a test of me->foo against 0, evaluates to FALSE. The

guard condition temporarily disables the transition D in state “s11,” which is handled as

though state “s11” did not define the transition in the first place. Therefore, the event

D is passed on to the next higher level, that is, to state “s1.” State “s1” has transition D

with a complementary guard [!me->foo]. This time, the guard evaluates to TRUE

and the transition D in state “s1” is taken. As indicated in the diagram, the transition

action changes the value of the extended state variable me->foo to 1. Therefore when

another event D is injected again in line (6), the guard condition [me->foo] on

transition D in state “s11” evaluates to TRUE and this transition is taken, as indicated in

line (6) of Figure 2.12.

Line (7) of Figure 2.12 demonstrates that all exit and entry actions are always executed,

regardless of the exit and entry path. The main target of transition C from “s1” is “s2.”

The initial transition in the main target state goes “over” the substate “s21” all the

way to the substate “s211.” However, the entry actions don’t skip the entry to “s21.”

This example demonstrates the powerful concept of guaranteed cleanup of the source

state configuration and guaranteed initialization of the target state configuration,

regardless of the complexity of the exit or entry path.

Interestingly, in hierarchical state machines, the same transition can cause different

sequences of exit actions, depending on which state inherits the transition. For example,

in lines (8) and (9) of Figure 2.12, event E triggers the exact same state transition

defined in the superstate “s.” However, the responses in lines (8) and (9) are different

because transition E fires from different state configurations—once when “s211” is

active (line (8)) and next when “s11” is active (line (9)).

Finally, lines (11) and (12) of Figure 2.12 demonstrate that guard conditions can also be

used on internal transitions. States “s2” and "s" both define internal transition I with

complementary guard conditions. In line (11), the guard [!me->foo] enables internal

transition in state “s2.” In line (12) the same guard disables the internal transition in “s2,”

and therefore the internal transition defined in the superstate d is executed.

You can learn much more about the semantics of UML state machines by injecting

various events to the QHSMTST.EXE application and studying its output. Because the state

machine from Figure 2.11 has been specifically designed to contain all possible state

transition configurations up to level 4 of nesting, this example can “answer” virtually all
www.newnespress.com

91A Crash Course in UML State Machines
your questions regarding the semantics of statecharts. Moreover, you can use the source

code that actually implements the state machine (located in <qp>\qpc\examples\

80x86\dos\tcpp101\l\qhsmtst\qhsmtst.c) as a template for implementing your

own statecharts. Simply look up applicable fragments in the diagram from Figure 2.11

and check how they have been implemented in qhsmtst.c.

2.4 Designing a UML State Machine

Designing a UML state machine, as any design, is not a strict science. Typically it is an

iterative and incremental process: You design a little, code a little, test a little, and

so on. In that manner you may converge at a correct design in many different ways, and

typically also, more than one correct HSM design satisfies a given problem

specification. To focus the discussion, here I walk you through a design of an UML

state machine that implements correctly the behavior of a simple calculator similar to

the Visual Basic calculator used at the beginning of this chapter. Obviously, the

presented solution is just one of the many possible.
Figure 2.13: A simple electronic calculator used as a model for the
statechart example.
2.4.1 Problem Specification

The calculator (see Figure 2.13) operates broadly as follows: a user enters an operand,

then an operator, then another operand, and finally clicks the equals button to get a

result. From the programming perspective, this means that the calculator needs to parse

numerical expressions, defined formally by the following BNF grammar:
www.newnespress.com

92 Chapter 2
ex
op
op
nu

ww
pression ::= operand1 operator operand2 ’=’
erand1 ::= expression | [’+’ | ’-’] number
erand2 ::= [’+’ | ’-’] number
mber ::= {’0’ | ’1’ | ... ’9’}* [’.’ {’0’ | ’1’ | ... ’9’}*]
erator ::= ’+’ | ’-’ | ’*’ | ’/’
op

The problem is not only to correctly parse numerical expressions, but also to do it

interactively (“on the fly”). The user can provide any symbol at any time, not

necessarily only the symbols allowed by the grammar in the current context. It is up to

the application to ignore such symbols. (This particular application ignores invalid

inputs. Often an even better approach is to actively prevent generation of the invalid

inputs in the first place by disabling invalid options, for example.) In addition, the

application must handle inputs not related to parsing expressions, for example Cancel

(C) or Cancel Entry (CE). All this adds up to a nontrivial problem, which is difficult to

tackle with the traditional event-action paradigm (see Section 2.1) or even with the

traditional (nonhierarchical) FSM.
2.4.2 High-Level Design

Figure 2.14 shows first steps in elaborating the calculator statechart. In the very first

step (panel (a)), the state machine attempts to realize the primary function of the system

(the primary use case), which is to compute expressions: operand1 operator

operand2 equals... The state machine starts in the “operand1” state, whose

function is to ensure that the user can only enter a valid operand. This state obviously

needs some internal submachine to accomplish this goal, but we ignore it for now.

The criterion for transitioning out of “operand1” is entering an operator (+, –, *, or /).

The statechart then enters the “opEntered” state, in which the calculator waits for

the second operand. When the user clicks a digit (0 .. 9) or a decimal point, the state

machine transitions to the “operand2” state, which is similar to “operand1.”

Finally, the user clicks =, at which point the calculator computes and displays the

result. It then transitions back to the “operand1” state to get ready for another

computation.

The simple state model from Figure 2.14(A) has a major problem, however. When

the user clicks = in the last step, the state machine cannot transition directly to

“operand1” because this would erase the result from the display (to get ready for the

first operand). We need another state “result” in which the calculator pauses to display
w.newnespress.com

A

operand1

PLUS, MINUS,
MULT, DIVIDE

opEntered operand2

0, 1, 2, 3, 4
5, 6, 7, 8, 9,
POINT

EQUALS

B

operand1

OPER

opEntered operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9, POINT

OPER

C

Figure 2.14: The first two steps in elaborating the calculator statechart 10.

93A Crash Course in UML State Machines
the result (Figure 2.14(B)). Three things can happen in the “result” state: (1) the user

may click an operator button to use the result as the first operand of a new computation

(see the recursive production in line 2 of the calculator grammar), (2) the user may

click Cancel (C) to start a completely new computation, or (3) the user may enter a

number or a decimal point to start entering the first operand.

TIP

Figure 2.14(B) illustrates a trick worth remembering: the consolidation of signals PLUS,

MINUS, MULTIPLY, and DIVIDE into a higher-level signal OPER (operator). This transfor-

mation avoids repetition of the same group of triggers on two transitions (from “operand1” to

“opEntered” and from “result” to “opEntered”). Although most events are generated exter-

nally to the statechart, in many situations it is still possible to perform simple transformations

before dispatching them (e.g., a transformation of raw button presses into the calculator

events). Such transformations often simplify designs more than the trickiest state and transi-

tion topologies.

2.4.3 Scavenging for Reuse

The state machine from Figure 2.14(B) accepts the C (Cancel) command only in the

result state. However, the user expects to be able to cancel and start over at any time.

Similarly, the user expects to be able to turn the calculator off at any time. Statechart

in Figure 2.15(A) adds these features in a naı̈ve way. A better solution is to factor
10 In this section, I am using a shorthand notation to represent many transitions with the same source and

target as just one transition arrow with a multiple triggers.

www.newnespress.com

A

operand1

OPER

opEntered operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9,
 POINT

OPER

C

CC

C

on

B

operand1

OPER

opEntered

operand2

DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9, POINT
OPER

C

OFF

OFF

OFF

OFFOFF

Figure 2.15: Applying state nesting to factor out the common Cancel
transition (C).

94 Chapter 2
out the common transition into a higher-level state namedOn and let all substates reuse the

Cancel and Off transitions through behavioral inheritance, as shown in Figure 2.15(B).
2.4.4 Elaborating Composite States

The states “operand1” and “operand2” need submachines to parse floating-point

numbers. Figure 2.16 refers to both these states simultaneously as “operandX” state.
operandX

DIGIT_0 /;

zeroX

DIGIT_0 / clear();

DIGIT_0, DIGIT_1_9 (keyId) /
 insert(keyId);

intX

DIGIT_1_9 (keyId) / clear();
 insert(keyId);

POINT / clear();
 insert(‘0’); insert(‘.’);

DIGIT_1_9 (keyId) / insert(keyId);

DIGIT_0, DIGIT_1_9 (keyId) /
 insert(keyId);

POINT / ;

fracX

POINT / insert(‘.’);

POINT / insert(‘.’);

Figure 2.16: Internal submachine of states “operand1” and “operand2.”
These submachines consist of three substates. The “zero” substate is entered when the

user clicks 0. Its function is to ignore additional zeros that the user may try to enter

(so that the calculator displays only one 0). Note my notation for explicitly ignoring an
www.newnespress.com

95A Crash Course in UML State Machines
event. I use the internal transition (DIGIT_0 in this case) followed by an explicitly

empty list of actions (a semicolon in C).

The function of the “int” substate is to parse integer part of a number. This state is entered

either from outside or from the “zero” peer substate (when the user clicks 1 through 9).

Finally, the substate “frac” parses the fractional part of the number. It is entered from

either outside or both peer substates when the user clicks a decimal point (.). Again, note

that the “frac” substate explicitly ignores the decimal point POINT event, so that the user

cannot enter multiple decimal points in the fractional part of a number.

2.4.5 Refining the Behavior

The last step brings the calculator statechart to the point at which it can actually

compute expressions. However, it can handle only positive numbers. In the next step,

I will add handling of negative numbers. This turns out to be perhaps the toughest

problem in this design because the same button, – (minus), represents in some contexts

the binary operator of subtraction and sometimes the unary operator of negation.

There are only two possible contexts in which – can unambiguously represent the

negation rather than the subtraction: (1) in the “opEntered” state (as in the expression: 2 *

�2 =), and (2) at the beginning of a new computation (as in the expression: �2 * 2 =).
A

opEntered

operand2
0, 1_9,
POINT

EQUALS

B

OPER [keyId == ‘-‘] / ;
negated2

OPER [keyId == ‘-‘]

0, 1_9,
POINT

result

operand1

OPER [keyId == ‘-‘] / ;
negated1

0, 1_9,
POINT

EQUALS

begin

OPER [keyId == ‘-‘]

0, 1_9,
POINT

0, 1_9,
POINT

Figure 2.17: Two cases of handling negative numbers.
The solution to the first case (shown in Figure 2.17(A)) is simpler. We need one more

state “negated2,” which is entered when the operator is MINUS (note the use of the

guard). Upon entry, this state sets up the display to show –0 and subsequently does not

clear the display when transitioning to the “operand2” state. This is a different behavior
www.newnespress.com

96 Chapter 2
from “opEntered” because in this latter state the display must be cleared to prepare for

entering of the second operand.

The second case in which – represents the negation is trickier because the specification

“beginning of new computation” is much more subtle. Here it indicates the situation

just after launching the application or after the user clicks Cancel but not when the

calculator displays the result from the previous computation. Figure 2.17(B) shows the

solution. A new state “begin” is created to capture the behavior specific to the

“beginning of new computation” (note the initial transition pointing now to “begin”

rather than to “operand1”). The rest of the solution is analogous as in the first case,

except now the state “begin” plays the role of “opEntered.”
4.
2.4.6 Final Touches

The calculator is almost ready now. The final touches (which I leave as an exercise) include

adding Cancel-Entry transitions in appropriate contexts and adding an “error” state to

capture overflows and division by zero. Figure 2.18 shows the final calculator state

diagram. The actual C++ implementation of this state machine will be described in Chapter
2.5 Summary

The main challenge in programming event-driven systems is to identify the appropriate

actions to execute in response to a given event. In general, the actions are determined by two

factors: by the nature of the event and by the current context (i.e., by the sequence of past

events in which the system was involved). The traditional techniques, such as the event-

action paradigm, neglect the context and result in code riddled with a disproportionate

amount of convoluted conditional logic that programmers call “spaghetti” code.

Techniques based on state machines are capable of achieving a dramatic reduction of

the different paths through the code and simplification of the conditions tested at

each branching point. A state machine makes the event handling explicitly dependent

on both the nature of the event and on the context (state) of the system. States are

“chunks of behavior,” whereas the event-action paradigm is applied locally within each

state. The concept of state is a very useful abstraction of system history, capable of

capturing only relevant sequences of stimuli (and ignoring all irrelevant ones). In

extended state machines (state machines with “memory”), state corresponds to

qualitative aspects of system behavior, whereas extended state variables (program

memory) correspond to the quantitative aspects.
www.newnespress.com

entry /
exit /

on

ready

beginresult
entry / negate();
OPER [‘-‘] / ;

negated1

OPER [e->keId == '-']

operand1

DIGIT_0 / ;
zero1

DIGIT_0, DIGIT_1_9 /
 insert();

int1
DIGIT_0, DIGIT_1_9 /
 insert();
POINT / ;

frac1

DIGIT_0 DIGIT_1_9 POINT DIGIT_0
DIGIT_1_9

POINT

DIGIT_1_9 POINT

opEntered
entry / negate();
OPER [‘-‘] / ;

negated2

OPER [e->keId == '-']

operand2

DIGIT_0 / ;
zero2

DIGIT_0, DIGIT_1_9 /
 insert();

int2
DIGIT_0, DIGIT_1_9 /
 insert();
POINT / ;

frac2

DIGIT_0 DIGIT_1_9 POINT DIGIT_0
DIGIT_1_9

POINT

DIGIT_1_9 POINT

error
OPER

CE

CE

OPER

EQUALS

[error]

[else]

OPER

[else]

[error]

C

CE

CE

POINT

POINT

OFF

Figure 2.18: The final calculator statechart.

www.newnespress.com

97A Crash Course in UML State Machines

98 Chapter 2
An event is a type of instantaneous occurrence that can cause a state machine to perform

actions. Events can have parameters, which convey the quantitative information regarding

that occurrence. Upon reception of an event instance, a state machine responds by

performing actions (executing code). The response might include changing state, which is

called a state transition. Classical FSMs have two complementary interpretations of

actions and transitions. In Mealy automata, actions are associated with transitions,

whereas in Moore automata, actions are associated with states.

State machine formalisms universally assume the run-to-completion (RTC) execution

model. In this model, all actions triggered by an event instance must complete

before the next event instance can be dispatched to the state machine, meaning that the

state machine executes uninterruptible steps (RTC steps) and starts processing each

event in a stable state configuration.

UML state machines are an advanced formalism for specifying state machines, which

extends the traditional automata theory in several ways. The UML state machine

formalism is a variant of extended state machines with characteristics of both Mealy

and Moore automata. UML state machines include notations of nested hierarchical

states and orthogonal regions as well as extending the notation of actions.

The most important innovation of UML state machines over classical FSMs is the

introduction of hierarchically nested states. The value of state nesting lies in avoiding

repetitions, which are inevitable in the traditional “flat” FSM formalism. The semantics

of state nesting allow substates to define only the differences in behavior from the

superstates, thus promoting sharing and reuse of behavior. The relation between a

substate and its superstate has all the characteristics of inheritance and is called

behavioral inheritance in this book. Behavioral inheritance is as fundamental as class

inheritance and allows building whole hierarchies of states, which correspond to

class taxonomies in OOP. Properly designed state hierarchies comply with the

Liskov Substitution Principle (LSP) extended for states.

UML state machines support state entry and exit actions for states, which provide the

means for guaranteed initialization and cleanup, very much as constructors and

destructors do for classes. Entry actions are always executed starting with the outermost

state, which is analogous to class constructors executed from the most general class.

The exit actions, similar to destructors, are always executed in exact reverse order.

Entry and exit actions combined with state nesting complicate transition sequence. The

precise semantics of state transitions can be confusing. The exhaustive example
www.newnespress.com

99A Crash Course in UML State Machines
QHSMTST.EXE discussed in this chapter can precisely “answer” virtually all your

questions regarding the semantics of state machine execution.

Statecharts were first invented as a visual formalism; therefore, they are heavily biased

toward graphical representation. However, it is important to distinguish the underlying

concept of the HSM from the graphical notation. It is also important to distinguish

between statecharts and flowcharts.

Designing effective UML state machines is not trivial and, as with most designs,

typically requires incremental, iterative process. Reuse does not come automatically,

but you must actively look for it. Chapter 5 presents a mini-catalog of proven, effective

state machine designs called state patterns.

1 Design automation tools often use standard state machine implementation techn

for hierarchical state machines. The resulting code, however, is typically intended

maintenance but rather to be regenerated every time you change the state diagram

www.new
CHAP T E R 3
Standard State Machine
Implementations
An expert is a man who has made all the mistakes which can be made, in a narrow field.
— Niels Bohr

This chapter discusses standard state machine implementation techniques, which you

can find in the literature or in the working code. They are mostly applicable to the

traditional nonhierarchical extended finite state machines (FSMs) because hardly any

standard implementations of hierarchical state machines (HSMs) are intended for

manual coding.1

Typical implementations of state machines in high-level programming languages, such

as C or C++, include:

� The nested switch statement

� The state table

� The object-oriented State design pattern

� Other techniques that are often a combination of the above
iques to generate code

not for manual

inside the tool.

nespress.com

102 Chapter 3
3.1 The Time-Bomb Example

To focus the discussion and allowmeaningful comparisons, in all following state machine

implementation techniques I’ll use the same time-bomb example. As shown Figure 3.1,

the time bomb has a control panel with an LCD that shows the current value of the

timeout and three buttons: UP, DOWN, and ARM. The user begins with setting up the

time bomb using the UP and DOWN buttons to adjust the timeout in one-second

steps. Once the desired timeout is selected, the user can arm the bomb by pressing the

ARM button. When armed, the bomb starts decrementing the timeout every second and

explodes when the timeout reaches zero. An additional safety feature is the option to

defuse an armed bomb by entering a secret code. The secret defuse code is a certain

combination of the UP and DOWN buttons terminated with the ARM button press.

Of course, the defuse code must be correctly entered before the bomb times out.
UP button

DOWN button

ARM button

LCD showing
the timeout value

Figure 3.1: Time bomb controller user interface.
Figure 3.2 shows FSM that models the time-bomb behavior. The following explanation

section illuminates the interesting points.

(1) The initial transition initializes the me->timeout extended state variable and

enters the “setting” state.

(2) If the timeout is below the 60-second limit, the internal transition UP in state

“setting” increments the me->timeout variable and displays it on the LCD.

(3) If the timeout is above the 1 second limit, the internal transition DOWN in state

“setting” decrements the me->timeout variable and displays it on the LCD.

(4) The transition ARM to state “timing” clears the me->code extended state

variable to make sure that the code for defusing the bomb is wiped clean before

entering the “timing” state.
www.newnespress.com

103Standard State Machine Implementations
(5) The internal transition UP in state “timing” shifts the me->code variable and

inserts the 1-bit into the least-significant-bit position.

(6) The internal transition DOWN in state “timing” just shifts the me->code

variable and leaves the least-significant-bit at zero.

(7) If the entered defuse code me->code matches exactly the secret code

me->defuse given to the bomb in the constructor, the transition ARM to

state “setting” disarms the ticking bomb. Note that the “setting” state does not

handle the TICK event, which means that TICK is ignored in this state.

(8) The handling of the most important TICK event in state “timing” is the most

complex. To make the time-bomb example a little more interesting, I decided

to generate the TICK event 10 times per second and to include an event

parameter fine_time with the TICK event. The fine_time parameter

contains the fractional part of a second in 1/10 s increments, so it cycles

through 0, 1, .., 9 and back to 0. The guard [e->fine_time == 0] checks for

the full-second rollover condition, at which time the me->timeout variable

is decremented and displayed on the LCD.

(9) The choice pseudostate is evaluated only if the first segment of the TICK

transition fires. If the me->timeout variable is zero, the transition segment is

executed that calls the BSP_boom() function to trigger the destruction of the

bomb (transition to the final state).

(10) Otherwise the choice pseudostate selects the transition back to “timing.”
UP [me->timeout < 60] /
 ++me->timeout;
 BSP_display(me->timeout);

DOWN [me->timeout > 1] /
--me->timeout;
 BSP_display(me->timeout);

setting

ARM /
 me->code = 0;

UP /
 me->code <<= 1;
 me->code |= 1;

DOWN /
 me->code <<= 1;

timing

/ me->timeout = INIT_TIMEOUT;
TICK (fine_time) [e->fine_time == 0] /
--me->timeout;
 BSP_display(me->timeout);

ARM [me->code == me->defuse]

[me->timeout == 0] /
 BSP_boom();

[else]

(1)

(2)

(3)

(4)

(5)

(5)(6)

(7)

(8)

(9)

(10)

Figure 3.2: UML state diagram representing the time-bomb state machine.

www.newnespress.com

104 Chapter 3
3.1.1 Executing the Example Code

Every state machine implementation technique described in this chapter comes

with the complete source code for the time-bomb example and the precompiled

executable program. The C version of the code is located in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\bomb\, whereas the C++ version is

found in <qp>\qpcpp\examples\80x86\dos\tcpp101\l\bomb\.

The executable program for each coding technique is a simple console application

compiled with the free Turbo C++ 1.01 compiler (see Section 1.2.1 in Chapter 1). The

Turbo C++ project files are included with the application source code. Figure 3.3 shows

an example run of the time-bomb application.
Bomb
armed

Bomb
armed

Bomb
defused

Timeout
adjusted

Bomb
destroyed

Figure 3.3: Time-bomb example running in the Turbo C++ IDE.

www.newnespress.com

NOTE

Because all the examples in this chapter are simple console applications, they can easily be

compiled with just about any C/C++ compiler for your favorite desktop workstation, includ-

ing Linux.2 The code accompanying this book provides the project files for the legacy Turbo

C++ 1.01 compiler — the same one that I’ve used in Chapter 1. You can run the generated

executables in any variant of Windows.

105Standard State Machine Implementations
You generate events by pressing appropriate keys on the keyboard (see the legend of

recognized keypresses at the top of the output window in Figure 3.3.). The time bomb

responds by printing every event it receives (the TICK event is represented as T) as

well as every update to the LCD, which is shown in square brackets. The application

terminates automatically when the bomb explodes. You can also quit the program at

any time by pressing the Esc key.
3.2 A Generic State Machine Interface

The majority of published state machine code presents state machines intimately

intertwined with a specific concurrency model and a particular event-passing

method. For example, embedded systems engineers3 often present their state

machines inside polling loops or interrupt service routines (ISRs) that extract

events and event parameters directly from hardware registers or global variables.

GUI programmers are typically more disciplined in this respect because the

GUI system already provides a consistent interface, but then again GUI

programmers seldom use state machines, as demonstrated in the Visual Basic

Calculator example in Chapter 2.

However, it is far better to separate the state machine code from a particular

concurrency model and to provide a flexible and uniform way of passing events with

arbitrary parameters. Therefore, implementations in this chapter use a simple and
2 The Linux platform requires slightly different techniques for interacting with the console, but the state

machine code can be exactly the same.
3 Judging by 20 years of articles (1988–2008) published on the subject in Embedded Systems Design
magazine (formerly Embedded Systems Programming).

www.newnespress.com

106 Chapter 3
generally applicable interface to a state machine.4 The interface I propose consists

of just two functions: init(), to trigger the top-level initial transition in a state

machine, and dispatch(), to dispatch an event to the state machine. In this simple

model, a state machine is externally driven by invoking init() once and dispatch()

repetitively, for each event.
3.2.1 Representing Events

To nail down the signature of the dispatch() function, we need a uniform

representation of events. Again, this is where the standard approaches vary the most.

For example, the GUI systems, such as Microsoft Windows, provide only events

with fixed sets of event parameters that are passed to the WinMain() function and

thus are not generally applicable outside the GUI domain (after all, the most

complex event parameters that a GUI needs to handle are the parameters of the

mouse-click event).

As described in Chapter 2, events consist really of two parts: the signal of the

event conveys the type of the occurrence (such as arrival of the time tick), and

event parameters convey the quantitative information about the occurrence (such as

the fractional part of a second in the time tick event). In event-driven systems,

event instances are frequently passed around, placed in event queues, and

eventually consumed by state machines. Consequently, it is very convenient to

represent events as event objects that combine the signal and the event parameters

into one entity.

The following Event structure represents event objects. The scalar data member sig

contains the signal information, which is an integer number that identifies the event,

such as UP, DOWN, ARM, or TICK:
4

d

w

typedef struct EventTag {
uint16_t sig; /* signal of the event */
/* add event parameters by derivation from the Event structure... */

} Event;
Because of the special nature, the object-oriented State design pattern uses a different interface for

ispatching events.

ww.newnespress.com

NOTE

Throughout this book I use the following standard exact-width integer types (WG14/N843

C99 Standard, Section 7.18.1.1) [ISO/IEC 9899:TC2]:

Exact Size Unsigned Signed

8 bits uint8_t int8_t

16 bits uint16_t int16_t

32 bits uint32_t int32_t

If your (prestandard) compiler does not provide the <stdint.h> header file, you can always
typedef the exact-width integer types using the standard C data types such as signed/
unsigned char, short, int and long.

107Standard State Machine Implementations
You can add arbitrary event parameters to an event in the process of “derivation

of structures” described in the sidebar “Single Inheritance in C” (Chapter 1,

Section 1.6). For example, the following TickEvt structure declares an event

wit h the p ara m ete r fine_time used i n the TICK(fine_t ime) event (se e

Figure 3.2(8)).
typedef struct TickEvtTag {
Event super; /* derive from the Event structure */
uint8_t fine_time; /* the fine 1/10 s counter */

} TickEvt;
As shown in Figure 3.4, such nesting of structures always aligns the data member

super at the beginning of every instance of the derived structure. In particular, this

alignment lets you treat a pointer to the derived TickEvt structure as a pointer to

the Event base structure. Consequently, you can always safely pass a pointer

to TickEvt to any C function that expects a pointer to Event.

With this representation of events, the signature of the dispatch() function looks as

follows:
id dispatch(StateMachine *me, Event const *e);
vo
www.newnespress.com

108 Chapter 3
The first argument ‘StateMachine *me’ is the pointer to the state machine object.

Different state machine implementation techniques will define the StateMachine

structure differently. The second argument ‘Event const *e’ is the pointer to

the event object, which might point to a structure derived from Event and thus might

contain arbitrary event parameters (see Figure 3.4(B)). This interface becomes clearer

when you see how it is used in the concrete implementation techniques.
sig : uint16_t

Event

fine_time : uint8_t

TickEvt

typedef struct EventTag {
 uint16_t sig;
 . . .
} Event;

typedef struct TickEvtTag {
 Event super;
 uint8_t fine_time;
} TimeEvt;

Members
added in

the derived
struct

Instance of the
base struct

super

e

A

B
C

Figure 3.4: Adding parameters to events in the process of derivation
of structures (inheritance).
3.3 Nested Switch Statement

Perhaps the most popular and straightforward technique of implementing state

machines is the nested switch statement, with a scalar state variable used as the

discriminator in the first level of the switch and the signal of the event used in the

second level.
3.3.1 Example Implementation

Listing 3.1 shows a typical implementation of the time bomb FSM from Figure 3.2.

The explanation section immediately following the listing illuminates the interesting points.
Listing 3.1 Time bomb state machine implemented using the nested switch

statement technique (see file bomb1.c)

(1) enum BombSignals { /* all signals for the Bomb FSM */

UP_SIG,

DOWN_SIG,

ARM_SIG,

TICK_SIG

};

/*..*/

www.newnespress.com

(2) enum BombStates { /* all states for the Bomb FSM */

SETTING_STATE,

TIMING_STATE

};

/*...*/

(3) typedef struct EventTag {

(4) uint16_t sig; /* signal of the event */

/* add event parameters by derivation from the Event structure... */

} Event;

(5) typedef struct TickEvtTag {

(6) Event super; /* derive from the Event structure */

(7) uint8_t fine_time; /* the fine 1/10 s counter */

} TickEvt;

/*...*/

(8) typedef struct Bomb1Tag { /* the Bomb FSM */

(9) uint8_t state; /* the scalar state-variable */

(10) uint8_t timeout; /* number of seconds till explosion */

(11) uint8_t code; /* currently entered code to disarm the bomb */

(12) uint8_t defuse; /* secret defuse code to disarm the bomb */

} Bomb1;

/* macro for taking a state transition */

(13) #define TRAN(target_) (me->state = (uint8_t)(target_))

/*..*/

(14) void Bomb1_ctor(Bomb1 *me, uint8_t defuse) { /* the "constructor" */

(15) me->defuse = defuse; /* the defuse code is assigned at instantiation */

}

/*...*/

(16) void Bomb1_init(Bomb1 *me) { /* initial transition */

(17) me->timeout = INIT_TIMEOUT;/* timeout is initialized in initial tran. */

(18) TRAN(SETTING_STATE);

}

/*...*/

(19) void Bomb1_dispatch(Bomb1 *me, Event const *e) { /* dispatching */

(20) switch (me->state) {

(21) case SETTING_STATE: {

(22) switch (e->sig) {

(23) case UP_SIG: { /* internal transition with a guard */

(24) if (me->timeout < 60) { /* guard condition */

(25) ++me->timeout;

(26) BSP_display(me->timeout);

}

(27) break;

}

case DOWN_SIG: { /* internal transition with a guard */

if (me->timeout > 1) {

--me->timeout;

Continued onto next page

www.newnespress.com

109Standard State Machine Implementations

BSP_display(me->timeout);

}

break;

}

case ARM_SIG: { /* regular transition */

me->code = 0; /* transition action */

(28) TRAN(TIMING_STATE); /* transition to "timing" */

break;

}

}

(29) break;

}

case TIMING_STATE: {

switch (e->sig) {

case UP_SIG: {

me->code <<= 1;

me->code j= 1;

break;

}

case DOWN_SIG: {

me->code <<= 1;

break;

}

case ARM_SIG: { /* regular transition with a guard */

(30) if (me->code == me->defuse) {

(31) TRAN(SETTING_STATE); /* transition to "setting" */

}

break;

}

case TICK_SIG: {

(32) if (((TickEvt const *)e)->fine_time == 0) {

--me->timeout;

BSP_display(me->timeout);

(33) if (me->timeout == 0) {

BSP_boom(); /* destroy the bomb */

}

else {

TRAN(TIMING_STATE);

}

}

break;

}

}

break;

}

}

}

www.newnespress.com

110 Chapter 3

111Standard State Machine Implementations
(1) Event signals are typically represented as an enumeration.

(2) States are also typically represented as an enumeration.

(3) The Event structure represents signal events without parameters.

(4) The scalar data member sig holds the signal. Here it’s declared as the C99-

standard 16-bit unsigned integer with the dynamic range of 64K signals.

(5) The TickEvt structure represents TICK events with the fine_time

parameter described in the explanation to Figure 3.2(8).

(6) The TickEvt structure derives from Event structure, as described in the

Sidebar “Single Inheritance in C” in Chapter 1. By convention, I name the

base structure member super .

(7) The event parameter(s) are added after the member super .

(8) The Bomb1 structure represents the time-bomb state machine implemented

with the nested switch statement technique.

(9) The data member state is the scalar state variable in this implementation.

Here it’s declared as the C99-standard 8-bit unsigned integer with the

dynamic range of 256 states. You can adjust it to suit your needs.

(10-12) The data members timeout, defuse, and code are the extended state

variables used in the state diagram shown in Figure 3.2 .

(13) The TRAN() macro encapsulates the transition, which in this method consists

of reassigning the state variable state .

(14) The state machine “constructor” performs just a basic initialization but does

not trigger the initial transition. In C, you need to call the “constructor”

explicitly at the beginning of main().

(15) Here, the “constructor” initializes the secret defuse code, which is assigned to

the bomb at instantiation.

(16) This is the init() function of the generic state machine interface. Calling

this function triggers the initial transition in the state machine.

(17) The initial transition initializes the me->timeout extended state variable, as

prescribed in the diagram in Figure 3.2(1).
www.newnespress.com

112 Chapter 3
(18) The initial transition changes the state to the “setting” state by means of the

TRAN() macro.

(19) This is the dispatch() function of the generic state machine interface.

Calling this function dispatches one event to the state machine.

(20) The first level of switch statement discriminates based on the scalar state

variable me->state .

(21) Each state corresponds to one case statement in the first level of the switch .

(22) Within each state the second level of switch discriminates based on the

event signal e->sig.

(23) For example, the internal transition UP is coded as a nested case statement.

(24) The guard condition (see Figure 3.2(2)) is coded by means of the if statement.

(25,26) The actions associated with the transition are coded directly.

(27) Handling of each event case must be terminated with the break statement.

(28) A state transition is coded by reassigning the state variable, here achieved by

the TRAN() macro.

(29) Handling of each state case must be terminated with the break statement.

(30,31) A regular transitionwith a guard is codedwith anif statement andTRAN()macro.

(32) Events with parameters, such as the TICK event, require explicit casting from the

generic base structureEvent to the specific derived structureTickEvt, in this case.

(33) The choice pseudostate is coded as an if statement that tests all the outgoing

guards of the choice point.
3.3.2 Consequences

The nested switch statement implementation has the following consequences:

� It is simple.

� It requires enumerating both signals and states.

� It has a small memory footprint, since only one small scalar state variable is

necessary to represent the current state of a state machine.
www.newnespress.com

113Standard State Machine Implementations
� It does not promote code reuse because all elements of a state machine must be

coded specifically for the problem at hand.

� The whole state machine is coded as one monolithic function, which easily can

grow too large.

� Event dispatching time is not constant but depends on the performance of the

two levels of switch statements, which degrade with increasing number of

cases (typically as O(log n), where n is the number of cases).

� The implementation is not hierarchical. You could manually code entry/exit

actions directly in every transition, but this would be prone to error and difficult

to maintain in view of changes in the state machine topology. This is mainly

because the code pertaining to one state (e.g., an entry action) would

become distributed and repeated in many places (on every transition leading

to this state).

� The latter property is not a problem for code-synthesizing tools, which often

use a nested switch statement type of implementation.
3.3.3 Variations of the Technique

The variations of this method include eliminating the second level of the switch,

if the state machine handles only one type of event. For example, parser state machines

often receive identical characters from the input stream. In addition, signal-processing

state machines often receive identical time samples of the signal under control. The

“Fly ‘n’ Shoot” game introduced in Chapter 1 provides an example of a simple switch-

debouncing state machine coded with the switch statement technique (see file

<qp>\qpc\examples\cortex-m3\vanilla\iar\game-ev-lm3s811\bsp.c).
3.4 State Table

Another common approach to implementing state machines is based on state table

representation of a state machine. The most popular is the two-dimensional state

table that lists events along the horizontal dimension and states along the vertical dimension.

The contents of the cells are transitions represented as {action, next-state}

pairs. For example, Table 3.1 shows the two-dimensional state table corresponding to

the time-bomb state diagram from Figure 3.2.
www.newnespress.com

Table 3.1: Two-dimensional state table for the time bomb

Events !
UP DOWN ARM TICK

S
tates

#

Setting
setting_UP(),
setting

setting_DOWN(),
setting

setting_ARM(),
timing

empty(),
setting

Timing
timing_UP(),
timing

timing_DOWN(),
timing

timing_ARM(),
setting(*)

timing_TICK(),
timing(**)

Notes:
(*) The transition to “setting” is taken only when (me->code == me->defuse).
(**) The self-transition to “timing” is taken only when (e->fine_time == 0) and (me->timeout != 0).

114 Chapter 3
3.4.1 Generic State-Table Event Processor

One of the most interesting aspects of the state-table approach is that it represents a

state machine as a very regular data structure (the table). This allows writing a simple

and generic piece of software called an event processor that can execute any state

machine specified in the tabular form.

As shown in Figure 3.5, the generic event processor consists of the StateTable

structure that manages an external array of transitions and the Event structure for
init()
dispatch()

state : uint8_t
init_tran : Tran
state_table : *Tran
n_states : uint8_t
n_signals : uint8_t

«abstract»
StateTable

:Tran :Tran :Tran :Tran

:Tran :Tran :Tran :Tran

:Tran :Tran :Tran :Tran

setting_UP()
setting_DOWN()
. . .

timing : uint8_t
code : uint8_t
defuse : uint8_t

Bomb2

State-table event processor

Application

sig : uint16_t

Event

fine_time : uint8_t

TickEvt

state-variable

Derived event
with parameter(s)

Figure 3.5: The structure of a generic state table-based event processor.

www.newnespress.com

115Standard State Machine Implementations
derivation of events with parameters or is used as is for events without parameters.

Additionally, the StateTable structure has two functions associated with it. The

init() function triggers the initial transition, and dispatch() dispatches an event

to the state machine. The StateTable structure is abstract, meaning that it is

not intended for direct instantiation but rather only for derivation of concrete5

state machine structures, such as Bomb2.

In this implementation variant, the state table contains just pointers to transition

functions instead of {action, next-state} pairs. This pushes the responsibility

of changing the state to the transition function, but in the end is much more

flexible because the transition function can evaluate guard conditions and

change state only conditionally. Listing 3.2 shows the header file; Listing 3.3

shows the implementation of the generic event processor depicted in Figure 3.5.
Listing 3.2 Generic state-table event processor interface (file statetbl.h)

(1) typedef struct EventTag {

uint16_t sig; /* signal of the event */

/* add event parameters by derivation from the Event structure */

} Event;

(2) struct StateTableTag; /* forward declaration */

(3) typedef void (*Tran)(struct StateTableTag *me, Event const *e);

(4) typedef struct StateTableTag {

(5) Tran const *state_table; /* the State-Table */

(6) uint8_t n_states; /* number of states */

(7) uint8_t n_signals; /* number of signals */

(8) uint8_t state; /* the current active state */

(9) Tran initial; /* the initial transition */

} StateTable;

(10) void StateTable_ctor(StateTable *me,

Tran const *table, uint8_t n_states, uint8_t n_signals,

Tran initial);

(11) void StateTable_init(StateTable *me); /* init method */

(12) void StateTable_dispatch(StateTable *me, Event const *e); /* dispatch method */

Continued onto next page

5 Concrete class is an OOP term and denotes a class that can be instantiated because it has no abstract

(partially defined) operations or protected constructors.

www.newnespress.com

(13) void StateTable_empty(StateTable *me, Event const *e); /* empty action */

/* macro for taking a state transition inside a transition function */

(14) #define TRAN(target_) (((StateTable *)me)->state = (uint8_t)(target_))

116 Chapter 3
(1) The Event structure represents signal events (see also Listing 3.1(3-4)).

(2) This forward declaration is used in the following definition of a pointer-to-

function type.

(3) This typedef defines Tran type as a pointer to transition function that takes

the pointer to the StateTable struct and a pointer to the Event struct as

arguments and returns void . The value returned from the transition function

represents the next state for the state machine after executing the transition.

The pivotal aspect of this design is that the transition functions can be used with

respect to structures derived (inheriting) from the StateTable.

(4-7) The StateTable structure does not physically contain the state table but

rather manages an arbitrary table state_table of transitions with an arbitrary

number of states n_states and signals n_signals.

(8) The data member state is the scalar state variable in this implementation.

(9) The StateTable structure also contains a pointer to the initial transition.

(10) The state table “constructor” performs just a basic initialization but does not

trigger the initial transition. In C, you need to call the “constructor” explicitly

at the beginning of main().

(11) This is the init() function of the generic state machine interface. Calling this

function triggers the initial transition in the state machine.

(12) This is the dispatch() function of the generic state machine interface. Calling

this function dispatches one event to the state machine.

(13) The StateTable_empty() function is the default empty action useful for

initializing the empty cells of the state table.

(14) The TRAN() macro encapsulates the transition, which in this method consist of

re-assigning the state-variable state. Note the explicit cast (upcast) of the me

pointer, which typically points to a structure derived from StateTable, rather

than StateTable directly.
www.newnespress.com

Listing 3.3 Generic state-table event processor implementation
(file statetbl.c)

#include "statetbl.h"

(1) #include <assert.h>

/*..*/

(2) void StateTable_ctor(StateTable *me,

Tran const *table, uint8_t n_states, uint8_t n_signals,

Tran initial)

{

me->state_table = table;

me->n_states = n_states;

me->n_signals = n_signals;

me->initial = initial;

(3) me->state = n_states; /* initialize state out of range */

}

/*..*/

void StateTable_init(StateTable *me) {

(4) (*me->initial)(me, (Event *)0); /* top-most initial transition */

(5) assert(me->state < me->n_states); /* the initial tran. must change state */

}

/*..*/

void StateTable_dispatch(StateTable *me, Event const *e) {

Tran t;

(6) assert(e->sig < me->n_signals); /* require the signal in range */

(7) t = me->state_table[me->state*me->n_signals + e->sig];

(8) (*t)(me, e); /* execute the transition function */

(9) assert(me->state < me->n_states); /* ensure that state stays in range */

}

/*..*/

void StateTable_empty(StateTable *me, Event const *e) {

(void)me; /* void compiler warning about unused parameter */

(void)e; /* void compiler warning about unused parameter */

}

117Standard State Machine Implementations
(1) The event processor implementation uses assertions to prevent incorrect execution

of the externally defined state machine. Here the standard assertions are used.

See Section 6.7.3 in Chapter 6 for the implementation of customizable assertions

in C and C++.
www.newnespress.com

118 Chapter 3
(2) The state table “constructor” initializes the state_table pointer, the table

geometry, and the initial transition.

(3) The state variable is initially set outside the valid range.

(4) The init() function calls the initial transition via the pointer to transition function.

(5) The state variable must be in range after the initial transition (see also (3)).

(6) The signal of the event dispatched to the state machine must be in range.

(7) The transition function pointer corresponding to the current state and current event

is obtained by indexing into the external state table array.

(8) The transition function is invoked via the pointer to transition function obtained in

the previous step.

(9) The state variable must be in range after the transition.

3.4.2 Application-Specific Code

The application-specific part of the implementation provides (1) enumerated signals and

states, (2) the state machine structure derived from StateTable that includes all the

extended state variables, (3) all the transition functions, and (4) the state table initialized

with the pointers to the transition functions. Listing 3.4 shows all these elements.
Listing 3.4 Time bomb state machine implemented using the state-table
technique (file bomb2.c)

#include "statetbl.h" /* the generic state table event processor */

(1) enum BombSignals { /* all signals for the Bomb FSM */
UP_SIG,
DOWN_SIG,
ARM_SIG,
TICK_SIG,

(2) MAX_SIG /* the number of signals */
};

(3) enum BombStates { /* all states for the Bomb FSM */
SETTING_STATE,
TIMING_STATE,

(4) MAX_STATE /* the number of states */
};

(5) typedef struct TickEvtTag {

(6) Event super; /* derive from the Event structure */

www.newnespress.com

(7) uint8_t fine_time; /* the fine 1/10 s counter */
} TickEvt;

(8) typedef struct Bomb2Tag { /* the Bomb FSM */

(9) StateTable super; /* derive from the StateTable structure */

(10) uint8_t timeout; /* number of seconds till explosion */

(11) uint8_t defuse; /* secret defuse code to disarm the bomb */

(12) uint8_t code; /* currently entered code to disarm the bomb */
} Bomb2;

(13) void Bomb2_ctor(Bomb2 *me, uint8_t defuse); /* the "constructor" */

(14) void Bomb2_initial (Bomb2 *me); /* the initial transition function */

(15) voidBomb2_setting_UP (Bomb2*me,Eventconst*e);/*transitionfunction*/
void Bomb2_setting_DOWN(Bomb2 *me, Event const*e);/* transition function */
voidBomb2_setting_ARM (Bomb2*me,Eventconst*e); /*transitionfunction*/
voidBomb2_timing_UP (Bomb2*me,Eventconst*e); /*transitionfunction*/
voidBomb2_timing_DOWN (Bomb2*me,Eventconst*e); /*transitionfunction*/
voidBomb2_timing_ARM (Bomb2*me,Eventconst*e); /*transitionfunction*/
voidBomb2_timing_TICK (Bomb2*me,Eventconst*e); /*transitionfunction*/

/* the initial value of the timeout */
#define INIT_TIMEOUT 10

/*...*/
void Bomb2_ctor(Bomb2 *me, uint8_t defuse) {

/* state table for Bomb state machine */

(16) static const Tran bomb2_state_table[MAX_STATE][MAX_SIG] = {
{ (Tran)&Bomb2_setting_UP, (Tran) &Bomb2_setting_DOWN,
(Tran)&Bomb2_setting_ARM, &StateTable_empty },

{ (Tran)&Bomb2_timing_UP, (Tran) &Bomb2_timing_DOWN,
(Tran)&Bomb2_timing_ARM, (Tran) &Bomb2_timing_TICK }

};

(17) StateTable_ctor(&me->super,
&bomb2_state_table[0][0], MAX_STATE, MAX_SIG,
(Tran)&Bomb2_initial); /* construct the superclass */

(18) me->defuse = defuse; /* set the secret defuse code */
}
/*...*/
void Bomb2_initial(Bomb2 *me) {

(19) me->timeout = INIT_TIMEOUT;

(20) TRAN(SETTING_STATE);
}
/*...*/
void Bomb2_setting_UP(Bomb2 *me, Event const *e) {

(void)e; /* avoid compiler warning about unused parameter */

(21) if (me->timeout < 60) {
++me->timeout;
BSP_display(me->timeout);

Continued onto next page

www.newnespress.com

119Standard State Machine Implementations

}
}
/*...*/
void Bomb2_setting_DOWN(Bomb2 *me, Event const *e) {

(void)e; /* avoid compiler warning about unused parameter */
if (me->timeout > 1) {

––me->timeout;
BSP_display(me->timeout);

}
}
/*...*/
void Bomb2_setting_ARM(Bomb2 *me, Event const *e) {

(void)e; /* avoid compiler warning about unused parameter */
me->code = 0;

(22) TRAN(TIMING_STATE); /* transition to "timing" */
}
/*...*/
void Bomb2_timing_UP(Bomb2 *me, Event const *e) {

(void)e; /* avoid compiler warning about unused parameter */
me->code <<= 1;
me->code j= 1;

}
/*...*/
void Bomb2_timing_DOWN(Bomb2 *me, Event const *e) {

(void)e; /* avoid compiler warning about unused parameter */
me->code <<= 1;

}
/*...*/
void Bomb2_timing_ARM(Bomb2 *me, Event const *e) {

(void)e; /* avoid compiler warning about unused parameter */
if (me->code == me->defuse) {

TRAN(SETTING_STATE); /* transition to "setting" */
}

}
/*...*/
void Bomb2_timing_TICK(Bomb2 *me, Event const *e) {

(23) if (((TickEvt const *)e)->fine_time == 0) {
––me->timeout;
BSP_display(me->timeout);

(24) if (me->timeout == 0) {
BSP_boom(); /* destroy the bomb */

}
}

}

120 Chapter 3
(1) Event signals are typically represented as an enumeration.

(2) The extra enumeration added at the end corresponds to the total number of signals,

which you need to know to size the state table array.
www.newnespress.com

121Standard State Machine Implementations
(3) States are also typically represented as an enumeration.

(4) The extra enumeration added at the end corresponds to the total number of

signals, which you need to know to size the state table array.

(5) The TickEvt structure represents TICK events with the fine_time

parameter described in the explanation to Figure 3.2(8).

(6) The TickEvt structure derives from Event structure, as described in the

Sidebar “Single Inheritance in C” in Chapter 1. By convention, I always name

the base structure member super.

(7) The event parameter(s) are added after the member super.

(8) The Bomb2 structure represents the time-bomb state machine implemented

with the state table technique.

(9) The Bomb2 structure derives from StateTable structure, as described in the

Sidebar “Single Inheritance in C” in Chapter 1. By convention, I always

name the base structure member super.

(10-12) The data members timeout, defuse, and code are the extended state

variables used in the state diagram shown in Figure 3.2.

(13) The state machine “constructor” performs just the basic initialization, but

does not trigger the initial transition. In C, you need to call the “constructor”

explicitly at the beginning of main().

(14) The initial transition function performs the actions of the initial transition (see

Figure 3.2(1)), and initializes the state variable to the default state.

(15) The transition functions are specified for each implemented state-signal

combination. For example, Bomb2_setting_UP() corresponds to transition

UP in state “setting.”

(16) The state table array specifies the structure of the state machine. The table is

known and initialized at compile time, so it can be declared const. The table is

initialized with the pointers to the Bomb2 transition functions. Typically, you

need to explicitly cast these pointers to function on the Tran type because they

refer to Bomb2 subclass of StateTable rather than directly to StateTable.

(17) The state table is passed to theStateTable event processor constructor,

along with the dimensions of the table and the initial transition.
www.newnespress.com

122 Chapter 3
(18) The Bomb “constructor” also initializes the secret defuse code, which is assigned

to the bomb at instantiation.

(19) The initial transition initializes the me->timeout extended state variable, as

prescribed in the diagram in Figure 3.2 (1).

(20) The initial transition changes the state to the “setting” state by means of the

TRAN() macro defined in the event processor interface (file statetbl.h).

(21) The transition functions are responsible for testing the guards, which are

implemented as if statements.

(22) The transition functions are responsible for changing the current active state by

means of the TRAN() macro.

(23) Events with parameters, such as the TICK event, require explicit casting from the

generic base structure Event to the specific derived structure TickEvt, in this case.

(24) The choice pseudostate is coded as an if statement that tests all the outgoing

guards of the choice point.

3.4.3 Consequences

The state table implementation technique has the following consequences.

1. It maps directly to the highly regular state table representation of a state

machine.

2. It requires the enumeration of states and signals that are used as indexes into the

state table.

3. Because states and signals are used as indexes into an array, they must both be

contiguous and start with zero.

4. It provides relatively good and deterministic performance for event dispatching

(O(const), not taking into account action execution).

5. It promotes code reuse of the generic event processor, which is typically small.

6. It requires a large state table, which is typically sparse. However, because the

state table is constant, it often can be stored in ROM rather than RAM.

7. It requires a complicated initialization of the state table that must implicitly match

the enumerated states and signals.Manualmaintenance of this initialization, in view
www.newnespress.com

N

B

p

g

a

123Standard State Machine Implementations
of changes in the state machine topology, is tedious and prone to error. For instance,

adding a new state requires adding and initializing a whole row in the state table.
OTE

ecause of the complex initialization and rapid growth of the state table, programmers often

erceive adding new states or events as expensive. This perception often discourages pro-

rammers from evolving the state machine. Instead, they tend to misuse extended state vari-

bles and guard conditions.
8. It requires a large number of fine-granularity functions representing actions.

9. It typically relies heavily on pointers to functions when implemented in C/C++ (see

Section 3.7.1) because state tables t ypically contain large nu mbers o f s uc h pointers

to functions.

10. It is not hierarchical. Although the state table can be extended to implement

state nesting, entry/exit actions, and transition guards, these extensions require

hardcoding whole transition chains into transition action functions, which is

prone to error and inflexible.

3.4.4 Variations of the Technique

There seem to be two main variations on state table implementation in C/C++. Concrete

state machines can either derive from the generic state table event processor (inheritance)

or contain a state table processor (aggregation). The technique presented here falls into the

inheritance category. However, the aggregation approach seems to be quite popular as

well (e.g., see [Douglass 99, 01]). Aggregation introduces the indirection layer of a context

class—that is, a structure containing the extended state variables on behalf of which the

aggregated state table event processor executes actions. Inheritance eliminates this

indirection because the StateTable class plays the role of the context class (state machine

class) simultaneously. In other words, by virtue of inheritance, every derived state

machine (like Bomb2) also simultaneously “is a” StateTable.

The main shortcoming of the two-dimensional state-table representation is the

difficulty of showing guard conditions and transitions leading to different states

based on different guards, as indicated by the notes added to Table 3.1. Therefore,

some authors use a one-dimensional state transition table, shown in Table 3.2
www.newnespress.com

Table 3.2: One-dimensional state transition table for the time bomb

Current
State

Event
(Parameters) [Guard]

Next
State Actions

setting UP [me->timeout < 60] setting ++me->timeout; BSP_display
(me->timeout);

DOWN [me->timeout > 1] setting –me->timeout; BSP_display
(me->timeout);

ARM timing me->code = 0;

TICK setting

timing UP timing me->code <<=1;
me->code |= 1;

DOWN timing me->code <<= 1;

ARM [me->code == me->
defuse]

setting

TICK
(fine_time)

[e->fine_time == 0] choice –me->timeout; BSP_display
(me->timeout);

[me->timeout == 0] final BSP_boom();

[else] timing

124 Chapter 3
[Diaz-Herrera 93]. In this case, the table can explicitly incorporate event parameters,

guard conditions, and actions.

In the direct implementation of the one-dimensional state table, the transitions are

more complex objects that contain:

� Pointer to the guard function

� Next state

� A list of pointers to action functions

3.5 Object-Oriented State Design Pattern

The object-oriented approach to implementing state machines is known as the State

design pattern [Gamma+ 95]. The intent of the pattern is to make a state machine object

appear to change its class at runtime as it transitions from state to state. An instance
www.newnespress.com

125Standard State Machine Implementations
of the State pattern applied to the time-bomb state machine is shown as a UML class

diagram6 in Figure 3.6.
onUP(context)
onDOWN(context)
onARM(context)
onTICK(context, fine_time)

«abstract»
BombState

onUP(context)
onDOWN(context)
onARM(context)

SettingState

onUP(context)
onDOWN(context)
onARM(context)
onTICK(context, fine_time)

TimingState

init();
tran(target)

onUp()
onDOWN()
onARM()
onTICK(fine_time)

state : *BombState
timeout : uint8_t
code : uint8_t
defuse : uint8_t

Bomb3 state

«pattern»
State Pattern

abstract
 state

context

state->onTICK(this, fine_time);

state = target;

Figure 3.6: Object-oriented State design pattern applied to the time-bomb state
machine [Gamma+ 95].
The key idea in this pattern is to introduce an abstract class BombState to represent the

states of the time bomb. The BombState declares an interface common to all states,

where each operation corresponds to an event. Subclasses of BombState, such as

SettingState and TimingState, implement state-specific behavior by overriding

the operations inherited from BombState. For example, SettingState handles the

UP event in its own specific way by defining the SettingState::onUP() operation.

Adding new events requires adding new operations to the abstract BombState class,

and adding new states requires adding new subclasses of BombState.

The context class Bomb3 maintains the state as a pointer to a subclass of BombState

(see the state data member). Bomb3 also contains all the extended state variables

that the time bomb uses, such as timeout, code, and defuse. The class Bomb3

provides an interface identical to the BombState, that is, each handled event

corresponds to an operation. The event-handler operations in Bomb3 delegate all

state-specific requests to the current state object via the state pointer. In this technique

change of state corresponds to changing the current state object, which

is accomplished in the context class operation tran().
6 Appendix B contains a quick summary of the UML notation, which includes class diagrams.

www.newnespress.com

126 Chapter 3
3.5.1 Example Implementation

Listing 3.5 shows a C++ implementation of the time-bomb state with the

object-oriented State pattern. The C implementation is not provided because the

pattern very heavily relies on polymorphism, which is not quite trivial to

implement in C.
Listing 3.5 Time-bomb state machine implemented using the State design
pattern (file bomb3.cpp)

(1) class Bomb3; // context class, forward declaration

(2) class BombState {
public:

(3) virtual void onUP (Bomb3 *) const {}
virtual void onDOWN(Bomb3 *) const {}
virtual void onARM (Bomb3 *) const {}

(4) virtual void onTICK(Bomb3 *, uint8_t) const {}
};

(5) class SettingState : public BombState {
public:

virtual void onUP (Bomb3 *context) const;
virtual void onDOWN(Bomb3 *context) const;
virtual void onARM (Bomb3 *context) const;

};

(6) class TimingState : public BombState {
public:

virtual void onUP (Bomb3 *context) const;
virtual void onDOWN(Bomb3 *context) const;
virtual void onARM (Bomb3 *context) const;
virtual void onTICK(Bomb3 *context, uint8_t fine_time) const;

};

(7) class Bomb3 {
public:

(8) Bomb3(uint8_t defuse) : m_defuse(defuse) {}

(9) void init(); // the init() FSM interface

(10) void onUP () { m_state->onUP (this); }
void onDOWN() { m_state->onDOWN(this); }
void onARM () { m_state->onARM (this); }

www.newnespress.com

(11) void onTICK(uint8_t fine_time) { m_state->onTICK(this, fine_time); }

private:

(12) void tran(BombState const *target) { m_state = target; }

private:

(13) BombState const *m_state; // the state variable

(14) uint8_t m_timeout; // number of seconds till explosion
uint8_t m_code; // currently entered code to disarm the bomb
uint8_t m_defuse; // secret defuse code to disarm the bomb

private:

(15) static SettingState const setting;

(16) static TimingState const timing;

(17) friend class SettingState;

(18) friend class TimingState;
};

//...
// the initial value of the timeout

#define INIT_TIMEOUT 10

(19) SettingState const Bomb3::setting;

(20) TimingState const Bomb3::timing;

void Bomb3::init() {

(21) m_timeout = INIT_TIMEOUT;

(22) tran(&Bomb3::setting);
}
//...
void SettingState::onUP(Bomb3 *context) const {

(23) if (context->m_timeout < 60) {
++context->m_timeout;
BSP_display(context->m_timeout);

}
}
void SettingState::onDOWN(Bomb3 *context) const {

if (context->m_timeout > 1) {
––context->m_timeout;
BSP_display(context->m_timeout);

}
}
void SettingState::onARM(Bomb3 *context) const {

context->m_code = 0;

(24) context->tran(&Bomb3::timing); // transition to "timing"
}
//...

Continued onto next page

www.newnespress.com

127Standard State Machine Implementations

void TimingState::onUP(Bomb3 *context) const {
context->m_code <<= 1;
context->m_code j= 1;

}
void TimingState::onDOWN(Bomb3 *context) const {

context->m_code <<= 1;
}
void TimingState::onARM(Bomb3 *context) const {

if (context->m_code == context->m_defuse) {
context->tran(&Bomb3::setting); // transition to "setting"

}
}
void TimingState::onTICK(Bomb3 *context, uint8_t fine_time) const {

(25) if (fine_time == 0) {
––context->m_timeout;
BSP_display(context->m_timeout);

(26) if (context->m_timeout == 0) {
BSP_boom(); // destroy the bomb

}
}

}

128 Chapter 3
(1) The context class Bomb3 needs to be forward-declared because it is used in the

signatures of the operations inside the state classes.

(2) The BombState abstract class declares an interface common to all time-bomb

states, where each operation corresponds to an event. The class provides default

empty implementations for all event handlers.

(3) The onUP() operation handles the UP event without parameters.

(4) The onTICK() operation handles the TICK(fine_time) event with a parameter.

Note that the signature of the event operation contains strongly typed event

parameters.

(5) The class SettingState derives from the abstract BombState and overrides

all events handled in the “setting” state. Note that this state does not handle the

TICK event, so the SettingState class defaults to the empty implementation

inherited from the BombState superclass.

(6) The class TimingState derives from the abstract BombState and overrides all

events handled in the “timing” state.

(7) The context class Bomb3 keeps track of the current state and contains all extended

state variables.
www.newnespress.com

129Standard State Machine Implementations
(8) The constructor initializes selected extended-state variables but does not take the

initial transition.

(9) This is the init() function of the generic state machine interface. Calling this

function triggers the initial transition in the state machine.

(10) The context class Bomb3 duplicates the event interface from the abstract state class

BombState . All state-dependent behavior is delegated to the current state object.
NOTE

The sta ndard State desi gn patter n does not use the dispatch() method for dispatc hing

events to the state mac hine. Instead , for every signal event , the context class provides a spe-

cific (type-s afe) event handl er opera tion.
(11) The signatures of event operations contain strongly typed event parameters.

(12) The private tran() operation changes the state by reassigning the state

variable.

(13) The state variable in this technique is a pointer to the subclass of the abstract

state class BombState .

(14) The context class Bomb3 contains also all extended-state variables.

(15,16) The state objects are static and constant members of the context class Bomb3 .

Note that the state objects contain only operations but no data and therefore

can be safely shared among all instances of the context class.

(17,18) The context class Bomb3 declares friendship with all state classes because

the event-handler operations in the state classes must be able to access the

private members of the context class.

(19,20) The constant state objects must be defined.

(21) The initial transition performs the actions specified in the state diagram in

Figure 3.2(1).

(22) The default state is specified by means of the tran() operation.

(23) The guard condition is coded as an if statement. Note that the state class

must access the extended-state variables via the context argument.
www.newnespress.com

130 Chapter 3
(24) The transition is achieved by calling the tran() operation on behalf of the

context state machine object.

(25) The event parameters are available directly to state classes because they are

arguments of the event operations.

(26) The choice pseudostate is coded as an if-statement.
3.5.2 Consequences

The object-oriented State design pattern has the following consequences:

� It relies heavily on polymorphism and requires an object-oriented language likeC++.

� It partitions state-specific behavior and localizes it in separate classes.

� It makes state transitions efficient (reassigning one pointer).

� It provides very good performance for event dispatching through the late binding

mechanism (O(const), not taking into account action execution). This

performance is generally better than indexing into a state table plus invoking a

method via a function pointer, as used in the state table technique. However, such

performance is only possible because the selection of the appropriate event

handler is not taken into account. Indeed, clients typically will use a switch

statement to perform such selections. (See the main() function in bomb3.cpp.)

� It allows you to customize the signature of each event handler. Event parameters are

explicit, and the typing system of the language verifies the appropriate type of all

parameters at compile time (e.g., onTICK() takes a parameter of type uint8_t).

� The implementation is memory efficient. If the concrete state objects don’t have

attributes (only operations), they can be shared (as in the Bomb3 example).

� It does not require enumerating states.

� It does not require enumerating events.

� It compromises the encapsulation of the context class, which typically requires

granting friendship to all state classes.

� It enforces indirect access to the context’s parameters from the methods of the

concrete state subclasses (via the context pointer).
www.newnespress.com

131Standard State Machine Implementations
� Adding states requires subclassing the abstract state class.

� Handling new events requires adding event handlers to the abstract state class

interface.

� The event handlers are typically of fine granularity, as in the state table approach.

� The pattern is not hierarchical.
3.5.3 Variations of the Technique

The State pattern can be augmented to support entry and exit actions to states. As shown

in Figure 3.7, the changes include adding operations onEntry() and onExit() to

the abstract state class BombState. Additionally, as shown in the note to operation

onTick(fine_time), each event handler in the context class must detect the state

change and invoke the onExit() operation to exit the source state and onEntry() to

enter the target state.
onEntry()
onExit()

onUP(context)
onDOWN(context)
onARM(context)
onTICK(context, fine_time)

«abstract»
BombState

onUP(context)
onDOWN(context)
onARM(context)

SettingState

onUP(context)
onDOWN(context)
onARM(context)
onTICK(context, fine_time)

TimingState

init();
tran(target)
onUp()
onDOWN()
onARM()
onTICK(fine_time)

state : *BombState
timeout : uint8_t
code : uint8_t
defuse : uint8_t

Bomb state_

«pattern»
State Pattern

abstract
 state

context

BombState *s = state_;
state->onTICK(this, fine_time);
if (s != state_) { // state changed?
 s->onExit(this);
 state_->onEntry(this);
}

state = target;

Figure 3.7: Object-oriented State design pattern augmented with entry
and exit actions.
The standard State design pattern can also be simplified to provide the standard

state machine interface consisting of operations init() and dispatch() with the

event represe ntation des cribed in Sect ion 3 .2. 1. A generic dispatch() operation
www.newnespress.com

132 Chapter 3
of the abstract state class handles all events in a state and thus becomes a generic

state-handler operation. As shown in Figure 3.8, the abstract state class then also

becomes generic since it no longer depends on specific event signatures.

Additionally, each state handler must perform explicit demultiplexing of events

(based on the signal), which typically involves one level of switch statement, as

shown in the note to the SettingState::dispatch() operation.
NOTE

The generic dispatch(Event const *e) operation is weakly typed because it accepts

generic Event superclass and must perform explicit downcasting to the Event subclasses

based on the signal.

dispatch(context, event)

«abstract»
State

dispatch(context, event)

SettingState

dispatch(context, event)

TimingState

init()
tran(target)
dispatch(event)

state : *State
timeout : uint8_t
code : uint8_t
defuse : uint8_t

Bomb state

«pattern»
Simplified

State Pattern

generic
 state

context

state = target;

switch (event->sig) {
 case UP_SIG: …
 case DOWN_SIG: …
 case ARM_SIG: …
 case TICK_SIG: ...
}

state->dispatch(this, event);

Figure 3.8: Simplified State design pattern with entry and exit actions.
3.6 QEP FSM Implementation

In previous sections, I presented the three most popular techniques for implementing

FSMs. From my experience, though, none of these techniques in its pure form is truly

optimal. However, one particular combination of these techniques repeatedly proved

to be the most succinct and efficient implementation of the traditional nonhierarchical

FSMs. This technique is part of the QEP event processor that I introduced in Chapter 1.

The QEP FSM implementation is object-based, but unlike the State pattern, does not

depend on polymorphism and is easy to implement in C.
www.newnespress.com

133Standard State Machine Implementations
3.6.1 Generic QEP Event Processor

The QEP support for the basic FSMs combines elements from the nested switch

statement, state table, and the simplified State design pattern, but it also adds some

original ideas. The design is based on a generic event processor (the QEP), similar

in functionality to the state-table event processor discussed in Section 3.4.1. The

novelty of the QEP design comes from mapping states directly to state-handler

functions that handle all events in the state they represent. As shown in Figure 3.9, the

central element of the QEP event processor is the QFsm structure that keeps track of

the current state by means of a pointer to a state-handler function. The QFsm structure

also provides the standard state machine interface functions init() and dispatch().

The QFsm structure is abstract, meaning that it is not intended for direct instantiation

but rather only for derivation of concrete state machine structures, such as Bomb4.

The derived state machine structure adds its own extended state variables such as

timeout, code, and defuse, as well as all state-handler functions.
$ initial (me : *Bomb4, e : *QEvent) : QState
$ setting(me : *Bomb4, e : *QEvent) : QState
$ timing (me : *Bomb4, e : *QEvent) : QState

timeout : uint8_t
code : uint8_t
defuse : uint8_t

Bomb4

init (me : *QFsm)
dispatch(me : *QFsm, e : *QEvent)

state : QStateHandler

«abstract»
QFsm

QEP event processor

Application

typedef
 QState /* return type */
 (*QStateHandler) /* pointer to function */
 (void *me, QEvent const *e);

sig : QSignal

QEvent

QState Bomb4_timing(Bomb4 *me, *e) {
 switch (e->sig) {
 case Q_ENTRY_SIG: …
 return Q_HANLDED();
 case UP_SIG: …
 case DOWN_SIG: …
 case ARM_SIG: …
 return Q_TRAN(&Bomb4_setting);
 }
 return Q_IGNORED();
}

fine_time : uint8_t

TickEvt

Figure 3.9: The structure of the QEP event processor support for traditional FSMs.
The QEP event processor supports both simple FSMs and hierarchical state machines

(HSMs), which I will discuss in Chapter 4. Even though the basic FSMs are a strict

subset of HSMs, the QEP provides a separate FSM implementation as an optimization

compared to the full-featured HSM. You can use this optimization for performance-
www.newnespress.com

134 Chapter 3
critical portions of your code, such as inside interrupt service routines or device drivers.

Furthermore, you can use FSMs in extremely resource-constrained embedded systems

that simply cannot fit the full-featured HSMs. The QEP support for FSMs requires

typically about 120 bytes of code (ROM). For comparison, the support for HSMs requires

about 600 bytes of code space for the hierarchical event processor on ARM Cortex-M3.

Both FSM and HSM require just one pointer to function in RAM per state machine.

Listings 3.6 and 3.7 show fragments of the QEP files that pertain to the FSM

implementation. The header files are located in the directory <qp>\qpc\include\,

and the implementation files are found in the directory <qp>\qpc\qep\source\.
Listing 3.6 QEP FSM event processor interface (fragments of the files
qevent.h and qep.h)

/* qevent.h ---*/

(1) typedef struct QEventTag { /* the event structure */

(2) QSignal sig; /* signal of the event */

(3) uint8_t dynamic_; /* dynamic attribute of the event (0 for static) */

} QEvent;

/* qep.h --*/

(4) typedef uint8_t QState; /* status returned from a state-handler function */

(5) typedef /* pointer to function type definition */

QState /* return type */

(*QStateHandler) /* name of the pointer-to-function type */

(void *me, QEvent const *e); /* argument list */

(6) typedef struct QFsmTag { /* Finite State Machine */

(7) QStateHandler state; /* current active state */

} QFsm;

(8) #define QFsm_ctor (me_, initial_) ((me_)->state = (initial_))

(9) void QFsm_init (QFsm *me, QEvent const *e);

(10) void QFsm_dispatch(QFsm *me, QEvent const *e);

(11) #define Q_RET_HANDLED ((QState)0)

(12) #define Q_RET_IGNORED ((QState)1)

(13) #define Q_RET_TRAN ((QState)2)

(14) #define Q_HANDLED() (Q_RET_HANDLED)

(15) #define Q_IGNORED() (Q_RET_IGNORED)

(16) #define Q_TRAN(target_) \

(((QFsm *)me)->state = (QStateHandler)(target_), Q_RET_TRAN)

www.newnespress.com

(17) enum QReservedSignals {

Q_ENTRY_SIG = 1, /* signal for coding entry actions */

Q_EXIT_SIG, /* signal for coding exit actions */

Q_INIT_SIG, /* signal for coding initial transitions */

(18) Q_USER_SIG /* first signal that can be used in user applications */

};

135Standard State Machine Implementations
(1) The structure QEvent represents events in QEP. Arbitrary event parameters

can be added in the process of derivation of structures (see also Section 3.2.1).

(2) The scalar data member sig holds the signal on an event. The data type

QSignal is an unsigned integer that can be configured to be 1 byte, 2 bytes,

or 4 bytes wide.

(3) The byte-wide member dynamic_ is used by the QF real-time framework

to manage dynamically allocated events. The QEP event processor does not

use this data member and you can ignore it for now. I’ll explain dynamic

event allocation in Chapters 6 and 7.

(4) This typedef defines QState as a byte that conveys the status of the event

handling to the event processor (see also lines (11-13)).

(5) This typedef defines QStateHandler type as a pointer to state-handler

function that takes the pointer to a generic state machine and a pointer to

QEvent as arguments and returns QState. The pivotal aspect of this design

is that the state-handler functions signature can be used with respect to

structures derived (inheriting) from QFsm.

(6) The structure QFsm is the base for derivation of state machine structures.

(7) The data member state is a pointer to a state-handler function. This is the

state variable in this implementation.

(8) The “constructor” function-like macro initializes the state variable to the

initial-pseudostate function that defines the initial transition. Note that the

initial transition is not actually executed at this point.

(9) This is the init() function of the generic state machine interface. Calling

this function triggers the initial transition in the state machine.

(10) This is the dispatch() function of the generic state machine interface.

Calling this function dispatches one event to the state machine.
www.newnespress.com

136 Chapter 3
(11-13) These constants define the status returned from state-handler functions to the

event processor.

(14) A state-handler function returns the macro Q_HANDLED() whenever it

handles the current event.

(15) A state-handler function returns the macro Q_IGNORED() whenever it ignores

(does not handle) the current event.

(16) The Q_TRAN() macro encapsulates the transition, which in this state

machine implementation technique consist of reassigning the state variable

state. The Q_TRAN() macro is defined using the comma expression.

A comma expression is evaluated from left to right, whereas the type and

value of the whole expression is the right-most operand. The right-most

operand is in this case the status of the operation (transition), which is

returned from the state-handler function. The pivotal aspect of this design

is that the Q_TRAN() macro can be used with respect to structures derived

(inheriting) from QFsm, which in C requires explicit casting (upcasting) to the

QFsm base structure (see the sidebar “Single Inheritance in C” in Chapter 1).

(17) The QEP event processor reserves these few lowest signals for internal use.

(18) The signal Q_USER_SIG is the first signal available for the users. In other

words, the user signals must necessarily be offset from zero by Q_USER_SIG

to avoid overlapping the reserved QEP signals.
Listing 3.7 QEP FSM event processor implementation
(files qfsm_ini.c and qfsm_dis.c)

/* file qfsm_ini.c --*/

#include "qep_port.h" /* the port of the QEP event processor */

#include "qassert.h" /* embedded systems-friendly assertions */

void QFsm_init(QFsm *me, QEvent const *e) {

(1) (*me->state)(me, e); /* execute the top-most initial transition */

/* enter the target */

(2) (void)(*me->state)(me , &QEP_reservedEvt_[Q_ENTRY_SIG]);

}

/* file qfsm_dis.c--*/

void QFsm_dispatch(QFsm *me, QEvent const *e) {

(3) QStateHandler s = me->state; /* save the current state */

www.newnespress.com

(4) QState r = (*s)(me, e); /* call the event handler */

(5) if (r == Q_RET_TRAN) { /* transition taken? */

(6) (void)(*s)(me, &QEP_reservedEvt_[Q_EXIT_SIG]); /* exit the source */

(7) (void)(*me->state)(me,&QEP_reservedEvt_[Q_ENTRY_SIG]);/*entertarget*/

}

}

137Standard State Machine Implementations
(1) The initial transition is invoked via the pointer to function. The initial state handler

changes the current state me->state to the default state by calling the Q_TRAN()

macro.

(2) The default state is entered by sending the reserved signal Q_ENTRY_SIG to its

state handler.
NOTE

QEP maintains internally a constant array of reserved events QEP_reservedEvt_[]. This

array is indexed by the reserved signals enumerated in Listing 3.6(17).
(3) The QFsm_dispatch() function saves the current state in a temporary stack

variable s.

(4) The current state-handler function is invoked via the pointer to function.

(5) If the status returned from the state-handler function indicates that a transition has

been taken (via the Q_TRAN() macro), then . . .

(6) The source of the transition is exited by sending the reserved signal Q_EXIT_SIG

to the source state handler.

(7) The target of the transition (the new current state) is entered by sending the

reserved signal Q_ENTRY_SIG to its state handler.

3.6.2 Application-Specific Code

The application-specific part of the implementation provides the elements shown below

the dashed line in Figure 3.9. These elements are (1) events with parameters derived

from the QEvent structure, (2) the state machine structure derived from QFsm that
www.newnespress.com

138 Chapter 3
includes all the extended state variables, and (3) all the state-handler functions. Listing

3.8 shows the application-level code.
NOTE

The time-bomb state machine from Figure 3.2 has been slightly modified for the QEP FSM

implementation to demonstrate the usage of entry actions. The action of clearing of the

defuse code (me->code = 0) has been moved from the transition ARM in state “setting,”

to entry action in state “timing.”

Listing 3.8 Time-bomb state machine implemented using the optimal FSM
technique (file bomb4.c)

(1) #include "qep_port.h" /* the port of the QEP event processor */

(2) #include "bsp.h" /* board support package */

(3) enum BombSignals { /* all signals for the Bomb FSM */

(4) UP_SIG = Q_USER_SIG,
DOWN_SIG,

ARM_SIG,

TICK_SIG

};

(5) typedef struct TickEvtTag {

(6) QEvent super; /* derive from the QEvent structure */

(7) uint8_t fine_time; /* the fine 1/10 s counter */

} TickEvt;

(8) typedef struct Bomb4Tag {

(9) QFsm super; /* derive from QFsm */

(10) uint8_t timeout; /* number of seconds till explosion */

(11) uint8_t code; /* currently entered code to disarm the bomb */

(12) uint8_t defuse; /* secret defuse code to disarm the bomb */

} Bomb4;

(13) void Bomb4_ctor (Bomb4 *me, uint8_t defuse);

(14) QState Bomb4_initial(Bomb4 *me, QEvent const *e);

(15) QState Bomb4_setting(Bomb4 *me, QEvent const *e);

(16) QState Bomb4_timing (Bomb4 *me, QEvent const *e);

/*---——------*/

/* the initial value of the timeout */

www.newnespress.com

#define INIT_TIMEOUT 10

/*..*/

void Bomb4_ctor(Bomb4 *me, uint8_t defuse) {

(17) QFsm_ctor(&me->super, (QStateHandler)&Bomb4_initial);

(18) me->defuse = defuse; /* the defuse code is assigned at instantiation */

}

/*..*/

QState Bomb4_initial(Bomb4 *me, QEvent const *e) {

(void)e;

(19) me->timeout = INIT_TIMEOUT;

(20) return Q_TRAN(&Bomb4_setting);
}

/*..*/

(21) QState Bomb4_setting(Bomb4 *me, QEvent const *e) {

(22) switch (e->sig) {

(23) case UP_SIG: {

(24) if (me->timeout < 60) {

++me->timeout;

BSP_display(me->timeout);

}

(25) return Q_HANDLED();
}

case DOWN_SIG: {

if (me->timeout > 1) {

--me->timeout;

BSP_display(me->timeout);

}

return Q_HANDLED();
}

case ARM_SIG: {

(26) return Q_TRAN(&Bomb4_timing); /* transition to "timing" */
}

}

(27) return Q_IGNORED();
}

/*..*/

void Bomb4_timing(Bomb4 *me, QEvent const *e) {

switch (e->sig) {

(28) case Q_ENTRY_SIG: {

(29) me->code = 0; /* clear the defuse code */

(30) return Q_HANDLED();
}

case UP_SIG: {

me->code <<= 1;

me->code j= 1;

return Q_HANDLED();
}

Continued onto next page

www.newnespress.com

139Standard State Machine Implementations

case DOWN_SIG: {

me->code <<= 1;

return Q_HANDLED();
}

case ARM_SIG: {

if (me->code == me->defuse) {

return Q_TRAN(&Bomb4_setting);
}

return Q_HANDLED();
}

case TICK_SIG: {

if (((TickEvt const *)e)->fine_time == 0) {

--me->timeout;

BSP_display(me->timeout);

if (me->timeout == 0) {

BSP_boom(); /* destroy the bomb */

}

}

return Q_HANDLED();
}

}

return Q_IGNORED();
}

140 Chapter 3
(1) Every application C file that uses the QP framework must include the qp_port.h

header file. This header file contains the specific adaptation of QP to the

given processor, operating system, and compiler, which is called a port—in this

case, the “ qp_port.h” header file, located in the directory <qp>\qpc\ports

\80x86\dos\tcpp10 1\l\.

(2) The application also includes the board support package.

(3) All signals used in the application are enumerated.

(4) The user signals must be offset by Q_USER_SIG , to avoid overlapping the

reserved signals.

(5) The TickEvt structure represents TICK events with the fine_time parameter

described in the explanation to Figure 3.2(8).

(6) The TickEvt structure derives from QEvent structure, as described in the sidebar

“Single Inheritance in C” in Chapter 1. By convention, I name the base structure

member super.

(7) The event parameter(s) are added after the member super.
www.newnespress.com

141Standard State Machine Implementations
(8) The Bomb4 structure represents the time bomb state machine implemented

with the QEP event processor.

(9) The Bomb4 structure derives from QFsm structure, as described in the sidebar

“Single Inheritance in C” in Chapter 1. By convention, I always name the

base structure member super .

(10-12) The data members timeout, defuse, and code are the extended state

variables used in the state diagram shown in Figure 3.2 .

(13) The state machine “constructor” performs just the basic initialization but does

not trigger the initial transition. In C, you need to call the “constructor”

explicitly at the beginning of main().

(14) The initial transition function performs the actions of the initial transition (see

Figure 3.2(1)), and initializes the state variable to the default state.

(15,16) The state-handler functions are specified for each state.

(17) The constructor of the Bomb4 state machine is responsible for invoking the

constructor of the base structure QFsm_ctor() , which requires the initial

pseudostate handler.

(18) The Bomb4 constructor can also initialize any extended state variables.

(19) The initial transition initializes the me->timeout extended state variable, as

prescribed in the diagram in Figure 3.2 (1).

(20) The initial transition designates “setting” as the default state by means of the

Q_TRAN() macro returned to the event processor (file qep.h).

(21) This state-handler function corresponds to the state “setting.”

(22) Each state-handler function is typically structured as a switch statement that

discriminates based on the signal of the event.

(23) Each event is handled in a separate case labeled with the enumerated signal

of the event.

(24) A guard condition is coded as an if statement.

(25) After handling of an event, the state-handler function returns Q_HANDLED()

to the event processor.
www.newnespress.com

142 Chapter 3
(26) A state transition is coded by means of the Q_TRAN() macro (see Listing 3.6(16)).

(27) The final return statement is reached only when no case statements have handled the

event. The state-handler function returns Q_IGNORED() to the event processor.
NOTE

The QFsm_dispatch() function shown in Listing 3.7 cares only whether a state transition

has been taken but does not check to see whether the event has been handled or ignored.

However, Listing 3.7 does not show the software tracing instrumentation built into the

QEP event processor, which indeed makes use of each status value reported by state-handler

functions. I discuss the software-tracing instrumentation in Chapter 11.
(28) The entry action is coded as a response to the reserved event Q_ENTRY_SIG,

which the event processor dispatches to the state-handler function when the state

needs to be entered (see Listing 3.6(17)).

(29) Entry actions are coded directly.

(30) As all other case statements, entry actions are terminated with

“return Q_HANDLED()” macro.
NOTE

You should never return Q_TRAN() from entry or exit actions!
3.6.3 Consequences

The QEP FSM implementation has the following consequences:

� It is simple and can easily be coded in C.

� It partitions state-specific behavior and localizes it in separate state-handler

functions. These functions have just about the right granularity—neither too fine

(as the action functions in the state table or event operations in the State pattern)

nor monolithic (as in the nested switch statement technique).
www.newnespress.com

143Standard State Machine Implementations
� It provides direct and efficient access to extended state variables from state-

handler functions (via the “me” pointer) and does not require compromising the

encapsulation of the state machine structure.

� It has a small footprint in RAM because only one state variable (a pointer to

function) is necessary to represent a state machine instance (see Listing 3.6(7)).

No data space is required for states.

� It promotes code reuse of a small and generic QEP event processor that takes

typically around 120 bytes of code space (ROM) for the non-hierarchical FSM

implementation on ARM Cortex-M3.

� It makes state transitions efficient (the Q_TRAN() macro reassigns just one

pointer to function).

� It provides good performance for event dispatching by eliminating one level of

switch from the nested switch statement technique and replacing it with a

very efficient pointer to function dereferencing. In typical implementations,

state handlers still need one level of a switch statement to discriminate

events based on the signal, which has performance dependent on the number

of cases (typically O(log n), where n is the number of cases). The switch

statement can be replaced by a one-dimensional lookup table in selected

(time-critical) state handlers.

� It is scalable, flexible, maintainable, and traceable. It is easy to add both states

and events, as well as to change state machine topology, even late in the

development cycle, because every state machine element is represented in the

code exactly once.

� It requires enumerating events.

� It does not require enumerating states.

� It is not hierarchical, but can be extended to include state hierarchy without

sacrificing its good characteristics, as described in Chapter 4.

3.6.4 Variations of the Technique

In the literature, you often find techniques that apply pointers to functions in a very

similar way as the QP FSM implementation but still use a scalar state variable to

resolve the state handler through a lookup table (e.g., see [Gomez 00]). This approach

has several weaknesses:
www.newnespress.com

144 Chapter 3
� It requires enumerating states, which are used as indexes into the call table.

� It requires allocating and initializing the call table.

� The indirection level of the call table degrades performance because of

additional steps required by table lookup on top of dereferencing a pointer to

function.

3.7 General Discussion of State Machine
Implementations

3.7.1 Role of Pointers to Functions

Except for the nested switch statement, all other state machine implementation

techniques in C/C++ rely heavily on pointers to functions. I also intentionally include here

the object-oriented State pattern because it too ultimately resolves event-handler

operations via virtual tables that are nothing else than call tables of pointers to functions.

To understand why pointers to functions are so popular in implementing state machines,

it is very instructive to step down to the machine code level. Listing 3.9 shows

disassembled instructions of a state-handler function called via a pointer in the QEP

event processor (see Listing 3.7 (4)).
Listing 3.9 Disassembled machine code for a function call via a pointer to
function (x86 instruction set, 16-bit real mode, Turbo C++ compiler)

#QFSM_DIS#39: (*s)(me, e);
cs:0101 FF760C push word ptr [bp+0C] ; push the "me" far pointer
cs:0104 FF760A push word ptr [bp+0A]
cs:0107 FF7608 push word ptr [bp+08] ; push the "e" far pointer
cs:010A FF7606 push word ptr [bp+06]
cs:010D FF5EFC call far [bp-04] ; de-reference pointer-to-function
cs:0110 83CEFC add sp,0008 ; cleanup after the call
As shown in boldface in Listing 3.9, the actual function call via a pointer takes just one

machine instruction! The four preceding instructions push the function arguments to

the stack (the “me” pointer and the event pointer “e”) and are needed no matter what

technique you use. As it turns out, a pointer to function maps directly to the architecture

of most CPUs and results in unbeatably small and fast code.
www.newnespress.com

145Standard State Machine Implementations
The point to remember from this discussion is that pointers to functions are the fastest

mechanism for implementing state machines in C/C++. State machines are the “killer

applications” for pointers to functions.
3.7.2 State Machines and C++ Exception Handling

Throwing and catching exceptions in C++ is fundamentally incompatible with the

run-to-completion (RTC) semantics of state machines. An exception thrown somewhere

in the middle of an RTC step typically corrupts a state machine by leaving the

extended-state variables inconsistent with the main state variable or with each other.

Therefore, in general, an RTC step of a state machine must be considered as one

indivisible transaction that either atomically succeeds or entirely fails.

Note that the stack-unwinding process occurring when a thrown exception propagates

up the call stack has much less value in the event-driven systems than traditional

data-processing programs. As described in Chapter 2, event-driven systems rely much

less on representing the context in the call tree and stack variables and instead capture

the context in nonstack variables. The problem with exceptions is that they are

specialized for cleaning up the stack but know nothing about the static data.

Therefore, you should be wary of the C++ exception handling in state machines, or more

generally, in event-driven systems. If you cannot avoid the mechanism altogether (e.g.,

you rely on a library that throws exceptions), you should be careful to catch all exceptions

in the same RTC step and before a thrown exception can cause any inconsistencies.

This rule, of course, largely defeats the benefits of throwing exceptions in the first place.

However, state machines offer a better, language-independent way of handling

exceptions. A state machine associated with an event-driven subsystem can represent all

conditions of the subsystem, including fault conditions. Instead of throwing an

exception, an action should generate an exception event, which then triggers a state-

based exception handling. Section 6.7.4 in Chapter 6 describes the state-based exception

handling in more detail.
3.7.3 Implementing Guards and Choice Pseudostates

As described in Chapter 2, guard conditions and choice pseudostates are elements of

flowcharts that theUML statecharts simply reuse. As such, these elements are not specific to

hierarchical state machines and can be applied equally well in classical flat-state machines.
www.newnespress.com

146 Chapter 3
If you know how to code a flowchart, you already know how to implement guards and

choice pseudostates. Flowcharts map easily to plain structured code and are therefore

straightforward to implement in those techniques that give you explicit choice of the

target of a state transition, such as the nested switch statement, the State design

pattern, and the QP FSM implementation. Conditional execution is harder to use in the

traditional state-table representation because the rigidly structured state table explicitly

specifies the targets of state transitions. The solution presented in Section 3.4.1

solves this problem by removing the “next-state” from the table and pushing the

responsibility for changing states into the action functions.

A guard specified in the UML expression [guard]/action . . . maps simply to the

if statement if (guard()) { action(); . . .}. A choice pseudostate has one

incoming transition segment and many outgoing segments guarded by nonoverlapping

guard expressions. This construct maps simply to chained if–else statements: if

(guard1()) { action1(); } else if (guard2()) { action2(); } and so on.
3.7.4 Implementing Entry and Exit Actions

The traditional nonhierarchical FSMs can also reap the benefits of a guaranteed

initialization of the state context through entry actions and a guaranteed cleanup in the

exit actions. The lack of hierarchy vastly simplifies the problem, but at the same time

it makes the feature much less powerful.

One way of implementing entry and exit actions is to dispatch reserved signals (e.g.,

Q_ENTRY_SIG and Q_EXIT_SIG) to the state machine. As shown in Listing 3.7, upon

detecting a state transition, the state machine dispatch() operation sends the

Q_EXIT_SIG signal to the source state and then sends the Q_ENTRY_SIG signal to the

target state.
3.8 Summary

The standard implementation techniques and their variations discussed in this chapter

can be freely mixed and matched to provide a continuum of possible trade-offs. Indeed,

most of the implementations of state machines that you can find in the literature seem

to be variations or combinations of the three fundamental techniques: the nested

switch statement, the state table, and the object-oriented State design pattern. In this

chapter, I provided concrete, executable code, and for each fundamental technique, I

discussed the consequences of its use as well as some of the most common variations.
www.newnespress.com

147Standard State Machine Implementations
One particular combination of techniques, which is part of the QP framework, deserves

special attention because it offers an optimal combination of good performance and

a small memory footprint. As you will see in Chapter 4, it can be extended to

hierarchical state machines (HSMs).

In all techniques, state machines tend to eliminate many conditional statements from

your code. By crisply defining the state of the system at any given time, state machines

require that you test only one variable (the state variable) instead of many variables to

determine the mode of operation (recall the Visual Basic calculator example from

Chapter 2). In all but the most basic approach of the nested switch statement, even this

explicit test of the state variable disappears as a conditional statement. This coding

aspect is similar to the effect of polymorphism in OOP, which eliminates many tests

based on the type of the object and replaces them with more efficient (and extensible)

late binding.
www.newnespress.com

www.new
CHAP T E R 4
Hierarchical Event Processor
Implementation
. . . the cost of adding a feature isn’t just the time it takes to code it. The cost also includes
the addition of an obstacle to future expansion. . . . The trick is to pick the features that don’t fight
each other.
— John Carmack

Chapter 2 introduced UML statecharts as a very effective way of getting around

the state-explosion problem that plagues the traditional “flat” state machines.

The particularly valuable innovation of UML state machines in this respect is the

concept of state nesting, because it allows reusing behavior across many states

instead of repeating the same actions and transitions over and over again.

Hierarchical nesting of states lets you get new behavior almost for free by inheriting all

of what is common from the superstates. It lets you define new states rapidly by

difference from existing states rather than create every state from scratch each time.

Needless to say, formalism like this is a godsend to the developers of event-driven

software, because only state hierarchy makes the whole state machine approach truly

applicable to real-life problems.

That is, the concept of the hierarchical state machine (HSM) is a true blessing only if it

is easy enough to implement in a mainstream programming language, which for

embedded systems developers means C. As a visual formalism, HSMs have been

intended primarily for automatic code generation by specialized CASE tools (see

Section 2.3.13). However, direct manual coding of HSMs isn’t really any harder than

coding the traditional nonhierarchical FSMs, especially when you use a generic
nespress.com

150 Chapter 4
hierarchical event processor that transparently handles all the intricacies of the UML

state machine execution semantics.

This chapter describes such a generic hierarchical event processor called QEP, which is

part of the QP event-driven framework. We already used the QEP event processor in

Section 3.6 of Chapter 3 for implementing traditional “flat” FSMs. Here I describe how

this technique can be generalized to support HSMs without sacrificing its good

characteristics.

I begin with describing the structure of QEP, explaining both the C and C++

versions. Later in the chapter, I summarize the steps required to implement the

calculator HSM designed in Chapter 2. I then provide some guidelines for using

the QEP event processor in practice to avoid common pitfalls. I conclude with

the instructions for porting and configuring QEP for various processors and

compilers.
4.1 Key Features of the QEP Event Processor

QEP is a generic, efficient, and highly portable hierarchical event processor that you

can use in any event-driven environment, such as GUI systems, computer games, or

real-time embedded (RTE) systems. QEP makes every effort to be compliant with the

UML specification [OMG 07], but it cannot really implement the entire bulky UML

state machine package. Instead, the QEP design strategy is to supply just enough (but

not more) of truly essential elements to allow building basic UML-compliant state

machines directly and support the higher-level UML concepts only as design patterns.

The main features of QEP are:

� Full support for hierarchical state nesting.

� Guaranteed entry/exit action execution on arbitrary state transition topology.

� Full support of nested initial transitions.

� Highly maintainable and traceable boilerplate state machine representation in

C or C++, in which every state machine element is mapped to code

precisely, unambiguously, and exactly once. This is in contrast to many

automatic code generation techniques that often “flatten” the state hierarchy,

which breaks traceability by repeating the same transitions and actions in

many states.
www.newnespress.com

NOTE

The direct, precise, and unambiguous mapping of every state machine element to code con-

tribute to the excellent traceability of the QEP HSM implementation technique. The trace-

ability from requirements through design to code is essential for mission-critical systems,

such as medical devices or avionic systems.

151Hierarchical Event Processor Implementation
� Extremely small RAM/ROM footprint. A state machine object requires only one

function pointer in RAM. On the ARM Cortex-M3 processor, the hierarchical

state machine code requires about 600 bytes whereas the simpler “flat” finite

state machine takes only about 120 bytes of code space (ROM).

� No RAM required for representing states and transitions—the number of states

is limited only by code space (ROM).

� Fully reentrant event processor code with minimal stack requirements.

� Support for events with arbitrary parameters.

� Easy to integrate with any event queuing and dispatching mechanism—for

example, simple event-loop, a GUI system like Windows, or an event-driven

framework like QP.

� Very clean source code passing strict static analysis with PC-Lint.

� Source code 98 percent compliant with the Motor Industry Software Reliability

Association (MISRA) Guidelines for the Use of the C Language in Vehicle-

Based Software [MISRA 98].

� Documentation, application examples, and ports to various compilers are

available online.

� Q-SPY software tracing instrumentation for unprecedented observability,

controllability, and testability (see Chapter 11).
NOTE

In Chapter 5, you will see how to realize event deferral, orthogonal regions, and transitions to

history as state design patterns that build on top of the basic QEP implementation described

in this chapter.

www.newnespress.com

152 Chapter 4
4.2 QEP Structure

Figure 4.1 shows the overall structure of QEP and its relation to the application-

specific code, such as the calculator HSM from Figure 2.18. QEP consists of

the QHsm class1 for derivation of state machines and the QEvent class for derivation

of events with parameters, or used as is for events without parameters.

The QHsm class keeps track of the current state and provides the standard state machine

interface2 operations init() and dispatch(). This class is abstract, which means that it
init (e : *QEvent)
dispatch(e : *QEvent)
$ top (me: *QHsm, e : *QEvent) : QState

state : QStateHandler

«abstract»
QHsm

$ initial (me : *Calc, e : *QEvent) : QState
$ on (me : *Calc, e : *QEvent) : QState
$ error (me : *Calc, e : *QEvent) : QState
$ ready (me : *Calc, e : *QEvent) : QState
$ result (me : *Calc, e : *QEvent) : QState
$ begin (me : *Calc, e : *QEvent) : QState
$ negated1 (me : *Calc, e : *QEvent) : QState
$ operand1 (me : *Calc, e : *QEvent) : QState
$ zero1 (me : *Calc, e : *QEvent) : QState
$ int1 (me : *Calc, e : *QEvent) : QState
$ frac1 (me : *Calc, e : *QEvent) : QState
$ opEntered(me : *Calc, e : *QEvent) : QState
$ negated2 (me : *Calc, e : *QEvent) : QState
$ operand2 (me : *Calc, e : *QEvent) : QState
. . .

operand1 : double
operator : uint8_t

Calc

QEP event processor

Application

typedef
 QState /* return type */
 (*QStateHandler) /* pointer to function */
 (void *me, QEvent const *e);

key_code : uint8_t

CalcEvt

sig : QSignal
dynamic_ : uint8_t

QEvent

derived event
with parameter(s)

QState Calc_on(Calc *me, QEvent const *e) {
 switch (e->sig) {
 case Q_INIT_SIG:
 return Q_TRAN(&Calc_ready);
 case C_SIG:
 BSP_clear();
 return Q_TRAN(&Calc_on);
 case OFF_SIG:
 return Q_TRAN(&Calc_final);
 }
 return Q_SUPER(&QHsm_top);
}

Figure 4.1: QEP event processor and the calculator HSM derived from it. The $ in
front of the Calc operations denotes static member functions (see Appendix B).

1 The concept of a “class” in C and derivation of classes is explained in the sidebar “Single Inheritance

in C” in Chapter 1.
2 Section 3.2 in Chapter 3 introduces the standard state machine interface.

www.newnespress.com

153Hierarchical Event Processor Implementation
is not intended for direct instantiation but rather only for derivation of concrete3 state

machine classes, such as Calc, shown in Figure 4.1. The derived state machine class

defines all extended state variables as data members and provides state-handler functions

for all states (e.g., see the note attached to the Calc::on()member function in Figure 4.1).

The following sections explain the implementation of all the QEP elements in C and C++.

4.2.1 QEP Source Code Organization

Listing 4.1 shows the directories and files comprising the QEP event processor in C.

The structure of the C++ version is identical, except that the implementation files have

the .cpp extension.
Listing 4.1 QEP event processor source code organization

qpc\ - QP/C root directory (qpcpp for QP/C++)
|
+-include\ - QP platform-independent include files (*.H files)
| +-qassert.h - QP embedded systems-friendly assertions
| +-qep.h - QEP interface
| . . .
|
+-ports\ - QP platform-specific ports
| +-80x88\ - QP ports to the 80x86 CPU
| | +-dos\ - ports for DOS (the non-preemptive "vanilla" scheduler)
| | | +-tcpp101\ - the Turbo C++ 1.01 compiler
| | | | +-l\ - large memory model
| | | | | +-dbg\ - build directory for the Debug configuration
| | | | | | +-qep.lib – QEP library
| | | | | +-qep_port.h – QEP port header file
| | | | | +-make.bat – make script for building the QP libraries
| |
| +-. . . - QP ports to other CPUs . . .
|
+-qep\ - QEP event processor component
| |
| +-source\ - QEP platform-independent source code (*.C files)
| | +-qep_pkg.h - internal, package-scope interface of QEP
| | +-qep.c - contains definition of reserved signals
| | +-qfsm_ini.c- contains definition of QFsm_init()
| | +-qfsm_dis.c- contains definition of QFsm_dispatch()

Continued onto next page

3 Concrete class is the OOP term and denotes a class that has no abstract operations or protected

constructors. Concrete class can be instantiated, as opposed to abstract class, which cannot be instantiated.

www.newnespress.com

| | +-qhsm_ini.c- contains definition of QHsm_init()
| | +-qhsm_dis.c- contains definition of QHsm_dispatch()
| | +-qhsm_top.c- contains definition of QHsm_top()
| | +-qhsm_in.c - contains definition of QHsm_isIn()
| |
| +-lint\
| | +-opt_qep.lnt - specific PC-Lint options for linting QEP

154 Chapter 4
The QEP source files contain typically just one function or a data structure

definition per file. This design aims at deploying QEP as a fine-granularity library

that you statically link with your applications. Fine granularity means that the QEP

library consists of several small, loosely coupled modules (object files) rather than a

single module that contains all functionality. For example, a separate module

qhsm_in.c implements the QHsm_isIn() function; therefore, if your application

never calls this function, the linker will not pull in the qhsm_in module. This

strategy puts the burden on the linker to do the heavy lifting of eliminating any

unused code automatically at link time, rather than on the application programmer

to configure the QEP code for each application at compile time.
NOTE

The QEP code is instrumented with Q-SPY macros to generate software trace output from

state machine execution. However, the instrumentation is disabled by default and will not

be shown in the listings discussed in this chapter, for better clarity. Refer to Chapter 11

for more information about Q-SPY software tracing.
4.3 Events

The event representation for HSMs is in QEP exactly the same as for FSMs (see

Section 3.6 in Chapter 3). Event instances are implemented as event objects that

combine the signal and the event parameters into one entity. As shown in Figure 4.1,

QEP provides the QEvent base class for direct instantiation of events without

parameters or for derivation of events with arbitrary parameters.

4.3.1 Event Signal (QSignal)

A signal in UML is the specification of an asynchronous stimulus that triggers reactions

[OMG 07] and as such is an essential part of an event. The signal conveys the type of

the occurrence—what happened. Signals are typically enumerated constants. The
www.newnespress.com

155Hierarchical Event Processor Implementation
following fragment of QEvent.h header file defines the type of the signal QSignal to

be either 8 bits (uint8_t), 16 bits (uint16_t), or 32 bits wide (uint32_t),

depending on the configuration macro Q_SIGNAL_SIZE. If you don’t define this macro,

a default of 8 bits is assumed.

#ifndef QP_SIGNAL_SIZE
#define QP_SIGNAL_SIZE 1

#endif

#if (QP_SIGNAL_SIZE == 1)
typedef uint8_t QSignal;

#elif (QP_SIGNAL_SIZE == 2)
typedef uint16_t QSignal;

#elif (QP_SIGNAL_SIZE == 4)
typedef uint32_t QSignal;

#else
#error "QP_SIGNAL_SIZE defined incorrectly, expected 1, 2, or 4"

#endif
NOTE

All components of the QP framework, including QEP, use the following standard exact-width

integer types (WG14/N843 C99 Standard, Section 7.18.1.1):

Exact Size Unsigned Signed

8 bits uint8_t int8_t

16 bits uint16_t int16_t

32 bits uint32_t int32_t
4.3.2 QEvent Structure in C

Listing 4.2 shows the definition of the QEvent structure in C. The member sig of type

QSignal represents the signal. The byte-wide member dynamic_ is used by the QP

framework to manage dynamically allocated events. You should never need to access

this member from the application-level code. (I’ll explain dynamic event allocation

in Chapter 7.)
www.newnespress.com

Listing 4.2 QEvent structure in C (file <qp>\qpc\include\qevent.h)

typedef struct QEventTag {
QSignal sig; /* signal of the event */
uint8_t dynamic_; /* attributes of a dynamic event (0 for static event) */
/* add event parameters by derivation from the QEvent structure. . . */

} QEvent; /* the QEvent type */

156 Chapter 4
The QEvent structure can be used as is for events without parameters or can serve as

the base structure for derivation of events with arbitrary parameters. The following

C code snippet shows how to derive the calculator event CalcEvt that contains the

key-code parameter (also see the sidebar “Single Inheritance in C” in Chapter 1):

typedef struct CalcEvtTag {
QEvent super; /* derives from QEvent */
uint8_t key_code; /* code of the key */

} CalcEvt; /* the CalcEvt type */
Having the common base structure QEvent for all events ensures that every event

object contains the signal at the same offset within the event. This allows using a pointer

to a derived event as a parameter to any function that expects a generic QEvent *e

pointer to the base structure. Any such function can always access the sig data member

(as e->sig) to determine what kind of derived event structure is used. The function

can then perform an explicit downcast4 to the derived event structure to get the event

parameters. For example, to get the key_code parameter, a generic QEvent *e pointer

needs to be cast to CalcEvt as follows: ((CalcEvt *)e)->key_code.

The point here is that the sig data member has double responsibility. It obviously

must convey the occurrence (what happened?). But in addition, the signal must also

uniquely identify the derived event structure so that state-handler functions can

explicitly downcast to this derived structure based only on the sig value. This second

responsibility will became clearer in the upcoming Section 4.4.2, where I provide

examples of state handler functions.
4 Casting from the superclass to the subclass is called in OOP downcasting because the cast goes down a

traditionally drawn inheritance relationship in a class diagram, such as Figure 4.1.

www.newnespress.com

157Hierarchical Event Processor Implementation
4.3.3 QEvent Structure in C++

In C++, the QEvent structure can be defined without the ugly typedef, as shown in

Listing 4.3. Please note that in C++ struct is exactly equivalent to class, except

in struct the default protection level is public and in class it is private.
Listing 4.3 QEvent structure in C++ (file <qp>\qpcpp\include\qevent.h)

struct QEvent {
QSignal sig; // signal of the event instance
uint8_t dynamic_; // attributes of a dynamic event (0 for static event)
// add event parameters by inheriting from QEvent

};
Event instances are used primarily as “bags” for passing around signals and event

parameters. To generate events efficiently, it’s often convenient to use statically

preallocated, constant event objects initialized with an initializer list. To allow such

initialization in C++, a class must be an aggregate; that is, it must not have private or

protected members, constructors, base classes, and virtual functions [Stroustrup 00].

For that reason, QEvent is declared as struct in Listing 4.3, without any private

members or constructors. (An obvious constructor would take one argument to initialize

the sig attribute.)

The following C++ code snippet shows how to derive the calculator event CalcEvt

class that contains the key-code parameter:

struct CalcEvt : public QEvent {
uint8_t key_code; // code of the key

};
When you derive from QEvent, the subclass is obviously no longer an aggregate. However,

I recommend that you still keep your event classes simple and lightweight. I like to

define the QEvent subclasses using the struct keyword as a reminder that they are

lightweight. In particular, I avoid private members, constructors, or virtual functions in the

derived event classes. As you will see in Chapter 7, events generally do not go through

conventional instantiation (the standard operator new isn’t used to create dynamic events),

so the constructors aren’t invoked and the virtual pointers aren’t set up.
www.newnespress.com

158 Chapter 4
4.4 Hierarchical State-Handler Functions

In QEP, states are represented as state-handler functions that handle all events in the

state they implement. The hierarchical state-handler functions use exactly the same

signature QStateHandler as nonhierarchical state handler functions, as described in

Section 3.6 of Chapter 3. The only extension to the nonhierarchical implementation

technique discussed before is that a hierarchical state handler must additionally inform

the event processor about the nesting level of the state. When the hierarchical state

handler does not handle the event, the handler must provide the superstate so that the

event processor can invoke the superstate handler function, per the semantics of state

nesting (see Section 2.3.2). The hierarchical state-handler function provides this

additional information to the event processor very similarly as it informs the event

processor about a state transition. A state handler sets the state variable to the superstate

handler and returns a special status information that distinguishes this situation from a

state transition.

4.4.1 Designating the Superstate (Q_SUPER() Macro)

When a hierarchical state handler function does not handle the current event, it returns

the macro Q_SUPER() to the event processor, which is defined as follows:

#define Q_RET_SUPER ((QState)3)
#define Q_SUPER(super_) \

(((QHsm *)me)->state = (QStateHandler)(super_), Q_RET_SUPER)
The Q_SUPER() macro is defined using the comma expression. A comma expression is

evaluated from left to right, whereas the type and value of the whole expression is the

rightmost operand. The rightmost operand is in this case the status of the operation

(superstate), which is returned from the state-handler function. The pivotal aspect of this

design is that the Q_SUPER() macro can be used with respect to structures derived

(inheriting) from QHsm, which in C requires explicit casting (upcasting) to the QHsm base

structure (see the sidebar “Single Inheritance in C” in Chapter 1).

4.4.2 Hierarchical State-Handler Function Example in C

Listing 4.4 shows an example of a hierarchical state-handler function that corresponds

to the state “int1” in the calculator statechart in Figure 2.18. State “int1” controls

entering the integer part of the first operand.
www.newnespress.com

Listing 4.4 Example of a hierarchical state-handler function in C (file calc.c)

(1) QState Calc_int1(Calc *me, QEvent const *e) {
(2) switch (e->sig) {
(3) case DIGIT_0_SIG: /* intentionally fall through */
(4) case DIGIT_1_9_SIG: {
(5) BSP_insert(((CalcEvt const *)e)->key_code);
(6) return Q_HANDLED();

}
case POINT_SIG: {

BSP_insert(((CalcEvt const *)e)->key_code);
(7) return Q_TRAN(&Calc_frac1);

}
}

(8) return Q_SUPER(&Calc_operand1);
}

159Hierarchical Event Processor Implementation
(1) Each state handler takes two parameters: the state machine pointer “me” and the

constant pointer “e” to QEvent. It returns QState, which conveys the status

of the event handling to the event processor.
NOTE

The event pointer is declared as const to prevent modifying the event inside the state-

handler function. In other words, the state handler is granted read-only access to the event.
(2) Generally, every state handler is structured as a single switch that

discriminates based on the signal of the event e->sig.

(3,4) Each case is labeled by the event signal. Signals are typically enumerated constants.

(5) To get to the event parameters, a state handler must perform an explicit

downcast from the generic QEvent const* pointer to the specific derived event

pointer, such as CalcEvt const* in this case.
NOTE

At this point it becomes apparent that the signature of the state-handler function is really weakly

typed with respect to the event parameter. The compiler knows only that every event is passed as

the generic QEvent* pointer, but the compiler does not know the specific type of the event, such

Continued onto next page

www.newnespress.com

NOTE—CONT’D

as CalcEvt. The application programmer is ultimately responsible for performing a correct

downcast to the derived event based on the signal (e->sig). The point to remember is that

you need to be careful because the compiler cannot prevent an incorrect downcast.

160 Chapter 4
(6) Returning Q_HANDLED() from a hierarchical state handler informs the QEP event

processor that the particular event has been handled.

(7) A state transition is accomplished by returning the macro Q_TRAN() that requires

the target of the transition as parameter.

(8) If no case executes, the state handler returns the Q_SUPER() macro, which

designates the superstate and informs the event processor about it.
4.4.3 Hierarchical State-Handler Function Example in C++

Listing 4.5 shows an example of a hierarchical state-handler function that corresponds

to the state “int1” in the calculator statechart in Figure 2.18.
Listing 4.5 Example of a hierarchical state-handler function in C++
(file calc.cpp)

QState Calc::int1(Calc *me, QEvent const *e) {
switch (e->sig) {

case DIGIT_0_SIG: // intentionally fall through
case DIGIT_1_9_SIG: {

(1) BSP_insert(((static_cast<CalcEvt const *>(e)))->key_code);
return Q_HANDLED();

}
case POINT_SIG: {

BSP_insert(((static_cast<CalcEvt const *>(e)))->key_code);
return Q_TRAN(&Calc::frac1);

}
}
return Q_SUPER(&Calc::operand1);

}

Apart from the trivial syntactic differences (such as the “::” scope resolution operator

instead of an underscore), the structure of a hierarchical state-handler function in C++ is

identical to the C version from Listing 4.4. The only interesting difference is the

downcast of the generic event pointer to the specific subclass in Listing 4.5(1). Here,

I’ve used the new-style static_cast<> operator because the cast converts between
www.newnespress.com

161Hierarchical Event Processor Implementation
types related by inheritance. Of course, you can also use the C-style cast if your older

C++ compiler does not support the new-style casts.

POINTERS TO MEMBER FUNCTIONS IN C++

The C++ state-handler function takes the “me” pointer of its own class type, through which it

accesses the state machine data members and member functions (e.g., me->operand1 = . . .).

This is because the state-handler functions are static members of the QHsm subclass, such as

the calculator state machine class Calc (see Section 4.6.3).

An obvious and more elegant alternative would be to make the state-handler functions regu-

lar, nonstatic class members, which would allow them to access the class members much

more naturally through the implicit “this” pointer.

Indeed this much more elegant alternative has been used in the earlier QEP/C++ version pub-

lished in the first edition of this book. However, this alternative requires using pointers tomember
functions instead of simple pointers to functions, which turned out to be a problem in practice.

Even though the earlier C++ version of QEP used pointers to member functions in a rather stan-

dard way, the embedded developers have filed a number of alarming reports from the trenches,

where the elegant approach either had very lousy performance or did not work at all. For exam-

ple, some embedded C++ compilers used over 30 machine instructions to de-reference a pointer

to member function and only three to de-reference a regular pointer to function. Needless to say,

three machine instructions should do the job (see also Section 3.7.1 in Chapter 3).

As it turns out, too many C++ compilers simply don’t support pointers to member functions

well due to interference from other language features, such as multiple inheritance and vir-

tual base classes. As eloquently explained in the online article “Member Function Pointers

and the Fastest Possible C++ Delegates” [Clugston 07], even such widespread and important

frameworks as the MFC actually use pointers to member functions in a nonstandard way by

subverting the normal C++ type checking.

To avoid inefficiencies and portability issues, the current C++ version of QEP does not

use pointers to member functions but simply plain pointers to functions to static member

functions that don’t have the “this” pointer and therefore are not affected by polymorphism

or multiple inheritance. Note that the explicit “me” pointer required by static class members

plays the same role as the “context” pointer required by the object-oriented State design

pattern (see Section 3.5.1 in Chapter 3).
4.5 Hierarchical State Machine Class

As shown in Figure 4.1, the QHsm base class is the central element of the QEP

design. The QHsm class is abstract, which means that it is not intended for direct

instantiation but only for derivation of hierarchical state machines, such as the Calc
www.newnespress.com

162 Chapter 4
state machine in Figure 4.1. The main responsibility of the QHsm class is keeping track

of the current active state. In QEP, the state variable is a pointer to the state-handler

function QStateHandler defined previously.

The QHsm class also provides the standard state machine interface functions init()

and dispatch() as well as the constructor and the top state handler. The following

sections explain these elements, first in the C version and later in C++.

4.5.1 Hierarchical State Machine in C (Structure QHsm)

In C, HSMs are derived from the QHsm base structure, shown in Listing 4.6.
Listing 4.6 QHsm structure and related functions
(file <qp>\qpc\include\qep.h)

typedef struct QHsmTag {
(1) QStateHandler state; /* current active state (state-variable) */

} QHsm;

(2) #define QHsm_ctor(me_, initial_) ((me_)->state = (initial_))

(3) void QHsm_init (QHsm *me, QEvent const *e);
(4) void QHsm_dispatch(QHsm *me, QEvent const *e);
(5) uint8_t QHsm_isIn (QHsm *me, QHsmState state);
(6) QState QHsm_top (QHsm *me, QEvent const *e);
(1) TheQHsm structure stores the state-variablestate, which is a pointer to a state-handler

function. Typically, the QHsm structure requires just 2 or 4 bytes of RAM, depending

on the size of the pointer to function for a given CPU and C compiler options.

(2) The QHsm “constructor” function-like macro initializes the state variable to

the initial-pseudostate function that defines the initial transition. Note that the

initial transition is not actually executed at this point.

(3) The QHsm_init() function triggers the initial transition in the state machine. The

function takes an initialization event argument. You can use this event to pass any

parameters to initialize the state machine.

(4) The QHsm_dispatch() function dispatches one event to the state machine.

(5) The QHsm_isIn() function tests whether the HSM “is in” a given state. Note that

an HSM simultaneously “is in” all superstates of the currently active state,
www.newnespress.com

163Hierarchical Event Processor Implementation
and QHsm_isIn() tests for it. The QHsm_isIn() function returns 1 (TRUE)

if the HSM “is in” a given state (in the hierarchical sense). Otherwise the

function returns 0 (FALSE).

(6) The QHsm_top() function is the hierarchical state handler for the top state.

The top state is the UML concept that denotes the ultimate root of the state

hierarchy. The top state handler “handles” every event by silently ignoring it,

which is the default policy in the UML (see also Section 4.5.3).
NOTE

The application-level state-handler functions that don’t explicitly nest in any other state

return the &QHsm_top pointer to the event processor.
4.5.2 Hierarchical State Machine in C++ (Class QHsm)

In C++, HSMs are derived from the QHsm abstract base class, shown in Listing 4.7.
Listing 4.7 QHsm class (file <qp>\qpcpp\include\qep.h)

class QHsm {
protected:

(1) QStateHandler m_state; // current active state (state-variable)

public:
(2) void init (QEvent const *e = (QEvent const *)0);
(3) void dispatch(QEvent const *e);
(4) uint8_t isIn (QHsmState state);

protected:
(5) QHsm(QStateHandler initial) : m_state(initial) {} // protected ctor
(6) static QState top(QHsm *me, QEvent const *e);

};
(1) The QHsm class stores the state-variable state, which is a pointer to the hierarchical

state-handler function. The state variable m_state is protected so that the concrete

state machine classes derived from QHsm can access it through the macro Q_TRAN().

(2) The init() member function triggers the initial transition in the state machine.

The function takes an optional initialization event argument. You can use this

event to pass any parameters to initialize the state machine.
www.newnespress.com

164 Chapter 4
(3) The dispatch() member function dispatches one event to the state machine.

(4) The isIn() member function tests whether the HSM “is in” a given state. Note

that if an HSM is in a substate, it recursively also “is in” all the superstates. The

isIn() function returns 1 (TRUE) if the HSM “is in” a given state (in the

hierarchical sense). Otherwise the function returns 0 (FALSE).

(5) The constructor is protected to prevent direct instantiation of QHsm class, as it is

abstract. The constructor initializes the state variable to the initial-pseudostate

function that defines the initial transition. Note that the initial transition is not

actually executed at this point.

(6) The top() static member function is the hierarchical state handler for the top

state. The top state is in UML the ultimate root of the state hierarchy. The

top state handler “handles” every event by silently ignoring it, which is the default

policy in the UML (see also Section 4.5.3).
NOTE

The application-level state-handler functions that don’t explicitly nest in any other state

return the &QHsm::top pointer to the event processor. It is crucial in this design

that QHsm::top() is a static member, because static member functions can be referenced

by the simple pointers-to-functions, whereas regular member functions would require

pointers to member functions (also see the sidebar “Pointers to Member Functions in C++”).
4.5.3 The Top State and the Initial Pseudostate

Every HSM has the (typically implicit) top state, which surrounds all the other elements

of the entire state machine, as depicted in Figure 4.2.
initial pseudostate

top

stateA stateB

top-level initial
transition triggered
by QHsm_init()

top state

nested
sub-machine

Figure 4.2: The top state and the initial pseudostate.

www.newnespress.com

165Hierarchical Event Processor Implementation
The QHsm class guarantees that the top state is available to every derived state machine

by providing the QHsm_top() hierarchical state handler subsequently inherited by

the subclasses. The QHsm_top() hierarchical state-handler function is defined as

follows:

QState QHsm_top(QHsm *me, QEvent const *e) {
(void)me; /* avoid the compiler warning about unused parameter */
(void)e; /* avoid the compiler warning about unused parameter */
return Q_IGNORED(); /* the top state ignores all events */

}

By the UML semantics, the top state has no superstates and silently ignores all events,

so it always returns Q_IGNORED() to the event processor (see Listing 3.6(15) in

Chapter 3). The only purpose, and legitimate use, of the top state is to provide the

ultimate root of a state hierarchy so that the highest-level state handlers can return

&QHsm_top as their superstate. In particular, you should never target the top state in a

state transition.

The state machine initialization is intentionally divided into two steps. The QHsm

constructor merely initializes the state variable to the initial pseudostate. Later, the

application code must trigger the initial transition explicitly by invoking QHsm_init()

(described in the upcoming Section 4.5.6). This design separates instantiation of the

state machine from initialization, giving the applications full control over the sequence

of initializations in the system. The following code shows an example of an initial

pseudostate handler for the calculator state machine:
QState Calc_initial(Calc *me, QEvent const *e) {
(void)e; /* avoid the compiler warning about unused parameter */
BSP_clear(); /* clear the calculator display */
return Q_TRAN(&Calc_on); /* designate the default state */

}

Note that the topmost initial transition can fire only once (actually, exactly once),

because after you leave the top state, you cannot transition back. In other words, your

state machine cannot reuse the initial pseudostate in its life cycle.
www.newnespress.com

166 Chapter 4
4.5.4 Entry/Exit Actions and Nested Initial Transitions

In Chapter 2, you saw that UML state machines support elements of Moore automata

such as entry and exit actions as well as nested initial transitions. These elements

are sole characteristics of the state in which they are defined and do not depend,

in particular, on the transition path through which the state has been reached.

As described in Chapter 3, state-handler functions in QEP can (optionally) define

state-specific behavior by responding to the following reserved signals defined in the

qep.h header file:

enum QReservedSignals {
Q_ENTRY_SIG = 1, /* signal for coding entry actions */
Q_EXIT_SIG, /* signal for coding exit actions */
Q_INIT_SIG, /* signal for coding initial transitions */

Q_USER_SIG /* first signal that can be used in user code */
};
A state handler can handle these signals by using them as case labels in the usual

switch statement. A state handler is free to execute any actions in response to

those signals, but it should not take any state transitions in entry/exit actions.

Conversely, the response to the Q_INIT_SIG signal must always include the

Q_TRAN() macro to designate the default substate of the current state.
NOTE

The target of a nested initial transition specified in the Q_TRAN() macro must be the direct

or transitive substate of the composite state in which the initial transition is defined. In

other words, the nested initial transition must “drill into” the state hierarchy but cannot

“go up” to target superstates or “sideways” to target peer states. The QEP event processor

does not check for such incorrect initial transition targets, which really violate the UML

semantics and correspond to malformed state machines and could crash the QEP event

processor.
Listing 4.8 provides an example of using an entry action, an exit action, and a nested

initial transition.
www.newnespress.com

Listing 4.8 Definition of the Calc_on() state-handler function with entry
and exit actions and an initial transition

QState Calc_on(Calc *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: { /* entry action */
BSP_message("on-ENTRY;");
return Q_HANDLED();

}
case Q_EXIT_SIG: { /* exit action */

BSP_message("on-EXIT;");
return Q_HANDLED();

}
case Q_INIT_SIG: { /* nested initial transition */

BSP_message("on-INIT;");
return Q_TRAN(&Calc_ready);

}
case C_SIG: {

BSP_clear();
return Q_TRAN(&Calc_on);

}
case OFF_SIG: {

return Q_TRAN(&Calc_final);
}

}
return Q_SUPER(&QHsm_top);

}

167Hierarchical Event Processor Implementation
The reserved signals take up the lowest signal values (0..3), which are thus not

available for the applications. For convenience, the public HSM interface contains

the signal Q_USER_SIG, which indicates the first signal free for the users. A typical

way of defining application-level signals is to use an enumeration. In this case,

Q_USER_SIG can be used to offset the values of the entire enumeration, as shown

in Listing 4.9.
Listing 4.9 Enumerating signals for the Calc state machine

enum CalcSignals {
C_SIG = Q_USER_SIG,
CE_SIG,

Continued onto next page

www.newnespress.com

DIGIT_0_SIG,
DIGIT_1_9_SIG,
POINT_SIG,
OPER_SIG,
EQUALS_SIG,
OFF_SIG

};

NOTE

The reserved signals Q_ENTRY_SIG, Q_EXIT_SIG, and Q_INIT_SIG should cause no side

effects in state-handler functions that do not have entry actions, exit actions, or initial transitions.

The signal 0 (defined internally in the QEP as QEQ_EMPTY_SIG_) is reserved as well and should

cause a state-handler function to always return the superstate without any side effects.

168 Chapter 4
4.5.5 Reserved Events and Helper Macros in QEP

To execute entry/exit actions and initial transitions, the QEP event processor needs to

invoke the various state-handler functions and pass to them pointers to event objects

containing the reserved signals. For example, to trigger an entry action in the

Calc_on() state handler, the event processor calls the Calc_on() function with a

pointer to an event that has the signal equal to Q_ENTRY_SIG. To do this efficiently,

QEP uses the QEP_reservedEvt_[] constant array of reserved events, defined as

follows:

QEvent const QEP_reservedEvt_[] = {
{ (QSignal)QEP_EMPTY_SIG_, (uint8_t)0 },
{ (QSignal)Q_ENTRY_SIG, (uint8_t)0 },
{ (QSignal)Q_EXIT_SIG, (uint8_t)0 },
{ (QSignal)Q_INIT_SIG, (uint8_t)0 }

};
NOTE

The reserved signal zero, enumerated as QEP_EMPTY_SIG_, is used only internally in QEP

and therefore is not defined in the public QEP interface qep.h with the rest of the reserved

signals.

www.newnespress.com

169Hierarchical Event Processor Implementation
The array QEP_reservedEvt_[] is designed to be indexed by the reserved signals.

For example, &QEP_reservedEvt_[Q_ENTRY_SIG] represents a pointer to an event

with the reserved signal Q_ENTRY_SIG.

The following three helper macros are then used extensively inside the QEP

implementation (file <qp>\qpc\qep\source\qep_pkg.h):
/** helper macro to trigger reserved event in an HSM */
#define QEP_TRIG_(state_, sig_) \

((*(state_))(me, &QEP_reservedEvt_[sig_]))

/** helper macro to trigger entry action in an HSM */
#define QEP_EXIT_(state_) \

if (QEP_TRIG_(state_, Q_EXIT_SIG) == Q_RET_HANDLED) { \
/* QS software tracing instrumentation for state exit */\

}

/** helper macro to trigger exit action in an HSM */
#define QEP_ENTER_(state_) \

if (QEP_TRIG_(state_, Q_ENTRY_SIG) == Q_RET_HANDLED) { \
/* QS software tracing instrumentation for state entry */\

}

For example, the macro QEP_TRIG_() calls a given state-handler function state_

with the reserved event pointer argument &QEP_reservedEvt_[sig_], where sig_

is one of these: QEP_EMPTY_SIG_, Q_ENTRY_SIG, Q_EXIT_SIG, or Q_INIT_SIG.

Note the characteristic syntax of the function call based on a pointer to function

(*(state_))(. . .).
DESIGN BY CONTRACT IN C AND C++

All components of the QP framework, including QEP, apply the elements of the Design by

Contract5 (DbC) philosophy, which is a method of programming based on precisely defined

specifications of the various software components’ mutual obligations (contracts). The cen-

tral idea of this method is to inherently embed the contracts in the code and validate them

automatically at runtime [Meyer 97].
Continued onto next page

5 Design by Contract is a registered trademark of Interactive Software Engineering (ISE).

www.newnespress.com

170 Chapter 4
DESIGN BY CONTRACT IN C AND C++—CONT’D

In C or C++, you can implement the most important aspects of DbC with assertions (see

[Murphy 01a, 01b, Samek 03d]). Throughout this book, I use customized assertions defined

in the header file qassert.h, located in directories <qp>\qpc\include\ as well as

<qp>\qpcpp\include\. The qassert.h header file provides a number of macros, which

include:

� Q_REQUIRE(), to assert a precondition

� Q_ENSURE(), to assert a postcondition

� Q_INVARIANT(), to assert an invariant

� Q_ASSERT(), to assert a general contract of another type

� Q_ALLEGE, to assert a general contract and always evaluate the condition, even when

assertions are disabled at compile time

Each of these macro works similarly as the standard library macro assert(), and their dif-

ferent names serve only to document the purpose of the contract. Section 6.7.3 in Chapter 6

covers DbC and qassert.h in more detail.
4.5.6 Topmost Initial Transition (QHsm_init())

State nesting adds a lot of complexity to the topmost initial transition in anHSM compared

to a nonhierarchical FSM. The initial transition in an HSM might be complex because

UML semantics require “drilling” into the state hierarchywith the nested initial transitions

until the leaf state is reached. For example, the topmost initial transition in the calculator

example (Figure 2.18 in Chapter 2) involves the following six steps:

1. Execution of actions associated with the topmost initial transition

2. Execution of entry actions to the “on” state

3. Execution of the actions associated with the initial transition defined in the

“on” state

4. Execution of the entry actions to the “ready” state

5. Execution of the actions associated with the initial transition defined in the

“ready” state

6. Execution of the entry actions to the “begin” state; at this point the transition is

done because “begin” is a leaf state with no nested initial transition
www.newnespress.com

top

on

opEnteredready

result begin

behavioral
inheritance

negated1 operand1 negated2 operand2

zero1 int1 frac1 zero2 int2 frac2

error

Figure 4.3: The inheritance tree of the calculator HSM with the nested
initial transitions.

171Hierarchical Event Processor Implementation
Figure 4.3 shows the inheritance tree of the states comprising the calculator statechart.

The UML specification requires that higher-level states must be entered before entering

lower-level states. Unfortunately, this is exactly the opposite order to the natural

direction of navigation through the state handlers denoted by the behavioral inheritance

arrow in Figure 4.3. As you recall from Section 4.4, a hierarchical state-handler function

provides the superstate, so it’s easy to traverse the state hierarchy from lower- to higher-

level states. Although this order is very convenient for the efficient implementation of

the most frequently used QHsm_dispatch() function, entering states is harder.

The solution implemented in QEP is to use a temporary array path[] to record the exit

path from the target state of the initial transition without executing any actions

(see Figure 4.4). This is achieved by calling the state handlers with the reserved
path[0] target

path[1] super(target)

path[2] super(super(target))

path[n] unused

... ...

discovering
superstates
of target

entering
target
configuration

ip

index into
the path[] array

Figure 4.4: The use of the path[] array to enter the target state configuration
in the correct order.

www.newnespress.com

172 Chapter 4
QEP_EMPTY_SIG_ signal, which causes every state handler to immediately return the

superstate without executing any actions. The returned superstates are saved in the

path[] array. After reaching the current state, the path[] array is played backward to

enter the target state in the exact reversed order in which it was exited.

Listing 4.10 shows the definition of the QHsm_init() function that executes a generic

topmost initial transition according to the UML semantics. The equivalent C++

implementation of the QHsm::init() member function is identical, except for trivial

syntactic differences between C and C++.
Listing 4.10 Definition of the QHsm_init() function
(file <qp>\qpc\qep\source\qep_ini.c)

(1) void QHsm_init(QHsm *me, QEvent const *e) {
QStateHandler t;

/* the top-most initial transition must be taken */
(2) Q_ALLEGE((*me->state)(me, e) == Q_RET_TRAN);

(3) t = (QStateHandler)&QHsm_top; /* HSM starts in the top state */
(4) do { /* drill into the target. . . */
(5) QStateHandler path [QEP_MAX_NEST_DEPTH_];
(6) int8_t ip = (int8_t)0; /* transition entry path index */

(7) path [0] = me->state; /* save the target of the initial transition */
(8) (void)QEP_TRIG_(me->state, QEP_EMPTY_SIG_);
(9) while (me->state != t) {

(10) path [++ip] = me->state;
(void)QEP_TRIG_(me->state, QEP_EMPTY_SIG_);

}
(11) me->state = path [0]; /* restore the target of the initial tran. */

/* entry path must not overflow */
(12) Q_ASSERT(ip < (int8_t)QEP_MAX_NEST_DEPTH_);

do { /* retrace the entry path in reverse (desired) order. . . */
(13) QEP_ENTER_(path [ip]); /* enter path [ip] */
(14) } while ((--ip) >= (int8_t)0);

(15) t = path [0]; /* current state becomes the new source */
(16) } while (QEP_TRIG_(t, Q_INIT_SIG) == Q_RET_TRAN);
(17) me->state = t;

}

www.newnespress.com

173Hierarchical Event Processor Implementation
(1) The QHsm_init() implements the QHsm “class operation” and therefore takes the

“me” pointer. The event pointer parameter e can be used to provide additional

initialization parameters to the state machine.

(2) Inside the Q_ALLEGE() macro (see the sidebar “Design by Contract in

C and C++”) the initial pseudostate handler function is called via the pointer to

function stored in the state variable me->state. The initial pseudostate handler

returns the Q_TRAN() macro, in which it designates the target of the initial

transition. The Q_ALLEGE() macro makes sure that the initial pseudostate always

takes the initial transition. I use the Q_ALLEGE() macro because the initial

transition must be executed even when assertions are disabled at compile time.

(3) The temporary variable t holds the source state of the transition. The first source

is the top state.

(4) The do-loop performs the recursive execution of any nested initial transitions until

a leaf state is reached.

(5) The temporary array path[] stores the pointers to state-handler functions in the

exit path from the target state of the initial transition (see Figure 4.4).

(6) The temporary variable ip is used as the index into the path[] array.

(7) The path[0] entry is initialized to hold the target state, which is placed in

me->state by the Q_TRAN() macro called in the state-handler function.

(8) The superstate of the current state is discovered by calling the state handler with

the reserved QEP_EMPTY_SIG_ signal. The hierarchical state handler never

handles the QEP_EMPTY_SIG_ signal, so it returns Q_SUPER() macro, which sets

me->state to the superstate of the given state.

(9) The discovery of superstates continues until the current source state is reached.
NOTE

It is crucial at this point that the target state of the initial transition indeed is a substate of the

source.

www.newnespress.com

174 Chapter 4
(10) The exit path from the target is stored in the path[] array.

(11) The current state me->state is restored to the original target of the initial

transition.

(12) This assertion makes sure that the path[] array does not overflow (see the

sidebar “Design by Contract in C and C++”).

(13) All states stored in the path[] array are entered in the correct order.

(14) The entry to the target state configuration continues until index 0, which points to

the target itself.

(15) The current state becomes the new source.

(16) The loop continues as long as the current state handler reports that it handled the

initial transition. Otherwise, it is a leaf state and the job of the QHsm_init()

function is done.

(17) The current state is set to the final leaf state.
4.5.7 Dispatching Events (QHsm_dispatch(),
General Structure)

Dispatching an event to an HSM requires implementing the UML state nesting

semantics, that is, propagating the event through all the levels of nesting until it is

handled or reaches the top state. This functionality as well as executing of transitions is

implemented in the QHsm_dispatch() function.

The QHsm_dispatch() function is the most complicated in the QEP event processor.6

I will break up the discussion of the implementation into two steps. First, in this

section I explain how the function handles hierarchical event processing. In the

next section, I take a closer look at the transition execution algorithm.

Listing 4.11 shows the general structure of the QHsm_dispatch() function.

The implementation uses many elements already described for QHsm_init(). The code

carefully optimizes the number and size of temporary stack variables to minimize the

stack use. The equivalent C++ implementation of the QHsm::dispatch() member

function is identical, except for trivial syntactic differences between C and C++.
6 QHsm_dispatch() is not broken up in to smaller functions to conserve the stack space.

www.newnespress.com

Listing 4.11 General structure of the QHsm_dispatch() function
(file <qp>\qpc\qep\source\qep_dis.c)

(1) void QHsm_dispatch(QHsm *me, QEvent const *e) {
(2) QStateHandler path [QEP_MAX_NEST_DEPTH_];

QStateHandler s;
QStateHandler t;
QState r;

(3) t = me->state; /* save the current state */

(4) do { /* process the event hierarchically. . . */
(5) s = me->state;
(6) r = (*s)(me, e); /* invoke state handler s */
(7) } while (r == Q_RET_SUPER);

(8) if (r == Q_RET_TRAN) { /* transition taken? */
int8_t ip = (int8_t)(-1); /* transition entry path index */
int8_t iq; /* helper transition entry path index */

(9) path [0] = me->state; /* save the target of the transition */
(10) path [1] = t;

(11) while (t != s) { /* exit current state to transition source s. . . */
(12) if (QEP_TRIG_(t, Q_EXIT_SIG) == Q_RET_HANDLED) {/*exit handled? */
(13) (void)QEP_TRIG_(t, QEP_EMPTY_SIG_); /* find superstate of t */

}
(14) t = me->state; /* me->state holds the superstate */

}

(15) . . .
}

(16) me->state = t; /* set new state or restore the current state */
}

175Hierarchical Event Processor Implementation
(1) The QHsm_dispatch() implements the QHsm “class operation” and therefore it

takes the “me” pointer. The job of this function is to process the event e

according to the UML semantics.

(2) The temporary array path[] stores the pointers to state-handler functions in the

exit path from the target state of the transition. To conserve the stack

space, this array is reused for other purposes as well.

(3) The current state is saved temporarily into ‘t’.
www.newnespress.com

176 Chapter 4
(4) This do-loop processes the events hierarchically starting from the current state.

(5) The current state is saved in the temporary ‘s’ in case a transition is taken, which

overwrites me->state. In that case, the variable ‘s’ holds the source of the

transition.

(6) At each level of state nesting, the state-handler function is called. The status

of the event handling reported from the state handler is stored in to the temporary

variable ‘r.’

(7) The do-loop continues as long as state handler functions return superstates

(via the Q_SUPER() macro). Please note that the top state handler ignores all

events, so the loop must terminate even if the event is not explicitly handled at

any level of state nesting.

(8) If the returned status is Q_RET_TRAN, the last called state handler must have

taken a state transition by executing the Q_TRAN() macro (see Listing 3.6(16) in

Chapter 3).

(9) The current state me->state holds the target of the transition, which is now

placed in path[0] (see Figure 4.4).

(10) The current state before the transition is copied to path[1], so that the variable

‘t’ can be reused.

(11) This while-loop executes the transition segment from the current state to the

explicit source of the transition. This step covers the case of an inherited state

transition—that is, the transition defined at a level higher than the currently

active state.

For example, assume that the state “result” is the current active state of the calculator

state machine in Figure 4.5 while the user presses one of the operator keys (+, –, *, or /).

When the function QHsm_dispatch() receives the OPER event, it calls the currently

active state handler first, which is the Calc_result() state handler. This state handler

doesn’t handle the OPER event, so it returns the superstate Calc_ready(). The

QHsm_dispatch() function then calls the Calc_ready() state handler, which

handles the OPER event by taking a state transition Q_TRAN(&Calc_opEntered).

However, the correct exit of the current state configuration must include exiting “result”

before exiting “ready.” This transition segment is shown in grey in Figure 4.5.
www.newnespress.com

177Hierarchical Event Processor Implementation
(12) The exit action is triggered in the state.

(13) If the exit action is handled, I need to discover the superstate by calling the

state handler with the empty event. If the exit action is unhandled, the

state handler returned the Q_SUPER() macro, so me->state already

contains the superstate.

(14) The superstate is stored in the temporary variable ‘t’ to be compared with the

transition source.

(15) The omitted part contains the state transition algorithm shown in Listing 4.12 and

explained in the next section.

(16) The current state is restored from the variable ‘t,’ where it has been stored in

step (3).
top

on

opEnteredready

result begin

transition source

OPER

current state

Transition segment from
the explicit source to the
explicit transition target.

Transition segment from
the current state to the
explicit transition source.

LCA(ready, opEntered)

Behavioral
inheritance

Figure 4.5: Two segments of an inherited state transition.
4.5.8 Executing a Transition in the State Machine
(QHsm_dispatch(), Transition)

Executing a generic state transition in a HSM is by far the most complex part of

the QEP implementation. The challenge is to quickly find the least common

ancestor (LCA) state of the source and target states. (The LCA is the lowest-hierarchy
www.newnespress.com

178 Chapter 4
state that is simultaneously the superstate of the source and the target states.) The

transition sequence involves the exit of all states up to the LCA (but without exiting

the LCA itself), followed by the recursive entry into the target state, followed by

“drilling” into the target state configuration with the initial transitions until a leaf state

is reached.

Listing 4.12 shows the omitted part of the QHsm_dispatch() function that

implements the general case of a state transition. A large part of the complexity of

this part of the code results from the optimization of the workload required to

efficiently execute the most frequently used types of state transitions. The

optimization criterion used in the transition algorithm is to minimize the number of

invocations of state-handler functions, in particular the “empty” invocations (with

the reserved QEP_EMPTY_SIG_), which serve only for eliciting the superstate of a given

state handler. The strategy is to order the possible source-target state combinations in

such a way that the information about the state hierarchy gained from earlier steps

can be used in later states. Figure 4.6 shows such ordering of state transition topologies.

This ordering is the basis for the transition algorithm in Listing 4.12.
A B C D

E

.

.

.

F

.

.

.

G

.

.

.

.

.

.

.

.

.

H

Figure 4.6: Ordering of transition types from simplest to progressively more
complex in the transition algorithm (Listing 4.12).

www.newnespress.com

Listing 4.12 Transition algorithm implementation in the QHsm_dispatch()
function (file <qp>\qpc\qep\source\qep_dis.c)

/* NOTE: continued from Listing 4.11 */

t ¼ path [0]; /* target of the transition */

(1) if (s ¼¼ t) { /* (a) check source¼¼target (transition to self) */
QEP_EXIT_(s) /* exit the source */
ip ¼ (int8_t)0; /* enter the target */

}
else {

(void)QEP_TRIG_(t, QEP_EMPTY_SIG_); /* superstate of target */
t ¼ me->state;

(2) if (s ¼¼ t) { /* (b) check source¼¼target->super */
ip ¼ (int8_t)0; /* enter the target */

}
else {

(3) (void)QEP_TRIG_(s, QEP_EMPTY_SIG_); /* superstate of src */
/* (c) check source->super¼¼target->super */

(4) if (me->state ¼¼ t) {
QEP_EXIT_(s) /* exit the source */
ip ¼ (int8_t)0; /* enter the target */

}
else {

/* (d) check source->super¼¼target */
(5) if (me->state ¼¼ path [0]) {

QEP_EXIT_(s) /* exit the source */
}
else { /* (e) check rest of source¼¼target->super->super..

* and store the entry path along the way
*/

iq ¼ (int8_t)0; /* indicate that LCA not found */
ip ¼ (int8_t)1; /* enter target and its superstate */
path [1] ¼ t; /* save the superstate of target */
t ¼ me->state; /* save source->super */

/* find target->super->super */
r ¼ QEP_TRIG_(path [1], QEP_EMPTY_SIG_);

(6) while (r ¼¼ Q_RET_SUPER) {
path [þþip] ¼ me->state; /* store the entry path */
if (me->state ¼¼ s) { /* is it the source? */

iq ¼ (int8_t)1; /* indicate that LCA found */
/* entry path must not overflow */

Q_ASSERT(ip < (int8_t)QEP_MAX_NEST_DEPTH_);

Continued onto next page

www.newnespress.com

179Hierarchical Event Processor Implementation

––ip; /* do not enter the source */
r ¼ Q_RET_HANDLED; /* terminate the loop */

}
else { /* it is not the source, keep going up */

r ¼ QEP_TRIG_(me->state, QEP_EMPTY_SIG_);
}

}
if (iq ¼¼ (int8_t)0) { /* the LCA not found yet? */

/* entry path must not overflow */
(7) Q_ASSERT(ip < (int8_t)QEP_MAX_NEST_DEPTH_);

(8) QEP_EXIT_(s) /* exit the source */

/* (f) check the rest of source->super
* ¼¼ target->super->super...
*/

iq ¼ ip;
r ¼ Q_RET_IGNORED; /* indicate LCA NOT found */
do {

(9) if (t ¼¼ path [iq]) { /* is this the LCA? */
r ¼ Q_RET_HANDLED; /* indicate LCA found */
ip ¼ (int8_t)(iq - 1); /*do not enter LCA*/
iq ¼ (int8_t)(-1); /* terminate the loop */

}
else {

––iq; /* try lower superstate of target */
}

} while (iq >¼ (int8_t)0);

if (r !¼ Q_RET_HANDLED) { /* LCA not found yet? */
/* (g) check each source->super->...
* for each target->super...
*/

r ¼ Q_RET_IGNORED; /* keep looping */
do {

/* exit t unhandled? */
(10) if (QEP_TRIG_(t, Q_EXIT_SIG)

¼¼ Q_RET_HANDLED)
{

(void)QEP_TRIG_(t, QEP_EMPTY_SIG_);
}
t ¼ me->state; /* set to super of t */
iq ¼ ip;
do {

(11) if (t ¼¼ path [iq]) { /* is this LCA? */
/* do not enter LCA */

ip ¼ (int8_t)(iq - 1);

www.newnespress.com

180 Chapter 4

iq ¼ (int8_t)(-1); /*break inner */
r ¼ Q_RET_HANDLED; /*break outer */

}
else {

––iq;
}

} while (iq >¼ (int8_t)0);
} while (r !¼ Q_RET_HANDLED);

}
}

}
}

}
}

/* retrace the entry path in reverse (desired) order... */
(12) for (; ip >¼ (int8_t)0; ––ip) {

QEP_ENTER_(path [ip]) /* enter path [ip] */
}
t ¼ path [0]; /* stick the target into register */
me->state ¼ t; /* update the current state */

/* drill into the target hierarchy... */
(13) while (QEP_TRIG_(t, Q_INIT_SIG) ¼¼ Q_RET_TRAN) {

ip ¼ (int8_t)0;
path [0] ¼ me->state;
(void)QEP_TRIG_(me->state, QEP_EMPTY_SIG_); /* find superstate */
while (me->state !¼ t) {

path [þþip] ¼ me->state;
(void)QEP_TRIG_(me->state, QEP_EMPTY_SIG_); /* find superstate */

}
me->state ¼ path [0];

/* entry path must not overflow */
Q_ASSERT(ip < (int8_t)QEP_MAX_NEST_DEPTH_);

do { /* retrace the entry path in reverse (correct) order... */
QEP_ENTER_(path [ip]) /* enter path [ip] */

} while ((–ip) >¼ (int8_t)0);

t ¼ path [0];
}

}

181Hierarchical Event Processor Implementation
(1) From the point of view of reducing the number of state handler calls, the simplest

transition type is transition to self (Figure 4.6(A)) because this transition type

can be determined immediately by testing (source == target), that is, no

state-handler invocations are necessary to check for this transition type. The
www.newnespress.com

182 Chapter 4
self-transition requires exiting the source and entering the target. The exit from the

source can be performed right away by means of the helper macro QEP_EXIT_()

introduced in Section 4.5.5.

(2) The next transition type is the topology shown in Figure 4.6(B). The check for this

transition type is (source == super(target)) and requires determining the

superstate of the target. This transition type requires only entry to the target but no

exit from the source.

(3) To proceed further, the algorithm checks for the superstate of the source state.

The information about superstates of both the target and the source collected

so far is subsequently used to determine two transition types shown in Figure 4.6

(C) and (D).

(4) The transition topology in Figure 4.6(C) is the peer-to-peer transition shown

(perhaps the most common type). This transition topology can be determined

by checking the condition (super(source) == super(target)) and

requires exit from the source and entry to the target. The exit is performed

right away by means of the helper macro QEP_EXIT_().

(5) The topology shown in Figure 4.6(D) requires testing the condition (super(source)

== target) and involves only entry to the target but no exit from the source.

(6) The topology shown in Figure 4.6(E) requires probing all superstates of the

target until a match with the source is found or until the top state is reached.

The target state hierarchy determined in this part of the algorithm is stored in the

temporary array path[] and is subsequently reused to perform the entry to

the target state configuration in the desired order. Note that the entry path[0]

already holds the target itself, and path[1] holds the superstate of target

discovered in the prior steps.

(7) The macro Q_ASSERT() implements a customizable, embedded-system friendly

assertion. I discuss the use of assertions in the QP event-driven platform in Section

6.7 of Chapter 6.

(8) The transition topology from Figure 4.6(E) is the last that might not require

exiting the source state, so if the processed transition does not fall into the

(E) category, the source state must be exited.
www.newnespress.com

183Hierarchical Event Processor Implementation
(9) The topology shown in Figure 4.6(F) requires traversal of the target state

hierarchy stored in the array path[] to find the match with the superstate of

source still kept in the temporary variable s.

(11) The topologies shown in Figure 4.6(G) and (H) require traversal of the target

state hierarchy stored in the array path[] to find the match with any of the

superstates of the source.

(10) Because every scan for a match with a given superstate of the source

exhausts all possible matches for the LCA, the source’s superstate can be

safely exited.

The transition types shown in Figure 4.6(A) through Figure 4.6(H) represent all valid

transition topologies, and every well-formed transition should be recognized as one of

the cases (A) through (H). Once QHsm_dispatch() detects the type of the transition

and executes all necessary exit actions up to the LCA, it must enter the target state

configuration.

(12) The entry to the target state configuration is straightforward and involves just a

simple for loop that scans through the array path[] in the reversed order as it

was filled.

(13) The target state can be composite and can have an initial transition as well.

Therefore, the while loop performs the “drilling” into the target until it detects

the leaf state. This part of the algorithm is very similar as the QHsm_init()

function explained in Listing 4.10.

4.6 Summary of Steps for Implementing HSMs
with QEP

Implementing state machines with the QEP event processor is quite a mechanical

process consisting of just a few simple steps. You already went through the process

at least once in Section 1.7 of Chapter 1, where I explained the implementation of the

Ship state machine in the “Fly ‘n’ Shoot” game. Here I present the implementation

of the calculator state machine, which was designed in Section 2.4 of Chapter 2 and also

served as an example throughout this chapter.
www.newnespress.com

184 Chapter 4
When you know how to code one HSM, you know how to code them all. Therefore,

this section will necessarily repeat some of the descriptions from Chapter 1. However,

I feel that having all the HSM coding steps conveniently summarized in one section

will be helpful for daily programming work. In addition, to reduce the repetition,

I describe here the state machine implementation in C++. If you are a C programmer,

I hope that by now you are getting more familiar with the concepts of a “class” and

“inheritance” and know how to code them in C.

The C++ source code for the calculator state machine is located in the directory

<qp>\qpcpp\examples\80x86\dos\tcpp101\l\calc\ and consists of

the following files:

� calc.h contains the declaration of signals, events, and the global pointer to the

Calc state machine.

� calc.cpp contains declaration of the Calc state machine structure and the

implementation of the state-handler functions.

� bsp.h contains the board support package interface.

� bsp.cpp contains the implementation of the board-specific functions.

� main.cpp contains the main() function and the event loop.

� CALC.PRJ is the Turbo C++ project file for building the application.

As always, the code I provide is executable and I encourage you to try it out. You

can run the example on any Windows PC by double-clicking on the executable located

in the directory <qp>\qpcpp\examples\80x86\dos\tcpp101\l\calc\dbg

\CALC.EXE.

The calculator example is interactive and you can perform computations with it. You

use the keyboard to send keypress events to the application; the state of the calculator

display is shown at the command prompt. The calculator recognizes keys: 0, 1, . . ., 9, .,

+, –, *, /, =, C, and E (cancel entry, CE). The Esc key terminates the application. All

other keys are ignored.

Figure 4.7 shows a screen shot in which you can see how the calculator handles the

expression 2, –, –, –, 2, = that has crashed the Visual Basic calculator in Chapter 2. I’d

like to challenge you to crash the state machine-based calculator. The calculator starts

with displaying zero aligned at the right edge of the display [0]. To the right of

the display, you can see the key sent to the calculator. For example, the first key is 2.
www.newnespress.com

185Hierarchical Event Processor Implementation
The key event is followed by the sequence of actions that the calculator HSM

performs in response to the key event. I recommend that you correlate this output

with the calculator state diagram from Figure 2.18.
Figure 4.7: The calculator HSM running in a Windows console.
4.6.1 Step 1: Enumerating Signals

The first step of the implementation consists of enumerating all signals recognized by

the state machine shown in the state diagram (Figure 2.18 in Chapter 2), such as C,

CE, DIGIT_0, DIGIT_1_9, and so on.

Listing 4.9 shows the enumeration of all signals recognized by the calculator state

machine. Note that the user-level signals do not start from zero but rather are offset by

the constant Q_USER_SIG. Also note that by QEP convention, all signals have the

suffix _SIG to easily distinguish signals from other constants. The suffix _SIG is

omitted in the state diagram to reduce the clutter.
4.6.2 Step 2: Defining Events

Many events consist only of the signal and don’t need any additional parameters. You

can represent such events directly as instances of the QEvent structure provided in

the header file <qp>\qpcpp\include\qevent.h.
www.newnespress.com

186 Chapter 4
However, some events require parameters. For example, the calculator signal

DIGIT_1_9_SIG communicates only that one of the digit keys 1..9 has been depressed,

but the signal alone does not inform us as to which digit key this was. The missing

information is added to the event in the form of the key_code parameter

that represents the code of the depressed key.
NOTE

The granularity of signals has been chosen that way because the behavior of the calculator

really is independent of exactly which digit key is depressed (only the digit 0 needs to be

treated differently from the rest, and that’s why it has been represented as a separate signal).

Similarly, the calculator reacts identically to all operators (+,– , *, /) and therefore all opera-

tors have been represented by only one signal OPER_SIG. Section 4.7.8 talks about achieving

the optimal signal granularity.
The following fragment of the calc.h header file demonstrates how you add event

parameters. You define a class (CalcEvt) that inherits from the QEvent class.

You then add arbitrary parameters as data members:

struct CalcEvt : public QEvent {
uint8_t key_code; // code of the key

};
4.6.3 Step 3: Deriving the Specific State Machine

Hierarchical state machines are represented in QEP as subclasses of the QHsm

abstract base class, which is defined in the header file <qp>\qpcpp\include\qep.h.

Listing 4.13 demonstrates how you derive the Calc (calculator) class from QHsm.
NOTE

You should not be confused by the fact that the Ship state machine example in Chapter 1

derived from the QActive base class rather than QHsm. As you will see in Chapter 7,

QActive is a subclass of QHsm, so the Ship state machine is in fact derived from QHsm,

albeit not directly.

www.newnespress.com

Listing 4.13 Deriving the Calc class from QHsm

(1) class Calc : public QHsm {
private:

(2) double m_operand1; // the value of operand 1 (extended state variable)
uint8_t m_operator; // operator key entered (extended state variable)

public:
(3) Calc() : QHsm((QStateHandler)&Calc::initial) { // ctor

}

protected:
(4) static QState initial (Calc *me, QEvent const *e); // initial pseudostate
(5) static QState on (Calc *me, QEvent const *e); // state handler

static QState error (Calc *me, QEvent const *e); // state handler
static QState ready (Calc *me, QEvent const *e); // state handler
static QState result (Calc *me, QEvent const *e); // state handler
static QState begin (Calc *me, QEvent const *e); // state handler
static QState negated1 (Calc *me, QEvent const *e); // state handler
static QState operand1 (Calc *me, QEvent const *e); // state handler
static QState zero1 (Calc *me, QEvent const *e); // state handler
static QState int1 (Calc *me, QEvent const *e); // state handler
static QState frac1 (Calc *me, QEvent const *e); // state handler
static QState opEntered (Calc *me, QEvent const *e); // state handler
static QState negated2 (Calc *me, QEvent const *e); // state handler
static QState operand2 (Calc *me, QEvent const *e); // state handler
static QState zero2 (Calc *me, QEvent const *e); // state handler
static QState int2 (Calc *me, QEvent const *e); // state handler
static QState frac2 (Calc *me, QEvent const *e); // state handler
static QState final (Calc *me, QEvent const *e); // state handler

};

187Hierarchical Event Processor Implementation
(1) You define a class (Calc) that inherits the QHsm base class.

(2) You add arbitrary extended-state variables as data members to the derived class.

(3) You typically provide the default constructor (constructor without parameters) that

conveniently encapsulates the initial pseudostate pointer passed to the QHsm

constructor.

(4) You provide the initial pseudostate as a static member function with the shown

signature.

(5) You provide the all state handlers as a static member functions with the shown

signature.
www.newnespress.com

188 Chapter 4
4.6.4 Step 4: Defining the Initial Pseudostate

The initial pseudostate Calc::initial() shown here takes the “me” pointer to

its own class (Calc *) as the first argument and an event pointer as the second

parameter. This particular initial pseudostate ignores the event, but sometimes such

an initialization event can be helpful to provide additional information required to

initialize extended-state variables of the state machine.

QState Calc::initial(Calc *me, QEvent const * /* e */) {
BSP_clear();
return Q_TRAN(&Calc::on);

}

The initial pseudostate can initialize the extended state variables and perform any

other actions, but its most important job is to set the default state of the state machine

with the Q_TRAN() macro, as shown.
4.6.5 Step 5: Defining the State-Handler Functions

Earlier in this chapter, in Listing 4.5 you saw an example of the Calc::int1() state

handler function. Typically, every state handler function consists of a switch statement

that discriminates based on the event signal e->sig. Each case is labeled by a signal and

terminates either with “return Q_HANDLED()” or “return Q_TRAN(. . .).” Either one

of these return statements informs the QEP event processor that the particular event has

been handled. On the other hand, if no case executes, the state handler exits through the

final “return Q_SUPER(. . .)” statement, which informs the QEP event processor that

the event needs to be handled by the designated superstate.

Highest-level states without explicit superstate (e.g., the “on” state in the calculator

example) nest implicitly in the top state. Such states disignate &QHsm::top as

the argument to the Q_SUPER() macro.
NOTE

The final return statement from a state handler function is the only place where you specify

the hierarchy of states. Therefore, this one line of code represents the single point of mainte-

nance for changing the nesting level of a given state.

www.newnespress.com

189Hierarchical Event Processor Implementation
While coding state-handler functions, you need to keep in mind that QEP will invoke

them for various reasons: for hierarchical event processing, for execution of entry

and exit actions, for triggering initial transitions, or even just to elicit the superstate of a

given state handler. Therefore, you should not assume that a state handler would be

invoked only for processing events enlisted in the case statements. You should also

avoid any code outside the switch statement, especially code that would have side

effects.
4.6.6 Coding Entry and Exit Actions

The qep.h header file provides two reserved signals Q_ENTRY_SIG and Q_EXIT_SIG

that the QEP event processor passes to the appropriate state-handler function to execute

the state entry actions or exit actions, respectively.

Therefore, as shown in Listing 4.8 earlier in this chapter, to code an entry action, you

provide a case statement labeled with signal Q_ENTRY_SIG, enlist all the actions

you want to execute upon the entry to the state, and terminate the lists with “return

Q_HANDLED(),” which informs the QEP that the entry actions have been handled.

Coding the exit actions is identical, except that you provide a case statement labeled

with the signal Q_EXIT_SIG, call the actions you want to execute upon the exit

from the state, and terminate the lists with “return Q_HANDLED(),” which informs

the QEP that the exit action has been handled.
4.6.7 Coding Initial Transitions

Every composite state (a state with substates) can have its own initial transition, which

in the diagram is represented as an arrow originating from a black ball. For example,

the calculator state “on” in Figure 2.18 has such a transition to substate “ready.”

The QEP provides a reserved signal Q_INIT_SIG that the event processor passes to the

appropriate state-handler function to execute the initial transition.

Therefore, as shown Listing 4.8 earlier in this chapter, to code an initial transition, you

provide a case statement labeled with signal Q_INIT_SIG, enlist all the actions

you want to execute upon the initial transition, and then designate the target substate

with the Q_TRAN() macro. The status returned from the Q_TRAN() macro informs QEP

that the initial transition has been handled.
www.newnespress.com

190 Chapter 4
The UML specification requires that the target of the initial transition is a direct or

indirect substate of the source state. An initial transition to a nonsubstate (e.g., a peer

state, or a superstate) corresponds to a malformed state machine and may even crash

the event processor. Note that initial transitions cannot have guard conditions.

4.6.8 Coding Internal Transitions

Internal transitions are simple reactions to events that never lead to change of state and

consequently never cause execution of exit actions, entry actions, or initial transitions.

To code an internal transition, you provide a case statement labeled with the triggering

signal, enlist the actions, and terminate the list with “return Q_HANDLED()” to

inform QEP that the event has been handled.

4.6.9 Coding Regular Transitions

State-handler Calc::int1() from Listing 4.5 provides two examples of regular state

transitions. To code a regular transition, you provide a case statement labeled with the

triggering signal (e.g., POINT_SIG), enlist the actions, and then designate the target

state with the Q_TRAN() macro. The status returned from the Q_TRAN() macro informs

QEP that a transition has been taken.

The Q_TRAN() macro can accept any target state at any level of nesting, such as a peer

state, a substate, a superstate, or even the same state as the source of the transition

(transition to self).
NOTE

The QEP hierarchical event processor automatically handles execution of appropriate exit

and entry actions during arbitrary state transitions (in the QHsm::dispatch() function).

Consequently, any change in state machine topology (change in state transitions or state nest-

ing) requires only recompiling the state-handler functions. QEP automatically takes care of

figuring out the correct sequence of exit/entry actions and initial transitions to execute for

every state transition.
4.6.10 Coding Guard Conditions

Guard conditions (or simply guards) are Boolean expressions evaluated dynamically

based on the value of event parameters and/or the variables associated with the state
www.newnespress.com

191Hierarchical Event Processor Implementation
machine (extended-state variables). The following definition of the Calcl::begin()

state-handler function shows an example of a state transition with a guard.

QState Calc::begin(Calc *me, QEvent const *e) {
switch (e->sig) {

case OPER_SIG: {
if ((static_cast<CalcEvt const *>(e))->key_code == KEY_MINUS) {

return Q_TRAN(&Calc::negated1);
}
break;

}
}
return Q_SUPER(&Calc::ready);

}

The guard condition maps simply to an if-statement that conditionally executes actions.

Note that only the TRUE branch of the if contains the “return Q_TRAN()” statement,

meaning that only the TRUE branch reports that the event has been handled. If the

TRUE branch is not taken, the break statement causes a jump to the final return that

informs the QEP that the event has not been handled. This is in compliance with the

UML semantics, which require treating an event as unhandled in case the guard

evaluates to FALSE. In that case, the event should be propagated up to the higher levels

of hierarchy (to the superstate).

Guard conditions are allowed not just for regular state transitions but for the internal

transitions as well. In this case a guard maps to the if statement that contains

“return Q_HANDLED()” only in the TRUE branch. The only difference for the internal

transition is that you return the Q_HANDLED() macro instead of Q_TRAN().
4.7 Pitfalls to Avoid While Coding State
Machines with QEP

The QEP hierarchical event processor enables building efficient and maintainable state

machine implementations in C and C++. However, it is also possible to use QEP

incorrectly because the direct manual-coding approach leaves you a lot of freedom in

structuring your state machine code. This section summarizes the main pitfalls that

various QEP users have fallen into over the years and provides some guidelines on how

to benefit the most from QEP.
www.newnespress.com

192 Chapter 4
4.7.1 Incomplete State Handlers

You should construct only complete state handlers, that is, state-handler functions

that directly include all state machine elements pertaining to a given state (such as

all actions, all transitions, and all guards), so that you or anyone else could at any

time unambiguously draw the state in a diagram using only the state-handler function.

The key is the way you break up the code. Instead of thinking in terms of individual

C statements, you should think at a higher level of abstraction, in terms of the idioms

defined in Sections 4.6.5-4.6.10 for coding states, transitions, entry/exit actions, initial

transitions, and guards.

Consider the following problematic implementation of the “on” state handler of the

calculator state machine shown before, in Section 4.5.4:

QState Calc_on(Calc *me, QEvent const *e) {
switch (e->sig) {

. . .
case C_SIG: {

return Calc_onClear(me); /* handle the Clear event */
}
. . .

}
return Q_SUPER(&QHsm_top);

}
. . .
QState Calc_onClear(Calc *me) {

BSP_clear();
return Q_TRAN(&Calc_on); /* transition to "on" */

}

This Calc_on() state-handler function differs from the original implementation

discussed in Section 4.5.4 only in the way it handles the C_SIG signal. Though

the problematic implementation is in principle equivalent to the original and would

perform exactly the same way, the problematic state handler is incomplete because it does

not follow the idiom for coding state transition from Section 4.6.9. In particular, the state

handler hides the state transition to self triggered by C_SIG and from such an incomplete

state handler alone you would not be able to correctly draw the state in the diagram.

In summary, perhaps the most important principle to keep in mind while coding state

machines with QEP is that the code is as much an implementation as it is a specification
www.newnespress.com

193Hierarchical Event Processor Implementation
of a state machine. This perspective on coding state machines with QEP will help

you (and others) readily see the state machine structure right from the code and easily

and unambiguously map the code back to state diagrams. Conversely, state machine

code structured arbitrarily, even if working correctly, might be misleading and

therefore difficult to maintain (see also [Samek 03f]).
4.7.2 Ill-Formed State Handlers

All nontrivial, semantically rich formalisms, including UML state machines, allow

building ill-formed constructs. An ill-formed state machine is inherently wrong, not one

that just happens to incorrectly represent behavior. For example, you could draw a UML

state diagram with initial transitions targeting peer states rather than substates or

conflicting transitions with overlapping guards. The specific state machine

implementation technique, such as QEP, introduces additional opportunities of “shooting

yourself in the foot.” It is possible, for example, to code a state handler that would nest

inside itself (the state-handler function would return a pointer to self). Such a state

machine cannot be even drawn in a state diagram but is quite easy to code with QEP.

This section examines more of such situations that result with ill-formed state machines.

Often, ill-formed state machines cause an assertion violation within the QEP code

(see the sidebar “Design by Contract in C and C++”). However, some pathological

cases, such as circular state nesting, could crash the QEP event processor.
4.7.3 State Transition Inside Entry or Exit Action

Novice QEP users sometimes try to code a transition inside the entry action to a state by

using the Q_TRAN() macro. This happens typically when a developer confuses a

statechart with a flowchart (see Section 2.2.3) and thinks of the entered state as just a

stage of processing that automatically progresses to the next stage upon completion

of the entry actions.

The UML does not allow transitions in entry or exit actions. The typical intention in

coding a state transition in an entry action is to enter a given state only under some

condition and transition to a different state under some other condition. The correct way

of handling this situation is to explicitly code two transitions with complementary

guards and with different target states.
www.newnespress.com

194 Chapter 4
4.7.4 Incorrect Casting of Event Pointers

As described in Section 4.3, event parameters are added to the QEvent structure in the

process of class inheritance. However, events are uniformly passed to state-handler

functions as the generic QEvent* pointer, even though they point to various derived

event classes. That’s why you need to downcast the generic QEvent* pointer onto the

pointer to the specific event subclass as shown, for instance, in Listing 4.4(5).

However, to perform the downcast correctly, you need to know what derived event

to cast to. The only information you have at this point is the signal of the event

(e->sig), and therefore the signal alone must unambiguously identify the derived

event structure. The problem arises if you use one signal with multiple event classes,

because then you could cast incorrectly on the wrong event class.

4.7.5 Accessing Event Parameters in Entry/Exit Actions
or Initial Transitions

A specific case of incorrect event casting is an attempt to access event parameters when

handling entry/exit actions or initial transitions. For example, if a state has only one

incoming transition that is triggered with an event with parameters, novice QEP users

sometimes try to access these parameters in the entry action to this state. Consider

the following hypothetical code example:

QState MyHSM_stateA(MyHSM *me, QEvent const *e) {
switch (e->sig) {

case EVTB_SIG: {
. . .
/* the only way to transition to stateB */
return Q_TRAN(&MYHSM_state B);

}
}
return Q_SUPER(&QHsm_top);

}
QState MyHSM_stateB(MyHSM *me, QEvent const *e) {

switch (e->sig) {
case Q_ENTRY_SIG: {

EvtB const *evtB = (EvtB const *)e; /* INCORRECT cast */
if (evtB->foo !=) . . . /* INCORRECT access */
. . .

}
}
return Q_SUPER(&QHsm_top);

}

www.newnespress.com

195Hierarchical Event Processor Implementation
The transition in “stateA” triggered by EVTB_SIG is the only way to get to “stateB.” In

the entry action to “stateB” the programmer realizes that some parameter foo in the

EvtB structure, associated with signal EVTB_SIG, is needed and casts the generic event

on (EvtB const *). This is an incorrect cast, however, because by the time “stateB”

is entered the original triggering event EvtB is no longer accessible. Instead, the entry

action is triggered by a reserved signal Q_ENTRY_SIG, which is not associated with

the EvtB event structure. This is actually logical because a state can be entered in many

different transitions, each one triggered by a different event, and none of them are

accessible by the time entry action is processed.

The correct way of handling this situation is to perform actions dependent on the event

parameters directly on the transition triggered by this event rather than in the entry

action. Alternatively, the event parameters can be stored in the extended-state variables

(members of the state machine structure that you access through the “me” pointer). The

extended-state variables are accessible all the time, so they can be used also in the

entry/exit actions or initial transitions.

4.7.6 Targeting a Nonsubstate in the Initial Transition

All initial transitions must target direct or indirect substates of the state in which the initial

transition is defined. Figure 4.8(A) shows several examples of correct initial transitions.

Note that an initial transition can span more than one level of state hierarchy, but it must

always target a direct or indirect substate of a given state. Figure 4.8(B) shows one example
B

stateA

stateA1

stateA11

A

stateA

stateA1 stateA2

stateA11 stateA21

stateA2

stateA21

Figure 4.8: Correct (A) and incorrect (B) initial transitions.

www.newnespress.com

196 Chapter 4
of the highlighted initial transition in “stateA1” that targets “stateA21.” The problem is that

“stateA21” is not a substate of “stateA1” and therefore the state machine in Figure 4.8(B) is

ill-formed according to the UML semantics. Coding such an initial transition in QEP

will crash the event processor.
4.7.7 Code Outside the switch Statement

As the QEP user, you need to understand that each event that is dispatched to the state

machine through the function QHsm_dispatch() might potentially cause invocation

of many state-handler functions and some of them might be called more than once.

This is because the event processor needs to call state-handler functions to perform

hierarchical event processing, to handle entry/exit actions and initial transitions, or

simply to discover the nesting level of a given state. Therefore, you should not assume

that a state-handler function would be called exactly once for a given event, so you

should avoid any code outside the main switch statement dedicated to events,

especially if the code has side effects.

For example, the following state-handler function is certainly inefficient, and probably

incorrect, because the for loop executes every time the state handler is invoked, which

is not just for the events enlisted as cases in the switch statement.
QState MyHSM_stateA(MyHSM *me, QEvent const *e) {
for (i = 0; i < N; ++i) { /* PROBLEMATIC: expensive loop outside switch */

doSomethingExpensive();
}
switch (e->sig) {

. . .
}
return Q_SUPER(&QHsm_top);

}

You should even avoid allocating and initializing any automatic variables outside

the main switch statement. I specifically recommend using braces after each

case statement so that you can allocate and initialize automatic variables locally

in each individual case statement. The following code snippet illustrates the

situation:
www.newnespress.com

197Hierarchical Event Processor Implementation
QState MyHSM_stateB(MyHSM *me, QEvent const *e) {
uint32_t tmp = 0x12345678; /* initialization occurring every time */
switch (e->sig) {

. . .
case MY_EVT_SIG: {

uint32_t tmp = 0x12345678; /*initializationonlyinthiscase*/
. . .

}
. . .

}
return Q_SUPER(&QHsm_top);

}

4.7.8 Suboptimal Signal Granularity

Nothing affects state machine complexity and efficiency as much as the right

granularity and semantics of events. The optimal granularity of signals falls somewhere

between the two extremes of too fine and too coarse.

The granularity of signals is too fine if you repeatedly find the same groups of signals

handled in the same way. For example, recall the calculator example (Section 2.4 in

Chapter 2). The calculator HSM handles all numerals 1 through 9 in the same way.

Therefore, introducing a separate signal for each numeral would lead to a signal

granularity that is too fine, which would unnecessarily bloat the state-handler functions

(you would see long lists of cases handled identically). Instead, the calculator

statechart represents the whole group of numerals 1 through 9 as just one signal,

DIGIT_1_9_SIG (see Figure 2.18).

The granularity of signals is too coarse if you find yourself frequently using guard

conditions that test event parameters. In this case, event parameters are the de facto

signals. Consider the Windows message WM_COMMAND, frequently used in Windows

GUI applications for all buttons and menus of the application. This signal is too coarse

because Windows applications typically must test the wParam parameter associated

with the WM_COMMAND to determine what actually happened. In other words, values

of wParam are the de facto signals. In this case, the too coarse signal granularity

results in a suboptimal (and not very elegant) additional switch statement based on

wParam nested within the WM_COMMAND case. When you encounter signals that are

too coarse, the first thing you should try is to redefine or remap signals to the right

level of granularity before dispatching them to the state machine. However, if you

cannot do this, you should include all the de facto signals directly in your state handlers.
www.newnespress.com

198 Chapter 4
All too often, the additional layer of signal dispatching (such as the switch based

on wParam) end up in a separate function, which makes state handlers incomplete in

the sense discussed in Section 4.7.1.

4.7.9 Violating the Run-to-Completion Semantics

All state machine formalisms, including UML statecharts, universally assume run-to-

completion (RTC) semantics of processing events. RTC means that a state machine

must always complete processing of the previous event before it can start processing

the next. The RTC restriction comes from the fact that a state machine must always go

from one stable state configuration all the way to another stable state configuration

in one indivisible step (RTC step). A state machine cannot accept events before

reaching a stable state configuration.

The RTC semantics is implicit in the QEP implementation because each invocation of

the function QHsm_dispatch() represents one RTC step. In single-threaded systems,

such as all the examples discussed in this chapter, the RTC semantics cannot be violated

because each function must return before it can be called again. However, in

multitasking environments, even as simple as the superloop (main+ISRs), the RTC

semantics can be easily violated by attempts to dispatch an event to a state machine

from an ISR while the same state machine in the background loop is still busy

processing the previous event.

4.7.10 Inadvertent Corruption of the Current Event

A very nasty and difficult-to-debug violation of the RTC semantics is an inadvertent

corruption of the current event before the RTC step completes. Recall that the state-

handler functions in QEP take just pointers to events, not the copies of the entire event

objects. It is therefore possible that the memory pointed to by the event pointer will

get corrupted before the current RTC step completes.

For example, consider once more the superloop (main+ISRs) architecture. An ISR

produces an event and sets a global flag to trigger a state machine running in

the background. The background loop starts processing the event, but before it

completes, another interrupt preempts it. The ISR produces another event by

overwriting the memory used previously for the first event. The RTC semantics are

violated even though the ISR merely sets a flag instead of calling the state

machine directly.
www.newnespress.com

199Hierarchical Event Processor Implementation
The general solution to guarantee RTC semantics in multitasking systems is to use

event queues to store events while a state machine is busy. The mechanisms for

a thread-safe event queuing and dispatching to multiple concurrently executing state

machines can be generalized and reused rather than being reinvented from scratch for

each application. Virtually all GUI systems (such as Microsoft Windows, X Windows,

and others) are examples of such reusable architectures. QEP can be used with

virtually any such event-driven infrastructure. In particular, QEP can be combined with

the QF event-driven framework design specifically for the domain of real-time

embedded systems. I introduce the QF component in Chapter 6.
4.8 Porting and Configuring QEP

Adapting the QEP software to a particular CPU and compiler is called porting. You port

and configure the QEP event processor by providing the qep_port.h header file,

which is included in all source files comprising QEP (see Listing 4.1). Listing 4.14

shows an example of qep_port.h for 80�86 CPU.
Listing 4.14 The qep_port.h header file for the 80x86 QEP port located
in the directory <qp>\qpc\ports\80x86\dos\tcpp101\l\

#ifndef qep_port_h
#define qep_port_h

/* special keyword used for ROM objects (none for 80x86) */
(1) #define Q_ROM

/* mechanism of accessing const objects in ROM (far pointers) */
(2) #define Q_ROM_VAR far

/* 1-byte signal space (255 signals) */
(3) #define Q_SIGNAL_SIZE

/* exact-width types. WG14/N843 C99 Standard, Section 7.18.1.1 */
(4) typedef signed char int8_t;

typedef signed int int16_t;
typedef signed long int32_t;
typedef unsigned char uint8_t;
typedef unsigned int uint16_t;
typedef unsigned long uint32_t;

(5) #include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */

www.newnespress.com

200 Chapter 4
(1) The Q_ROM macro allows enforcing placing the constant objects, such as lookup

tables, constant strings, and the like, in ROM rather than in the precious RAM.

On CPUs with the Harvard architecture (such as 8051 or the Atmel AVR), the

code and data spaces are separate and are accessed through different CPU

instructions. The compilers often provide specific extended keywords to designate

code or data space, such as the “__code” extended keyword in the IAR 8051

compiler. Here, for the 80x86 CPU, the definition of the Q_ROM macro is empty.

(2) The macro Q_ROM_VAR specifies the kind of the pointer to be used to access the

ROM objects because many compilers provide different-sized pointers for

accessing objects in various memories. Constant objects allocated in ROM often

mandate the use of specific-size pointers (e.g., far pointers) to get access to ROM

objects. An example of valid Q_ROM_VAR macro definition is __far (Freescale

HC(S)08 compiler).
NOTE

Macros Q_ROM and Q_ROM_VAR refer to the different parts of the object declaration. The

macro Q_ROM specifies the ROM memory type to allocate an object. This allows compilers

generating different instructions for accessing such ROM objects for CPUs with the Harvard

architecture. On the other hand, the macro Q_ROM_VAR specifies the size of the pointer (e.g.,

the “far” pointer) to access the ROM data, so it refers just to the size of the object’s address,

not to the object itself. The Q_ROM_VAR macro is useful for the von Neumann machines.
If you don’t define macros Q_ROM or Q_ROM_VAR, the qep.h header file will provide

default empty definitions, which means that no special extended keywords are

necessary to correctly allocate and access the constant objects.

(3) The macro Q_SIGNAL_SIZE configures the QSignal type (see Section 4.3.1).

If the macro is not defined, the default of 1 byte will be chosen in qep.h. The

valid Q_SIGNAL_SIZE values 1, 2, or 4 correspond to QSignal of uint8_t,

uint16_t, and uint32_t, respectively. The QSignal data type determines the

dynamic range of numerical values of signals in your application.

(4) Porting QEP requires providing the C99-standard exact-width integer types that are

consistent with the CPU and compiler options used. For newer C and C++ compilers,

you simply need to include the standard header file <stdint.h> provided by

the compiler vendor. For prestandard compilers, you need to provide the typedefs

for the six basic exact-width integer types.
www.newnespress.com

201Hierarchical Event Processor Implementation
(5) The qep_port.h platform-specific header file must include the qep.h platform-

independent header file.

4.9 Summary

Almost all real-life state machines can vastly benefit from the reuse of behavior enabled

by hierarchical state nesting. Traditionally, state hierarchy has been considered an

advanced feature that mandates automatic code synthesis by CASE tools. However,

the use of a generic event processor enables very straightforward manual coding

of HSMs.

This chapter described the inner workings of a small, generic, hierarchical event

processor called QEP. The event processor consists of just two classes: QHsm for

derivation of state machines and QEvent for derivation of events with parameters. The

event-dispatching algorithm implemented in the QHsm class has been carefully

optimized over the years for both speed and space. The most recent QEP version

requires only a single pointer to function per state machine in RAM and minimizes the

stack usage by very judiciously sizing automatic variables and by avoiding any

recursive calls to state handler functions. State-handler functions are an inexpensive

commodity, and there are no limits (except for code space) of how many you can use.

Implementing HSMs with QEP is straightforward because the hierarchical event

processor does most of the heavy lifting for you. In fact, coding of even the most complex

HSM turns out to be a rather simple exercise in applying just a few straightforward rules.

As your design evolves, QEP allows easily changing the state machine topology.

In particular, no transition chains must be coded manually. To change the target of a

transition, you modify the argument of the Q_TRAN() macro. Similarly, to change the

superstate of a given state, you modify the argument of the Q_SUPER() macro.

All these changes are confined to one line of code.

The most important perspective to keep in mind while coding state machines with QEP

is that the source code is as much the implementation as it is the executable

specification of your state machine. Instead of thinking in terms of individual C or C++

statements, you should think in terms of state machine elements, such as states,

transitions, entry/exit actions, initial transitions, and guards. When you make this

quantum leap, you will no longer struggle with convoluted if–else “spaghetti” code.

You will start thinking at a higher level of abstraction about the best ways to partition

behavior into states, about the events available at any given time, and about the best

state hierarchy for your state machine.
www.newnespress.com

www.new
CHAP T E R 5
State Patterns
Science is a collection of successful recipes.
— Paul Valéry

In the previous chapter, you learned how to implement hierarchical state machines

(HSMs) in C and C++ with the generic hierarchical event processor called QEP. In fact,

QEP enabled a rather mechanical one-to-one mapping between state models and the

code. With just a bit of practice, you will forget that you are laboriously translating state

models into code; rather, you will directly build state machines in C or C++.

At this point, you will no longer struggle with 15 levels of if–else statements and

gazillions of flags. You will start thinking at a higher level of abstraction about the best

ways to partition behavior into states, about the structure of your state machine, and

about the event exchange mechanisms.

However, coming up with a good structure for a nontrivial state machine isn’t easy.

Experienced developers know that a reusable and flexible state machine design is

difficult to get right the first time. Yet experienced designers repeatedly realize good

state machines, whereas newcomer are overwhelmed by the options available and tend

to fall back on convoluted if–else constructs and the multitude of flags they have

used before.

One thing that distinguishes an expert from a novice is the ability to recognize the

similarities among problems encountered in the past and to reuse proven solutions that

work. To share their expertise, OO designers began to catalog proven solutions to

recurring problems as object-oriented design patterns [GoF 95]. Similarly, state patterns

began to appear [Douglass 99]. In contrast to the OO patterns, which are concerned
nespress.com

204 Chapter 5
with optimal ways of structuring classes and objects, the state patterns focus on

effective ways of structuring states, events, and transitions.

A state pattern has the following five essential elements, just as an OO pattern does:

� The pattern name. A word or two denoting the problem, the solution, and the

consequences of a pattern. A good name is vital because it will become part

of your vocabulary.

� The problem. An explanation of the problem the pattern addresses. A problem is

often motivated by an example.

� The solution. A description of the elements (states, transitions, events, actions,

and extended-state variables) that compose the solution and their relationships,

responsibilities, and collaborations.

� The sample code. A presentation of a concrete implementation of an instance of

the pattern. Usually the sample code implements the motivating example.

� The consequences. The results and trade-offs of applying the pattern.

In this chapter, I provide a mini-catalog of five basic state patterns (Table 5.1). The first

two are relatively simple state machine solutions to common problems. The other

three are just more advanced or expensive features that are found in the UML state

machine package [OMG 07] but are not supported directly in the QEP event processor.

The leading theme of all these patterns is reusing behavior through hierarchical state

nesting, in contrast to the previously documented state patterns that all revolve

primarily around orthogonal regions [Douglass 99]. The additional distinguishing aspect

of the state patterns presented here is that all are illustrated with executable code.

A state diagram alone is not enough to understand a state pattern, because the devil is

always in the detail. To be genuinely useful, a pattern must be accompanied by a

specific working example that will help you truly comprehend and evaluate the pattern

and give you a good starting point for your own implementations.

Many examples in this chapter are implemented with the QF real-time framework

that I will formally introduce in Chapter 6. The QEP component by itself is not

sufficient, because it provides only the passive event processor that lacks such

essential elements as the event loop, event queuing, and timing services. The QF

framework provides these missing ingredients. However, all patterns can also be

used in conjunction with any other event-driven infrastructure such as GUI systems

(Windows, Mac, X11, etc.).
www.newnespress.com

Table 5.1: Summary of state patterns covered in this chapter

Pattern Name Intent

Ultimate Hook (Section 5.1) Provide a common look and feel but let clients specialize every
aspect of a system’s behavior.

Reminder (Section 5.2) Invent an event and post it to self.

Deferred Event (Section 5.3) Control the sequence of events.

Orthogonal Component
(Section 5.4)

Use state machines as components.

Transition to History
(Section 5.5)

Transition to the most recent state configuration of a given
composite state.

205State Patterns
None of the state patterns described in this chapter captures new or unproven state

machine designs. In fact, by definition, a state pattern is a proven solution to a recurring

problem that is actually used in successful, real-life event-driven systems. However,

most of the basic state patterns have never been documented before (at least not with

such a level of detail and illustrated with executable code). They are either part of

the folklore of various programming communities (e.g., the GUI community or the

embedded systems community) or are elements of some successful systems, neither of

which is easy for novice designers to learn from. So although these state machine

designs are not new, they are offered here in a new and more accessible way.
5.1 Ultimate Hook

5.1.1 Intent

Provide common facilities and policies for handling events but let clients override and

specialize every aspect of the system’s behavior.
5.1.2 Problem

Many event-driven systems require consistent policies for handling events. In a GUI

design, this consistency is part of the characteristic look and feel of the user interface.

The challenge is to provide such a common look and feel in system-level software

that client applications can use easily as the default. At the same time, the clients must

be able to override every aspect of the default behavior easily if they so choose.
www.newnespress.com

206 Chapter 5
5.1.3 Solution

The solution is to apply programming by difference or, specifically in this case, the

concept of hierarchical state nesting. A composite state can define the default behavior

(the common look and feel) and supply an “outer shell” for nesting client substates.

The semantics of state nesting provide the desired mechanism of handling all events,

first in the context of the client code (the nested state) and of automatically forwarding

of all unhandled events to the superstate (the default behavior). In that way, the

client code intercepts every stimulus and can override every aspect of the behavior.

To reuse the default behavior, the client simply ignores the event and lets the superstate

handle it (the substate inherits behavior from the superstate).

Figure 5.1 shows the Ultimate Hook state pattern using the collaboration notation

adapted for states [OMG 07]. The dashed oval labeled «state pattern» indicates

collaboration among states. Dashed arrows emanating from the oval indicate state roles

within the pattern. States playing these roles are shown with heavy borders. For

example, the state “generic” plays the role of the generic superstate of the pattern,

whereas the state “specific” plays the role of the specific substate.
entry /
exit /
A /
B /

generic

«state pattern»
Ultimate Hook

entry / ...
exit / …
A /

specificgeneric
superstate

specific
substate

D

C

entry / _exit(0);
final

reset
(idiom)

explicit final state
(idiom)

Figure 5.1: The Ultimate Hook state pattern.
A diagram like this attempts to convey an abstract pattern but can only show a concrete

example (instance) of the pattern. In this instance, the concrete “generic” state in

Figure 5.1 handles events A and B as internal transitions, event C as a transition to self,

and event D as the termination of the state machine. The concrete “specific” state

overrides event A and provides its own initialization and cleanup (in entry and exit

actions, respectively). Of course, another instance of the pattern can implement

completely different events and actions.
www.newnespress.com

207State Patterns
A few idioms worth noting are illustrated in this state diagram. First is the overall

canonical structure of the state machine that, at the highest level, consists of only one

composite state (the pattern role of the generic superstate). Virtually every application

can benefit from having such a highest-level state because it is an ideal place for

defining common policies subsequently inherited by the whole (arbitrary complex)

submachine.
NOTE

As described in Section 2.3.2 in Chapter 2, every UML state machine is a submachine of an

implicit top state and so has the canonical structure proposed here. However, because you

cannot override the top state, you need another highest-level state that you can customize.
Within such a canonical structure, a useful idiom for resetting the state machine is an

empty (actionless) transition to self in the “generic” superstate (transition C in

Figure 5.1). Such a transition causes a recursive exit from all nested states (including

the “generic” superstate), followed by initialization starting from the initial transition of

the highest-level state. This way of resetting a state machine is perhaps the safest

because it guarantees proper cleanup through the execution of exit actions and clean

initialization by entry actions and nested initial transitions. Similarly, the safest way to

terminate a state machine is through an explicit transition out of the generic superstate

to a “final” state (transition D in Figure 5.1) because all pertinent exit actions are

executed. The QEP event processor does not provide a generic final state (denoted as

the bull’s eye in the UML). Instead, the statechart in Figure 5.1 proposes an idiom,

which consists of an explicit state named “final” with an application-specific

termination coded in its entry action.1
5.1.4 Sample Code

The sample code for the Ultimate Hook state pattern is found in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\hook\. You can execute the

application by double-clicking the file HOOK.EXE file in the dbg\ subdirectory.

Figure 5.2 shows the output generated by the HOOK.EXE application. Listing 5.1 shows

the example implementation of the Ultimate Hook pattern from Figure 5.1.
1 The calculator HSM designed in Chapter 2 and coded in Chapter 4 provides an example of the canonical

state machine structure that uses the idioms to reset and terminate.

www.newnespress.com

Listing 5.1 The Ultimate Hook sample code (file hook.c).

(1) #include "qep_port.h"

typedef struct UltimateHookTag { /* UltimateHook state machine */
(2) QHsm super; /* derive from QHsm */

} UltimateHook;

void UltimateHook_ctor (UltimateHook *me); /* ctor */

(3) QState UltimateHook_initial (UltimateHook *me, QEvent const *e);
QState UltimateHook_generic (UltimateHook *me, QEvent const *e);
QState UltimateHook_specific (UltimateHook *me, QEvent const *e);
QState UltimateHook_final (UltimateHook *me, QEvent const *e);

(4) enum UltimateHookSignals { /* enumeration of signals */
A_SIG = Q_USER_SIG,
B_SIG,
C_SIG,
D_SIG

};
/*...*/
void UltimateHook_ctor(UltimateHook *me) {

QHsm_ctor(&me->super, (QStateHandler)&UltimateHook_initial);
}
/*...*/
QState UltimateHook_initial(UltimateHook *me, QEvent const *e) {

printf("top-INIT;");
return Q_TRAN(&UltimateHook_generic);

}
/*...*/
QState UltimateHook_final(UltimateHook *me, QEvent const *e) {

switch (e->sig) {

Figure 5.2: Output generated by HOOK.EXE.

www.newnespress.com

208 Chapter 5

case Q_ENTRY_SIG: {
printf("final-ENTRY(terminate);\nBye!Bye!\n");
exit(0);
return Q_HANDLED();

}
}
return Q_SUPER(&QHsm_top);

}
/*..*/
QState UltimateHook_generic(UltimateHook *me, QEvent const *e) {

switch (e->sig) {
. . .
case Q_INIT_SIG: {

printf("generic-INIT;");
return Q_TRAN(&UltimateHook_specific);

}
case A_SIG: {

printf("generic-A;");
return Q_HANDLED();

}
case B_SIG: {

printf("generic-B;");
return Q_HANDLED();

}
case C_SIG: {

printf("Generic:C(reset);");
(5) return Q_TRAN(&UltimateHook_generic);

}
case D_SIG: {

(6) return Q_TRAN(&UltimateHook_final);
}

}
return Q_SUPER(&QHsm_top);

}
/*..*/
QState UltimateHook_specific(UltimateHook *me, QEvent const *e) {

switch (e->sig) {
(7) case Q_ENTRY_SIG: {

printf("specific-ENTRY;");
return Q_HANDLED();

}
(8) case Q_EXIT_SIG: {

printf("specific-EXIT;");
return Q_HANDLED();

}

Continued onto next page

www.newnespress.com

209State Patterns

(9) case A_SIG: {
printf("specific-A;");
return Q_HANDLED();

}
}
return Q_SUPER(&UltimateHook_generic); /* the superstate */

}

210 Chapter 5
(1) Every QEP application needs to include qep_port.h (see Section 4.8 in

Chapter 4).

(2) The structure UltimateHook derives from QHsm.

(3) The UltimateHook declares the initial() pseudostate and three state-

handler functions: generic(), specific(), and final().

(4) The signals A through D are enumerated.

(5) The transition-to-self in the “generic” state represents the reset idiom.

(6) The transition to the explicit “final” state represents the terminate idiom.

(7,8) The entry and exit actions in the “specific” state provide initialization and

cleanup.

(9) The internal transition A in the “specific” state overrides the same transition in

the “generic” superstate.

One option of deploying the Ultimate Hook pattern is to organize the code into a

library that intentionally does not contain the implementation of the

UltimateHook_specific() state-handler function. Clients would then have

to provide their own implementation and link to the library to obtain the generic behavior.

An example of a design using this technique is Microsoft Windows, which requires the

client code to define the WinMain() function for the Windows application to link.

Another option for the C++ version is to declare the UltimateHook::specific()

state handler as follows:
QState UltimateHook::specific(UltimateHook *me, QEvent const *e) {
return me->v_specific(e); /* virtual call */

}

www.newnespress.com

211State Patterns
Where the member function UltimateHook::v_specific(QEvent const *e) is

declared as a pure virtual member function in C++. This will force clients to

provide implementation for the pure virtual state-handler function v_specific()

by subclassing the UltimateHook class. This approach combines behavioral

inheritance with traditional class inheritance. More precisely, Ultimate Hook

represents, in this case, a special instance of the Template Method design pattern

[GoF 95].

5.1.5 Consequences

The Ultimate Hook state pattern is presented here in its most limited version —

exactly as it is used in GUI systems (e.g., Microsoft Windows). In particular, neither the

generic superstate nor the specific substate exhibits any interesting state machine

topology. The only significant feature is hierarchical state nesting, which can be applied

recursively within the “specific” substate. For example, at any level, a GUI window

can have nested child windows, which handle events before the parent.

Even in this most limited version, however, the Ultimate Hook state pattern is a

fundamental technique for reusing behavior. In fact, every state model using the

canonical structure implicitly applies this pattern.

The Ultimate Hook state pattern has the following consequences:

� The “specific” substate needs to know only those events it overrides.

� New events can be added easily to the high-level “generic” superstate without

affecting the “specific” substate.

� Removing or changing the semantics of events that clients already use is difficult.

� Propagating every event through many levels of nesting (if the “specific”

substate has recursively nested substates) can be expensive.

The Ultimate Hook state pattern is closely related to the Template Method OO design

pattern and can be generalized by applying inheritance of entire state machines.

5.2 Reminder

5.2.1 Intent

Make the statechart topology more flexible by inventing an event and posting it to self.
www.newnespress.com

212 Chapter 5
5.2.2 Problem

Often in state modeling, loosely related functions of a system are strongly coupled by a

common event. Consider, for example, periodic data acquisition, in which a sensor

producing the data needs to be polled at a predetermined rate. Assume that a periodic

TIMEOUT event is dispatched to the system at the desired rate to provide the stimulus

for polling the sensor. Because the system has only one external event (the TIMEOUT

event), it seems that this event needs to trigger both the polling of the sensor and

the processing of the data. A straightforward but suboptimal solution is to organize

the state machine into two distinct orthogonal regions (for polling and processing).2

However, orthogonal regions increase the cost of dispatching events (see the

“Orthogonal Component” pattern) and require complex synchronization between the

regions because polling and processing are not quite independent.

5.2.3 Solution

A simpler and more efficient solution is to invent a stimulus (DATA_READY) and to

propagate it to self as a reminder that the data is ready for processing (Figure 5.3).

This new stimulus provides a way to decouple polling from processing without using

orthogonal regions. Moreover, you can use state nesting to arrange these two

functions in a hierarchical relation,3 which gives you even more control over the

behavior.

In the most basic arrangement, the “processing” state can be a substate of “polling” and

can simply inherit the “polling” behavior so that polling occurs in the background to

processing. However, the “processing” state might also choose to override polling. For

instance, to prevent flooding the CPU with sensor data, processing might inhibit polling

occasionally. The statechart in Figure 5.3 illustrates this option. The “busy” substate

of “processing” overrides the TIMEOUT event and thus prevents this event from being

handled in the higher-level “polling” superstate.

Further flexibility of this solution entails fine control over the generation of the invented

DATA_READY event, which does not have to be posted at every occurrence of the

original TIMEOUT event. For example, to improve performance, the “polling” state

could buffer the raw sensor data and generate the DATA_READY event only when the buffer
2 This example illustrates an alternative design for the Polling state pattern described in [Douglass 99].
3 Using state hierarchy in this fashion is typically more efficient than using orthogonal regions.

www.newnespress.com

TIMEOUT / pollSensor();
 if (…) postFIFO(me, DATA_READY)

polling

«state pattern»
Reminder

processing

post
a reminder
to self

use
the posted
reminder

DATA_READY idle
TIMEOUT […] /
 ; /* ignore */

busy

TIMEOUT[…]

Figure 5.3: The Reminder state pattern.

213State Patterns
fills up. Figure 5.3 illustrates this option with the if (. . .) condition, which precedes the

postFIFO(me, DATA_READY) action in the “polling” state.
5.2.4 Sample Code

The sample code for the Reminder state pattern is found in the directory <qp>\qpc

\examples\80x86\dos\tcpp101\l\reminder\. You can execute the application

by double-clicking on the REMINDER.EXE file in the dbg\ subdirectory. Figure 5.4

shows the output generated by the REMINDER.EXE application. The application prints

every state entry (to “busy” or “idle”) as well as the number of times the TIMEOUT

event has been handled in “polling” and “processing,” respectively. Listing 5.2 shows

the example implementation of the Reminder pattern from Figure 5.3.
Figure 5.4: Output generated by REMINDER.EXE.

www.newnespress.com

214 Chapter 5
The Reminder state pattern posts the reminder event to self. This operation involves

event queuing and is not supported by the raw QEP event processor. Therefore the sample

code uses the QEP event processor as well as the QF real-time framework, which are

both components of the QP event-driven platform. The QF component provides event

queuing as well as the time events, both of which are used in the sample code.
Listing 5.2 The Reminder sample code (file reminder.c)

(1) #include "qp_port.h" /* QP interface */
#include "bsp.h" /* board support package */

enum SensorSignals {
TIMEOUT_SIG = Q_USER_SIG, /* the periodic timeout signal */

(2) DATA_READY_SIG, /* the invented reminder signal */
TERMINATE_SIG /* terminate the application */

};
/* . */
typedef struct SensorTag { /* the Sensor active object */

(3) QActive super; /* derive from QActive */

(4) QTimeEvt timeEvt; /* private time event generator */
uint16_t pollCtr;
uint16_t procCtr;

} Sensor;

void Sensor_ctor(Sensor *me);
/* hierarchical state machine ... */

QState Sensor_initial (Sensor *me, QEvent const *e);
QState Sensor_polling (Sensor *me, QEvent const *e);
QState Sensor_processing(Sensor *me, QEvent const *e);
QState Sensor_idle (Sensor *me, QEvent const *e);
QState Sensor_busy (Sensor *me, QEvent const *e);
QState Sensor_final (Sensor *me, QEvent const *e);

/* . */
void Sensor_ctor(Sensor *me) {

QActive_ctor_(&me->super, (QStateHandler)&Sensor_initial);
(5) QTimeEvt_ctor(&me->timeEvt, TIMEOUT_SIG); /* time event ctor */

}
/* HSM definition--*/
QState Sensor_initial(Sensor *me, QEvent const *e) {

me->pollCtr = 0;
me->procCtr = 0;

(6) return Q_TRAN(&Sensor_polling);
}

www.newnespress.com

/*..*/
QState Sensor_final(Sensor *me, QEvent const *e) {

switch (e->sig) {
case Q_ENTRY_SIG: {

printf("final-ENTRY;\nBye!Bye!\n");
BSP_exit(); /* terminate the application */
return Q_HANDLED();

}
}
return Q_SUPER(&QHsm_top);

}
/*..*/
QState Sensor_polling(Sensor *me, QEvent const *e) {

switch (e->sig) {
case Q_ENTRY_SIG: {

/* periodic timeout every 1/2 second */
(7) QTimeEvt_postEvery(&me->timeEvt, (QActive *)me,

BSP_TICKS_PER_SEC/2);
return Q_HANDLED();

}
case Q_EXIT_SIG: {

QTimeEvt_disarm(&me->timeEvt);
return Q_HANDLED();

}
case Q_INIT_SIG: {

return Q_TRAN(&Sensor_processing);
}

(8) case TIMEOUT_SIG: {
static const QEvent reminderEvt = { DATA_READY_SIG, 0 };
++me->pollCtr;
printf("polling %3d\n", me->pollCtr);
if ((me->pollCtr & 0x3) == 0) { /* modulo 4 */

(9) QActive_postFIFO((QActive *)me, &reminderEvt);
}
return Q_HANDLED();

}
case TERMINATE_SIG: {

return Q_TRAN(&Sensor_final);
}

}
return Q_SUPER(&QHsm_top);

}
/*..*/
QState Sensor_processing(Sensor *me, QEvent const *e) {

switch (e->sig) {

Continued onto next page

www.newnespress.com

215State Patterns

case Q_INIT_SIG: {
return Q_TRAN(&Sensor_idle);

}
}
return Q_SUPER(&Sensor_polling);

}
/*..*/
QState Sensor_idle(Sensor *me, QEvent const *e) {

switch (e->sig) {
case Q_ENTRY_SIG: {

printf("idle-ENTRY;\n");
return Q_HANDLED();

}
case DATA_READY_SIG: {

(10) return Q_TRAN(&Sensor_busy);
}

}
return Q_SUPER(&Sensor_processing);

}
/*..*/
QState Sensor_busy(Sensor *me, QEvent const *e) {

switch (e->sig) {
case Q_ENTRY_SIG: {

printf("busy-ENTRY;\n");
return Q_HANDLED();

}
(11) case TIMEOUT_SIG: {

++me->procCtr;
printf("processing %3d\n", me->procCtr);
if ((me->procCtr & 0x1) == 0) { /* modulo 2 */

return Q_TRAN(&Sensor_idle);
}
return Q_HANDLED();

}
}
return Q_SUPER(&Sensor_processing);

}

216 Chapter 5
(1) The Reminder state pattern posts the reminder event to self. This operation

involves event queuing and is not supported by the raw QEP event processor. The

sample code uses the whole QP, which includes the QEP event processor and the

QF real-time framework. QF provides event queuing as well as the time events,

both of which are used in the sample code.
www.newnespress.com

NOTE

Event queuing and event-driven timing services are available in virtually every event-driven

infrastructure. For instance, Windows GUI applications can call the PostMessage() Win32

API to queue messages and provide a WM_TIMER case in the window procedure to receive

217State Patterns

timer updates.
(2) The invented reminder event signal (DATA_READY in this case) is enumerated

just like all other signals in the system.

(3) The Sensor state machine derives from the QF class QActive that combines

an HSM, an event queue, and a thread of execution. The QActive class

actually derives from QHsm, which means that Sensor also indirectly derives

from QHsm (see Chapter 6 for more details).

(4) The Sensor state machine declares its own private time event. Time events are

managed by the QF real-time framework. Section 7.7 in Chapter 7 covers the

QTimeEvt facility in detail.

(5) The time event must be instantiated, at which time it gets permanently associated

with the given signal (TIMEOUT_SIG in this case).

(6) The topmost initial transition enters the “polling” state, which in turn enters the

“idle” substate.

(7) Upon entry to the “polling” state, the time event is armed for generating periodic

TIMEOUT_SIG events twice per second.
NOTE

In QF, as in every other RTOS, the time unit is the “time tick.” The board support package

(BSP) defines the constant BSP_TICKS_PER_SEC that ties the ticking rate to the second.
(8) After being armed, the time event produces the TIMEOUT_SIG events at the

programmed rate. Because neither the “idle” state nor the “processing” state

handle the TIMEOUT_SIG signal, the signal is handled initially in the “polling”

superstate.

(9) At a lower rate (every fourth time, in this example), the “polling” state generates

the reminder event (DATA_READY), which it posts to self. Event posting occurs
www.newnespress.com

218 Chapter 5
by calling the QActive_postFIFO() function provided in the QF real-time

framework.

(10) The reminder event causes a transition from “idle” to “busy.”

(11) The “busy” state overrides the TIMEOUT_SIG signal and after a few TIMEOUT

events transitions back to “idle.” The cycle then repeats.

5.2.5 Consequences

Although conceptually very simple, the Reminder state pattern has profound consequences.

It can address many more problems than illustrated in the example. You could use it as a

“Swiss Army knife” to fix almost any problem in the state machine topology.

For example, you also can apply the Reminder idiom to eliminate troublesome

completion transitions, which in the UML specification are transitions without an

explicit trigger (they are triggered implicitly by completion events, a.k.a. anonymous

events). The QEP event processor requires that all transitions have explicit

triggers; therefore, the QEP does not support completion transitions. However,

the Reminder pattern offers a workaround. You can invent an explicit trigger for

every transition and post it to self. This approach actually gives you much better control

over the behavior because you can explicitly specify the completion criteria.

Yet another important application of the Reminder pattern is to break up longer RTC

steps into shorter ones. As explained in more detail in Chapter 6, long RTC steps

exacerbate the responsiveness of a state machine and put more stress on event queues.

The Reminder pattern can help you break up CPU-intensive processing (e.g.,

iteration) by inventing a stimulus for continuation in the same way that you stick a

Post-It note to your computer monitor to remind you where you left off on some lengthy

task when someone interrupts you. You can also invent event parameters to convey

the context, which will allow the next step to pick up where the previous step left

off (e.g., the index of the next iteration). The advantage of fragmenting lengthy

processing in such a way is that other (perhaps more urgent) events can “sneak in,”

allowing the state machine to handle them in a more timely way.

You have essentially two alternatives when implementing event posting: the first-in,

first-out (FIFO) or the last-in, first-out (LIFO) policy, both of which are supported in

the QF real-time framework (see Chapter 6). The FIFO policy is appropriate for

breaking up longer RTC steps. You want to queue the Reminder event after other
www.newnespress.com

219State Patterns
events that have potentially accumulated while the state machine was busy, to give the

other events a chance to sneak in ahead of the Reminder. However, in other

circumstances, you might want to process an uninterruptible sequence of posted

events (such a sequence effectively forms an extended RTC step4). In this case, you

need the LIFO policy because a reminder posted with that policy is guaranteed to

be the next event to process and no other event can overtake it.
NOTE

You should always use the LIFO policy with great caution because it changes the order of

events. In particular, if multiple events are posted with the LIFO policy to an event queue

and no events are removed from the queue in the meantime, the order of these events in

the queue will get reversed.
5.3 Deferred Event

5.3.1 Intent

Simplify state machines by modifying the sequencing of events.
5.3.2 Problem

One of the biggest challenges in designing reactive systems is that such systems must be

prepared to handle every event at any time. However, sometimes an event arrives at

a particularly inconvenient moment when the system is in the midst of some complex

event sequence. In many cases, the nature of the event is such that it can be postponed

(within limits) until the system is finished with the current sequence, at which time

the event can be recalled and conveniently processed.

Consider, for example, the case of a server application that processes transactions

(e.g., from ATM5 terminals). Once a transaction starts, it typically goes through a

sequence of processing, which commences with receiving the data from a remote

terminal followed by the authorization of the transaction. Unfortunately, new

transaction requests to the server arrive at random times, so it is possible to get a
4 For example, state-based exception handling (see Section 6.7.4 in Chapter 6) typically requires immediate

handling of exceptional situations, so you don’t want other events to overtake the EXCEPTION event.
5 ATM stands for automated teller machine, a.k.a. cash machine.

www.newnespress.com

220 Chapter 5
request while the server is still busy processing the previous transaction. One

option is to ignore the request, but this might not be acceptable. Another option

is to start processing the new transaction immediately, which can complicate things

immensely because multiple outstanding transactions would need to be handled

simultaneously.

5.3.3 Solution

The solution is to defer the new request and handle it at a more convenient time, which

effectively leads to altering the sequence of events presented to the state machine.

UML statecharts support such a mechanism directly (see Section 2.3.11 in Chapter 2)

by allowing every state to specify a list of deferred events. As long as an event is on the

combined deferred list of the currently active state configuration, it is not presented

to the state machine but instead is queued for later processing. Upon a state transition,

events that are no longer deferred are automatically recalled and dispatched to the

state machine.

Figure 5.5 illustrates a solution based on this mechanism. The transaction server state

machine starts in the “idle” state. The NEW_REQUEST event causes a transition to a

substate of the “busy” state. The “busy” state defers the NEW_REQUEST event (note the

special “deferred” keyword in the internal transition compartment of the “busy”

state). Any NEW_REQUEST arriving when the server is still in one of the “busy”

substates gets automatically deferred. Upon the transition AUTHORIZED back to the

“idle” state, the NEW_REQUEST is automatically recalled. The request is then processed

in the “idle” state, just as any other event.
 deferred / NEW_REQUEST

busy

receiving

RECEIVED

idle authorizing

AUTHORIZED

NEW_REQUEST

deferred list

Figure 5.5: Event deferral using the built-in UML mechanism.

www.newnespress.com

NOTE

Hierarchical state nesting immensely complicates event deferral because the deferred lists in

all superstates of the current state contribute to the mechanism.

221State Patterns
The lightweight QEP event processor does not support the powerful, but heavyweight,

event deferral mechanism of the UML specification. However, you can achieve

identical functionality by deferring and recalling events explicitly. In fact, the QF

real-time framework supports event deferral by providing defer() and recall()

operations.
 NEW_REQUEST / defer();

busy

receiving

RECEIVEDentry / recall();

idle authorizing

AUTHORIZED

NEW_REQUEST

«state pattern»
Deferred Event explicit

deferral

explicit
recall

Figure 5.6: The Deferred Event state pattern.
Figure 5.6 shows how to integrate the explicit defer() and recall() operations into

a HSM to achieve the desired effect. The internal transition NEW_REQUEST in the

“busy” state traps any NEW_REQUEST received in any of the substates. This internal

transition calls the defer() operation to postpone the event. The “idle” state explicitly

recalls any deferred events by calling recall() in the entry action. The recall()

operation posts the first of the deferred events (if available) to self. The state machine

then processes the recalled event just as any other event.
NOTE

Even though the deferred event is in principle available directly from the recall() operation,

it is not processed in the entry action to “idle.” Rather, the recall() operation posts the

event to self (to the event queue of this state machine). The state machine then handles the
NEW_REQUEST event as any other event, that is, in the transition from “idle” to “receiving.”

www.newnespress.com

222 Chapter 5
5.3.4 Sample Code

The sample code for the Deferred Event state pattern is found in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\defer\. You can execute the

application by double-clicking the DEFER.EXE file in the dbg\ subdirectory.

Figure 5.7 shows the output generated by the DEFER.EXE application. The application

prints every state entry (to “idle,” “receiving,” and “authorizing”). Additionally, you

get notification of every NEW_REQUEST event and whether it has been deferred or

processed directly. You generate new requests by pressing the n key. Note that

request #7 is not deferred because the deferred event queue gets full. See the explanation

section following Listing 5.3 for an overview of options to handle this situation.
Top-most initial transition

All requests processed

New request #1

New requests #2 .. #4

New request #5

New request #6

New request #7 IGNORED

Recalling and processing
deferred requests

All requests processed

Figure 5.7: Annotated output generated by DEFER.EXE.

www.newnespress.com

Listing 5.3 The Deferred Event sample code (file defer.c)

(1) #include "qp_port.h"

#include "bsp.h"

/*...*/

enum TServerSignals {

NEW_REQUEST_SIG = Q_USER_SIG, /* the new request signal */
RECEIVED_SIG, /* the request has been received */

AUTHORIZED_SIG, /* the request has been authorized */

TERMINATE_SIG /* terminate the application */

};

/*..*/

(2) typedef struct RequestEvtTag {

QEvent super; /* derive from QEvent */

uint8_t ref_num; /* reference number of the request */

} RequestEvt;

/*..*/

(3) typedef struct TServerTag { /* Transaction Server active object */

(4) QActive super; /* derive from QActive */

(5) QEQueue requestQueue; /* native QF queue for deferred request events */

(6) QEvent const *requestQSto[3]; /* storage for the deferred queue buffer */

(7) QTimeEvt receivedEvt; /* private time event generator */

(8) QTimeEvt authorizedEvt; /* private time event generator */

} TServer;

void TServer_ctor(TServer *me); /* the default ctor */

/* hierarchical state machine ... */

QState TServer_initial (TServer *me, QEvent const *e);

QState TServer_idle (TServer *me, QEvent const *e);

QState TServer_busy (TServer *me, QEvent const *e);

QState TServer_receiving (TServer *me, QEvent const *e);

QState TServer_authorizing(TServer *me, QEvent const *e);

QState TServer_final (TServer *me, QEvent const *e);

/*..*/

void TServer_ctor(TServer *me) { /* the default ctor */

QActive_ctor(&me->super, (QStateHandler)&TServer_initial);

(9) QEQueue_init(&me->requestQueue,
me->requestQSto, Q_DIM(me->requestQSto));

QTimeEvt_ctor(&me->receivedEvt,RECEIVED_SIG);

QTimeEvt_ctor(&me->authorizedEvt, AUTHORIZED_SIG);

}

/*HSMdefinition---*/

QState TServer_initial(TServer *me, QEvent const *e) {

(void)e; /* avoid the compiler warning about unused parameter */

return Q_TRAN(&TServer_idle);

}

/*..*/

Continued onto next page

www.newnespress.com

223State Patterns

QState TServer_final(TServer *me, QEvent const *e) {

(void)me; /* avoid the compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("final-ENTRY;\nBye!Bye!\n");

BSP_exit(); /* terminate the application */

return Q_HANDLED();

}

}

return Q_SUPER(&QHsm_top);

}

/*..*/

QState TServer_idle(TServer *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

RequestEvt const *rq;

printf("idle-ENTRY;\n");

/* recall the request from the private requestQueue */

(10) rq = (RequestEvt const *)QActive_recall((QActive *)me,
&me->requestQueue);

if (rq != (RequestEvt *)0) { /* recall posted an event? */

(11) printf("Request #%d recalled\n", (int)rq->refNum);

}

else {

(12) printf("No deferred requests\n");

}

return Q_HANDLED();

}

case NEW_REQUEST_SIG: {

printf("Processing request #%d\n",

(int)((RequestEvt const *)e)->refNum);

return Q_TRAN(&TServer_receiving);

}

case TERMINATE_SIG: {

return Q_TRAN(&TServer_final);

}

}

return Q_SUPER(&QHsm_top);

}

/*..*/

QState TServer_busy(TServer *me, QEvent const *e) {

switch (e->sig) {

case NEW_REQUEST_SIG: {

(13) if (QEQueue_getNFree(&me->requestQueue) > 0) { /* can defer? */

/* defer the request */

(14) QActive_defer((QActive *)me, &me->requestQueue, e);
printf("Request #%d deferred;\n",

(int)((RequestEvt const *)e)->ref_num);

}

www.newnespress.com

224 Chapter 5

else {

/* notify the request sender that the request was ignored.. */
(15) printf("Request #%d IGNORED;\n",

(int)((RequestEvt const *)e)->ref_num);

}

return Q_HANDLED();

}

case TERMINATE_SIG: {

return Q_TRAN(&TServer_final);

}

}

return Q_SUPER(&QHsm_top);

}

/*...*/

QState TServer_receiving(TServer *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("receiving-ENTRY;\n");

/* one-shot timeout in 1 second */

QTimeEvt_fireIn(&me->receivedEvt, (QActive *)me,

BSP_TICKS_PER_SEC);

return Q_HANDLED();

}

case Q_EXIT_SIG: {

QTimeEvt_disarm(&me->receivedEvt);

return Q_HANDLED();

}

case RECEIVED_SIG: {

return Q_TRAN(&TServer_authorizing);

}

}

return Q_SUPER(&TServer_busy);

}

/*...*/

QState TServer_authorizing(TServer *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("authorizing-ENTRY;\n");

/* one-shot timeout in 2 seconds */

QTimeEvt_fireIn(&me->authorizedEvt, (QActive *)me,

2*BSP_TICKS_PER_SEC);

return Q_HANDLED();

}

case Q_EXIT_SIG: {

QTimeEvt_disarm(&me->authorizedEvt);

return Q_HANDLED();

}

case AUTHORIZED_SIG: {

return Q_TRAN(&TServer_idle);

}

Continued onto next page

www.newnespress.com

225State Patterns

}

return Q_SUPER(&TServer_busy);

}

226 Chapter 5
(1) The Deferred Event state pattern relies heavily on event queuing, which is not

supported by the raw QEP event processor. The sample code uses the whole

QP, which includes the QEP event processor and the QF real-time framework.

QF provides specific direct support for deferring and recalling events.

(2) The RequestEvt event has a parameter ref_num (reference number) that

uniquely identifies the request.

(3,4) The transaction server (TServer) state machine derives from the QF class

QActive that combines an HSM, an event queue, and a thread of execution.

The QActive class actually derives from QHsm, which means that TServer

also indirectly derives from QHsm.

(5) The QF real-time framework provides a “raw” thread-safe event queue class

QEQueue that is needed to implement event deferral. Here the TServer state

machine declares the private requestQueue event queue to store the deferred

request events. The QEQueue facility is discussed in Section 7.8.3 of Chapter 7.

(6) The QEQueue requires storage for the ring buffer, which the user must provide,

because only the application designer knows how to size this buffer. Note that

event queues in QF store just pointers to QEvent, not the whole event objects.

(7,8) The delays of receiving the whole transaction request (RECEIVED) and receiving

the authorization notification (AUTHORIZED) are modeled in this example with

the time events provided in QF.

(9) The private requestQueue event queue is initialized and given its buffer storage.

(10) Per the HSM design, the entry action to the “idle” state recalls the request

events. The function QActive_recall() returns the pointer to the recalled

event, or NULL if no event is currently deferred.
NOTE

Even though you can “peek” inside the recalled event, you should not process it at this point.

By the time QActive_recall() function returns, the event is already posted to the active

www.newnespress.com

227State Patterns
object’s event queue using the LIFO policy, which guarantees that the recalled event will be

the very next to process. (If other events were allowed to overtake the recalled event, the

state machine might transition to a state where the recalled event would no longer be con-

venient.) The state machine will then handle the event like any other request coming at the

convenient time. This is the central point of the Deferred Event design pattern.
(11,12) The recalled event is inspected only to notify the user but not to handle it.

(13) Before the “busy” superstate defers the request, it checks to see whether the

private event queue can accept a new deferred event.

(14) If so, the event is deferred by calling the QActive_defer() QF function.

(15) Otherwise, the request is ignored and the user is notified about this fact.
NOTE

Losing events like this is often unacceptable. In fact, the default policy of QF is to fail an

internal assertion whenever an event could be lost. In particular, the QActve_defer()

function would fire an internal assertion if the event queue could not accept the deferred

event. You can try this option by commenting out the if statement in Listing 5.3(13).
Figure 5.8 shows a variation of the Deferred Event state pattern, in which the state

machine has the “canonical” structure recommended by the Ultimate Hook pattern. The

“busy” state becomes the superstate of all states, including “idle.” The “idle” substate

overrides the NEW_REQUEST event. All other substates of “busy” rely on the default

event handling inside the “busy” superstate, which defers the NEW_REQUEST event. You
 NEW_REQUEST / defer();

busy

receiving

RECEIVEDentry / recall();

idle authorizing

AUTHORIZED

NEW_REQUEST

Figure 5.8: A variation of the Deferred Event state pattern.

www.newnespress.com

228 Chapter 5
can very easily try this option by reparenting the “idle” state. You simply change

“return Q_SUPER(&QHsm_top)” to “return Q_SUPER(&TServer_busy)” in the

TServer_idle() state-handler function.

Finally, I’d like to point out the true convenience of the QActive_defer() and

QActive_recall() functions. The main difficulty in implementing the event deferral

mechanism is actually not the explicit deferring and recalling but rather the memory

management for the event objects. Consider, for example, that each request event must

occupy some unique memory location, yet you don’t know how long the event will be

used. Some request events could be recycled just after the RTC step of the TServer

state machine, but some will be deferred and thus will be used much longer. Recall that

for memory efficiency and best performance the deferred event queue, as well as the

queues of active objects in QF, store only pointers to events, not the whole event

objects. How do you organize and manage memory for events?

This is where the QF real-time framework comes in. QF takes care of all the nitty-gritty

details of managing event memory and does it very efficiently with “zero-copy” policy

and in a thread-safemanner. As I will explain in Chapter 7, QF uses efficient event pools

combined with a standard reference-counting algorithm to know when to recycle events

back to the pools. The functions QActive_defer() and QActive_recall()

participate in the reference-counting process so that QF does not recycle deferred events

prematurely.

The whole event management mechanism is remarkably easy to use. You dynamically

allocate an event, fill in the event parameters, and post it. QF takes care of the rest.

In particular, you never explicitly recycle the event. Listing 5.4 shows how the request

events are generated in the sample code for the Deferred Event pattern.
Listing 5.4 Generation of new request events with the Q_NEW() macro
(file defer.c)

void BSP_onConsoleInput(uint8_t key) {
switch (key) {

case ‘n’: { /* new request */
static uint8_t reqCtr = 0; /*counttherequests*/

(1) RequestEvt *e = Q_NEW(RequestEvt, NEW_REQUEST_SIG);
(2) e->ref_num = (++reqCtr); /* set the reference number */

/* post directly to TServer active object */
(3) QActive_postFIFO((QActive *)&l_tserver, (QEvent *)e);

break;

www.newnespress.com

}
case 0x1B: { /* ESC key */

(4) static QEvent const terminateEvt = { TERMINATE_SIG, 0};
(5) QActive_postFIFO((QActive *)&l_tserver, &terminateEvt);

break;
}

}
}

229State Patterns
(1) When you press the n key, the QF macro Q_NEW() creates a new RequestEvt

event and assigns it the signal NEW_REQUEST_SIG. The new event is allocated

from an “event pool” that the application allocates at startup.

(2) You fill in the event parameters. Here the ref_num parameter is set from the

incremented static counter.

(3) You post the event to an active object, such as the local l_tserver object.

(4) Constant, never-changing events can be allocated statically. Such events should

have always the dynamic_ attribute set to zero (see Listing 4.2 and Section 4.3 in

Chapter 4).

(5) You post such static event just like any other event. The QF real-time framework

knows not to manage the static events.

5.3.5 Consequences

Event deferral is a valuable technique for simplifying state models. Instead of

constructing an unduly complex state machine to handle every event at any time, you

can defer an event when it comes at an inappropriate or awkward time. The event is

recalled when the state machine is better able to handle it. The Deferred Event state

pattern is a lightweight alternative to the powerful but heavyweight event deferral of

UML statecharts. The Deferred Event state pattern has the following consequences.

� It requires explicit deferring and recalling of the deferred events.

� The QF real-time framework provides generic defer() and recall()

operations.

� If a state machine defers more than one event type, it might use the same event

queue (QEQueue) or different event queues for each event type. The generic

QF defer() and recall() operations support both options.
www.newnespress.com

230 Chapter 5
� Events are deferred in a high-level state, often inside an internal transition in

this state.

� Events are recalled in the entry action to the state that can conveniently handle

the deferred event type.

� The event should not be processed at the time it is explicitly recalled. Rather,

the recall() operation posts it using the LIFO policy so that the state machine

cannot change state before processing the event.

� Recalling an event involves posting it to self; however, unlike the Reminder

pattern, deferred events are usually external rather than invented.
5.3.6 Known Uses

The Real-Time Object-Oriented Modeling (ROOM) method [Selicþ 94] supports a

variation of the Deferred Event pattern presented here. Just like the QF real-time

framework, the ROOM virtual machine (infrastructure for executing ROOM models)

provides the generic methods defer() and recall(), which clients need to call

explicitly. The ROOM virtual machine also takes care of event queuing. Operations

defer() and recall() in ROOM are specific to the interface component through

which an event was received.
5.4 Orthogonal Component

5.4.1 Intent

Use state machines as components.
5.4.2 Problem

Many objects consist of relatively independent parts that have state behavior. As an

example, consider a simple digital alarm clock. The device performs two largely

independent functions: a basic timekeeping function and an alarm function. Each of

these functions has its own modes of operation. For example, timekeeping can be in two

modes: 12-hour or 24-hour. Similarly, the alarm can be either on or off.

The standard way of modeling such behavior in UML statecharts is to place each of the

loosely related functions in a separate orthogonal region, as shown in Figure 5.9.
www.newnespress.com

231State Patterns
Orthogonal regions are a relatively expensive mechanism6 that the current

implementation of the QEP event processor does not support. In addition, orthogonal

regions aren’t often the desired solution because they offer little opportunity for reuse.

You cannot reuse the “alarm” orthogonal region easily outside the context of the

AlarmClock state machine.
24H

curr_time : uint32_t
alarm_time : uint32_t

AlarmClock
«class role»

TICK /
mode24h

TICK /
mode12h

12H

timekeeping alarm

TERMINATE

SET /
off

TICK /
on

OFF

ON

Figure 5.9: AlarmClock class and its UML state machine with orthogonal regions.
5.4.3 Solution

You can use object composition instead of orthogonal regions. As shown in Figure 5.10,

the alarm function very naturally maps to the Alarm class that has both data

(alarm_time) and behavior (the state machine). Indeed, Rumbaugh and colleagues

[Rumbaughþ 91] observe that this is a general rule. Concurrency virtually always arises

within objects by aggregation; that is, multiple states of the components can contribute

to a single state of the composite object.

The use of aggregation in conjunction with state machines raises three questions:

� How does the container state machine communicate with the component state

machines?

� How do the component state machines communicate with the container state

machine?

� What kind of concurrency model should be used?
6 Each orthogonal region requires a separate state variable (RAM) and some extra effort in dispatching

events (CPU cycles).

www.newnespress.com

ON / alarm.dispatch(e);
OFF / alarm.dispatch(e);
SET / alarm.dispatch(e);

timekeeping

12H

curr_time : uint32_t
alarm : Alarm

AlarmClock

TICK /
 display24H();
 alarm.dispatch(e);

mode24h
TICK /
 display12H();
 alarm.dispatch(e);

mode12h

24H

 / alarm.init();

«abstract»
QActive

alarm_time : uint32_t

Alarm

«abstract»
QFsm

alarm

«pattern»
Orthogonal
Component

Container Component

«abstract»
QHsm

TERMINATE

SET /
off

TIME(curr_time)
 [e->curr_time
 == me->alarm_time] /
 sound_alarm();

on

OFFON

Figure 5.10: The Orthogonal Component state pattern.

232 Chapter 5
The composite object interacts with its aggregate parts by synchronously dispatching

events to them (by invoking dispatch() on behalf of the components). GUI

systems, for instance, frequently use this model because it is how parent windows

communicate with their child windows (e.g., dialog controls). Although, in principle,

the container could invoke various functions of its components or access their data

directly, dispatching events to the components should be the preferred way of

communication. The components are state machines, and their behavior depends on

their internal state.

You can view the event-dispatching responsibility as a liability given that errors

will result if the container “forgets” to dispatch events in some states, but you can

also view it as an opportunity to improve performance. Explicit event dispatching also

offers more flexibility than the event dispatching of orthogonal regions because the

container can choose the events it wants to dispatch to its components and even change

the event type on the fly. I demonstrate this aspect, when the AlarmClock container
www.newnespress.com

233State Patterns
generates the TimeEvt on the fly before dispatching it to the Alarm components

(see Listing 5.8(9)).

To communicate in the opposite direction (from a component to the container), a

component needs to post events to the container. Note that a component cannot call

dispatch() on behalf of the container because this would violate RTC semantics.

As a rule, the container is always in the middle of its RTC step when a component

executes. Therefore, components need to asynchronously post (queue) events to

the container.

This way of communication corresponds to a concurrency model in which a container

shares its execution thread with the state machine components.7 The container

dispatches an event to a component by synchronously calling dispatch() state

machine operation on behalf of the component. Because this function executes in the

container’s thread, the container cannot proceed until dispatch() returns, that is, until

the component finishes its RTC step. In this way, the container and components can

safely share data without any concurrency hazards (data sharing is also another method

of communication among them). However, sharing the container’s data makes the

components dependent on the container and thus makes them less reusable.

As you can see on the right side of Figure 5.10, I decided to derive the Alarm

component from the simpler QFsm base class to demonstrate that you have a choice of

the base class for the components. You can decide to implement some components as

HSMs and others as FSMs. The QEP event processor supports both options.

By implementing half of the problem (the AlarmClock container) as a hierarchical

state machine and the other half as a classical “flat” FSM (the Alarm component),

I can contrast the hierarchical and nonhierarchical solutions to essentially identical

state machine topologies. Figure 5.10 illustrates the different approaches to

representing mode switches in the HSM and in the FSM. The hierarchical solution

demonstrates the “Device Mode” idiom [Douglass 99], in which the signals 12H and

24H trigger high-level transitions from the “timekeeping” superstate to the substates

“mode12h” and “mode24h,” respectively. The Alarm FSM is confined to only one

level and must use direct transitions ON and OFF between its two modes. Although it is

not clearly apparent with only two modes, the number of mode-switch transitions in

the hierarchical technique scales up proportionally to the number of modes, n.
7 Most commonly, all orthogonal regions in a UML statechart also share a common execution thread

[Douglass 99].

www.newnespress.com

234 Chapter 5
The nonhierarchical solution requires many more transitions—n� (n – 1), in general—

to interconnect all states. There is also a difference in behavior. In the hierarchical

solution, if a system is already in “mode12h,” for example, and the 12H signal arrives,

the system leaves this mode and re-enters it again. (Naturally, you could prevent that by

overriding the high-level 12H transition in the “mode12h” state.) In contrast, if the

flat state machine of the Alarm class is in the “off” state, for example, then nothing

happens when the OFF signal appears. This solution might or might not be what you

want, but the hierarchical solution (the Device Mode idiom) offers you both options

and scales much better with a growing number of modes.
5.4.4 Sample Code

The sample code for the Orthogonal Component state pattern is found in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\comp\. You can execute the

application by double-clicking the file COMP.EXE file in the dbg\ subdirectory.

Figure 5.11 shows the output generated by the COMP.EXE application. The application
Top-most initial transition in the Alarm component

Alarm turned on (‘o’)

Top-most initial transition in the AlarmClock container

Attempt to set alarm (‘1’)

Alarm turned off (‘f’)

Alarm set (‘1’)

Alarm set (‘0’)

Alarm turned on (‘o’)

Clock set to 12H-mode (‘a’)

Alarm notification from the Alarm component

Alarm notification from the AlarmClock component

Terminated (‘Esc’)

Figure 5.11: Annotated output generated by COMP.EXE.

www.newnespress.com

235State Patterns
prints the status of every mode change, both in the AlarmClock container and in the

Alarm component. Additionally, you get feedback about the currently set alarm time

and a notification when the alarm time is reached. The legend of the keystrokes at

the top of the screen describes how to generate events for the application. Also, note

that to make things happen a little faster, I made this alarm clock advance by one

accelerated minute per one real second.

The sample code demonstrates the typical code organization for the Orthogonal

Component state pattern, in which the component (Alarm) is implemented in a separate

module from the container (AlarmClock). The modules are coupled through shared

signals, events, and variables (Listing 5.5). In particular, the pointer to the container

active object APP_alarmClock is made available to all components so that they can

post events to the AlarmClock container.
Listing 5.5 Common signals and events (file clock.h)

#ifndef clock_h
#define clock_h

enum AlarmClockSignals {
TICK_SIG = Q_USER_SIG, /* time tick event */
ALARM_SET_SIG, /* set the alarm */
ALARM_ON_SIG, /* turn the alarm on */
ALARM_OFF_SIG, /* turn the alarm off */
ALARM_SIG, /*alarmeventfromAlarmcomponenttoAlarmClockcontainer*/
CLOCK_12H_SIG, /* set the clock in 12H mode */
CLOCK_24H_SIG, /* set the clock in 24H mode */
TERMINATE_SIG /* terminate the application */

};
/*...*/
typedef struct SetEvtTag {

QEvent super; /* derive from QEvent */
uint8_t digit;

} SetEvt;

typedef struct TimeEvtTag {
QEvent super; /* derive from QEvent */
uint32_t current_time;

} TimeEvt;

extern QActive *APP_alarmClock; /* AlarmClock container active object */

#endif /* clock_h */

www.newnespress.com

NOTE

Note that the APP_alarmClock pointer has the generic type QActive*. The components

only “know” the container as a generic active object; they don’t know its specific data struc-

ture or state-handler functions. This technique is called opaque pointer and is worth remem-

bering for reducing dependencies among modules.

236 Chapter 5
Listing 5.6 shows the declaration of the Alarm component (see Figure 5.10). Note that I

don’t actually need to expose the state-handler functions in the alarm.h header file.

Instead, I provide only the generic interface to the Alarm component as the macros

Alarm_init() and Alarm_dispatch() to let the container initialize and dispatch

events to the component, respectively. This approach insulates the container from the

choice of the base class for the component. If later on I decide to derive Alarm from

QHsm, for example, I need to change only the definitions of the Alarm_init()

and Alarm_dispatch() macros; I don’t need to change the container code at all.

Note that the macros are unnecessary in the C++ implementation because due to the

compatibility between the QHsm and QFsm interfaces, the container state-handler

functions always dispatch events to the Alarm component in the same way by calling

me->alarm.dispatch().
Listing 5.6 Alarm component declaration (file alarm.h)

#ifndef alarm_h
#define alarm_h

typedef struct AlarmTag { /* the FSM version of the Alarm component */
QFsm super; /* derive from QFsm */
uint32_t alarm_time;

} Alarm;

void Alarm_ctor(Alarm *me);
#define Alarm_init(me_) QFsm_init ((QFsm *)(me_), (QEvent *)0)
#define Alarm_dispatch(me_, e_) QFsm_dispatch((QFsm *)(me_), e_)

#endif /* alarm_h */
Listing 5.7 shows the implementation of the Alarm component state machine.
www.newnespress.com

Listing 5.7 Alarm state machine definition (file alarm.c)

(1) #include "alarm.h"
(2) #include "clock.h"

/* FSM state-handler functions */

(3) QState Alarm_initial(Alarm *me, QEvent const *e);

QState Alarm_off (Alarm *me, QEvent const *e);

QState Alarm_on (Alarm *me, QEvent const *e);

/*..*/

void Alarm_ctor(Alarm *me) {

(4) QFsm_ctor(&me->super, (QStateHandler)&Alarm_initial);

}

/* HSM definition ---*/

QState Alarm_initial(Alarm *me, QEvent const *e) {

(void)e; /* avoid compiler warning about unused parameter */

me->alarm_time = 12*60;

return Q_TRAN(&Alarm_off);

}

/*..*/

QState Alarm_off(Alarm *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

/* while in the off state, the alarm is kept in decimal format */

(5) me->alarm_time = (me->alarm_time/60)*100 + me->alarm_time%60;

printf("*** Alarm OFF %02ld:%02ld\n",

me->alarm_time/100, me->alarm_time%100);

return Q_HANDLED();

}

case Q_EXIT_SIG: {

/* upon exit, the alarm is converted to binary format */

(6) me->alarm_time = (me->alarm_time/100)*60 + me->alarm_time%100;

return Q_HANDLED();

}

case ALARM_ON_SIG: {

return Q_TRAN(&Alarm_on);

}

case ALARM_SET_SIG: {

/* while setting, the alarm is kept in decimal format */

uint32_t alarm = (10 * me->alarm_time

+((SetEvt const *)e)->digit) % 10000;

if ((alarm / 100 < 24) && (alarm % 100 < 60)) { /*alarm in range?*/

me->alarm_time = alarm;

}

else { /* alarm out of range -- start over */

me->alarm_time = 0;

}

printf("*** Alarm SET %02ld:%02ld\n",

Continued onto next page

www.newnespress.com

237State Patterns

me->alarm_time/100, me->alarm_time%100);

return Q_HANDLED();

}

}

return Q_IGNORED();

}

/*..*/

QState Alarm_on(Alarm *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("*** Alarm ON %02ld:%02ld\n",

me->alarm_time/60, me->alarm_time%60);

return Q_HANDLED();

}

case ALARM_SET_SIG: {

printf("*** Cannot set Alarm when it is ON\n");

return Q_HANDLED();

}

case ALARM_OFF_SIG: {

return Q_TRAN(&Alarm_off);

}

case TIME_SIG: {

(7) if (((TimeEvt *)e)->current_time == me->alarm_time) {

printf("ALARM!!!\n");

/* asynchronously post the event to the container AO */

(8) QActive_postFIFO(APP_alarmClock, Q_NEW(QEvent, ALARM_SIG));

}

return Q_HANDLED();

}

}

return Q_IGNORED();

}

238 Chapter 5
(1,2) The Alarm component needs both the alarm.h interface and the clock.h

container interface.

(3) The nonhierarchical state-handler functions have the same signature as the

hierarchical state handlers (see Section 3.6 in Chapter 3).

(4) The Alarm constructor must invoke the constructor of its base class.

(5) Upon the entry to the “off” state, the alarm time is converted to the decimal

format, in which 12:05 corresponds to decimal 1205.

(6) Upon the exit from the “off” state, the alarm time is converted back to the binary

format, in which 12:05 corresponds to 12 * 60 þ 5 = 725.
www.newnespress.com

NOTE

The guaranteed initialization and cleanup provided by the entry and exit actions ensure that

the time conversion will always happen, regardless of the way the state “off” is entered or

exited. In particular, the alarm time will be always represented in decimal format while in

the “off” state and in binary format outside the “off” state.

239State Patterns
(7) The Alarm component keeps receiving the TIME event from the AlarmClock

container. AlarmClock conveniently provides the current_time event

parameter, which the Alarm component can directly compare to its

me->alarm_time extended-state variable.

(8) When the Alarm component detects the alarm time, it notifies the container by

posting an event to it. Here I am using a global pointer APP_alarmClock to the

container active objects. An often used alternative is to store the pointer to the

container inside each component.
Listing 5.8 AlarmClock state machine definition (file comp.c)

#include "qp_port.h"

#include "bsp.h"

(1) #include "alarm.h"

(2) #include "clock.h"

/*...*/

typedef struct AlarmClockTag { /* the AlarmClock active object */

(3) QActive super; /* derive from QActive */

uint32_t current_time; /* the current time in seconds */

QTimeEvt timeEvt; /* time event generator (generates time ticks) */

(4) Alarm alarm; /* Alarm orthogonal component */
} AlarmClock;

void AlarmClock_ctor(AlarmClock *me); /* default ctor */

/* hierarchical state machine ... */

QState AlarmClock_initial (AlarmClock *me, QEvent const *e);

QState AlarmClock_timekeeping(AlarmClock *me, QEvent const *e);

QState AlarmClock_mode12hr (AlarmClock *me, QEvent const *e);

QState AlarmClock_mode24hr (AlarmClock *me, QEvent const *e);

QState AlarmClock_final (AlarmClock *me, QEvent const *e);

/*...*/

Continued onto next page

www.newnespress.com

void AlarmClock_ctor(AlarmClock *me) { /* default ctor */

QActive_ctor(&me->super, (QStateHandler)&AlarmClock_initial);

(5) Alarm_ctor(&me->alarm); /* orthogonal component ctor */
QTimeEvt_ctor(&me->timeEvt, TICK_SIG); /* private time event ctor */

}

/* HSM definition ---*/

QState AlarmClock_initial(AlarmClock *me, QEvent const *e) {

(void)e; /* avoid compiler warning about unused parameter */

me->current_time = 0;

(6) Alarm_init(&me->alarm); /* the initial transition in the component */
return Q_TRAN(&AlarmClock_timekeeping);

}

/*...*/

QState AlarmClock_final(AlarmClock *me, QEvent const *e) {

(void)me; /* avoid the compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("-> final\nBye!Bye!\n");

BSP_exit(); /* terminate the application */

return Q_HANDLED();

}

}

return Q_SUPER(&QHsm_top);

}

/*...*/

QState AlarmClock_timekeeping(AlarmClock *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

/* periodic timeout every second */

QTimeEvt_fireEvery(&me->timeEvt,

(QActive *)me, BSP_TICKS_PER_SEC);

return Q_HANDLED();

}

case Q_EXIT_SIG: {

QTimeEvt_disarm(&me->timeEvt);

return Q_HANDLED();

}

case Q_INIT_SIG: {

return Q_TRAN(&AlarmClock_mode24hr);

}

case CLOCK_12H_SIG: {

return Q_TRAN(&AlarmClock_mode12hr);

}

case CLOCK_24H_SIG: {

return Q_TRAN(&AlarmClock_mode24hr);

}

case ALARM_SIG: {

printf("Wake up!!!\n");

www.newnespress.com

240 Chapter 5

return Q_HANDLED();

}

case ALARM_SET_SIG:

case ALARM_ON_SIG:

case ALARM_OFF_SIG: {

/* synchronously dispatch to the orthogonal component */

(7) Alarm_dispatch(&me->alarm, e);
return Q_HANDLED();

}

case TERMINATE_SIG: {

return Q_TRAN(&AlarmClock_final);

}

}

return Q_SUPER(&QHsm_top);

}

/*...*/

QState AlarmClock_mode24hr(AlarmClock *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("*** 24-hour mode\n");

return Q_HANDLED();

}

case TICK_SIG: {

(8) TimeEvt pe; /* temporary synchronous event for the component */

if (++me->current_time == 24*60) { /* roll over in 24-hr mode? */

me->current_time = 0;

}

printf("%02ld:%02ld\n",

me->current_time/60, me->current_time%60);

(9) ((QEvent *)&pe)->sig = TICK_SIG;

(10) pe.current_time = me->current_time;

/* synchronously dispatch to the orthogonal component */

(11) Alarm_dispatch(&me->alarm, (QEvent *)&pe);
return Q_HANDLED();

}

}

return Q_SUPER(&AlarmClock_timekeeping);

}

/*...*/

QState AlarmClock_mode12hr(AlarmClock *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("*** 12-hour mode\n");

return Q_HANDLED();

}

case TICK_SIG: {

TimeEvt pe; /* temporary synchronous event for the component */

uint32_t h; /* temporary variable to hold hour */

Continued onto next page

www.newnespress.com

241State Patterns

if (++me->current_time == 12*60) { /* roll over in 12-hr mode? */

me->current_time = 0;

}

h = me->current_time/60;

printf("%02ld:%02ld %s\n", (h % 12) ? (h % 12) : 12,

me->current_time % 60, (h / 12) ? "PM" : "AM");

((QEvent *)&pe)->sig = TICK_SIG;

pe.current_time = me->current_time;

/* synchronously dispatch to the orthogonal component */

Alarm_dispatch(&me->alarm, (QEvent *)&pe);
return Q_HANDLED();

}

}

return Q_SUPER(&AlarmClock_timekeeping);

}

242 Chapter 5
(1,2) The AlarmClock container includes its own interface clock.h as well as all

interfaces to the component(s) it uses.

(3) The AlarmClock state machine derives from the QF class QActive that

combines an HSM, an event queue, and a thread of execution. The QActive

class actually derives from QHsm, which means that AlarmClock also indirectly

derives from QHsm.

(4) The container physically aggregates all the components.

(5) The container must explicitly instantiate the components (in C).

(6) The container is responsible for initializing the components in its topmost initial

transition.

(7) The container is responsible for dispatching the events of interest to the

components. In this line, the container simply dispatches the current event e.
NOTE

The container’s thread does not progress until the dispatch() function returns. In other

words, the component state machine executes its RTC step in the container’s thread. This

type of event processing is called synchronous.

w

(8) The temporary TimeEvt object to be synchronously dispatched to the

component can be allocated on the stack. Note that the ‘pe’ variable represents

the whole TimeEvt instance, not just a pointer.
ww.newnespress.com

243State Patterns
(9,10) The container synthesizes the TimeEvt object on the fly and provides the

current time.

(11) The temporary event is directly dispatched to the component.
5.4.5 Consequences

The Orthogonal Component state pattern has the following consequences.

� It partitions independent islands of behavior into separate state machine objects.

This separation is deeper than with orthogonal regions because the objects

have both distinct behavior and distinct data.

� Partitioning introduces a container–component (also known as parent–child or

master–slave) relationship. The container implements the primary functionality

and delegates other (secondary) features to the components. Both the container

and the components are state machines.

� The components are often reusable with different containers or even within the

same container (the container can instantiate more than one component of a

given type).

� The container shares its execution thread with the components.

� The container communicates with the components by directly dispatching

events to them. The components notify the container by posting events to it,

never through direct event dispatching.

� The components typically use the Reminder state pattern to notify the

container (i.e., the notification events are invented specifically for internal

communication and are not relevant externally). If there are more components

of a given type, the notification events must identify the originating

component (the component passes its ID number in a parameter of the

notification event).

� The container and components can share data. Typically, the data is a

data member of the container (to allow multiple instances of different

containers). The container typically grants friendship to the selected

components.
www.newnespress.com

244 Chapter 5
� The container is entirely responsible for its components. In particular, it must

explicitly trigger initial transitions in all components8 as well as explicitly

dispatch events to the components. Errors may arise if the container “forgets” to

dispatch events to some components in some of its states.

� The container has full control over the dispatching of events to the components.

It can choose not to dispatch events that are irrelevant to the components. It

can also change event types on the fly and provide some additional information

to the components.

� The container can dynamically start and stop components (e.g., in certain states

of the container state machine).

� The composition of state machines is not limited to just one level. Components

can have state machine subcomponents; that is, the components can be

containers for lower-level subcomponents. Such a recursion of components can

proceed arbitrarily deep.
5.4.6 Known Uses

The Orthogonal Component state pattern is popular in GUI systems. For example,

dialog boxes are the containers that aggregate components in the form of dialog controls

(buttons, check boxes, sliders, etc.). Both dialog boxes and dialog controls are event-

driven objects with state behavior (e.g., a button has “depressed” and “released” states).

GUIs also use the pattern recursively. For instance, a custom dialog box can be a

container for the standard File-Select or Color-Select dialog boxes, which in turn

contain buttons, check boxes, and so on.

The last example points to the main advantage of the Orthogonal Component state

pattern over orthogonal regions. Unlike an orthogonal region, you can reuse a reactive

component many times within one application and across many applications.
8 In C, the container also must explicitly instantiate all components by calling their

“constructors.”

www.newnespress.com

245State Patterns
5.5 Transition to History

5.5.1 Intent

Transition out of a composite state, but remember the most recent active substate so you

can return to that substate later.
5.5.2 Problem

State transitions defined in high-level composite states often deal with events that

require immediate attention; however, after handling them, the system should return to

the most recent substate of the given composite state.

For example, consider a simple toaster oven. Normally the oven operates with its

door closed. However, at any time, the user can open the door to check the food or to

clean the oven. Opening the door is an interruption; for safety reasons, it requires

shutting the heater off and lighting an internal lamp. However, after closing the door,

the toaster oven should resume whatever it was doing before the door was opened. Here

is the problem: What was the toaster doing just before the door was opened? The

state machine must remember the most recent state configuration that was active before

opening the door in order to restore it after the door is closed again.

UML statecharts address this situation with two kinds of history pseudostates: shallow

history and deep history (see Section 2.3.12 in Chapter 2). This toaster oven example

requires the deep history mechanism (denoted as the circled H* icon in Figure 5.12).

The QEP event processor does not support the history mechanism automatically for all

states because it would incur extra memory and performance overheads. However, it

is easy to add such support for selected states.
5.5.3 Solution

Figure 5.12 illustrates the solution, which is to store the most recently active

leaf substate of the “doorClosed” state in the dedicated data member

doorClosed_history . Subsequently, the

Transition to History of the “doorOpen” state (transition to the circled H*) uses the

attribute as the target of the transition.
www.newnespress.com

exit / doorClosed_history = getState();

doorClosed
«state pattern»

Transition to
History

store
history

transiton
to history

OPEN
entry / lampOn();
exit / lampOff();

doorOpenentry /
off

entry / heaterOn();
exit / heaterOff();

heating

entry /
baking

entry /
toasting

H*

TOASTBAKE

CLOSE

OFF

Figure 5.12: The Transition to History state pattern.

246 Chapter 5
5.5.4 Sample Code

The sample code for the Transition to History state pattern is found in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\history\. You can execute the

application by double-clicking the file HISTORY.EXE file in the dbg\ subdirectory.

Figure 5.13 shows the output generated by the HISTORY.EXE application. The

application prints the actions as they occur. The legend of the keystrokes at the top of

the screen describes how to generate events for the application. For example, you

open the door by typing o and close the door by typing c.
Top-most initial transition

Transition to “baking” (‘b’)

Open door (‘o’)

Close door (‘c’); transition to history

Close door (‘c’); transition to history

Close door (‘c’); transition to history

Figure 5.13: Annotated output generated by HISTORY.EXE.
Listing 5.9 shows the implementation of the Transition to History pattern.
www.newnespress.com

Listing 5.9 The Transition to History sample code (file history.c)

(1) #include "qep_port.h"

/*...*/

enum ToasterOvenSignals {

OPEN_SIG = Q_USER_SIG,

CLOSE_SIG,

TOAST_SIG,

BAKE_SIG,

OFF_SIG,

TERMINATE_SIG /* terminate the application */

};

/*...*/

typedef struct ToasterOvenTag {

QHsm super; /* derive from QHsm */

(2) QStateHandler doorClosed_history; /* history of the doorClosed state */
} ToasterOven;

void ToasterOven_ctor(ToasterOven *me); /* default ctor */

QState ToasterOven_initial (ToasterOven *me, QEvent const *e);

QState ToasterOven_doorOpen (ToasterOven *me, QEvent const *e);

QState ToasterOven_off (ToasterOven *me, QEvent const *e);

QState ToasterOven_heating (ToasterOven *me, QEvent const *e);

QState ToasterOven_toasting (ToasterOven *me, QEvent const *e);

QState ToasterOven_baking (ToasterOven *me, QEvent const *e);

QState ToasterOven_doorClosed(ToasterOven *me, QEvent const *e);

QState ToasterOven_final (ToasterOven *me, QEvent const *e);

/*...*/

void ToasterOven_ctor(ToasterOven *me) { /* default ctor */

QHsm_ctor(&me->super, (QStateHandler)&ToasterOven_initial);

}

/* HSM definition --*/

QState ToasterOven_initial(ToasterOven *me, QEvent const *e) {

(void)e; /* avoid compiler warning about unused parameter */

(3) me->doorClosed_history = (QStateHandler)&ToasterOven_off;
return Q_TRAN(&ToasterOven_doorClosed);

}

/*...*/

QState ToasterOven_final(ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("-> final\nBye!Bye!\n");

_exit(0);

return Q_HANDLED();

Continued onto next page

www.newnespress.com

247State Patterns

}

}

return Q_SUPER(&QHsm_top);

}

/*...*/

QState ToasterOven_doorClosed(ToasterOven *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("door-Closed;");

return Q_HANDLED();

}

case Q_INIT_SIG: {

return Q_TRAN(&ToasterOven_off);

}

case OPEN_SIG: {

return Q_TRAN(&ToasterOven_doorOpen);

}

case TOAST_SIG: {

return Q_TRAN(&ToasterOven_toasting);

}

case BAKE_SIG: {

return Q_TRAN(&ToasterOven_baking);

}

case OFF_SIG: {

return Q_TRAN(&ToasterOven_off);

}

case TERMINATE_SIG: {

return Q_TRAN(&ToasterOven_final);

}

}

return Q_SUPER(&QHsm_top);

}

/*...*/

QState ToasterOven_off(ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("toaster-Off;");

(4) me->doorClosed_history = (QStateHandler)&ToasterOven_off;
return Q_HANDLED();

}

}

return Q_SUPER(&ToasterOven_doorClosed);

}

/*...*/

QState ToasterOven_heating(ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("heater-On;");

www.newnespress.com

248 Chapter 5

return Q_HANDLED();

}

case Q_EXIT_SIG: {

printf("heater-Off;");

return Q_HANDLED();

}

}

return Q_SUPER(&ToasterOven_doorClosed);

}

/*...*/

QState ToasterOven_toasting(ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("toasting;");

(5) me->doorClosed_history = (QStateHandler)&ToasterOven_toasting;
return Q_HANDLED();

}

}

return Q_SUPER(&ToasterOven_heating);

}

/*...*/

QState ToasterOven_baking(ToasterOven *me, QEvent const *e) {

(void)me; /* avoid compiler warning about unused parameter */

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("baking;");

(6) me->doorClosed_history = (QStateHandler)&ToasterOven_baking;
return Q_HANDLED();

}

}

return Q_SUPER(&ToasterOven_heating);

}

/*...*/

QState ToasterOven_doorOpen(ToasterOven *me, QEvent const *e) {

switch (e->sig) {

case Q_ENTRY_SIG: {

printf("door-Open,lamp-On;");

return Q_HANDLED();

}

case Q_EXIT_SIG: {

printf("lamp-Off;");

return Q_HANDLED();

}

case CLOSE_SIG: {

(7) return Q_TRAN(me->doorClosed_history); /* transition to HISTORY */
}

}

return Q_SUPER(&QHsm_top);

}

www.newnespress.com

249State Patterns

250 Chapter 5
(1) Every QEP application needs to include qep_port.h (see Section 4.8 in

Chapter 4).

(2) The ToasterOven state machine declares the history of the “doorClosed” state

as a data member.

(3) The doorClosed_history variable is initialized in the topmost initial

transition according to the diagram in Figure 5.12.

(4-6) The entry actions to all leaf substates of the “doorClosed” state record the history

of entering those substates in the doorClosed_history variable. A leaf

substate is a substate that has no further substates (see Section 2.3.8 in Chapter 2).

(7) The transition to history is implemented with the standard macro Q_TRAN(),

where the target of the transition is the doorClosed_history variable.
5.5.5 Consequences

The transition to history state pattern has the following consequences:

� It requires that a separate QHsmState pointer to the state-handler function

(history variable) is provided for each composite state to store the history of this

state.

� The Transition to History pseudostate (both deep and shallow history) is coded

with the regular Q_TRAN() macro, where the target is specified as the history

variable.

� Implementing the deep history pseudostate (see Section 2.3.12 in Chapter 2)

requires explicitly setting the history variable in the entry action of each leaf

substate of the corresponding composite state.

� Implementing the shallow history pseudostate (see Section 2.3.12 in Chapter 2)

requires explicitly setting the history variable in each exit action from the

desired level. For example, shallow history of the “doorClosed” state

in Figure 5.12 requires setting doorClosed_history to

&ToasterOven_toasting in the exit action from “toasting” and likewise to

&ToasterOven_baking in the exit action from “baking,” and so on for all

direct substates of “doorClosed.”
www.newnespress.com

251State Patterns
� You can explicitly clear the history of any composite state by resetting the

corresponding history variable.
5.5.6 Known Uses

As a part of the UML specification, the history mechanism qualifies as a widely used

pattern. The ROOM method [Selicþ 94] describes a few examples of transitions to

history in real-time systems, whereas Horrocks [Horrocks 99] describes how to apply

the history mechanism in the design of GUIs.

5.6 Summary

As Gamma and colleagues [GoF 95] observe: “One thing expert designers know not to

do is solve every problem from first principles.” Collecting and documenting design

patterns is one of the best ways of capturing and disseminating expertise in any domain,

not just in software design.

State patterns are specific design patterns that are concerned with optimal (according to

some criteria) ways of structuring states, events, and transitions to build effective state

machines. This chapter described just five such patterns and a few useful idioms for

structuring state machines. The first two patterns, Ultimate Hook and Reminder, are at a

significantly lower level than the rest, but they are so fundamental and useful that they

belong in every state machine designer’s bag of tricks.

The other three patterns (Deferred Event, Orthogonal Component, and Transition to

History) are alternative, lightweight realizations of features supported natively in the

UML state machine package [OMG 07]. Each one of these state patterns offers

significant performance and memory savings compared to the full UML-compliant

realization.
www.newnespress.com

www.CartoonStock.com

PART II REAL-TIME FRAMEWORK

The concept of a modern hierarchical state machine introduced in Part I is to event-

driven programming as the invention of a wheel is to transportation. But just as wheels

are useless without the infrastructure of roads, state machines are useless without an

event-driven infrastructure that provides, at a minimum, a run-to-completion execution

context for each state machine, queuing of events, and event-based timing services.

In Part II of this book, I describe such a reusable infrastructure for executing

concurrent state machines in the form of a real-time framework called QF. QF is

tailored specifically for developing real-time embedded (RTE) applications and in many

respects resembles a real-time operating system (RTOS). Part II begins with Chapter 6,

which introduces the real-time framework concepts. Chapter 7 describes the QF

structure and implementation. Chapter 8 is devoted to porting and configuring QF,

providing examples of using QF in a bare-metal system, with a traditional RTOS, and

with a conventional OS (Linux). Chapter 9 describes how to develop QP applications
www.newnespress.com

254 Part II
that utilize both the QF framework and the QEP event processor described in Part I of

this book. Chapter 10 presents a tiny preemptive, run-to-completion, real-time kernel

called QK that beautifully complements QF. Chapter 11 describes a testing and

debugging strategy based on software-tracing instrumentation built into all QP

components. Chapter 12 concludes the book by presenting an ultralight version of the

framework and the hierarchical event processor called QP-nano.
www.newnespress.com

1 Published estimates claim that anywhere from 60 to 90 percent of an applicatio

“housekeeping” code that can be reused if properly structured [Douglass 99].

www.new
CHAP T E R 6
Real-Time Framework Concepts
“Don’t call us, we’ll call you” (Hollywood Principle)
—Richard E. Sweet, The Mesa Programming Environment, 1985

When you start combining multiple UML state machines into systems, you’ll quickly

learn that the problem is not so much in coding the state machines—Part I of this

book showed that this is actually a nonissue. The next main challenge is to generate

events, queue the events, and write all the code around state machines to make

them execute and communicate with one another in a timely fashion and without

creating concurrency hazards.

Obviously, you can develop all this “housekeeping”1 code from scratch for each

event-driven system at hand. But you could also reuse an event queue, an event

dispatcher, or a time event generator across many projects. Ultimately, however, you

can do much better than merely reusing specific elements as building blocks—you can

achieve even greater leverage by reusing the whole infrastructure surrounding state

machines. Such a reusable infrastructure is called a framework.

In this chapter I introduce the concepts associated with event-driven, real-time

application frameworks. Most of the discussion is general and applicable to a wide

range of event-driven frameworks. However, at times when I need to give more specific

examples, I refer to the QF real-time framework, which is part of the QP platform

and has been specifically designed for real-time embedded (RTE) systems. I begin with

explaining why most event-driven infrastructures naturally take the form of a
n is common

nespress.com

256 Chapter 6
framework rather than a toolkit. Next, I present an overview of various CPU

management policies and their relationship to the real-time framework design. In

particular, I describe the modern active object computing model. Next, I discuss event

management, memory management, and time management policies. I conclude with

error- and exception-handling policies for a real-time framework.
6.1 Inversion of Control

Event-driven systems require a distinctly different way of thinking than traditional

sequential programs. When a sequential program needs some incoming event, it waits

in-line until the event arrives. The program remains in control all the time and

because of this, while waiting for one kind of event, the sequential program cannot

respond (at least for the time being) to other events.

In contrast, most event-driven applications are structured according to the Hollywood

principle, which essentially means “Don’t call us, we’ll call you.” So, an event-driven

application is not in control while waiting for an event; in fact, it’s not even active. Only once

the event arrives, the event-driven application is called to process the event and then it quickly

relinquishes the control again. This arrangement allows an event-driven program to wait

for many events in parallel, so the system remains responsive to all events it needs to handle.

This scheme implies that in an event-driven system the control resides within the

event-driven infrastructure, rather than in the application code. In other words, the

control is inverted compared to a traditional sequential program. Indeed, as Ralph

Johnson and Brian Foote observe [Johnson+ 88], this inversion of control gives the

event-driven infrastructure all the defining characteristics of a framework.
“One important characteristic of a framework is that the methods defined by the user to tailor the

framework will often be called from within the framework itself, rather than from the user’s appli-

cation code. The framework often plays the role of the main program in coordinating and sequenc-

ing application activity. This inversion of control gives frameworks the power to serve as

extensible skeletons. The methods supplied by the user tailor the generic algorithms defined in

the framework for a particular application.”

—Ralph Johnson and Brian Foote
Inversion of control is key part of what makes a framework different from a toolkit.

A toolkit, such as a traditional real-time operating system (RTOS), is essentially a

set of predefined functions that you can call. When you use a toolkit, you write the main
www.newnespress.com

257Real-Time Framework Concepts
body of the application and call the various functions from the toolkit. When you use a

framework, you reuse the main body and provide the application code that it calls, so

the control resides in the framework rather than in your code.

Inversion of control is a common phenomenon in virtually all event-driven architectures

because it recognizes the plain fact that the events are controlling the application,

not the other way around. That’s why most event-driven infrastructures naturally take

the form of a framework rather than a toolkit.
6.2 CPU Management

An event-driven framework can work with a number of execution models, that is,

particular policies of managing the central processor unit (CPU). In this section, I

briefly examine the basic traditional CPU management policies and point out how they

relate to the real-time framework design.
6.2.1 Traditional Sequential Systems

A traditional sequential program controls the CPU at all times.2 Functions called

directly or indirectly from the main program issue requests for external input and then

wait for it; when input arrives, control resumes within the function that made the

call. The location of the program counter, the tree of function calls on the stack, and

local stack variables define the program state at any given time.

In the embedded space, the traditional sequential system corresponds to the background

loop in the simple foreground/background architecture (a.k.a. super-loop or main

+ISRs). As the name suggests, the foreground/background architecture consists of two

main parts: the interrupt service routines (ISRs) that handle external interrupts in a

timely fashion (foreground) and an infinite main loop that calls various functions

(background). Figure 6.1 shows a typical flow of control within a background loop.

This particular example depicts the control flow in the Quickstart application described

in Section 1.9 in Chapter 1. The dashed boxes represent function calls. The heavy lines

indicate the most frequently executed paths through the code.
2 Except when the CPU processes asynchronous interrupts, but the interrupts always return control to the

point of preemption.

www.newnespress.com

Busy-wait
for screen
update event
(polling)

MainScreen();
function call

PlayGame();
function call

Busy-wait
for screen
update event
(polling)

ScreenSaver();
function call

background loop called from main()

Busy-wait
for screen
update event
(polling)

Figure 6.1: Flow of control in a typical background loop. The heavy lines indicate
the most frequently executed paths through the code.

258 Chapter 6
The major advantage of the traditional sequential control is that it closely matches the

way the conventional procedural languages work. C and C++, for example, are

exactly designed to represent the flow of control in the rich set of control statements,

function call tree, and local stack variables. The main disadvantage is that a sequential

system is unresponsive while waiting, which is actually most of the time. Asynchronous

events cannot be easily handled within the background loop because the loop must

explicitly poll for inputs. Flexible control systems, communication software, or user

interfaces are hard to build using this style [Rumbaugh+ 91].

Due to the explicit polling for events scattered throughout the background code, the

traditional sequential architecture is not compatible with the event-driven paradigm.

However, it can be adapted to implement a single event-loop, as described in
www.newnespress.com

259Real-Time Framework Concepts
Section 6.2.3. The simple sequential control flow is also an important stepping stone for

understanding other, more advanced CPU management policies.
6.2.2 Traditional Multitasking Systems

Multitasking is the process of scheduling and switching the CPU among several

sequential programs called tasks or threads. Multitasking is like foreground/background

with multiple backgrounds [Labrosse 02]. Tasks share the same address space3 and,

just like the backgrounds, are typically structured as endless loops. In a multitasking

system, control resides concurrently in all the tasks comprising the application.

A specific software component of a multitasking system, called the kernel, is

responsible for managing the tasks in such a way as to create an illusion that each task

has a dedicated CPU all to itself, even though the computer has typically only one

CPU. The kernel achieves this by frequently switching the CPU from one task to the

next in the process called context switching. As shown in Figure 6.2, each task is

assigned its own stack area in memory and its own data structure, called a task control

block (TCB). Context switching consists of saving the CPU registers into the current

task’s stack and restoring the registers from the next task’s stack. Some additional
. . .

Memory

CPU registers

Task Control Blocks
(TCBs)

per-task stacks
stack stack stack

TCB

. . .
sp

sr

. . .
sp

pc

TCB

. . .
sp

TCB

. . .
sp

 context restore
 context save

program counter

stack pointer
status register

Figure 6.2: Multiple tasks with per-task stacks and task control blocks (TCBs).

3 By sharing a common address space, tasks (threads) are much lighter than heavyweight processes, which

execute in separate address spaces and contain one or more lightweight threads.

www.newnespress.com

260 Chapter 6
bookkeeping information is also updated in the TCBs. Context switches are generally

transparent to the tasks and are activated from asynchronous interrupts (in case of a

preemptive kernel) as well as synchronously from explicit calls to the kernel.

The multitasking kernel works hard behind the scenes to preserve the same state for

each task as the state maintained automatically by a simple sequential program. As you

can see in Figure 6.2, for each task the context-switching mechanism preserves the

CPU registers, including the program counter as well as the whole private stack with the

tree of nested function calls and local stack variables.

A big advantage of multitasking is better CPU utilization because when some tasks are

waiting for events, other tasks can continue execution, so fewer CPU cycles are

wasted on polling for events. The kernel enables the efficient waiting for events by

providing special mechanisms for blocking tasks, such as semaphores, event flags,

message mailboxes, message queues, timed blocking, and many others. A blocked task

is simply switched away to memory and does not consume any CPU cycles.

Multiple tasks can wait on multiple events in parallel, so a multitasking system as a

whole appears to be more responsive than a single background loop. The responsiveness

of the system depends on how a kernel determines which task to run next.

Understanding of these mechanisms is important for any real-time system, including a

real-time framework.

Most kernels allow assigning static priorities to tasks according to their urgency.

Figure 6.3 shows execution profiles of the two most popular priority-based kernel types.

Panel (A) shows a nonpreemptive kernel that gets control only through explicit calls

from the tasks to the kernel. Panel (B) shows a preemptive kernel that additionally gets

control upon exit from every ISR. The following explanation section illuminates the

interesting points (see also [Labrosse 02]).

(1a) A low-priority task under a nonpreemptive kernel is executing. Interrupts are

enabled. A higher-priority task is blocked waiting for an event.

(2a) An interrupt occurs and the hardware suspends the current task and jumps to the

ISR.

(3a) ISR executes and, among other things, makes the high-priority task ready to run.

(4a) The interrupt returns by executing a special interrupt-return instruction, which

resumes the originally preempted task (the low-priority task) at the machine

instruction following the interrupted instruction.
www.newnespress.com

A

low-priority task
 time

pr
io

rit
y

high-priority task

low-priority task

interrupt
entry

blocking call
or explicit yield

interrupt
return

K

kernel

B

low-priority task
 time

high-priority task

low-priority task

interrupt
entry

context switch

interrupt return

K

kernel

(2a)

(3a)

(4a)

(1a) (5a) (6a)

(1b)

(2b)

(3b) (4b)
ISR

(5b)

(6b)

(7b)

ISR produces
event for high-
priority task

pr
io

rit
y

ISR produces
event for high-
priority task

ISR

K

preempted

Figure 6.3: Execution profiles of a nonpreemptive kernel (A)
and a preemptive kernel (B).

261Real-Time Framework Concepts
(5a) The low-priority task executes until it makes an explicit blocking call to the

kernel or an explicit yield, just to give the kernel a chance to run.

(6a) The kernel runs and determines that the high-priority task is ready to run, so

it performs a context switch to that task. The time delay between making the

high-priority task ready to run in step (2a) and actually starting the task is called

the task-level response.

The task-level response of a nonpreemptive kernel is nondeterministic because it

depends on when other tasks voluntarily call the kernel. In other words, tasks must

collaborate to share the CPU. Therefore, this form of multitasking is called cooperative

multitasking. The upside is a much easier sharing of resources among the tasks. The

kernel has an opportunity to perform a context switch only in explicitly known calls to

the kernel, so tasks can safely access shared resources between any two kernel calls.

In contrast, the execution profile of a preemptive kernel is as follows:

(1b) A low-priority task under a preemptive kernel is executing. Interrupts are

enabled. A higher-priority task is blocked waiting for an event.
www.newnespress.com

262 Chapter 6
(2b) An interrupt occurs and the hardware suspends the current task and jumps to

the ISR. Suspending a task typically involves saving at least part of the CPU

register file to the current task’s stack.

(3b) ISR executes and unblocks the high-priority task.

(4b) Before the interrupt returns, the preemptive kernel is called to determine

which task to return to. The kernel finds out that the high-priority task is ready to

run. Therefore, the kernel first completes the context save for the current task

(the low-priority task) and then performs a context switch to the high-priority

task. The tricky part of this process is to arrange the new stack frame and the

CPU registers so that they look exactly as though the high-priority task was the

one preempted by the interrupt.

(5b) The kernel executes the special interrupt-return instruction. Because of the

careful preparations made in the previous step, the interrupt returns to the

high-priority task. The low-priority task remains preempted.

(6b) The high-priority task executes until it blocks via a call to the kernel.

(7b) The kernel determines that the low-priority task is still preempted and needs to

run. The tricky part of resuming the low-priority task is to fake an interrupt

stack frame and an interrupt CPU context to resume the low-priority task that

has been preempted by an interrupt, even though the kernel is invoked via a

regular function call.
NOTE

A preemptive kernel must actually make every context switch look like an interrupt return,

even though some context switches occur from regular function calls to the kernel and don’t

involve asynchronous interrupts.
A preemptive kernel can guarantee a deterministic task-level response of the highest-

priority tasks because the lower-priority tasks can always be preempted4 and so it

does not matter that they even exist. But this determinism comes at a huge price of

increased complexity in sharing resources. A preemptive kernel can perform a context
4 Using some kernel blocking mechanisms can lead to the situation in which a ready-to-run higher-priority

task cannot preempt a lower-priority task. This condition is called priority inversion.

www.newnespress.com

263Real-Time Framework Concepts
switch at any point of the task’s code as long as the scheduler is not locked and

interrupts are enabled. Any unexpected context switch might lead to corruption of

shared memory or other shared resources, and kernels provide a special mechanism

(such as mutexes or monitors) to guarantee a mutually exclusive access to shared

resources. Unfortunately, programmers typically vastly underestimate the risks and

skills needed to use these mechanisms safely and therefore underestimate the true costs

of their use.

In summary, perhaps the most important benefit of multitasking is partitioning of the

original problem into smaller, more manageable pieces (the tasks). In this respect,

multitasking is a very powerful divide-and-conquer strategy. Multitasking kernels carefully

preserve the private stack contents of each task so that tasks are as close as possible to simple

sequential programs and thus map well to the traditional languages like C or C++.

Ultimately, however, when it comes to handling events, tasks have the same

fundamental limitations as the simple sequential programs. A blocked task waiting for

an event is unresponsive to all other events. Also, the whole intervening code around a

blocking call is typically designed to handle only the one event that it explicitly

waits for. To get a picture of what a task control flow might look like, you can simply

replace the heavy polling loops in Figure 6.1 with blocking calls. Adding new events

to such code is hard and typically requires deep changes to the whole task structure.

Due to the explicit blocking calls scattered throughout the task code, which the kernel

encourages by providing a rich assortment of blocking mechanisms, the traditional

multitasking architecture is not compatible with the event-driven paradigm. However, it

can be adapted (actually simplified) for executing concurrent active objects, as I describe in

the upcoming Section 6.3. Especially valuable in this respect is the thread-safe intertask

communication mechanism based on message queues that most kernels or RTOSs provide.

Message queues can typically be easily customized for sending events to active objects.
6.2.3 Traditional Event-Driven Systems

A traditional event-driven system is clearly divided into the event-driven infrastructure

and the application (see Figure 6.4). The event-driven infrastructure consists of an

event loop, an event dispatcher, and an event queue. The application consists of

event-handler functions that all share common data.

All events in the system originating from asynchronous interrupts or from the

event-handler functions are always inserted first into the event queue. The control
www.newnespress.com

event dispatcher

. . .

event queue
(FIFO)

event_handlerN();

event_handler2();

event_handler1();

. . .

ISR1()

ISR2()

queue
empty

event dispatching
based on event type

application
code

event loop

idle
processing

event

Figure 6.4: Traditional event-driven system with event loop
and a single event queue.

264 Chapter 6
resides within the event dispatcher that polls the event queue in the infinite event loop.

For every event extracted from the queue the dispatcher calls the event-handler function

associated with this event type. All event-handler functions contain essentially linear

code that returns to the main event loop as quickly as possible. In particular, the

event-handler functions don’t poll for events and don’t access the event queue. All the

polling and event queuing is centralized and encapsulated within the dispatcher.

To keep the system responsive, the dispatcher must be able to check for events

continuously and frequently. This implies that the event-handler functions must execute

quickly. An errant event-handler function can halt the entire application, so care must

be taken to avoid any “blocking” code or simply long-running code. The application

cannot preserve its state using the program counter and stack because the stack contents

disappear when the event-handler functions return control to the event loop. The

application must rely on static variables to maintain state.

The event-loop architecture automatically guarantees that every event-handler function

runs to completion, because the dispatcher can dispatch a new event only after the last

event-handler function returns to the event loop. The need for an event queue is the direct

consequence of the run-to-completion event processing. Queuing prevents losing events that

arrive while the event-handler functions are running to completion and the dispatcher is

unable to accept new events. The event queue is an essential part of the design.
www.newnespress.com

265Real-Time Framework Concepts
The traditional event-driven architecture is immensely popular in event-driven

graphical user interface (GUI) frameworks such as MFC, OWL, Delphi, Tcl/Tk,

X-Windows, SunView, or, more recently, Java/AWT/Swing, ActionScript, Qt, .NET,

and many, many others. The countless variations of the technique have mostly to

do with the creative ways of associating events with event-handler functions, but all of

them are ultimately based on the prevalent event-action paradigm, in which event

types are mapped to the code that is supposed to be executed in response.

However, as explained in Chapter 2, the system response to an event depends as much on

the event type as on the application context (state) in which the event arrives. The prevalent

event-action paradigm recognizes only the dependency on the event type and leaves the

handling of the context to largely ad hoc techniques. State machines provide very strong

support for handling the context (state), but unfortunately, the event-action paradigm is

incompatible with state machines because a single event-handler function contains pieces

of many states. (That’s exactly why event-handler functions become convoluted and

brittle as they grow and evolve.) The complementary relation between the event-action

paradigm and state machines is best visible in the state-table representation of a state

machine (see Table 3.1 in Chapter 3), in which an event-handler function corresponds to

the vertical cut through all the states in the state table along a given event column.

To summarize, the traditional event-driven architecture permits more flexible patterns

of control than any sequential system [Rumbaugh+ 91]. Also, compared to any

traditional sequential technique, an event-driven scheme uses the CPU more efficiently

and tends to consume less stack space, which are all very desirable characteristics for

embedded systems. However, the traditional event-driven architecture is not quite

suitable for real-time frameworks. The remaining problems are at least threefold:

1. Responsiveness. The single event queue does not permit any reasonable

prioritization of work. Every event, regardless of priority, must wait for

processing until all events that precede it in the queue are handled.

2. No support for managing the context of the application. The prevalent event-

action paradigm neglects the application context in responding to events, so

application programmers improvise and end up creating “spaghetti” code.

Unfortunately, the event-action paradigm is incompatible with state machines.

3. Global data. In the traditional event architecture all event-handler functions

access the same global data. This hinders partitioning of the problem and can

create concurrency hazards for any form of multitasking.
www.newnespress.com

266 Chapter 6
6.3 Active Object Computing Model

The active object computing model addresses most problems of the traditional event-

driven architecture, retaining its good characteristics. As described in the sidebar “From

Actors to Active Objects,” the term active object comes from the UML and denotes

“an object having its own thread of control” [OMG 07]. The essential idea of this model

is to use multiple event-driven systems in a multitasking environment.
FROM ACTORS TO ACTIVE OBJECTS

The concept of autonomous software objects communicating by message passing dates back

to the late 1970s, when Carl Hewitt and colleagues [Hewitt 73] developed a notion of an

actor. In the 1980s, actors were all the rage within the distributed artificial intelligence com-

munity, much as agents are today. In the 1990s, methodologies like ROOM [Selic+ 94]

adapted actors for real-time computing. More recently, the UML specification has introduced

the concept of an active object that is essentially synonymous with the notion of a ROOM

actor [OMG 07].

In the UML specification, an active object is “an object having its own thread of control”

[OMG 07] that processes events in a run-to-completion fashion and that communicates with

other active objects by asynchronously exchanging events. The UML specification further

proposes the UML variant of state machines with which to model the behavior of event-

driven active objects.

Active objects are most commonly implemented with real-time frameworks. Such frame-

works have been in extensive use for many years and have proven themselves in a very wide

range of real-time embedded (RTE) applications. Today, virtually every design automation

tool that supports code synthesis for RTE systems incorporates a variant of a real-time frame-

work. For instance, Real-time Object-Oriented Modeling (ROOM) calls its framework the

“ROOM virtual machine” [Selic+ 94]. The VisualSTATE tool from IAR Systems calls it a

“VisualSTATE engine” [IAR 00]. The UML-compliant design automation tool Rhapsody

from Telelogic calls it “Object Execution Framework (OXF)” [Douglass 99].
Figure 6.5 shows a minimal active object system. The application consists of multiple

active objects, each encapsulating a thread of control (event loop), a private event

queue, and a state machine.

Active object ¼ ðthread of control þ event queue þ state machineÞ:

The active object’s event loop, shown in Figure 6.5(B), is a simplified version of the

event loop from Figure 6.4. The simplified loop gets rid of the dispatcher and directly
www.newnespress.com

267Real-Time Framework Concepts
extracts events from the event queue, which efficiently blocks the loop as long as the

queue is empty. For every event obtained from the queue, the event loop calls the

dispatch() function associated with the active object. The dispatch() function

performs both the dispatching and processing of the event, similarly to the

event-handler functions in the traditional event-driven architecture.
ISR1 ISR2

. . .

events

event
queue

e = queue.get();

dispatch(e);

active object’s
event loop

init();

A B

internal
state
machine

active
object

blocking
operation

Figure 6.5: Active-object system (A) and active object’s event loop (B).
6.3.1 System Structure

The event queues, event loops, and the event processor for state machines are all

generic and as such are part of a generic real-time framework. The application

consists of the specific state machine implementations, which the framework invokes

indirectly through the dispatch()5 state machine operation.

Figure 6.6 shows the relationship between the application, the real-time framework, and

the real-time kernel or RTOS. I use the QF real-time framework as an example, but

the general structure is typical for any other framework of this type. The design is

layered, with an RTOS at the bottom providing the foundation for multitasking and

basic services like message queues and deterministic memory partitions for storing
5 The dispatch() operation is understood here generically and denotes any state machine

implementation method, such as any of the techniques described in Chapters 3 or 4.

www.newnespress.com

RTOS

«framework»
QF

Application

RTOS-API

«active»
ActiveA

«active»
ActiveB

EventA EventB

«abstract»
QHsm

«abstract»
QActive

QEvent QTimeEvt

Thread MessageQueue MemoryPartition

Framework
API

Figure 6.6: Package diagram illustrating the relationship among the real-time
framework, the kernel/RTOS, and the application.

268 Chapter 6
events. Based on these services, the QF real-time framework supplies the QActive

class for derivation of active objects. The QActive class in turn derives from the QHsm

base class, which means that active objects are state machines and inherit the

dispatch() operation defined in the QHsm base class (see Chapter 4). Additionally,

QActive contains a thread of execution and an event queue, typically based on the

message queue of the underlying RTOS. An application extends the real-time

framework by deriving active objects from the QActive base class and deriving events

with parameters from the QEvent class.
NOTE

Most frameworks rely heavily on the object-oriented concepts of classes and inheritance as

the key technique for extending and customizing the framework. If you program in C and

the concepts are new to you, refer to the sidebar “Single Inheritance in C” in Chapter 1. In

Chapter 7 you’ll see that the QF real-time framework and the applications derived from it

can be quite naturally implemented in standard, portable C.
The application uses the QF communication and timing services through the framework

API (indicated by the ball-and-socket UML notation); however, the application

typically should not need to directly access the RTOS API. Thus, a real-time framework

can serve as an RTOS abstraction layer. The framework effectively insulates
www.newnespress.com

269Real-Time Framework Concepts
applications from the underlying RTOS. Changing the RTOS on which the framework

is built requires porting the framework but does not affect applications. I’ll

demonstrate this aspect in Chapter 8, where I discuss porting QF.

6.3.2 Asynchronous Communication

As shown in Figure 6.5(A), active objects receive events exclusively through their event

queues. All events are delivered asynchronously, meaning that an event producer

merely posts an event to the event queue of the recipient active object but doesn’t wait

in line for the actual processing of the event.

The system makes no distinction between external events generated from interrupts and

internal events originating from active objects. As shown in Figure 6.5(A), an active

object can post events to any other active object, including to self. All events are treated

uniformly, regardless of their origin.

6.3.3 Run-to-Completion

Each active object processes events in run-to-completion (RTC) fashion, which is

guaranteed by the structure of the active object’s event loop. As shown in Figure 6.5(B),

the dispatch() operation must necessarily complete and return to the event loop

before the next event from the queue can be extracted. RTC event processing is the

essential requirement for proper execution of state machines.

In the case of active objects, where each object has its own thread of execution, it is

very important to clearly distinguish the notion of RTC from the concept of thread

preemption [OMG 07]. In particular, RTC does not mean that the active object thread

has to monopolize the CPU until the RTC step is complete. Under a preemptive

multitasking kernel, an RTC step can be preempted by another thread executing on the

same CPU. This is determined by the scheduling policy of the underlying multitasking

kernel, not by the active object computing model. When the suspended thread is

assigned CPU time again, it resumes its event processing from the point of preemption

and, eventually, completes its event processing. As long as the preempting and the

preempted threads don’t share any resources, there are no concurrency hazards.

6.3.4 Encapsulation

Perhaps the most important characteristic of active objects, from which active objects

actually derive their name, is their strict encapsulation. Encapsulation means that
www.newnespress.com

270 Chapter 6
active objects don’t share data or any other resources. Figure 6.5(A) illustrates this aspect by

a thick, opaque encapsulation shell around each active object and by showing the internal

state machines in gray, since they are really not supposed to be visible from the outside.

As described in the previous section, no sharing of any resources (encapsulation) allows

active objects to freely preempt each other without the risk of corrupting memory or

other resources. The only allowed means of communication with the external world and

among active objects is asynchronous event exchange. The event exchange and queuing

are controlled entirely by the real-time framework, perhaps with the help of the

underlying multitasking kernel, and are guaranteed to be thread-safe.

Even though encapsulation has been traditionally associated with object-oriented

programming (OOP), it actually predates OOP and does not require object-oriented

languages or any fancy tools. Encapsulation is not an abstract, theoretical concept but simply

a disciplined way of designing systems based on the concept of information hiding.

Experienced software developers have learned to be extremely wary of shared (global) data

and various mutual exclusion mechanisms (such as semaphores). Instead, they bind the

data to the tasks and allow the tasks to communicate only viamessage passing. For example,

the embedded systems veteran, Jack Ganssle, offers the following advice [Ganssle 98].
“Novice users all too often miss the importance of the sophisticated messaging mechanisms that

are a standard part of all commercial operating systems. Queues and mailboxes let tasks commu-

nicate safely... the operating system’s communications resources let you cleanly pass a message

without fear of its corruption by other tasks. Properly implemented code lets you generate the

real-time analogy of object-oriented programming’s (OOP) first tenet: encapsulation. Keep all

of the task’s data local, bound to the code itself and hidden from the rest of the system.”

—Jack Ganssle
Although it is certainly true that the operating system mechanisms, such as message

queues, critical sections, semaphores, or condition variables, can serve in the

construction of a real-time framework, application programmers do not need to directly

use these often troublesome mechanisms. Encapsulation lets programmers implement

the internal structure of active objects without concern for multitasking. For example,

application programmers don’t need to know how to correctly use a semaphore or

even know what it is. Still, as long as active objects are encapsulated, an active object

system can execute safely, taking full advantage of all the benefits of multitasking,

such as optimal responsiveness to events and good CPU utilization.
www.newnespress.com

271Real-Time Framework Concepts
In Chapter 9 I will show you how to organize the application source code so that the

internal structure of active objects is hidden and inaccessible to the rest of the application.

6.3.5 Support for State Machines

Event-driven systems are in general more difficult to implement with standard

languages, such as C or C++, than procedure-driven systems [Rumbaugh+ 91]. The

main difficulty comes from the fact that an event-driven application must return control

after handling each event, so the code is fragmented and expected sequences of

events aren’t readily visible.

For example, Figure 6.7(A) shows a snippet of a sequential pseudocode, whereas

panel (B) shows the corresponding flowchart. The boldface statements in the code and
event A arrived

else

process A

else

event C arrived

else

process C

...

else

wait4A

A / process A

process B

event B arrived

wait4B

[…]

[else]

B / process B

wait4C

C / process C

B C

wait4eventA();

/* process A */

while (…) {

wait4eventB();

 /* process B */

}

wait4eventC();

/* process C */

A

Figure 6.7: Sequential pseudocode (A), flowchart (B), and state machine (C).

www.newnespress.com

272 Chapter 6
heavy lines in the flowchart represent waiting for events (either polling or efficient

blocking). Both the sequential code and the flowchart show the expected sequence of

events (A, B...B, C) very clearly. Moreover, the sequential processing allows passing

data from one processing stage to the next in temporary stack variables. Traditional

programming languages and traditional multitasking kernels strongly support this style

of programming that relies heavily on stack-intensive nested function calls and

sophisticated flow of control (e.g., loops).

In contrast, the traditional event-driven code representing essentially the same behavior

consists of three event-handler functions onA(), onB(), and onC(), and it is not at

all clear that the expected sequence of calls should be onA(), onB()...onB(), onC().

This information is hidden inside the event-hander functions. Moreover, the functions

must use static variables to pass data from one function to the next, because the

stack context disappears when each function returns to the event loop. This

programming style is harder to implement with standard languages because you get

virtually no support for handling the execution context stored in static variables.

And this is where state machines beautifully complement the traditional programming

languages. State machines are exactly designed to represent the execution context

(state and extended-state variables) in static data. As you can see in Figure 6.7(C), the

state machine clearly shows the expected event sequence, so this program structure

becomes visible again. But unlike the sequential code, a state machine does not rely on

the stack and the program counter to preserve the context from one state to the next.

State machines are inherently event-driven.
NOTE

You can think of state machines, and specifically of the hierarchical event processor imple-

mentation described in Chapter 4, as an essential extension of the C and C++ programming

languages to better support event-driven programming.
As opposed to the traditional event-driven architecture, the active object computing

model is compatible with state machines. The active object event loop specifically

eliminates the event dispatcher (Figure 6.5(B)) because demultiplexing events based on

the event signal is not a generic operation but instead always depends on the internal

state of an active object. Therefore, event dispatching must be left to the specific active

object’s state machine.
www.newnespress.com

273Real-Time Framework Concepts
6.3.6 Traditional Preemptive Kernel/RTOS

In the most common implementations of the active object computing model, active

objects map to threads of a traditional preemptive RTOS or OS. For example, the real-

time framework inside the Telelogic Rhapsody design automation tool provides

standard bindings to VxWorks, QNX, and Linux, to name a few [Telelogic 07]. In this

standard configuration the active object computing model can take full advantage of the

underlying RTOS capabilities. In particular, if the kernel is preemptive, the active

object system achieves exactly the same optimal task-level response as traditional tasks.

Consider how the preemptive kernel scenario depicted in Figure 6.3(B) plays out in an

active object system. The scenario begins with a low-priority active object executing its

RTC step and a high-priority active object efficiently blocked on its empty event queue.
NOTE

The priority of an active object is the priority of its execution thread.
At point (2b) in Figure 6.3(B), an interrupt preempts the low-priority active object.

The ISR executes and, among other things, posts an event to the high-priority active

object (3b). The preemptive kernel called upon the exit from the ISR (4b) detects that

the high-priority active object is ready to run, so it switches context to that active

object (5b). The interrupt returns to the high-priority active object that extracts the

just-posted event from its queue and processes the event to completion (6b). When the

high-priority active object blocks again on its event queue, the kernel notices that

the low-priority active object is still preempted. The kernel switches context to the

low-priority active object (7b) and lets it run to completion.

Note that even though the high-priority active object preempted the low-priority one in

the middle of the event processing, the RTC principle hasn’t been violated. The

low-priority active object resumed its RTC step exactly at the point of preemption and

completed it eventually, before engaging in processing another event.
NOTE

In Chapter 8, I show how to adapt the QF real-time framework to work with a typical pre-

emptive kernel (mC/OS-II) as well as a standard POSIX operating system (e.g., Linux,

QNX, Solaris).

www.newnespress.com

274 Chapter 6
6.3.7 Cooperative Vanilla Kernel

The active object computing model can also work with nonpreemptive kernels. In fact,

one particular cooperative kernel matches the active object computing model

exceptionally well and can be implemented in an absolutely portable manner. For lack

of a better name, I will call this kernel plain vanilla or just vanilla. I explain first

how the vanilla kernel works and later I compare its execution profile with the profile of

a traditional nonpreemptive kernel from Figure 6.3(A). Chapter 7 describes the QF

implementation of the vanilla kernel.
NOTE

The vanilla kernel is so simple that many commercial real-time frameworks don’t even call it

a kernel. Instead this configuration is simply referred to as without an RTOS.6 However, if

you want to understand what it means to execute active objects “without an RTOS” and what

execution profile you can expect in this case, you need to realize that a simple cooperative

vanilla kernel is indeed involved.

“vanilla” scheduler

. . .

. . .dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();

dispatch(e);

e = queue.get();. . .

find highest-priority
non-empty queue

all queues empty
(idle condition)

idle
processing

priority = 1priority = n-1priority = n priority = 0

Figure 6.8: Active object system executing under the cooperative vanilla kernel.

6 For example, the Interrupt Driven Framework (IDF) inside the Telelogic Rhapsody design automation

tool executes “without an RTOS.”

www.newnespress.com

275Real-Time Framework Concepts
Figure 6.8 shows the architecture of the simple cooperative vanilla kernel. The most

important element of the design is the scheduler, which is the part of a kernel

responsible for determining which task to run next. The vanilla scheduler operates in a

single loop. The scheduler constantly monitors all event queues of the active objects.

Each event queue is assigned a unique priority, which is the priority of the active object

that owns this queue. The scheduler always picks the highest-priority not-empty queue.
NOTE

The vanilla scheduler uses the event queues of active objects as priority queues and thus

embodies the standard priority queue algorithm [Cormen+ 01]. Chapter 7 shows how the

QF real-time framework implements the vanilla scheduler with a bitmask and a lookup table.
After finding the queue, the vanilla kernel extracts the event from the queue and

dispatches it to the active object that owns this queue. Note that the queue get()

operation cannot block because at this point the queue is guaranteed to be not empty.

Of course, the vanilla kernel applies all the necessary safeguards to protect the

internal state of the scheduler and the event queues from corruption by asynchronous

interrupts, which can post events to the queues at any time.

The dispatch() operation always runs to completion and returns to the main loop.

The scheduler takes over and the cycle repeats. As usual in event-driven systems, the

main event loop and the event queues are all part of the vanilla kernel or the framework.

The application code is not supposed to poll or block.

The vanilla scheduler very easily detects the condition when all event queues are empty.

This situation is called the idle condition of the system. In this case, the scheduler

performs idle processing, which can be customized by the application.
NOTE

In an embedded system, the idle processing is the ideal place to put the CPU into a low-

power sleep mode. The power-saving hardware wakes up the CPU upon an interrupt, which

is exactly right because at this point only an interrupt can provide new event(s) to the system.
Now consider how the scenario depicted in Figure 6.3(A) plays out under the vanilla

kernel. The scenario begins with a low-priority active object executing its RTC step

(dispatch() function) and a high-priority active object having its event queue
www.newnespress.com

276 Chapter 6
empty. At point (2a) an interrupt preempts the low-priority active object. The ISR

executes and, among other things, posts an event to the high-priority active object (3a).

The interrupt returns and resumes the originally preempted low-priority active object (4a).

The low-priority object runs to completion and returns to the main loop. At this point, the

vanilla scheduler has a chance to run and picks the highest-priority nonempty queue,

which is the queue of the high-priority active object (6a). The vanilla kernel calls the

dispatch() function of the high-priority active object, which runs to completion.

As you can see, the task-level response of the vanilla kernel is exactly the same as any

other nonpreemptive kernel. Even so, the vanilla kernel achieves this responsiveness without

per-task stacks or complex context switching. The active objects naturally collaborate to

share the CPU and implicitly yield to each other at the end of every RTC step. The

implementation is completely portable and suitable for low-end embedded systems.

Because typically the RTC steps are quite short, the kernel can often achieve adequate

task-level response even on a low-end CPU. Due to the simplicity, portability, and minimal

overhead, I highly recommend the vanilla kernel as your first choice. Only if this type of

kernel cannot meet your timing requirements should you move up to a preemptive kernel.
NOTE

The vanilla kernel also permits executing multiple active objects inside a single thread of a

bigger multitasking system. In this case, the vanilla scheduler should efficiently block when

all event queues are empty instead of wasting CPU cycles for polling the event queues. Post-

ing an event to any of the active object queues should unblock the kernel. Of course, this

requires integrating the vanilla kernel with the underlying multitasking system.
6.3.8 Preemptive RTC Kernel

Finally, if your task-level response requirements mandate a preemptive kernel, you can

consider a super-simple, run-to-completion preemptive kernel that matches perfectly

the active object computing model [Samek+ 06]. A preemptive RTC kernel implements

in software exactly the same deterministic scheduling policy for tasks as most

prioritized interrupt controllers implement in hardware for interrupts.

Prioritized interrupt controllers, such as the venerable Intel 8259A, the Motorola 68K

and derivatives, the interrupt controllers in ARM-based MCUs by various vendors,

the NVIC in the ARMv7 architecture (e.g., Cortex-M3), the M16C from Renesas, and

many others allow prioritized nesting of interrupts on a single stack.
www.newnespress.com

A

systemwide priority

idle loop

Task

Task

ISR

ISR

NMI

Exception

0

1

Synchronous
Non-Maskable
Exceptions

Asynchronous
Non-Maskable
Interrupt (NMI)

endless idle loop

. . .

. . .

. . .

Asynchronous
maskable interrups

one-shot tasks
.
.

.

.

QF_MAX_ACTIVE

QF_MAX_ACTIVE + 1

QF_MAX_ACTIVE + 2

B

dispatch(e);

e = queue.get();

start

stop

Execution order
controlled in
hardware by the
interrupt controller

Execution order
controlled in
software by the
single-stack kernel

Figure 6.9: Systemwide priority of a single-stack kernel (A) and task structure (B).

277Real-Time Framework Concepts
In an RTC kernel tasks and interrupts are nearly symmetrical: both tasks and ISRs are

one-shot, RTC functions (Figure 6.9(A)). In fact, an RTC kernel views interrupts very

much like tasks of “super-high” priority, except that interrupts are prioritized in

hardware by the interrupt controller, whereas tasks are prioritized in software by the

kernel (Figure 6.9(B)).
NOTE

In all traditional kernels, tasks are generally structured as endless loops. An RTC kernel breaks

with this arrangement entirely. Under an RTC kernel, tasks are one-shot functions that run to

completion and return, very much like ISRs managed by a prioritized interrupt controller.
By requiring that all tasks run to completion and enforcing fixed-priority scheduling,

an RTC kernel can use the machine’s natural stack protocol. Whenever a task is

preempted by a higher-priority task (perhaps as a result of the currently running task

posting an event to a higher-priority task), the RTC kernel uses a regular C-function call

to build the higher-priority task context on top of the preempted-task stack context.
www.newnespress.com

278 Chapter 6
Whenever an interrupt preempts a task, the kernel uses the already established interrupt

stack frame on top of which to build the higher-priority task context, again using a

regular C-function call. This simple form of context management is adequate because

every task, just like every ISR, runs to completion. Because the preempting task

must also run to completion, the lower-priority stack context will never be needed

until the preempting task (and any higher-priority task that might preempt it) has

completed—at which time the preempted task will naturally be at the top of the stack,

ready to be resumed. This simple mechanism works for exactly the same reason that

a prioritized hardware-interrupt system works [Samek+ 06].
NOTE

Such a close match between the active object computing model and prioritized, nested inter-

rupt handling implemented directly in hardware suggests that active objects are in fact quite a

basic concept. In particular, the RTC processing style and no need for blocking in active

objects map better to actual processor architectures and incur less overhead than traditional

blocking kernels. In this respect, traditional blocking tasks must be viewed as a higher-level,

more heavyweight concept than active objects.
One obvious consequence of the stack-use policy, and the most severe limitation of an

RTC kernel, is that tasks cannot block. The kernel cannot leave a high-priority task

context on the stack and at the same time resume a lower-priority task. The lower-

priority task context simply won’t be accessible on top of the stack unless the higher-

priority task completes. But as I keep repeating ad nauseam throughout this book,

event-driven programming is all about writing nonblocking code. Event-driven active

objects don’t have a need for blocking.

In exchange for not being able to block, an RTC kernel offers many advantages over

traditional blocking kernels. By nesting all task contexts in a single stack, the RTC

kernel can be super-simple because it doesn’t need to manage multiple stacks and all

their associated bookkeeping. The result is not just significantly less RAM required for

the stacks and task control blocks but a faster context switch and, overall, less CPU

overhead. At the same time, an RTC kernel is as deterministic and responsive as any

other fully preemptive priority-based kernel. In Chapter 10, I describe an RTC

kernel called QK, which is part of the QP platform. QK is a tiny preemptive, priority-

based RTC kernel specifically designed to provide preemptive multitasking support

to the QF real-time framework.
www.newnespress.com

279Real-Time Framework Concepts
If you are using a traditional preemptive kernel or RTOS for executing event-driven

systems, chances are that you’re overpaying in terms of CPU and memory

overhead. You can achieve the same execution profile and determinism with a much

simpler RTC kernel. The only real reason for using a traditional RTOS is compatibility

with existing software. For example, traditional device drivers, communication stacks

(such as TCP/IP, USB, CAN, etc.), and other legacy subsystems are often written

with the blocking paradigm. A traditional blocking RTOS can support both active

object and traditional blocking code, which the RTOS executes outside the real-time

framework.
NOTE

Creating entirely event-driven, nonblocking device drivers and communication stacks is cer-

tainly possible but requires standardizing on specific event-queuing and event-passing

mechanisms rather than blocking calls. Such widespread standardization simply hasn’t

occurred yet in the industry.
6.4 Event Delivery Mechanisms

One of the main responsibilities of every real-time framework is to efficiently deliver

events from producers to consumers. The event delivery is generally asynchronous,

meaning that the producers of events only insert them into event queues but do not wait

for the actual processing of the events.

In addition, any part of the system can usually produce events, not necessarily only the

active objects. For example, ISRs, device drivers, or legacy code running outside the

framework can produce events. On the other hand, only active objects can consume

events, because only active objects have event queues.
NOTE

A framework can also provide “raw” thread-safe event queues without active objects behind

them. Such “raw” thread-safe queues can consume events as well, but they never block and

are intended to deliver events to ISRs, that is, provide a communication mechanism from the

task level to the ISR level.

www.newnespress.com

280 Chapter 6
Real-time frameworks typically support two types of event delivery mechanism (see

Figure 6.10):

1. The simple mechanism of direct event posting, when the producer of an event

directly posts the event to the event queue of the consumer active object.

2. A more sophisticated publish-subscribe event delivery mechanism, where a

producer “publishes” an event to the framework, and the framework then delivers

the event to all active objects that had “subscribed” to this event. The publish-

subscribe mechanism provides lower coupling between event producers and

consumers.
ISR_1() ISR_2()

Active
Object 1

Active
Object 2

Active
Object N

direct
event posting

publish-subscribe
“software bus”

. . .

multicasting a
published event

Figure 6.10: Direct event posting and publish-subscribe event delivery coexisting
in a single application.
6.4.1 Direct Event Posting

The simplest mechanism lets producers post events directly to the event queue of the

recipient active object. This method requires minimal participation from the

framework. The framework merely provides a public operation (a function in the

framework API), which allows any producer to post an event directly to the given active

object. For example, the QF real-time framework provides the operation

QActive_postFIFO(), which is the operation of the QActive class (see Figure 6.6).

Of course the framework is responsible for implementing this function in a thread-safe
www.newnespress.com

281Real-Time Framework Concepts
manner. Figure 6.10 illustrates this form of communication as thick, solid arrows

connecting event producers and the consumer active objects.

Direct event posting is a “push-style” communication mechanism, in which recipients

receive unsolicited events whether they want them or not. Direct event posting is ideal in

situations where a group of active objects, or an active object and an ISR, form a

subsystem delivering a particular service, such as a communication stack, GPS capability,

digital camera subsystem in a mobile phone, or the like. This style of event passing

requires that the event producers intimately “know” the recipients. The “knowledge” that

a sender needs is more than merely having a pointer to the recipient active object; the

sender must also know the kind of events the particular object might be interested in. This

intimate knowledge, distributed among the participating application components,

makes the coupling among the components quite strong and inflexible at runtime. For

example, it might be difficult to add new active objects to the subsystem, because existing

event producers won’t know about the newcomers and won’t send them events.
6.4.2 Publish-Subscribe

The publish–subscribe model is a popular way of decoupling the event producers from

the event consumers. Publish-subscribe is a “pull-style” communicationmechanism inwhich

recipients receive only solicited events. The properties of the publish-subscribe model are:

� Producers and consumers of events don’t need to know each other (loose

coupling).

� The events exchanged via this mechanism must be publicly known and must

have the same semantics to all parties.

� A mediator7 is required to accept published events and to deliver them to

interested subscribers.

� Many-to-many interactions (object-to-object) are replaced with one-to-many

(object-to-mediator) interactions.

The publish-subscribe event delivery is shown in Figure 6.10 as a “software bus”

into which active objects “plug in” through the specified interface. Active objects

interested in certain events subscribe to one or more event signals by the framework.
7 The publish-subscribe event delivery is closely related to the Observer andMediator design patterns [GoF 95].

www.newnespress.com

282 Chapter 6
Event producers make event publication requests to the framework. Such requests can

originate asynchronously from many sources, not necessarily just active objects—for

example, from interrupts or device drivers. The framework manages all these

interactions by supplying the following services:

� Provide an API for active objects to subscribe and unsubscribe to particular

event signals. For example, the QF real-time framework provides functions

QActive_subscribe(), QActive_unsubscribe(), and

QActive_unsubscribeAll().

� Provide a generally accessible interface for publishing events. For example, QF

provides QF_publish() function.

� Define and implement a thread-safe event delivery policy (including

multicasting events when an event is subscribed by multiple active objects).

One obvious implication of publish-subscribe is that the framework must store the

subscriber information, whereas it must allow associating more than one subscriber

active object with an event signal. The framework must also allow modifying the

subscriber information at runtime (dynamic subscribe and unsubscribe). The QF real-

time framework supports dynamic subscriptions and cancellations of subscriptions.

6.5 Event Memory Management

In any event-driven system, events are frequently produced and consumed, so by

nature they are highly dynamic. One of the most critical aspects of every real-time

framework is managing the memory used by events, because obviously this memory

must be frequently reused as new events are constantly produced. The main challenge

for the framework is to guarantee that the event memory is not reused until all active

objects have finished their RTC processing of the event. In fact, as described in Section

4.7.10 in Chapter 4, corrupting the current event while it is still in use constitutes a

violation of the RTC semantics and is one of the hardest bugs to resolve.
6.5.1 Copying Entire Events

Section 4.7.10 offered the general solution, which is to use event queues. Indeed, as

shown in Figure 6.11, entire events can be copied into an event queue and then

copied out of the queue again before they can be processed. Many RTOSs support this

style of event exchange through message queues. For example, the VxWorks RTOS
www.newnespress.com

283Real-Time Framework Concepts
provides functions msgQSend() to copy a chunk of memory (message) into a message

queue, and msgQReceive() to copy the entire message out of the queue to the

provided memory buffer.
1st copy

event queue
holding entire
events

current event
buffer

active object

event producer

new event
buffer

2nd copy

inserting an event
into the queue

extracting an event
out of the queue

Figure 6.11: Copying entire events into the event queue and out of the event queue.
Copying entire events addresses all the potential problems with corrupting event

memory prematurely, but the approach is terribly expensive in both space and time. In

terms of space requirements, a message queue must typically be oversized so that all

locations in the queue are able to accept the largest expected event. Additionally, every

event producer needs an oversized memory buffer and every event consumer needs

another oversized buffer to hold copies of the events. In terms of CPU overhead, each

event passed through the queue requires making at least two copies of the data (see

Figure 6.11). Moreover, the queue is inaccessible while the lengthy copy operations

take place, which can negatively impact responsiveness of the system. Of course, the

high overheads of copying events only multiply when multicasting events is required.

To mitigate the costs of message queues, some authors advise sending just pointers

to larger chunks of data over a message queue and then let the recipient directly access

the data via the provided pointer [Li+ 03]. You should be very careful with this

approach. Due to the asynchronous nature of a message queue, the sender typically

cannot know when the event actually gets processed, and the sender all too easily can

prematurely corrupt the memory buffer by trying to reuse it for the next event. This is,

of course, the classic concurrency problem caused by a shared memory buffer.

Introducing such direct sharing of memory defeats the purpose of the message queue as

a safe mechanism for passing messages (events) from producers to consumers.
www.newnespress.com

284 Chapter 6
6.5.2 Zero-Copy Event Delivery

The brute-force approach of copying entire events into message queues is the best a

traditional RTOS can do, because an RTOS does not control the events after they leave

the queue. A real-time framework, on the other hand, can be far more efficient because, due

to inversion of control, the framework actually manages the whole life cycle of an event.

As shown in Figures 6.5(B), 6.8, and 6.9(A) earlier in this chapter, a real-time framework

is in charge of extracting an event from the active object’s event queue and then

dispatching the event for RTC processing. After the RTC step completes, the framework

regains control of the event. At this point, the framework “knows” that the event has

been processed and so the framework can automatically recycle the event. Figure 6.12

shows the garbage collection step (event recycling) added to the active object life cycle.
dispatch(e);

A

gc(e);

dispatch(e);

B C

e = queue.get();

start

stop

gc(e);

e = queue.get();e = queue.get(); .
.
.
.

“vanilla ”
scheduler

gc(e);

dispatch(e);

garbage
collection

Figure 6.12: Adding garbage collection step to active object thread (A), to the
cooperative vanilla kernel (B), and to the one-shot task of an RTC kernel (C).
A real-time framework can also easily control the allocation of events. The framework

can simply provide an API function that application code must call to allocate new

events. The QF framework, for example, provides the macro Q_NEW() for this purpose.

With the addition of the event creation and automatic garbage collection steps, the

framework controls the life cycle of an event from cradle to grave. This in turn permits

the framework to implement controlled, thread-safe sharing of event memory, which

from the application standpoint is undistinguishable from true event copying. Such

memory management is called zero-copy event delivery.
www.newnespress.com

285Real-Time Framework Concepts
Figure 6.13 illustrates the zero-copy event delivery mechanism. The life cycle of an

event begins when the framework allocates the event from an event pool and returns a

pointer to this memory to the event producer, such as the ISR in Figure 6.13(1). The

producer then fills the event parameters, writing directly to the provided event pointer.

Next, the event producer posts just the pointer to the event to the queue of the recipient

active object (Figure 6.13(2)).
NOTE

In the “zero-copy” event delivery scheme, event queues hold only pointers or references to

events, not the entire events.
At some later time, the active object comes around to process the event. The active

object reads the event data via the pointer extracted from the queue. Eventually, the

framework automatically recycles the event in the garbage collection step. Note that

the event is never copied. At the same time the framework makes sure that the event is

not recycled prematurely. Of course, the framework must also guarantee that all these

operations are performed in a thread-safe manner.
EventPool1

«active»
ProducerA

ISR

«active»
ProducerB

EventPool2

event queue
holding pointers
to events

internal
thread

static event
(not from a pool)

pointers to
event instances

dynamic
events

(1)

(2)

(3)

active
object

internal
state
machine

Figure 6.13: Passing events without copying them (zero-copy event delivery).

www.newnespress.com

286 Chapter 6
6.5.3 Static and Dynamic Events

Not all events in the system have parameters or changing parameters. For example, the

TIME_TICK event or the PLAYER_TRIGGER button-press event in the “Fly ‘n’ Shoot”

game from Chapter 1 don’t really change. Such immutable event objects can be

shared safely and can be allocated statically once, rather than being created and

recycled every time. Figure 6.13(3) shows an example of a static event that does not

come from an event pool.

The “zero-copy” event delivery mechanism can very easily accommodate such

static events by simply not managing them at all. All static events must have a

unique signature that indicates to the garbage collector to ignore such events.

Conversely, events allocated dynamically must have a unique signature identifying

them as dynamic events that the framework needs to manage. The applications use static

and dynamic events in exactly the same way, except that static events are not allocated

dynamically.
6.5.4 Multicasting Events and the Reference-Counting Algorithm

In the publish-subscribe mechanism, it is common for multiple active objects to

subscribe to the same event signal. A real-time framework is then supposed to multicast

identical copies of an event to all registered active objects simultaneously, much as a

newspaper publisher sends out identical copies of a newspaper to all subscribers.

Of course, sending multiple identical copies of an event is not compatible with the zero-

copy event delivery policy. However, making identical copies of the event is not

really necessary because all subscribers can receive pointers to the same event. The

problem is rather to know when the last active object has completed processing of a

given event so that it can be recycled.

A simple expedient is to use the standard reference-counting algorithm (e.g., see

[Preiss 99]), which works in this case as follows: Every dynamic event object maintains

internally a counter of outstanding references to this event. The counter starts at zero

when the event is created. Each insertion of the event to any event queue increments the

reference count by one. Every attempt to garbage-collect the event decrements the

reference count by one. The event is recycled only when its reference count drops to

zero. Note that the reference counter is not decremented when the event is extracted

from a queue but only later, inside the garbage collection step. This is because an event
www.newnespress.com

287Real-Time Framework Concepts
must be considered referenced as long as it is being processed, not just as long as it sits

in a queue. Of course, the reference counting should only affect dynamic events and

must be performed in a thread-safe manner.
NOTE

The garbage collection step is not equivalent to event recycling. The garbage collector func-

tion always decrements the reference counter of a dynamic event but actually recycles the

event only when the counter reaches zero.
Reference counting allows more complex event exchange patterns than just

multicasting. For example, a recipient of an event might choose to post the received

event again, perhaps more than once. In any case, the reference-counting algorithm will

correctly spare the event from recycling at the end of the first RTC step and will

eventually recycle the event only when the last active object has finished processing the

event.
6.5.5 Automatic Garbage Collection

The garbage collection step is part of the active object life cycle controlled by the real-

time framework (Figure 6.12). The application has typically no need to recycle

events explicitly. In fact, some automatic garbage collection systems, most notably

Java, don’t even expose a public API for recycling individual objects.

However, a real-time framework might decide to provide a way to explicitly garbage-

collect an event object, but this is always intended for special purposes. For example, an

event producer might start to build a dynamic event but eventually decide to bail out

without posting or publishing the event. In this case the event producer must call the

garbage collector explicitly to avoid leaking of the event.
NOTE

The garbage collection step must be performed explicitly when receiving events from “raw”

thread-safe queues inside ISRs. The framework does not control ISRs and therefore ISRs are

entirely responsible for implementing the whole event life cycle, including the garbage col-

lection step.

www.newnespress.com

288 Chapter 6
6.5.6 Event Ownership

The zero-copy event delivery mechanisms are designed to be transparent to the

application-level code. Even so, applications must obey certain ownership rules with

respect to dynamic events, similar to the rules of working with objects allocated

dynamically with malloc() or the C++ operator new.
event owned
by the framework

event owned by the
application with
write permission

(e->ref_count == 0)

event owned by the
active object with

read-only permission
(e->ref_count > 0)

 (e = new_())

post(e)
publish(e)

dispatch(e)

return-from-dispatch(e)

gc(e)

post(e)

publish(e)

Figure 6.14: Transferring event ownership during the life cycle of a dynamic event.
Figure 6.14 illustrates the concept of event ownership and possible transfers of

ownership rights. All dynamic events are initially owned by the framework. An event

producer might gain ownership of a new event only by calling the new_() operation.

At this point, the producer gains the ownership rights with the permission to write to

the event. The event producer might keep the event as long as it needs, but eventually

the producer must transfer the ownership back to the framework. Typically the producer

posts or publishes the event. As a special case, the producer might decide that the

event is not good, in which case the producer must call the garbage collector explicitly.

After any of these three operations, the producer loses ownership of the event and can

no longer access it.

The consumer active object gains ownership of the current event ‘e’ when the

framework calls the dispatch(e) operation. This time, the active object gains merely

the read-only permission to the current event. The consumer active object is also

allowed to post or publish the event any number of times. The ownership persists over

the entire RTC step. The ownership ends, however, when the dispatch() operation

returns to the framework. The active object cannot use the event in any way past the

RTC step.
www.newnespress.com

289Real-Time Framework Concepts
6.5.7 Memory Pools

The dynamic, reference-counted events could, in principle, be allocated and freed with

the standard malloc() and free() functions, respectively. However, as described in

the sidebar “A Heap of Problems,” using the standard heap for frequent allocation and

recycling of events causes simply too many problems for any high-performance system.
A HEAP OF PROBLEMS

If you have been in the embedded real-time software business for a while, you must have

learned to be wary of malloc() and free() (or their C++ counterparts new and delete)

because embedded real-time systems are particularly intolerant of heap problems, which

include the following pitfalls:
� Dynamically allocating and freeing memory can fragment the heap over time to the

point that the program crashes because of an inability to allocate more RAM. The total

remaining heap storage might be more than adequate, but no single piece satisfies a

specific malloc() request.

� Heap-based memory management is wasteful. All heap management algorithms must

maintain some form of header information for each block allocated. At the very least,

this information includes the size of the block. For example, if the header causes a

4-byte overhead, a 4-byte allocation requires at least 8 bytes, so only 50 percent of

the allocated memory is usable to the application. Because of these overheads and

the aforementioned fragmentation, determining the minimum size of the heap is diffi-

cult. Even if you were to know the worst-case mix of objects simultaneously allocated

on the heap (which you typically don’t), the required heap storage is much more than a

simple sum of the object sizes. As a result, the only practical way to make the heap

more reliable is to massively oversize it.

� Both malloc() and free() can be (and often are) nondeterministic, meaning that

they potentially can take a long (hard to quantify) time to execute, which conflicts

squarely with real-time constraints. Although many RTOSs have heap management

algorithms with bounded or even deterministic performance, they don’t necessarily

handle multiple small allocations efficiently.

Unfortunately, the list of heap problems doesn’t stop there. A new class of problems appears

when you use heap in a multithreaded environment. The heap becomes a shared resource and

consequently causes all the headaches associated with resource sharing, so the list goes on:

� Both malloc() and free() can be (and often are) nonreentrant; that is, they cannot

be safely called simultaneously from multiple threads of execution.
Continued onto next page

www.newnespress.com

290 Chapter 6
However, simpler, higher-performance, and safer options exist to the general-purpose,

variable-block-size heap. A well-known alternative, commonly supported by RTOSs,

is a fixed-block-size heap, also known as a memory partition or memory pool. Memory

pools are a much better choice for a real-time framework to manage dynamic event

allocation than the general-purpose heap.

Unlike the conventional (variable-block-size) heap, a memory pool has guaranteed

capacity. It is not subject to fragmentation, because all blocks are exactly the same size.

Because all blocks have identical size, no header is associated with each block

allocated, thus reducing the system overhead per block. Furthermore, allocation through

a memory pool can be very fast and completely deterministic. This aspect allows the

kernel to protect a memory pool with a critical section of code (briefly disabling

interrupts) rather than a mutex. In the case of a memory pool, the access is so fast

that interrupts need to be disabled only briefly (no longer than other critical sections in
A HEAP OF PROBLEMS—CONT’D

� The reentrancy problem can be remedied by protecting malloc(), free(), realloc(),

and so on internally with a mutex, which lets only one thread at a time access the

shared heap. However, this scheme could cause excessive blocking of threads

(especially if memory management is nondeterministic) and can significantly reduce

parallelism. Mutexes can also be subject to priority inversion. Naturally, the heap

management functions protected by a mutex are not available to ISRs because ISRs

cannot block.

Finally, all the problems listed previously come on top of the usual pitfalls associated with

dynamic memory allocation. For completeness, I’ll mention them here as well.

� If you destroy all pointers to an object and fail to free it or you simply leave objects

lying about well past their useful lifetimes, you create a memory leak. If you leak

enough memory, your storage allocation eventually fails.

� Conversely, if you free a heap object but the rest of the program still believes that

pointers to the object remain valid, you have created dangling pointers. If you derefer-

ence such a dangling pointer to access the recycled object (which by that time might

be already allocated to somebody else), your application can crash.

� Most of the heap-related problems are notoriously difficult to test. For example, a

brief bout of testing often fails to uncover a storage leak that kills a program after a

few hours or weeks of operation. Similarly, exceeding a real-time deadline because

of nondeterminism can show up only when the heap reaches a certain fragmentation

pattern. These types of problems are extremely difficult to reproduce.
www.newnespress.com

291Real-Time Framework Concepts
the system), which does not increase interrupt latency and allows access to a memory

pool, even from ISRs.
NOTE

A memory pool is no different from any other multitasking kernel object. For example.

accessing a semaphore also requires briefly turning off interrupts (after all, a semaphore is

also a shared resource). The QF real-time framework provides a native implementation of

a thread-safe memory pool.
The most obvious drawback of a memory pool is that it does not support variable-sized

blocks. Consequently, the blocks have to be oversized to handle the biggest possible

allocation. Such a policy is often too wasteful if the actual sizes of allocated objects

(events, in this case) vary a lot. A good compromise is often to use not one but a few

memory pools with blocks of different sizes. The QF real-time framework, for example,

can manage up to three event pools with different block sizes (e.g., small, medium, and

large, like shirt sizes).

When multiple memory pools are used, each dynamic event object must remember

which pool it came from, so that the framework can recycle the event to the same pool.

The QF real-time framework combines the pool ID and the reference count into

one data member “dynamic_” of the QEvent structure (see Listings 4.2 and 4.3 in

Chapter 4).
6.6 Time Management

Time management available in traditional RTOSs includes delaying a calling task

(sleep()) or timed blocking on various kernel objects (e.g., semaphores or event

flags). These blocking mechanisms are not very useful in active object-based systems

where blocking is not allowed. Instead, to be compatible with the active object

computing model, time management must be based on the event-driven paradigm in

which every interesting occurrence manifests itself as an event instance.
6.6.1 Time Events

A real-time framework manages time through time events, often called timers. Time

event is a UML term and denotes a point in time. At the specified time, the event occurs
www.newnespress.com

292 Chapter 6
[OMG 07]. The basic usage model of these time events is as follows: An active object

allocates one or more time event objects (provides the storage for them). When the

active object needs to arrange for a timeout, it arms one of its time events to post itself

at some time in the future.

Figure 6.15 shows the time event facility in the QF real-time framework. The

QTimeEvt class derives from QEvent, which means that time events can be used in all

the same contexts as regular events. Time events can be further specialized to add more

information (event parameters).
postIn();

postEvery();

disarm();

QTimeEvt

sig : QSignal
dynamic_ : uint8_t

QEvent

component_id : uint8_t

MyComponentTimeEvt

optional derived time
events

Time event specialized for
delivering timeouts to
components

Figure 6.15: QF class QTimeEvt derived from QEvent.

rearm();
The time event provides public operations for that purpose: postIn() for a one-shot

timeout and postEvery() for a periodic timeout event. Each timeout request has a

different time event associated with it, so the application can make multiple parallel

requests (from the same or different active objects). When the framework detects that

the appropriate moment has arrived, the framework posts the requested time event

directly into the recipient’s event queue (direct event posting). The recipient then

processes the time event just like any other event.

The application can explicitly disarm any time event (periodic or one-shot) at any time using

the disarm() operation. After disarming (explicitly or implicitly, as in the case of the

one-shot time event), the time event can be reused for one-shot or periodic timeouts. In

addition, as long as the time event remains armed it can be rearmed with a different number

of ticks through the rearm() operation. For one-shot time events, rearming is useful, for

example, to implement watchdog timers that need to be periodically “tickled” to prevent

them from ever timing out. Rearming might also be useful to adjust the phasing of periodic

time events (often you need to extend or shorten one period).
www.newnespress.com

293Real-Time Framework Concepts
6.6.2 System Clock Tick

Every real-time system, including traditional blocking kernels, requires a periodic time

source called the system clock tick. The system clock tick is typically a periodic

interrupt that occurs at a predetermined rate, typically between 10Hz and 100Hz. You

can think of the system clock tick as the heartbeat of the system. The actual frequency

of the system clock tick depends on the desired tick resolution of your application.

The faster the tick rate, the more overhead the time management implies.

The system clock tick must call a special framework function to give the framework a

chance to periodically update the armed time events. The QF real-time framework,

for example, updates time events in the function QF_tick().
 time

t1
t2

t3 t4

active object
receiving the
time event

all higher-priority
tasks

system clock
tick ISR

pr
io

rit
y

time events
processed
back-to-back

Figure 6.16: Jitter of a periodic time event firing every tick.
The delivery of time events in a real-time framework is subject to various delays, as

is also the case with all real-time kernels or RTOSs [Labrosse 02]. Figure 6.16 shows

in a somewhat exaggerated manner the various delays of a periodic time event

programmed with one tick interval. As indicated by the varying time intervals in

Figure 6.16, the time event delivery is always subject to jitter. The jitter gets worse

as the priority of the recipient active object gets lower. In heavily loaded systems, the

jitter might even exceed one clock tick period.8 In particular, a time event armed for

just one tick might expire immediately because the system clock tick is asynchronous

with respect to active object execution. To guarantee at least one tick timeout, you

need to arm a time event for two clock ticks. Note too that time events are generally
8 This might be indicative of incorrect system design.

www.newnespress.com

294 Chapter 6
not lost due to event queuing. This is in contrast to clock ticks of a traditional RTOS,

which can be lost during periods of heavy loading.

6.7 Error and Exception Handling

A real-time framework, just like any piece of system-level software, must implement a

policy of handling erroneous conditions within the framework and—more important—

within the application based on the framework. Of course, a framework could use the

usual techniques, such as return error codes from the framework API calls, set error

codes in the standard errno facility, or throw C++ exceptions. In fact, most operating

systems and commercial RTOSs use these methods.

However, a real-time framework can do better than that. Due to inversion of control so

typical in all event-driven systems, a real-time framework controls many more aspects

of the application than a traditional operating system. A real-time framework is in a

much better position to monitor the application to make sure that it is performing

correctly, rather than the application to check error codes or catch exceptions

originating from the framework. In other words, a real-time framework could use an

error-handling policy that is consistent with the inversion of control between the

framework and the application.

6.7.1 Design by Contract

The Design by Contract9 (DbC) approach, pioneered by Bertrand Meyer [Meyer 97],

provides an excellent methodology for implementing a very robust error-handling

policy within a real-time framework that makes the most of the control inversion. The

DbC philosophy views a software system as a set of components whose collaboration

is based on precisely defined specifications of mutual obligations—the contracts.

The central idea of this method is to inherently embed the contracts in the code and

validate them automatically at runtime.

In C or C++, the most important aspects of DbC (the contracts) can be implemented

with assertions. The standard C-library macro assert() takes a Boolean argument and

terminates the application if the argument evaluates to FALSE. A real-time framework

can of course use a customized version of the macro, which would invoke an

application-specific handler function when the assertion fails (see upcoming Section

6.7.3), but the general idea of asserting certain conditions at runtime is the same.
9 Design by Contract is a registered trademark of Interactive Software Engineering.

www.newnespress.com

295Real-Time Framework Concepts
Assertions built into a real-time framework are consistent with inversion of control

because through the assertions a real-time framework can enforce software contracts

without relying on the application to check error codes or catch thrown exceptions.

The most important point to realize about software contracts (assertions in C/C++) is

that they neither prevent errors nor really handle them, in the same way as contracts

between people do not prevent fraud. For example, the QF real-time framework asserts

that a published event signal is in the preconfigured range. Naturally, such an assertion

neither handles nor prevents the application from publishing an event out of range.

However, the assertion establishes a contract, which spells out that an attempt to publish

an event out of range is an error. And sure enough, the framework will quite brutally

abort the application that violates this contract. At first you might think that this must be

backward. Contracts not only do nothing to prevent (let alone handle) errors, but they

actually make things worse by turning every asserted condition, however benign, into

a fatal error! However, when you really think about it, you must admit that publishing

an event out of range is not really all right. It indicates that the application somehow

lost consistency of event signals, which is a sure sign of a larger problem (a broken

build, perhaps).

The DbC philosophy is the exact opposite of the popular defensive programming

strategy, which denotes a programming style that aims at making operations more

robust to errors, by accepting a wider range of inputs or allowing order of operations not

necessarily consistent with the object’s state. Defensive programming is often

advertised as a better coding style, but unfortunately, it often hides bugs. To use the

same example again, the QF framework could very easily make the publish()

operation more “robust” simply by ignoring an event that is out of range. Defensive

programming is not necessarily harder to implement than DbC. Rather, the problem

with defensive programming is that it allows the code to “wander around,” silently

taking care of various invalid conditions. The DbC approach, in contrast, represents the

point of view that either a program is in full control of what’s going on or it isn’t,

whereas assertions define what it means that the program is in control. When any of

these safeguards fails, the method prescribes that it is better to face up to the problem

as soon as possible and put the system in a fail-safe state (whatever this might mean

for a particular system) than to let a runaway program continue. This practice is

especially advisable for safety-critical applications such as medical devices.

Due to their simplicity, assertions are sometimes viewed as too primitive error-checking

mechanisms—something that’s perhaps good enough for smaller programs but must
www.newnespress.com

296 Chapter 6
be replaced with a “real” error handling in the industry-strength software. This view is

inconsistent with the DbC philosophy, which regards contracts as the integral part of

the software design. Software contracts embody important design decisions, namely

declaring certain conditions as errors rather than exceptional conditions, and therefore

embedding them in large-scale, mission-critical software is even more important than

in quick-and-dirty solutions. As Bertrand Meyer [Meyer 97b] observes:

“It is not an exaggeration to say that applying assertion-based development will completely

change your view of software construction . . . It puts the whole issue of errors, the unsung part

of the software developer’s saga, in a completely different light.”

— Bertrand Meyer
6.7.2 Errors versus Exceptional Conditions

Another critical point to understand about the DbC philosophy is that the purpose of

software contracts is to detect errors but not to handle exceptional conditions.

An error (known otherwise as a bug) means a persistent defect due to a design or

implementation mistake (e.g., overrunning an array index or dereferencing a NULL pointer).

Software contracts (assertions in C/C++) should be used to document such logically

impossible situations to discover programming errors. If the “impossible” occurs, something

fundamental is clearly wrong and you cannot trust the program anymore.

In contrast to an error, an exceptional condition is a specific circumstance that can

legitimately arise during the system lifetime but is relatively rare and lies off the main

execution path of your software. You need to design and implement a recovery strategy

that handles the exceptional condition.

The distinction between errors and exceptional conditions is important because errors

require the exact opposite programming strategy from dealing with exceptional

conditions. The first priority in dealing with errors is to detect them as early as possible.

Any attempt to handle a bug as an exceptional condition only increases the risks of

damage that a runaway program can cause. It also tends to introduce immense

complications to the code only camouflaging the bug. In the worst case, the attempts to

“handle” a bug introduce new bugs.

A big often overlooked advantage of assertions is that they lead to considerable

simplification of the software by flagging many situations as errors (that you don’t need

to handle) rather than exceptional conditions (that you do need to handle). Often, the
www.newnespress.com

297Real-Time Framework Concepts
application code is much simpler when it does not need to check and handle error

codes returned by the framework but instead can rely on the framework policies

enforced by assertions (see Section 6.7.6).
NOTE

Assertions can be an important source of information for modern static source code analyzing

tools to test the correctness of your code.
6.7.3 Customizable Assertions in C and C++

Listing 6.1 shows the simple, customizable, embedded systems-friendly assertions

that I’ve found adequate for a wide range of projects, embedded or otherwise. These

simple assertions are consistently used in all QP components, such as the QF real-time

framework and the QEP event processor.

The qassert.h header file shown in Listing 6.1 is similar to the standard <assert.h>

header file, except (1) qassert.h allows customizing the error response, (2) it conserves

memory by avoiding proliferation of multiple copies of the filename string, and (3) it

provides additional macros for testing and documenting preconditions (Q_REQUIRE),

postconditions (Q_ENSURE), and invariants (Q_INVARIANT). The names of these three latter

macros are a direct loan from Eiffel, the programming language that natively supports DbC.
Listing 6.1 The qassert.h header file

(1) #ifdef Q_NASSERT /* Q_NASSERT defined–assertion checking disabled */

#define Q_DEFINE_THIS_FILE
#define Q_DEFINE_THIS_MODULE(name_)
#define Q_ASSERT(test_) ((void)0)
#define Q_ALLEGE(test_) ((void)(test_))
#define Q_ERROR() ((void)0)

#else /* Q_NASSERT not defined–assertion checking enabled */

/* callback invoked in case the condition passed to assertion fails */
#ifdef __cplusplus

extern "C"
#endif

(2) void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line);

Continued onto next page

www.newnespress.com

(3) #define Q_DEFINE_THIS_FILE \
static char const Q_ROM Q_ROM_VAR l_this_file [] = __FILE__;

(4) #define Q_DEFINE_THIS_MODULE(name_) \
static char const Q_ROM Q_ROM_VAR l_this_file [] = #name_;

/* general purpose assertion */
(5) #define Q_ASSERT(test_) \

if (test_) { \
} \
else (Q_onAssert(l_this_file, __LINE__))

/* general purpose assertion that ALWAYS evaluates the test_ argument */
(6) #define Q_ALLEGE(test_) Q_ASSERT(test_)

/* Assertion that always fails */
(7) #define Q_ERROR() \

(Q_onAssert(l_this_file, __LINE__))

#endif /* Q_NASSERT */

/* assertion that checks for a precondition */
(8) #define Q_REQUIRE(test_) Q_ASSERT(test_)

/* assertion that checks for a postcondition */
(9) #define Q_ENSURE(test_) Q_ASSERT(test_)

/* assertion that checks for an invariant */
(10) #define Q_INVARIANT(test_) Q_ASSERT(test_)

/* compile-time assertion */
(11) #define Q_ASSERT_COMPILE(test_) \

extern char Q_assert_compile [(test_)]

#endif/ /* qassert_h */

298 Chapter 6
(1) Defining the macro Q_NASSERT disables assertions. When disabled, all assertion

macros except Q_ALLEGE(), expand to empty statements that don’t generate any

(2) The function Q_onAssert() prototyped in this line is invoked whenever an

assertion fails. This function is application-specific and you need to define it

somewhere in your program. In embedded systems, Q_onAssert() typically first

disables interrupts to monopolize the CPU, then possibly attempts to put the

system in a fail-safe state and eventually triggers a system reset. If possible, the

code.
www.newnespress.com

299Real-Time Framework Concepts
function should also leave a “trail of bread crumbs” from the cause, perhaps by

storing the filename and line number in a nonvolatile memory. In addition,

Q_onAssert() is an ideal place to set a breakpoint during development and

debugging.
NOTE

The macros Q_ROM and Q_ROM_VAR used in the signature of Q_onAssert() are explained in

Listing 4.14 in Chapter 4.
(3) The macro Q_DEFINE_THIS_FILE defines a static and constant string

l_this_file[] as the name of the source file provided in the standard macro

__FILE__. You need to place the Q_DEFINE_THIS_FILE macro at the top of

every .C or .CPP file.

Compared to the standard assert(), the assertion macros defined in Listing 6.1

conserve memory (typically ROM) by using l_this_file[] string as the first

argument to Q_onAssert() rather than the standard preprocessor macro __FILE__.

This avoids proliferation of the multiple copies of the __FILE__ string for each use of

the assert() macro (see [Maguire 93]).

(4) This macro Q_DEFINE_THIS_MODULE() defines a static and constant string

l_this_file[] as the string provided in the argument. This macro provides an

alternative to Q_DEFINE_THIS_FILE (so you use one or the other). The

__FILE__ macro often expands to the full path name of the translation unit,

which might be too long to log.

(5) The macro Q_ASSERT() defines a general-purpose assertion. The empty block in

the if statement might seem strange, but you need both the if and the else

statements to prevent unexpected dangling if problems.

(6) When assertions are disabled by defining Q_NASSERT, the assertion macros don’t

generate any code; in particular, they don’t test the expressions passed as

arguments, so you should be careful to avoid any side effects required for

normal program operation inside the expressions tested in assertions. The macro

Q_ALLEGE() is a notable exception. This assertion macro always tests the

condition, although when assertions are disabled it does not invoke the

Q_onAssert() callback function. Q_ALLEGE() is useful in situations

where avoiding side effects of the test would require introducing temporary
www.newnespress.com

300 Chapter 6
variables on the stack—something you often want to minimize in embedded

systems.

(7) The macro Q_ERROR() always fails. The use of this macro is equivalent to

Q_ASSERT(0) but is more descriptive.

(8-10) The macros Q_REQUIRE(), Q_ENSURE(), and Q_INVARIANT() are intended

for validating preconditions, postconditions, and invariants, respectively.

They all map to Q_ASSERT(). Their different names serve only to better

document the specific intent of the contract.

(11) The macro Q_ASSERT_COMPILE() validates a contract at compile time. The

macro exploits the fact that the dimension of an array in C cannot be zero. Note

that the macro does not actually allocate any storage, so there is no penalty in

using it (see [Murphy 01a]).

6.7.4 State-Based Handling of Exceptional Conditions

An exceptional condition is a specific situation in the lifetime of a system that calls for a

special behavior. In a state-driven active object, a change in behavior corresponds to a change

in state (state transition). Hence, in active object systems, the associated state machines

are the most natural way to handle all conditions, including exceptional conditions.

Using state hierarchy can be very helpful to separate the “exceptional” behavior from

the “normal” behavior. Such state-based exception handling is typically a combination

of the Ultimate Hook and the Reminder state patterns (Chapter 5) and works as follows:

A common superstate defines a high-level transition to the “exceptional” parts of the

state machine. The submachine of this superstate implements the “normal” behavior.

Whenever an action within the submachine encounters an exceptional condition, it posts

a Reminder event to self to trigger the high-level transition to handle the exception.

The exit actions executed upon the high-level transition perform the cleanup of the

current context and cleanly enter the “exceptional” context.

State-based exception handling offers a safe and language-independent alternative to

the built-in exception-handling mechanism of the underlying programming language.

As described in Section 3.7.2 in Chapter 3, throwing and catching exceptions in C++ is

risky in any state machine implementation because it conflicts with the fundamental

RTC semantics of state machines. Stack unwinding inherent in propagating of thrown

exceptions is also less relevant in event-driven systems than traditional sequential code

because event-driven systems rely less on the stack and more on storing the state
www.newnespress.com

301Real-Time Framework Concepts
information in the static data. As Tom Cargill noticed in the seminal paper Exception

handling: A false sense of security [Cargill 94]:

“Counter-intuitively, the hard part of coding exceptions is not the explicit throws and catches. The

really hard part of using exceptions is to write all the intervening code in such a way that an arbi-

trary exception can propagate from its throw site to its handler, arriving safely and without dam-

aging other parts of the program along the way.”

—Tom Cargill

If you only can, consider leaving out the C++ throw-and-catch exception handling from

your event-driven software. If you cannot avoid it, make sure to catch all exceptions

before they can cause any damage.
6.7.5 Shipping with Assertions

The standard practice is to use assertions during development and testing but to disable

them in the final product. The often-quoted opinion in this matter comes from C.A.R.

Hoare, who considered disabling assertions in the final product like using a lifebelt

during practice but then not bothering with it for the real thing.

The question of shipping with assertions really boils down to two issues. First is the

overhead that assertions add to your code. Obviously, if the overhead is too big, you

have no choice. But then you must ask yourself how you will build and test your

application. It’s much better to consider assertions as an integral part of the software

and size the hardware adequately to accommodate them. As the prices of computer

hardware rapidly drop while the capabilities increase, it simply makes sense to trade a

small fraction of the raw CPU horsepower and some extra code memory for better

system integrity. In practice, assertions often pay for themselves by eliminating reams

of “error-handling” code that tries to camouflage bugs.

The other issue is the correct system response when an assertion fires in the field. This

response must be obviously designed carefully and safety-critical systems might require

some redundancy and recovery strategy. For many less critical applications a simple

system reset turns out to be the least inconvenient action from the user’s perspective—

certainly less inconvenient than locking up the application and denying service. You

should also try to leave some “bread crumbs” of information as to what went wrong. To

this end, assertions provide a great starting point for debugging and ultimately fixing the

root cause of the problem.
www.newnespress.com

302 Chapter 6
6.7.6 Asserting Guaranteed Event Delivery

Traditional sequential systems communicate predominately by means of synchronous

function calls. When module A wants to communicate with module B, module A

calls a function in B. The communication is implicitly assumed to be reliable; that is,

the programmer takes for granted that the function call mechanism will work, that

the parameters will be passed to the callee, and that the return value will be delivered

to the caller. The programmer does not conceive of any recovery strategy to handle

a failure in the function call mechanism itself. But in fact, any function call can

fail due to insufficient stack space. Consequently, the reliability of synchronous

communication is in fact predicated on the implicit assumption of adequate

stack resource.

Event-driven systems communicate predominately by asynchronous event exchange.

When active object A wants to communicate with active object B, object A allocates an

event and posts it to the event queue of object B. The programmer should be able to

take for granted that the event delivery mechanism will work, that the event will be

available, and that the event queue will accept the event. However, in fact,

asynchronous communication can fail due to event pool depletion or insufficient queue

depth. Consequently, the reliability of asynchronous communication is in fact

predicated on the assumption of adequate event pool size and event queue depth. If

those two resources are sized properly, the asynchronous event posting in the same

address space should be as reliable as a synchronous function call.
NOTE

At this point, I limit the discussion to nondistributed systems executing in a single address

space. Distributed systems connected with unreliable communication media pose quite dif-

ferent challenges. In this case neither synchronous communications such as remote procedure

call (RPC) nor asynchronous communications via message passing can make strong

guarantees.
I hope that this argument helps you realize that event pools and event queues should be

treated on equal footing as the execution stacks in that depletion of any of these

resources represents an error. In fact, event pools and queues fulfill in event-driven

systems many responsibilities of the execution stacks in traditional multitasking

systems. For example, parameters passed inside events play the same role as the

parameters of function calls passed on the call stacks. Consequently, event-driven
www.newnespress.com

303Real-Time Framework Concepts
systems use less stack space than sequential systems but instead require event queues

and event pools.

A real-time framework can use assertions to detect event pool and event queue

overruns, in the same way that many commercial RTOSs detect stack overflows. For

example, the QF real-time framework asserts internally that a requested dynamic event

can always be allocated from one of the event pools. Similarly, the QF framework

asserts that an event queue can always accept a posted event. It’s up to the application

implementer to adequately size all event pools and event queues in the system in the

same exact way as it is the implementer’s responsibility to adequately size the execution

stacks for a multitasking kernel.
NOTE

Standard message queues available in traditional RTOSs allow many creative ways of cir-

cumventing the event delivery guarantee. For example, message queues allow losing events

when the queue is full or blocking until the queue can accept the event. The QF real-time

framework does not use these mechanisms. QF simply asserts that an event queue accepts

every event without blocking.
6.8 Framework-Based Software Tracing

A running application built of active objects is a highly structured affair where all

important system interactions funnel through the real-time framework and the event

processor executing the state machines. This arrangement offers a unique

opportunity for applying software-tracing techniques. In a nutshell, software tracing

is similar to peppering the code with printf() statements, which is called

instrumenting the code, to log interesting discrete events for subsequent retrieval

from the target system and analysis. Of course, a good software-tracing

instrumentation can be much less intrusive and more powerful than the primitive

printf().

By instrumenting just the real-time framework code you can gain an unprecedented

wealth of information about the running system, far more detailed and

comprehensive than any traditional RTOS can provide. (This is, of course, yet

another benefit of control inversion.) The software trace data from the framework

alone allows you to produce complete, time-stamped sequence diagrams and

detailed state machine activity for all active objects in the system. This ability
www.newnespress.com

304 Chapter 6
can form the foundation of the whole testing strategy for your application. In

addition, individual active objects are natural entities for unit testing, which you

can perform simply by injecting events into the active objects and collecting the

trace data. Software tracing at the framework level makes all this comprehensive

information available to you, even with no instrumentation added to the

application-level code.

Most commercial real-time frameworks routinely use software tracing to provide

visualization and animation of the state machines in the system. The QF real-time

framework is also instrumented, and the software trace data can be extracted by means

of the QS (Q-SPY) component, described in Chapter 11.
6.9 Summary

Event-driven programming requires a paradigm shift compared to traditional sequential

programming. This paradigm shift leads to inversion of control between the event-

driven application and the infrastructure on which it is based. The event-driven

infrastructure can be generic and typically takes the form of a real-time framework.

Using such a framework to implement your event-driven applications can spare you

reinventing the wheel for each system you implement.

A real-time framework can employ a number of various CPU management policies, so

it is important to understand the basic real-time concepts, starting from simple

foreground/background systems through cooperative multitasking to fully preemptive

multitasking. Traditionally, these execution models have been used with the blocking

paradigm. Blocking means that the program frequently waits for events, either hanging

in tight polling loops or getting efficiently blocked by a multitasking kernel. The

blocking model is not compatible with the event-driven paradigm, but it can be adapted.

The general strategy is to centralize and encapsulate all the blocking code inside the

event-driven infrastructure (the framework) so that the application code never blocks.

The active object computing model combines multiple traditional event loops with a

multitasking environment. In this model, applications are divided into multiple

autonomous active objects, each encapsulating an execution thread (event loop), an

event queue, and a state machine. Active objects communicate with one another

asynchronously by posting events to each other’s event queues. Within an active object,

events are always processed in run-to-completion (RTC) fashion while a real-time

framework handles all the details of thread-safe event exchange and queuing.
www.newnespress.com

305Real-Time Framework Concepts
The active object computing model can work with a traditional preemptive RTOS, with

just a basic cooperative vanilla kernel, or with the super-simple, preemptive, RTC

kernel. In all these configurations, the active object model can take full advantage of the

underlying CPU management policy, achieving optimal responsiveness and CPU

utilization. As long as active objects are strictly encapsulated (i.e., they don’t share

resources), they can be programmed internally without concern for multitasking. In

particular, the application programmer does not need to use or understand semaphores,

mutexes, monitors, or other such troublesome mechanisms.

Most real-time frameworks support the simple direct event posting, and some

frameworks also support the more sophisticated publish-subscribe event delivery

mechanism. Direct event posting is a “push-style” communication in which the

recipient active object gets unsolicited events, whether it wants them or not. Publish-

subscribe is a “pull-style” communication in which active objects subscribe to event

signals by the framework and then the framework delivers only the solicited events to

the active objects. Publish-subscribe promotes loose coupling between event producers

and event consumers.

Perhaps the biggest responsibility of a real-time framework is to guarantee thread-safe

RTC event processing within active objects. This includes event management policies

so that the current event is not corrupted over the entire RTC step. A simple but

horrendously expensive method to protect events from corruption is to copy entire

events into and out of event queues. A far more efficient way is for a framework to

implement a zero-copy event delivery. Zero-copy really means that the framework

controls thread-safe sharing of event memory, which at the application level is

indistinguishable from true event copying. A real-time framework can do it because the

framework actually controls the whole life cycle of events as well as active objects.

A real-time framework manages time through time events, also known as timers. Time

events are time-delayed requests for posting events. The framework can handle many

such requests in parallel. The framework uses the system clock tick to periodically gain

control to manage the time events. The resolution of time events is one system clock

tick, but it does not mean that the accuracy is also one clock tick due to various delays

that cause jitter.

A real-time framework can use the traditional error-handling policies such as returning

error-codes from framework API calls. However, a real-time framework can also use

error management that takes advantage of the inversion of control between the

framework and the application. Such techniques are based on assertions, or more
www.newnespress.com

306 Chapter 6
generally on the Design by Contract (DbC) methodology. A framework can use

assertions to constantly monitor the application. Among others, a framework can

enforce guaranteed event delivery, which immensely simplifies event-driven application

design.

Finally, a real-time framework can use software-tracing techniques to provide more

detailed and comprehensive information about the running application than any

traditional RTOS. The software-tracing instrumentation of the framework can form the

backbone of a testing and debugging strategy for active-object systems.
www.newnespress.com

QEP Hierarchical Event Processor
(Chapter 4)

QS Software Tracing
(Chapter 9)

QF Real-Time Framework
(Chapter 7)

Application (Your Code)

Target (Hardware)

BSP

“Vanilla” Cooperative Kernel (Chapter 7
or QK Preemptive Kernel (Chapter 10),

or other Kernel / RTOS / OS (Chapter 8)

Figure 7.1: QP Components (in gray) and their relationship
hardware, board support package (BSP), and the app

www.new
CHAP T E R 7
Real-Time Framework Implementation
Let us change our traditional attitude to the construction of programs. Instead of imagining that our
main task is to instruct a computer what to do, let us concentrate rather on explaining to human
beings what we want a computer to do.
— Donald E. Knuth

In this chapter I describe the implementation of a lightweight real-time framework

called QF. As shown in Figure 7.1, QF is the central component of the QP event-driven

platform, which also includes the QEP hierarchical event processor (described in Part I
QP

),

to the target
lication.

nespress.com

308 Chapter 7
of this book) as well as the preemptive run-to-completion (RTC) kernel (QK) and the

software tracing instrumentation (QS).

The focus of this chapter is on the generic, platform-independent QF source code. I

devote Chapter 8 entirely to describing the platform-specific code that depends on the

specific processor, compiler, and operating system/RTOS (including the case where QF

is used without an RTOS).

I describe QF in the top-down fashion beginning with an overview of the QF features,

then presenting the framework structure, both logical (partitioning into classes) and

physical (partitioning into files). In the remaining bulk of the chapter I explain the

implementation of the QF services. As usual, I mostly refer to the C source code

(located in the <qp>\qpc\ directory in the accompanying code). I mention the C++

version (located in the <qp>\qpcpp\ directory) only when the differences from C

become important.
7.1 Key Features of the QF Real-Time Framework

QF is a generic, portable, scalable, lightweight, real-time framework designed

specifically for the domain of real-time embedded systems (RTES). QF can manage up

to 63 concurrently executing active objects,1 which are encapsulated tasks (each

embedding a state machine and an event queue) that communicate with one another

asynchronously by sending and receiving events.

The “embedded” design mindset means that QF is efficient in both time and space.

Moreover, QF uses only deterministic algorithms, so you can always determine the

upper bound on the execution time, the maximum interrupt disabling time, and the

required stack space of any given QF service. QF also does not call any external code,

not even the standard C or C++ libraries. In particular, QF does not use the standard

heap (malloc() or the C++ operator new). Instead, the framework leaves to the clients

the instantiation of any framework-derived objects and the initialization of the

framework with the memory it needs for operation. All this memory could be allocated

statically in hard real-time applications, but you could also use the standard heap or any

combination of memory allocation mechanisms in other types of applications.
1 This does not mean that your application is limited to 63 state machines. Each active object can manage

an unlimited number of stateful components, as described in the “Orthogonal Component” state pattern

in Chapter 5.

www.newnespress.com

es/

309Real-Time Framework Implementation
7.1.1 Source Code

The companion Website to this book at www.quantum-leaps.com/psicc2/

contains the complete source code for all QP components, including QF. I hope that you

will find the source code very clean and consistent. The code has been written in strict

adherence to the coding standard documented at www.quantum-leaps.com/resourc

AN_QL_Codin g_Standard.pdf.

All QP source code is “lint-free.” The compliance was checked with PC-lint/FlexLint

static analysis tool from Gimpel Software (www.gimpel.com). The QP distribution

includes the <qp>\qpc\ports\lint\ subdirectory, which contains the batch script

make.bat for compiling all the QP components with PC-lint.

The QP source code is also 98 percent compliant with the Motor Industry Software

Reliability Association (MISRA) Guidelines for the Use of the C Language in Vehicle-

Based Software [MISRA 98]. MISRA created these standards to improve the reliability

and predictability of C programs in critical automotive systems. Full details of this

standard can be obtained directly from the MISRA Website at www.misra.org.uk .

The PC-lint configuration used to analyze QP code includes the MISRA rule checker.

Finally and most important, I believe that simply giving you the source code is not

enough. To gain real confidence in event-driven programming, you need to understand

how a real-time framework is ultimately implemented and how the different pieces fit

together. This book, and especially this chapter, provides this kind of information.
7.1.2 Portability

All QF source code is written in portable ANSI-C, or in the Embedded C++ subset2 in

case of QF/C++, with all processor-specific, compiler-specific, or operating system-

specific code abstracted into a clearly defined platform abstraction layer (PAL).

In the simplest standalone configurations, QF runs on “bare-metal” target CPU

completely replacing the traditional RTOS. As shown in Figure 7.1, the QP event-

driven platform includes the simple nonpreemptive “vanilla” scheduler as well as the

fully preemptive kernel QK. To date, the standalone QF configurations have been

ported to over 10 different CPU architectures, ranging from 8-bit (e.g., 8051, PIC,
2 Embedded C++ subset is defined online at www.caravan.net/ec2plus/.

www.newnespress.com

http://www.quantum-leaps.com/psicc2/
http://www.quantum-leaps.com/doc/AN_QL_Coding_Standard.pdf
http://www.quantum-leaps.com/doc/AN_QL_Coding_Standard.pdf
http://www.gimpel.com
http://www.misra.org.uk
http://www.caravan.net/ec2plus/
http://www.caravan.net/ec2plus/

310 Chapter 7
AVR, 68H(S)08), through 16-bit (e.g., MSP430, M16C, x86-real mode) to 32-bit

architectures (e.g., traditional ARM, ARM Cortex-M3, Cold Fire Altera Nios II, x86).

The QF framework can also work with a traditional OS/RTOS to take advantage of the

existing device drivers, communication stacks, middleware, or any legacy code that

requires a conventional “blocking” kernel. To date, QF has been ported to six major

operating systems and RTOSs, including Linux (POSIX) and Win32.

As you’ll see in the course of this chapter, high portability is the main challenge in

writing a widely useable real-time framework like QF. Obviously, coming up with

an efficient PAL that would correctly capture all possible platform variances required

many iterations and actually porting the framework to several CPUs, operating

systems, and compilers. (I describe porting the QF framework in Chapter 8.) The

www.quantum-leaps .com Website contains the steadily growing number of QF

ports, examples, and documentation.
7.1.3 Scalability

All components of the QP event-driven platform, especially the QF real-time

framework, are designed for scalability so that your final application image contains

only the services that you actually use. QF is designed for deployment as a fine-

granularity object library that you statically link with your applications. This strategy

puts the onus on the linker to eliminate any unused code automatically at link time

instead of burdening the application programmer with configuring the QF code for each

application at compile time.

As shown in Figure 7.2, a minimal QP/C or QP/C++ system requires some 8KB of code

space (ROM) and about 1KB of data space (RAM) to leave enough room for a

meaningful application code and data. This code size corresponds to the footprint of a

typical, small, bare-bones RTOS application except that the RTOS approach typically

requires more RAM for the stacks.
NOTE

A typical, standalone QP configuration with QEP, QF, and the “vanilla” scheduler or the QK

preemptive kernel, with all major features enabled, requires around 2-4KB of code. Obvi-

ously you need to budget additional ROM and RAM for your own application code and data.

Figure 7.2 shows the application footprint.

www.newnespress.com

http://www.quantum-leaps.com

1KB
10B

10KB 100KB 1MB 10MB

100B

1KB

10KB

100KB

1MB

2KB

QP-nanon

QP/C,Q
QP/C++Q

A typical
small preemptive RTOSt

VxWorksVxWorks

Linux,
Windows XP

Windows CEC

R
A

M
(d

at
a)

ROM
(code)

Figure 7.2: RAM/ROM footprints of QP, QP-nano, and other RTOS/OS.
The chart shows approximate total system size as opposed to just the RTOS/OS

footprints. Note the logarithmic axes.

311Real-Time Framework Implementation
However, the event-driven approach scales down even further, beyond the reach of

any conventional RTOS. To address still smaller systems, a reduced QP version called

QP-nano implements a subset of features provided in QP/C or QP/C++. QP-nano has

been specifically designed to enable active object computing with hierarchical state

machines on low-end 8- and 16-bit embedded MCUs. As shown in Figure 7.2, a

meaningful QP-nano application starts from about 100 bytes of RAM and 2KB of

ROM. I describe QP-nano in Chapter 11.

On the opposite end of the complexity spectrum, QP applications can also scale up

to very big systems with gigabytes of RAM and multiple or multicore CPUs. The

large-scale applications, such as various servers, have often large numbers of

stateful components to manage, so the efficiency per component becomes critical. It

turns out that the lightweight, event-driven, state machine-based approach easily scales

up and offers many benefits over the traditional thread-per-component paradigm.
www.newnespress.com

312 Chapter 7
7.1.4 Support for Modern State Machines

As shown in Figure 7.1, the QF real-time framework is designed to work closely

with the QEP hierarchical event processor (Chapter 4). The two components

complement each other in that QEP provides the UML-compliant state machine

implementation, whereas QF provides the infrastructure of executing such state

machines concurrently.

The design of QF leaves a lot of flexibility, however. You can configure the base

class for derivation of active objects to be either the QHsm hierarchical state

machine (Section 4.5 in Chapter 4), the simpler QFsm nonhierarchical state machine

(Section 3.6 in Chapter 3), or even your own base class not defined in the

QEP event processor. The latter option allows you to use QF with your own

event processor.
7.1.5 Direct Event Posting and Publish-Subscribe Event Delivery

The QF real-time framework supports direct event posting to specific active objects

with first-in, first-out (FIFO) and last-in, first-out (LIFO) policies. QF also supports

the more advanced publish-subscribe event delivery mechanism, as described in

Section 6.4 in Chapter 6. Both mechanisms can coexist in a single application.
7.1.6 Zero-Copy Event Memory Management

Perhaps the most valuable feature provided by the QF real-time framework is the

efficient “zero-copy” event memory management, as described in Section 6.5 in

Chapter 6. QF supports event multicasting based on the reference-counting algorithm,

automatic garbage collection for events, efficient static events, “zero-copy” event

deferral, and up to three event pools with different block sizes for optimal memory

utilization.
7.1.7 Open-Ended Number of Time Events

QF can manage an open-ended number of time events (timers). QF time events are

extensible via structure derivation (inheritance in C++). Each time event can be

armed as a one-shot or a periodic timeout generator. Only armed (active) time events

consume CPU cycles.
www.newnespress.com

313Real-Time Framework Implementation
7.1.8 Native Event Queues

QF provides two versions of native event queues. The first version is optimized for active

objects and contains a portability layer to adapt it for either blocking kernels, the

simple cooperative “vanilla” kernel (Section 6.3.7), or the QK preemptive kernel

(Section 6.3.8 in Chapter 6). The second native queue version is a simple “thread-safe”

queue not capable of blocking and designed for sending events to interrupts as well

as storing deferred events. Both native QF event queue types are lightweight, efficient,

deterministic, and thread-safe. They are optimized for passing just the pointers to

events and are probably smaller and faster than full-blown message queues available in

a typical RTOS.
7.1.9 Native Memory Pool

QF provides a fast, deterministic, and thread-safe memory pool. Internally, QF uses

memory pools as event pools for managing dynamic events, but you can also use

memory pools for allocating any other objects in your application.
7.1.10 Built-in “Vanilla” Scheduler

The QF real-time framework contains a portable, cooperative “vanilla” kernel, as described

in Section 6.3.7 of Chapter 6. Chapter 8 presents the QF port to the “vanilla” kernel.
7.1.11 Tight Integration with the QK Preemptive Kernel

The QF real-time framework can also work with a deterministic, preemptive,

nonblocking QK kernel. As described in Section 6.3.8 in Chapter 6, run-to-completion

kernels, like QK, provide preemptive multitasking to event-driven systems at a fraction

of the cost in CPU and stack usage compared to traditional blocking kernels/RTOSs.

I describe QK implementation in Chapter 10.
7.1.12 Low-Power Architecture

Most modern embedded microcontrollers (MCUs) provide an assortment of low-power

sleep modes designed to conserve power by gating the clock to the CPU and various

peripherals. The sleep modes are entered under the software control and are exited upon

an external interrupt.
www.newnespress.com

314 Chapter 7
The event-driven paradigm is particularly suitable for taking advantage of these

power-saving features because every event-driven system can easily detect situations

in which the system has no more events to process, called the idle condition

(Section 6.3.7). In both standalone QF configurations, either with the cooperative

“vanilla” kernel or with the QK preemptive kernel, the QF framework provides callback

functions for handling the idle condition. These callbacks are carefully designed to

place the MCU into a low-power sleep mode safely and without creating race

conditions with active interrupts.
7.1.13 Assertion-Based Error Handling

The QF real-time framework consistently uses the Design by Contract (DbC)

philosophy described in Section 6.7 in Chapter 6. QF constantly monitors the

application by means of assertions built into the framework. Among others, QF

uses assertions to enforce the event delivery guarantee, which immensely simplifies

event-driven application design.
7.1.14 Built-in Software Tracing Instrumentation

As described in Section 6.8 in Chapter 6, a real-time framework can use

software-tracing techniques to provide more comprehensive and detailed

information about the running application than any traditional RTOS. The QF

code contains the software-tracing instrumentation so it can provide

unprecedented visibility into the system. Nominally the instrumentation is inactive,

meaning that it does not add any code size or runtime overhead. But by defining

the macro Q_SPY, you can activate the instrumentation. I devote all of Chapter 11

to software tracing.
NOTE

The QF code is instrumented with QS (Q-Spy) macros to generate software trace output from

active object execution. However, the instrumentation is disabled by default and for better

clarity will not be shown in the listings discussed in this chapter. Refer to Chapter 11 for

more information about the QS software-tracing implementation.

www.newnespress.com

315Real-Time Framework Implementation
7.2 QF Structure

Figure 7.3 shows the main QF classes and their relation to the application-level

code, such as the “Fly ‘n’ Shoot” game example from Chapter 1.

QF provides the central base class QActive for derivation of active

object classes. The QActive class is abstract, which means that it is not intended for

direct instantiation but rather only for derivation of concrete3 active object classes,

such as Ship, Missile, and Tunnel shown in Figure 7.3.
Ship

QEP event processor

QF real-time framework

postIn()
postEvery()
disarm()
rearm()

ctr

QTimeEvt

sig : QSignal
dynamic_ : uint8_t

QEvent

init()
dispatch()

state : QHsmState

«abstract»
QHsm

start()
postFIFO()
postLIFO()

thread
eQueue
prio

«abstract»
QActive

Fly and Shoot application

Missile Tunnel

Mine2
n ObjectImageEvtObjectPosEvt

Mine1
n

thread
Thread

eQueue
Queue

Configurable to derive
from other classes with
the compatible interface

Figure 7.3: QEP event processor, QF real-time framework,
and the “Fly ‘n’ Shoot” application.

3 Concrete class is the OOP term and denotes a class that has no abstract operations or protected

constructors. Concrete class can be instantiated, as opposed to abstract class, which cannot be instantiated.

www.newnespress.com

316 Chapter 7
By default, the QActive class derives from the QHsm hierarchical state machine

class defined in the QEP event processor (Chapter 4). This means that by virtue

of inheritance active objects are HSMs and inherit the init() and dispatch()

state machine interface. QActive also contains a thread of execution and an

event queue, which can be native QF classes, or might be coming from the

underlying RTOS.

QF uses the same QEvent class for representing events as the QEP event processor.

Additionally, the framework supplies the time event class QTimeEvt, with which

the applications make timeout requests.

QF provides also several services to the applications, which are not shown in the

class diagram in Figure 7.3. These additional QF services include generating new

dynamic events (Q_NEW()), publishing events (QF_publish()), the native QF

event queue class (QEQueue), the native QF memory pool class (QMPool), and the

built-in cooperative “vanilla” kernel (see Chapter 6, Section 6.3.7).
7.2.1 QF Source Code Organization

Listing 7.1 shows the platform-independent directories and files comprising the QF

real-time framework in C. The structure of the C++ version is almost identical except

that the implementation files have the .cpp extension.
Listing 7.1 Platform-independent QF source code organization

qpc\ - QP/C root directory (qpcpp for QP/C++)
|
+-doxygen\ - QP/C documentation generated with Doxygen
| +-html\ - “QP/C Reference Manual” in HTML format
| | +-index.html -The starting HTML page for the “QP/C Reference Manual”
| | +- . . .
| +-Doxyfile - Doxygen configuration file to generate the Manual
| +-qpc.chm - “QP/C Reference Manual” in CHM Help format
| +-qpc_rev.h - QP/C revision history
|
+-include\ - QP platform-independent header files
| +-qf.h - QF platform-independent interface
| +-qequeue.h - QF native event queue facility
| +-qmpool.h - QF native memory pool facility

www.newnespress.com

| +-qpset.h - QF native priority set facility
| +-qvanilla.h - QF native “vanilla” cooperative kernel interface
|
+-qf\ - QF real-time framework
| +-source\ - QF platform-independent source code (*.C files)
| | +-qf_pkg.h - internal, interface for the QF implementation
| | +-qa_defer.c - definition of QActive_defer()/QActive_recall()
| | +-qa_ctor.c - definition of QActive_ctor()
| | +-qa_fifo.c - definition of QActive_postFIFO()
| | +-qa_fifo_.c - definition of QActive_postFIFO_()
| | +-qa_get_.c - definition of QActive_get_()
| | +-qa_lifo.c - definition of QActive_postLIFO()
| | +-qa_lifo_.c - definition of QActive_postLIFO_()
| | +-qa_sub.c - definition of QActive_subscribe()
| | +-qa_usub.c - definition of QActive_unsubscribe()
| | +-qa_usuba.c - definition of QActive_unsubscribeAll()
| | +-qeq_fifo.c - definition of QEQueue_postFIFO()
| | +-qeq_get.c - definition of QEQueue_get()
| | +-qeq_init.c - definition of QEQueue_init()
| | +-qeq_lifo.c - definition of QEQueue_postLIFO()
| | +-qf_act.c - definition of QF_active_[]
| | +-qf_gc.c - definition of QF_gc_()
| | +-qf_log2.c - definition of QF_log2Lkup[]
| | +-qf_new.c - definition of QF_new_()
| | +-qf_pool.c - definition of QF_poolInit()
| | +-qf_psini.c - definition of QF_psInit()
| | +-qf_pspub.c - definition of QF_publish()
| | +-qf_pwr2.c - definition of QF_pwr2Lkup_[]
| | +-qf_tick.c - definition of QF_tick()
| | +-qmp_get.c - definition of QMPool_get()
| | +-qmp_init.c - definition of QMPool_init()
| | +-qmp_put.c - definition of QMPool_put()
| | +-qte_arm.c - definition of QTimeEvt_arm_()
| | +-qte_ctor.c - definition of QTimeEvt_ctor()
| | +-qte_darm.c - definition of QTimeEvt_disarm()
| | +-qte_rarm.c - definition of QTimeEvt_rearm()
| | +-qvanilla.c - “vanilla” cooperative kernel implementation
| |
| +-lint\ - QF options for lint
| | +-opt_qf.lnt - PC-lint options for linting QF
|
+-ports\ - Platform-specific QP ports
| +- . . .
+-examples\ - Platform-specific QP examples
| +- . . .

www.newnespress.com

317Real-Time Framework Implementation

318 Chapter 7
The QF source files contain typically just one function or a data structure definition per

file. This design aims at deploying QF as a fine-granularity library that you statically

link with your applications. Fine granularity means that the QF library consists of

several small, loosely coupled modules (object files) rather than a single module that

contains all functionality. For example, a separate module qa_lifo.c implements

the QActive_postLIFO() function; therefore, if your application never calls this

function, the linker will not pull in the qa_lifo.obj module. This strategy puts the

burden on the linker to do the “heavy lifting” of automatically eliminating any

unused code at link time, rather than on the application programmer to configure the

QF code for each application at compile time.
7.3 Critical Sections in QF

QF, just like any other system-level software, must protect certain sequences of

instructions against preemptions to guarantee thread-safe operation. The sections of

code that must be executed indivisibly are called critical sections.

In an embedded system environment, QF uses the simplest and most efficient way

to protect a section of code from disruptions, which is to lock interrupts on entry to

the critical section and unlock interrupts at the exit from the critical section. In

systems where locking interrupts is not allowed, QF can employ other mechanisms

supported by the underlying operating system, such as a mutex.
NOTE

The maximum time spent in a critical section directly affects the system’s responsiveness to

external events (interrupt latency). All QF critical sections are carefully designed to be as

short as possible and are of the same order as critical sections in any commercial RTOS.

Of course, the length of critical sections depends on the processor architecture and the quality

of the code generated by the compiler.
To hide the actual critical section implementation method available for a particular

processor, compiler, and operating system, the QF platform abstraction layer includes

two macros, QF_INT_LOCK() and QF_INT_UNLOCK(), to lock and unlock interrupts,

respectively.
www.newnespress.com

319Real-Time Framework Implementation
7.3.1 Saving and Restoring the Interrupt Status

The most general critical section implementation involves saving the

interrupt status before entering the critical section and restoring the status upon

exit from the critical section. Listing 7.2 illustrates the use of this critical section

type.
Listing 7.2 Example of the “saving and restoring interrupt status” policy

{
(1) unsigned int lock_key;

. . .
(2) lock_key = get_int_status();
(3) int_lock();

. . .
(4) /* critical section of code */

. . .
(5) set_int_status(lock_key);

. . .
}

(1) The temporary variable lock_key holds the interrupt status across the critical

section.

(2) Right before entering the critical section, the current interrupt status is

obtained from the CPU and saved in the lock_key variable. Of course,

the name of the actual function to obtain the interrupt status can be different

in your system. This function could actually be a macro or inline assembly

statement.

(3) Interrupts are locked using the mechanism provided by the compiler.

(4) This section of code executes indivisibly because it cannot be interrupted.

(5) The original interrupt status is restored from the lock_key variable. This step

unlocks interrupts only if they were unlocked at step 2. Otherwise, interrupts

remain locked.

Listing 7.3 shows an example of the “saving and restoring interrupt status” policy.
www.newnespress.com

Listing 7.3 QF macro definitions for the “saving and restoring interrupt
status” policy

(1) #define QF_INT_KEY_TYPE unsigned int

(2) #define QF_INT_LOCK(key_) do { \
(key_) = get_int_status(); \
int_lock(); \

} while (0)

(3) #define QF_INT_UNLOCK(key_) set_int_status(key_)

320 Chapter 7
(1) The macro QF_INT_KEY_TYPE denotes a data type of the “interrupt key”

variable, which holds the interrupt status. Defining this macro in the qf_port.h

header file indicates to the QF framework that the policy of “saving and restoring

interrupt status” is used, as opposed to the policy of “unconditional locking and

unlocking interrupts” described in the next section.

(2) The macro QF_INT_LOCK() encapsulates the mechanism of interrupt locking.

The macro takes the parameter key_, into which it saves the interrupt lock

status.
NOTE

The do {. . .} while (0) loop around the QF_INT_LOCK() macro is the standard practice for

syntactically correct grouping of instructions. You should convince yourself that the macro

can be used safely inside the if-else statement (with the semicolon after the macro) with-

out causing the “dangling-else” problem. I use this technique extensively in many QF

macros.
(3) The macro QF_INT_UNLOCK() encapsulates the mechanism of restoring the

interrupt status. The macro restores the interrupt status from the argument key_.

The main advantage of the “saving and restoring interrupt status” policy is the ability

to nest critical sections. The QF real-time framework is carefully designed to never

nest critical sections internally. However, nesting of critical sections can easily occur

when QF functions are invoked from within an already established critical section, such

as an interrupt service routine (ISR). Most processors lock interrupts in hardware upon

the interrupt entry and unlock upon the interrupt exit, so the whole ISR is a critical
www.newnespress.com

321Real-Time Framework Implementation
section. Sometimes you can unlock interrupts inside ISRs, but often you cannot. In the

latter case, you have no choice but to invoke QF services, such as event posting or

publishing, with interrupts locked. This is exactly when you must use this type of

critical section.
7.3.2 Unconditional Locking and Unlocking Interrupts

The simpler and faster critical section policy is to always unconditionally unlock

interrupts in QF_INT_UNLOCK(). Listing 7.4 provides an example of the QF macro

definitions to specify this type of critical section.
Listing 7.4 QF macro definitions for the “unconditional interrupt locking
and unlocking” policy

(1) /* QF_INT_LOCK_KEY not defined */
(2) #define QF_INT_KEY_TYPE(key_) int_lock()
(3) #define QF_INT_UNLOCK(key_) int_unlock()
(1) The macro QF_INT_KEY_TYPE is not defined in this case. The absence of the

QF_INT_KEY_TYPE macro indicates to the QF framework that the interrupt

status is not saved across the critical section.

(2) The macro QF_INT_LOCK() encapsulates the mechanism of interrupt locking.

The macro takes the parameter key_, but this parameter is not used in this case.

(3) The macro QF_INT_UNLOCK() encapsulates the mechanism of unlocking

interrupts. The macro always unconditionally unlocks interrupts. The parameter

key_ is ignored in this case.

The policy of “unconditional locking and unlocking interrupts” is simple and fast, but

it does not allow nesting of critical sections, because interrupts are always unlocked

upon exit from a critical section, regardless of whether interrupts were already

locked on entry.

The inability to nest critical sections does not necessarily mean that you cannot nest

interrupts. Many processors are equipped with a prioritized interrupt controller, such as

the Intel 8259A Programmable Interrupt Controller (PIC) in the PC or the Nested

Vectored Interrupt Controller (NVIC) integrated inside the ARM Cortex-M3. Such

interrupt controllers handle interrupt prioritization and nesting before the interrupts
www.newnespress.com

322 Chapter 7
reach the processor core. Therefore, you can safely unlock interrupts at the processor

level, thus avoiding nesting of critical sections inside ISRs. Listing 7.5 shows the

general structure of an ISR in the presence of an interrupt controller.
Listing 7.5 General structure of an ISR in the presence of a prioritized
interrupt controller

(1) void interrupt ISR(void) { /* entered with interrupts locked in hardware */
(2) Acknowledge the interrupt to the interrupt controller (optional)
(3) Clear the interrupt source, if level triggered
(4) QF_INT_UNLOCK(dummy); /* unlock the interrupts at the processor level */

(5) Handle the interrupt, use QF calls, e.g., QF_tick(), Q_NEW or QF_publish()

(6) QF_INT_LOCK(dummy); /* lock the interrupts at the processor level */
(7) Write End-Of-Interrupt (EOI) instruction to the Interrupt Controller
(8) }
(1) Most processors enter the ISR with interrupts locked in hardware.

(2) The interrupt controller must be notified about entering the interrupt. Often this

notification happens automatically in hardware before vectoring (jumping) to

the ISR. However, sometimes the interrupt controller requires a specific

notification from the software. Check your processor’s datasheet.

(3) You need to explicitly clear the interrupt source, if it is level triggered.

Typically you do it before unlocking interrupts at the CPU level, but a

prioritized interrupt controller will prevent the same interrupt from preempting

itself, so it really does not matter if you clear the source before or after unlocking

interrupts.

(4) Interrupts are explicitly unlocked at the CPU level, which is the key step of this

ISR. Enabling interrupts allows the interrupt controller to do its job, that is, to

prioritize interrupts. At the same time, enabling interrupts terminates the critical

section established upon the interrupt entry. Note that this step is only necessary

when the hardware actually locks interrupts upon the interrupt entry (e.g., the

ARM Cortex-M3 leaves interrupts unlocked).

(5) The main ISR body executes outside the critical section, so QF services can be

safely invoked without nesting critical sections.
www.newnespress.com

NOTE

The prioritized interrupt controller remembers the priority of the currently serviced interrupt

and allows only interrupts of higher priority than the current priority to preempt the ISR.

Lower- and same-priority interrupts are locked at the interrupt controller level, even though

the interrupts are unlocked at the processor level. The interrupt prioritization happens in the

interrupt controller hardware until the interrupt controller receives the end-of-interrupt (EOI)

instruction.

323Real-Time Framework Implementation
(6) Interrupts are locked to establish critical sections for the interrupt exit.

(7) The end-of-interrupt (EOI) instruction is sent to the interrupt controller to stop

prioritizing this interrupt level.

(8) The interrupt exit synthesized by the compiler restores the CPU registers from

the stack, which includes restoring the CPU status register. This step typically

unlocks interrupts.
7.3.3 Internal QF Macros for Interrupt Locking/Unlocking

The QF platform abstraction layer (PAL) uses the interrupt locking/unlocking

macros QF_INT_LOCK(), QF_INT_UNLOCK(), and QF_INT_KEY_TYPE in a

slightly modified form. The PAL defines internally the parameterless macros,

shown in Listing 7.6. Please note the trailing underscores in the internal macros’

names.
Listing 7.6 Internal macros for interrupt locking/unlocking
(file <qp>\qpc\qf\source\qf_pkg.h)

#ifndef QF_INT_KEY_TYPE /* simple unconditional interrupt locking/unlocking */

#define QF_INT_LOCK_KEY_

#define QF_INT_LOCK_() QF_INT_LOCK (ignore)

#define QF_INT_UNLOCK_() QF_INT_UNLOCK (ignore)

#else /* policy of saving and restoring interrupt status */

#define QF_INT_LOCK_KEY_ QF_INT_KEY_TYPE intLockKey_;

#define QF_INT_LOCK_() QF_INT_LOCK (intLockKey_)

#define QF_INT_UNLOCK_() QF_INT_UNLOCK (intLockKey_)

#endif

www.newnespress.com

324 Chapter 7
The internal macros QF_INT_LOCK_KEY_, QF_INT_LOCK_(), and QF_INT_UNLOCK_()

enable writing the same code for the case when the interrupt key is defined and when it is

not. The following code snippet shows the usage of the internal QF macros. Convince

yourself that this code works correctly for both interrupt-locking policies.

void QF_service_xyz(arguments) {
QF_INT_LOCK_KEY_
. . .
QF_INT_LOCK_();
. . .
/* critical section of code */
. . .
QF_INT_UNLOCK_();

}

7.4 Active Objects

As shown in Figure 7.3, the QF real-time framework provides the base structure

QActive for deriving application-specific active objects. QActive combines the

following three essential elements:

� It is a state machine (derives from QHsm or some other class with a compatible

interface).

� It has an event queue.

� It has an execution thread with a unique priority.

Listing 7.7 shows the declaration of the QActive base structure and related functions.
Listing 7.7 The QActive base class for derivation of active objects
(file <qp>\qpc\include\qf.h)

(1) #ifndef QF_ACTIVE_SUPER_
(2) #define QF_ACTIVE_SUPER_ QHsm
(3) #defineQF_ACTIVE_CTOR_(me_,initial_)QHsm_ctor((me_),(initial_))
(4) #define QF_ACTIVE_INIT_(me_, e_) QHsm_init((me_), (e_))
(5) #define QF_ACTIVE_DISPATCH_(me_, e_) QHsm_dispatch((me_), (e_))
(6) #define QF_ACTIVE_STATE_ QState

#endif

typedef struct QActiveTag {

www.newnespress.com

(7) QF_ACTIVE_SUPER_ super; /* derives from QF_ACTIVE_SUPER_ */

(8) QF_EQUEUE_TYPE eQueue; /* event queue of active object */
#ifdef QF_OS_OBJECT_TYPE

(9) QF_OS_OBJECT_TYPE osObject;/* OS-object for blocking the queue */
#endif

#ifdef QF_THREAD_TYPE
(10) QF_THREAD_TYPE thread; /* execution thread of the active object */

#endif

(11) uint8_t prio; /* QF priority of the active object */
(12) uint8_t running; /* flag indicating if the AO is running */

} QActive;

(13) void QActive_start(QActive *me, uint8_t prio,
QEvent const *qSto[], uint32_t qLen,
void *stkSto, uint32_t stkSize,
QEvent const *ie);

(14) void QActive_postFIFO(QActive *me, QEvent const *e);
(15) void QActive_postLIFO(QActive *me, QEvent const *e);

(16) void QActive_ctor(QActive *me, QState initial);
(17) void QActive_stop(QActive *me);

(18) void QActive_subscribe(QActive const *me, QSignal sig);
(19) void QActive_unsubscribe(QActive const *me, QSignal sig);
(20) void QActive_unsubscribeAll(QActive const *me);

(21) void QActive_defer(QActive *me, QEQueue *eq, QEvent const *e);
(22) QEvent const *QActive_recall(QActive *me, QEQueue *eq);

(23) QEvent const *QActive_get_(QActive *me);

325Real-Time Framework Implementation
(1) The macro QF_ACTIVE_SUPER_ specifies the ultimate base class for deriving

active objects. This macro lets you define (in the QF port) any base class for

QActive as long as the base class supports the state machine interface.

(See Chapter 3, “Generic State Machine Interface.”)

(2) When the macro QF_ACTIVE_SUPER_ is not defined in the QF port, the default is

the QHsm class provided in the QEP hierarchical event processor.

(3) The macro QF_ACTIVE_CTOR_() specifies the name of the base class

constructor.
www.newnespress.com

326 Chapter 7
(4) The macro QF_ACTIVE_INIT_() specifies the name of the base class init()

function.

(5) The macro QF_ACTIVE_DISPATCH_() specifies the name of the base class

dispatch() function.

(6) The macro QF_ACTIVE_STATE_ specifies the type of the parameter for the base

class constructor.

By defining the macros QF_ACTIVE_XXX_ to your own class, you can eliminate the

dependencies between the QF framework and the QEP event processor. In other

words, you can replace QEP with your own event processor, perhaps based on

one of the techniques discussed in Chapter 3, or not based on state machines at

all (e.g., you might want to try protothreads [Dunkels+ 06]). Consider the

following definitions:
w

#define QF_ACTIVE_SUPER_ MyClass
#define QF_ACTIVE_CTOR_(me_, ini_) MyClass_ctor((me_), (ini_))
#define QF_ACTIVE_INIT_(me_, e_) MyClass_init((me_), (e_))
#define QF_ACTIVE_DISPATCH_(me_, e_) MyClass_dispatch((me_), (e_))
#define QF_ACTIVE_STATE_ void*
(7) The first member super specifies the base class for QActive (see the sidebar

“Single Inheritance in C” in Chapter 1).

(8) The type of the event queue member eQueue is platform-specific. For example,

in the standalone QF configurations, the macro QF_EQUEUE_TYPE is defined

as the native QF event queue QEQueue (see Section 7.8). However, when QF is

based on an external RTOS, the event queue might be implemented with a

message queue of the underlying RTOS.

(9) The data member osObject is used in some QF ports to block the native QF

event queue. The osObject data member is necessary when the underlying

OS does not provide an adequate queue facility, so the native QF queue must be

used. In that case the osObject data member holds an OS-specific

primitive to efficiently block the native QF event queue when the queue is empty.

See Section 8.4, "QF Port to Linux (Conventional POSIX-Compliant OS)," for an

example of using the osObject data member.
ww.newnespress.com

327Real-Time Framework Implementation
(10) The data member thread is used in some QF ports to hold the thread handle

associated with the active object.

(11) The data member prio holds the priority of the active object. In QF, each active

object has a unique priority. The lowest possible task priority is 1 and higher-

priority values correspond to higher-urgency active objects. The maximum

allowed active object priority is determined by the macro QF_MAX_ACTIVE,

which currently cannot exceed 63.

(12) The data member running is used in some QF ports to represent whether the

active object is running. In these ports, writing zero to the running member

causes exit from the active object’s event loop and cleanly terminates the active

object thread.

(13) The function QActive_start() starts the active object thread. This function is

platform-specific and is explained in Section 7.4.3.

(14) The function QActive_postFIFO() is used for direct event posting to the

active object’s event queue using the FIFO policy.

(15) The function QActive_postLIFO() is used for direct event posting to the

active object’s event queue using the LIFO policy.

(16) The function QActive_ctor() is the “constructor” of the QActive

class. This constructor has the same signature as the constructor of QHsm

or QFsm (see Section 4.5.1 in Chapter 4). In fact, the main job of the

QActive constructor is to initialize the state machine base class (the

member super).
NOTE

In the C++ version, the QActive constructor is protected. This prevents direct instan-

tiation of the QActive class, since it is intended only for derivation (the abstract

class).
(17) The function QActive_stop() stops the execution thread of the active object.

This function is platform-specific and is discussed in Chapter 8. Not all QF ports

need to define this function.
www.newnespress.com

NOTE

In the C++ version, QActive::stop() is not equivalent to the active object destructor. The

function merely causes the active object thread to eventually terminate, which might not hap-

pen immediately.

328 Chapter 7
(18-20) The functions QActive_subscribe(), QActive_usubscribe(), and

QActive_unsubscribeAll() are used for subscribing and unsubscribing

to events. I discuss these functions in the upcoming Section 7.6.2.

(21,22) The functions QActive_defer() and QActive_recall() are used for

efficient (“zero copy”) deferring and recalling of events, respectively. I

describe these functions in the upcoming Section 7.5.4.

(23) The function QActive_get_() is used to remove one event at a time from

the active object’s event queue. This function is used only inside QF and never

at the application level. In some QF ports the function QActive_get_()

can block. I describe this function in the upcoming Section 7.4.2.
7.4.1 Internal State Machine of an Active Object

As shown in Figure 7.3, every concrete active object, such as Ship, Missile, or

Tunnel in the “Fly ‘n’ Shoot” game example from Chapter 1, is a state machine because

it derives indirectly from the QHsm base class or a class that supports a generic state

machine interface (see the data member super in Listing 7.7(7)). Derivation means

simply that every pointer to QActive or a structure derived from QActive can always be

safely used as a pointer to the base structure QHsm. Such a pointer can therefore always

be passed to any function designed to work with the state machine structure. At the

application level, you can mostly ignore the other aspects of your active objects and view

them predominantly as state machines. In fact, your main job in developing a QF

application consists of elaborating the state machines of your active objects.
7.4.2 Event Queue of an Active Object

Event queues are essential components of any event-driven system because they

reconcile the asynchronous production of events with the RTC semantics of their

consumption. An event queue makes the corresponding active object appear to always
www.newnespress.com

329Real-Time Framework Implementation
be responsive to events, even though the internal state machine can accept events only

between RTC steps. Additionally, the event queue provides buffer space that protects

the internal state machine from bursts in event production that can, at times, exceed

the available processing capacity.

You can view the active object’s event queue as an outer rind that provides an external

interface for injecting events into the active object and at the same time protects the

internal state machine during RTC processing. To perform these functions, the event

queue must allow any thread of execution (as well as an ISR) to asynchronously post

events, but only one thread—the local thread of the active object—needs to be able

to remove events from the queue. In other words, the event queue in QF needs

multiple-write but only single-read access.

From the description so far, it should be clear that the event queue is quite a

sophisticated mechanism. One end of the queue—the end where producers insert

events—is obviously shared among many tasks and interrupts and must provide an

adequate mutual exclusion mechanism to protect the internal consistency of the queue.

The other end—the end from which the local active object thread extracts events—must

provide a mechanism for blocking the active object when the queue is empty. In

addition, an event queue must manage a buffer of events, typically organized as a

ring buffer.

As shown in Figure 6.13 in Chapter 6, the “zero copy” event queues do not store actual

events, only pointers to event instances. Typically these pointers point to event

instances allocated dynamically from event pools (see Section 7.5.2), but they can

also point to statically allocated events. You need to specify the maximum number of

event pointers that a queue can hold at any one time when you start the active object

with the QActive_start() function (see the next section). The correct sizing of

event queues depends on many factors and generally is not a trivial task. I discuss

sizing event queues in Chapter 9.

Many commercial RTOSs natively support queuing mechanisms in the form of

message queues. Standard message queues are far more complex than required by

active objects because they typically allow multiple-write as well as multiple-read

access (the QF requires only single-read access) and often support variable-length data

(not only pointer-sized data). Usually message queues also allow blocking when the

queue is empty and when the queue is full, and both types of blocking can be timed

out. Naturally, all this extra functionality, which you don’t really need in QF, comes

at an extra cost in CPU and memory usage. The QF port to the mC/OS-II RTOS
www.newnespress.com

330 Chapter 7
described in Chapter 8 provides an example of an event queue implemented with a

message queue of an RTOS. The standalone QF ports to x86/DOS and ARM

Cortex-M3 (used in the “Fly ‘n’ Shoot” game from Chapter 1) provide examples of

using the native QF event queue. I discuss the native QF active object queue

implementation in Section 7.8.3.
7.4.3 Thread of Execution and Active Object Priority

Every QF active object executes in its own thread. The actual control flow within the

active object thread depends on the multitasking model actually used, but the event

processing always consists of the three essential steps shown in Listing 7.8.
Listing 7.8 The three steps of an active object thread

(1) QEvent const *e = QActive_get_(a); /* get the next event for AO ‘a’ */
(2) QF_ACTIVE_DISPATCH_(&a->super, e); /* dispatch to the AO ‘a’ */
(3) QF_gc(e); /* determine if event ‘e’ is garbage and collect it if so */
(1) The event is extracted from the active object’s event queue by means of

the function QActive_get_(). This function might block in blocking kernels.

In Section 7.8.3 I describe the implementation of QActive_get_() for the native

QF active object queue. In Chapter 8 I describe the QActive_get_()

implementation when a message queue of an RTOS is used instead of the

native QF event queue.

(2) The event is dispatched to the active object’s state machine for processing (see

Listing 7.7 (5) for the definition of the QF_ACTIVE_D ISPATCH_() macro).
NOTE

Step 2 constitutes the RTC processing of the active object’s state machine. The active

object’s thread continues only after step 2 completes.
(3) The event is passed to the QF garbage collector for recycling. As described in

Section 6.5.5 in Chapter 6, the garbage collector actually recycles the event only

when it determines that the event is no longer referenced.
www.newnespress.com

331Real-Time Framework Implementation
In the presence of a traditional RTOS (e.g., VxWorks) or a multitasking

operating system (e.g., Linux), the three event processing steps just explained

are enclosed by the usual endless loop, as shown in Figure 6.12(A) in Chapter 6.

Under a cooperative “vanilla” kernel (Figure 6.12(B)) or an RTC kernel

(Figure 6.12(C)), the three steps are executed in one-shot fashion for

every event.

The QActive_start() function creates the active object’s thread and notifies QF to

start managing the active object. A QF application needs to call the QActive_start()

function on behalf of every active object in the system. In principle, active objects

can be started and stopped (with QActive_stop()) multiple times during the lifetime of

the application. However, in most cases, all active objects are started just once during

the system initialization.

The QActive_start() function is one of the central elements of the framework,

but obviously it strongly depends on the underlying multitasking kernel. Listing 7.9

shows the pseudocode of QActive_start().
Listing 7.9 QActive_start() function pseudocode

(1) void QActive_start(QActive *me,
(2) uint8_t prio, /* the unique priority */
(3) QEvent const *qSto[], uint32_t qLen, /* event queue */
(4) void *stkSto, uint32_t stkSize, /* per-task stack */
(5) QEvent const *ie) /* the initialization event */

{
(6) me->prio = prio; /* set the QF priority */
(7) QF_add_(me); /* make QF aware of this active object */
(8) QF_ACTIVE_INIT_(me, ie); /* execute the initial transition */

(9) Initialize the event queue object ‘me->eQueue’ using qSto and qLen
(10) Create and start the thread ‘me->thread’ of the underlying kernel

}

(1) The argument ‘me’ is the pointer to the active object being started.

(2) The argument ‘prio’ is the priority you assign to the active object. In QF,

every active object must have a unique priority, which you assign at startup and

cannot change later. QF uses a priority numbering system in which priority 1 is

the lowest and higher numbers correspond to higher priorities.
www.newnespress.com

NOTE

You can think of QF priority 0 as corresponding to the idle task, which has the absolute

lowest priority not accessible to the application-level tasks.

332 Chapter 7
(3) The arguments ‘qSto’ and ‘qLen’ are a pointer to the storage for the event queue

buffer and the length of that buffer (in units of QEvent*), respectively. If the

underlying RTOS cannot accept externally allocated storage for the queue, the

‘qSto’ pointer should be set to NULL.

(4) The argument ‘stkSto’ is the pointer to the storage for the private stack, and

the argument ‘stkSize’ is the size of that stack (in bytes).

If the underlying kernel/RTOS does not need per-task stacks or cannot accept

externally allocated storage for the stack, the ‘stkSto’ pointer should be set

to NULL.

(5) The argument ‘ie’ is a pointer to initialization event for the topmost initial

transition in the active object state machine. This argument is very specific to

the active object being initialized and can be NULL.
NOTE

The “initialization event” ‘ie’ gives you an opportunity to provide some information to the active

object, which is only known later in the initialization sequence (e.g., a window handle in a GUI

system). Note that the active object constructor runs even before main() (in C++), at which time

you typically don’t have all the information to initialize all aspects of an active object.
(6) The QF priority of the active object is set.

(7) The active object is registered with the QF framework. The QF_add_() function

asserts that the priority of the active object is in range and is not already used

(unique priority).

(8) The topmost initial transition in the active object’s state machine is taken (see

Listing 7.7 (4) for the definition of the QF_ACTIVE_I NIT_() macro). Note that

the initial transition is executed in the same thread that called QActive_start(),

which often is the main() thread.
www.newnespress.com

NOTE

This design allows the initialization event (passed to QActive_start() as the ‘ie’

pointer) to be allocated on the stack of the caller. Note that the initialization event is not
recycled.

333Real-Time Framework Implementation
(9) The QActive_start() function initializes the event queue attribute

me->eQueue, typically using the storage for the queue buffer (qSto[]), and

the length of this buffer (qLen).

(10) Finally, the thread (task) of the active object is created and the further

execution of the active object occurs in that newly created task context.

The priority of the thread should correspond to the relative QF priority

passed as the argument ‘prio’ to QActive_start(). If the underlying

scheduler uses a different priority numbering scheme, the concrete

implementation of QActive_start() must remap the QF priority to

the priority required by the scheduler before invoking the platform-specific

thread creation routine.
7.5 Event Management in QF

QF implements the efficient “zero-copy” event delivery scheme, as described in

Section 6.5 in Chapter 6. QF supports two kinds of events: (1) dynamic events

managed by the framework, and (2) other events (typically statically allocated)

not managed by QF. For each dynamic event, QF keeps track of the reference

counter of the event (to know when to recycle the event) as well as the event

pool from which the dynamic event was allocated (to recycle the event back to

the same pool).
7.5.1 Event Structure

QF uses the same event representation as the QEP event processor described in

Part I. Events in QF are represented as instances of the QEvent structure

(shown in Listing 7.10), which contains the event signal sig and a byte dynamic_

to represent the internal “bookkeeping” information about the event.
www.newnespress.com

Listing 7.10 QEvent structure defined in <qp>\qpc\include\qevent.h

typedef struct QEventTag { /* QEvent base structure */
QSignal sig; /* public signal of the event instance */
uint8_t dynamic_; /* attributes of a dynamic event (0 for static event) */

} QEvent;

334 Chapter 7
As shown in Figure 7.4, the QF framework uses the QEvent.dynamic_ data byte

in the following way.4 The six least-significant bits [0..5] represent the reference

counter of the event, which has the dynamic range of 0..63. The two most

significant bits [6..7] represent the event pool ID of the event, which has the

dynamic range of 1..3. The pool ID of zero is reserved for static events, that is,

events that do not come from any event pool. With this representation, a static

event has a unique, easy-to-check signature (QEvent.dynamic_ == 0).

Conversely, the signature (QEvent.dynamic_ != 0) unambiguously identifies

a dynamic event.
NOTE

The QEvent data member dynamic_ is used only by the QF framework for managing

dynamic events (see the following section). For every static event, you must initialize this

member to zero. Otherwise, the QEvent.dynamic_ data member should never be of interest

to the application code.

4 I avoid using bit fields because they are not quite portable. Also, the use of bit fields would be against the

required MISRA rule 111.

01234567

reference counter (0..63)event pool ID (1..3);
event pool ID of 0 identifies a static event

QEvent . dynamic_ :

Figure 7.4: Allocation of bits in the QEvent.dynamic_ byte.

www.newnespress.com

335Real-Time Framework Implementation
7.5.2 Dynamic Event Allocation

Dynamic events allow reusing the same memory over and over again for passing

different events. QF allocates such events dynamically from one of the event pools

managed by the framework. An event pool in QF is a fixed-block-size heap, also known

as a memory partition or memory pool.

The most obvious drawback of a fixed-block-size heap is that it does not support

variable-sized blocks. Consequently, the blocks have to be oversized to handle the

biggest possible allocation. A good compromise to avoid wasting memory is to use

not one but a few heaps with blocks of different sizes. QF can manage up to three

event pools (e.g., small, medium, and large events, like shirt sizes).

Event pools require initialization through QF_poolInit() function shown in

Listing 7.11. An application may call this function up to three times to initialize up

to three event pools in QF.
Listing 7.11 Initializing an event pool to be managed by QF
(file <qp>\qpc\qf\source\qf_pool.c)

/* Package-scope objects --*/

(1) QF_EPOOL_TYPE_ QF_pool_[3]; /* allocate 3 event pools */

(2) uint8_t QF_maxPool_; /* number of initialized event pools */

/*..*/

(3) void QF_poolInit(void *poolSto, uint32_t poolSize, QEventSize evtSize) {

/* cannot exceed the number of available memory pools */

(4) Q_REQUIRE(QF_maxPool_ < (uint8_t)Q_DIM(QF_pool_));

/* please initialize event pools in ascending order of evtSize: */

(5) Q_REQUIRE((QF_maxPool_ == (uint8_t)0)

|| (QF_EPOOL_EVENT_SIZE_(QF_pool_[QF_maxPool_ - 1]) < evtSize));
/* perform the platform-dependent initialization of the pool */

(6) QF_EPOOL_INIT_(QF_pool_[QF_maxPool_], poolSto, poolSize, evtSize);
(7) ++QF_maxPool_; /* one more pool */

}

(1) The macro QF_EPOOL_TYPE_ represents the QF event pool type. This macro

lets the QF port define a particular memory pool (fixed-size heap) implementation

that might be already provided with the underlying kernel or RTOS. If QF is

used standalone or if the underlying RTOS does not provide an adequate

memory pool, the QF framework provides the efficient native QMPool class.
www.newnespress.com

336 Chapter 7
Note that an event pool object is quite small because it does not contain the

actual memory managed by the pool (see Section 7.9).

(2) The variable QF_maxPool_ holds the number of pools actually used, which can

be 0 through 3.
NOTE

All QP components, including the QF framework, consistently assume that variables without

an explicit initialization value are initialized to zero upon system startup, which is a require-

ment of the ANSI-C standard. In embedded systems, this initialization step corresponds to

clearing the .BSS section. You should make sure that in your system the .BSS section is

indeed cleared before main() is called.
(3) According to the general policy of QF, all memory needed for the framework

operation is provided to the framework by the application. Therefore, the first

parameter ‘poolSto’ of QF_poolInit() is a pointer to the contiguous chunk of

storage for the pool. The second parameter ‘poolSize’ is the size of the pool

storage in bytes, and finally, the last parameter ‘evtSize’ is the maximum

event size that can be allocated from this pool.
NOTE

The number of events in the pool might be smaller than the ratio poolSize/evtSize

because the pool might choose to internally align the memory blocks. However, the pool is

guaranteed to hold events of at least the specified size evtSize.
(4) This precondition (see Section 6.7.3, “Customizable Assertions in C/C++”) asserts

that the application does not attempt to initialize more than the supported number

of event pools (currently three).

(5) For possibly quick event allocation, the event pool array QF_pool_[]

must be sorted in ascending order of block sizes. This precondition asserts

that the application initializes event pools in the increasing order of the

event sizes. This assertion significantly simplifies the QF_poolInit()

function without causing any true inconvenience for the application

implementer.
www.newnespress.com

NOTE

The subsequent calls to QF_poolInit() function must be made with progressively increas-

ing values of the evtSize parameter.

337Real-Time Framework Implementation
(6) The macro QF_EPOOL_INIT_() specifies the initialization function for the event

pool object. In case of the native QF memory pool, the macro is defined as the

QMPool_init() function.

(7) Finally, the variable QF_maxPool_ is incremented to indicate that one more pool

has been initialized.

Listing 7.12 shows the implementation of the QF_new_() function, which allocates a

dynamic event from one of the event pools managed by QF. The basic policy is to allocate

the event from the first pool that has a block size big enough to fit the requested event size.
Listing 7.12 Simple policy of allocating an event from the smallest event-size
pool (file <qp>\qpc\qf\source\qf_new.c)

(1) QEvent *QF_new_(QEventSize evtSize, QSignal sig) {

QEvent *e;

/* find the pool id that fits the requested event size . . . */
uint8_t idx = (uint8_t)0;

(2) while (evtSize > QF_EPOOL_EVENT_SIZE_(QF_pool_[idx])) {
++idx;

(3) Q_ASSERT(idx < QF_maxPool_); /* cannot run out of registered pools */

}

(4) QF_EPOOL_GET_(QF_pool_[idx], e); /* get e -- platform-dependent */
(5) Q_ASSERT(e != (QEvent *)0); /* pool must not run out of events */

(6) e->sig = sig; /* set signal for this event */

/* store the dynamic attributes of the event:

* the pool ID and the reference counter == 0

*/

(7) e->dynamic_ = (uint8_t)((idx + 1) << 6);

(8) return e;

}

(1) The function QF_new_() allocates a dynamic event of the requested size

‘evtSize’ and sets the signal ‘sig’ in the newly allocated event. The function

returns a pointer to the event.
www.newnespress.com

338 Chapter 7
(2) This while loop scans through the QF_pool_[] array starting from pool id = 0

in search of a pool that would fit the requested event size. Obtaining the event

size of a pool is a platform-specific operation because various RTOSs that support

fixed-size heaps might report the event size in a different way. This platform

dependency is hidden in the QF code by the indirection layer of the macro

QF_EPOOL_EVENT_SIZE_().

(3) This assertion fires when the while loop runs out of the event pools, which means

that the requested event is too big for all initialized event pools.

(4) The macro QF_EPOOL_GET_() obtains a memory block from the pool found in

the previous step.

(5) The assertion fires when the pool returns the NULL pointer, which indicates

depletion of this pool.
NOTE

The QF framework treats the inability to allocate an event as an error. The assertions in lines

3 and 5 are part of the event delivery guarantee policy. It is the application designer’s respon-

sibility to size the event pools adequately so that they never run out of events.
(6) The signal of the event is initialized.

(7) The two most significant bits of the e->dynamic_ byte are set to the pool ID,

whereas the pool ID is the index into the QF_pool_[] array incremented by one

to fall in the range 1..3. At the same time, the reference counter of the event in

the six least significant bits of the e->dynamic_ byte is set to zero.

(8) The event is returned to the caller.

Typically, you will not use QF_new_() directly but through the Q_NEW() macro

defined as follows:
#define Q_NEW(evtT_, sig_) ((evtT_ *)QF_new_(sizeof(evtT_), (sig_)))

The Q_NEW() macro dynamically creates a new event of type evT_ with the signal

sig_. It returns a pointer to the event already cast to the event type (evtT_*). Here is

an example of dynamic event allocation with the macro Q_NEW():
www.newnespress.com

339Real-Time Framework Implementation
MyEventXYZ *e_xyz = Q_NEW(MyEventXYZ, XYZ_SIG); /* dynamically allocate */
/* NOTE: no need to check for validity of the event pointer */
e_xyz->foo = . . .; /* fill the event parameters. . . */
QF_publish((QEvent *)e_xyz); /* publish the event */

The assertions inside QF_new_() guarantee that the pointer is valid, so you don’t

need to check the pointer returned from Q_NEW(), unlike the value returned

from malloc(), which you should check.
NOTE

In C++, the Q_NEW() macro does not invoke the constructor of the event. This is not a prob-

lem for the QEvent base struct and simple structs derived from it. However, you need

to keep in mind that subclasses of QEvent should not introduce virtual functions because the

virtual pointer won’t be set up during the dynamic allocation through Q_NEW().5
7.5.3 Automatic Garbage Collection

Most of the time, you don’t need to worry about recycling dynamic events, because

QF does it automatically when it detects that an event is no longer referenced.
NOTE

The explicit garbage collection step is necessary only in the code that is out of the frame-

work’s control, such as ISRs receiving events from “raw” thread-safe queues (see upcoming

Section 7.8.4).
QF uses the standard reference-counting algorithm to keep track of the outstanding

references to each dynamic event managed by the framework. The reference

counter for each event is stored in the six least significant bits of the event attribute

dynamic_. Note that the data member dynamic_ of a dynamic event cannot be

zero because the two most significant bits of the byte hold the pool ID, with valid

values of 1, 2, or 3.
5 A simple solution would be to use the placement new() operator inside the Q_NEW() macro to enforce

full instantiation of an event object, but it is currently not used, for better efficiency and compatibility

with older C++ compilers, which might not support placement new().

www.newnespress.com

340 Chapter 7
The reference counter of each event is always updated and tested in a critical section

of code to prevent data corruption. The counter is incremented whenever a dynamic

event is inserted into an event queue. The counter is decremented by the QF garbage

collector, which is called after every RTC step (see Listing 7.8(3)). When the

reference counter of a dynamic event drops to zero, the QF garbage collector

recycles the event back to the event pool number stored in the two most significant

bits of the dynamic_ attribute.
(1) void QF_gc(QEvent const *e) {

(2) if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

(3) QF_INT_LOCK_KEY_

(4) QF_INT_LOCK_();

(5) if ((e->dynamic_ & 0x3F) > 1) { /* isn’t this the last reference? */

(6) --((QEvent *)e)->dynamic_; /* decrement the reference counter */

(7) QF_INT_UNLOCK_();

}

(8) else { /* this is the last reference to this event, recycle it */

(9) uint8_t idx = (uint8_t)((e->dynamic_ >> 6) - 1);

(10) QF_INT_UNLOCK_();

(11) Q_ASSERT(idx < QF_maxPool_); /* index must be in range */

(12) QF_EPOOL_PUT_(QF_pool_[idx], (QEvent *)e);
}

}

}

(1) The function QF_gc() garbage-collects one event at a time.

(2) The function checks the unique signature of a dynamic event. The garbage

collector handles only dynamic events.

(3) The critical section status is allocated on the stack (see Section 7.3.3).

(4) Interrupts are locked to examine and decrement the reference count.

(5) If the reference count (lowest 6 bits of the e->dynamic_ byte) is greater than 1,

the event should not be recycled.

(6) The reference count is decremented. Note that the const attribute of the event

pointer is “cast away,” but this is safe after checking that this must be a dynamic

event (and not a static event possibly placed in ROM).

(7) Interrupts are unlocked for the if-branch.
www.newnespress.com

341Real-Time Framework Implementation
(8) Otherwise, reference count is becoming zero and the event must be recycled.

(9) The pool ID is extracted from the two most significant bits of the e->dynamic_

byte and decremented by one to form the index into the QF_pool_[] array.

(10) Interrupts are unlocked for the else branch. It is safe at this point because you

know for sure that the event is not referenced by anybody else, so it is

exclusively owned by the garbage collector thread.

(11) The index must be in the expected range of initialized event pools.

(12) The macro QF_EPOOL_PUT_()recycles the event to the pool QF_pool_[idx].

The explicit cast removes the const attribute.
7.5.4 Deferring and Recalling Events

Event deferral comes in very handy when an event arrives in a particularly inconvenient

moment but can be deferred for some later time, when the system is in a much better

position to handle the event (see “Deferred Event” state pattern in Chapter 5). QF

supports very efficient event deferring and recalling mechanisms consistent with the

“zero-copy” policy.

QF implements explicit event deferring and recalling through QActive class functions

QActive_defer() and QActive_recall(), respectively. These functions work

in conjunction with the native “raw” event queue provided in QF (see upcoming

Section 7.8.4). Listing 7.13 shows the implementation.
Listing 7.13 QF event deferring and recalling
(file <qp>\qpc\qf\source\qa_defer.c)

void QActive_defer(QActive *me, QEQueue *eq, QEvent const *e) {

(void)me; /* avoid compiler warning about ‘me’ not used */

(1) QEQueue_postFIFO(eq, e); /* increments ref-count of a dynamic event */

}

/*...*/

(2) QEvent const *QActive_recall(QActive *me, QEQueue *eq) {

(3) QEvent const *e = QEQueue_get(eq); /* get an event from deferred queue */

if (e != (QEvent *)0) { /* event available? */

QF_INT_LOCK_KEY_

(4) QActive_postLIFO(me, e); /* post it to the front of the AO’s queue */

(5) QF_INT_LOCK_();

(6) if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

Continued onto next page

www.newnespress.com

(7) Q_ASSERT((e->dynamic_ & 0x3F) > 1);

(8) --((QEvent *)e)->dynamic_; /* decrement the reference counter */

}

(9) QF_INT_UNLOCK_();

}

(10) return e; /*pass the recalled event to the caller (NULL if not recalled) */

}

342 Chapter 7
(1) The function QActive_defer() posts the deferred event into the given

“raw” queue ‘eq.’ The event posting increments the reference counter of a

dynamic event, so the event is not recycled at the end of the current RTC step

(because it is referenced by the “raw” queue).

(2) The function QActive_recall() attempts recalling an event from the provided

“raw” thread-safe queue ‘eq.’ The function returns the pointer to the recalled

event or NULL if the provided queue is empty.

(3) The event is extracted from the queue. The “raw” queue never blocks and returns

NULL if it is empty.

(4) If an event is available, it is posted using the last-in, first-out (LIFO) policy

into the event queue of the active object. The LIFO policy is employed to

guarantee that the recalled event will be the very next to process. If other

already queued events were allowed to precede the recalled event, the state

machine might transition to a state where the recalled event would no longer

be convenient.

(5) Interrupts are locked to decrement the reference counter of the event, to account

for removing the event from the “raw” thread-safe queue.

(6) The unique signature of a dynamic event is checked.

(7) The reference counter must be at this point at least 2 because the event is

referenced by at least two event queues (the deferred queue and the active

object’s queue).

(8) The reference counter is decremented by one to account for removing the event

from the deferred queue.

(9) Interrupts are unlocked.

(10) The recalled event pointer is returned to the caller.
www.newnespress.com

NOTE

Even though you can “peek” inside the event right at the point it is recalled, you should

typically handle the event only after it arrives through the active object’s queue. See the

“Deferred Event” state pattern in Chapter 5.

343Real-Time Framework Implementation
7.6 Event Delivery Mechanisms in QF

QF supports only asynchronous event exchange within the application, meaning

that the producers post events into event queues, but do not wait for the

actual processing of the events. QF supports two types of asynchronous event

delivery:

1. The simple mechanism of direct event posting, when the producer of

an event directly posts the event to the event queue of the consumer active

object.

2. A more sophisticated publish-subscribe event delivery mechanism,

where the producers of events publish them to the framework and the

framework then delivers the events to all active objects that had subscribed

to this event.
7.6.1 Direct Event Posting

QF supports direct event posting through the QActive_postFIFO() and

QActive_postLIFO() functions. These functions depend on the active object’s

employed queue mechanism. In the upcoming Section 7.8.3, I show how these

functions are implemented when the native QF active object queue is used.

In Chapter 8, I demonstrate how to implement these functions to use a message

queue of a traditional RTOS.
NOTE

Direct event posting should not be confused with event dispatching. In contrast to asynchro-

nous event posting through event queues, direct event dispatching is a simple synchronous

function call. Event dispatching occurs when you call the QHsm_dispatch() function, as

in Listin g 7.8 (2), for exampl e.

www.newnespress.com

344 Chapter 7
Direct event posting is illustrated in the “Fly ‘n’ Shoot” example from Chapter 1, when

an ISR posts a PLAYER_SHIP_MOVE event directly to the Ship active object:
QActive_postFIFO(AO_Ship, (QEvent *)e); /* post event ‘e’ to the Ship AO */

Note that the producer of the event (ISR) in this case must only “know” the recipient

(Ship) by an “opaque pointer” QActive*, and the specific definition of the Ship active

object structure is not required. The AO_Ship pointer is declared in the game.h

header file as:
extern QActive * const AO_Ship; /* opaque pointer to the Ship AO */

The Ship structure definition is in fact entirely encapsulated in the ship.c module and

is inaccessible to the rest of the application. I recommend using this variation of the

“opaque pointer” technique in your applications.
7.6.2 Publish-Subscribe Event Delivery

QF implements publish-subscribe event delivery through the following services:

� The function QF_psInit() to initialize the publish-subscribe mechanism

� Functions QActive_subscribe(), QActive_unsubscribe(), and

QActive_unsubscribeAll() for active objects to subscribe and unsubscribe

to particular event signals

� The function QF_publish() for publishing events

Delivering events is the most frequently performed function of the framework;

therefore, it is important to implement it efficiently. As shown in Figure 7.5,

QF uses a lookup table indexed by the event signal to efficiently find all

subscribers to a given signal. For each event signal index (e->sig), the

lookup table stores a subscriber list. A subscriber list (typedef’d to

QSubscrList) is just a densely packed bitmask where each bit corresponds

to the unique priority of the active object. If the bit is set, the corresponding

active object is the subscriber to the signal, otherwise the active object is not

the subscriber.
www.newnespress.com

[0]
[1]
[2]
[3]

[Q_USER_SIG]
. . .
. . .

[e->sig]
. . .

[QF_maxSignal_ -1]

QF_subscrList_

priority (bit number + 1)

bit-0

QSubscrList

Prio 15 not subscribed (0)
Prio 16 subscribed (1)

Prio 14 not subscribed (0)

16 15 13 12 11 10 914

1 0 0 1 0 0 0 1

. . .

Byte 1 (bits 8..15)

bit-31bit-63

Figure 7.5: Signal to Subscriber-List lookup table QF_subscrList_[].

345Real-Time Framework Implementation
The actual size of the QSubscrList bitmask is determined by the macro

QF_MAX_ACTIVE, which specifies the maximum active objects in the system (the

current range of QF_MAX_ACTIVE is 1..63). Subscriber list type QSubscrList

is typedef’ed in Listing 7.14.
Listing 7.14 QF_psInit()(file <qp>\qpc\include\qf.h)

typedef struct QSubscrListTag {
uint8_t bits[((QF_MAX_ACTIVE - 1) / 8) + 1];

} QSubscrList;
To reduce the memory taken by the subscriber lookup table, you have options to reduce

the number of published signals and reduce the number of potential subscribers

QF_MAX_ACTIVE. Typically, however, the table is quite small. For example, the table

for a complete real-life GPS receiver application with 50 different signals and up to

eight active objects costs 50 bytes of RAM.
NOTE

Not all signals in the system are published. To conserve memory, you can enumerate the

published signals before other nonpublished signals and thus arrive at a lower limit for the

number of published signals.

www.newnespress.com

346 Chapter 7
Before you can publish any event, you need to initialize the subscriber lookup table

by calling the function QF_psInit(), which is shown in Listing 7.15. This

function simply initializes the pointer to the lookup table QF_subscrList_ and

the number of published signals QF_maxSignal_ .
Listing 7.15 QF_psInit()(file <qp>\qpc\qf\source\qf_psini.c)

QSubscrList *QF_subscrList_; /* initialized to zero per C-standard */
QSignal QF_maxSignal_; /* initialized to zero per C-standard */

void QF_psInit(QSubscrList *subscrSto, QSignal maxSignal) {
QF_subscrList_ = subscrSto;
QF_maxSignal_ = maxSignal;

}

Active objects subscribe to signals through QActive_subscribe(), shown in

Listing 7.16.
Listing 7.16 QActive_subscribe() function
(file <qp>\qpc\qf\source\qa_sub.c)

(1) void QActive_subscribe(QActive const *me, QSignal sig) {
uint8_t p = me->prio;

(2) uint8_t i = Q_ROM_BYTE(QF_div8Lkup[p]);
QF_INT_LOCK_KEY_

(3) Q_REQUIRE(((QSignal)Q_USER_SIG <= sig)
&& (sig < QF_maxSignal_)
&& ((uint8_t)0 < p) && (p <= (uint8_t)QF_MAX_ACTIVE)
&& (QF_active_[p] == me));

QF_INT_LOCK_();
(4) QF_subscrList_[sig].bits[i] |= Q_ROM_BYTE(QF_pwr2Lkup[p]);

QF_INT_UNLOCK_();
}

(1) The function QActive_subscribe() subscribes a given active object ‘me’ to

the event signal ‘sig.’.

(2) The index ‘i’ represents the byte index into the multibyte QSubscrList bitmask

(see Listing 7.14). The array QF_div8Lkup[] is a lookup table that stores the
www.newnespress.com

347Real-Time Framework Implementation
precomputed values of the following expression: QF_div8Lkup[p] = (p – 1)/8,

where 0 < p < 64. The QF_div8Lkup[] lookup table is defined in the file

<qp>\qpc\qf\source\qf_pwr2.c and occupies 64 bytes of ROM.
NOTE

Obviously, you don’t want to use precious RAM for storing constant lookup tables. However,

some compilers for Harvard architecture MCUs (e.g., GCC for AVR) cannot generate code

for accessing data allocated in the program space (ROM), even though the compiler can allo-

cate constants in ROM. The workaround for such compilers is to explicitly add assembly

code to access data allocated in the program space. The macro Q_ROM_BYTE() retrieves a

byte from the given ROM address. This macro is transparent (i.e., copies its argument) for

compilers that can correctly access data in ROM.
(3) This precondition asserts that the signal is in range and that the priority of the

active object is in range as well. In addition, the assertion makes sure that the

active object is known to the framework under the priority it claims (the active

object becomes known to the framework through QActive_start(), which

invokes QF_add()).

(4) The bit corresponding to the active object’s priority is set in the subscriber list

within a critical section. The array QF_pwr2Lkup[] is a lookup table that stores

the precomputed values of the following expression: QF_pwr2Lkup[p] =

1 << ((p - 1) % 8), where 0 < p < 64. The QF_pwr2Lkup[] lookup table is

defined in the file <qp>\qpc\qf\source\qf_pwr2.c and occupies 64 bytes

of ROM.

I don’t explicitly discuss the mirror function QActive_unsubscribe(), but it is

virtually identical to QActive_subscribe() except that it clears the appropriate

bit in the subscriber bitmask. Note that both QActive_subscribe() and

QActive_unsubscribe() require an active object as the first parameter “ me,”

which means that only active objects are capable of subscribing or unsubscribing

to events.

The QF real-time framework implements event publishing with the function

QF_publish() shown in Listing 7.17. This function performs efficient “zero-copy”

event multicasting. QF_publish() is designed to be callable from both the task level

and the interrupt level.
www.newnespress.com

Listing 7.17 QF_publish() function
(file <qp>\qpc\qf\source\qf_pspub.c)

(1) void QF_publish(QEvent const *e) {

QF_INT_LOCK_KEY_

/* make sure that the published signal is within the configured range */

(2) Q_REQUIRE(e->sig < QF_maxSignal_);

QF_INT_LOCK_();

if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

/*lint -e1773 Attempt to cast away const */

(3) ++((QEvent *)e)->dynamic_; /* increment reference counter, NOTE01 */

}

QF_INT_UNLOCK_();

(4) #if (QF_MAX_ACTIVE <= 8)

{

(5) uint8_t tmp = QF_subscrList_[e->sig].bits[0];

(6) while (tmp != (uint8_t)0) {

(7) uint8_t p = Q_ROM_BYTE(QF_log2Lkup[tmp]);

(8) tmp &= Q_ROM_BYTE(QF_invPwr2Lkup[p]); /* clear subscriber bit */

(9) Q_ASSERT(QF_active_[p] != (QActive *)0); /* must be registered */

/* internally asserts if the queue overflows */

(10) QActive_postFIFO(QF_active_[p], e);

}

}

(11) #else

{

(12) uint8_t i = Q_DIM(QF_subscrList_[0].bits);

do { /* go through all bytes in the subscription list */

uint8_t tmp;

--i;

(13) tmp = QF_subscrList_[e->sig].bits[i];

while (tmp != (uint8_t)0) {

uint8_t p = Q_ROM_BYTE(QF_log2Lkup[tmp]);

tmp &= Q_ROM_BYTE(QF_invPwr2Lkup[p]);/*clear subscriber bit */

(14) p = (uint8_t)(p + (i << 3)); /* adjust the priority */

Q_ASSERT(QF_active_[p]!=(QActive*)0);/*mustberegistered*/

/* internally asserts if the queue overflows */

QActive_postFIFO(QF_active_[p], e);

}

} while (i != (uint8_t)0);

}

#endif

(15) QF_gc(e); /* run the garbage collector, see NOTE01 */

}

www.newnespress.com

348 Chapter 7

349Real-Time Framework Implementation
(1) The function QF_publish() publishes a given event ‘e’ to all subscribers.

(2) The precondition checks that the published signal is in initialized range (see

Listing 7.15).

(3) The reference counter of a dynamic event is incremented in a critical section. This

protects the event from being prematurely recycled before it reaches all

subscribers.

The QF_publish() function must ensure that the event is not recycled by a subscriber

before all the subscribers receive the event. For example, consider the following

scenario: A low-priority active object dynamically allocates an event with Q_NEW()

and publishes it by calling QF_publish() in its own thread of execution. In the course

of multicasting the event, QF_publish() posts the event to a high-priority active

object, which immediately preempts the current thread and starts processing the event.

After the RTC step, the high-priority active object calls the garbage collector (see

Listing 7.8(3)). If QF_publish() did not increment the event counter in step 3, the

counter would be only 1 because the event has only been posted once. The high-priority

active object would recycle the event. After resuming the low-priority thread, the

QF_publish() might want to keep posting the event to some other subscribers, but the

event would be already recycled.

(4) The conditional compilation is used to distinguish the simpler and faster case of

single-byte QSubscrList (see Listing 7.14).

(5) The entire subscriber bitmask is placed in a temporary byte.

(6) The while loop runs over all 1 bits set in the subscriber bitmask until the bitmask

becomes empty.

(7) The log-base-2 lookup quickly determines the most significant 1 bit in the

bitmask, which corresponds to the highest-priority subscriber. The structure of

the lookup table QF_log2Lkup[tmp], where 0 < tmp <= 255, is shown

in Figure 7.6. The QF_log2Lkup[] lookup table is defined in the file

<qp>\qpc\qf\source\qf_log2.c and occupies 256 bytes of ROM.
NOTE

To avoid priority inversions, the event is multicast starting from the highest-priority subscriber.

www.newnespress.com

350 Chapter 7
(8) The highest-priority subscriber bit is cleared in the temporary bitmask.

(9) The assertion makes sure that the active object with the given priority has been

registered in the QF framework.

(10) The event is posted to the subscriber, which always increments the reference

counter of a dynamic event.

(11) This conditional compilation branch is taken when the subscriber list contains

more than 1 byte. The algorithm in this case requires an additional loop to

run over all the bytes in the subscriber list.

(12) The counter of the loop over the bytes is initialized. The loop starts with the

highest-order bytes, which correspond to highest-priority subscribers.

(13) The algorithm in this case is essentially the same as for the single-byte

bitmask except that additional loop is added to run over all the bytes in the

subscriber list.

(14) The active object priority is adjusted by the byte number times 8, equivalent

to (i << 3).

(15) The garbage collection step balances the incrementing of the reference counter

in step 3. The call to garbage collector also covers the case when the event is

not subscribed by any active object, in which case the event needs to be

recycled right away.
0 byte value643242

m
os

t-
si

gn
ifi

ca
nt

 1
-b

it

1
2
3
4
5
6
7
8

8 12816 2561

QF_log2Lkup[]

y = log2(x)

Figure 7.6: The binary logarithm lookup table QF_log2Lkup[] maps byte
value to the most significant 1-bit number (bits are numbered starting with 1

for the LSB).

www.newnespress.com

351Real-Time Framework Implementation
7.7 Time Management

QF manages time through time events, as described in Section 6.6.1 of Chapter 6. In the

current QF version, time events cannot be dynamic and must be allocated statically.

Also, a time event must be assigned a signal upon instantiation (in the constructor) and

the signal cannot be changed later. This latter restriction prevents unexpected changes

of the time event while it still might be held inside an event queue.
7.7.1 Time Event Structure and Interface

QF represents time events as instances of the QTimeEvt class (see Figure 7.3).

QTimeEvt, as all events in QF, derives from the QEvent base structure. Typically,

you will instantiate the QTimeEvt structure directly, but you might also further

derive more specialized time events from it to add some more data members and/or

specialized functions that operate on the derived time events. Listing 7.18 shows

the QTimeEvt class, that is, the QTimeEvt structure declaration and the functions

to manipulate it.
Listing 7.18 QTimeEvt structure and interface
(file <qp>\qpc\include\qf.h)

typedef struct QTimeEvtTag {

(1) QEvent super; /* derives from QEvent */

(2) struct QTimeEvtTag *prev;/* link to the previous time event in the list */

(3) struct QTimeEvtTag *next; /* link to the next time event in the list */

(4) QActive *act; /* the active object that receives the time event */

(5) QTimeEvtCtr ctr; /* the internal down-counter of the time event */

(6) QTimeEvtCtr interval; /* the interval for the periodic time event */

} QTimeEvt;

(7) void QTimeEvt_ctor(QTimeEvt *me, QSignal sig);

(8) #define QTimeEvt_postIn(me_, act_, nTicks_) do { \

(me_)->interval = (QTimeEvtCtr)0; \

QTimeEvt_arm_((me_), (act_), (nTicks_)); \

} while (0)

(9) #define QTimeEvt_postEvery(me_, act_, nTicks_) do { \

(me_)->interval = (nTicks_); \

QTimeEvt_arm_((me_), (act_), (nTicks_)); \

} while (0)

Continued onto next page

www.newnespress.com

(10) uint8_t QTimeEvt_disarm(QTimeEvt *me);

(11) uint8_t QTimeEvt_rearm(QTimeEvt *me, QTimeEvtCtr nTicks);

/* private helper function */

(12) void QTimeEvt_arm_(QTimeEvt *me, QActive *act, QTimeEvtCtr nTicks);

352 Chapter 7
(1) The QTimeEvt structure derives from QEvent.

(2,3) The two pointers ‘prev’ and ‘next’ are used as links to chain the time events

into a bidirectional list (see Figure 7.7).

(4) The active object pointer ‘act’ stores the recipient of the time event.

(5) The member ‘ctr’ is the internal down-counter decremented in every

QF_tick() invocation (see the next section). The time event is posted when

the down-counter reaches zero.

(6) The member ‘interval’ is used for the periodic time event (it is set to zero for the

one-shot time event). The value of the interval is reloaded to the ‘ctr’ down-counter

when the time event expires, so the time event keeps timing out periodically.

(7) Every time event must be initialized with the constructor QTimeEvt_ctor().

You should call the constructor exactly once for every time event object

before arming the time event. The most important action performed in this

function is assigning a signal to the time event. You can reuse the time event

any number of times, but you should not change the signal. This is because

a pointer to the time event might still be held in an event queue and changing

the signal could lead to subtle and hard-to-find errors.

(8) The macro QTimeEvt_postIn() arms a time event ‘me_’ to fire once in

‘nTicks_’ clock ticks (a one-shot time event). The time event gets directly

posted (using the FIFO policy) into the event queue of the active object ‘act_.’

After posting, a one-shot time event gets automatically disarmed and can be

reused for a one-shot or periodic timeout requests.

(9) The macro QTimeEvt_postEvery() arms a time event ‘me_’ to fire

periodically every ‘nTicks_’ clock ticks (periodic time event). The time event

gets directly posted (using the FIFO policy) into the event queue of the active

object ‘act_’. After posting, the periodic time event gets automatically rearmed

to fire again in the specified ‘nTicks_’ clock ticks.
www.newnespress.com

353Real-Time Framework Implementation
(10) The function QTimeEvt_disarm() explicitly disarms any time event (one-shot

or periodic). The time event can be reused immediately after the call to

QTimeEvt_disarm(). The function returns the status of the disarming

operation: 1 if the time event has been actually disarmed and 0 if the time event

has already been disarmed.

(11) The function QTimeEvt_rearm() reloads the down-counter ‘ctr’ with the

specified number of clock ticks. The function returns the status of the rearming

operation: 1 if the time event has been actually armed and 0 if the time event

has been disarmed. In the latter case, the QTimeEvt_rearm() function arms the

time event.

(12) The helper function QTimeEvt_arm_() inserts the time event into the linked list

of armed timers. This function is used in the QTimeEvt_postIn() and

QTimeEvt_postEvery() macros.
NOTE

An attempt to arm an already armed time event (one-shot or periodic) raises an assertion. If

you’re not sure that the time event is disarmed, call the QTimeEvt_disarm() function

before reusing the time event.

QF_timeEvtListHead_

. . .

prev

next

:TimeEvt

. . .

prev

next

:TimeEvt

. . .

prev

next

:TimeEvt

. . .

prev

next

:TimeEvt

NULL

. . .

. . .

. . .

prev

next

:TimeEvt

. . .

prev

next

:TimeEvtNULL NULL

armed Time Events

disarmed Time Events

Figure 7.7: Armed QTimeEvt objects linked in a bidirectional linked list
and disarmed time events outside the list.

www.newnespress.com

354 Chapter 7
Figure 7.7 shows the internal representation of armed and disarmed time events. QF

chains all armed time events in a bidirectional linked list. The list is scanned from the

head at every system clock tick. The list is not sorted in any way. Newly armed time

events are always inserted at the head. When a time event gets disarmed, either

automatically when a one-shot timer expires or explicitly when the application calls

QTimeEvt_disarm(), the time event is simply removed from the list. Removing

an object from a bidirectional list is a quick, deterministic operation. In particular,

the list does not need to be rescanned from the head. Disarmed time events remain

outside the list and don’t consume any CPU cycles.
7.7.2 The System Clock Tick and the QF_tick() Function

To manage time events, QF requires that you invoke the QF_tick() function from a

periodic time source called the system clock tick (see Chapter 6, “System Clock Tick”).

The system clock tick typically runs at a rate between 10Hz and 100Hz.

Listing 7.19 shows the implementation of QF_tick(). This function is designed to

be called from both the interrupt context and the task-level context, in case the

underlying OS/RTOS does not allow accessing interrupts or you want to keep the ISRs

very short. QF_tick() must always run to completion and never preempt itself.

In particular, if QF_tick() runs in an ISR context, the ISR must not be allowed

to preempt itself. In addition, QF_tick() should not be called from two different

ISRs, which potentially could preempt each other. When executed in a task context,

QF_tick() should be called by one task only, ideally by the highest-priority task.
Listing 7.19 QF_tick() function (file <qp>\qpc\qf\source\qf_tick.c)

void QF_tick(void) { /* see NOTE01 */

QTimeEvt *t;

QF_INT_LOCK_KEY_

(1) QF_INT_LOCK_();

(2) t = QF_timeEvtListHead_; /* start scanning the list from the head */

(3) while (t != (QTimeEvt *)0) {

(4) if (--t->ctr == (QTimeEvtCtr)0) { /* is time evt about to expire? */

(5) if (t->interval != (QTimeEvtCtr)0) { /* is it periodic timeout? */

(6) t->ctr = t->interval; /* rearm the time event */

}

(7) else { /* one-shot timeout, disarm by removing it from the list */

(8) if (t == QF_timeEvtListHead_) {

www.newnespress.com

(9) QF_timeEvtListHead_ = t->next;

}

(10) else {

(11) if (t->next != (QTimeEvt *)0) { /* not the last event? */

(12) t->next->prev = t->prev;

}

(13) t->prev->next = t->next;

}

(14) t->prev = (QTimeEvt *)0; /* mark the event disarmed */

}

(15) QF_INT_UNLOCK_();/* unlock interrupts before calling QF service */

/* postFIFO() asserts internally that the event was accepted */

(16) QActive_postFIFO(t->act, (QEvent *)t);

}

(17) else {

static uint8_t volatile dummy;

(18) QF_INT_UNLOCK_();

(19) dummy = (uint8_t)0; /* execute a few instructions, see NOTE02 */

}

(20) QF_INT_LOCK_(); /* lock interrupts again to advance the link */

(21) t = t->next;

}

(22) QF_INT_UNLOCK_();

}

355Real-Time Framework Implementation
(1) Interrupts are locked before accessing the linked list of time events.

(2) The internal QF variable QF_timeEvtListHead_ holds the head of the linked

list.

(3) The loop continues until the end of the linked list is reached (see Figure 7.7).

(4) The down-counter of each time event is decremented. When the counter

reaches zero, the time event expires.

(5) The ‘interval’ member is nonzero only for a periodic time event.

(6) The down-counter of a periodic time event is simply reset to the interval value.

The time event remains armed in the list.

(7) Otherwise the time event is a one-shot and must be disarmed by removing it

from the list.

(8-13) These lines of code implement the standard algorithm of removing a node from

a bidirectional list.
www.newnespress.com

356 Chapter 7
(14) A time event is internally marked as disarmed by writing NULL to the ‘prev’

link.

(15) Interrupts can be unlocked after the bookkeeping of the linked list is done.

(16) The time event posts itself to the event queue of the active object.

(17) The else branch is taken when the time event is not expiring on this tick.

(18) Interrupts can be unlocked.

(19) On many CPUs, the interrupt unlocking takes effect only on the next machine

instruction, which happens here to be an interrupt lock instruction (line (20)). The

assignment of the volatile ‘dummy’ variable requires a few machine instructions,

which the compiler cannot optimize away. This ensures that the interrupts

actually get unlocked so that the interrupt latency stays low.
NOTE

The critical section lasts for only one time event, not for the whole list.
(20) Interrupts are locked again for another pass through the loop.

(21) The time event node pointer is advanced to the next timer in the list.

(22) Interrupts are unlocked before the function returns.
7.7.3 Arming and Disarming a Time Event

Listing 7.20 shows the helper function QTimeEvt_arm_() for arming a time event.

This function is used inside the macros QTimeEvt_postIn() and

QTimeEvt_postEvery() for arming a one-shot or periodic time event, respectively.
Listing 7.20 QTimeEvt_arm_() (file <qp>\qpc\qf\source\qte_arm.c)

void QTimeEvt_arm_(QTimeEvt *me, QActive *act, QTimeEvtCtr nTicks) {

QF_INT_LOCK_KEY_

Q_REQUIRE((nTicks > (QTimeEvtCtr)0) /* cannot arm a timer with 0 ticks */

&& (((QEvent *)me)->sig >= (QSignal)Q_USER_SIG)/*valid signal */

www.newnespress.com

(1) && (me->prev == (QTimeEvt *)0) /* time evt must NOT be used */

&& (act != (QActive *)0)); /* active object must be provided */

me->ctr = nTicks;

(2) me->prev = me; /* mark the timer in use */

me->act = act;

QF_INT_LOCK_();

(3) me->next = QF_timeEvtListHead_;

(4) if (QF_timeEvtListHead_ != (QTimeEvt *)0) {

(5) QF_timeEvtListHead_->prev = me;

}

(6) QF_timeEvtListHead_ = me;

QF_INT_UNLOCK_();

}

357Real-Time Framework Implementation
(1) The preconditions include checking that the time event is not already in use.

A used time event has always the ‘prev’ pointer set to non-NULL value.

(2) The ‘prev’ pointer is initialized to point to self, to mark the time event in

use (see also Figure 7.7).

(3) Interrupts are locked to insert the time event into the linked list. Note that

until that point the time event is not armed, so it cannot unexpectedly change

due to asynchronous tick processing.

(3-6) These lines of code implement the standard algorithm of inserting a link into

a bidirectional list at the head position.

Listing 7.21 shows the function QTimeEvt_disarm() for explicitly disarming a

time event.
Listing 7.21 QTimeEvt_disarm()
(file <qp>\qpc\qf\source\qte_darm.c)

uint8_t QTimeEvt_disarm(QTimeEvt *me) {

uint8_t wasArmed;

QF_INT_LOCK_KEY_

(1) QF_INT_LOCK_();

(2) if (me->prev != (QTimeEvt *)0) { /* is the time event actually armed? */

wasArmed = (uint8_t)1;

(3) if (me == QF_timeEvtListHead_) {

(4) QF_timeEvtListHead_ = me->next;

}

Continued onto next page

www.newnespress.com

(5) else {

(6) if (me->next != (QTimeEvt *)0) { /* not the last in the list? */

(7) me->next->prev = me->prev;

}

(8) me->prev->next = me->next;

}

(9) me->prev = (QTimeEvt *)0; /* mark the time event as disarmed */

}

else { /* the time event was not armed */

wasArmed = (uint8_t)0;

}

QF_INT_UNLOCK_();

(10) return wasArmed;

}

358 Chapter 7
(1) Critical section is established right away.

(2) The time event is still armed if the ‘prev’ pointer is not NULL.

(3-8) These lines of code implement the standard algorithm of removing a node from a

bidirectional list (compare also Listing 7.19(8-13)).

(9) A time event is internally marked as disarmed by writing NULL to the ‘prev’

link.

(10) The function returns the status: 1 if the time event was still armed at the time of

the call and 0 if the time event was disarmed before the function

QTimeEvt_disarm() was called. In other words, the return value of 1 ensures

the caller that the time event has not been posted and never will be, because

disarming takes effect immediately. Conversely, the return value of 0 informs

the caller that the time event has been posted to the event queue of the recipient

active object and was automatically disarmed.

The status information returned from QTimeEvt_disarm() could be useful in the state

machine design. For example, consider a state machine fragment shown in Figure 7.8.

The entry action to “stateA” arms a one-shot time event me->timer1. Upon expiration,

the time event generates signal TIMER1, which causes some internal or regular

transition. However, another event, say BUTTON_PRESS, triggers a transition to

“stateB.” The events BUTTON_PRESS and TIMER1 are inherently set up to race each

other and so it is possible that they arrive very close in time. In particular, when the

BUTTON_PRESS event arrives, the TIMER1 event could potentially follow very shortly

thereafter and might get queued as well. If that happens, the state machine receives both
www.newnespress.com

359Real-Time Framework Implementation
events. This might be a problem if, for example, the next state tries to reuse the time

event for a different purpose.

Figure 7.8 shows the solution. The exit action from “stateA” stores the return value of

QTimeEvt_disarm() in the extended state variable me->g1. Subsequently, the

variable is used as a guard condition on transition TIMER1 in “stateB.” The guard

allows the transition only if the me->g1 flag is set. However, when the flag is zero, it

means that the TIMER1 event was already posted. In this case the TIMER1 event sets

only the flag but otherwise is ignored. Only in the next TIMER1 instance is the true

timeout event requested in “stateB.”
entry / QTimeEvt_postIn(&me->timer1, me, 10);
exit / me->g1 = QTimeEvt_disarm(&me->timer1);

stateA

BUTTON_PRESS

TIMER1

TIMER1 [else] / . . .

stateC

entry / QTimeEvt_postIn(&me->timer1, me, 20);
exit / QTimeEvt_disarm(&me->timer1);
TIMER1 [! me->g1] / me->g1 = TRUE;

stateB

. . .

Figure 7.8: Reusing a one-shot time event.
7.8 Native QF Event Queue

Many RTOSs natively support message queues, which provide a superset of

functionality needed for event queues of active objects. QF is designed up front for easy

integration of such external message queues. However, in case no such support exists

or the available implementation is inefficient or inadequate, QF provides a robust

and efficient native event queue that you can easily adapt to virtually any underlying

operating system or kernel.

The native QF event queues come in two flavors, which share the same data

structure (QEQueue) and initialization but differ significantly in behavior. The first

variant is the event queue specifically designed and optimized for active objects

(see Section 7.8.3). The implementation omits several commonly supported features

of traditional message queues, such as variable-size messages (native QF event

queues store only pointers to events), blocking on a full queue (QF event queue

cannot block on insertion), and timed blocking on empty queues (QF event queues
www.newnespress.com

360 Chapter 7
block indefinitely), to name just a few. In exchange, the native QF event queue

implementation is small and probably faster than any full-blown message queue

of an RTOS.

The other, simpler variant of the native QF event queue is a generic “raw” thread-safe

queue not capable of blocking but useful for thread-safe event delivery from active

objects to other parts of the system that lie outside the framework, such as ISRs or

device drivers. I explain the “raw” queue in Section 7.8.4.
7.8.1 The QEQueue Structure

The QEQueue structure is used in both variants of the native QF event queues.

Figure 7.9 shows the relationships between the various elements of the QEQueue

structure and the ring buffer managed by the event queue. The available queue storage

consists of the external, user-allocated ring buffer plus an extra location frontEvt

inside the QEvent structure. The QEQueue event queue holds only pointers to events

(QEvent *), not the actual event instances.
end

ring

head

tail

:QEQueue

frontEvt

nFree

nMin index

pointer

outgoing event

user-allocated
ring buffer of
pointers to events

clockwise
movement of head
and tail indices
around the ring buffer

Figure 7.9: The relationship between the elements of the QEQueue structure
and the ring buffer.
As indicated by the dashed lines in Figure 7.9, all outgoing events must pass through the

frontEvt data member. This extra location outside the ring buffer optimizes queue

operation by allowing it to frequently bypass the buffering because very often queues

alternate between empty and nonempty states with just one event present in the queue at
www.newnespress.com

361Real-Time Framework Implementation
a time. In addition, the frontEvt pointer serves as a queue status indicator, whereas

the NULL value of frontEvt indicates that the queue is empty. The indices head,

tail, and end are relative to the ring pointer. Events are always extracted from the

buffer at the tail index. New events are typically inserted at the head index. Inserting

events at the head and extracting from the tail corresponds to FIFO queuing (the

postFIFO() operation). QEQueue also allows inserting new events at the tail, which

corresponds to LIFO queuing (the postLIFO() operation). Either way, the tail

always decrements when the event is extracted, as does the head index when an

event is inserted. The index 0 limits the range of the head and tail indices that must

“wrap around” to end once they reach 0. The effect is a counterclockwise movement

of the indices around the ring buffer, as indicated by the arrow in Figure 7.9. Other

data members of the QEQueue structure include the current number of free events in

the buffer (nFree) and the minimum number of free events ever present in the

buffer (nMin). The nMin member tracks the worst-case queue utilization (the

low-watermark of free events in the queue), which provides a valuable data point for

fine-tuning the ring buffer size.

Listing 7.22 shows the declaration of the QEQueue structure. The QEQueueCtr data

type determines the dynamic range of the queue indices and counters. It is

typedef’ed to uint8_t, uint16_t, or uint32_t, depending on the macro

QF_EQUEUE_CTR_SIZE. You can define the macro QF_EQUEUE_CTR_SIZE in the QF

port file qf_port.h in the correct port directory. If the macro is not defined, the

default size of 1 byte is assumed, which results in QEQueueCtr data type being

typdef’ed to uint8_t (up to 255 events in the ring buffer).
Listing 7.22 QEQueue structure (file <qp>\qpc\include\qequeue.h)

#ifndef QF_EQUEUE_CTR_SIZE
#define QF_EQUEUE_CTR_SIZE 1

#endif
#if (QF_EQUEUE_CTR_SIZE == 1)

typedef uint8_t QEQueueCtr;
#elif (QF_EQUEUE_CTR_SIZE == 2)

typedef uint16_t QEQueueCtr;
#elif (QF_EQUEUE_CTR_SIZE == 4)

typedef uint32_t QEQueueCtr;
#else

#error “QF_EQUEUE_CTR_SIZE defined incorrectly, expected 1, 2, or 4”
#endif

Continued onto next page

www.newnespress.com

typedef struct QEQueueTag {
QEvent const *frontEvt; /* pointer to event at the front of the queue */
QEvent const **ring; /* pointer to the start of the ring buffer */

QEQueueCtr end; /* offset of the end of the ring buffer from the start */
QEQueueCtr head; /* offset to where next event will be inserted */
QEQueueCtr tail; /* offset of where next event will be extracted */
QEQueueCtr nFree; /* number of free events in the ring buffer */
QEQueueCtr nMin; /* minimum number of free events ever in the buffer */

} QEQueue;

362 Chapter 7
7.8.2 Initialization of QEQueue

Listing 7.23 shows the event queue initialization function QEQueue_init(). The

function takes the preallocated contiguous storage for the ring buffer (an array of

QEvent* pointers, qSto[]) and the length of the buffer qLen, which is the number

of preallocated event pointers. The function sets the QEQueue data members to

emulate an empty event queue. The body of the function is not protected with a critical

section because the application should never access a queue before it is initialized.
Listing 7.23 QEQueue_init() (file <qp>\qpc\qf\source\qeq_init.c)

void QEQueue_init(QEQueue *me, QEvent const *qSto[], QEQueueCtr qLen) {
me->frontEvt = (QEvent *)0; /* no events in the queue */
me->ring = &qSto[0];
me->end = qLen;
me->head = (QEQueueCtr)0;
me->tail = (QEQueueCtr)0;
me->nFree = qLen; /* all events are free */
me->nMin = qLen; /* the minimum so far */

}

Note that you can initialize an event queue with parameters qSto == NULL and

qLen == 0. Such an event queue will still be able to hold one event because the

frontEvt location also counts toward the queue capacity.
7.8.3 The Native QF Active Object Queue

The QEQueue structure is not quite complete to serve as the event queue of an active

object because it does not provide any data member for implementing blocking of
www.newnespress.com

bject

363Real-Time Framework Implementation
the active object thread when the queue is empty. Such a mechanism is always

platform-specific and typically it is an operating-system primitive, such as a semaphore,

a condition variable in POSIX, or a Win32 object that can be used with the

WaitForSingleObject() and SetEvent() Win32 APIs.

TheOS-specific blocking primitive is intentionally not included in theQEQueue structure to

enable using this structure for both the active object event queue and the generic “raw”

thread-safe queue discussed in the next section. Instead, the OS-specific thread-blocking

primitive is included directly in the higher-level QActive structure as the datamember osO

of type QF_OS_OBJECT_TYPE (Listing 7.7(9)). T he ma cr o QF_OS_OBJECT_TYPE is

obviously part of the platform abstraction layer and is defined differently for different QF

ports. The osObject member is initialized in the platform-specific QActive_start()

function (see Listing 7.9). You can think of the native QF active object queue as the

aggregate of the QEQueue structure and the QActive.osObject data member.

The interface of the active object event queue consists of three functions:

QActive_postFIFO(), QActive_postLIFO(), and QActive_get_(). The

implementation of these functions is located in the files qa_fifo.c, qa_lifo.c, and

qa_get_.c, respectively. These files should be included in the QF port only when the

port uses the native event queue. Otherwise, the functions QActive_postFIFO(),

QActive_postLIFO(), and QActive_get_() should be implemented differently,

perhaps with the RTOS-specific message queue.

Listing 7.24 shows how the QActive_get_() function extracts events from the queue.

This function is called only from the thread routine of the active object that owns this

queue (see Listing 7.8(1)). You should never call QActive_get_() from the

application-level code (hence the trailing underscore in the function name).
Listing 7.24 Extracting events from the event queue with QActive_get_()
(file <qp>\qpc\qf\source\qa_get_.c)

(1) QEvent const *QActive_get_(QActive *me) {

QEvent const *e;

QF_INT_LOCK_KEY_

QF_INT_LOCK_();

(2) QACTIVE_EQUEUE_WAIT_(me); /* wait for event queue to get an event */

(3) e = me->eQueue.frontEvt;

Continued onto next page

www.newnespress.com

(4) if (me->eQueue.nFree != me->eQueue.end) { /* any events in the buffer? */

/* remove event from the tail */

(5) me->eQueue.frontEvt = me->eQueue.ring[me->eQueue.tail];

(6) if (me->eQueue.tail == (QEQueueCtr)0) { /* need to wrap the tail? */

(7) me->eQueue.tail = me->eQueue.end; /* wrap around */

}

(8) --me->eQueue.tail;

(9) ++me->eQueue.nFree; /* one more free event in the ring buffer */

}

(10) else {

(11) me->eQueue.frontEvt = (QEvent *)0; /* queue becomes empty */

(12) QACTIVE_EQUEUE_ONEMPTY_(me);
}

QF_INT_UNLOCK_();

(13) return e;

}

364 Chapter 7
(1) The function QActive_get_() returns a pointer to a read-only (const) event

that has been previously posted to the active object ‘me.’ The function always

returns a valid event pointer.

(2) In some QF ports, the function must block until an event arrives. Blocking is

always a platform-specific operation and the function handles it through the

platform-specific macro QACTIVE_EQUEUE_WAIT_(). Note that this macro

is invoked from the critical section. The macro might unlock interrupts

momentarily, but it must restore critical section before it returns. I describe

the implementation of the QACTIVE_EQUEUE_WAIT_() macro for POSIX threads

in Chapter 8.

(3) At this point the queue cannot be empty anymore—it either was not empty to

begin with or it just received an event after blocking. The event at the front

of the queue is copied for delivery to the caller from the front event.

(4) If not all events in the buffer are free, the buffer must contain some events.

(5) The event pointer is copied from the tail index in the buffer to the front

event.

(6) The tail index is checked for a wraparound.

(7) If wraparound is required, the tail index is moved to the end of the buffer. This

makes the buffer circular.
www.newnespress.com

365Real-Time Framework Implementation
(8) The tail index is always decremented, including just after the wraparound.

I’ve chosen to decrement the tail (and also the head) index because it leads to

a more efficient implementation than incrementing the indices. The

wraparound occurs in this case at zero rather than at the end. Comparing a

variable to a constant zero is more efficient than any other comparison.

(9) The nFree counter is incremented to account for freeing one event in the buffer.

(10) Otherwise the queue is becoming empty.

(11) The front event is set to NULL.

(12) Additionally, a platform-specific macro QACTIVE_EQUEUE_ONEMPTY_() is

called. The job of this macro is to inform the underlying kernel that the queue

is becoming empty, which is required in some QF ports. I show this macro

implementation for the QF port to the cooperative “vanilla” kernel discussed

in Chapter 8 as well as in the QF port to the preemptive run-to-completion QK

kernel that I cover in Chapter 10.

Listing 7.25 shows the implementation of the QActive_postFIFO() queue

operation. This function is used for posting an event directly to the recipient active

object. Direct event posting can be performed from any part of the application,

(13) The event pointer is returned to the caller. This pointer can never be NULL.
including interrupts.

Listing 7.25 Inserting events into the event queue with QActive_postFIFO()
(file <qp>\qpc\qf\source\qa_fifo.c)

void QActive_postFIFO(QActive *me, QEvent const *e) {

QF_INT_LOCK_KEY_

(1) QF_INT_LOCK_();

if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

(2) ++((QEvent *)e)->dynamic_; /* increment the reference counter */

}

(3) if (me->eQueue.frontEvt == (QEvent *)0) { /* empty queue? */

(4) me->eQueue.frontEvt = e; /* deliver event directly */

(5) QACTIVE_EQUEUE_SIGNAL_(me); /* signal the event queue */
}

(6) else { /* queue is not empty, insert event into the ring-buffer */

/* the queue must be able to accept the event (cannot overflow) */

(7) Q_ASSERT(me->eQueue.nFree != (QEQueueCtr)0);

/* insert event into the ring buffer (FIFO) */

Continued onto next page

www.newnespress.com

(8) me->eQueue.ring[me->eQueue.head] = e;

(9) if (me->eQueue.head == (QEQueueCtr)0) { /* need to wrap the head? */

(10) me->eQueue.head = me->eQueue.end; /* wrap around */

}

(11) --me->eQueue.head;

(12) --me->eQueue.nFree; /* update number of free events */

(13) if (me->eQueue.nMin > me->eQueue.nFree) {

(14) me->eQueue.nMin = me->eQueue.nFree; /* update min so far */

}

}

QF_INT_UNLOCK_();

}

366 Chapter 7
(1) The whole function body runs in a critical section.

(2) The reference count of a dynamic event is incremented to account for another

outstanding reference to the event.
NOTE

Incrementing the reference count is essential and must be performed in every QActive_
postFIFO() implementation, including implementations not based on the native QF event

queue but, for example, on a message queue of an RTOS.
(3) If the front event is NULL, the queue is empty.

(4) The event pointer is copied directly to the front event, bypassing the whole

buffering mechanism.

(5) Additionally, a platform-specific macro QACTIVE_EQUEUE_SIGNAL_() is

called. The job of this macro is to signal the thread waiting on the event queue.

Note that this macro is invoked from the critical section. I describe the

implementation of the QACTIVE_EQUEUE_SIGNAL_() macro for

POSIX-threads in Chapter 8.

(6) Otherwise, the queue is not empty, so the event must be inserted into the ring

buffer.

(7) The assertion makes sure that the queue can accept this event.
www.newnespress.com

NOTE

The QF framework treats the inability to post an event as an error. This assertion is part of

the event delivery guarantee policy. It’s the application designer’s responsibility to size the

event queues adequately for the job at hand.

367Real-Time Framework Implementation
(8) The event is inserted at the head index. This corresponds to the FIFO

queuing policy.

(9) The head index is checked for a wraparound.

(10) If wraparound is required, the head index is moved to the end of the buffer.

This makes the buffer circular.

(11) The head index is always decremented, including just after the wraparound.

I’ve chosen to decrement the head (and also the tail) index because it leads to

a more efficient implementation than incrementing the indices. The wraparound

occurs in this case at zero rather than at the end. Comparing a variable to a

constant zero is more efficient than any other comparison.

(12) The nFree counter is decremented to account for using one event in the buffer.

(13,14) Finally, the function updates the low-watermark nMin of the queue.

This step is not necessary for the correct operation of the queue, but the

low-watermark provides valuable empirical data for proper sizing of

the event queue.

The QF framework provides also the QActive_postLIFO() queue operation.

I don’t discuss the code (located in the file <qp>\qpc\qf\source\qa_lifo.c)

because it is very similar to QActive_postFIFO() except that the event is

inserted at the tail index.

7.8.4 The “Raw” Thread-Safe Queue

The QEQueue structure can be used directly as the nativeQF “raw” thread-safe queue. The

basic operations of the “raw” thread-safe queue are QEQueue_postFIFO(),

QEQueue_postLIFO(), and QEQueue_get(). None of these functions can

block. This type of queue is employed for deferring events (see Section 7.5.4) and also can

be very useful for passing events from active objects to ISRs, as shown in Listing 7.26.
www.newnespress.com

Listing 7.26 Using the “raw” thread-safe queue to send events to an ISR

/* Application header file ---*/

#include “qequeue.h”

(1) extern QEQueue APP_isrQueue; /* global “raw” queue */

(2) typedef struct IsrEvtTag { /* event with parameters to be passed to the ISR */

QEvent super;

. . .

} IsrEvt;

/* ISR module --*/

(3) QEQueue APP_isrQueue; /* definition of the “raw” queue */

void interrupt myISR() {

QEvent const *e;

. . .

(4) e = QEQueue_get(&APP_isrQueue); /* get an event from the “raw” queue */
(5) if (e != (QEvent *)0) { /* event available? */

(6) Process the event e (could be dispatching to a state machine)

. . .

(7) QF_gc(e); /* explicitly recycle the event */
}

. . .

}

/* Active object module --*/

QState MyAO_stateB(MyAO *me, QEvent const *e) {

switch (e->sig) {

. . .

case SOMETHING_INTERESTING_SIG: {

IsrEvt *pe = Q_NEW(IsrEvt, ISR_SIG);

pe->. . . = . . . /* set the event attributes */

(8) QEQueue_postFIFO(&APP_isrQueue, (QEvent *)pe);
return (QSTATE)0;

}

. . .

}

return (QState)&MyAO_stateA;

}

/* main module ---*/

static QEvent *l_isrQueueSto[10]; /* allocate a buffer for the “raw” queue */

main() {

. . .

/* initialize the “raw” queue */

(9) QEQueue_init(&APP_isrQueue, l_isrQueueSto, Q_DIM(l_isrQueueSto));
. . .

}

www.newnespress.com

368 Chapter 7

369Real-Time Framework Implementation
(1) In the application header file, you declare the external “raw” event queue so

that various parts of the code can access the queue.

(2) In the same header file, you’ll typically also declare all event types that the raw

queue can accept.

(3) In the ISR module, you define the “raw” queue object.

(4) Inside an ISR, you call QEQueue_get() to get an event.
NOTE

The function QEQueue_get() uses internally a critical section of code. If you are using the

simple unconditional interrupt-locking policy (see Section 7.3.2), you must be careful not to

call QEQueue_get() with interrupts locked, as might be the case inside an ISR.
(5) If the event is available, the returned pointer is not NULL.

(6) You process the event. Please note that you have read-only access to the event.

(7) After the processing, you must not forget to call the QF garbage collector,

because now QF is no longer in charge of event processing and you are solely

responsible for not leaking the event.

(8) In an active object state machine you call QEQueue_postFIFO() or

(dynamic or static).

(9) You must not forget to initialize the “raw” queue object, which is typically

done upon system startup.

The actual implementation of the QEQueue functions QEQueue_postFIFO(),

QEQueue_postLIFO(), and QEQueue_get() is very straightforward since

no platform-specific macros are necessary. All these functions are reentrant

because they preserve the integrity of the queue by using critical sections of code.

QEQueue_postLIFO() to post an event
7.9 Native QF Memory Pool

In Section 7.5.2, I introduced the concept of an event pool—a fixed block–size

heap specialized to hold event instances. Some RTOSs natively support such fixed

block–size heaps (often called memory partitions or memory pools). However, many
www.newnespress.com

370 Chapter 7
platforms don’t. This section explains the native QF implementation of a memory pool

based on the QMPool structure.

The native QF memory pool is generic and can be used in your application

for storing any objects, not just events. All native QF memory pool functions

are reentrant and deterministic. They can be used in any parts of the code,

including the ISRs. Figure 7.10 explains the relationships between the

various elements of the QMPool structure and the memory buffer managed by

the memory pool.
free

nTot

:QMPool

blockSize used used

nMin

nFree

end

start

user-allocated
contiguous buffer
of memory

NULL

Figure 7.10: The relationship between QMPool structure elements
and the memory buffer.
The native QF memory pool requires the actual pool storage to be allocated

externally and provided to the pool upon initialization. Internally, the memory

pool tracks memory by dividing it into blocks of the requested size and

linking all unused memory blocks in a singly-linked list (the free list originating

at the QMPool.free pointer). This technique is standard for organizing stack-like

data structures, where the structure is accessed from one end only (LIFO).

QMPool also uses a handy trick to link free blocks together in the free list without

consuming extra storage for the pointers. Because the blocks in the free list

are not used for anything else, QMPool can reuse the blocks as linked list

pointers. This use implies that the block size must be big enough to hold a
www.newnespress.com

371Real-Time Framework Implementation
pointer [Lafreniere 98, Labrosse 02]. Listing 7.27 shows the declaration of

the QMPool structure.
Listing 7.27 QMPool structure (file <qp>\qpc\include\qmpool.h)

typedef struct QMPoolTag {
(1) void *free; /* the head of the linked list of free blocks */
(2) void *start; /* the start of the original pool buffer */
(3) void *end; /* the last block in this pool */
(4) QMPoolSize blockSize; /* maximum block size (in bytes) */
(5) QMPoolCtr nTot; /* total number of blocks */
(6) QMPoolCtr nFree; /* number of free blocks remaining */
(7) QMPoolCtr nMin; /* minimum number of free blocks ever in this pool */

} QMPool;
(1) The only data member strictly required for allocating and freeing blocks in

the pool is the head of the free list ‘free.’ The other data members are

for making the memory pool operations more robust.

(2,3) The start and end pointers are used as delimiters of the valid range

of memory blocks managed by this pool. I have specifically added

them to enable writing an assertion to ensure that every memory

block returned to the pool is in the range of memory managed

by the pool.

(4) The member blockSize holds the block size of this pool in bytes.

(5) The member nTot holds the total number of blocks in the pool. This member

allows me to assert the invariant that the number of free blocks in the pool

at any given time cannot exceed nTot.

(6) The member nFree holds the current number of free blocks in the pool.

(7) The member nMin holds the lowest number of free blocks ever present in the

pool.

The QMPoolSize data type is typedef’ed as uint8_t, uint16_t, or uint32_t,

configurable by the macro QF_MPOOL_SIZ_SIZE. The dynamic range of the

QMPoolSize data type determines the maximum size of blocks that can be managed

by the native QF event pool. Similarly, the QMPoolCtr data type is typedef’ed
www.newnespress.com

372 Chapter 7
as uint8_t, uint16_t, or uint32_t, depending on the macro

QF_MPOOL_CTR_SIZE. The dynamic range of the QMPoolCtr data type determines

the maximum number of blocks that can be stored in the pool. The macros

QF_MPOOL_SIZ_SIZE and QF_MPOOL_CTR_SIZE should be defined in the QF port

file qf_port.h in the correct port directory. If the macros are not defined, the

default size of 2 is assumed for both of them, which results in QMPoolSize and

QMPoolCtr data types typedef’ed to uint16_t.
7.9.1 Initialization of the Native QF Memory Pool

You must initialize a memory pool before you can use it by calling the function

QMPool_init(), to which you provide the pool storage, the size of the

storage, and the block size managed by the pool. A general challenge in writing

this function is portability, because storage allocation is intrinsically

machine-dependent [Kernighan 88]. Perhaps the trickiest aspect here is the proper

and optimal alignment of the blocks within the contiguous memory buffer.

In particular, the alignment of blocks must be such that every new block can be

treated as a pointer to the next block. The code in listing 7.28 illustrates

how to control the machine dependencies, at the cost of extensive but careful

typecasting.
NOTE

Many CPU architectures put special requirements on the proper alignment of pointers.

For example, the ARM processor requires a pointer to be allocated at an address divisible

by 4. Other CPUs, such as the Pentium, can accept pointers allocated at odd addresses but

perform substantially better when pointers are aligned at addresses divisible by 4.
To achieve better portability and optimal alignment of blocks, the QF memory

pool implementation uses internally a helper structure QFreeBlock, which represents a

node in the linked-list of free blocks. QFreeBlock is declared as follows in the file

<qp>\qpc\qf\source\qf_pkg.h:
typedef struct QFreeBlockTag {
struct QFreeBlockTag *next; /* link to the next free block */

} QFreeBlock;
www.newnespress.com

Listing 7.28 Initialization of the QF memory pool with QMPool_init()
(file <qp>\qpc\qf\source\qmp_init.c)

void QMPool_init(QMPool *me, void *poolSto,

uint32_t poolSize, QMPoolSize blockSize)

{

QFreeBlock *fb;

uint32_t corr;

uint32_t nblocks;

/* The memory block must be valid

* and the poolSize must fit at least one free block

* and the blockSize must not be too close to the top of the dynamic range

*/

(1) Q_REQUIRE((poolSto != (void *)0)

(2) && (poolSize >= (uint32_t)sizeof(QFreeBlock))

(3) && ((QMPoolSize)(blockSize + (QMPoolSize)sizeof(QFreeBlock))

> blockSize));

/*lint -e923 ignore MISRA Rule 45 in this expression */

(4) corr = ((uint32_t)poolSto & ((uint32_t)sizeof(QFreeBlock) - (uint32_t)1));

(5) if (corr != (uint32_t)0) { /* alignment needed? */

(6) corr = (uint32_t)sizeof(QFreeBlock) - corr;/*amount to align poolSto*/

(7) poolSize -= corr; /* reduce the available pool size */

}

/*lint -e826 align the head of free list at the free block-size boundary*/

(8) me->free = (void *)((uint8_t *)poolSto + corr);

/* round up the blockSize to fit an integer # free blocks, no division */

(9) me->blockSize = (QMPoolSize)sizeof(QFreeBlock); /* start with just one */

(10) nblocks = (uint32_t)1; /* # free blocks that fit in one memory block */

(11) while (me->blockSize < blockSize) {

(12) me->blockSize += (QMPoolSize)sizeof(QFreeBlock);

(13) ++nblocks;

}

(14) blockSize = me->blockSize; /* use the rounded-up value from now on */

/* the pool buffer must fit at least one rounded-up block */

(15) Q_ASSERT(poolSize >= (uint32_t)blockSize);

/* chain all blocks together in a free-list. . . */

(16) poolSize -= (uint32_t)blockSize;/*don’t link the last block to the next */

(17) me->nTot = (QMPoolCtr)1; /* the last block already in the pool */

(18) fb = (QFreeBlock *)me->free; /*start at the head of the free list */

(19) while (poolSize >= (uint32_t)blockSize) { /* can fit another block? */

(20) fb->next = &fb[nblocks]; /* point the next link to the next block */

fb = fb->next; /* advance to the next block */

poolSize -= (uint32_t)blockSize; /* reduce the available pool size */

++me->nTot; /* increment the number of blocks so far */

}

Continued onto next page

www.newnespress.com

373Real-Time Framework Implementation

(21) fb->next = (QFreeBlock *)0; /* the last link points to NULL */

(22) me->nFree = me->nTot; /* all blocks are free */

(23) me->nMin = me->nTot; /* the minimum number of free blocks */

(24) me->start = poolSto; /* the original start this pool buffer */

(25) me->end = fb; /* the last block in this pool */

}

374 Chapter 7
(1) The precondition requires a valid pointer to the pool storage.

(2) The pool size must be able to fit at least one free block. Later, after aligning

the pool storage and rounding up the block size, this assertion will be

strengthened (see label (15)).

(3) The argument blockSize must not be too close to the upper limit of its

dynamic range, to avoid unexpected wraparound at rounding up the block

size.

(4) The expression assigned to corr computes the misalignment of the

provided storage poolSto with respect to free block (pointer) size

boundary.

(5) Nonzero value of corr indicates misalignment of the pool storage.

(6) Now corr holds the correction needed to align poolSto.

(7) The available pool size is reduced by the amount of the correction.

(8) The head of the free list is set at the start of the pool storage aligned at the

nearest free block boundary.

(9-14) To achieve alignment of all blocks in the pool, I round up the specified

blockSize to the nearest integer multiple of QFreeBlock size. With the

head of the free list already aligned at the QFreeBlock size and all blocks

being integer multiples of the QFreeBlock size, I can be sure that every

block is aligned as well. Note that instead of computing the number of

free blocks going into the blockSize as (nblocks = (blockSize + sizeof

(QFreeBlock) – 1)/sizeof(QFreeBlock) + 1), I compute the

value iteratively in a loop. I decided to do this to avoid integer division,

which would be the only division in the whole QP code base. On many

CPUs division requires a sizable library function and I didn’t want to pull

this code.
www.newnespress.com

375Real-Time Framework Implementation
(15) For the correctness of the following algorithm, the pool must fit at least one

rounded-up block.

(16) The very last memory block is not linked to the next, so it is excluded.

(17) The total count of blocks in the pool starts with one, to account for the

last block.

(18) The free block pointer starts at the head of the free list.

(19) The loop chains all free blocks in a single-linked list until the end of the

provided buffer storage.

(20) The next link points to the free block, which is an integer multiple of the

free block size nblocks, computed at step 13.

(21) The last link is explicitly pointed to NULL.

(22,23) Initially, all blocks in the pool are free.

(24) The original pool buffer pointer is stored in me->start.

(25) The pointer to the last block is stored in me->end.
7.9.2 Obtaining a Memory Block from the Pool

The implementation of the QMPool_get() function shown in Listing 7.29 is

straightforward. The function returns a pointer to a new memory block or NULL if the

pool runs out of blocks. This means that when you use QMPool directly as a general-

purpose memory manager, you must validate the pointer returned from QMPool_get()

before using it in your code. Note, however, that when QF uses QMPool internally

as the event pool, the framework asserts that the pointer is valid (see Listing 7.12(5) in

Section 7.5.2). QF considers running out of events in an event pool as an error.
Listing 7.29 Obtaining a block from a pool with QMPool_get()
(file <qp>\qpc\qf\source\qmp_get.c)

void *QMPool_get(QMPool *me) {
QFreeBlock *fb;
QF_INT_LOCK_KEY_

QF_INT_LOCK_();

Continued onto next page

www.newnespress.com

fb = (QFreeBlock *)me->free; /* get a free block or NULL */
if (fb != (QFreeBlock *)0) { /* free block available? */

me->free = fb->next; /* adjust list head to the next free block */
--me->nFree; /* one less free block */
if (me->nMin > me->nFree) {

me->nMin = me->nFree; /* remember the minimum so far */
}

}
QF_INT_UNLOCK_();
return fb; /* return the block or NULL pointer to the caller */

}

376 Chapter 7
7.9.3 Recycling a Memory Block Back to the Pool

Listing 7.30 shows the QMPool_put() function for recycling blocks back to the

pool. The most interesting aspects of this implementation are the preconditions.

Assertion at label (1) makes sure that the recycled block pointer lies in range of a

memory buffer managed by the pool (see Figure 7.10). Assertion 2 checks that the

number of free blocks is less than the total number of blocks (a new block is just

about to be inserted into the pool).
NOTE

The C standard guarantees meaningful pointer comparisons, such as the precondition (1) in

Listing 7.30, only if compared pointers point to the same array. Strictly speaking, this is only

the case when the pointer ‘b’ is indeed in range. When pointer ‘b’ is out of range, the

comparison might not be meaningful, and theoretically the precondition might not catch

the foreign block being recycled into the pool.

Listing 7.30 Recycling a block back to the pool with QMPool_put()
(file <qp>\qpc\qf\source\qmp_put.c)

void QMPool_put(QMPool *me, void *b) {

QF_INT_LOCK_KEY_

(1) Q_REQUIRE((me->start <= b) && (b <= me->end) /* must be in range */

(2) && (me->nFree <= me->nTot)); /* # free blocks must be < total */

QF_INT_LOCK_();

((QFreeBlock *)b)->next = (QFreeBlock *)me->free; /* link into free list */

www.newnespress.com

me->free = b; /* set as new head of the free list */

++me->nFree; /* one more free block in this pool */

QF_INT_UNLOCK_();

}

377Real-Time Framework Implementation
7.10 Native QF Priority Set

The QF native priority set is generally useful for representing sets of up to 64

elements numbered 1..64. For example, you can use such a set to represent groups

of GPS satellites (numbered 1..32) or any other elements. The set provides

deterministic and efficient operations for inserting, removing, and testing elements

as well as determining the largest-number element in the set. The latter operation

is very helpful for quickly finding out the highest-priority active object ready to

run, and I use it inside the cooperative “vanilla” kernel (see the next Section 7.11)

and also inside the preemptive run-to-completion QK kernel (see Chapter 10).

The QF priority set implementation is adapted from the algorithm described in

[Bal Sathe 88 and Labrosse 02]. Listing 7.31 shows the declaration of the QPSet64

data structure.
Listing 7.31 QPSet64 structure

typedef struct QPSet64Tag {
uint8_t bytes; /* condensed representation of the priority set */
uint8_t bits[8]; /* bitmasks representing elements in the set */

} QPSet64;

7

QPSet64 . bits[8]

6 5 4 3 2 1 0

QPSet64 . bytes

10111213141516
1718192021222324
2526272829303132

bits[1]
bits[2]

bits[3]
3334353637383940
4142434445464748
4950515253545556
5758596061626364

bits[4]
bits[5]
bits[6]
bits[7]

bits[0]
9

2345678 1

234567 01
bit number

Figure 7.11: Dependency between QPSet64.bits[] and QPSet64.bytes.

www.newnespress.com

378 Chapter 7
Figure 7.11 graphically summarizes the semantics of QPSet64 data members. The bits

of the array QPSet64.bits[8] correspond to the set elements as follows:

QPSet64.bits[0] represent elements 1..8
QPSet64.bits[1] represent elements 9..16
. . .
QPSet64.bits[7] represent elements 57..64

In addition, to speed up access to the bitmasks, the redundant summary of the

bitmasks is stored in the member QPSet64.bytes with the following semantics of

the bits:
bit 0 in QPSet64.bytes is 1 when any bit in QPSet64.bits[0] is 1
bit 1 in QPSet64.bytes is 1 when any bit in QPSet64.bits[1] is 1
. . .
bit 7 in QPSet64.bytes is 1 when any bit in QPSet64.bits[7] is 1

With this data representation, all operations on the set are fast and deterministic,

meaning that the operations always take the same number of CPU cycles to execute,

regardless of how many elements are in the set. All QPSet64 operations are

implemented “inline” as macros to avoid the overhead of a function call.

For example, determining whether the set is not empty is remarkably simple:

#define QPSet64_notEmpty(me_) ((me_)->bytes != (uint8_t)0)

Also, finding the largest element in the set is deterministic and looks as follows:
#define QPSet64_findMax(me_, n_) do { \
(n_) = (uint8_t)(QF_log2Lkup[(me_)->bytes] - 1); \
(n_) = (uint8_t)(((n_) << 3) + QF_log2Lkup[(me_)->bits[n_]]); \

} while(0)

The QPSet64_findMax() macro assumes that the set ‘me_’ is not empty. It assigns

the number of the largest element in the set to the parameter ‘n_.’ The algorithm uses

the binary logarithm lookup table (see Figure 7.6) twice: first the largest 1 bit in the

QPSet64.bytes bitmask and the second time on the QPSet64.bits[n_] bitmask to

determine the largest 1 bit in the bitmask. The largest set element is the combination
www.newnespress.com

379Real-Time Framework Implementation
of the bit number returned by the lookup (a number in the range 1..8) plus the index

multiplied by 8, to account for the byte position in the bits[] array.

Inserting an element ‘n_’ into the set ‘me_’ is implemented as follows:

#define QPSet64_insert(me_, n_) do { \
(me_)->bits[QF_div8Lkup[n_]] |= QF_pwr2Lkup[n_]; \
(me_)->bytes |= QF_pwr2Lkup[QF_div8Lkup[n_] + 1]; \

} while(0)

Finally, here is the macro for removing an element ‘n_’ from the set ‘me_’:
#define QPSet64_remove(me_, n_) do { \
(me_)->bits[QF_div8Lkup[n_]] &= QF_invPwr2Lkup[n_]; \
if ((me_)->bits[QF_div8Lkup[n_]] == (uint8_t)0) { \

(me_)->bytes &= QF_invPwr2Lkup[QF_div8Lkup[n_] + 1]; \
} \

} while(0)
7.11 Native Cooperative “Vanilla” Kernel

QF contains a simple cooperative “vanilla” kernel, which works as I described in

Section 6.3.7 in Chapter 6. The “vanilla” kernel is implemented in two files: the

qvanilla.h header file located in <qp>\qpc\include\ directory and the

qvanilla.c source file found in <qp>\qpc\qf\source\ directory.

The “vanilla” kernel operates by constantly polling all event queues of active objects in

an endless loop. The kernel always selects the highest-priority active object ready to

run, which is the highest-priority active object with a nonempty event queue (see

Figure 6.8 in Chapter 6). The scheduler maintains the global status of all event queues

in the application in the priority set called the QF_readySet_. As shown in

Figure 7.12, QF_readySet_ represents a “ready-set” of all nonempty event queues

in the system. For example, an element number ‘p’ is present in the ready-set if and

only if the event queue of the active object with priority ‘p’ is nonempty. With this

representation, posting an event to an empty queue with priority ‘p’ inserts the element

number ‘p’ to the QF_readySet_ set. Conversely, retrieving the last event from

the queue with priority ‘q’ removes the element number ‘q’ from the ready-set

QF_readySet_.
www.newnespress.com

QF

:QActive
prio == 1

:QActive
prio == 5

:QActive
prio == 59

“vanilla” kernel
1...0.....100000 . . .

. . .

QF_readySet_ : QPSet64

. . .

Figure 7.12: Representing state of all event queues
in the QF_readySet_ priority set.

380 Chapter 7
7.11.1 The qvanilla.c Source File

Listing 7.32 shows the complete implementation of the “vanilla” kernel.
Listing 7.32 The “vanilla” kernel implementation
(<qp>\qpc\qf\source\qvanilla.c)

(1) #include “qf_pkg.h”

#include “qassert.h”

/* Package-scope objects ---*/

(2) QPSet64 volatile QF_readySet_; /* QF-ready set of active objects */

/*...*/

void QF_init(void) {

/* nothing to do for the “vanilla” kernel */

}

/*...*/

(3) void QF_stop(void) {

/* nothing to cleanup for the “vanilla” kernel */

QF_onCleanup(); /* cleanup callback */

}

/*...*/

(4) void QF_run(void) { /* see NOTE01 */

uint8_t p;

www.newnespress.com

QActive *a;

QEvent const *e;

QF_INT_LOCK_KEY_

(5) QF_onStartup(); /* invoke the QF startup callback */

(6) for (;;) { /* the background loop */

(7) QF_INT_LOCK_();

(8) if (QPSet64_notEmpty(&QF_readySet_)) {

(9) QPSet64_findMax(&QF_readySet_, p);

(10) a = QF_active_[p];

(11) QF_INT_UNLOCK_();

(12) e = QActive_get_(a); /* get the next event for this AO */

(13) QF_ACTIVE_DISPATCH_(&a->super, e); /* dispatch to the AO */

(14) QF_gc(e); /* determine if event is garbage and collect it if so */

}

(15) else { /* all active object queues are empty */

#ifndef QF_INT_KEY_TYPE

(16) QF_onIdle(); /* see NOTE02 */

#else

(17) QF_onIdle(intLockKey_); /* see NOTE02 */

#endif /* QF_INT_KEY_TYPE */

}

}

}

/*...*/

(18) void QActive_start(QActive *me, uint8_t prio,

QEvent const *qSto[], uint32_t qLen,

void *stkSto, uint32_t stkSize,

QEvent const *ie)

{

(19) Q_REQUIRE(((uint8_t)0 < prio) && (prio <= (uint8_t)QF_MAX_ACTIVE)

&& (stkSto == (void *)0)); /* does not need per-actor stack */

(void)stkSize; /* avoid the “unused parameter” compiler warning */

(20) QEQueue_init(&me->eQueue,qSto,(QEQueueCtr)qLen);/*initializeQEQueue*/

(21) me->prio = prio; /* set the QF priority of this active object */

(22) QF_add_(me); /* make QF aware of this active object */

(23) QF_ACTIVE_INIT_(&me->super, ie); /* execute initial transition */

}

/*...*/

void QActive_stop(QActive *me) {

QF_remove_(me);

}

381Real-Time Framework Implementation
(1) As every QF source file, the qvanilla.c file includes to the wider “package-scope”

QF interface qf_pkg.h, located in <qp>\qpc\qf\source\. The qf_pkg.h

header file includes the platform-specific QF port header file qf_port.h, but it

additionally defines some internal macros and objects shared only internally within QF.
www.newnespress.com

382 Chapter 7
(2) QF_readySet_ priority set represents the ready-set of the scheduler.

I declared it volatile to inform the compiler to never cache this variable

because it can change unexpectedly in interrupts (e.g., when ISRs post or

publish events).

(3) The function QF_stop() stops execution of the QF framework. In the case of

the “vanilla” kernel, this function has nothing to do except invoke the

QF_onCleanup() callback function to give the application a chance to clean

up and exit to the underlying operating system (e.g., consider a “vanilla”

kernel running on top of DOS). I summarize all QF callback functions in

Section 8.1.8 in Chapter 8.

(4) Applications call the function QF_run() from main() to transfer the

control to the framework. This function implements the entire “vanilla”

kernel.

(5) The QF_onStartup() callback function configures and starts interrupts.

This function is typically implemented at the application level (in the BSP).

I summarize all QF callback functions in Section 8.1.8 in Chapter 8.

(6) This is the event loop of the “vanilla” kernel.

(7) Interrupts are locked to access the QF_readySet_ ready-set.

(8) If the ready-set QF_readySet_ is not empty, the “vanilla” kernel has some

events to process.

(9) The QF priority set quickly discovers the highest-priority, not-empty event

queue, as described in Section 7.10.

(10) The active object pointer ‘a’ is resolved through the QF_active_[] priority-

to-active object lookup table maintained internally by QF.

(11) Interrupts can be unlocked.

(12-14) These are the three steps of the active object thread (see Listing 7.8).

(15) The else branch is taken when all active object event queues are empty,

which is by definition the idle condition of the “vanilla” kernel.

(16,17) The “vanilla” kernel calls the QF_onIdle() callback function to give the

application a chance to put the CPU to a low-power sleep mode or to perform

other processing (e.g., software-tracing output; see Chapter 11). The
www.newnespress.com

383Real-Time Framework Implementation
QF_onIdle() function is typically implemented at the application level (in

the BSP). Note that the signature of QF_onIdle() depends on the critical

section mechanism you choose. The function takes no parameters when the

simple “unconditional interrupt unlocking” policy is used but needs the

interrupt status parameter when the “saving and restoring interrupt status”

policy is used (see Section 7.3).
NOTE

Most MCUs provide software-controlled low-power sleep modes, which are designed to

reduce power dissipation by gating the clock to the CPU and various peripherals. To ensure

a safe transition to a sleep mode, the “vanilla” kernel calls QF_onIdle() with interrupts

locked. The QF_onIdle() function must always unlock interrupts internally, ideally atom-

ically with the transition to a sleep mode.
(18) The QActive_start() function initializes the event queue and starts the active

object thread under the “vanilla” kernel.

(19) The precondition asserts that the provided priority is within range and that the

stack pointer is NULL because the “vanilla” kernel does not need the per-task stack.

(20) The “vanilla” kernel uses the native QF event queue QEQueue, which needs to

be initialized with the function QEQueue_init().

(21) The QF priority of the active object is set inside the active object.

(22) The active object is added to the QF framework.

(23) The internal state machine of the active object is initialized.

Figure 7.13 shows a typical execution scenario in the “vanilla” kernel. As long as events

are available, the event loop calls various active objects to process the events in

run-to-completion fashion. When all event queues run out of events, the event loop calls

the QF_onIdle() function to give the application a chance to switch the MCU to

a low-power sleep mode. The “vanilla” kernel must invoke QF_onIdle() with

interrupts locked. If the interrupts were enabled after the event loop determines that the

ready-set is empty (Listing 7.32(8)), but before calling QF_onIdle() (where the

switching to the low-power mode actually takes place), an interrupt could preempt the

event loop at this exact point and an ISR could post new events to active objects,

thus invalidating the idle condition.
www.newnespress.com

384 Chapter 7
By the simplistic nature of the “vanilla” kernel, the event loop always resumes exactly

at the point it was interrupted, so the event loop would enter the low-power sleep

mode while events would be waiting for processing! The MCU will be stopped for a

nondeterministic period of time until the next interrupt wakes it up. Thus unlocking

interrupts before transitioning to a low-power state opens a time window for a race

condition between any enabled interrupt and the transition to the low-power mode.
y

event
loop

foreground
(ISRs)

CPU stopped

ISR

CPU stopped

time

ISR ISR

QF_onIdle()
called

QF_onIdle()
called

QF_onIdle()
called

Figure 7.13: Entering low-power sleep modes in the “vanilla” kernel.
Entering a sleep mode while interrupts are disabled poses a chicken-and-egg problem

for waking the system up, because only an interrupt can terminate the low-power sleep

mode. To operate in the “vanilla” kernel, the MCU must allow entering the low-power

sleep mode and enabling the interrupts at the same time, without creating the race

condition described above.

Many MCUs indeed allow such an atomic transition to the sleep mode. Other MCUs

support multiple levels of disabling interrupts and can accomplish low-power transitions

with interrupts disabled at one level. Yet another class of MCUs doesn’t provide any wa

of entering the low-power mode with interrupts disabled and requires some different

approaches. Refer the ESD article “Use an MCU’s low-power modes in foreground/

background systems” [Samek 07b] for an overview of safe sleep mode transitions in

various popular MCUs.
7.11.2 The qvanilla.h Header File

The qvanilla.h header file, shown in Listing 7.33, integrates the “vanilla” kernel into

the QF framework. The most important function of this header file is to codify the

updates to the ready-set (QF_readySet_) as events are posted and removed from the

active object event queues.
www.newnespress.com

Listing 7.33 The “vanilla” kernel interface
(<qp>\qpc\include\qvanilla.h)

#ifndef qvanilla_h

#define qvanilla_h

(1) #include “qequeue.h” /* “Vanilla” kernel uses the native QF event queue */

(2) #include “qmpool.h” /* “Vanilla” kernel uses the native QF memory pool */

(3) #include “qpset.h” /* “Vanilla” kernel uses the native QF priority set */

/* the event queue and thread types for the “Vanilla” kernel */

(4) #define QF_EQUEUE_TYPE QEQueue

/* native QF event queue operations */

(5) #define QACTIVE_EQUEUE_WAIT_(me_) \

Q_ASSERT((me_)->eQueue.frontEvt != (QEvent *)0)

(6) #define QACTIVE_EQUEUE_SIGNAL_(me_) \

QPSet64_insert(&QF_readySet_, (me_)->prio)

(7) #define QACTIVE_EQUEUE_ONEMPTY_(me_) \

QPSet64_remove(&QF_readySet_, (me_)->prio)

/* native QF event pool operations */

(8) #define QF_EPOOL_TYPE_ QMPool

(9) #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \

QMPool_init(&(p_), poolSto_, poolSize_, evtSize_)

(10) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).blockSize)

(11) #define QF_EPOOL_GET_(p_, e_) ((e_) = (QEvent *)QMPool_get(&(p_)))

(12) #define QF_EPOOL_PUT_(p_, e_) (QMPool_put(&(p_), e_))

(13) extern QPSet64 volatile QF_readySet_; /** QF-ready set of active objects */

#endif /* qvanilla_h */

385Real-Time Framework Implementation
(1) The “vanilla” kernel uses the native QF event queue, so it needs to include the

qequeue.h header file.

(2) The “vanilla” kernel uses the native QF memory pool, so it needs to include the

qmpool.h header file.

(3) The “vanilla” kernel uses the native QF priority set, so it needs to include the

qpset.h header file.

(4) The “vanilla” kernel uses QEQueue as the event queue for active objects (see also

Listing 7.7 (8)).
www.newnespress.com

386 Chapter 7
(5) The “vanilla” kernel never blocks. It calls QActive_get_() onlywhen it knows

for sure that the event queue contains at least one event (see Listing 7.32(12)).

Since this is certainty in this type of kernel, the QACTIVE_EQUEUE_WAIT_()

macro (see Listing 7.24(2)) asserts that the event queue is indeed not empty.

(6) The macro QACTIVE_EQUEUE_SIGNAL_() is called from

QActive_postFIFO() and QActive_postLIFO() when an event is posted

to an empty queue (see Listing 7.25(5)). This is exactly when the priority of

the active object needs to be inserted into the ready-set QF_readySet_.

Note that QF_readySet_ is modified within a critical section.

(7) The macro QACTIVE_EQUEUE_ONEMPTY_() is called from QActive_get_()

when the queue is becoming empty (see Listing 7.24(12)). This is exactly when

the priority of the active object needs to be removed from the ready-set

QF_readySet_. Note that QF_readySet_ is modified within a critical

section.

(8-12) The “vanilla” kernel uses QMPool as the QF event pool. The platform

abstraction layer (PAL) macros are set to access the QMPool operations (see

Section 7.9).

(13) The QF_readySet_ is declared as volatile because it can change

asynchronously in an ISR.
7.12 QP Reference Manual

The source code available from the companion Website to this book at

www.quantum-leaps. com/psicc2/ contains the complete “QP Reference Manual” in

HTML and CHM-Help formats (see Figure 7.14). The Reference Manual has

been generated by Doxygen (www.doxygen.org), which is an open-source

documentation-generation system for C, C++, Java, and other languages. The HTML

documentation is found in <qp>\qpc\doxygen\html\ , while the CHM Help format

is located in <qp>\qpc\qpc.chm .
NOTE

The “QP/C++ Reference Manual” for the QP/C++ version is located in <qp>\qpcpp\.

www.newnespress.com

http://www.quantumleaps.com/psicc2/
http://www.doxygen.org

CHM Help
format

HTML
format

Figure 7.14: Screen shots of the “QP/C Reference Manual,” which is available
in HTML and CHM Help formats.

387Real-Time Framework Implementation
The “QP Reference Manual” is quite detailed. Every file, structure (class), function,

macro, and typedef is documented. The Doxygen tool does a superb job in cross-

referencing the manual, so you can find information quickly. The manual also

contains plenty of examples and useful code snippets that you can conveniently

cut and paste into your own code. Finally, if you choose to modify the QP source

code, you can regenerate the Doxygen documentation by yourself because I

provide the Doxyfile.
7.13 Summary

QF is a generic, portable, scalable, lightweight, deterministic, real-time framework for

embedded systems. QF supports many advanced features, such as “zero-copy” event

management, publish-subscribe event delivery, and automatic garbage collection for
www.newnespress.com

388 Chapter 7
events. All QF code is written in portable ANSI-C (or Embedded C++ subset in case of

QF/C++) with processor-specific, compiler-specific, and operating system-specific

code abstracted into a clearly defined platform abstraction layer (PAL). The high

portability was one of the main concerns and challenges in designing and

implementing QF.

QF can run on “bare-metal” CPUs, MCUs, and DSPs, completely replacing a traditional

RTOS. The framework can also work with a conventional OS/RTOS to take

advantage of the existing device drivers, communication stacks, and legacy code.

Overall, the QF represents a minimal and efficient realization of the active object–

based computing model. The framework design avoids all potentially risky or

nondeterministic programming techniques internally but does not limit the application

designer to only real-time embedded systems. The QF framework has a small

memory footprint of about 2-4KB, including the QEP hierarchical event processor,

which is of the same order as a small, bare-bones RTOS. QF has been successfully used

in hundreds of commercial products in consumer, medical, industrial, wireless,

networking, research, defense, robotics, automotive, space exploration, and many

other application types worldwide.
www.newnespress.com

www.new
CHAP T E R 8
Porting and Configuring QF
As a rule, software systems do not work well until they have been used, and have failed repeatedly,
in real applications.
—David Parnas

In this chapter I describe how to adapt the QF real-time framework to various

processors, compilers, and operating systems, which is a process called porting.

Porting QF is relatively easy because QF has been designed from the ground up to

be portable. In particular, QF contains a clearly defined platform abstraction layer

(PAL), which encapsulates all the platform-specific code and cleanly separates

it from the platform-neutral code. Depending on the chosen RTOS/OS, the CPU

architecture, and the compiler, porting QF might require writing or modifying

between 5 and 100 lines of code within the PAL.

This chapter starts with a summary of the files, macros, and functions comprising the

PAL. Next, I describe the following three QF ports:

� The QF port to the “vanilla” cooperative kernel built into QF

� The QF port to the mC/OS-II RTOS as an example of using QF with a traditional

real-time, preemptive, priority-based RTOS

� The QF port to Linux as an example of using QF with a conventional POSIX-

compliant operating system

Note that the QF ports I discuss in this chapter do not include the port to the QK

preemptive kernel. That’s because I devote the whole of Chapter 10 to QK.
nespress.com

390 Chapter 8
8.1 The QP Platform Abstraction Layer

All software components of the QP event-driven platform, such as the QEP event

processor and the QF real-time framework, contain a PAL. The PAL is an indirection

layer that hides the differences in hardware and software environments in which

QP operates so that the QP source code does not need to be changed to run in a

different environment. Instead, all the changes required to adapt QP are confined

to the PAL.

In the previous Chapter 7, you already saw quite a few PAL macros, such as macros for

locking and unlocking interrupts or macros for hiding the data types of operating

system-specific objects like threads or event queues. However, the abstraction layer

consists of more than just macros and typedef’s. The PAL also includes the directory

structure to hold all the platform variations, platform-specific header files, platform-

specific source files, and build scripts or Makefiles.
8.1.1 Building QP Applications

The PAL actually serves a dual purpose. Obviously, its goal is to ease the porting effort.

But even more important, the other objective of the PAL is to simplify the use of

QP in the applications.

Figure 8.1 shows the process of building a QP application. Each QP component requires

inclusion of only one platform-specific header file and linking one platform-specific

library. For example, to use the QF real-time framework, you need to include the

qf_port.h header file1 and you need to link the qf.lib library file from the specific

QP port directory. It really doesn’t get any simpler than that.
NOTE

All QP components are designed to be deployed in fine-granularity object libraries. QP

libraries allow the linker to eliminate any unreferenced QP code at link time, which results

in automatic scaling of every QP component for a wide range of applications. This approach

eliminates the need to manually configure and recompile the QP source code for each appli-

cation at hand.

1 You typically include qf_port.h indirectly via the qp_port.h, discussed in Section 8.1.7.

www.newnespress.com

391Porting and Configuring QF
The QP port you are using is determined by the directory branch in which the

qf_port.h header file and the QF library file are located. Listing 8.1 in Section 8.1.3

shows some examples of such port directories. Typically you need to instruct the

C/C++ compiler to include header files from the specific QP port directory and

also from the platform-independent include directory <qp>\qpc\include\. I strongly

discourage hardcoding full pathnames of the include files in your source code. You

should simply include the QP port header file (#include "qf_port.h") without any

path. Then you specify to the compiler to search the QP port directory for include files,

typically through the -I option.
qep_port.h

qep.lib

qf.lib

Target
board

application image

QP Application
(Your Code)

C/C++
Compiler

Linker/
Locator

Application
libraries

object files

3rd Party
Code

application
header

files 3rd party
header

filesapplication
source

files

linker
script

compiler
options

platform-specific
QP libraries
(one per component)

qf_port.h

platform-specific
QP header files
(one per component)

3rd party
object
files

3rd party
libraries

Figure 8.1: Building a QP-based application.
8.1.2 Building QP Libraries

Figure 8.2 illustrates the steps required to build the QF library. The process of building

other QP components, such as QEP or QK, is essentially identical.
www.newnespress.com

392 Chapter 8
The key point of the design is that all platform-independent QF source files include the

same qf_port.h header file as the application source files (see Figure 8.2). At this

point you can clearly see that the PAL plays the dual role of facilitating the porting of

QP as well as using it in the applications.

Figure 8.2 also shows that every QP component, such as QF, can contain a platform-

specific source file (qf_port.c in this case). The platform-specific source file is

optional and many ports don’t require it.
qf_port.h

QP port QP
platform-independent

code

C/C++
Compiler

Librarian

object files

\qpc\include\
 qevent.h
 qf.h
 qequeue.h
 . . .

compiler
options in the
make scipt

platform-specific
QF header file

qf.lib

qf_port.c

platform-specific
QF source file
(optional)

\qpc\qf\source\
 qf_pkg.h
 qa_fifo.c
 qa_lifo.c
 qf.c
 . . .

Figure 8.2: Building the QF library.
8.1.3 Directories and Files

The PAL uses a consistent directory structure that allows you to find the QP port to a

given CPU, operating system, and compiler quite easily. Listing 8.1 shows the platform-

specific QP code organization.
www.newnespress.com

Listing 8.1 Platform-specific QP code organization

(1) qpc\ - QP/C root directory (qpcpp\ for QP/C++)

|

(2) +-ports\ - Platform-specific QP ports

(3) | +-80x86\ - Ports to the 80x86 processor

(4) | | +-dos\ - Ports to DOS with the "vanilla" cooperative kernel

(5) | | | +-tcpp101\ - Ports with the Turbo C++ 1.01 compiler

(6) | | | +-l\ - Ports using the Large memory model

(7) | | | +-dbg\ - Debug build

(8) | | | | +-qf.lib - QF library

| | | | +-qep.lib - QEP library

(9) | | | +-rel\ - Release build

(10) | | | +-spy\ - Spy build (with software instrumentation)

(11) | | | +-make.bat - batch script for building the QP libraries

| | | +-qep_port.h - QEP platform-dependent include file

(12) | | | +-qf_port.h - QF platform-dependent include file

| | | +-qs_port.h - QS platform-dependent include file

| | | +-qp_port.h - QP platform-dependent include file

| | |

| | +-qk\ - Ports to the QK preemptive kernel

| | | +-. . .

| | |

| | +-ucos2\ - Ports to the mC/OS-II RTOS

| | | +-tcpp101\ - Ports with the Turbo C++ 1.01 compiler

| | | | +-l\ - Ports using the Large memory model

(13) | | | | | +-ucos2.86\ - mC/OS-II v2.86 object code and header files

| | | | | +-src\ - Port-specific source files

(14) | | | | | | +-qf_port.c - QF port to mC/OS-II source file

| | | | | +-. . .

| | |

| | +-linux\ - Ports to the Linux operating system (POSIX)

| | +-gnu\ - Ports with the GNU compiler

| | | | +-src\ - Port-specific source files

(15) | | | | | +-qf_port.c - QF port to Linux source file

| | +-. . .

| |

| +-cortex-m3\ - Ports to the Cortex-M3 processor

| | +-vanilla\ - Ports to the "vanilla" cooperative kernel

| | | +-iar\ - Ports with the IAR compiler

| | | | +-dbg\ - Debug build

| | | | +-rel\ - Release build

| | | | +-spy\ - Spy build (with software instrumentation)

| | | | +-make.bat - batch script for building QP libraries

| | | | +-qep_port.h - QEP platform-dependent include file

| | | | +-qf_port.h - QF platform-dependent include file

| | | | +-qs_port.h - QS platform-dependent include file

| | | | +-qp_port.h - QP platform-dependent include file

| | | . . .

Continued onto next page

www.newnespress.com

393Porting and Configuring QF

| | +-qk\ - Ports to the QK preemptive kernel

| | +-iar\ - Ports with the IAR compiler

| +-. . . - Ports to other CPUs

|

(16) +-examples\ - Platform-specific QP examples

| +-80x86\ - Examples for the 80x86 processor

| | +-dos\ - Examples for DOS with the "vanilla" cooperative kernel

| | +-tcpp101\ - Examples with the Turbo C++ 1.01 compiler

| | +-l\ - Examples using the Large memory model

(17) | | +-dpp\ - DPP example

(18) | | | +-dbg\ - Debug build

| | | | +-dpp.exe - Debug executable

| | | +-rel\ - Release build

| | | | +-dpp.exe - Release executable

| | | +-spy\ - Spy build (with software instrumentation)

| | | | +-dpp.exe - Spy executable

| | | +-DPP-DBG.PRJ - Turbo C++ project to build the Debug version

| | +-game\ - "Fly ’n’ Shoot" game example

| | +-. . .

| +-cortex-m3\ - Examples for the Cortex-M3 processor

| | +-vanilla\ - Examples for the "vanilla" cooperative kernel

| | | +-iar\ - Examples with the IAR compiler

| | +-dpp\ - DPP example

| | +-game\ - "Fly ’n’ Shoot" game example

| | +-. . . - Other examples

| +-. . . - Examples for other CPUs

|

(19) +-include\ - Platform independent QP header files

| +-qep.h - QEP platform-independent interface

| +-qf.h - QF platform-independent interface

| +-qk.h - QK platform-independent interface

| +-qs.h - QS platform-independent interface

| +-. . . - Other platform-independent QP header files

|

(20) +-qep\ - QEP event processor

| +-source\ - QEP platform-independent source code (*.C files)

| | +-. . .

(21) +-qf\ - QF real-time framework

| +-source\ - QF platform-independent source code (*.C files)

| | +-. . .

(22) +-qk\ - QK preemptive kernel

| +-source\ - QK platform-independent source code (*.C files)

| | +-. . .

(23) +-qs\ - QS software tracing

| +-source\ - QS platform-independent source code (*.C files)

| | +-. . .

www.newnespress.com

394 Chapter 8

395Porting and Configuring QF
(1) Every QP version such as QP/C and QP/C++ resides in the separate directory branch,

called henceforth the QP Root Directory. The essential element of the design is that

the QP Root Directory can be “plugged into” any branch of a hierarchical file system

and you can move the QP Root Directory around, or even have multiple versions

of the QP Root Directories. You can also freely choose the name of the QP Root

Directory, although I recommend the directory names <qp>\qpc\ for QP/C and

<qp>\qpcpp\ for QP/C++. The ability to relocate the QP Root Directory means that

only relative paths should be used in the Makefiles, build scripts, workspaces, or

project files.

(2) The directory ports\ contains platform-specific header files and libraries to

be used by QP applications. This directory structure is the most complicated

because of the large number of choices available, such as CPU architectures,

compilers, operating systems, and compiler options. Each of those choices is

represented as a separate level of nesting in a hierarchical directory tree, so

each dimension in the multidimensional space of options can be extended

independently from the others. In addition, the directory branch for each port is

individually customizable, so each branch can represent only choices relevant for

a given CPU, operating system, compiler, etc.

(3) I’ve decided to put the CPU architecture as the first level of nesting within the

ports\ directory. Examples of CPU architectures are 80x86, Cortex-M3, ARM,

AVR, MSP430, and M16C. Note that a separate directory is needed whenever

the CPU architecture is significantly different. For example, even though the

traditional ARM and the new ARM Cortex-M3 are related, the differences are

significant enough to require a separate directory branch for ARM and Cortex-M3.

(4) The second level of nesting under the CPU architecture is the operating system

used. For example, in the 80x86 architecture, QP can operate under DOS (with

the “vanilla” cooperative kernel), under the QK preemptive kernel, under the

mC/OS-II RTOS, or under Linux (and perhaps other OSs such as Win32).
NOTE

The ordering of directory levels reflects the embedded focus in the QF design. In most stan-

dalone QF applications the CPU architecture is typically more important than the RTOS/OS.

For general-purpose operating systems such as Linux, the reversed order (operating system at

a higher level than the CPU architecture) would perhaps feel more natural.

www.newnespress.com

396 Chapter 8
(5) The next level of nesting, under each operating system directory, is the directory

for the compiler used. For example, the DOS port can be compiled with the

Turbo C++ 1.01 or perhaps with Visual C++ 1.52. Similarly, the port to

Cortex-M3 with QK kernel can be compiled with the IAR, RealView, or GNU

compilers.

(6) In some ports, the compiler can emit code for various modes of the CPU.

For example, a compiler for 80x86 under DOS can produce small, compact,

large, or huge memory models. These different modes result in incompatible

object code, and therefore each of them requires a separate branch. Note

that the compiler options level is optional. For example, the Cortex-M3 CPU

branch does not need the compiler options level.

(7) Finally, the QP libraries can be compiled with different compile-time switches

and optimization options. For example, the dbg\ directory holds the Debug

configuration, which contains the symbolic debug information.

(8) Each specific build directory contains the QP library files. The actual library

names should comply with the conventions used on a particular platform.

For example, on Linux the libraries are typically named lib???.a (e.g.,

libqep.a, libqf.a, etc.).

(9) The rel\ directory holds the Release configuration, which typically does not

contain debug information but might use aggressive optimizations for best

performance.

(10) The spy\ directory holds the Spy configuration, which uses the QS software-

tracing instrumentation (see Chapter 11).

(11) The standard QP ports often contain a simple make.bat script or a Makefile

for building all the QP libraries for the port. You typically can choose the build

configuration by providing a target to the make.bat script or to the Makefile.

The default target is “dbg.” Other possible targets are “rel” and “spy.”

Table 8.1 summarizes the targets accepted by the make.bat scripts or the

Makefiles.

(12) The qf_port.h header file is the most important part of the port. This header

file contains the definitions of the PAL macros and typedef’s as well as other

elements. I discuss the qf_port.h header file in detail in Section 8.1.5.
www.newnespress.com

Table 8.1: Build targets accepted by make.bat
scripts or Make

Build Configuration Build Command

Debug make

Release make rel

Spy make spy

397Porting and Configuring QF
(13) The subdirectory ucos2.86\ contains the headers and object files of

mC/OS-II v2.86, compiled for 80x86 with the Turbo C++ 1.01 compiler. This

directory is provided only to allow you to rebuild the example applications

based on the QF port to mC/OS-II. Typically, however, you will need to

obtain the mC/OS-II source code to rebuild it for the actual processor you’re

using. Refer to Section 8.3 for more details about the mC/OS-II port.

(14,15) QP ports to an external RTOS or OS such as mC/OS-II or Linux require some

“glue-code” to bolt the QF framework to the external RTOS/OS. This

source code is placed in the file qf_port.c in the subdirectory src\.

(16) The examples\ directory contains the application examples that accompany

the ports. The structure of the examples\ branch closely mirrors the

structure of the ports\ directory, except that it adds one more level for

various example applications.

(17) For example, the dpp\ directory contains the “Dining Philosopher Problem”

application example for this particular port. I describe the DPP test

application in Chapter 9.

(18) The dpp\dbg\ directory contains the object files and the executable for the

Debug configuration of the DPP application build.

(19) The include\ directory contains the platform-independent header files. You

always need to include this directory in the compiler’s search path to build

applications.

(20-23) The platform-independent source code of each QP component is located in

the separate directory. The source files are only needed to rebuild QP

libraries, but you don’t need to include these directories in the compiler’s

search path to build applications.
www.newnespress.com

398 Chapter 8
8.1.4 The qep_port.h Header File

The header file qep_port.h adapts and configures the QEP event processor

component of QP. I already discussed this header file in Section 4.8 of Chapter 4.

However, qep_port.h also provides macros and typedef’s that affect all the other

QP components. Therefore, for the completeness of the PAL description, I decided

to include here again the explanation of this important header file.
Listing 8.2 The qep_port.h header file

#ifndef qep_port_h
#define qep_port_h

/* special keyword used for ROM objects */
(1) #define Q_ROM ????

/* specific pointer variant for accessing const objects in ROM */
(2) #define Q_ROM_VAR ????

/* platform-specific access to constant data bytes in ROM */
(3) #define Q_ROM_BYTE(rom_var_) ????

/* size of the QSignal data type */
(4) #define Q_SIGNAL_SIZE ?

/* exact-width integer types */
(5) #include <stdint.h> /* WG14/N843 C99 Standard, Section 7.18.1.1 */

(6) typedef signed char int8_t; /* signed 8-bit integer */
(7) typedef signed short int16_t; /* signed 16-bit integer */
(8) typedef signed long int32_t; /* signed 32-bit integer */
(9) typedef unsigned char uint8_t; /* unsigned 8-bit integer */

(10) typedef unsigned short uint16_t; /* unsigned 16-bit integer */
(11) typedef unsigned long uint32_t; /* unsigned 32-bit integer */

(12) #include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */
(1) The Q_ROM macro allows enforcing placement of the constant objects, such as

lookup tables, constant strings, and the like, in ROM rather than in the precious

RAM. On CPUs with the Harvard architecture (such as 8051 or the Atmel

AVR), the code and data spaces are separate and are accessed through different

CPU instructions. Various compilers often provide specific extended keywords

to designate code or data space, such as the “__code” extended keyword in the
www.newnespress.com

399Porting and Configuring QF
IAR 8051 compiler. You don’t need to provide this macro, in which case it will

be defined to nothing in the qep.h platform-independent header file.

(2) The macro Q_ROM_VAR specifies the kind of the pointer to be used to access the

ROM objects because many compilers provide different size pointers for

accessing objects in various memories. Constant objects allocated in ROM often

mandate the use of specific-size pointers (e.g., far pointers) to get access to

ROM objects. An example of a valid Q_ROM_VAR macro definition is __far

(Freescale HC(S)08 compiler). You don’t need to provide this macro, in which

case it will be defined to nothing in the qep.h platform-independent header file.
NOTE

Note that macros Q_ROM and Q_ROM_VAR refer to the different parts of the object declaration.

The macro Q_ROM specifies the ROM memory type to allocate an object. This allows

compilers to generate different instructions for accessing such ROM objects for CPUs

with the Harvard architecture. On the other hand, the macro Q_ROM_VAR specifies the size

of the pointer (e.g., “far” pointer) to access the ROM data, so it refers just to the size of

the object’s address, not to the object itself. The Q_ROM_VAR macro is useful for the von

Neumann machines.

If you don’t define macros Q_ROM or Q_ROM_VAR, the qep.h header file will provide default

empty definitions, which means that no special extended keywords are necessary to correctly

allocate and access the constant objects.
(3) The macro Q_ROM_BYTE() encapsulates a custom mechanism of retrieving a

data byte from the given ROM address, which is useful for some compilers

for Harvard architecture CPUs (e.g., GCC for AVR). Some compilers cannot

generate code for accessing data allocated in the program space (ROM) when

data and program spaces require different machine instructions, even though

the compiler can allocate constants in ROM. The workaround for such

compilers is to explicitly add custom assembly code to access data allocated

in the program space. The Q_ROM_BYTE() macro is really for special occasions

and you typically don’t need to define it. The default that QF provides assumes

a compiler capable of correctly accessing data objects in ROM.

(4) The macro Q_SIGNAL_SIZE configures the size of the event signal (the

QSignal data type). If the macro is not defined, the default of 1 byte will be

chosen in qep.h. The valid Q_SIGNAL_SIZE values 1, 2, or 4 correspond to
www.newnespress.com

400 Chapter 8
QSignal of uint8_t, uint16_t, and uint32_t, respectively. The

QSignal data type determines the dynamic range of numerical values of

signals in your application. The default for Q_SIGNAL_SIZE is 1 (256 signals).

(5) Porting QEP and any other QP component requires providing the C99-standard

exact-width integer types that are consistent with the CPU and compiler

options used. For newer C and C++ compilers, you can simply include the

standard header file <stdint.h> provided by the compiler vendor.

(6-11) For prestandard compilers that don’t provide the <stdint.h> header file, you

need to typedef the six basic exact-width integer types used in QP. Consult

your compiler documentation to find out which combination of the basic

C data types map to the C99-standard integer types. Also note that the mapping

might depend on the compiler options you’re using (e.g., the memory model).

(12) The qep_port.h platform-specific header file must include the qep.h

platform-independent header file.
8.1.5 The qf_port.h Header File

The qf_port.h header file contains the definitions of the PAL macros, typedef’s,

include files, as well as constants for porting and configuring the QF real-time

framework. This is by far the most complex and important file in the whole QP PAL.

Listing 8.3 shows the general layout of the qf_port.h header file. Note that I have

placed all elements into this example file for completeness, even though some sections

of the file are mutually exclusive. In the text immediately following the listing, I clarify

the purpose of each qf_port.h section and explain when you should use it. The

concrete QF ports described later in this chapter provide the examples of valid

qf_port.h header files.
Listing 8.3 The qf_port.h header file

#ifndef qf_port_h

#define qf_port_h

/* Types of platform-specific QActive data members *************************/

(1) #define QF_EQUEUE_TYPE ????

(2) #define QF_OS_OBJECT_TYPE ????

(3) #define QF_THREAD_TYPE ????

www.newnespress.com

/* Base class for derivation of QActive ***********************************/

(4) #define QF_ACTIVE_SUPER_ ????

(5) #define QF_ACTIVE_CTOR_(me_, initial_) ????

(6) #define QF_ACTIVE_INIT_(me_, e_) ????

(7) #define QF_ACTIVE_DISPATCH_(me_, e_) ????

(8) #define QF_ACTIVE_STATE_ ????

/* The maximum number of active objects in the application ******************/

(9) #define QF_MAX_ACTIVE ????

/* Various object sizes within the QF framework ***************************/

(10) #define QF_EVENT_SIZ_SIZE 2

(11) #define QF_EQUEUE_CTR_SIZE 1

(12) #define QF_MPOOL_SIZ_SIZE 2

(13) #define QF_MPOOL_CTR_SIZE 2

(14) #define QF_TIMEEVT_CTR_SIZE 2

/* QF critical section mechanism ***/

(15) #define QF_INT_KEY_TYPE ????

(16) #define QF_INT_LOCK(key_) ????

(17) #define QF_INT_UNLOCK(key_) ????

/* Include files used by this QF port *************************************/

(18) #include <????.h> /* underlying OS/RTOS/Kernel interface */

(19) #include "qep_port.h" /* QEP port */

(20) #include "qequeue.h" /* native QF event-queue */

(21) #include "qmpool.h" /* native QF memory-pool */

(22) #include "qvanilla.h" /* native QF "vanilla" kernel */

(23) #include "qf.h" /* platform-independent QF interface */

/**

* Interface used only inside QF, but not in applications

*/

/* Active object event queue operations ***********************************/

(24) #define QACTIVE_EQUEUE_WAIT_(me_) ????

(25) #define QACTIVE_EQUEUE_SIGNAL_(me_) ????

(26) #define QACTIVE_EQUEUE_ONEMPTY_(me_) ????

/* QF event pool operations **/

(27) #define QF_EPOOL_TYPE_ ????

(28) #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) ????

(29) #define QF_EPOOL_EVENT_SIZE_(p_) ????

(30) #define QF_EPOOL_GET_(p_, e_) ????

(31) #define QF_EPOOL_PUT_(p_, e_) ????

/* Global objects required by the QF port ***********************************/

extern ????;

. . .

#endif /* qf_port_h */

www.newnespress.com

401Porting and Configuring QF

an

402 Chapter 8
Types of Platform-Specific QActive Data Members

This section is required only when QF is ported to an external OS/RTOS. All standalone

QF ports, such as the port to the native “vanilla” cooperative kernel or the QK

preemptive kernel, do not need this section.

(1) You must tell QF the data type of the event queue for active objects. The event

queue can be implemented with a message queue of the RTOS/OS. But it is also

possible to use the native QF event queue QEQueue type if the underlying RTOS/

OS does not provide an adequate queue.

(2) The QF_OS_OBJECT_TYPE data member is necessary when the underlying OS does

not provide an adequate queue facility, so the native QF queue QEQueuemust be used.

In this case the QF_OS_OBJECT_TYPE data member holds an operating system-

specific primitive to efficiently block the native QF event queue when the queue is

empty. Section 8.4, "QF Port to Linux (Conventional POSIX-Compliant OS) " provides

example of specifying the QF_OS_OBJECT_TYPE data type.

(3) The data type QF_THREAD_TYPE holds the thread handle associated with the

active object.

Base Class for Derivation of QActive

This section is required only when you want to derive the QActive base class from a

class different than QHsm, which is the default. The macros in this section allow you

to replace the QEP component with your own event processor. The macros defined

in this segment should generally not be used in the applications. I apply the naming

convention of terminating such macro names with an underscore, which you should

consider as a red flag to avoid using them in the application code.

(4) The macro QF_ACTIVE_SUPER_ specifies the ultimate base class for deriving

active objects. This macro lets you define any base class for QActive, as long as

the base class supports the state machine interface (see Chapter 3, “Generic State

Machine Interface”). If you don’t provide this macro, QF will default to the QHsm

base class.

(5) The macro QF_ACTIVE_CTOR_() specifies the name of the base class

constructor.

(6) The macro QF_ACTIVE_INIT_() specifies the name of the base class init()

function.

"

www.newnespress.com

403Porting and Configuring QF
(7) The macro QF_ACTIVE_DISPATCH_() specifies the name of the base class

dispatch() function.

(8) The macro QF_ACTIVE_STATE_ specifies the type of the parameter for the base

class constructor.
NOTE

The macros QF_ACTIVE_CTOR_(), QF_ACTIVE_INIT_(), and QF_ACTIVE_DISPATCH_()

are not needed in the C++ version of QF. Instead of providing these macros, the base class

specified with QF_ACTIVE_SUPER_ must provide the constructor, init(), and dispatch()

member functions with signatures compatible with the QHsm class interface.
The Maximum Number of Active Objects in the Application

(9) The macro QF_MAX_ACTIVE determines the maximum number of active objects,

which at the same time is the maximum active object priority in the system.

Currently QF_MAX_ACTIVE cannot exceed 63. Defining QF_MAX_ACTIVE to 8 or

less results in a slightly better performance of the native “vanilla” scheduler, the QK

scheduler, and the QF_publish() function.
NOTE

You need to always define QF_MAX_ACTIVE at the QF port level because QF provides no

default value.
Various Object Sizes Within the QF Framework

This section defines various object sizes within the QF framework. All macros in this

section have default values as specified, so you don’t need to define these macros

if the defaults are adequate.

(10) The macro QF_EVENT_SIZ_SIZE determines the size (in bytes) of the event-size

representation in the QF. Valid values: 1, 2, or 4; default 2.

(11) The macro QF_EQUEUE_CTR_SIZE determines the size (in bytes) of the

ring-buffer counters used in the native QF event queue implementation. Valid

values: 1, 2, or 4; default 1.
www.newnespress.com

404 Chapter 8
(12) The macro QF_MPOOL_SIZ_SIZE determines the size (in bytes) of the block-size

representation in the native QF memory pool. Valid values: 1, 2, or 4; default 2.

(13) The macro QF_MPOOL_CTR_SIZE determines the size (in bytes) of the

block-counter representation in the native QF memory pool. Valid values: 1, 2, or

4; default 2.

(14) The macro QF_TIMEEVT_CTR_SIZE determines the size (in bytes) of the time

event-counter representation in the QTimeEvt struct. Valid values: 1, 2, or 4;

default 2.

QF Critical Section Mechanism

This section defines the critical section mechanism used within the QF framework,

which you always need to provide. Refer to Section 7.3, “Critical Sections in QF,” in

Chapter 7 for the detailed discussion of critical sections in QF.

(15) The macro QF_INT_KEY_TYPE defines the data type of the “interrupt key” variable,

which holds the interrupt status. When you define this macro, you indicate to the QF

framework that the policy of “saving and restoring interrupt status” is used.

Conversely, when you don’t define the macro, the QF framework assumes the policy

of “unconditional locking and unlocking interrupts.”

(16) The macro QF_INT_LOCK() encapsulates the mechanism of interrupt locking.

The macro takes a parameter into which it saves the interrupt lock status. The

parameter is not used if you use the simple policy of “unconditional locking and

unlocking interrupts.”

(17) The macro QF_INT_UNLOCK() encapsulates the mechanism of unlocking

interrupts. The macro takes a parameter from which it restores the interrupt lock

status. The parameter is not used if you use the simple policy of “unconditional

locking and unlocking interrupts.”

Include Files Used by this QF Port

In this section you include the header files actually used in this particular QF port. Note

that you generally don’t include all files listed in this section at the same time.

(18) You include the header file(s) of the underlying operating system, RTOS, or

kernel on which you base this QF port. If you use the simple cooperative

“vanilla” kernel, you need to include the qvanilla.h header file (see
www.newnespress.com

405Porting and Configuring QF
Section 8.2). If you use the QK preemptive kernel, you need to include the

qk_port.h header file (see Chapter 10).

(19) You include the qep_port.h header file (see Section 8.1.4) if you derive

QActive from QHsm or QFsm. Since the QHsm base class is the default, most of

the time you need to include qep_port.h.
NOTE

If you choose to replace QEP with your own event processor, you need to include the
qevent.h header file instead of qep_port.h. In addition, you might need to include the
<stdint.h> header file and define the macros described in Listing 8.2.
(20) You need to include the qequeue.h header file if you use the native QF event

queue for active objects. You might also want to include qequeue.h if your

applications use the “raw” thread-safe queues (see Section 7.8.4 in Chapter 7) or

event deferral via QActive_defer()/QActive_recall() mechanism (see

Section 7.5.4 in Chapter 7).

(21) You need to include the qmpool.h header file if you use the native QF memory

pool for event pools. You might also want to include qmpool.h if your

applications use the native QF memory pools for allocating memory (see Section

7.9 in Chapter 7).

(22) You need to include the qvanilla.h header file only if you are using the native

QF “vanilla” kernel. Note that qvanilla.h already includes qequeue.h,

qmpool.h, and qpset.h, so you don’t need to repeat them again.

(23) You always need to include the platform-independent QF header file qf.h.

Typically, you include qf.h as the last header file because it generally depends

on the other header files. For example, the type definitions of the operating

system-dependent data members of QActive must be defined before the

QActive class declaration located in qf.h.

Interface Used Only Inside QF, But Not in Applications

Below this line, you specify the elements of the PAL that are used only inside QF to

adapt the framework source code to the particular platform. These elements are

generally not used in the applications. I apply the naming convention of terminating
www.newnespress.com

406 Chapter 8
such internal elements with an underscore, which you should consider a red flag to

avoid using them in the application code.

Active Object Event Queue Operations

This section is required only when you use the native QF active object event queue with a

traditional blocking operating system or RTOS. Chapter 7, “The Native QF Active

Object Queue,” explains the context in which thesemacros are used in the QF source code.

(24) The macro QACTIVE_EQUEUE_WAIT_() encapsulates the mechanism of

blocking the native QF event queue. Note that this macro is invoked from the

critical section. The macro might unlock interrupts momentarily, but it must

restore critical section before it returns. I provide an example of this macro in the

Linux port (Section 8.4).

(25) The macro QACTIVE_EQUEUE_SIGNAL_() encapsulates the mechanism of

signaling the thread waiting on the event queue. Note that this macro is invoked

from the critical section. The macro must exit the critical section before it

returns. I provide an example of this macro in the Linux port (Section 8.4).

(26) The macro QACTIVE_EQUEUE_ONEMPTY_() informs the underlying kernel

that the active object event queue is becoming empty. Such notification is

required by the cooperative “vanilla” kernel discussed in Section 8.2 as well as in

the QF port to the preemptive run-to-completion QK kernel that I cover in

Chapter 10.

QF Event Pool Operations

This section is required only when QF is ported to an external OS/RTOS. All standalone

QF ports, such as the port to the native “vanilla” cooperative kernel or the QK

preemptive kernel, do not need this section. I provide an example of this section that

uses the memory partitions of the mC/OS-II RTOS in Section 8.3.

(27) The macro QF_EPOOL_TYPE_ specifies the data type of the event pool used in

this port.

(28) The macro QF_EPOOL_INIT_() specifies the initialization function for the

event pool object.

(29) The macro QF_EPOOL_EVENT_SIZE_() returns the block size of a given event

pool.
www.newnespress.com

407Porting and Configuring QF
(30) The macro QF_EPOOL_GET_() obtains a memory block from a given event

pool.

(31) The macro QF_EPOOL_PUT_() recycles a memory block to a given event

pool.

8.1.6 The qf_port.c Source File

The qf_port.c source file defines platform-specific code for the QF port. Not all QF

ports require this file. In fact, only the ports to the external RTOS or OS usually need

some “glue-code” to bolt the framework to the external OS/RTOS. In particular, you

don’t need to provide any such “glue-code” for the simple “vanilla” kernel because it is

totally portable and is already fully integrated with the QF (see Section 7.11 in

Chapter 7). The QK preemptive kernel might require porting, just like any other

preemptive real-time kernel, but in this case you will port QK and not QF (see

Chapter 10). Again, qf_port.c won’t be necessary for QK. Listing 8.4 shows the

general layout of the qf_port.c source file for an external RTOS/OS.
Listing 8.4 The qf_port.c source file

(1) #include "qf_pkg.h"

(2) #include "qassert.h"

(3) Q_DEFINE_THIS_MODULE(qf_port)

/* Global objects ---*/

. . .

/* Local objects---*/

. . .

/*...*/

(4) char const Q_ROM * Q_ROM_VAR QF_getPortVersion(void) {

static const char Q_ROM Q_ROM_VAR version[] = "4.0.00";

return version;

}

/*...*/

(5) void QF_init(void) {

. . .

}

/*...*/

(6) void QF_run(void) {

. . .

}

Continued onto next page

www.newnespress.com

/*...*/

(7) void QF_stop(void) {

. . .

}

/*...*/

(8) void QActive_start(QActive *me,

uint8_t prio, /* the unique priority */

QEvent const *qSto[], uint32_t qLen, /* event queue */

void *stkSto, uint32_t stkSize, /* per-task stack */

QEvent const *ie) /* the initialization event */

{

(9) me->prio = prio; /* set the QF priority */

(10) QF_add_(me); /* make QF aware of this active object */

(11) QF_ACTIVE_INIT_(me, ie); /* execute the initial transition */

(12) /* Initialize the event queue object ’me->eQueue’ using qSto and qLen */

(13) /* Create and start the thread ’me->thread’ of the underlying RTOS */

}

/*...*/

(14) void QActive_stop(QActive *me) {

(15) /* Cleanup me->eQueue or me->osObject */

}

/*..*/

/* You need to define QActive_postFIFO(), QActive_postLIFO(), and

* QActive_get_() only if your QF port uses the queue facility from

* the underlying OS/RTOS.

*/

void QActive_postFIFO(QActive *me, QEvent const *e) {

(16) QF_INT_LOCK_KEY_

(17) QF_INT_LOCK_();

(18) if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

(19) ++((QEvent *)e)->dynamic_; /* increment the reference counter */

}

(20) QF_INT_UNLOCK_();

/* Post event pointer ’e’ to the message queue of the RTOS ’me->eQueue’

* using the FIFO policy without blocking. Also assert that the queue

* accepted the event pointer.

*/

}

/*..*/

void QActive_postLIFO(QActive *me, QEvent const *e) {

QF_INT_LOCK_KEY_

QF_INT_LOCK_();

if (e->dynamic_ != (uint8_t)0) { /* is it a dynamic event? */

++((QEvent *)e)->dynamic_; /* increment the reference counter */

}

QF_INT_UNLOCK_();

/* Post event pointer ’e’ to the message queue of the RTOS ’me->eQueue’

* using the LIFO policy without blocking. Also assert that the queue

www.newnespress.com

408 Chapter 8

* accepted the event pointer.

*/

}

/*..*/

QEvent const *QActive_get_(QActive *me) {

/* Get the next event from the active object queue ’me->eQueue’.

* Block indefinitely as long as the queue is empty. Assert no errors

* in the queue operation. Return the event pointer to the caller.

*/

}

409Porting and Configuring QF
(1) The qf_port.c source file is considered a part of the QF source code, and as

such it needs access to the wider “package-scope” QF interface qf_pkg.h,

located in <qp>\qpc\qf\source\. The qf_pkg.h header file includes

qf_port.h, but it additionally defines some internal macros and objects shared

only internally within the QF component.

(2) Typically, the qf_port.c source files uses QP assertions.

(3) As described in Section 6.7.3, “Customizable Assertions in C and C++,” in

Chapter 6, the macro Q_DEFINE_THIS_MODULE() defines the name of the

module, which is subsequently referenced in all assertions implemented in this

module.

(4) If you want to track the version of this particular QF port, you can define the

function QF_getPortVersion() that returns the version string number. The

string number is typically placed in ROM.

(5) The function QF_init() handles the specific initialization of the underlying

OS/RTOS.

(6) The function QF_run() transfers control to QF to run the application. QF_run()

is typically called from main() after you initialize the QF and start at least one

active object with QActive_start(). QF_run() does not return to the caller as

long as QF is in control.

(7) The function QF_stop() stops execution of the QF framework. The effect of

this function might not be immediate. For example, it might only set an internal

flag to terminate a loop inside QF_run() if QF_run() is implemented that

way. When you design QF_stop(), you should also make sure that the callback

QF_onCleanup() is called before the control is transferred back to the
www.newnespress.com

410 Chapter 8
underlying OS/RTOS. The specific QF ports described later in this chapter give

examples of QF_stop() implementations. I discuss QF callback functions in

the upcoming Section 8.1.8.

(8) The function QActive_start() creates the active object’s thread and notifies

QF to start managing the active object. The argument ‘me’ is the pointer to

the active object being started. The argument ‘prio’ is the QF priority you

assign to the active object. In QF, every active object must have a unique

priority, which you assign at startup and cannot change later. QF uses a priority

numbering in which priority 1 is the lowest and higher numbers correspond to

higher priorities. The arguments ‘qSto’ and ‘qLen’ are a pointer to the storage

for the event queue buffer and the length of that buffer (in units of QEvent*),

respectively. If the underlying RTOS cannot accept externally allocated storage

for the queue, the ‘qSto’ pointer should be set to NULL. The argument ‘stkSto’

is the pointer to the storage for the private stack, and the argument ‘stkSize’ is

the size of that stack (in bytes). If the underlying kernel/RTOS does

not need per-task stacks or cannot accept externally allocated storage for the

stack, the ‘stkSto’ pointer should be set to NULL. Finally, the argument ‘ie’ is a

pointer to the initialization event for the topmost initial transition in the active

object state machine. This argument is very specific to the active object being

initialized and can be NULL.

(9) The function QActive_start() must always set the active object priority.

(10) The function QActive_start() must always notify QF to add this active

object at the priority level set previously.

(11) The function QActive_start() must trigger the initial transition in the active

object’s state machine (see also Listing 8.3(6)).

(12) The function QActive_start() must initialize the OS-specific event queue

object.

(13) The function QActive_start() must start the active object’s thread. Note that

the priority of thread should correspond to the relative QF priority passed

as the argument ‘prio’ to QActive_start(). If the underlying scheduler uses

a different priority numbering scheme than QF, the concrete implementation

of QActive_start() must remap the QF priority to the priority required by

the underlying scheduler before invoking the OS-specific thread creation routine.
www.newnespress.com

411Porting and Configuring QF
(14) The function QActive_stop() stops the active object’s thread and performs

cleanup after the active object.

(15) The function QActive_stop() must perform the OS-specific cleanup of

the event queue or the OS-specific object for blocking the native QF event queue.
NOTE

You need to define the functions QActive_postFIFO(), QActive_postLIFO(), and

QActive_get_() only if your QF port uses the queue facility from the underlying OS/RTOS.

As you define these functions in qf_port.c, you should exclude the following three QF source

files from the QF library build: qa_fifo.c, qa_lifo.c, and qa_get_.c (see also Table 8.2).

Th e u pc om in g Q F p or t t o mC/OS-II (Section 8.3) provides an example of such a QF port.
(16-20) The function QActive_postFIFO() (as well as QActive_postLIFO())

must increment the reference counter of a dynamic event exactly as shown.

8.1.7 The qp_port.h Header File

Every application C-file needs to include platform-specific header files for all QP

components used in this application, as illustrated in Figure 8.1. To simplify this even

further, you can combine all QP components used in the port so that the applications

need to include just one qp_port.h header file. Listing 8.5 provides an example of the

qp_port.h file. Typically, if you use the standard QP components, you don’t need

to change it much, although you might want to add to the qp_port.h file some

elements that you always use with your QP applications.

Note that the qp_port.h header file is intended exclusively for the applications and is

not used at all in building the QP libraries for the port.
Listing 8.5 The qp_port.h header file

#ifndef qp_port_h
#define qp_port_h

#include "qf_port.h" /* includes qep_port.h and qk_port.h, if used */
#include "qassert.h" /* QP assertions */

#endif /* qp_port_h */

www.newnespress.com

412 Chapter 8
8.1.8 Platform-Specific QF Callback Functions

A QF port cannot and should not define all the functions that it calls, because this would

render the port too inflexible. Some functionality is simply much better left to the

application, or perhaps to the Board Support Package (BSP). The functions that QF calls

but doesn’t actually implement are referred to as callback functions. All these functions

in QF (as well as all other QP components) are easily identifiable by the “on”

preposition used in the function name (e.g., QF_onStartup()). This section

summarizes all QF callback functions.

void QF_onStartup(void)

This callback function is called just before the QF takes over control of the application.

The main intent of the QF_onStartup() callback is to initialize and start interrupts.

The timeline for calling QF_onStartup() depends on the particular QF port.

However, in most cases, QF_onStartup() is called from QF_run(), right before

starting any multitasking kernel or the background loop.

void QF_onCleanup(void)

QF_onCleanup() is called in some QF ports before QF returns to the underlying

operating system or RTOS. The intent of the QF_onCleanup() callback is to give

the application a chance to perform cleanup before exiting. This function might be

empty, if the particular application has nothing to clean up or if the application never

returns.

void QF_onIdle(void) or void QF_onIdle(QF_INT_KEY_TYPE

lockKey)

QF_onIdle() is called by the cooperative “vanilla” kernel built into QF. The signature

of this callback depends on the interrupt-locking policy used in the QF port.

I discussed the QF_onIdle() callback in Section 7.11.1 of Chapter 7 as well as in

Section 8.2.4 in this chapter.

void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file,

int line)

The callback Q_onAssert() is used by all QP components, not just QF. This callback

is invoked in case the condition passed to Q_ASSERT(), Q_REQUIRE(), Q_ENSURE(),
www.newnespress.com

413Porting and Configuring QF
Q_ERROR(), or Q_ALLEGE() evaluates to FALSE. The parameter ‘file’ denotes the

filename where the assertion failed. The parameter ‘line’ holds the line number at

which the assertion failed. I discuss the Q_onAssert() callback in Section 6.7.3 in

Chapter 6.
8.1.9 System Clock Tick (Calling QF_tick())

As you design your port, you must decide how you are going to provide the system

clock tick to call the QF_tick() function (see Section 7.7.2 in Chapter 7). Ideally,

QF_tick() should be called from a periodic interrupt running at a rate between

10Hz and 100Hz. In case you can use the system clock interrupt, you don’t need

to do anything special at the QF port level. Simply don’t forget to call QF_tick()

from the system clock tick interrupt service routine (ISR) in your application.

Naturally, your application can use the system clock tick ISR for other purposes

as well.

However, in QF ports to the general-purpose operating systems, such as Linux or

Windows, you cannot easily access the system clock tick ISR. In this case, you can call

QF_tick() from the task level.2 Typically, you dedicate a separate thread (the

“ticker thread”), which is structured as an endless loop that calls QF_tick() and

goes to sleep for the rest of the time slice. If you use this technique, you should

implement the “ticker thread” in the qf_port.c source file. The Linux port in

Section 8.4 provides an example of this approach.
8.1.10 Building the QF Library

A QP port should include a make.bat script, a Makefile, or a workspace/project file

to build the QP libraries (see Listing 8.1(11)). Whichever way you actually provide

to build the QF library, you should remember that not all QF source files need to be

incorporated in every port. Table 8.2 contains the list of source files that you might need

to exclude from the final QF build to avoid multiply defined symbols while linking

the applications:
2 As described in Section 7.7.2 in Chapter 7, QF_tick() is designed to be called from an interrupt or from

the task level.

www.newnespress.com

Table 8.2: QF source files that you might need to leave out

Filename Comments

qa_fifo.c Include in the build only if the port uses the native QF active object event
queue. Do not include in the build if you provide definitions of functions
QActive_postFIFO(), QActive_postLIFO(), and QActive_get_() in the
qf_port.c source file.

qa_lifo.c

qa_get_.c

qvanilla.c Include in the build only when you use the “vanilla” cooperative kernel.

414 Chapter 8
8.2 Porting the Cooperative “Vanilla” Kernel

In Section 7.11 of Chapter 7 I described the native QF cooperative “vanilla” kernel.

When you use QF with the “vanilla” kernel, you don’t need to port the framework to the

kernel—I already did it for you in Chapter 7. But you still need to port the “vanilla”

kernel itself to the target CPU and compiler that you are using. Fortunately, this is quite

easy due to the simplistic nature of the “vanilla” kernel. All you need to provide is

the compiler-specific exact-width integer types in qep_port.h and the interrupt-

locking policy in qf_port.h. You typically don’t need to provide any platform-

specific source files.

In this section I show two examples of “vanilla” kernel ports, both of

which you already used in Chapter 1 to run the “Fly ‘n’ Shoot” game example.

The first one is for the 80x86 CPU under DOS, with the legacy Turbo C++ 1.01

compiler configured to generate code for “large” memory model. This port

is located in <qp>\qpc\ports\80x86\dos\tcpp101\l\. The second

“vanilla” port is for the ARM Cortex-M3 CPU with the latest IAR compiler

and is located in <qp>\qpc\ports\cortex-m3\vanilla\iar\

(see Listing 8.1).
8.2.1 The qep_port.h Header File

Listing 8.6 shows the qep_port.h header file for 80x86/DOS/Turbo C++ 1.01/Large

memory model. The legacy Turbo C++ 1.01 is a prestandard compiler, so I typedef

the six platform-specific exact-with integer types used in QP.
www.newnespress.com

Listing 8.6 The qep_port.h header file for 80x86/DOS/Turbo C++
1.01/Large memory model

#ifndef qep_port_h
#define qep_port_h

/* Exact-width integer types for DOS/Turbo C++ 1.01/Large memory model */
typedef signed char int8_t;
typedef signed int int16_t;
typedef signed long int32_t;
typedef unsigned char uint8_t;
typedef unsigned int uint16_t;
typedef unsigned long uint32_t;

#include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */

415Porting and Configuring QF
Listing 8.7 shows the qep_port.h header file for Cortex-M3/IAR. The IAR compiler

is a standard C99 compiler, so I simply include the <stdint.h> header file that

defines the platform-specific exact-width integer types.
Listing 8.7 The qep_port.h header file for Cortex-M3/IAR

#ifndef qep_port_h
#define qep_port_h

#include <stdint.h> /* C99-standard exact-width integer types */
#include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */
8.2.2 The qf_port.h Header File

The most important porting decision you need to make in the qf_port.h header file is

the policy for locking and unlocking interrupts. To make this decision correctly, you

need to learn a bit about your target CPU and the compiler to find out the most efficient

way of enabling and disabling interrupts from C or C++. Generally, your first safe

choice should be the more advanced policy of “saving and restoring the interrupt status”

(Section 7.3.1 in Chapter 7). However, if you find out that it is safe to unlock interrupts

within ISRs because your target processor can prioritize interrupts in hardware, you
www.newnespress.com

416 Chapter 8
can use the simple and fast policy of “unconditional interrupt unlocking” (Section 7.3.2

in Chapter 7). With the fast policy you must always make sure that no QF functions

are invoked with interrupts already locked, or more generally, that critical sections

don’t nest. Note that interrupts could be implicitly locked in the ISRs.

Listing 8.8 shows the qf_port.h header file for 80x86/DOS/Turbo C++ 1.01/Large

memory model. I decided to use the simple “unconditional interrupt unlocking” policy

because the standard PC has an external 8259A Programmable Interrupt Controller

(PIC) and the Turbo C++ 1.01 compiler provides the pair of functions disable() and

enable() to unconditionally lock and unlock interrupts, respectively. With this

simple interrupt-locking policy, I need to be careful in calling QF services from ISRs.

Listing 8.10 later in this section shows an example of the system clock tick ISR in

this case. The QF port to m C/OS-II discussed in the upcoming Section 8.3 demonstrates

the “saving and restoring the interrupt status” for the same CPU/compiler

combination.
Listing 8.8 The qf_port.h header file for 80x86/DOS/Turbo C++
1.01/Large memory model

#ifndef qf_port_h
#define qf_port_h

/* DOS critical section entry/exit */
/*QF_INT_KEY_TYPEnotdefined:"unconditionalinterruptunlocking"policy*/
#define QF_INT_LOCK(dummy) disable()
#define QF_INT_UNLOCK(dummy) enable()

#include <dos.h> /* DOS API, including disable()/enable() prototypes */
#undef outportb /*don’t use the macro because it has a bug in Turbo C++ 1.01*/

#include "qep_port.h" /* QEP port */
#include "qvanilla.h" /* The "Vanilla" cooperative kernel */
#include "qf.h" /* QF platform-independent public interface */

#endif /* qf_port_h */
Listing 8.9 shows the qf_port.h header file for Cortex-M3/IAR. Again, I use the

simple “unconditional interrupt unlocking” policy because Cortex-M3 is equipped with

the standard nested vectored interrupt controller (NVIC) and generally runs ISRs

with interrupts unlocked.
www.newnespress.com

Listing 8.9 The qf_port.h header file for Cortex-M3/IAR

#ifndef qf_port_h
#define qf_port_h

/* QF critical section entry/exit */
/* QF_INT_KEY_TYPE not defined: "unconditional interrupt unlocking" policy */
#define QF_INT_LOCK(dummy) __disable_interrupt()
#define QF_INT_UNLOCK(dummy) __enable_interrupt()

#include <intrinsics.h> /* IAR intrinsic functions */

#include "qep_port.h" /* QEP port */
#include "qvanilla.h" /* The "Vanilla" cooperative kernel */
#include "qf.h" /* QF platform-independent public interface */

#endif /* qf_port_h */

417Porting and Configuring QF
8.2.3 The System Clock Tick (QF_tick())

Strictly speaking, the “vanilla” QF port usually does not contain the system clock tick

ISR because it is more convenient to place this ISR in the application. However, when

developing any QF port, you need to have a pretty good idea how you are going to

handle interrupts in general and the system clock interrupt in particular.

Listing 8.10 shows the system clock tick ISR for DOS, which is triggered by channel-0

of the 8253/8254 timer-counter chip connected to IRQ0.
Listing 8.10 The system clock tick ISR in 80x86/DOS/Turbo C++ 1.01/Large
memory model

(1) void interrupt ISR_tmr0(void) { /* entered with interrupts LOCKED */
(2) QF_INT_UNLOCK(dummy); /* unlock interrupts */
(3) QF_tick();

/* do some application-specific work ... */
(4) QF_INT_LOCK(dummy); /* lock interrupts again */
(5) outportb(0x20, 0x20); /* write EOI to the master 8259A PIC */

}

(1) The Turbo C++ 1.01 compiler provides an extended keyword “interrupt” that

enables you to program ISRs in C/C++.
www.newnespress.com

418 Chapter 8
(2) The 80x86 processor locks interrupts in hardware before vectoring to the ISR.

The interrupts can be unlocked right away, though, because the 8259A

programmable interrupt controller prioritizes interrupts before they reach

the CPU.

(3) The QF_tick() service is called outside of critical section.

(4) Interrupts are locked before exiting from the ISR.

(5) The end-of-interrupt (EOI) instruction is sent to the master 8259A PIC so that it

ends prioritization of this interrupt level.

Listing 8.11 shows the system clock tick ISR for Cortex-M3, which is triggered by

the periodic timer called SysTick specifically designed for that purpose. In Cortex-M3

ISRs don’t require any special instructions on entry or exit, so it is exceptionally easy

to program ISR directly in C (isn’t that nice?). This is actually unusual for most

processor architectures. Furthermore, because Cortex-M3 enters ISRs with interrupts

unlocked, there is no need to unlock interrupts to avoid nesting critical sections.

Finally, the NVIC interrupt controller receives the EOI instruction implicitly by the

special interrupt return code deposited in the LR register before the ISR entry, which

means that you don’t need to code EOI explicitly. All this enables using QF_tick()

directly as the system clock tick ISR by placing it directly into the Cortex-M3 vector

table. Typically, however, you need to add some more application-specific

functionality to the SysTick interrupt than just QF_tick(), so I keep it as a

separate function.
Listing 8.11 The SysTick ISR for Cortex-M3/IAR

void ISR_SysTick(void) { /* entered with interrupts UNLOCKED */
QF_tick();
/* do some application-specific work ... */

}

8.2.4 Idle Processing (QF_onIdle())

The “vanilla” kernel calls the QF_onIdle() callback function whenever it detects that

all active object event queues in the system are empty. As I explained at the end of

Section 7.11.1, the QF_onIdle() callback is invoked with interrupts locked and must

always unlock interrupts; otherwise the system locks up.
www.newnespress.com

419Porting and Configuring QF
Similarly to the system clock tick, the QF_onIdle() callback function usually is not

part of the QF port because it is more convenient to place the idle processing in the

application. However, idle processing is such an important issue to the “vanilla” kernel

that I must mention it here.

Listing 8.12 shows the QF_onIdle() function for 80x86/DOS. The function simply unlocks

interrupts because there is no standard way of turning low-power sleep mode for 80x86.
Listing 8.12 The QF_onIdle() callback for 80x86/DOS

void QF_onIdle(void) { /* entered with interrupts LOCKED */
QF_INT_UNLOCK(dummy); /* always unlock interrupts */
/* do some more application-specific work ... */

}

In contrast, the Cortex-M3 processor can be put into a low-power mode, as shown in

Listing 8.13.
Listing 8.13 The QF_onIdle() callback for Cortex-M3/IAR

void QF_onIdle(void) { /* entered with interrupts LOCKED */
(1) #ifdef NDEBUG

/* Put the CPU and peripherals to the low-power mode.
* NOTE: You might need to customize the clock management for your
* application, by gating the clock to the selected peripherals.
* See the datasheet for your particular Cortex-M3 MCU.
*/

(2) __asm("WFI"); /* Wait-For-Interrupt */
#endif

(3) QF_INT_UNLOCK(dummy); /* always unlock interrupts */

/* optionally do some application-specific work ... */
}

(1) I use conditional compilation to enter low-power sleep mode only when not

debugging (NDEBUG defined). The transition to low-power sleep mode typically

stops the CPU clock, which often makes debugging impossible.

(2) The Thumb-2 instruction set used in Cortex-M3 provides a special instruction

WFI (Wait-For-Interrupt) for stopping the CPU clock. As described in the
www.newnespress.com

420 Chapter 8
“ARMv7-M Reference Manual” [ARM 06a], the WFI instruction can be

executed with the PRIMASK bit set (interrupts locked). The Cortex-M3 core

stops executing code immediately after the WFI instruction. Even so, any

asynchronous exception (e.g., an interrupt) can wake the CPU by restarting the

clock. The CPU resumes code execution but can handle the interrupt only when

interrupts are unlocked.

(3) Interrupts are always unlocked. If an interrupt woke up the CPU from low-power

sleep mode, the interrupt would be serviced only after interrupts get unlocked.
NOTE

Cortex-M3 allows entering the WFI mode atomically (with interrupts disabled), which is

exactly how it should be done in the “vanilla” kernel or, more generally, in any fore-

ground/background architecture.
8.3 QF Port to mC/OS-II (Conventional RTOS)

The QF real-time framework can work with virtually any traditional real-time operating

system (RTOS), such as VxWorks, Nucleus, mC/OS-II, eCos, RTOS-32, and others

alike. Combined with a conventional RTOS, QF takes full advantage of the multitasking

capabilities of the RTOS by executing each active object in a separate task (see

Section 6.3.6 in Chapter 6). The QF PAL includes an abstract RTOS interface to enable

tight integration between QF and the underlying RTOS. Specifically, the PAL allows

adapting most message queue variants as event queues of active objects as well as

most memory partitions as QF event pools.

The most important reason why you should consider using a traditional blocking RTOS

for executing event-driven QF applications is compatibility with the existing software. For

example, most communication stacks (TCP/IP, USB, CAN) are designed for a

traditional blocking kernel. In addition, a lot of legacy code requires blocking mechanisms,

such as semaphores. A conventional RTOS allows you to run the existing software

components as regular “blocking” tasks in parallel to the event-driven QF application.

On the other hand, if your project does not include legacy software or if you can afford to

rewrite it in a nonblocking way, a conventional blocking RTOS could be an unnecessary

complication and overkill for an event-driven system. You don’t need an RTOS to

partition the application into tasks, because active objects already achieve this goal. If the
www.newnespress.com

421Porting and Configuring QF
responsiveness of the simple “vanilla” kernel is not sufficient, you can employ a

nonblocking, run-to-completion (RTC) preemptive kernel. As described in Section 6.3.8

in Chapter 6, such an RTC kernel provides deterministic, preemptive priority-based

execution of event-driven systems at a fraction of the cost, complexity, and porting effort

associated with any conventional blocking RTOS. In Chapter 10, I describe a lightweight,

preemptive RTC kernel called QK, which is part of the QP event-driven platform.

In this section I describe porting QF to the mC/OS-II RTOS. I have chosen mC/OS-II as
an example because it provides an excellent case study of a traditional priority-based,

preemptive RTOS that is superbly documented in the book Micro-C/OS-II: The

Real-Time Kernel, by Jean J. Labrosse [Labrosse 02].

To focus the discussion of the port, I employ identical configuration to that described in the

Micro-C/OS-II book. I use a standard 80x86-based PC running any variant of Windows

and the Borland Turbo C++ 1.01 compiler3 configured to generate code for “large”memory

models. This configuration allows you to easily try the working port on your desktop

without any investment in embedded hardware or the specific compiler. The QF port to mC/
OS-II is located in the <qp>\qpc\ports\80x86\ucos2\tcpp101\l\ directory.
NOTE

mC/OS-II is a comme rcial product of Micrium Inc. (www.micrium.com). With the kind per-

mission from Micri um, the code accompa nying this book cont ains preco mpiled obje ct-module s

for mC/O S-II v2.86 (the latest version as of this writing) as well as the externa l header files (see
Listing 8.1(13) for the location of these files). Note that the version 2.86 is several generations

newer than the version 2.60 published in theMicro-C/OS-II book. You need to contact Micrium

Inc. to obtain the latest mC/OS-II source code and documentation.
Even though I had to settle on a concrete CPU and compiler to actually let you execute

the code, I have carefully designed the provided QF port to mC/OS-II to be generic

and applicable to most CPUs and compilers to which mC/OS-II has been ported. In the

case of porting QF to an external RTOS (mC/OS-II in this case), the RTOS forms an

indirection layer that insulates QF from the CPU and the nonportable compiler

extensions. What this means is that you still need to port the RTOS to the specific CPU

and compiler, but you don’t need to modify the QF port to the RTOS because the

RTOS API does not change.
3 The Micro-C/OS-II book uses the newer Borland C++ 4.5 compiler.

www.newnespress.com

http://www.micrium.com

422 Chapter 8
One specific note I need to make at this point is that mC/OS-II employs a

diametrically different porting and configuring policy than QF. Whereas QF is

deployed as a fine-granularity library that allows the linker to eliminate any unused

object modules at link time, mC/OS-II is configured mostly at compile time via

configuration macros located in the os_cfg.h header file [Labrosse 02]. Most of

the mC/OS-II code is compiled into just one monolithic object module

(ucos_ii.obj), which the linker cannot chop into pieces easily.4 The point to

remember is that you need to recompile the QF library whenever you change the

mC/OS-II configuration (the os_cfg.h file), because QF relies on some of this

configuration.
8.3.1 The qep_port.h Header File

The platform-specific qep_port.h header file, shown in Listing 8.14, reuses the

mC/OS-II configuration defined in the os_cpu.h header file. You typically don’t need

to modify qep_port.h to work with any other mC/OS-II port.
Listing 8.14 The qep_port.h header file for mC/OS-II

#ifndef qep_port_h
#define qep_port_h

(1) #include "ucos_ii.h" /* uC/OS-II include file */

/* Exact-width integer types, as defined in uC/OS-II */
(2) typedef INT8S int8_t;

typedef INT16S int16_t;
typedef INT32S int32_t;
typedef INT8U uint8_t;
typedef INT16U uint16_t;
typedef INT32U uint32_t;

(3) #include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */

4 Some linkers can still remove unused code, even from a single object module, but most linkers simply

pull in the entire object module.

www.newnespress.com

423Porting and Configuring QF
(1) The ucos_ii.h header file contains the platform-independent mC/OS-II API as
well as platform-specific declarations, such as mC/OS-II portable integer data

types defined in the os_cpu.h header file.

(2) I decided to define the C99-standard exact-width integers in terms of mC/OS-II
portable integer data types. The idea is to consistently reuse the same data types

that you need to define for mC/OS-II anyway.

(3) As always, the platform-specific qep_port.h header file must include the

platform-independent QEP interface.
8.3.2 The qf_port.h Header File

The integration between QF and mC/OS-II occurs at a higher level than in the “vanilla”

port. The QF port to mC/OS-II uses less of the native QF facilities and more

mC/OS-II services. Listing 8.15 shows the qf_port.h header file for mC/OS-II.
The only piece of this file that you need to potentially adapt from one mC/OS-II port
to another is the QF critical section definition.
Listing 8.15 The qf_port.h header file for mC/OS-II. The mC/OS-II API
calls are shown in boldface

#ifndef qf_port_h

#define qf_port_h

/* uC/OS-II event queue and thread types */

(1) #define QF_EQUEUE_TYPE OS_EVENT *

(2) #define QF_THREAD_TYPE INT8U

/* The maximum number of active objects in the application */

(3) #define QF_MAX_ACTIVE OS_MAX_TASKS

/* uC/OS-II critical section operations (critical section method 3) */

(4) #define QF_INT_KEY_TYPE OS_CPU_SR

(5) #define QF_INT_LOCK(key_) ((key_) = OSCPUSaveSR())

(6) #define QF_INT_UNLOCK(key_) OSCPURestoreSR(key_)

(7) #include "qep_port.h" /* QEP port, includes the master uC/OS-II include */

(8) #include "qequeue.h" /* native QF event queue for deferring events */

(9) #include "qf.h" /* QF platform-independent public interface */

/***

* interface used only inside QF, but not in applications

*/

(10) typedef struct UCosMemPartTag { /* uC/OS-II memory pool and block-size */

Continued onto next page

www.newnespress.com

OS_MEM *pool; /* uC/OS-II memory pool */

QEventSize block_size; /* the block size of the pool */

} UCosMemPart;

/* uC/OS-II event pool operations */

(11) #define QF_EPOOL_TYPE_ UCosMemPart

#define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) do { \

INT8U err; \

(12) (p_).block_size = (evtSize_); \

(p_).pool = OSMemCreate(poolSto_, (INT32U)((poolSize_)/(evtSize_)), \

(INT32U)(evtSize_), &err); \

Q_ASSERT(err == OS_NO_ERR); \

} while (0)

(13) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).block_size)

#define QF_EPOOL_GET_(p_, e_) do { \

INT8U err; \

((e_) = (QEvent *)OSMemGet((p_).pool, &err)); \

} while (0)

#define QF_EPOOL_PUT_(p_, e_) OSMemPut((p_).pool, (void *)(e_))

#endif /* qf_port_h */

424 Chapter 8
(1) The active object event queue type is set to the mC/OS-II message queue.

(2) In mC/OS-II, the task (thread) is unambiguously identified by its priority typed as

INT8U.

(3) The maximum number of active object QF_MAX_ACTIVE is set to the maximum

number of mC/OS-II tasks, configured in os_cfg.h.

Most of mC/OS-II ports use the critical section method 3 [Labrosse 02]. You specify the

critical section method in the os_cpu.h header file for that port. The mC/OS-II critical
section method 3 corresponds exactly to the “saving and restoring interrupt status”

policy in QF. (Incidentally, the mC/OS-II critical section method 1 corresponds

precisely to the QF policy of “unconditional interrupt locking and unlocking”.)

(4) The policy of “saving and restoring interrupt status” is established by defining

QF_INT_KEY_TYPE to the mC/OS-II type OS_CPU_SR.

(5) The QF_INT_LOCK() macro is defined consistently with the mC/OS-II
OS_ENTER_CRITICAL() macro from os_cpu.h. Note that I cannot use the

macro OS_ENTER_CRITICAL() directly because it hardcodes the interrupt lock

key as cpu_sr.
www.newnespress.com

425Porting and Configuring QF
(6) The QF_INT_UNLOCK() macro is defined consistently with the mC/OS-II
OS_EXIT_CRITICAL() macro from os_cpu.h.

(7) Since this port uses QEP, the qep_port.h header file is included (see Listing 8.3

(19)).

(8) I also decided to include the qequeue.h header file to be able to include the QF

facilities for deferring and recalling events. Note that the native QF event queue is

not used for posting events to active objects, which is accomplished with the

mC/OS-II message queue.

(9) The qf_port.h header file must always include the platform-independent QF

interface (see Listing 8.3(23)).

This QF port uses the mC/OS-II memory partitions as event pools. In principle, you

could define the QF_EPOOL_TYPE directly to OS_MEM*. The mC/OS-II memory

partition provides all services that QF needs. In particular, you could get access to block

size of the partition directly through the OS_MEM.OSMemBlk data member. However,

memory partitions in other RTOSs often do not provide a way to obtain the block

size managed by the partition (e.g., eCos). Therefore, in this QF port I decided to

demonstrate a general solution, which is to combine the memory partition with the

block-size data member into a single structure.

(10) The UCosMemPart structure combines the mC/OS-II memory partition handle

with the block size data member.

(11) The QF_EPOOL_TYPE data type is defined to the UCosMemPart structure.

(12) The initialization of an event pool includes storing the block size in the

UCosMemPart.block_size data member.

(13) The block-size information is available in the UCosMemPart.block_size data

member.
8.3.3 The qf_port.c Source File

The QF port to mC/OS-II, as most QF ports to external RTOSs, require some

glue-code to bolt the framework to the external RTOS. You place such code in the

qf_port.c source file, which is shown in Listing 8.16. You typically don’t need

to change this file for different mC/OS-II ports.
www.newnespress.com

Listing 8.16 The qf_port.c source file for mC/OS-II; the mC/OS-II API
calls are shown in boldface

#include "qf_pkg.h"

#include "qassert.h"

Q_DEFINE_THIS_MODULE(qf_port)

/*..*/

void QF_init(void) {

(1) OSInit(); /* initialize uC/OS-II */

}

/ *...*/

void QF_run(void) {

(2) OSStart(); /* start uC/OS-II multitasking */

}

/ *...*/

void QF_stop(void) {

(3) QF_onCleanup(); /* call the QF cleanup callback */

}

/ *...*/

(4) static void task_function(void *pdata) { / * the expected signature */

(5) ((QActive *)pdata)->running = (uint8_t)1; /* enable the thread-loop */

(6) while (((QActive *)pdata)->running) { /* event loop */

(7) QEvent const *e = QActive_get_((QActive *)pdata);

(8) QF_ACTIVE_DISPATCH_(&((QActive *)pdata)->super, e);

(9) QF_gc(e); /* check if the event is garbage, and collect it if so */

}

(10) QF_remove_((QActive *)pdata); /* remove this object from the framework */

(11) OSTaskDel(OS_PRIO_SELF); /* make uC/OS-II forget about this task */

}

/*..*/

void QActive_start(QActive *me, uint8_t prio,

QEvent const *qSto[], uint32_t qLen,

void *stkSto, uint32_t stkSize,

QEvent const *ie)

{

INT8U err;

(12) me->eQueue = OSQCreate((void **)qSto, qLen);

(13) Q_ASSERT(me->eQueue != (OS_EVENT *)0); /* uC/OS-II queue created */

(14) me->prio = prio; /* save the QF priority */

(15) QF_add_(me); /* make QF aware of this active object */

(16) QF_ACTIVE_INIT_(&me->super, ie); /* execute initial transition */

/* uC/OS task is represented by its unique priority */

(17) me->thread = (uint8_t)(QF_MAX_ACTIVE - me->prio); /* map to uC/OS prio. */

(18) err = OSTaskCreateExt(&task_function, /* the task function */

me, /* the ’pdata’ parameter */

&(((OS_STK *)stkSto)[(stkSize / sizeof(OS_STK)) - 1]), /* ptos */

www.newnespress.com

426 Chapter 8

me->thread, /* uC/OS-II task priority */

me->thread, /* id */

(OS_STK *)stkSto, /* pbos */

stkSize/sizeof(OS_STK), /* size of the stack in OS_STK units */

(void *)0, /* pext */

(INT16U)OS_TASK_OPT_STK_CLR); /* opt */

(19) Q_ASSERT(err == OS_NO_ERR); /* uC/OS-II task created */

}

/*..*/

void QActive_stop(QActive *me) {

INT8U err;

(20) ((QActive *)me)->running = (uint8_t)0; /* stop the thread loop */

(21) OSQDel(((QActive *)pdata)->eQueue, OS_DEL_ALWAYS, &err);/*cleanup queue */

(22) Q_ASSERT(err == OS_NO_ERR); /* uC/OS-II queue deleted */

}

/*..*/

void QActive_postFIFO(QActive *me, QEvent const *e) {

(23) QF_INT_LOCK_KEY_

(24) QF_INT_LOCK_();

(25) if (e->dynamic_ != (uint8_t)0) {

(26) ++((QEvent *)e)->dynamic_;

}

(27) QF_INT_UNLOCK_();

(28) Q_ALLEGE(OSQPost((OS_EVENT *)me->eQueue, (void *)e)== OS_NO_ERR);

}

/*..*/

void QActive_postLIFO(QActive *me, QEvent const *e) {

QF_INT_LOCK_KEY_

QF_INT_LOCK_();

if (e->dynamic_ != (uint8_t)0) {

++((QEvent *)e)->dynamic_;

}

QF_INT_UNLOCK_();

(29) Q_ALLEGE(OSQPostFront((OS_EVENT *)me->eQueue, (void *)e) == OS_NO_ERR);

}

/*..*/

QEvent const *QActive_get_(QActive *me) {

INT8U err;

(30) QEvent const *e = (QEvent *)OSQPend((OS_EVENT *)me->eQueue, 0, &err);

(31) Q_ASSERT(err == OS_NO_ERR);

return e;

}

427Porting and Configuring QF
(1) The function QF_init() initializes the framework. In the case of QF port to

mC/OS-II, the function must initialize the underlying RTOS by the mC/OS-II
call OSInit().

(2) The function QF_run() transfers control to the framework to run the application.

In the case of QF port to mC/OS-II, the function starts multitasking by the

mC/OS-II call OSStart().

www.newnespress.com

NOTE

Note that neither QF_init() nor QF_run() call the QF_onStartup() callback to enable

interrupts. This is intentional in the mC/OS-II port. As described in Section 3.11 of the

Micro-C/OS-II book [Labrosse 02], mC/OS-II requires you to start interrupts, including the

system clock tick, only after you start multitasking with OSStart(). The recommended

method is to start interrupts from a mC/OS-II task. The example application located in
<qp>\qpc\examples\80x86\ucos2\tcpp101\l\dpp\ illustrates this aspect.

428 Chapter 8
(3) The function QF_stop() stops the framework. There is nothing you can do to

stop mC/OS-II, you simply abort. Therefore the only action is to call the

cleanup callback.

(4) Under a traditional RTOS, all active object threads execute the same function

task_function(), which has the structure shown in Figure 6.12(A) in

Chapter 6. The task function has the exact signature expected by mC/OS-II. The
parameter pdata is set to the active object owning the task.

(5) The task function sets the QActive.running flag to continue the local event

loop.

(6) The event loop continues as long as the QActive.running flag is set.

(7-9) These are the three steps of the active object thread (see Listing 7.8 in

Chapter 7).

(10) After the event loop terminates, the active object is removed from the framework.

(11) The task is deleted by the mC/OS-II call OSTaskDel().

(12) The first step in starting an active object is creating the event queue by the

mC/OS-II call OSQCreate().

(13) The queue creation must be successful; otherwise the application cannot

continue.

(14) The active object’s priority is set.

(15) The active object is registered with the QF framework.

(16) The active object’s state machine is initialized.

(17) The QF priority is mapped to the mC/OS-II task priority.
www.newnespress.com

429Porting and Configuring QF
mC/OS-II uses a priority numbering scheme in which 0 represents the highest possible

priority and higher numerical values represent lower priority of the tasks. This

happens to be exactly the opposite of the QF priority numbering scheme.

(18) The active object thread is created by the mC/OS-II call OSTaskCreateExt().
NOTE

Traditional RTOSs, such as mC/OS-II, require per-task stacks. The QActive_start() para-

meters ‘stkSto’ and ‘stkSize’ are designed specifically to support conventional RTOSs.
(19) The task creationmust be successful; otherwise the application cannot continue.

(20) Clearing the QActive.running flag terminates the event loop and exits the

active object thread (see line (5)).

(21) The event queue is deleted by the mC/OS-II call OSQDel().

(22) The deletion of the queue must be successful.

The QF port to mC/OS-II does not use the native QF active object queues. Therefore, the

QF implementation of QActive_postFIFO(), QActive_postLIFO(), and

QActive_get_() must be replaced by the mC/OS-II-specific code. The rest of the
qf_port.c source file defines these three functions for m C/OS-II (see also Section 8.1.6).

(23-27) Posting an event to a queue must always increment the reference counter of a

dynamic event. This must happen exactly as shown.

(28) The event pointer is posted to the mC/OS-II message queue with the mC/OS-II
call OSQPost(), which uses the standard FIFO policy. Note that mC/OS-II
message queues are designed to accept only pointer-size objects. This is

exactly what QF needs. The function is called inside the assertion macro

Q_ALLEGE(), to make sure that the operation always succeeds (this is part of

the QF’s event delivery guarantee). Note that Q_ALLEGE() evaluates its

argument even if assertions are disabled (see Section 6.7.3 in Chapter 6).

(29) The event pointer is posted to the mC/OS-II message queue with the mC/OS-II
call OSQPostFront(), which uses the LIFO policy. Again, the assertion

makes sure that the event is posted successfully.
www.newnespress.com

NOTE

You should make sure that the message-posting operation you’re using is callable from ISRs.

The mC/OS-II functions OSQPost() and OSQPostFront() are callable from ISRs.

430 Chapter 8
(30) The event is retrieved from the message queue with the mC/OS-II call OSQPend().
The second argument to this function is the timeout, where a timeout of

0 indicates indefinite waiting on an empty event queue.

(31) The pending operation must not fail.
8.3.4 Building the mC/OS-II Port

The QF port to mC/OS-II comes with the build script make.bat located in the port

directory <qp>\qpc\ports\80x86\ucos2\tcpp101\l\. The most important aspect

of the script is that none of the files listed in Table 8.2 are included in the QF library

build, because this functionality is provided in the source file qf_port.c (Listing

8.16).
8.3.5 The System Clock Tick (QF_tick())

In mC/OS-II, the system clock tick interrupt is coded in assembly (see the mC/OS-II port
file os_cpu_a.asm). Generally, you should not touch such assembly files. mC/OS-II
provides, however, a customizable “hook” function OSTimeTickHook(), which is called

from the system clock tick ISR and is the ideal place to invoke QF_tick().

Rather than defining the OSTimeTickHook() in qf_port.c, I decided to let the

application define the OSTimeTickHook() callback so that you can easily add some

more processing to it. You should not forget to invoke QF_tick(). I’d like to remind

you again that mC/OS-II requires you to actually start the clock tick interrupt only from

the task level in your application.

void OSTimeTickHook(void) {
QF_tick();
/* optionally, do some application-specific work ... */

}

www.newnespress.com

431Porting and Configuring QF
8.3.6 Idle Processing

Finally, I’d like to mention the idle processing and the proper use of MCUs low-power

modes with a preemptive kernel, such as mC/OS-II, because it is fundamentally

different than in a nonpreemptive case like the “vanilla” kernel. A preemptive kernel

performs a context switch to a special idle task when all other tasks are blocked.

Most kernels provide a way to customize the idle task (e.g., mC/OS-II provides a
callback function OSTaskIdleHook()) so that you can conveniently implement

the transition to a low-power MCU state from the idle task. The main difference

between a preemptive kernel and a nonpreemptive foreground/background system or

the “vanilla” kernel is that as long as tasks are ready to run, the preemptive kernel

never switches the context back to the idle task. Consequently the transition to a

low-power mode from the idle task is much simpler because it does not need to

occur with interrupts locked. In fact, the OSTaskIdleHook() callback is always

invoked with interrupts unlocked.

8.4 QF Port to Linux (Conventional
POSIX-Compliant OS)

Programming for a general-purpose operating system (OS) such as Linux or Windows is

very different from working with a typical RTOS or a “bare metal” embedded

processor. A “big” OS strictly limits you to a given API, whether the POSIX API for

Linux or the Win32 API for Windows.

In particular, the general-purpose APIs don’t let you lock and unlock interrupts, so you

need to employ a different mutual-exclusion mechanism to implement the QF critical

section. Also surprisingly, the “big” APIs don’t support a lightweight message queue,

so you need to build your own out of the native QF event queue and a blocking

mechanism supported in the given API.

In this section I describe a QF port to Linux, which should be also directly applicable

on any POSIX-compliant OS, as it strictly adheres to the POSIX 1003.1cn1995

standard [Butenhof 97]. In this port, a QF application runs as a single process, with

each QF active object executing in a separate lightweight POSIX thread (Pthread).

The port uses a Pthread mutex to implement the QF critical section and the

Pthread condition variables to provide the blocking mechanism for event queues

of active objects.
www.newnespress.com

432 Chapter 8
8.4.1 The qep_port.h Header File

Listing 8.17 shows the qep_port.h header file for Linux. The GNU gcc compiler

supports the C99 standard, so I simply include the <stdint.h> file. I have also

increased the event signal size to 2 bytes, which gives you 64K different signals. With

this configuration, the size of QEvent base structure is just 3 bytes, which most

32-bit compilers will pad to 4 bytes.
Listing 8.17 The qep_port.h header file for Linux

#ifndef qep_port_h
#define qep_port_h

/* 2-byte (64K) signal space */
#define Q_SIGNAL_SIZE 2

#include <stdint.h> /* C99-standard exact-width integers */
#include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */
8.4.2 The qf_port.h Header File

Listing 8.18 shows the qf_port.h header file for Linux. You typically should not need

to change this file as you move to a different POSIX-compliant OS.
Listing 8.18 The qf_port.h header file for Linux; boldface indicates
elements of the Pthread API

#ifndef qf_port_h

#define qf_port_h

/* Linux event queue and thread types */

(1) #define QF_EQUEUE_TYPE QEQueue

(2) #define QF_OS_OBJECT_TYPE pthread_cond_t

(3) #define QF_THREAD_TYPE pthread_t

/* The maximum number of active objects in the application */

(4) #define QF_MAX_ACTIVE 63

/* various QF object sizes configuration for this port */

(5) #define QF_EVENT_SIZ_SIZE 4

(6) #define QF_EQUEUE_CTR_SIZE 4

(7) #define QF_MPOOL_SIZ_SIZE 4

(8) #define QF_MPOOL_CTR_SIZE 4

(9) #define QF_TIMEEVT_CTR_SIZE 4

www.newnespress.com

/* QF critical section entry/exit for Linux, see NOTE01 */

(10) /* QF_INT_KEY_TYPE not defined, "unconditional interrupt locking" policy */

(11) #define QF_INT_LOCK(dummy) pthread_mutex_lock(&QF_pThreadMutex_)

(12) #define QF_INT_UNLOCK(dummy)pthread_mutex_unlock(&QF_pThreadMutex_)

(13) #include <pthread.h> /* POSIX-thread API */

(14) #include "qep_port.h" /* QEP port */

(15) #include "qequeue.h" /* Linux needs event-queue */

(16) #include "qmpool.h" /* Linux needs memory-pool */

(17) #include "qf.h" /* QF platform-independent public interface */

/**

* interface used only inside QF, but not in applications

*/

/* OS-object implementation for Linux */

(18) #define QACTIVE_EQUEUE_WAIT_(me_) \

while ((me_)->eQueue.frontEvt == (QEvent *)0) \

pthread_cond_wait(&(me_)->osObject, &QF_pThreadMutex_)

(19) #define QACTIVE_EQUEUE_SIGNAL_(me_) \

pthread_cond_signal(&(me_)->osObject)

(20) #define QACTIVE_EQUEUE_ONEMPTY_(me_) ((void)0)

/* native QF event pool operations */

(21) #define QF_EPOOL_TYPE_ QMPool

(22) #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \

QMPool_init(&(p_), poolSto_, poolSize_, evtSize_)

(23) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).blockSize)

(24) #define QF_EPOOL_GET_(p_, e_) ((e_) = (QEvent *)QMPool_get(&(p_)))

(25) #define QF_EPOOL_PUT_(p_, e_) (QMPool_put(&(p_), e_))

(26) extern pthread_mutex_t QF_pThreadMutex_; /* mutex for QF critical section */

433Porting and Configuring QF
(1) The Linux port employs the QF native QEQueue as the event queue for active

objects.

(2) The Pthread condition variable is used for blocking the QF native event queue.

Note that each active object has its own private condition variable.

(3) Each active object also holds a handle to its Pthread.

(4) The Linux port is configured to use the maximum allowed number of active

objects.

(5-9) Linux requires a 32-bit CPU, so I configure all sizes of internal QF objects to

4 bytes.
www.newnespress.com

434 Chapter 8
(10) The QF_INT_KEY_TYPE macro is not defined. This means that the interrupt

status is not preserved across the QF critical section.

(11) The QF critical section is implemented with a single global Pthread mutex

QF_pThreadMutex_. The mutex is locked upon entry to a critical section.

(12) The global mutex QF_pThreadMutex_ is unlocked upon exit from a critical

section.
NOTE

The global mutex QF_pThreadMutex_ is configured as a normal “fast” Pthread mutex

that cannot handle nested locks. Consequently, the QF port to Linux does not support

nesting of critical sections. This QF port is designed to never nest critical sections internally,

but you should be careful not to call QF services from critical sections at the application

level.
(13) The system header file <pthread.h> contains the Pthread API.

(14) This QF port uses the QEP event processor.

(15) This QF port uses the native QF event queue QEQueue.

(16) This QF port uses the native QF memory pool QMPool.

(17) The platform-independent qf.h header file must be always included.

The following three macros QACTIVE_EQUEUE_WAIT_(), QACTIVE_EQUEUE_

SIGNAL_(), and QACTIVE_EQUEUE_ONEMPTY_() customize the native QF event

queue to use the Pthread condition variable for blocking and signaling the active object’s

thread. (See Section 7.8.3 in Chapter 7 for the context in which QF calls these macros.)

(18) As long as the queue is empty, the private condition variable osObject

blocks the calling thread. Note that the macro ACTIVE_EQUEUE_WAIT_()

is called from critical section, that is, with the global mutex

QF_pThreadMutex_ locked.

The behavior of the pthread_cond_wait() function requires explanation. Here is the

description from the POSIX-thread standard:
www.newnespress.com

435Porting and Configuring QF
“The function pthread_cond_wait() atomically releases the associated mutex and causes

the calling thread to block on the condition variable. Atomically here means ‘atomically with

respect to access by another thread to the mutex and then the condition variable.’ That is, if

another thread is able to acquire the mutex after the about-to-block thread has released it,

then a subsequent call to pthread_cond_signal() or pthread_cond_broadcast() in

that thread behaves as if it were issued after the about-to-block thread has blocked.”
The bottom line is that the global mutex QF_pThreadMutex_ remains unlocked only as

long as pthread_cond_wait() blocks. The mutex gets locked again as soon as the

function unblocks. This means that the macro ACTIVE_EQUEUE_WAIT_() returns within

critical section, which is exactly what the intervening code in QActive_get_() expects.

The while -loop around the pthread_cond_wait() call is necessary because of the

following comment in the POSIX-thread documentation:

“Since the return from pthread_cond_wait() does not imply anything about the value of

the predicate, the predicate should be re-evaluated upon such return.”
(19) The macro QACTIVE_EQUEUE_SIGNAL_() is called when an event is

inserted into an empty event queue (so the queue becomes not-empty). Note

that this macro is called from a critical section.

(20) The macro QACTIVE_EQUEUE_ONEMPTY_() is called when the queue is

becoming empty. This macro is defined to nothing in this port.

(21-25) The Linux port uses QMPool as the QF event pool. The platform abstraction

layer (PAL) macros are set to access the QMPool operations (see Section 7.9

in Chapter 7).

(26) The global mutex QF_pThreadMutex_ is declared as an external variable.
8.4.3 The qf_port.c Source File

The qf_port.c source file shown in Listing 8.19 provides the “glue-code” between

QF and the POSIX API. The general assumption I make here is that QF is going to be

used in real-time applications (perhaps “soft real-time”). This means that I’m trying

to use as much as possible the real-time features available in the standard POSIX API.

Since some of these features require the “superuser” privileges, the actual real-time
www.newnespress.com

436 Chapter 8
behavior of the application will depend on the privilege level at which it is launched.

As always with a general-purpose OS used for real-time applications, your actual

mileage may vary.
Listing 8.19 The qf_port.c header file for Linux; boldface indicates
elements of the Pthread API

#include "qf_pkg.h"

#include "qassert.h"

#include <sys/mman.h> /* for mlockall() */

#include <sys/select.h> /* for select() */

Q_DEFINE_THIS_MODULE(qf_port)

/* Global objects --*/

(1) pthread_mutex_t QF_pThreadMutex_ = PTHREAD_MUTEX_INITIALIZER;

/* Local objects ---*/

static uint8_t l_running;

/*...*/

void QF_init(void) {

/* lock memory so we’re never swapped out to disk */

(2) /*mlockall(MCL_CURRENT | MCL_FUTURE); uncomment when supported */

}

/*...*/

(3) void QF_run(void) {

struct sched_param sparam;

struct timeval timeout = { 0 }; /* timeout for select() */

(4) QF_onStartup(); /* invoke startup callback */

/* try to maximize the priority of the ticker thread, see NOTE01 */

(5) sparam.sched_priority = sched_get_priority_max(SCHED_FIFO);

(6) if (pthread_setschedparam(pthread_self(), SCHED_FIFO, &sparam) == 0) {

/* success, this application has sufficient privileges */

}

else {

/* setting priority failed, probably due to insufficient privileges */

}

l_running = (uint8_t)1;

(7) while (l_running) {

(8) QF_tick(); /* process the time tick */

(9) timeout.tv_usec = 8000;

(10) select(0, 0, 0, 0, &timeout); /* sleep for the full tick, NOTE05 */

}

www.newnespress.com

(11) QF_onCleanup(); /* invoke cleanup callback */

(12) pthread_mutex_destroy(&QF_pThreadMutex_);

(13) }

/*..*/

void QF_stop(void) {

(14) l_running = (uint8_t)0; /* stop the loop in QF_run() */

}

/*..*/

(15) static void *thread_routine(void *arg) { /* the expected POSIX signature */

(16) ((QActive *)arg)->running = (uint8_t)1; /* allow the thread loop to run */

(17) while (((QActive *)arg)->running) { /* QActive_stop() stops the loop */

(18) QEvent const *e = QActive_get_((QActive *)arg);/*wait for the event */

(19) QF_ACTIVE_DISPATCH_(&((QActive *)arg)->super, e);/* dispatch to SM */

(20) QF_gc(e); /* check if the event is garbage, and collect it if so */

}

(21) QF_remove_((QActive *)arg);/* removethis object from anysubscriptions*/

return (void *)0; /* return success */

(22) }

/*...*/

void QActive_start(QActive *me, uint8_t prio,

QEvent const *qSto[], uint32_t qLen,

void *stkSto, uint32_t stkSize,

QEvent const *ie)

{

pthread_attr_t attr;

struct sched_param param;

(23) Q_REQUIRE(stkSto == (void *)0); /* p-threads allocate stack internally */

(24) QEQueue_init(&me->eQueue, qSto, (QEQueueCtr)qLen);

(25) pthread_cond_init(&me->osObject, 0);

(26) me->prio = prio;

(27) QF_add_(me); /* make QF aware of this active object */

(28) QF_ACTIVE_INIT_(&me->super, ie); /* execute the initial transition */

/* SCHED_FIFO corresponds to real-time preemptive priority-based scheduler

* NOTE: This scheduling policy requires the superuser privileges

*/

(29) pthread_attr_init(&attr);

(30) pthread_attr_setschedpolicy(&attr, SCHED_FIFO);

/* see NOTE04 */

(31) param.sched_priority = prio

+ (sched_get_priority_max(SCHED_FIFO)

- QF_MAX_ACTIVE - 3);

(32) pthread_attr_setschedparam(&attr, ¶m);

(33) pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

(34) if (pthread_create(&me->thread, &attr, &thread_routine, me) != 0) {

Continued onto next page

www.newnespress.com

437Porting and Configuring QF

/* Creating the p-thread with the SCHED_FIFO policy failed.

* Most probably this application has no superuser privileges,

* so we just fall back to the default SCHED_OTHER policy

* and priority 0.

*/

(35) pthread_attr_setschedpolicy(&attr, SCHED_OTHER);

(36) param.sched_priority = 0;

(37) pthread_attr_setschedparam(&attr, ¶m);

(38) Q_ALLEGE(pthread_create(&me->thread, &attr, &thread_routine, me)== 0);

}

(39) pthread_attr_destroy(&attr);

}

/*..*/

void QActive_stop(QActive *me) {

(40) me->running = (uint8_t)0; /* stop the event loop in QActive_run() */

(41) pthread_cond_destroy(&me->osObject); /* cleanup the condition variable */

}

438 Chapter 8
(1) The global Pthread mutex QF_pThreadMutex_ variable for the QF critical

section is defined.

(2) On POSIX systems that support it, you might want to call the mlockall()

function to lock in physical memory all of the pages mapped by the address

space of a process. This prevents nondeterministic swapping of the process

memory to disk and back. The standard desktop Linux does not

support mlockall(), so it is commented out.

(3) The QF_run() function is called from main() to let the framework execute the

application. In this QF port, the QF_run() function is used as the

“ticker thread” to periodically call the QF_tick() function.

(4) The callback function QF_onStartup() is called to give the application a

chance to perform startup.

(5,6) These two lines of code attempt to set the current thread (the “ticker thread”) to

the SCHED_FIFO scheduling policy and to the maximum priority within that

policy.

In Linux, the scheduler policy closest to real time is the SCHED_FIFO policy, available

only with the “superuser” privileges. QF_run() attempts to set this policy to

maximize its priority so that the system clock tick occurs in the most timely manner.

However, setting the SCHED_FIFO policy might fail, most probably due to insufficient

privileges.
www.newnespress.com

439Porting and Configuring QF
(7) The “ticker” thread runs in loop, as long as the l_running flag is set.

(8) The “ticker” thread calls QF_tick() outside of any critical section.

(9,10) The “ticker” thread is put to sleep for the rest of the time slice.

I use the select() system call as a fairly portable way to sleep because it seems to

deliver the shortest sleep time of just one clock tick. The timeout value passed to

select() is rounded up to the nearest tick (10 milliseconds on desktop Linux). The

timeout cannot be too short, because the system might choose to busy-wait for very

short timeouts. An obvious alternative—the POSIX nanosleep system call—seems to

be unable to block for less than two clock ticks (20 milliseconds).

Also according to the man pages, the function select() on Linux modifies the timeout

argument to reflect the amount of time not slept. Most other implementations do not

do this. I handle this quirk in a portable way by always setting the microsecond part of

the structure before each select() call (see line (9)).

(11) When the loop exits, the callback function QF_onCleanup() is called to give

the application a chance to perform cleanup.

(12) The global Pthread mutex QF_pThreadMutex_ is cleaned up before exit.

(13) The QF_run() function exits,which causes themain() function to exit. The system

terminates the process and shuts down all Pthreads spawned from main().

(14) The exit sequence just described is triggered when the application calls

QF_stop(), which stops the loop in QF_run().

The following static function thread_routine() specifies the thread function of all

active objects.

(15) In this POSIX port, all active object threads execute the same function

thread_routine(), which has the structure shown in Figure 6.12(A) in

Chapter 6. The thread routine has the exact signature expected by POSIX API

pthread_create(). The parameter arg is set to the active object owning

the thread.

(16) The thread routine sets the QActive.running flag to continue the local event

loop.

(17) The event loop continues as long as the QActive.running flag is set.
www.newnespress.com

-

440 Chapter 8
(18-20) These are the three steps of the active object thread (see Listing 7.8 in

Chapter 7).

(21) After the event loop terminates, the active object is removed from the

framework.

(22) The return from the thread routine cleans up the POSIX thread.

(23) The pthread_create() function allocates the stack space for the thread

internally. This assertion makes sure that the stack storage is not provided,

because that would be wasteful.

(24) The native QF event queue of the active object is initialized.

(25) The Pthread condition variable is initialized.

(26) The active object’s priority is set.

(27) The active object is registered with the QF framework.

(28) The active object’s state machine is initialized.

(29-33) The attribute structure for the active object thread is initialized. In the first

attempt, the thread is created with the SCHED_FIFO policy.

According to the man pages (for pthread_attr_setschedpolicy()) the only

value supported in the Linux Pthread implementation is PTHREAD_SCOPE_SYSTEM,

meaning that the threads contend for CPU time with all processes running on the

machine. In particular, thread priorities are interpreted relative to the priorities of all

other processes on the machine. This is good, because it seems that if we set the

priorities high enough, no other process (or threads running within) can gain control

over the CPU. However, QF limits the number of priority levels to QF_MAX_ACTIVE.

Assuming that a QF application will be real time, this port reserves the three highest

Linux priorities for the system threads (e.g., the ticker, I/O), and the rest of the highest

priorities for the active objects.

(34) The active object Pthread is created. If the thread creation fails, it is most

likely due to insufficient privileges to use the real-time policy SCHED_FIFO.

(35-37) The thread attributes are modified to use the default scheduling policy

SCHED_OTHER and priority zero.
www.newnespress.com

441Porting and Configuring QF
(38) The Pthread creation is attempted again. This time it must succeed or the

application cannot continue.

(39) The Pthread attribute structure is cleaned up.

(40) To stop an active object, the QActive_stop() function clears the QActive.

running flag. This stops the active object event loop at line (17) and causes the

thread routine to exit.

(41) The condition variable is cleaned up.

8.5 Summary

Portability of system-level software, such as the QF real-time framework, is critical to

its usability, especially in the real-time embedded systems (RTES) domain. QF has

been designed from the ground up to be highly adaptable to various CPU architectures,

operating systems, and compilers. Without a doubt, the ease of portability has been

the most difficult, tedious, and time-consuming aspect of the framework’s design,

implementation, and testing.

QF contains a clearly defined platform abstraction layer (PAL), which encapsulates all

platform-specific code and cleanly separates it from the platform-independent code.

The QF PAL must be more flexible than the hardware abstraction layers (HALs) found

in various RTOSs. On one hand, the PAL must allow easy porting of the QF

framework to “bare metal” CPUs and compilers. This kind of portability is used in the

standalone QF configurations, such as the cooperative “vanilla” kernel, and the QK

preemptive kernel that I describe in Chapter 10. On the other hand, the QF PAL

must also allow integration between the QF and any RTOS/OS, which occurs at the

level of the API provided in the external RTOS/OS.

The proper structure and completeness of the PAL becomes apparent only after the

framework has been ported to a wide range of different actual targets, including

peculiar CPUs and not always standard compilers. To date, the standalone QF

configurations have been ported to over 10 different CPU architectures, ranging from

8-bit (e.g., 8051, PIC, AVR, 68HC(S)08, Cypress M8C/PSoC), through 16-bit (e.g.,

MSP430, M16C, x86-real mode), to 32-bit architectures (e.g., traditional ARM, ARM

Cortex-M3, Altera Nios II, x86). QF has been also ported to six major operating

systems and RTOSs, including Linux (POSIX), Windows (Win32), and VxWorks.
www.newnespress.com

442 Chapter 8
Check the Website www.quantum-leaps .com for a list of available QF ports because

new ports are added frequently.

After downloading a QF port or developing your own, you need to test the port to verify

that it works on your particular target system with your specific operating system

and compiler. At this point, you will need a test application, simple enough so that you

will essentially test the QF framework all by itself, yet not completely trivial so that

it will put most of the QF mechanisms through the paces. In the next chapter I describe

a simple test application that historically I use to test all QF ports.
www.newnespress.com

http://www.quantum-leaps.com

www.new
CHAP T E R 9
Developing QP Applications
Example is not the main thing in influencing others. It is the only thing.
—Albert Schweitzer

In the previous two chapters, I explained the internal workings of the QF real-time

framework and issues related to porting QF to various CPUs, operating systems, and

compilers. However, I want you to realize that the way the QF framework itself is

implemented internally is very different from the way you develop applications running

on top of the framework.

A real-time framework, as any piece of system-level software, must internally employ

many low-level mechanisms, such as critical sections and various blocking APIs of

the underlying RTOS, if you use an RTOS. These mechanisms are always tricky to use

correctly and programmers often underestimate the true risks and costs of their use.

But the good news is that this traditional approach to concurrent programming is

contained within the framework. Once the framework is built and thoroughly tested, it

offers you a faster, safer, and more reliable way of developing concurrent, event-driven

software. A QF application has no more need to fiddle directly with critical sections,

semaphores, or other such mechanisms. You can program active objects effectively and

safely without even knowing what a semaphore is. Yet your application as a whole can

reap all the benefits of multitasking, such as optimal, deterministic responsiveness and

good CPU utilization.

My goal in this chapter is to explain how to develop a QP application that uses both

the QF real-time framework and the QEP event processor described in Part I of this

book. I begin with some general rules and heuristics for developing robust and
nespress.com

444 Chapter 9
maintainable QP applications. Next I describe the test application that historically

I have used to verify all QP ports. I walk you through all steps required to design and

implement this application. As you go over these steps, you might also flip back to

the “Fly ‘n’ Shoot” game in Chapter 1, which is a bit more advanced example than the

one I use here. In the chapter, I explain how to adapt the test application to all three

QF ports discussed in Chapter 8. The chapter concludes with guidelines for sizing event

queues and event pools.
9.1 Guidelines for Developing QP Applications

The QP event-driven platform enables building efficient and maintainable event-driven

applications in C and C++. However, it is also possible to use QP incorrectly,

basically defeating its advantages. This section summarizes the main rules and

heuristics for making the most out of active object computing implemented

with QP.

9.1.1 Rules

When developing active object–based applications, you should try to heed the following

two rules, without exception:

� Active objects should interact only through an asynchronous event exchange

and should not share memory or other resources

� Active objects should not block or busy-wait for events in the middle of

RTC processing.

I strongly recommend that you take these rules seriously and follow them religiously.

In exchange, the QF real-time framework can guarantee that your application is free

from the traditional perils of preemptive multitasking, such as race conditions,

deadlocks, priority inversions, starvation, and nondeterminism. In particular, you will

never need to use mutexes, semaphores, monitors, or other such troublesome

mechanisms at the application level. Even so, your QP applications can be fully

deterministic and can handle hard real-time deadlines efficiently.

The rules of using active objects impose a certain programming discipline. In

developing your QP applications, you will certainly be tempted to circumvent the rules.
www.newnespress.com

445Developing QP Applications
Occasionally, sharing a variable among different active objects or a mutually

exclusive blocking active object threads might seem like the easiest solution. However,

you should resist such quick fixes. First, you should convince yourself that the rules

are there for a good reason (e.g., see Chapters 6 and 7). Second, you must trust that it

is possible to arrive at a good solution without breaking the rules.

I repeatedly find that obeying the rules ultimately results in a better design and

invariably pays dividends in the increased flexibility and robustness of the final

software product. In fact, I propose that you treat every temptation to break the rules as

an opportunity to discover something important about your application. Perhaps

instead of sharing a variable, you will discover a new signal or a crucial event

parameter that conveys some important information.

Many examples from other arts and crafts demonstrate that discipline can be good

for art. Indeed, an artist’s aphorism says, “Form is liberating.” As Fred Brooks

[Brooks 95] eloquently writes: “Bach’s creative output hardly seems to have been

squelched by the necessity of producing a limited-form cantata each week.”

I am firmly convinced that the external provision of architecture such as the QF

real-time framework enhances, not cramps, creativity.
9.1.2 Heuristics

Throughout Part II of this book, you can find several basic guidelines for constructing

active object–based systems. Here is the quick summary.

� Event-driven programming requires a paradigm shift from traditional sequential

programming. In the traditional approach, you concentrate on shared

resources and various blocking mechanisms, such as semaphores, to signal

events. Event-driven programming is all about writing nonblocking code and

returning quickly to the event loop.

� Your main goal is to achieve loose coupling among active objects. You seek

a partitioning of the problem that avoids resource sharing and requires minimal

communication (in terms of number and size of exchanged events).

� The main strategy for avoiding resource sharing is to encapsulate the resources in

dedicated active objects that manage the resources for the rest of the system.
www.newnespress.com

446 Chapter 9
� The responsiveness of an active object is determined by the longest RTC step

of its state machine. To meet hard real-time deadlines, you need to either

break up longer processing into shorter steps or move such processing to other,

lower-priority active objects.

� A good starting point in developing an active object–based application is to

draw sequence diagrams for the primary use cases. These diagrams help you

discover signals and event parameters, which, in turn, determine the structure of

active objects.

� As soon as you have the first sequence diagrams, you should build an

executable model of it. The QP event-driven platform has been specifically

designed to enable the construction and execution of vastly incomplete

(virtually empty) prototypes. The high portability of QP enables you to

build the models on a different platform than your ultimate target

(e.g., your PC).

� Most of the time you can concentrate only on the internal state machines of

active objects and ignore their other aspects (such as threads of execution and

event queues). In fact, developing a QP application consists mostly of

elaborating on the state machines of active objects. The generic QEP

hierarchical event processor (Chapter 4) and the basic state patterns (Chapter 5)

can help you with that part of the problem.
9.2 The Dining Philosophers Problem

The test application that I historically have been using to verify QF ports is based on the

classic Dining Philosophers Problem (DPP) posed and solved by Edsger Dijkstra back

in 1971 [Dijkstra 71]. The DPP application is simpler than the “Fly ‘n’ Shoot” game

described in Chapter 1 and can be tested only with a couple of LEDs on your target

board, as opposed to the graphic display required by the “Fly ‘n’ Shoot” game. Still,

DPP contains six concurrent active objects that exchange events via publish-subscribe

and direct event-posting mechanisms. The application uses five time events (timers) as

well as dynamic and static events.
www.newnespress.com

447Developing QP Applications
9.2.1 Step 1: Requirements

First, you always need to understand what your application is supposed to accomplish.

In the case of a simple application, the requirements are conveyed through the

problem specification, which for the DPP is as follows.

Five philosophers are gathered around a table with a big plate of spaghetti in the middle

(see Figure 9.1). Between each two philosophers is a fork. The spaghetti is so

slippery that a philosopher needs two forks to eat it. The life of a philosopher consists of

alternate periods of thinking and eating. When a philosopher wants to eat, he tries to

acquire forks. If successful in acquiring two forks, he eats for a while, then puts down

the forks and continues to think. The key issue is that a finite set of tasks (philosophers)

is sharing a finite set of resources (forks), and each resource can be used by only

one task at a time. (An alternative Oriental version replaces spaghetti with rice and

forks with chopsticks, which perhaps explains better why philosophers need

two chopsticks to eat.)
Figure 9.1: The Dining Philosophers Problem.
9.2.2 Step 2: Sequence Diagrams

A good starting point in designing any event-driven system is to draw sequence

diagrams for the main scenarios (main-use cases) identified from the problem

specification. To draw such diagrams, you need to break up your problem into active

objects with the main goal of minimizing the coupling among active objects. You seek a
www.newnespress.com

448 Chapter 9
partitioning of the problem that avoids resource sharing and requires minimal

communication in terms of number and size of exchanged events.

DPP has been specifically conceived to make the philosophers contend for the forks,

which are the shared resources in this case. In active object systems, the generic

design strategy for handling such shared resources is to encapsulate them inside a

dedicated active object and to let that object manage the shared resources for the rest

of the system (i.e., instead of directly sharing the resources, the rest of the

application shares the dedicated active object). When you apply this strategy to DPP,

you will naturally arrive at a dedicated active object to manage the forks. I named

this active object Table.

The sequence diagram in Figure 9.2 shows the most representative event exchanges

among any two adjacent Philosophers and the Table active objects.
QF Philo[n] Table

TIMEOUT
(2)

Philo[m]

thinking thinking serving

hungry
HUNGRY(m)

eating
EAT(m)

TIMEOUT
hungry

HUNGRY(n)

TIMEOUT DONE(m)

eating

(3)

(4)

(6)

(7)

(8) (9)

(10)

(1)

(5)

thinking EAT(n)

Figure 9.2: The sequence diagram of the DPP application.
(1) Each Philosopher active object starts in the “thinking” state. Upon the entry to

this state, the Philosopher arms a one-shot time event to terminate the thinking.

(2) The QF framework posts the time event (timer) to Philosopher[m].
www.newnespress.com

449Developing QP Applications
(3) Upon receiving the TIMEOUT event, Philosopher[m] transitions to “hungry”

state and posts the HUNGRY(m) event to the Table active object. The parameter

of the event tells the Table which Philosopher is getting hungry.

(4) The Table active object finds out that the forks for Philosopher[m] are available

and grants it permission to eat by publishing the EAT(m) event.

(5) The permission to eat triggers the transition to “eating” in Philosopher[m]. Also,

upon the entry to “eating,” the Philosopher arms its one-shot time event to

terminate the eating.

(6) The Philosopher[n] receives the TIMEOUT event and behaves exactly as

Philosopher[m], that is, transitions to “hungry” and posts HUNGRY(n) event to

the Table active object.

(7) This time the Table active object finds out that the forks for Philosopher[n] are

not available, and so it does not grant the permission to eat. Philosopher[n]

remains in the “hungry” state.

(8) The QF framework delivers the timeout for terminating the eating to Philosopher

[m]. Upon the exit from “eating,” Philosopher[m] publishes event DONE(m) to

inform the application that it is no longer eating.

(9) The Table active object accounts for free forks and checks whether any direct

neighbors of Philosopher[m] are hungry. Table posts event EAT(n) to

Philosopher[n].

(10) The permission to eat triggers the transition to “eating” in Philosopher[n].
9.2.3 Step 3: Signals, Events, and Active Objects

Sequence diagrams like Figure 9.2 help you discover events exchanged among

active objects. The choice of signals and event parameters is perhaps the most important

design decision in any event-driven system. The signals affect the other main

application components: events and state machines of the active objects.

In QP, signals are typically enumerated constants and events with parameters are

structures derived from the QEvent base structure. Listing 9.1 shows signals and events

used in the DPP application. The DPP sample code for the DOS version (in C) is located

in the <qp>\qpc\examples\80x86\dos\tcpp101\l\dpp\ directory, where <qp>

stands for the installation directory you chose to install the accompanying software.
www.newnespress.com

NOTE

In this section, I describe the platform-independent code of the DPP application. This code is

actually identical in all DPP versions, such as the Linux version, mC/OS-II version, Cortex-
M3 versions, and the QK version described in Chapter 10.

Listing 9.1 Signals and events used in the DPP application (file dpp.h)

#ifndef dpp_h
#define dpp_h

(1) enum DPPSignals {
(2) EAT_SIG = Q_USER_SIG, /* published by Table to let a philosopher eat */

DONE_SIG, /* published by Philosopher when done eating */
TERMINATE_SIG, /* published by BSP to terminate the application */

(3) MAX_PUB_SIG, /* the last published signal */

(4) HUNGRY_SIG, /* posted directly from hungry Philosopher to Table */
(5) MAX_SIG /* the last signal */

};

typedef struct TableEvtTag {
(6) QEvent super; /* derives from QEvent */

uint8_t philoNum; /* Philosopher number */
} TableEvt;

enum { N_PHILO = 5 }; /* number of Philosophers */

(7) void Philo_ctor(void); /* ctor that instantiates all Philosophers */
(8) void Table_ctor(void);

(9) extern QActive * const AO_Philo [N_PHILO]; /* "opaque" pointers to Philo AOs */
(10) extern QActive * const AO_Table; /* "opaque" pointer to Table AO */

#endif /* dpp_h */

450 Chapter 9
(1) For smaller applications such as the DPP, I define all signals in one

enumeration (rather than in separate enumerations or, worse, as preprocessor

#define macros). An enumeration automatically guarantees the uniqueness

of signals.

(2) Note that the user signals must start with the offset Q_USER_SIG to avoid

overlapping the reserved QEP signals.
www.newnespress.com

451Developing QP Applications
(3) I like to group all the globally published signals at the top of the enumeration,

and I use the MAX_PUB_SIG enumeration to automatically keep track of the

maximum published signals in the application.

(4) I decided that the Philosophers will post the HUNGRY event directly to the

Table object rather than publicly publish the event (perhaps a Philosopher is

“embarrassed” to be hungry, so does not want other Philosophers to know

about it). That way, I can demonstrate direct event posting and publish-

subscribe mechanisms coexisting in a single application.

(5) I use the MAX_SIG enumeration to automatically keep track of the total number

of signals used in the application.

(6) Every event with parameters, such as the TableEvt, derives from the QEvent

base structure.

I like to keep the code and data structure of every active object strictly encapsulated

within its own C-file. For example, all code and data for the active object Table are

encapsulated in the file table.c, with the external interface consisting of the function

Table_ctor() and the pointer AO_Table.

(7,8) These functions perform an early initialization of the active objects in the

system. They play the role of static “constructors,” which in C you need to call

explicitly, typically at the beginning of main().

(9,10) These global pointers represent active objects in the application and are used

for posting events directly to active objects. Because the pointers can be initialized

at compile time, I like to declare them const so that they can be placed in

ROM. The active object pointers are “opaque” because they cannot access the

whole active object, but only the part inherited from the QActive structure.
9.2.4 Step 4: State Machines

At the application level, you can mostly ignore such aspects of active objects as the

separate task contexts or private event queues and view them predominantly as state

machines. In fact, your main job in developing your QP application consists of

elaborating the state machines of your active objects.

Figure 9.3(A) shows the state machines associated with Philosopher active object, which

clearly shows the life cycle consisting of states “thinking,” “hungry,” and “eating.”
www.newnespress.com

TERMINATE

HUNGRY(n) / . . .
DONE(n) / . . .

serving

exit / ^DONE(n)
eating

thinking

entry / ^HUNGRY(n)
hungry

TIMEOUT

EAT(n)

TIMEOUT

A B

Figure 9.3: State machines associated with the Philosopher active object (A),
and Table active object (B).

452 Chapter 9
This state machine generates the HUNGRY event on entry to the “hungry” state and the

DONE event on exit from the “eating” state, because this exactly reflects the semantics

of these events. An alternative approach—to generate these events from the corresponding

TIMEOUT transitions—would not guarantee the preservation of the semantics in

potential future modifications of the state machine. This actually is the general guideline

in state machine design.

GUIDELINE

Favor entry and exit actions over actions on transitions.
Figure 9.3(B) shows the state machine associated with the Table active object. This

state machine is trivial because Table keeps track of the forks and hungry philosophers

by means of extended state variables rather than by its state machine. The state diagram

in Figure 9.3(B) obviously does not convey how the Table active object behaves,

since the specification of actions is missing. I decided to omit the actions because

including them required cutting and pasting most of the Table code into the diagram,

which would make the diagram too cluttered. In this case, the diagram simply does

not add much value over the code.

As I mentioned before, I like to strictly encapsulate each active object inside a dedicated

source file (.C file). Listing 9.2 shows the declaration (active object structure) and complete

definition (state-handler functions) of the Table active object in the file table.c. In the

explanation section immediately following this listing, I focus on the techniques of

encapsulating active objects and usingQF services. I don’t repeat here the recipes for coding

state machine elements, which I already gave in Part I of this book (Chapters 1 and 4).
www.newnespress.com

Listing 9.2 Table active object (file table.c); boldface indicates
the QF services

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"

Q_DEFINE_THIS_FILE

/* Active object class ---*/
(1) typedef struct TableTag {
(2) QActive super; /* derives from QActive */
(3) uint8_t fork [N_PHILO]; /* states of the forks */
(4) uint8_t isHungry [N_PHILO]; /* remembers hungry philosophers */

} Table;

static QState Table_initial(Table *me, QEvent const *e); /* pseudostate */
static QState Table_serving(Table *me, QEvent const *e); /* state handler */

(5) #define RIGHT(n_) ((uint8_t)(((n_) + (N_PHILO - 1)) % N_PHILO))
(6) #define LEFT(n_) ((uint8_t)(((n_) + 1) % N_PHILO))

enum ForkState { FREE, USED };

/* Local objects --*/
(7) static Table l_table; /* the single instance of the Table active object */

/* Global-scope objects ---*/
(8) QActive * const AO_Table = (QActive *)&l_table; /* "opaque" AO pointer */

/*..*/
(9) void Table_ctor(void) {

uint8_t n;
Table *me = &l_table;

(10) QActive_ctor(&me->super, (QStateHandler)&Table_initial);

Continued onto next page

n

n
RIGHT(n)

LEFT(n)
LEFT(n)

LEFT(LEFT(n)) RIGHT(n)

Figure 9.4: Numbering of philosophers and forks (see the macros
LEFT() and RIGHT() in Listing 9.2).

www.newnespress.com

453Developing QP Applications

(11) for (n = 0; n < N_PHILO; ++n) {
me->fork [n] = FREE;
me->isHungry [n] = 0;

}
}
/*...*/
QState Table_initial(Table *me, QEvent const *e) {

(void)e; /* avoid the compiler warning about unused parameter */

(12) QActive_subscribe((QActive *)me, DONE_SIG);
(13) QActive_subscribe((QActive *)me, TERMINATE_SIG);
(14) /* signal HUNGRY_SIG is posted directly */

return Q_TRAN(&Table_serving);
}
/*...*/
QState Table_serving(Table *me, QEvent const *e) {

uint8_t n, m;
TableEvt *pe;

switch (e->sig) {
case HUNGRY_SIG: {

(15) BSP_busyDelay();
n = ((TableEvt const *)e)->philoNum;

/* phil ID must be in range and he must be not hungry */
(16) Q_ASSERT((n < N_PHILO) && (!me->isHungry [n]));

(17) BSP_displyPhilStat(n, "hungry ");
m = LEFT(n);
if ((me->fork [m] == FREE) && (me->fork [n] == FREE)) {

me->fork [m] = me->fork [n] = USED;
pe = Q_NEW(TableEvt, EAT_SIG);
pe->philoNum = n;
QF_publish((QEvent *)pe);
BSP_displyPhilStat(n, "eating ");

}
else {

me->isHungry [n] = 1;
}
return Q_HANDLED();

}
case DONE_SIG: {

BSP_busyDelay();
n = ((TableEvt const *)e)->philoNum;

/* phil ID must be in range and he must be not hungry */
(18) Q_ASSERT((n < N_PHILO) && (!me->isHungry [n]));

BSP_displyPhilStat(n, "thinking");
m = LEFT(n);

www.newnespress.com

454 Chapter 9

/* both forks of Phil [n] must be used */
(19) Q_ASSERT((me->fork [n] == USED) && (me->fork [m] == USED));

me->fork [m] = me->fork [n] = FREE;
m = RIGHT(n); /* check the right neighbor */
if (me->isHungry [m] && (me->fork [m] == FREE)) {

me->fork [n] = me->fork [m] = USED;
me->isHungry [m] = 0;
pe = Q_NEW(TableEvt, EAT_SIG);
pe->philoNum = m;

(20) QF_publish((QEvent *)pe);
BSP_displyPhilStat(m, "eating ");

}
m = LEFT(n); /* check the left neighbor */
n = LEFT(m); /* left fork of the left neighbor */
if (me->isHungry [m] && (me->fork [n] == FREE)) {

me->fork [m] = me->fork [n] = USED;
me->isHungry [m] = 0;
pe = Q_NEW(TableEvt, EAT_SIG);
pe->philoNum = m;

(21) QF_publish((QEvent *)pe);
BSP_displyPhilStat(m, "eating ");

}
return Q_HANDLED();

}
case TERMINATE_SIG: {

(22) QF_stop();
return Q_HANDLED();

}
}
return Q_SUPER(&QHsm_top);

}

455Developing QP Applications
(1) To achieve true encapsulation, I place the declaration of the active object structure

in the source file (.C file).

(2) Each active object in the application derives from the QActive base structure.

(3) The Table active object keeps track of the forks in the array fork[]. The forks

are numbered as shown in Figure 9.4.

(4) Similarly, the Table active object needs to remember which philosophers are

hungry, in case the forks aren’t immediately available. Table keeps track of

hungry philosophers in the array isHungry[]. Philosophers are numbered as

shown in Figure 9.4.
www.newnespress.com

456 Chapter 9
(5,6) The helper macros LEFT() and RIGHT() access the left and right

philosopher or fork, respectively, as shown in Figure 9.4.

(7) I statically allocate the Table active object. By defining this object as static

I make it inaccessible outside the .C file.

(8) Externally, the Table active object is known only through the “opaque”

pointer AO_Table. The pointer is declared ‘const’ (with the const after

the ‘*’), which means that the pointer itself cannot change. This ensures that

the active object pointer cannot change accidentally and also allows the

compiler to allocate the active object pointer in ROM.

(9) The function Table_ctor() performs the instantiation of the Table active

object. It plays the role of the static “constructor,” which in C you need to call

explicitly, typically at the beginning of main().
NOTE

In C++, static constructors are invoked automatically before main(). This means that in the

C++ version of DPP (found in <qp>\qpcpp\examples\80x86\dos\tcpp101\l\dpp\),

you provide a regular constructor for the Table class and don’t bother with calling it explic-

itly. However, you must make sure that the startup code for your particular embedded target

includes the additional steps required by the C++ initialization.
(10) The constructor must first instantiate the QActive superclass.

(11) The constructor can then initialize the internal data members of the active

object.

(12,13) The active object subscribes to all interesting signals in the topmost initial

transition.
NOTE

I often see new QP users forget subscribing to events, and then the application appears

“dead” when you first run it.
(14) Note that Table does not subscribe to the HUNGRY event, because this event

is posted directly.
www.newnespress.com

457Developing QP Applications
(15) I sprinkled the state machine with calls to the function BSP_busyDelay()

to artificially prolong the RTC processing. The function

BSP_busyDelay() busy-waits in a counted loop, whereas you can adjust

the number of iterations of this loop from the command line or through

a debugger. This technique lets me increase the probability of various

preemptions and thus helps me use the DPP application for stress-testing

various QP ports.

(16,18,19) The Table state machine extensively uses assertions to monitor correct

execution of the DPP application. For example, in line (19) both forks of a

philosopher who just finished eating must be used.

(17) The output to the screen is a BSP (board support package) operation. The

different BSPs implement this operation differently, but the code of the

Table state machine does not need to change.

(20,21) It is possible that the Table active object publishes two events in a single

RTC step.

(22) Upon receiving the TERMINATE event, the Table active object calls

QF_stop() to stop QF and return to the underlying operating system.

The Philosopher active objects bring no essentially new techniques, so I don’t reproduce

the listing of the philo.c file here. The only interesting aspect of philosophers that

I’d like to mention is that all five philosopher active objects are instances of the same

active object class. The philosopher state machine also uses a few assertions to monitor

correct execution of the application according to the problem specification.
9.2.5 Step 5: Initializing and Starting the Application

Most of the system initialization and application startup can be written in a platform-

independent way. In other words, you can use essentially the same main() function for

the DPP application with many QP ports.

Typically, you start all your active objects from main(). The signature of the

QActive_start() function forces you to make several important decisions about

each active object upon startup. First, you need to decide the relative priorities of the

active objects. Second, you need to decide the size of the event queues you preallocate

for each active object. The correct size of the queue is actually related to the priority,

as I discuss in the upcoming Section 9.4. Third, in some QF ports, you need to give
www.newnespress.com

458 Chapter 9
each active object a separate stack, which also needs to be preallocated adequately. And

finally, you need to decide the order in which you start your active objects.

The order of starting active objects becomes important when you use an OS or RTOS,

in which a spawned thread starts to run immediately, possibly preempting the main()

thread from which you launch your application. This could cause problems if, for

example, the newly created active object attempts to post an event directly to another

active object that has not been yet created. Such a situation does not occur in DPP, but

if it is an issue for you, you can try to lock the scheduler until all active objects are

started. You can then unlock the scheduler in the QF_onStartup() callback, which

is invoked right before QF takes over control. Some RTOSs (e.g., mC/OS-II) allow you

to defer the start of multitasking until after you start active objects. Another alternative

is to start active objects from within other active objects, but this design increases

coupling because the active object that serves as the launch pad must know the

priorities, queue sizes, and stack sizes for all active objects to be started.
Listing 9.3 Initializing and starting the DPP application (file main.c)

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"

/* Local-scope objects ---*/
(1) static QEvent const *l_tableQueueSto [N_PHILO];
(2) static QEvent const *l_philoQueueSto [N_PHILO][N_PHILO];
(3) static QSubscrList l_subscrSto [MAX_PUB_SIG];

(4) static union SmallEvent {
(5) void *min_size;

TableEvt te;
(6) /* other event types to go into this pool */
(7) } l_smlPoolSto [2*N_PHILO]; /* storage for the small event pool */

/*...*/
int main(int argc, char *argv []) {

uint8_t n;

(8) Philo_ctor(); /* instantiate all Philosopher active objects */
(9) Table_ctor(); /* instantiate the Table active object */

(10) BSP_init(argc, argv); /* initialize the Board Support Package */

(11) QF_init(); /* initialize the framework and the underlying RT kernel */

(12) QF_psInit(l_subscrSto, Q_DIM(l_subscrSto)); /* init publish-subscribe */

www.newnespress.com

/* initialize event pools... */
(13) QF_poolInit(l_smlPoolSto, sizeof(l_smlPoolSto), sizeof(l_smlPoolSto [0]));

for (n = 0; n < N_PHILO; ++n) { /* start the active objects... */
(14) QActive_start(AO_Philo [n], (uint8_t)(n + 1),

l_philoQueueSto [n], Q_DIM(l_philoQueueSto [n]),
(void *)0, 0, /* no private stack */
(QEvent *)0);

}
(15) QActive_start(AO_Table, (uint8_t)(N_PHILO + 1),

l_tableQueueSto, Q_DIM(l_tableQueueSto),
(void *)0, 0, /* no private stack */
(QEvent *)0);

(16) QF_run(); /* run the QF application */

return 0;
}

459Developing QP Applications
(1,2) The memory buffers for all event queues are statically allocated.

(3) The memory space for subscriber lists is also statically allocated. The

MAX_PUB_SIG enumeration comes in handy here.

(4) The union SmallEvent contains all events that are served by the “small” event

pool.

(5) The union contains a pointer-size member to make sure that the union size will

be at least that big.

(6) You add all events that you want to be served from this event pool.

(7) The memory buffer for the “small” event pool is statically allocated.

(8,9) The main() function starts with calling all static “constructors” (see Listing 9.1

(7-8)). This step is not necessary in C++.

(10) The target board is initialized.

(11) QF is initialized together with the underlying OS/RTOS.

(12) The publish-subscribe mechanism is initialized. You don’t need to call

QF_psInit() if your application does not use publish-subscribe.

(13) Up to three event pools can be initialized by calling QF_poolInit() up to

three times. The subsequent calls must be made in the order of increasing
www.newnespress.com

460 Chapter 9
block sizes of the event pools. You don’t need to call QF_poolInit() if

your application does not use dynamic events.

(14,15) All active objects are started using the “opaque” active object pointers (see

Listing 9.1(9-10)). In this particular example, the active objects are started

without private stacks. However, some RTOSs, such as mC/OS-II, require
preallocating stacks for all active objects.

(16) The control is transferred to QF to run the application. QF_run() might

never return.
9.2.6 Step 6: Gracefully Terminating the Application

Terminating an application is not really a big concern in embedded systems because

embedded programs almost never have a need to terminate gracefully. The job of

a typical embedded system is never finished, and most embedded software runs

forever or until the power is removed, whichever comes first.
NOTE

You still need to carefully design and test the fail-safe mechanism triggered by a CPU

exception or assertion violation in your embedded system. However, such a situation repre-

sents a catastrophic shutdown, followed perhaps by a reset. The subject of this section is the

graceful termination, which is part of the normal application life cycle.
However, in desktop programs, or when embedded applications run on top of a general-

purpose operating system, such as Linux, Windows, or DOS, the shutdown of a QP

application becomes important. The problem is that to terminate gracefully, the

application must clean up all resources allocated by the application during its lifetime.

Such a shutdown is always application-specific and cannot be preprogrammed

generically at the framework level.

The DPP application uses the following mechanism to shut down: When the user

decides to terminate the application, the global TERMINATE event is published. In

DPP, only the Table active object subscribes to this event (Listing 9.2(13)), but in

general all active objects that need to clean up anything before exiting should subscribe

to the TERMINATE event. The last subscriber, which is typically the lowest-priority
www.newnespress.com

461Developing QP Applications
subscriber, calls the QF_stop() function (Listing 9.2(22)). As described in Chapter 8,

QF_stop() is implemented in the QF port. Often, QF_stop() causes the QF_run()

function to return. Right before transferring control to the underlying operating

system, QF invokes the QF_onCleanup() callback. This callback gives the application

the last chance to clean up globally (e.g., the DOS version restores the original DOS

interrupt vectors).

Finally, you can also stop individual active objects and let the rest of the application

continue execution. The cleanest way to end an active object’s thread is to have it

stop itself by calling QActive_stop(me), which should cause a return from the active

object’s thread routine. Of course, to “commit a suicide” voluntarily, the active

object must be running and cannot be waiting for an event. In addition, before

disappearing, the active object should release all the resources acquired during its

lifetime. Finally, the active object should unsubscribe from receiving all signals and

somehow should make sure that no more events will be posted to it directly.

Unfortunately, all these requirements cannot be preprogrammed generically and always

require some work on the application programmer’s part.

9.3 Running DPP on Various Platforms

I generally use the same DPP source code to test the QP ports on various CPUs,

operating systems, and compilers. The only platform-dependent file is the board

support package (BSP) definition and sometimes the main() function. In this section

I describe what needs to be done to execute the DPP application with the “vanilla”

kernel (I cover two versions: for 80�86 and Cortex-M3), as well as mC/OS-II on DOS

and Linux.
9.3.1 “Vanilla” Kernel on DOS

The code for the DPP port to 80x86 with the “vanilla” kernel is located in the directory

<qp>\qpc\examples\80x86\dos\tcpp101\l\dpp\. The directory contains the

Turbo C++ 1.01 project files to build the application. You can execute the application

by double-clicking the executables in the dbg\, rel\, or spy\ subdirectories.

Figure 9.5 shows the output generated by the DPP executable. Listing 9.4 shows the

BSP for this version of DPP.
www.newnespress.com

Listing 9.4 BSP for the DPP application with the “Vanilla” kernel on DOS
(file <qp>\qpc\examples\80x86\dos\tcpp101\l\dpp\bsp.c)

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
. . .

/* Local-scope objects---*/
static void interrupt (*l_dosTmrISR)();
static void interrupt (*l_dosKbdISR)();
static uint32_t l_delay = 0UL; /* limit for the loop counter in busyDelay() */

#define TMR_VECTOR 0x08
#define KBD_VECTOR 0x09

/*..*/
(1) void interrupt ISR_tmr(void) {
(2) QF_INT_UNLOCK(dummy); /* unlock interrupts */
(3) QF_tick(); /* call QF_tick() outside of critical section */
(4) QF_INT_LOCK(dummy); /* lock interrupts again */
(5) outportb(0x20, 0x20); /* write EOI to the master 8259A PIC */

}
/*..*/

Figure 9.5: DPP test application running in a DOS console.

www.newnespress.com

462 Chapter 9

void interrupt ISR_kbd(void) {
uint8_t key;
uint8_t kcr;

QF_INT_UNLOCK(dummy); /* unlock interrupts */
key = inport(0x60); /*key scan code from the 8042 kbd controller */
kcr = inport(0x61); /* get keyboard control register */
outportb(0x61, (uint8_t)(kcr | 0x80)); /* toggle acknowledge bit high */
outportb(0x61, kcr); /* toggle acknowledge bit low */
if (key == (uint8_t)129) { /* ESC key pressed? */

static QEvent term = {TERMINATE_SIG, 0}; /* static event */
QF_publish(&term); /* publish to all interested AOs */

}
QF_INT_LOCK(dummy); /* lock interrupts again */
outportb(0x20, 0x20); /* write EOI to the master 8259A PIC */

}
/*...*/
void QF_onStartup(void) {

/* save the origingal DOS vectors ... */
(6) l_dosTmrISR = getvect(TMR_VECTOR);
(7) l_dosKbdISR = getvect(KBD_VECTOR);

QF_INT_LOCK(dummy);
(8) setvect(TMR_VECTOR, &ISR_tmr);
(9) setvect(KBD_VECTOR, &ISR_kbd);

QF_INT_UNLOCK(dummy);
}
/*...*/
void QF_onCleanup(void) { /* restore the original DOS vectors ... */

QF_INT_LOCK(dummy);
(10) setvect(TMR_VECTOR, l_dosTmrISR);
(11) setvect(KBD_VECTOR, l_dosKbdISR);

QF_INT_UNLOCK(dummy);
_exit(0); /* exit to DOS */

}
/*...*/
void QF_onIdle(void) { /* called with interrupts LOCKED */

(12) QF_INT_UNLOCK(dummy); /* always unlock interrutps */
}
/*...*/
void BSP_init(int argc, char *argv []) {

if (argc > 1) {
(13) l_delay = atol(argv [1]); /* set the delay counter for busy delay */

}
printf("Dining Philosopher Problem example"

"\nQEP %s\nQF %s\n"
"Press ESC to quit...\n",
QEP_getVersion(),
QF_getVersion());

}

Continued onto next page

www.newnespress.com

463Developing QP Applications

/*..*/
void BSP_busyDelay(void) {

uint32_t volatile i = l_delay;
(14) while (i– > 0UL) { /* busy-wait loop */

}
}
/*..*/
void BSP_displyPhilStat(uint8_t n, char const *stat) {

(15) printf("Philosopher %2d is %s\n", (int)n, stat);
}
/*..*/
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {

QF_INT_LOCK(dummy); /* cut-off all interrupts */
fprintf(stderr, "Assertion failed in %s, line %d", file, line);

(16) QF_stop();
}

464 Chapter 9
(1) The compiler-supported Turbo C++ 1.01 compiler provides an extended

keyword “interrupt” that enables you to program ISRs in C/C++. The

compiler-supported ISRs are adequate for the “vanilla” kernel.

(2) The 80x86 processor locks interrupts in hardware before vectoring to the ISR.

The interrupts can be unlocked right away, though, because the 8259A

programmable interrupt controller prioritizes interrupts before they reach

the CPU.

(3) The QF_tick() service is called outside of the critical section. You cannot

call any QF services within a critical section, because this “vanilla” port uses

the simple “unconditional interrupt locking and unlocking” policy, which

precludes nesting critical sections.

(4) Interrupts are locked before the interrupt is exited.

(5) The end-of-interrupt (EOI) instruction is sent to the master 8259A PIC, so

that it ends prioritization of this interrupt level.

(6,7) The original DOS interrupts vectors are saved to be restored upon cleanup.

(8,9) The customized interrupts are set for this port. This must happen in a critical

section.

(10,11) Upon cleanup, the original DOS interrupts are restored.
www.newnespress.com

465Developing QP Applications
(12) In the “vanilla” kernel, the QF_idle() callback is invoked with

interrupts locked and must always unlock interrupts (see Section 8.2.4

in Chapter 8).

(13,14) The loop counter for the BSP_busyDelay() function is set from the

first command-line parameter. You should not go overboard with this

parameter, because you might overload the CPU by creating an

unschedulable set of tasks. In this case QF will eventually assert on

overflowing an event queue.

(15) The output of the philosopher status is implemented as a printf() statement

(see Figure 9.5). Note that the output occurs only from the context of the

Table active object.

(16) Upon an assertion failure, the application is stopped and cleanly exits to

the DOS prompt.
9.3.2 “Vanilla” Kernel on Cortex-M3

The code for the DPP port to Cortex-M3 with the “vanilla” kernel is located in

the directory <qp>\qpc\examples\cortex-m3\vanilla\iar\dpp\.

The directory contains the IAR EWARM v5.11 project files to build the application

and download it to the EV-LM3S811 board. Figure 9.6 shows the display of the

board while it is executing the application. Listing 9.5 shows the BSP for this

version of DPP.
Figure 9.6: DPP test application running on the EV-LM3S811 board
(Cortex-M3). The status of each Philosopher is displayed as “t” (thinking),

“e” (eating), or “h” (hungry).

www.newnespress.com

Listing 9.5 BSP for the DPP application with the “vanilla” kernel on bare
metal Cortex-M3 (file <qp>\qpc\examples\cortex-m3\vanilla\iar
\dpp-ev-lm3s811\bsp.c)

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"

(1) #include "hw_ints.h"
. . . /* other Luminary Micro driver library include files */

/* Local-scope objects ---*/
static uint32_t l_delay = 0UL; /* limit for the loop counter in busyDelay() */

/*..*/
(2) void ISR_SysTick(void) {

QF_tick(); /* process all armed time events */
/* add any application-specific clock-tick processing, as needed */

}
. . .
/*..*/
void BSP_init(int argc, char *argv []) {

(void)argc; /* unused: avoid the complier warning */
(void)argv; /* unused: avoid the compiler warning */

/* Set the clocking to run at 20MHz from the PLL. */
(3) SysCtlClockSet(SYSCTL_SYSDIV_10 | SYSCTL_USE_PLL

| SYSCTL_OSC_MAIN | SYSCTL_XTAL_6MHZ);

/* Enable the peripherals used by the application. */
(4) SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);

SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);

/* Configure the LED, push button, and UART GPIOs as required. */
(5) GPIODirModeSet(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1,

GPIO_DIR_MODE_HW);
GPIODirModeSet(GPIO_PORTC_BASE, PUSH_BUTTON, GPIO_DIR_MODE_IN);
GPIODirModeSet(GPIO_PORTC_BASE, USER_LED, GPIO_DIR_MODE_OUT);
GPIOPinWrite(GPIO_PORTC_BASE, USER_LED, 0);

/* Initialize the OSRAM OLED display. */
(6) OSRAMInit(1);
(7) OSRAMStringDraw("Dining Philos", 0, 0);
(8) OSRAMStringDraw("0 ,1 ,2 ,3 ,4", 0, 1);

}
/*..*/
void BSP_displyPhilStat(uint8_t n, char const *stat) {

char str [2];
str [0] = stat [0];

www.newnespress.com

466 Chapter 9

str [1] = ‘\0’;
(9) OSRAMStringDraw(str, (3*6*n + 6), 1);

}
/*..*/
void BSP_busyDelay(void) {

uint32_t volatile i = l_delay;
while (i– > 0UL) { /* busy-wait loop */
}

}
/*..*/
void QF_onStartup(void) {

/* Set up and enable the SysTick timer. It will be used as a reference
* for delay loops in the interrupt handlers. The SysTick timer period
* will be set up for BSP_TICKS_PER_SEC.
*/

(10) SysTickPeriodSet(SysCtlClockGet() / BSP_TICKS_PER_SEC);
(11) SysTickEnable();
(12) IntPrioritySet(FAULT_SYSTICK, 0xC0); /* set the priority of SysTick */
(13) SysTickIntEnable(); /* Enable the SysTick interrupts */
(14) QF_INT_UNLOCK(dummy); /* set the interrupt flag in PRIMASK */

}
/*..*/
void QF_onCleanup(void) {

(15) }
/*..*/
void QF_onIdle(void) { /* entered with interrupts LOCKED, see NOTE01 */

/* toggle the User LED on and then off, see NOTE02 */
GPIOPinWrite(GPIO_PORTC_BASE, USER_LED, USER_LED); /* User LED on */
GPIOPinWrite(GPIO_PORTC_BASE, USER_LED, 0); /* User LED off */

(16) #ifdef NDEBUG
/* Put the CPU and peripherals to the low-power mode.
* you might need to customize the clock management for your application,
* see the datasheet for your particular Cortex-M3 MCU.
*/

(17) __asm("WFI"); /* Wait-For-Interrupt */
#endif

(18) QF_INT_UNLOCK(dummy); /* always unlock the interrupts */
}
/*..*/
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {

(void)file; /* avoid compiler warning */
(void)line; /* avoid compiler warning */
QF_INT_LOCK(dummy); /* make sure that all interrupts are disabled */

(19) for (;;) { /* NOTE: replace the loop with reset for the final version */
}

}
/* error routine that is called if the Luminary library encounters an error */

(20) void __error__(char *pcFilename, unsigned long ulLine) {
Q_onAssert(pcFilename, ulLine);

}

www.newnespress.com

467Developing QP Applications

468 Chapter 9
(1) The BSP for Cortex-M3 relies on the driver library provided by Luminary

Micro with the EV-LM3S811 board.

(2) As described in Section 8.2.3 in Chapter 8, ISRs in Cortex-M3 are just regular

C functions. The system clock tick is implemented with the Cortex-M3

SysTick interrupt, specifically designed for that purpose. Note that the

Cortex-M3 enters ISRs with interrupts unlocked, so there is no need to unlock

interrupts before calling QF services, such as QF_tick().

(3-5) The board initialization includes enabling all peripherals used in the DPP

application.

(6-8) The graphic OLED display driver is initialized and the screen is prepared for

the DPP application.

(9) The output of the philosopher status is implemented as drawing a single letter

on the screen (see Figure 9.6). Note that the output occurs only from the

context of the Table active object.

(10) Upon startup, the hardware system clock tick rate is set.

(11) The system clock tick hardware is enabled.

(12) The Cortex-M3 performs prioritization of all interrupts in hardware, and it is

highly recommended to explicitly set the priority of every interrupt used by the

application. TheCortex-M3 represents an ISR priority in the threemost significant

bits of a byte, whereas 0xE0 is the lowest and 0x00 is the highest hardware priority.

Priority 0xC0 corresponds to the second-lowest priority in the system.

(13) The system clock tick interrupt is enabled in hardware.

(14) The interrupts are enabled.

(15) The DPP application running on the EV-LM3S811 board operates on “bare

metal” and has no operating system to return to. The cleanup callback is not

used in this case.

(16-18) In Section 8.2.4, I have already discussed idle processing for the “vanilla”

kernel running on Cortex-M3.

(19) The assertion handler enters a forever loop in the DPP application. You need

to replace this loop with the fail-safe shutdown, followed perhaps by a reset in

the production version of your application.
www.newnespress.com

469Developing QP Applications
(20) The function __error__() is used inside the Luminary Micro driver library. This

function has the same purpose and signature as Q_onAssert().
9.3.3 mC/OS-II

The code for the DPP port to 80x86 with the mC/OS-II RTOS is located in the directory

<qp>\qpc\examples\80x86\ucos2\tcpp101\l\dpp\. The directory contains

the make.bat batch file to build the application. You can execute the DPP application

by double-clicking the executables in the dbg\, rel\, or spy\ subdirectories.

Figure 9.7 shows the output generated by the DPP executable.
Figure 9.7: DPP test application running in a DOS console on top
of mC/OS-II v2.86.
As shown in Listing 9.6, in case of mC/OS-II, you need to modify the main.c source

file to supply the private stacks for the active object tasks. This is one of the big-ticket

items in terms of RAM usage required by a traditional preemptive kernel. You also

need to create a dedicated mC/OS-II task to start the interrupts, as described in the

Micro-C/OS-II book [Labrosse 02]. Listing 9.7 shows the customization of the

mC/OS-II hooks (callbacks) to call the QF clock tick processing.
www.newnespress.com

Listing 9.6 main() function for the DPP application with the mC/OS-II
RTOS on DOS (file <qp>\qpc\examples\80x86\ucos2\tcpp101\l
\dpp\main.c)

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"

/* Local-scope objects ---*/
. . .

(1) static OS_STK l_philoStk[N_PHILO][256]; /* stacks for the Philosophers */
(2) static OS_STK l_tableStk[256]; /* stack for the Table */
(3) static OS_STK l_ucosTaskStk[256]; /* stack for the ucosTask */

/*..*/
int main(int argc, char *argv []) {

. . .

for (n = 0; n < N_PHILO; ++n) {
QActive_start(AO_Philo [n], (uint8_t)(n + 1),

l_philoQueueSto [n], Q_DIM(l_philoQueueSto [n]),
(4) l_philoStk[n], sizeof(l_philoStk[n]), (QEvent *)0);

}
QActive_start(AO_Table, (uint8_t)(N_PHILO + 1),

l_tableQueueSto, Q_DIM(l_tableQueueSto),
(5) l_tableStk, sizeof(l_tableStk), (QEvent *)0);

/* create a uC/OS-II task to start interrupts and poll the keyboard */
OSTaskCreate(&ucosTask,

(void *)0, /* pdata */
(6) &l_ucosTaskStk[Q_DIM(l_ucosTaskStk) - 1],

0); /* the highest uC/OS-II priority */
QF_run(); /* run the QF application */

return 0;
}

470 Chapter 9
(1-3) You need to statically allocate the private stacks for all mC/OS-II tasks that you
use in the application. Here, I have oversized all stacks to have 256 16-bit

stack entries (see definition of OS_STK in the mC/OS-II port file os_cpu.h).

However, mC/OS-II allows each stack to have a different size.

(4,5) The stack storage is passed to the active objects through the stkSto and

stkSize parameters of the QActive_start() function.

(6) I also create additional “raw” mC/OS-II task ucosTask() that starts all

interrupts and polls the keyboard to find out when to terminate the application.

The body of the ucosTask() function is shown in Listing 9.7.
www.newnespress.com

Listing 9.7 BSP for the DPP application for the mC/OS-II RTOS on DOS
(file <qp>\qpc\examples\80x86\ucos2\tcpp101\l\dpp\bsp.c)

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"
#include "video.h"

/*...*/
(1) void ucosTask(void *pdata) {

(void)pdata; /* avoid the compiler warning about unused parameter */

(2) QF_onStartup(); /* start interrupts including the clock tick, NOTE01 */

for (;;) {
(3) OSTimeDly(OS_TICKS_PER_SEC/10); /* sleep for 1/10 s */

if (kbhit()) { /* poll for a new keypress */
uint8_t key = (uint8_t)getch();
if (key == 0x1B) { /* is this the ESC key? */

(4) QF_publish(Q_NEW(QEvent, TERMINATE_SIG));
}
else { /* other key pressed */

Video_printNumAt(30, 13 + N_PHILO, VIDEO_FGND_YELLOW, key);
}

}
}

}
/*...*/
void OSTimeTickHook(void) {

(5) QF_tick();
/* add any application-specific clock-tick processing, as needed */

}
/*...*/
void OSTaskIdleHook(void) {

(6) /* put the MCU to sleep, if desired */

}
. . .

471Developing QP Applications
(1) The BSP contains a “raw” mC/OS-II task with the main responsibility of starting

the interrupts, which in mC/OS-II must occur only after the OSStart() function

is called from QF_run() (see [Labrosse 02]).

(2) The QF_onStartup() callback starts interrupts and is identical in this case as in

Listing 9.4(6-9).

(3) As any conventional task, ucosTask() must call some blocking RTOS function.

In this case, the task blocks on the timed delay.
www.newnespress.com

472 Chapter 9
(4) Every time the task wakes up, it polls the keyboard and checks whether the

user hit the Esc key. If so, the mC/OS-II task publishes the static TERMINATE

event. This call provides an example of how to generate QP events from external,

third-party code.

(5) The QF_tick() processing is invoked from the mC/OS-II hook. Note that this

particular mC/OS-II port uses the “saving and restoring interrupt status” policy

(mC/OS-II critical section type 3). This means that it’s safe to call a QF service,

even though mC/OS-II calls OSTimeTickHook() with interrupts locked.

(6) Under a preemptive kernel such as mC/OS-II, a transition to a low-power sleep

mode does not need to occur atomically (as it must in the nonpreemptive “vanilla”

kernel). Refer to Section 8.3.6 in Chapter 8 for the discussion of idle processing

under a preemptive kernel.
9.3.4 Linux

The code for the DPP port to Linux is located in the directory <qp>\qpc\examples

\80x86\linux\gnu\dpp\. The directory contains the Makefile to build the

application. You can execute the application from a console, as shown in Figure 9.8.

The real-time behavior of the application depends on the privilege level. If you launch
Figure 9.8: DPP test application running in Linux (Redhat 9).

www.newnespress.com

473Developing QP Applications
the application with the “superuser” privileges, the QF port will use the SCHED_FIFO

real-time scheduler and will prioritize active object threads high (see Section 8.4 in

Chapter 8). Otherwise, the application will execute under the default SCHED_OTHER

scheduler without a clear notion of priorities for active objects or the “ticker” task.

Listing 9.8 shows the BSP for Linux.
Listing 9.8 BSP for the DPP application for Linux
(file <qp>\qpc\examples\80x86\linux\gnu\dpp\bsp.c)

#include "qp_port.h"
#include "dpp.h"
#include "bsp.h"

#include <sys/select.h>
. . .

Q_DEFINE_THIS_FILE
/* Local objects ---*/

(1) static struct termios l_tsav; /* structure with saved terminal attributes */
static uint32_t l_delay; /* limit for the loop counter in busyDelay() */

/*...*/
(2) static void *idleThread(void *me) { /* the expected P-Thread signature */

for (;;) {
struct timeval timeout = {0 }; /* timeout for select() */
fd_set con; /* FD set representing the console */
FD_ZERO(&con);
FD_SET(0, &con);
timeout.tv_usec = 8000;

/* sleep for the full tick or until a console input arrives */
(3) if (0 != select(1, &con, 0, 0, &timeout)) { /* any descriptor set? */

char ch;
read(0, &ch, 1);
if (ch == ‘\33’) { /* ESC pressed? */

(4) QF_publish(Q_NEW(QEvent, TERMINATE_SIG));
}

}
}
return (void *)0; /* return success */

}
/*...*/
void BSP_init(int argc, char *argv []) {

printf("Dining Philosopher Problem example"
"\nQEP %s\nQF %s\n"
"Press ESC to quit...\n",
QEP_getVersion(),

Continued onto next page

www.newnespress.com

QF_getVersion());
if (argc > 1) {

l_delay = atol(argv [1]); /* set the delay from the argument */
}

}
/*...*/
void QF_onStartup(void) { /* startup callback */

struct termios tio; /* modified terminal attributes */
pthread_attr_t attr;
struct sched_param param;
pthread_t idle;

(5) tcgetattr(0, &l_tsav); /* save the current terminal attributes */
tcgetattr(0, &tio); /* obtain the current terminal attributes */

(6) tio.c_lflag &= ~(ICANON | ECHO); /* disable the canonical mode & echo */
tcsetattr(0, TCSANOW, &tio); /* set the new attributes */

/* SCHED_FIFO corresponds to real-time preemptive priority-based scheduler
* NOTE: This scheduling policy requires the superuser priviledges
*/
pthread_attr_init(&attr);
pthread_attr_setschedpolicy(&attr, SCHED_FIFO);
param.sched_priority = sched_get_priority_min(SCHED_FIFO);

pthread_attr_setschedparam(&attr, ¶m);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

(7) if (pthread_create(&idle, &attr, &idleThread, 0) != 0) {
/* Creating the p-thread with the SCHED_FIFO policy failed.
* Most probably this application has no superuser privileges,
* so we just fall back to the default SCHED_OTHER policy
* and priority 0.
*/

pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
param.sched_priority = 0;
pthread_attr_setschedparam(&attr, ¶m);

(8) Q_ALLEGE(pthread_create(&idle, &attr, &idleThread, 0) == 0);
}
pthread_attr_destroy(&attr);

}
/*...*/
void QF_onCleanup(void) { /* cleanup callback */

printf("\nBye! Bye!\n");
(9) tcsetattr(0, TCSANOW, &l_tsav); /* restore the saved terminal attributes */

QS_EXIT(); /* perform the QS cleanup */
}
/*...*/
void BSP_displyPhilStat(uint8_t n, char const *stat) {

(10) printf("Philosopher %2d is %s\n", (int)n, stat);
}

www.newnespress.com

474 Chapter 9

/*...*/
void BSP_busyDelay(void) {

uint32_t volatile i = l_delay;
while (i– > 0UL) {
}

}
/*...*/
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {

fprintf(stderr, "Assertion failed in %s, line %d", file, line);
(11) QF_stop();

}

475Developing QP Applications
(1) The standard configuration of a Linux console does not allow collecting user

keystrokes asynchronously. The mode of the terminal can be changed but needs

to be restored upon exit. The BSP uses the local variable l_tsav to save the

terminal settings.

(2) The BSP contains a “raw” POSIX-thread idleThread() with the main

responsibility of polling the console for asynchronous input and terminating the

application when the user presses the Esc key.

(3) The idleThread() uses the select() POSIX call as the main blocking

mechanism.

(4) The idleThread() generates and publishes the TERMINATE event when it

detects the Esc keypress.

(5) Upon startup the terminal attributes are saved into the static variable l_tsav.

(6) The canonical mode of the terminal is switched off to allow collecting keystrokes

asynchronously.

(7) The idle thread is first created with the real-time SCHED_FIFO scheduling

policy and the lowest possible priority. Using the SCHED_FIFO policy requires

“superuser” privileges and might fail if the application is launched without

these privileges.

(8) If creating the thread under SCHED_FIFO fails, the thread is created under the

default SCHED_OTHER policy. This time, the thread must be created

successfully; otherwise, the application cannot continue, and hence the assertion.

(9) The cleanup callback restores the saved terminal attributes.
www.newnespress.com

476 Chapter 9
(10) The output of the philosopher status is implemented as a printf() statement

(see Figure 9.8). Note that the output occurs only from the context of the

Table active object.

(11) Upon an assertion failure, the application is stopped and cleanly exits

to Linux.
9.4 Sizing Event Queues and Event Pools

Event queues and event pools are the necessary burden you need to accept when you

work within the event-driven paradigm. They are the price to pay for the convenience

and speed of development.

The main problem with event queues and event pools is that they consume your

precious memory. To minimize that memory, you need to size them appropriately.

In this respect, event queues and pools are no different from execution stacks—these

data structures all trade some memory for the convenience of programming.

The adequate sizing of event queues and event pools is especially important in QF

applications because QF raises an assertion when an event queue overflows or an event

pool runs out of events. QF treats both these situations as first-class bugs equally bad as

overflowing the stack.

Note that the problem with sizing event queues and event pools is common to all active

object–based frameworks, not specifically to QF. For instance, application frameworks

that accompany design automation tools have this problem as well. However, the

tools handle the problem behind the scenes by using massively oversized defaults.

In fact, you should do exactly the same thing: Create oversized event queues and

event pools in the early stages of development.

The minimization of memory consumed by event queues, event pools, and execution

stacks is like shrink-wrapping your event-driven application. You should do it toward

the end of application development because it stifles the flexibility you need in the

earlier stages. Note that any change in processing time, interrupt load, or event

production patterns can invalidate both your static analysis and the empirical

measurements of queue and pool usage. However, that doesn’t mean that you shouldn’t

care at all about event queues and event pools throughout the design and early

implementation phase. To the contrary, understanding the general rules for sizing event
www.newnespress.com

477Developing QP Applications
queues and pools helps you conserve memory by avoiding unnecessary bursts in event

production or by breaking up excessively long RTC steps. These techniques are

analogous to the ways execution stack space is conserved by avoiding deep call nesting

and big automatic variables.
9.4.1 Sizing Event Queues

One basic fact that you need to understand about event queues is that they work

only when the average event production rate <P(t)> does not exceed the average

event consumption rate <C(t)>. If this condition is not satisfied, the event queue is

of no use and always eventually overflows, no matter how big you make it. This fact

does not mean that the production rate P(t) cannot occasionally exceed the

consumption rate C(t), but such a burst of event production can persist for only a

short time. The bursts should also be sufficiently spread out over time to allow

cleanup of the queue.

Some software designers try to work around these fundamental limitations by using

message queues in a more “creative” way. For example, designers either allow blocking

of the producer threads when the queue is full, effectively reducing the production rate

P(t), or allow messages to be lost, effectively boosting the consumption rate C(t).

The QF views both techniques as an abuse of event queues and simply asserts a

contract violation. The basic premise behind this policy is that such a creative use of

event queues destroys the event-delivery guarantee (see Chapter 6).

The empirical method is perhaps the simplest and most popular technique used

to determine the required capacity of event queues, or any other buffers for that

matter (e.g., execution stacks). This technique involves running the system for a

while and then stopping it to examine how much of various buffers has been used.

The QF implementation of the event queue (the QEQueue class) maintains the

nMin data member specifically for this purpose (see Listing 7.25(12-14) in

Chapter 7). You can inspect this low-watermark easily using a debugger or through

a memory dump.

The alternative technique relies on a static analysis of event production and event

consumption. The QF framework uses event queues in a rather specific way (e.g., there

is only one consumer thread); consequently, the production rate P(t) and the

consumption rate C(t) are strongly correlated.
www.newnespress.com

478 Chapter 9
For example, consider a QF application running under a preemptive, priority-based

kernel.1 Assume further that the highest-priority active object receives events only from

other active objects (but not from ISRs). Whenever any of the lower-priority active

objects posts or publishes an event for the highest-priority object, the kernel

immediately assigns the CPU to the recipient. The kernel makes the context switch

because, at this point, the recipient is the highest-priority thread ready to run. The

highest-priority active object awakens and runs to completion, consuming any event

posted to it. Therefore, the highest-priority active object really doesn’t need to queue

events (the maximum depth of its event queue is 1).

When the highest-priority active object receives events from ISRs, more events can

queue up for it. In the most common arrangement, an ISR produces only one event

per activation. In addition, the real-time deadlines are typically such that the

highest-priority active object must consume the event before the next interrupt. In this

case, the object’s event queue can grow, at most, to two events: one from a task and the

other from an ISR.

You can extend this analysis recursively to lower-priority active objects. The maximum

number of queued events is the sum of all events that higher-priority threads and ISRs

can produce for the active object within a given deadline. The deadline is the longest

RTC step of the active object, including all possible preemptions by higher-priority

threads and ISRs. For example, in the DPP application, all Philosopher active objects

perform very little processing (they have short RTC steps). If the CPU can complete

these RTC steps within one clock tick, the maximum length of the Philosopher queue

would be three events: one from the clock-tick ISR and two from the Table active

object (Table can sometimes publish two events in one RTC step).

The rules of thumb for the static analysis of event queue capacity are as follows.

� The size of the event queue depends on the priority of the active object.

Generally, the higher the priority, the shorter the necessary event queue. In

particular, the highest-priority active object in the system immediately

consumes all events posted by the other active objects and needs to queue only

those events posted by ISRs.
1 The following discussion also pertains approximately to foreground/background systems with priority

queues (see Section 7.11 in Chapter 7). However, the analysis is generally not applicable to desktop

systems (e.g., Linux or Windows), where the concept of thread priority is much fuzzier.

www.newnespress.com

479Developing QP Applications
� The queue size depends on the duration of the longest RTC step, including all

potential (worst-case) preemptions by higher-priority active objects and ISRs.

The faster the processing, the shorter the necessary event queue. To minimize

the queue size, you should avoid very long RTC steps. Ideally, all RTC steps of

a given active object should require about the same number of CPU cycles to

complete.

� Any correlated event production can negatively affect queue size. For example,

sometimes ISRs or active objects produce multiple event instances in one

RTC step (e.g., the Table active object occasionally produces two permissions

to eat). If minimal queue size is critical in your application, you should avoid

such bursts by, for example, spreading event production over many RTC steps.

Remember also that the static analysis pertains to a steady-state operation after the

initial transient. On startup, the relative priority structure and the event production

patterns might be quite different. Generally, it is safest to start active objects in the

order of their priority, beginning from the lowest-priority active objects because they

tend to have the biggest event queues.
9.4.2 Sizing Event Pools

The size of event pools depends on how many events of different kinds you can sink in

your system. The obvious sinks of events are event queues because as long as an event

instance waits in a queue, the instance cannot be reused. Another potential sink of

events is the event producer. A typical event-generation scenario is to create an event

first (assigning a temporary variable to hold the event pointer), then fill in the event

parameters and eventually post or publish the event. If the execution thread is

preempted after event creation but before posting it, the event is temporarily lost

for reuse.

In the simplest case of just one event pool (one size of events) in the system, you can

determine the event pool size by adding the sizes of all the event queues plus the

number of active objects in the system.

When you use more event pools (the QF allows up to three event pools), the analysis

becomes more involved. Generally, you need to proceed as with event queues. For

each event size, you determine how many events of this size can accumulate at any

given time inside the event queues and can otherwise exist as temporaries in the system.
www.newnespress.com

480 Chapter 9
9.4.3 System Integration

An important aspect of QF-based applications is their integration with the rest of

the embedded real-time software, most notably with the device drivers and the

I/O system.

Generally, this integration must be based on the event-driven paradigm. QF allows you

to post or publish events from any piece of software, not necessarily from active

objects. Therefore, if you write your own device drivers or have access to the device

driver source code, you can use the QF facilities for creating and publishing or posting

events directly.

You should view any device as a shared resource and, therefore, restrict its access to

only one active object. This method is safest because it evades potential problems with

reentrancy. As long as access is strictly limited to one active object, the RTC execution

within the active object allows you to use nonreentrant code. Even if the code is

protected by some mutual exclusion mechanism, as is often the case for commercial

device drivers, limiting the access to one thread avoids priority inversions and

nondeterminism caused by the mutual blocking of active objects.

Accessing a device from just one active object does not necessarily mean that you need

a separate active object for every device. Often, you can use one active object to

encapsulate many devices.
9.5 Summary

The internal implementation of the QF real-time framework uses a lot of low-level

mechanisms such as critical sections, mutexes, and message queues. However, after the

infrastructure for executing active objects is in place, the development of QF-based

applications can proceed much easier and faster. The higher productivity comes from

encapsulated active objects that can be programmed without the troublesome low-level

mechanisms traditionally associated with multitasking programs. Yet, the application as

a whole can still take full advantage of multithreading.

Developing a QP application involves defining signals and event classes, elaborating

state machines of active objects, and deploying the application on a concrete platform.

The high portability of QP software components enables you to develop large portions

of the code on a different platform than the ultimate target.
www.newnespress.com

481Developing QP Applications
Programming with active objects requires some discipline on the part of the

programmer because sharing memory and resources is prohibited. The experience of

many software developers has shown that it is possible to write efficient applications

without breaking this rule. Moreover, the discipline actually helps create software

products that are safer, more robust, and easier to test and maintain.

You can view event queues and event pools as the costs inherently associated with

event-driven programming paradigm. These data structures, like execution stacks, trade

some memory for programming convenience. You should start application development

with oversized queues, pools, and stacks and shrink them only toward the end of

product development. You can combine basic empirical and analytical techniques for

minimizing the size of event queues and event pools.

When integrating the QP application with device drivers and other software

components, you should avoid sharing any nonreentrant or mutex-protected code

among active objects. The best strategy is to localize access to such code in a dedicated

active object.

Active object-based applications tend to be much more resilient to change than

traditional blocking tasks because active objects never block and thus are more

responsive than blocked tasks. Also, the higher adaptability of event-driven systems is

rooted in the separation of concerns of signaling events and state of the object. In

particular, active objects use state machines instead of blocking to represent modes of

operation and use event passing instead of unblocking to signal interesting occurrences.

The active object-based computing model has been around long enough for

programmers to accumulate a rich body of experience about how to best develop such

systems. For example, the Real-Time Object-Oriented Modeling (ROOM) method of

Selic and colleagues [Selic+ 94] provides a comprehensive set of related development

strategies, processes, techniques, and tools. Douglass [Douglass 99, 02, 06] presents

unique state patterns, safety-related issues, plenty of examples, and software process

applicable to real-time development.
www.newnespress.com

www.n
CHAP T E R 1 0
Preemptive Run-to-Completion
Kernel
Simplicity is the soul of efficiency.
—R. Austin Freeman (in The Eye of Osiris)

In Section 6.3.8 of Chapter 6 I mentioned a perfect match between the active object

computing model and a super-simple, run-to-completion (RTC) preemptive kernel. In

this chapter I describe such a kernel, called QK, which is part of the QP event-driven

platform and is tightly integrated with the QF real-time framework.

I begin this chapter by enumerating good and bad reasons for choosing a preemptive

kernel in the first place. I then follow with an introduction to RTC kernels. Next I

describe the implementation of the QK preemptive kernel and how it integrates with the

QF real-time framework. I then move on to the advanced QK features, such as the

priority-ceiling mutex, extended context switch to support various coprocessors (e.g.,

the 80x87 floating point coprocessor), and thread-local storage (e.g., used in the

Newlib standard library). Finally, I describe how to port the QK kernel to various

CPUs and compilers. As usual, I illustrate all the features by means of executable

examples that you can actually run on any x86-based PC.

10.1 Reasons for Choosing a Preemptive Kernel

Before I go into the details of QK, let me make absolutely clear that preemptive

multitasking opens up an entirely new dimension of complexity in the design and

debugging of the application, to say the least. It’s simply much easier to analyze and

debug a program in which tasks cannot preempt each other at every instruction and
ewnespress.com

484 Chapter 10
instead can only yield to one other after each RTC step. Allowing task preemptions can

lead to a variety of tricky problems, all ultimately rooted in resource sharing among

tasks. You must be extremely careful because the resource sharing might be more

camouflaged than you think. For example, without realizing it, you might be using

some nonreentrant code from the standard libraries or other sources. Moreover,

preemptive multitasking always costs more in terms of the stack usage (RAM) and

CPU cycles for scheduling and context switching than does nonpreemptive

scheduling, such as the “vanilla” cooperative kernel (see Section 7.11 in Chapter 7).

When you choose a preemptive kernel, such as QK or any other preemptive RTOS

for that matter, I want you to do it for good reasons. Let me begin with the bad reasons

for choosing a preemptive kernel. First, in active object computing model you don’t

need a preemptive kernel for partitioning the problem. Though this is by far the most

common rationale for choosing an RTOS in the traditional sequential programming

model, it’s not a valid reason in a system of active objects. Active objects already

divide the original problem, regardless of the underlying kernel or RTOS.

Second, you don’t need a preemptive kernel to implement efficient blocking because

event-driven systems generally don’t block (see Chapter 6). Third, since event-driven

systems don’t poll or block, the RTC steps tend to be naturally quite short. Therefore,

chances are that you can achieve adequate task-level response with the simple

nonpreemptive kernel (I discuss the execution profile of a nonpreemptive kernel in

Section 7.11 in Chapter 7). Often you can easily improve the task-level response of

the vanilla kernel by breaking up long RTC steps into short enough pieces by using

the “Reminder” state pattern described in Chapter 5. And finally, you don’t need

a preemptive kernel to take advantage of the low-power sleep modes of your MCU.

As described in Section 7.11.1 in Chapter 7, the cooperative vanilla kernel allows

you to use low-power sleep modes safely.

Having said all this, however, I must also say that a preemptive kernel can be a

very powerful and an indispensable tool—for a specific class of problems.

A preemptive kernel executes higher-priority tasks virtually independently of tasks of

lower priority. When a high-priority task needs to run, it simply preempts right

away any lower-priority task that might be currently running, so the low-priority

processing becomes effectively transparent to all tasks of higher priority.

Therefore, a preemptive, priority-based kernel decouples high-priority tasks from

the low-priority tasks in the time domain. This unique ability is critical in

control-type applications.
www.newnespress.com

485Preemptive Run-to-Completion Kernel
In Chapter 1, I mentioned a GPS receiver example in which the hard real-time

control loops of GPS signal tracking must execute in parallel to slow, floating point-

intensive number crunching, graphic LCD access, and other I/O. This type of

application is not well served by a nonpreemptive kernel, in which the task-level

response is the longest RTC step in the whole system. It is simply impractical to

identify and break up all the low-priority RTC steps into short enough pieces to

meet the tight timing constraints of the control loops. Using a nonpreemptive kernel

would also result in a fragile design because any change in the low-priority task

could impact the timing of high-priority control tasks. In contrast, with a preemptive

kernel you can be sure that high-priority processing is virtually insensitive to

changes in the low-priority tasks. If you have a control application like that, a

preemptive kernel might be actually the simplest, most elegant, and most robust way

to design and implement your system.
NOTE

The choice of a kernel type is really a tradeoff between the coupling in the time domain and

sharing of resources. A nonpreemptive kernel permits you to share resources among tasks but

couples the tasks in the time domain. A preemptive kernel decouples the tasks in the time

domain but is unforgiving for sharing resources among tasks. Under a preemptive kernel,

any mechanism that allows you to share resources safely (such as a mutex) introduces some

coupling among tasks in the time domain.
10.2 Introduction to RTC Kernels

All event-driven systems handle events in discrete RTC steps. Ironically, most

conventional RTOSs force programmers to model these simple, one-shot event

reactions using tasks structured as continuous endless loops. This serious mismatch is

caused by the sequential programming paradigm underlying all traditional blocking

kernels (see Section 6.2.2 in Chapter 6).

Though the event-driven, active object computing model can be made to work with a

traditional blocking kernel, as described in Section 6.3 in Chapter 6, it really does not

use the capabilities of such a kernel efficiently. An active object task structured as

an endless event loop (Figure 6.5(B)) blocks really in just one place in the loop and

under one condition only—when the event queue is empty. Thus, it is obviously

overkill to use sophisticated machinery capable of blocking at any number of places in

the task’s execution path to block at just one a priori known point.
www.newnespress.com

486 Chapter 10
The event-driven paradigm calls for a different, much simpler, type of truly event-

driven, run-to-completion kernel. A kernel of this type breaks entirely with the loop

structure of the tasks and instead uses tasks structured as one-shot, discrete,

run-to-completion functions, very much like ISRs [Samek+ 06]. In fact, an RTC kernel

views interrupts very much like tasks of a “super-high” priority, except that interrupts

are prioritized in hardware by the interrupt controller, whereas tasks are prioritized

in software by the RTC kernel (see Figure 6.9 in Chapter 6).
NOTE

The one-shot RTC tasks correspond directly to active objects, as described in Section 6.3.8 in

Chapter 6. Therefore, in the following discussion I use the terms active object and task
interchangeably.
10.2.1 Preemptive Multitasking with a Single Stack

To be able to efficiently block anywhere in the task code, a conventional real-time

kernel maintains relatively complex execution contexts—including separate stack

spaces—for each running task, as shown in Figure 6.2 in Chapter 6. Keeping track of

the details of these contexts and switching among them requires lots of bookkeeping

and sophisticated mechanisms to implement the context switch magic. In contrast, an

RTC kernel can be ultra simple because it doesn’t need to manage multiple stacks

and all the associated bookkeeping.

By requiring that all tasks run to completion and enforcing fixed-priority scheduling, an

RTC kernel can instead manage all context information using the machine’s natural

stack protocol. Whenever a task posts an event to a higher-priority task, an RTC kernel

uses a regular C function call to build the higher-priority task context on top of the

preempted-task context. Whenever an interrupt preempts a task and the interrupt posts

an event to a higher-priority task, the RTC kernel uses the already established interrupt

stack frame on top of which to build the higher-priority task context, again using a

regular C function call.

This simple form of context management is adequate because every task, just like every

ISR, runs to completion. Because the preempting task must also run to completion, the

lower-priority context will never be needed until the preempting task (and any higher-

priority tasks that might preempt it) has completed and returned—at which time the

preempted task will, naturally, be at the top of the stack, ready to be resumed.
www.newnespress.com

487Preemptive Run-to-Completion Kernel
At this point, it is interesting to observe that most prioritized interrupt controllers

(e.g., the 8259A inside the PC, the AIC in AT91-based ARM MCUs from Atmel, the

NVIC in ARM Cortex-M3, and many others) implement in hardware the same

asynchronous scheduling policy for interrupts as an RTC kernel implements in

software for tasks. In particular, any prioritized interrupt controller allows only

higher-priority interrupts to preempt currently serviced interrupt. All interrupts must

run to completion and cannot “block.” All interrupts nest on the same stack.

This close similarity should help you understand the operation of an RTC kernel

because it is based on exactly the same principle widely used and documented in

hardware design (just pick up a datasheet of any aforementioned microprocessors).

Also, the similarity further reinforces the symmetry between RTC tasks and interrupts

illustrated in Figure 6.9 in Chapter 6.

10.2.2 Nonblocking Kernel

One obvious consequence of the simplistic stack-management policy, and the most

severe limitation of an RTC kernel, is that the RTC tasks cannot block. The kernel

cannot leave a high-priority task context on the stack and at the same time resume a lower-

priority task. The lower-priority task context simply won’t be accessible on top of the

stack unless the higher-priority task completes. Of course the inability to block

disqualifies an RTC kernel for use with the traditional sequential programming paradigm,

which is all about blocking and waiting for events at various points in the task’s code.

But the inability to block in the middle of an RTC step is not really a problem for

event-driven active objects because they don’t need to block anyway. In other words, an

active object computing model can benefit from the simplicity and excellent performance

of an RTC kernel while being insensitive to the limitations of such a kernel.

10.2.3 Synchronous and Asynchronous Preemptions

As a fully preemptive multitasking kernel, an RTC kernel must ensure that at all times

the CPU executes the highest-priority task that is ready to run. Fortunately, only two

scenarios can lead to readying a higher-priority task:

1. When a lower-priority task posts an event to a higher-priority task, the kernel

must immediately suspend the execution of the lower-priority task and start the

higher-priority task. This type of preemption is called synchronous preemption

because it happens synchronously with posting an event to the task’s event queue.
www.newnespress.com

488 Chapter 10
2. When an interrupt posts an event to a higher-priority task than the interrupted

task, upon completion of the ISR the kernel must start execution of the higher-

priority task instead of resuming the lower-priority task. This type of

preemption is called asynchronous preemption because it can happen

asynchronously, any time interrupts are not explicitly locked.

Figure 10.1 illustrates the synchronous preemption scenario caused by posting an event

from a low-priority task to a high-priority task.
0

lo
w

 p
rio

rit
y

ta
sk

time5 10 15 20 25

hi
gh

 p
rio

rit
y

ta
sk

(4)

(7)

priority

task preempted(1) (9)

function
call

(3)

function
return

(2)

(6)

RTC
scheduler

(5)

(8)

Figure 10.1: Synchronous preemption by a high priority task in an RTC kernel.
(1) The low-priority task is executing.

(2) At some point during normal execution, a low-priority task posts or publishes an

event to a high-priority task, thus making it ready to run. Posting an event to a

queue engages the scheduler of the RTC kernel.

(3) The scheduler detects that a high-priority task becomes ready to run, so it calls the

high-priority task function. Note that the scheduler does not return.

(4) The high-priority task runs, but at some time it too posts an event to the lower-

priority task than itself.

(5) Event posting engages the RTC scheduler, but this time the scheduler does not

find any higher-priority tasks than the current priority. The scheduler returns to the

high-priority task.

(6) The high-priority task runs to completion.
www.newnespress.com

489Preemptive Run-to-Completion Kernel
(7) The high-priority task naturally returns to the RTC scheduler invoked at step 2.

(8) The scheduler checks once more for a higher-priority task to start, but it finds

none. The RTC scheduler returns to the low-priority task

(9) The low-priority task continues.

Obviously, the synchronous preemption is not limited to only one level. If the

high-priority task posts or publishes events to a still higher-priority task in point 5 of

Figure 10.1, the high-priority task will be synchronously preempted and the scenario

will recursively repeat itself at a higher level of nesting.

Figure 10.2 illustrates the asynchronous preemption scenario caused by an interrupt.
lo
w

 p
rio

rit
y

ta
sk

time

hi
gh

 p
rio

rit
y

ta
sk

(8)

(7)

priority

task preempted(1) (11)

(2)

interrupt
call

interrupt
return

function
call

(4)(3)

interrupt
entry/exit

RTC
scheduler

(10)

(6)

(9)

(5)

in
te

rr
up

t

0 5 10 15 20 25

Figure 10.2: Asynchronous preemption by an interrupt and a high-priority task
in an RTC kernel.
(1) A low-priority task is executing and interrupts are unlocked.

(2) An asynchronous event interrupts the processor. The interrupt immediately

preempts any executing task.

(3) The interrupt service routine (ISR) executes the RTC kernel-specific entry,

which saves the priority of the interrupted task into a stack-based variable and

raises the current priority of the RTC kernel to the ISR level (above any task).
www.newnespress.com

490 Chapter 10
The raising of the current priority informs the RTC kernel that it executes in the

ISR context.

(4) The ISR continues to perform some work and, among other things, posts or

publishes an event to the high-priority task. Posting an event engages the RTC

scheduler, which immediately returns because no task has a higher priority than

the current priority.

(5) The ISR continues and finally executes the RTC kernel-specific exit.

(6) The RTC kernel-specific ISR exit sends the end-of-interrupt (EOI1) instruction to

the interrupt controller, restores the saved priority of the interrupted task into the

current priority, and invokes the RTC scheduler.

(7) Now the RTC scheduler detects that a high-priority task is ready to run, so it

enables interrupts and calls the high-priority task. Note that the RTC scheduler

does not return.

(8) The high-priority task runs to completion, unless it also gets interrupted.

(9) After completion, the high-priority task naturally returns to the scheduler, which

now executes at a task priority level because the EOI instruction to the interrupt

controller issued at step 5 lowered the hardware priority. Note that the system

priority is at task level, even though the interrupt return hasn’t been executed yet.

(10) The original interrupt executes the interrupt return (IRET2) instruction. The IRET

restores the context of the low-priority task, which has been asynchronously

preempted all that time. Note that the interrupt return matches the interrupt

preemption in step 2.

(11) Finally, the low-priority task continues and eventually runs to completion.

It is important to point out that conceptually the interrupt handling ends in the RTC

kernel-specific interrupt exit (5), even though the interrupt stack frame still remains on

the stack and the IRET instruction has not been executed yet. The interrupt ends

because the EOI instruction is issued to the interrupt controller. Before the EOI

instruction, the interrupt controller allows only interrupts of higher priority than the
1 The EOI instruction is understood here generically and denotes a specific machine instruction to stop

prioritizing the current interrupt nesting level.
2 The IRET instruction is understood here generically and denotes a specific machine instruction for

returning from an interrupt.

www.newnespress.com

491Preemptive Run-to-Completion Kernel
currently serviced interrupt. After the EOI instruction followed by the call to the RTC

scheduler, the interrupts get unlocked and the interrupt controller allows all interrupt

levels, which is exactly the behavior expected at the task level.
NOTE

Some processor architectures (e.g.,ARMCortex-M3) hardwire the EOI and the IRET instructions

together, meaning that EOI cannot be issued independently from IRET. (Note that I treat the

instructions EOI and IRET generically in this discussion.) In this case an extra dummy interrupt

stack frame must be synthesized, so the EOI/IRET instruction will leave the original interrupt

stack frame on the stack. However, such CPU architectures are actually rare, and most processors

allow lowering the hardware interrupt priority level without issuing the IRET instruction.
Consequently, the asynchronous preemption is not limited to only one level. The

high-priority task runs with interrupts unlocked (Figure 10.2(8)), so it too can be

asynchronously preempted by an interrupt, including the same level interrupt as the

low-priority task in step 2. If the interrupt posts or publishes events to a still higher-

priority task, the high-priority task will be asynchronously preempted and the scenario

will recursively repeat itself at a higher level of nesting.
10.2.4 Stack Utilization

Charting the stack utilization over time provides another, complementary view of the

synchronous and asynchronous preemption scenarios depicted in Figures 10.1 and 10.2,

respectively. To demonstrate the essential behavior, I ignore the irrelevant function calls

and other unrelated stack activity.

Figure 10.3 illustrates the stack utilization across the synchronous preemption scenario.

The timeline and labels used in Figure 10.3 are identical to those used in Figure 10.1

to allow you to easily correlate these two diagrams.

(1) Initially, the stack pointer points to the low-priority task stack frame.

(2) At some point during normal execution, a low-priority task posts or publishes an

event to a high-priority task, which calls the RTC scheduler. A stack frame of

the scheduler is pushed on the stack.

(3) The scheduler detects that a high-priority task becomes ready to run, so it calls the

high-priority task. A stack frame of the high-priority task is pushed on the stack.
www.newnespress.com

time

(7)

stack growth

(3)

(1)

(2)

(4)

(5)

(6)

(8)

(9)

function call
stack frame push

function return
stack frame pop
and RET

0 5 10 15 20 25

Figure 10.3: Stack utilization during the synchronous preemption scenario.

492 Chapter 10
(4) High-priority task executes and at some point posts an event to the low-

priority task.

(5) Event posting engages the RTC scheduler, so another scheduler stack frame is

pushed on the stack. The scheduler does not find any higher-priority tasks ready to

run, so it immediately returns.

(6) The high-priority task runs to completion.

(7) The high-priority task naturally returns to the RTC scheduler invoked at step 2, so

the task’s stack frame is popped off the stack.

(8) The scheduler checks once more for a higher-priority task to start, but it finds

none, so the RTC scheduler returns to the low-priority task popping off its stack

frame.

(9) The low-priority task continues.

Figure 10.4 illustrates the stack utilization during the asynchronous preemption

scenario. The time-line and labels used in Figure 10.4 are identical to those used in

Figure 10.2 to enable easy correlating of these two diagrams.

(1) Initially, the stack pointer points to the low-priority task stack frame.

(2) An asynchronous event interrupts the processor. The interrupt immediately

preempts any executing task and the hardware arranges for pushing the interrupt

stack frame onto the stack (zigzag arrow). The interrupt service routine (ISR)

starts executing and possibly pushes some more context onto the stack (dashed

up-arrow). The ISR stack frame is fully built.
www.newnespress.com

time

stack growth

(2)

(10)

(7)

(1)

(3,4,5)

(6)

(8)

(9)

(11)

interrupt stack
frame push

interrupt stack frame
pop and IRET

function-call stack
frame push

function-call stack
frame pop

ISR stack frame push

ISR stack frame pop

(11)

0 5 10 15 20 25

Figure 10.4: Stack utilization during the asynchronous preemption scenario.

493Preemptive Run-to-Completion Kernel
(3-5) The ISR runs to completion and executes the RTC kernel-specific exit, which

sends the EOI command to the interrupt controller.

(6) The RTC scheduler is called, which pushes its stack frame on the stack.

(7) The scheduler detects that a high-priority task is ready to run, so it enables

interrupts and calls the high-priority task. The call to high-priority task function

pushes the task’s stack frame on the stack.

(8) The high-priority task runs to completion and returns to the scheduler. The

return pops the task’s function stack frame off the stack.

(9) The scheduler resumes and checks for more high-priority tasks to execute but

does not find any and returns popping its stack frame off the stack.

(10) The ISR stack frame gets popped off the stack (the dashed down-arrow). Next

the hardware executes the IRET instruction, which causes the interrupt stack

frame to pop off the stack.

(11) The interrupt return exposes the preempted low-priority stack, which is now

resumed and continues to run.

As you can see, all context (both the interrupt and task contexts) are kept in a single

stack. This forces the kernel to be nonblocking. The scheduler can never access
www.newnespress.com

494 Chapter 10
anything but the topmost context in the stack. Thus, the scheduler can only choose from

two alternatives: launch a new task or resume the topmost task context saved in the

stack.
10.2.5 Comparison to Traditional Preemptive Kernels

If you have some experience with traditional preemptive kernels, an RTC kernel will

require some getting used to and perhaps rethinking some basic semantics of the

“task” and “interrupt” concepts.

Conventional preemptive kernels maintain separate stack spaces for each running

task, as explained in Chapter 6. Keeping track of the details of these contexts and

switching among them requires a lot of bookkeeping and sophisticated mechanisms

to implement the context switch. In general, an ISR stores the interrupt context on

one task’s stack and restores the context from another task’s stack. After restoring

the task’s context into the CPU registers, the traditional scheduler always issues

the IRET3 instruction. The key point is that the interrupt context remains saved

on the preempted task’s stack, so the saved interrupt context outlives the duration of

the interrupt handler. Therefore, defining the duration of an interrupt from saving the

interrupt context to restoring the context is problematic.

The situation is not really that much different under an RTC kernel, such as QK. An

ISR stores the interrupt context on the stack, which happens to be common for all tasks

and interrupts. After some processing, the ISR issues the EOI4 instruction to the

interrupt controller and calls the RTC scheduler. If no higher-priority tasks are ready to

run, the scheduler exits immediately, in which case the ISR restores the context from

the stack and executes the IRET instruction to return to the original task exactly at the

point of preemption. Otherwise, the RTC scheduler unlocks interrupts and calls a

higher-priority task. The interrupt context remains saved on the stack, just as in the

traditional kernel.

The point here is that the ISR is defined from the time of storing interrupt context to the

time of issuing the EOI instruction and enabling interrupts inside the RTC scheduler,

not necessarily to the point of restoring the interrupt context via the IRET instruction.
3 The IRET instruction is understood here generically and means the instruction that causes the return from

interrupt.
4 The EOI instruction is understood here generically and denotes a specific machine instruction to stop

prioritizing the current interrupt nesting level.

www.newnespress.com

495Preemptive Run-to-Completion Kernel
This definition is more precise and universal because under any kernel the interrupt

context remains stored on one stack or another and typically outlives the duration of an

interrupt processing.
NOTE

The definition of ISR duration is not purely academic but has tangible practical impli-

cations. In particular, ROM monitor-based debugging at the ISR level is much more

challenging than debugging at the task level. Even though all context nests on the same

stack, debugging RTC tasks is as easy as debugging the main() task, because the inter-

rupts are unlocked and the hardware interrupt priority at the interrupt controller level is

set to the task level.
By managing all task and interrupt contexts in a single stack, an RTC kernel can

run with far less RAM5 than a typical blocking kernel. Because tasks don’t have

private stacks, there is no unused private stack space associated with suspended

tasks. Furthermore, a traditional kernel does not distinguish between the

synchronous and asynchronous preemptions and makes all preemptions look like

the more stack-intensive asynchronous preemptions. Finally, an RTC kernel does

not need to maintain the task control blocks (TCBs; see Figure 6.2 in Chapter 6)

for each task.

Because of this simplicity, context switches in an RTC kernel (especially the

“synchronous preemptions”) can involve much less stack space and CPU overhead

than in any traditional kernel. But even the “asynchronous preemptions” in an RTC

kernel end up typically using significantly less stack space and fewer CPU cycles.

A traditional kernel must typically save all CPU registers in strictly defined order and

in “one swoop” onto the private task stack, to be able to restore the registers in an

orderly fashion, also in “one swoop.” In contrast, an RTC kernel doesn’t really care

about the order of registers stored and whether they are stored in “one swoop” or

piecemeal. The only relevant aspect is that the CPU state be restored exactly to the

previous status, but it’s irrelevant how this happens. This means that the basic ISR entry

and exit sequences that most embedded C compilers are capable of generating are
5 In one case of a specialized GPS receiver application, an RTC kernel brought almost 80 percent reduction

of the stack space compared to a traditional preemptive kernel running the same event-driven

application [Montgomery 06].

www.newnespress.com

496 Chapter 10
typically adequate for an RTC kernel while being inadequate for most traditional

kernels. The C compiler is in a much better position to optimize interrupt stack frames

for specific ISRs by saving only the actually clobbered registers and not saving the

preserved registers. In this respect, an RTC kernel can take advantage of the C compiler

capabilities whereas a traditional kernel can’t.

The last point is perhaps best illustrated by a concrete example. All C compilers for

ARM processors (I mean the traditional ARM architecture6) adhere to the ARM

Procedure Call Standard (APCS) that prescribes which registers must be preserved

across a C function call and which can be clobbered. The C compiler-generated ISR

entry initially saves only the registers that might be clobbered in a C function,

which is less than half of all ARM registers. The rest of the registers get saved later,

inside C functions invoked from the ISR, if and only if such registers are actually

used. This is an example of a context save occurring “piecemeal,” which is perfectly

suitable for an RTC kernel. In contrast, a traditional kernel must save all ARM

registers in “one swoop” upon ISR entry, and if an ISR calls C functions (which it

typically does), many registers are saved again. Needless to say, such policy requires

more RAM for the stacks and more CPU cycles for a context switch (perhaps by a

factor of two) than an RTC kernel.

10.3 QK Implementation

QK is a lightweight, priority-based, RTC kernel specifically designed to provide

preemptive multitasking capabilities to the QF real-time framework. QK is not a

standalone kernel but rather is just an add-on to QF, similar to the “vanilla” kernel

described in Chapter 7. QK is provided as one of the components of the QP event-

driven platform.

In this section, I describe the platform-independent QK source code, whereas I focus

on the basic kernel functions, such as keeping track of tasks and interrupts,

scheduling, and context switching.
6 The new ARMv7 architecture (e.g., Cortex-M3) saves registers in hardware upon interrupt entry, so a

C compiler is not involved. However, even in this case the hardware-generated interrupt stack frame

takes into account the APCS because the hardware pushes only the eight clobbered ARM registers

on the stack.

www.newnespress.com

497Preemptive Run-to-Completion Kernel
10.3.1 QK Source Code Organization

Listing 10.1 shows the directories and files comprising the QK preemptive kernel in C.

The structure of the C++ version is almost identical, except the implementation files

have the .cpp extension. The general source code organization of all QP components is

described in Section 8.1.3 in Chapter 8.
Listing 10.1 QK source code organization

<qp>\qpc\ - QP/C root directory (<qp>\qpcpp for QP/C++)
|
+-include\ - QP platform-independent header files
| +-qk.h - QK platform-independent interface
| +-. . .
|
+-qk\ - QK preemptive kernel
| +-source\ - QK platform-independent source code (*.C files)
| | +-qk_pkg.h - internal, interface for the QK implementation
| | +-qk.c - definitionofQK_getVersion()andQActive_start()
| | +-qk_sched.c - definition of QK_schedule_()
| | +-qk_mutex.c - definition of QK_mutexLock()/QK_mutexUnlock()
| | +-qk_ext.c - definition of QK_scheduleExt_()
| |
| +-lint\ - QK options for lint
| +-opt_qk.lnt - PC-lint options for linting QK
|
+-ports\ - Platform-specific QP ports
| +-80x86\ - Ports to the 80x86 processor
| | +-qk\ - Ports to the QK preemptive kernel
| | | +-tcpp101\ - Ports with the Turbo C++ 1.01 compiler
| | | +-l\ - Ports using the Large memory model
| | | +-dbg\ - Debug build
| | | | +-qf.lib – QF library
| | | | +-qep.lib – QEP library
| | | +-rel\ - Release build
| | | +-spy\ - Spy build (with software instrumentation)
| | | +-make.bat – batch script for building the QP libraries
| | | +-qep_port.h – QEP platform-dependent include file
| | | +-qf_port.h – QF platform-dependent include file
| | | +-qk_port.h – QK platform-dependent include file
| | | +-qs_port.h – QS platform-dependent include file
| | | +-qp_port.h – QP platform-dependent include file
| +-cortex-m3\ - Ports to the Cortex-M3 processor

Continued onto next page

www.newnespress.com

| | +-qk\ - Ports to the QK preemptive kernel
| | | +-iar\ - Ports with the IAR compiler
| |
+-examples\ - Platform-specific QP examples
| +-80x86\ - Examples for the 80x86 processor
| | +-qk\ - Examples for the QK preemptive kernel
| | | +- . . .
| +-cortex-m3\ - Examples for the Cortex-M3 processor
| | +-qk\ - Examples for the QK preemptive kernel
| | | +- . . .
| +- . . .

498 Chapter 10
10.3.2 The qk.h Header File

The qk.h header file, shown in Listing 10.2, integrates the QK kernel with the QF

framework. The structure of qk.h closely resembles the vanilla kernel header file

qvanilla.h discussed in Section 7.11.2 in Chapter 7. The QK kernel uses many of

the same basic building blocks provided in QF. Specifically, the QK kernel uses the

native QF active object event queues (see Section 7.8.3 in Chapter 7), the QF native

memory pool (see Section 7.9), and the QF priority set (see Section 7.10) to keep

track of all active object event queues. Additionally, the central element of the QK

design is the current systemwide priority, which is just a byte. Figure 10.5 shows

the QK data elements.
QF

:QActive
prio == 1

:QActive
prio == 5

:QActive
prio == 59

QK
1...0.....100000 . . .

. . .

QK_currPrio_ : uint8_t

QK_readySet_ : QPSet64

. . .

Figure 10.5: Data elements used by the QK preemptive kernel.

www.newnespress.com

Listing 10.2 The QK preemptive kernel interface (<qp>\qpc\include\qk.h)

#ifndef qk_h
#define qk_h

(1) #include "qequeue.h" /* The QK kernel uses the native QF event queue */
(2) #include "qmpool.h" /* The QK kernel uses the native QF memory pool */
(3) #include "qpset.h" /* The QK kernel uses the native QF priority set */

/* public-scope objects */
(4) extern QPSet64 volatile QK_readySet_; /**< QK ready-set */
(5) extern uint8_t volatile QK_currPrio_; /**< current task/interrupt priority */
(6) extern uint8_t volatile QK_intNest_; /**< interrupt nesting level */

/***/
/* QF configuration for QK */

(7) #define QF_EQUEUE_TYPE QEQueue

#if defined(QK_TLS) || defined(QK_EXT_SAVE)
(8) #define QF_OS_OBJECT_TYPE uint8_t
(9) #define QF_THREAD_TYPE void *

#endif /* QK_TLS || QK_EXT_SAVE */

/* QK active object queue implementation...................................*/
(10) #define QACTIVE_EQUEUE_WAIT_(me_) \

Q_ASSERT((me_)->eQueue.frontEvt != (QEvent *)0)

(11) #define QACTIVE_EQUEUE_SIGNAL_(me_) \
(12) QPSet64_insert(&QK_readySet_, (me_)->prio); \
(13) if (QK_intNest_ == (uint8_t)0) { \
(14) QK_SCHEDULE_(); \

} \
else ((void)0)

(15) #define QACTIVE_EQUEUE_ONEMPTY_(me_) \
QPSet64_remove(&QK_readySet_, (me_)->prio)

/* QK event pool operations...*/
(16) #define QF_EPOOL_TYPE_ QMPool
(17) #define QF_EPOOL_INIT_(p_, poolSto_, poolSize_, evtSize_) \

QMPool_init(&(p_), poolSto_, poolSize_, evtSize_)
(18) #define QF_EPOOL_EVENT_SIZE_(p_) ((p_).blockSize)
(19) #define QF_EPOOL_GET_(p_, e_) ((e_) = (QEvent *)QMPool_get(&(p_)))
(20) #define QF_EPOOL_PUT_(p_, e_) (QMPool_put(&(p_), (e_)))

(21) void QK_init(void); /* QK initialization */
(22) void QK_onIdle(void); /* QK idle callback */
(23) char const Q_ROM * Q_ROM_VAR QK_getVersion(void);

Continued onto next page

www.newnespress.com

499Preemptive Run-to-Completion Kernel

(24) typedef uint8_t QMutex; /* QK priority-ceiling mutex */
(25) QMutex QK_mutexLock(uint8_t prioCeiling);
(26) void QK_mutexUnlock(QMutex mutex);

/* QK scheduler and extended scheduler */
(27) #ifndef QF_INT_KEY_TYPE
(28) void QK_schedule_(void);
(29) void QK_scheduleExt_(void); /* QK extended scheduler */
(30) #define QK_SCHEDULE_() QK_schedule_()

#else
(31) void QK_schedule_(QF_INT_KEY_TYPE intLockKey);
(32) void QK_scheduleExt_(QF_INT_KEY_TYPE intLockKey); /* extended scheduler */
(33) #define QK_SCHEDULE_() QK_schedule_(intLockKey_)

#endif

#endif /* qk_h */

500 Chapter 10
(1) The QK kernel uses the native QF event queue, so it needs to include the

qequeue.h header file.

(2) The QK kernel uses the native QF memory pool, so it needs to include the

qmpool.h header file.

(3) The QK kernel uses the native QF priority set, so it needs to include the

qpset.h header file.

(4) The global variable QK_readySet_ is a priority set that maintains the

global status of all active object event queues, as shown in Figure 10.5.

QK_readySet_ is declared as volatile because it can change asynchronously

in ISRs.

(5) The global variable QK_currPrio_ represents the global systemwide priority

of the currently running task or interrupt. QK_currPrio_ is declared as

volatile because it can change asynchronously in ISRs.

(6) The global variable QK_intNest_ represents the global systemwide interrupt

nesting level. QK_intNest_ is declared as volatile because it can change

asynchronously in ISRs.

(7) The QK kernel uses QEQueue as the event queue for active objects (see also

Listing 7.7(8)).

(8) In QK, the QActive data member osObject is used as a bitmask of flags

representing various properties of the thread. For example, a bit of osObject
www.newnespress.com

501Preemptive Run-to-Completion Kernel
bitmask might contain the information whether the thread uses a particular

coprocessor. (Refer to Section 10.4.3.)

(9) In QK, the QActive data member thread is used to point to the thread local

storage for that thread. (Refer to Section 10.4.2.)

(10) The QK kernel never blocks. The QK scheduler calls QActive_get_() only

when it knows for sure that the event queue contains at least one event (see

Listing 10.4(22)). Since this is certainty in this type of kernel, the

QACTIVE_EQUEUE_WAIT_() macro (see Listing 7.24(2) in Chapter 7) asserts

that the event queue is indeed not empty.

(11) The macro QACTIVE_EQUEUE_SIGNAL_() is called from

QActive_postFIFO() or QActive_postLIFO() when an event is posted

to an empty queue (see Listing 7.25(5) in Chapter 7). Note that the macro is

invoked inside a critical section. (Also, because I know exactly the context

in which the macro is used, I don’t bother surrounding the macro body

with the do {...} while(0) loop.)

(12) The active object becomes ready to run, so its priority is inserted into the

ready-set QK_readySet_.

(13) This if statement tests the QK interrupt nesting level because if the event

posting occurs at the task level, the QK scheduler must be invoked to handle a

potential synchronous preemption (see Section 10.2.3). The scheduler is not

called from an interrupt, because a task certainly cannot preempt an interrupt.

(14) The QK scheduler is called via the macro QK_SCHEDULE_(), defined in lines

(30) or (33), depending on the interrupt-locking policy used.
NOTE

The QK scheduler is always called from a critical section, that is, with interrupts locked. The

scheduler might unlock interrupts internally, but always returns with interrupts locked.
(15) The macro QACTIVE_EQUEUE_ONEMPTY_() is called from QActive_get_()

when the queue is becoming empty (see Listing 7.24(12) in Chapter 7).

This is exactly when the priority of the active object needs to be removed

from the ready-set QK_readySet_ because the active object is no longer
www.newnespress.com

502 Chapter 10
ready to run. Note that QACTIVE_EQUEUE_ONEMPTY_() is called from a

critical section.

(16-20) The QK kernel uses QMPool as the QF event pool. The platform abstraction

layer (PAL) macros are set to access the QMPool operations (see Section 7.9

in Chapter 7).

(21) The QK kernel initialization is invoked from QF_init(). The QK_init()

performs CPU-specific initialization and is defined at the QK port level.

(22) The QK idle loop calls the QK_onIdle() callback to give the application a

chance to customize the idle processing.
NOTE

The QK_onIdle() callback is distinctively different from the QF_onIdle() callback used

by the cooperative vanilla kernel, because a preemptive kernel handles idle processing differ-

ently than a nonpreemptive one. Specifically, the QK_onIdle() callback is always called

with interrupts unlocked and does not need to unlock interrupts.
(23) The QK_getVersion() function allows you to obtain the current version of the

QK kernel as a constant string “x.y.zz,” where x is the one-digit major number

(e.g., 3), y is the one-digit minor number (e.g., 5), and zz is the two-digit release

number (e.g., 00).

(24) This typedef defines the QMutex type for the priority-ceiling mutex.

I describe the QK mutex implementation in Section 10.4.1.

(25,26) The functions QK_mutexLock() and QK_mutexUnlock() perform mutex

locking and unlocking, respectively. Again, I describe them in Section 10.4.1.

The QK kernel, just like any other real-time kernel, uses the simplest and most efficient

way to protect critical sections of code from disruptions, which is to lock interrupts

on entry to the critical section and unlock interrupts again on exit. QK uses the same

critical section mechanism as the QF real-time framework, and in fact, QK defines the

critical section mechanism for QF in the file qk_port.h. (See Section 7.3 in Chapter 7

for the description of the QF critical section policies and macros.)

(27) As I mentioned at step 14, the QK scheduler is always invoked from a critical

section but might need to unlock interrupts internally. Therefore, the signature
www.newnespress.com

503Preemptive Run-to-Completion Kernel
of the QK scheduler function depends on the interrupt-locking policy used,

which is determined by the QF_INT_KEY_TYPE, as described in Section 7.3

in Chapter 7.

(28) When QF_INT_KEY_TYPE is not defined, the simple “unconditional interrupt

locking and unlocking” policy is used, in which case the QK scheduler

QK_schedule_() takes no parameters.

(29) Similarly, the extended QK scheduler QK_scheduleExt_() takes no

parameters. I discuss the extended QK scheduler in the upcoming Section 10.4.3.

(30,33) The macro QK_SCHEDULE_() invokes the QK scheduler hiding the actual

interrupt policy used.

(31) When QF_INT_KEY_TYPE is defined, the policy of “saving and restoring

interrupt status” is used, in which case the QK scheduler QK_schedule_()

takes the interrupt status key as a parameter.

(32) Similarly, he extended QK scheduler QK_scheduleExt_() takes the same

interrupt status key as the parameter. I discuss the extended QK scheduler in

the upcoming Section 10.4.3.

10.3.3 Interrupt Processing

Interrupt processing is always specific to your particular application, so obviously it

cannot be programmed generically in a platform-independent manner. However,

handling interrupts is critical to understanding how the QK kernel works, so here I

explain it in general terms.

The most important thing you need to understand about interrupt processing under any

preemptive kernel, not just QK, is that the kernel must be notified about entering

and exiting an interrupt. Specifically, every interrupt must call the QK scheduler upon

exit, to give the kernel a chance to handle the asynchronous preemption, as described

in Section 10.2.3.

Unlike most conventional preemptive kernels, QK can typically work with interrupt

service routines synthesized by the C compiler, which most embedded C cross-

compilers support. Listing 10.3 shows the pseudocode for an ISR; Figure 10.6 shows

the timeline for executing this code.
www.newnespress.com

Listing 10.3 ISRs in QK; boldface indicates QK-specific interrupt
entry and exit

(1) void interrupt YourISR(void) { /* typically entered with interrupts locked */

(2) Clear the interrupt source, if necessary

(3) ++QK_intNest_; /* account for one more interrupt nesting level */
(4) Unlock interrupts (depending on the interrupt policy used)

(5) Execute ISR body, including calling QF services, such as:
Q_NEW(), QActive_postFIFO(), QActive_postLIF(), QF_publish(), or QF_tick()

(6) Lock interrupts, if they were unlocked in step (4)
(7) Send the EOI instruction to the interrupt controller
(8) –QK_intNest_; /* account for one less interrupt nesting level */
(9) if (QK_intNest_ == (uint8_t)0) { /* coming back to the task level? */

(10) QK_schedule_(); /* handle potential asynchronous preemption */
}

}

504 Chapter 10
(1) An ISR must usually be defined with a special extended keyword (such as

“ interrupt” in this case). Typically, an ISR is entered with interrupts locked,

but some processor architectures (e.g., ARM Cortex-M3) don’t lock interrupts.

(Check your device’s datasheet.)

(2) If the interrupt source needs clearing, it’s best to do it right away.

(3) You need to tell QK that you are servicing an ISR, so that QK won’t try to handle

preemption at the ISR level. You inform the kernel by incrementing the global

interrupt nesting level QK_intNest_. This must be done in a critical section, so if

your processor does not lock interrupts automatically upon ISR entry (see line (1)),

you need to explicitly lock interrupts before incrementing the nesting level.

(4) Depending on the interrupt-locking policy used (see Section 7.3 in Chapter 7) andwhen

an interrupt controller is present, you might need to unlock the interrupt at this point.
NOTE

Steps 3 and 4 constitute the QK-specific interrupt entry, and you can encapsulate them in a

macro QK_ISR_ENTRY(), as shown in Section 10.5.
(5) Execute the ISR body, including calling the indicated QF services. Note that all

these services use critical sections internally. Therefore, if your interrupt-locking
www.newnespress.com

505Preemptive Run-to-Completion Kernel
policy does not support nesting of critical sections, you must make sure that

interrupts are not locked.

(6) You need to lock interrupts if you unlocked them in line (4), because the

following code must execute atomically.

(7) You need to send the EOI instruction to the interrupt controller to inform the

hardware to stop prioritizing this interrupt level.

(8) The interrupt nesting level QK_intNest_ is decremented to account for leaving

the interrupt.

(9) If the interrupt nesting level indicates that the interrupt returns to the task level,

as opposed to another interrupt . . .

(10) The QK scheduler is called to handle potential asynchronous preemption. Note

that the scheduler is called with interrupts locked.
NOTE

Steps 6–10 constitute the QK-specific interrupt exit, and you can encapsulate them in a

macro QK_ISR_EXIT(), as shown in Section 10.5.

low-priority task running

no preemption

time

interrupt
response

vectoring

saving interrupt context

increment interrupt nesting

interrupts locked in QF, QK,
or the application

ISR body

send EOI

restore QK priority

send EOI

decrement interrupt nesting

run QK_schedule_()

run QK_schedule_()

return from interrupt

high-priority task running

function call overhead

interrupt
request

task-level
response

interrupts
unlocked

interrupts unlocked

interrupts
locked asynchronous

preemption

restoring interrupt context

interrupts
unlocked

0 1 2 3 4 5

Figure 10.6: Timeline of servicing an interrupt and asynchronous preemption
in QK. Black rectangles represent code executed with interrupts locked.

www.newnespress.com

506 Chapter 10
Figure 10.6 shows the timeline of interrupt servicing and asynchronous preemption

under the QK preemptive kernel. I’d like to highlight two interesting points. First,

the interrupt response under the QK kernel is as fast as under any other preemptive

kernel and is mostly dominated by the longest critical section in the system and

how long it takes the hardware to save the interrupt context to the stack. Second,

the task-level response of the high-priority task is generally faster than any

conventional preemptive kernel because the interrupt context does not need to be

restored entirely from the stack and the interrupt return does not need to be executed

to start the high-priority task. In the RTC kernel, all this is replaced by a function

call, which typically is much faster than restoring the whole register set from the

stack and executing the IRET instruction.
10.3.4 The qk_sched.c Source File (QK Scheduler)

The source file qk_sched.c implements the QK scheduler, which is the most

important part of the QK kernel. As explained in Section 10.2.3, the QK scheduler is

called at two junctures: (1) when an event is posted to an event queue of an active

object (synchronous preemption), and (2) at the end of ISR processing (asynchronous

preemption). In the qk.h header file (Listing 10.2(14)), you saw how the QK scheduler

gets invoked to handle the synchronous preemptions. In the previous section, you

also saw how the scheduler gets called from an interrupt context to handle the

asynchronous preemption. Here, I describe the QK scheduler itself.

The QK scheduler is simply a regular C-function QK_schedule_(), whose job is to

efficiently find the highest-priority active object that is ready to run and to execute it, as

long as its priority is higher than the currently serviced QK priority. To perform this

job, the QK scheduler relies on two data elements: the set of tasks that are ready to

run QK_readySet_ (Listing 10.2(4)) and the currently serviced priority

QK_currPrio_ (Listing 10.2(5)).

Figure 10.5 shows the relationship between the QK data elements and QF active

objects. The variable QK_currPrio_ is an integer of type uint8_t that holds the

value of the currently serviced priority level. The QK ready-set QK_readySet_ is of

type QPSet64 (see Section 7.10 in Chapter 7), which is capable of representing up to

64 elements numbered 1 through 64. As shown in Figure 10.5, each bit in the

QK_readySet_ priority set represents one QF active object. The bit number n in

QK_readySet_ is 1 if the event queue of the active object of priority n is not empty.
www.newnespress.com

507Preemptive Run-to-Completion Kernel
Conversely, bit number m in QK_readySet_ is 0 if the event queue of the active

object of priority m is empty or the priority level m is not used. Both variables

QK_currPrio_ and QK_readySet_ are always accessed in a critical section to

prevent data corruption.

Listing 10.4 shows the complete implementation of the QK_schedule_() function.
Listing 10.4 QK scheduler implementation
(<qp>\qpc\qk\source\qk_sched.c)

(1) #include "qk_pkg.h"

/* Public-scope objects ---*/
(2) QPSet64 volatile QK_readySet_; /* QK ready-set */

/* start with the QK scheduler locked */
(3) uint8_t volatile QK_currPrio_ = (uint8_t)(QF_MAX_ACTIVE + 1);
(4) uint8_t volatile QK_intNest_; /* start with nesting level of 0 */

/*..*/
/* NOTE: the QK scheduler is entered and exited with interrupts LOCKED */

(5) #ifndef QF_INT_KEY_TYPE
(6) void QK_schedule_(void) {

#else
(7) void QK_schedule_(QF_INT_KEY_TYPE intLockKey_) {

#endif
uint8_t p;

/* the QK scheduler must be called at task level only */
(8) Q_REQUIRE(QK_intNest_ == (uint8_t)0);

(9) if (QPSet64_notEmpty(&QK_readySet_)) {
/* determine the priority of the highest-priority task ready to run */

(10) QPSet64_findMax(&QK_readySet_, p);

(11) if (p > QK_currPrio_) { /* do we have a preemption? */
(12) uint8_t pin = QK_currPrio_; /* save the initial priority */

QActive *a;
(13) #ifdef QK_TLS /* thread-local storage used? */
(14) uint8_t pprev = pin;

#endif
(15) do {

QEvent const *e;
(16) a = QF_active_[p]; /* obtain the pointer to the AO */

(17) QK_currPrio_ = p; /* this becomes the current task priority */

#ifdef QK_TLS /* thread-local storage used? */
(18) if (p != pprev) { /* are we changing threads? */

Continued onto next page

www.newnespress.com

(19) QK_TLS(a); /* switch new thread-local storage */
(20) pprev = p;

}
#endif

(21) QK_INT_UNLOCK_(); /* unlock the interrupts */

(22) e = QActive_get_(a); /* get the next event for this AO */
(23) QF_ACTIVE_DISPATCH_(&a->super, e); /* dispatch to the AO */
(24) QF_gc(e); /* garbage collect the event, if necessary */

(25) QK_INT_LOCK_();
/* determine the highest-priority AO ready to run */

(26) if (QPSet64_notEmpty(&QK_readySet_)) {
(27) QPSet64_findMax(&QK_readySet_, p);

}
else {

(28) p = (uint8_t)0;
}

(29) } while (p > pin); /* is the new priority higher than initial? */
(30) QK_currPrio_ = pin; /* restore the initial priority */

#ifdef QK_TLS /* thread-local storage used? */
(31) if (pin != (uint8_t)0) { /* no extended context for idle loop */
(32) a = QF_active_[pin];
(33) QK_TLS(a); /* restore the original TLS */

}
#endif

}
(34) }

508 Chapter 10
(1) As every QK source file, the qk_sched.c file includes the wider

“package-scope” QK interface qk_pkg.h, located in <qp>\qpc\qk\source\.

The qk_pkg.h header file includes the platform-specific QK port header file

qk_port.h, but it additionally defines some internal macros and objects

shared only internally within QK.

(2) The global variable QK_readySet_ is a priority set that maintains the global

status of all active object event queues, as shown in Figure 10.5.

(3) The global variable QK_currPrio_ represents the global systemwide priority of

the currently running task or interrupt.

(4) The global variable QK_intNest_ represents the global systemwide interrupt

nesting level.

(5) The QK scheduler is always invoked with interrupts locked but might need to

unlock interrupts internally. Therefore, the signature of the QK scheduler
www.newnespress.com

509Preemptive Run-to-Completion Kernel
function depends on the interrupt-locking policy used, which is determined by

the QF_INT_KEY_TYPE, as described in Section 7.3 in Chapter 7.

(6) When QF_INT_KEY_TYPE is not defined, the simple “unconditional interrupt

locking and unlocking” policy is used, in which case the QK scheduler

QK_schedule_() takes no parameters.

(7) When QF_INT_KEY_TYPE is defined, the policy of “saving and restoring

interrupt status” is used, in which case the QK scheduler QK_schedule_()

takes the interrupt status key as the parameter.

(8) The QK scheduler should only be called at the task level.

(9) If the ready-setQK_readySet_ is not empty, theQKkernel has some events to process.

(10) The priority set quickly discovers the highest-priority, not-empty event queue, as

I described in Section 7.10 in Chapter 7.

(11) The QK scheduler can preempt the currently running task only when the new

priority is higher than the priority of the currently executing task.
NOTE

The QK scheduler is an indirectly recursive function. The scheduler calls task functions, which

might post events to other tasks, which calls the scheduler. However, this recursion can continue

only as long as the priority of the tasks keeps increasing. Posting an event to a lower- or equal-

priority task (posting to self) stops the recursion because of the if statement in line (11).
(12) To handle the preemption, the QK scheduler will need to increase the current

priority. However, before doing this, the current QK priority is saved into a stack

variable pin.

(13) If the macro QK_TLS is defined, the QK kernel manages the thread-local storage

(TLS). I discuss TLS management in QK in the upcoming Section 10.4.2.

(14) For TLS, the variable pprev holds the previous task priority to help QK

determine when a task change occurs.

(15) The do loop continues as long as the QK scheduler finds ready-to-run tasks of

higher priority than the initial priority pin.
www.newnespress.com

510 Chapter 10
(16) The active object pointer ‘ a’ is resolved through the QF_active_[]

priority-to-active object lookup table maintained internally by QF.

(17) The current QK priority is raised to the level of the highest-priority task that

is about to be started.

(18) If TLS management is enabled, the scheduler checks whether the task change

is about to occur.

(19) If so, the QK_TLS() macro changes the TLS to the new task.

(20) Also, the pprev variable is updated so that QK can discover when the next

task change occurs.

(21) Interrupts are unlocked to run the RTC task.

(22-24) These are the three steps of the active object thread (see Listing 7.8 in Chapter 7).
NOTE

Steps 22–24 represent the body of the one-shot, RTC task in QK. Note that the RTC task is

executed with interrupts unlocked.
(25) Interrupts are locked so that the scheduler can check again for highest-priority

active objects ready to run. The status of the QK ready set could have changed

during the RTC step just executed.

(26) If the ready-set QK_readySet_ is not empty, the QK kernel has still some

events to process.

(27) The priority set quickly discovers the new highest-priority, not-empty event

queue based on the potentially changed QK_readySet_.

(28) If the QK_readySet_ turns out to be empty, the QK kernel has nothing

more to do. The variable p is set to zero to terminate the do-while loop

in the next step.

(29) The while condition loops back to step (15) as long as the QK scheduler still

finds ready-to-run tasks of higher priority than the initial priority pin.

(30) After the loop terminates, the current QK priority must go back to the initial

level.
www.newnespress.com

511Preemptive Run-to-Completion Kernel
(31) The TLS needs to be restored only if a task has been preempted. The priority

‘pin’ of zero corresponds to the QK idle loop. I assume that the idle loop

does not use the TLS.

(32) The pointer to the preempted active object is resolved through the

QF_active_[] priority-to-active object lookup.

(33) The QK_TLS() macro restores the TLS of the original preempted task.

(34) The QK scheduler always returns with interrupts locked.
10.3.5 The qk.c Source File (QK Startup and Idle Loop)

The qk.c source file, shown in Listing 10.5, defines the QK initialization, cleanup,

startup, and idle loop.
Listing 10.5 QK startup and idle loop (<qp>\qpc\qk\source\qk.c)

(1) #include "qk_pkg.h"
#include "qassert.h"

Q_DEFINE_THIS_MODULE(qk)

/*..*/
void QF_init(void) {

/* nothing to do for the QK preemptive kernel */
(2) QK_init(); /* might be defined in assembly */

}
/*..*/
void QF_stop(void) {

(3) QF_onCleanup(); /* cleanup callback */
/* nothing else to do for the QK preemptive kernel */

}
/*..*/

(4) void QF_run(void) {
QK_INT_LOCK_KEY_

QK_INT_LOCK_();
(5) QK_currPrio_ = (uint8_t)0; /* set the priority for the QK idle loop */
(6) QK_SCHEDULE_(); /* process all events produced so far */

QK_INT_UNLOCK_();

(7) QF_onStartup(); /* startup callback */

(8) for (;;) { /* the QK idle loop */

Continued onto next page

www.newnespress.com

(9) QK_onIdle(); /* invoke the QK on-idle callback */
}

}
/*..*/

(10) void QActive_start(QActive *me, uint8_t prio,
QEvent const *qSto[], uint32_t qLen,

(11) void *tls,
(12) uint32_t flags,

QEvent const *ie)
{

Q_REQUIRE(((uint8_t)0 < prio) && (prio <= (uint8_t)QF_MAX_ACTIVE));

(13) QEQueue_init(&me->eQueue, qSto, (QEQueueCtr)qLen);
(14) me->prio = prio;
(15) QF_add_(me); /* make QF aware of this active object */

#if defined(QK_TLS) || defined(QK_EXT_SAVE)
(16) me->osObject = (uint8_t)flags; /* osObject contains the thread flags */
(17) me->thread = tls; /* contains the pointer to the thread-local storage */

#else
Q_ASSERT((tls == (void *)0) && (flags == (uint32_t)0));

#endif

(18) QF_ACTIVE_INIT_(&me->super, ie); /* execute initial transition */
}
/*..*/
void QActive_stop(QActive *me) {

QF_remove_(me); /* remove this active object from the QF */
}

512 Chapter 10
(1) As every QK source file, the qk.c file includes the wider “package-scope”

QK interface qk_pkg.h, located in <qp>\qpc\qk\source\. The qk_pkg.h

header file includes the platform-specific QK port header file qk_port.h, but

it additionally defines some internal macros and objects shared only internally

within QK.

(2) The function QF_init() initializes the QF framework and the underlying kernel.

In case of the QK kernel, this function has nothing to do, except invoking the

QK_init() function to give the QK kernel a chance to initialize. QK_init() is

defined in the QK port.

(3) The function QF_stop() stops execution of the QF framework. In case of

the QK kernel, this function has nothing to do except invoke the

QF_onCleanup() callback function to give the application a chance to

clean up and exit to the underlying operating system (e.g., consider QK
www.newnespress.com

513Preemptive Run-to-Completion Kernel
kernel running on top of DOS). All QF callback functions are summarized in

Section 8.1.8 in Chapter 8.

(4) Applications call the function QF_run() from main() to transfer the control to

the framework. This function implements the startup and idle loop of the QK

kernel.

(5) The current QK priority is reduced from the initial value of QF_MAX_ACTIVE+1

(see Listing 10.4(3)) to zero, which corresponds to the priority of the QK idle loop.
NOTE

The QK current priority value of QF_MAX_ACTIVE+1 effectively locks the QK scheduler, so

the scheduler is not even called upon event posting or exit from ISRs.
(6) After reducing the priority level, the scheduler is invoked to process all events that

might have been posted during the initialization of active objects. Note that

the scheduler is called with interrupts locked.

(7) The QF_onStartup() callback function configures and starts interrupts. This

function is typically implemented at the application level (in the BSP). All

QF callback functions are summarized in Section 8.1.8 in Chapter 8.

(8) This is the idle loop of the QK kernel.
NOTE

When no interrupts are running and all event queues are empty, the QK kernel has nothing to

do. The kernel then executes the idle loop. The idle loop is the only “task” structured as an

endless loop in QK. The QK priority associated with the idle loop is zero and is the absolute

lowest priority level in the system, which is not accessible to the RTC tasks. The task prio-

rities in QK start at 1.
(9) The idle loop continuously calls the QK_onIdle() callback function to give the

application a chance to put the CPU to a low-power sleep mode or to perform other

processing (e.g., software-tracing output, see Chapter 11). The QK_onIdle()

function is typically implemented at the application level (in the BSP).
www.newnespress.com

NOTE

As a preemptive kernel, QK handles idle processing differently than a nonpreemptive vanilla

kernel. Specifically, the QK_onIdle() callback is always called with interrupts unlocked
and does not need to unlock interrupts (as opposed to the QF_onIdle() callback). Further-

more, a transition to a low-power sleep mode inside QK_onIdle() does not need to occur

with interrupts locked. Such a transition is safe and does not cause any race conditions,

because a preemptive kernel never switches the context back to the idle loop as long as

events are available for processing.

514 Chapter 10
(10) The QActive_start() function initializes the event queue and starts the active

object QK task.

(11) For conventional kernels, the fifth and sixth parameters of QActive_start()

represent the private stack memory and the size of that memory. The QK

kernel does not need a per-task stack. Instead, the fifth parameter of

QActive_start() is used as a pointer to the thread-local storage (TLS) for

the QK task.

(12) The sixth parameter is used as a bitmask of flags representing properties of the

task, such as whether the task uses a coprocessor. I discuss a generic coprocessor

context switch in QK in the upcoming Section 10.4.3.

(13) The QK kernel uses the native QF event queue QEQueue, which needs to be

initialized with the function QEQueue_init().

(14) The QF priority of the active object is set inside the active object.

(15) The active object is added to the QF framework.

(16) The task flags are stored in the osObject data member. I show an example of

using the task flags in the upcoming Section 10.4.3.

(17) The pointer to the TLS for this task is stored in the thread data member.

(18) The internal state machine of the active object is initialized.

10.4 Advanced QK Features

Simple as it is, the QK kernel supports quite advanced features, which you find only in

the more sophisticated real-time kernels. In this section I cover mutual exclusion that is
www.newnespress.com

515Preemptive Run-to-Completion Kernel
robust against priority inversions, thread-local storage useful for thread-safe libraries,

and extended context switching to support various coprocessors. If you happen to know

how other kernels implement these features, I hope you’ll appreciate the simple

elegance of the QK implementation.
NOTE

All advanced QK features covered in this section are only necessary when you must share

resources among multiple QK tasks (active objects). If you use strict encapsulation (as

advised in Chapter 9) and never share memory, nonreentrant libraries, or coprocessors among

active objects, you don’t need to use any of these advanced features.
10.4.1 Priority-Ceiling Mutex

QK is a preemptive kernel, and as with all such kernels, you must be very careful

with any resource sharing among QK tasks. Ideally, the QF active objects (i.e., QK

tasks) should communicate exclusively via events and otherwise should not share

any resources, which I have been advocating all along (see Chapter 9). This

ideal situation allows you to program all active objects without ever worrying

about mutual exclusion mechanisms to protect shared resources.

However, at the cost of increased coupling among active objects, you might

choose to share selected resources. If you go this path, you take the burden on

yourself to interlock the access to such resources (shared memory or devices).

One powerful method of guaranteeing mutually exclusive access to resources at your

disposal is the critical section mechanism implemented with the QF macros

QF_INT_LOCK() and QF_INT_UNLOCK(), as described in Section 7.3 in Chapter 7.

For very short accesses this might well be the most efficient synchronization

mechanism.

However, you can also use a much less intrusive mechanism available in QK.

QK supports a priority-ceiling mutex to prevent task-level preemptions while

accessing a shared resource. Priority-ceiling mutex is immune to priority

inversions [Kalinsky 05] but is a more selective mechanism than interrupt

locking because all tasks (and interrupts) of priority higher than the priority

ceiling run as usual. Listing 10.6 shows an example of using a QK mutex to

protect a shared resource.
www.newnespress.com

Listing 10.6 Protecting a shared resource with a QK priority-ceiling mutex

void your_function(arguments) {
(1) QMutex mutex;

. . .
(2) mutex = QK_mutexLock(PRIO_CEILING);
(3) You can safely access the shared resource here
(4) QK_mutexUnlock(mutex);

. . .
}

516 Chapter 10
(1) You need to provide a temporary mutex variable of type QMutex (which is just a

byte).

(2) You lock the mutex by calling QK_mutexLock(). This function requires

the priority ceiling parameter, which you choose to be the priority of the highest-

priority task that may use the shared resource you want to protect. Typically,

this priority is known at compile time because all QK tasks have fixed priorities

assigned statically usually at system startup.

(3) You access the shared resource.

(4) You unlock the mutex by calling QK_mutexUnlock().

As you can see, the mutex variables are used only temporarily, and there is no limitation

on how many mutexes you can use in your application. In principle, mutex locks can

even nest, so your code in Listing 10.6(3) could use another priority-ceiling mutex.

Note that I mention this only as a theoretical possibility, not necessarily as a good or

recommended design.

Before explaining how the QK protects the resource and why it is a nonblocking

mechanism, I simply show in Listing 10.7 how it is implemented.
Listing 10.7 QK mutex (<qp>\qpc\qk\source\qk_mutex.c)

QMutex QK_mutexLock(uint8_t prioCeiling) {
uint8_t mutex;
QK_INT_LOCK_KEY_
QK_INT_LOCK_();

(1) mutex = QK_currPrio_; /* the original QK priority to return */
(2) if (QK_currPrio_ < prioCeiling) {

www.newnespress.com

(3) QK_currPrio_ = prioCeiling; /* raise the QK priority */
}
QK_INT_UNLOCK_();

(4) return mutex;
}
/*..*/
void QK_mutexUnlock(QMutex mutex) {

QK_INT_LOCK_KEY_
QK_INT_LOCK_();

(5) if (QK_currPrio_ > mutex) {
(6) QK_currPrio_ = mutex; /* restore the saved priority */
(7) QK_SCHEDULE_();

}
QK_INT_UNLOCK_();

}

517Preemptive Run-to-Completion Kernel
(1) Inside a critical section, the current QK priority is saved in the temporary variable

mutex to be returned from the QK_mutexLock().

(2) If the priority ceiling provided as the function argument exceeds the current QK

priority . . .

(3) The current QK priority is raised to the priority ceiling.

(4) The original QK priority is returned to the caller.

(5) Inside a critical section, the current QK priority is compared to the mutex

argument.

(6) If the current priority exceeds the mutex, the current QK priority is reduced to the

level of the mutex.

(7) Reducing the current QK priority might “expose” some ready-to-run tasks that

have a higher priority than the reduced QK_currPrio_ level. The QK scheduler

is called to process these potential synchronous preemptions. Note that the

scheduler is called with interrupts locked.

As you can see, locking the mutex boils down to raising the current QK priority to

the priority ceiling level. Recall that the QK scheduler can only launch tasks with

priorities higher than the initial priority with which the scheduler was entered

(Listing 10.4(11)). This means that temporarily increasing the current QK priority

prevents preemptions from all tasks with priorities lower than or equal to the
www.newnespress.com

518 Chapter 10
priority ceiling. This is exactly what a priority ceiling mutex is supposed to do to

protect your resource.

Note that the QK mutex is a nonblocking mechanism. If a task that needs to protect

a shared resource is running at all, it means that all tasks of higher priority have no

events to process. Consequently, simply preventing launch of higher-priority tasks that

might access the resource is sufficient to guarantee the mutually exclusive access to

the resource. Of course, you don’t need to worry about any lower-priority tasks that might

be preempted because they never resume until the current task runs to completion.
10.4.2 Thread-Local Storage

Thread-local storage (TLS) is a mechanism by which variables are allocated such

that there is one instance of the variable per extant thread. The canonical example of

when TLS could be useful is the popular Newlib7 standard C runtime library

intended for use in embedded devices. Newlib’s facilities are reentrant, but only when

properly integrated into a multithreaded environment [Gatliff 01]. Because QK is a

preemptive kernel, care must be taken to preserve the reentrant character of Newlib.

For example, consider the errno facility specified in the ANSI C standard. The runtime

library sets errno when an error occurs within the library. Once set, errno’s value

persists until the application clears it, which simplifies error notification by the library

but can create reentrancy problems when multiple threads are using the library at the

same time. If errno would be just a single global variable shared among all threads,

neither thread would know who generated the error.

Newlib addresses this problem by redefining errno as a macro that (indirectly)

references a global pointer called _impure_ptr (see Figure 10.7). The Newlib’s

_impure_ptr points to a structure of type struct _reent. This structure contains

the traditional errno value specified by ANSI, but it also contains a lot of other

elements, including signal handler pointers and file handles for standard input, output,

and error streams.

The central idea of the Newlib design is that every thread in the application has its own

copy of the _reent structure (shown as TLS in Figure 10.7) and that the

_impure_ptr pointer is switched during context switches to always point at the
7 www.sourceware.org/newlib/

www.newnespress.com

http://www.sourceware.org/newlib/

Active Object

switched around
by the kernel

thread

_impure_ptr

TLS

Active Object

thread

Active Object

thread

. . .

errno

TLS

errno

TLS

errno

Figure 10.7: Pointer to thread-local storage (TLS) switched around by the kernel.

519Preemptive Run-to-Completion Kernel
_reent structure of the currently active thread. Obviously, to perform the switching of

the _impure_ptr, you need a helping hand from the kernel.

QK supports the TLS concept by providing a context-switch hook QK_TLS(),

which is invoked every time a different task priority is processed (see Listing 10.4

(19,33)). The macro QK_TLS() receives from the kernel a pointer to the current

active object. The following code fragment from qk_port.h defines the macro

QK_TLS() for re-assigning the Newlib’s _impure_ptr during context switches:

#define QK_TLS(act_) (_impure_ptr = (struct _reent *)(act_)->thread)

Though the QK_TLS() macro will switch the _impure_ptr automatically, you are

responsible for allocating the _reent structure in each active object. You also need to tell

QK where the TLS is for every active object during startup by passing the pointer to the

TLS as the fifth parameter of the QActive_start() function (see Listing 10.5(17)).
NOTE

The current implementation of the TLS in QK assumes that the thread-local storage is

accessed neither in the ISRs nor in the idle loop (inside the QK_onIdle() callback function).

www.newnespress.com

520 Chapter 10
The TLS support in QK is generic and allows you to handle any number of libraries like

Newlib. In the upcoming Section 10.6, I provide the dining philosophers application

example for QK, which demonstrates the switching of two “impure pointers” for two

hypothetical reentrant libraries.
10.4.3 Extended Context Switch (Coprocessor Support)

The C compiler-generated context save and restore for interrupts typically includes

only the CPU core registers but does not include the registers of various coprocessors,

such as floating-point coprocessors, specialized DSP engines, dedicated baseband

processors, video accelerators, or other specialized coprocessors (perhaps implemented

in FPGAs) that surround the CPU core. This ever-growing conglomerate of complex

register architectures extends far beyond the core CPU registers, which poses a

problem for a preemptive kernel if the various coprocessors are used by multiple

tasks. The solution offered by advanced preemptive kernels is to include the various

coprocessor registers in the context switch process, thus allowing sharing of the

coprocessors among multiple tasks.

The QK kernel supports such extended context switch in a generic way, which you

can easily customize for various coprocessors and hardware accelerators. The QK

design of the extended context switch carefully minimizes the added overhead by

saving and restoring the extended context only when necessary. The basic

simplifying assumption is that neither ISRs, nor the QK idle loop use the

coprocessor(s). Consequently, the extended context needs to be preserved only

when a task preempts another task. Moreover, synchronous context switches

generally don’t need to be extended, because the context switch is in this case just

a simple function call (see Section 10.2.3), which cannot happen in the middle of

accessing a coprocessor.

This leaves only the asynchronous preemptions as really requiring the extended

context switch. As described in Section 10.3.3, asynchronous preemptions are

handled upon the exit from interrupts in the QK_ISR_EXIT() macro. Listing 10.8

shows pseudocode of the QK_ISR_EXIT() macro, which calls the extended

scheduler QK_scheduleExt_() instead of QK_schedule_() , as shown in

Listing 10.3(10).
www.newnespress.com

Listing 10.8 QK_ISR_EXIT() macro with the extended context switch

#define QK_ISR_EXIT() do { \
Lock interrupts \
Send the EOI instruction to the interrupt controller \
--QK_intNest_; \
if (QK_intNest_ == 0) { \

QK_scheduleExt_(); \
} \

} while (0)

. . .

Memory

Coprocessor registers

. . .

Active Object

thread

TLS

ext. ctxt.

extended context save
extended context restore

osObject

Active Object

thread

TLS

ext. ctxt.

osObject

Active Object

thread

TLS

ext. ctxt.

osObject

Figure 10.8: Extended context switch saves and restores coprocessor registers
in the TLS area.

521Preemptive Run-to-Completion Kernel
Figure 10.8 shows the additional extended context save and restore steps implemented

in the extended scheduler QK_scheduleExt_(). The per-active object extended

context is simply added to the TLS area, which is accessible via the thread data

member of the QActive class.

Listing 10.9 shows the extended scheduler QK_scheduleExt_(). In the

explanation section following this listing, I describe only the highlighted differences

from the regular scheduler QK_schedule_() , which I already explained in

Listing 10.4.
www.newnespress.com

Listing 10.9 QK extended scheduler implementation
(<qp>\qpc\qk\source\qk_ext.c)

#ifndef QF_INT_KEY_TYPE
(1) void QK_scheduleExt_(void) {

#else
(2) void QK_scheduleExt_(QF_INT_KEY_TYPE intLockKey_) {

#endif
uint8_t p;

/* the QK scheduler must be called at task level only */
Q_REQUIRE(QK_intNest_ == (uint8_t)0);

if (QPSet64_notEmpty(&QK_readySet_)) {
/* determine the priority of the highest-priority task ready to run */
QPSet64_findMax(&QK_readySet_, p);

if (p > QK_currPrio_) { /* do we have a preemption? */
uint8_t pin = QK_currPrio_; /* save the initial priority */
QActive *a;

#ifdef QK_TLS /* thread-local storage used? */
uint8_t pprev = pin;

#endif
(3) #ifdef QK_EXT_SAVE /* extended context-switch used? */
(4) if (pin != (uint8_t)0) { /*no extended context for the idle loop */
(5) a = QF_active_[pin]; /* the pointer to the preempted AO */
(6) QK_EXT_SAVE(a); /* save the extended context */

}
#endif

do {
QEvent const *e;
a = QF_active_[p]; /* obtain the pointer to the AO */

QK_currPrio_ = p; /* this becomes the current task priority */

#ifdef QK_TLS /* thread-local storage used? */
if (p != pprev) { /* are we changing threads? */

QK_TLS(a); /* switch new thread-local storage */
pprev = p;

}
#endif

QK_INT_UNLOCK_(); /* unlock the interrupts */

e = QActive_get_(a); /* get the next event for this AO */
QF_ACTIVE_DISPATCH_(&a->super, e); /* dispatch to the AO */
QF_gc(e); /* garbage collect the event, if necessary */

QK_INT_LOCK_();
/* determine the highest-priority AO ready to run */

if (QPSet64_notEmpty(&QK_readySet_)) {

www.newnespress.com

522 Chapter 10

QPSet64_findMax(&QK_readySet_, p);
}
else {

p = (uint8_t)0;
}

} while (p > pin); /* is the new priority higher than initial? */
QK_currPrio_ = pin; /* restore the initial priority */

(7) #if defined(QK_TLS) || defined(QK_EXT_RESTORE)
(8) if (pin != (uint8_t)0) {/*no extended context for the idle loop */
(9) a = QF_active_[pin]; /* the pointer to the preempted AO */

#ifdef QK_TLS /* thread-local storage used? */
QK_TLS(a); /* restore the original TLS */

#endif
#ifdef QK_EXT_RESTORE /* extended context-switch used? */

(10) QK_EXT_RESTORE(a); /* restore the extended context */
#endif

}
#endif

}
}

}

523Preemptive Run-to-Completion Kernel
(1,2) The signature of the extended scheduler depends on the interrupt locking policy

used, just like the regular scheduler.

(3) If the macro QK_EXT_SAVE() is defined, the extended scheduler invokes the

macro to save the extended context.

(4) The extended context needs to be saved only if a task has been preempted. The

priority ‘pin’ of zero corresponds to the QK idle loop. I assume that the

idle loop does not to use the coprocessor(s).
NOTE

The idle loop does not correspond to an active object, so it does not have the TLS memory

area to save the extended context.
(5) The pointer to the preempted active object is resolved through the QF_active_[]

priority-to-active object lookup.

(6) The QK_EXT_SAVE() macro saves the extended context of the original preempted

active object.

(7) The following code is only needed when either TLS or extended context is used.
www.newnespress.com

524 Chapter 10
(8) The TLS or the extended context needs to be restored only if a task has been

preempted. The priority ‘pin’ of zero corresponds to the QK idle loop. I assume

that the idle loop uses neither TLS nor the coprocessor(s).

(9) The pointer to the preempted active object is resolved through the

QF_active_[] priority-to-active object lookup.

(10) The QK_EXT_RESTORE() macro restores the extended context of the original

preempted active object.

The QK_EXT_SAVE() and QK_EXT_RESTORE() macros allow you to save and

restore as many coprocessor contexts as necessary for a given task. As shown in

Figure 10.8, you need to provide per-task memory for all the extended contexts that

you use. In the next section, I describe the QK port to 80x86 with the 80x87 floating

point coprocessor (FPU) and I provide examples of the macros QK_EXT_SAVE()

and QK_EXT_RESTORE() for the 80x87 FPU.

10.5 Porting QK

When you use QF with the QK preemptive kernel, you don’t need to port the QF

framework to the kernel because QF and QK are already integrated. However, you still

need to port the QK kernel to the target CPU and compiler that you are using. Fortunately,

this is quite easy due to the simplistic nature of the QK kernel. All you need to provide

is the compiler-specific exact-width integer types in qep_port.h , configure QF in

qf_port.h, and finally provide the interrupt-locking policy and interrupt entry/exit in

qk_port.h. You often don’t need to write any platform-specific QK source files because

most of the time QK can work with the ISRs generated by the C compiler.

Note that the preemptive QK kernel puts more demands on the target CPU and the

compiler than the simple vanilla kernel described in Chapter 7. Generally, QK can be

ported to a processor and compiler, if they satisfy the following requirements:

1. The processor supports a hardware stack that can accommodate a fair amount of

data (at least 256 bytes or more).

2. The C or C++ compiler can generate reentrant code. In particular, the compiler

must be able to allocate automatic variables on the stack.

3. Interrupts can be locked and unlocked from C.

4. The system provides a clock tick interrupt (typically 10 to 100Hz).
www.newnespress.com

525Preemptive Run-to-Completion Kernel
For example, some older CPU architectures, such as the 8-bit PIC microcontrollers,

don’t have a C-friendly stack architecture and consequently cannot easily run QK. Note,

however, that in most cases you can use the nonpreemptive vanilla kernel.

In this section I show an example of QK kernel port to 80x86 CPU under DOS, with

the legacy Turbo C++ 1.01 compiler configured to generate code for “large” memory

model. The port will also demonstrate the advanced features, such as thread-local

storage, and extended context switch for the 80x87 FPU. This port is located in

<qp>\qpc\ports\80x86\qk\tcpp101\l\.
10.5.1 The qep_port.h Header File

Listing 10.10 shows the qep_port.h header file for 80x86/QK/Turbo C++ 1.01/Large

memory model. The legacy Turbo C++ 1.01 is a prestandard compiler, so I typedef

the six platform-specific exact-width integer types used in QP.
Listing 10.10 The qep_port.h header file for 80x86/QK/Turbo C++ 1.01/
Large memory model

#ifndef qep_port_h
#define qep_port_h

/*Exact-widthintegertypesforDOS/TurboC++1.01/Largememorymodel*/
typedef signed char int8_t;
typedef signed int int16_t;
typedef signed long int32_t;
typedef unsigned char uint8_t;
typedef unsigned int uint16_t;
typedef unsigned long uint32_t;

#include "qep.h" /* QEP platform-independent public interface */

#endif /* qep_port_h */
10.5.2 The qf_port.h Header File

Listing 10.11 shows the qf_port.h header file for 80x86/QK/Turbo C++ 1.01/Large

memory model. You always need to configure the maximum number of active

objects QF_MAX_ACTIVE and you need to include qep_port.h, qk_port.h , and

qf.h header files.
www.newnespress.com

Listing 10.11 The qf_port.h header file for 80x86/QK/Turbo C++ 1.01/
Large memory model
:

#ifndef qf_port_h

#define qf_port_h

/* The maximum number of active objects in the application */
#define QF_MAX_ACTIVE 63

#include "qep_port.h" /* QEP port */
#include "qk_port.h" /* QK port */
#include "qf.h" /* QF platform-independent interface */

#endif /* qf_port_h */

526 Chapter 10
10.5.3 The qk_port.h Header File

The actual porting of QK to the CPU/Compiler of your choice happens in the

qk_port.h header file. The first porting decision you need to make is the policy

for locking and unlocking interrupts. To make this decision correctly, you need to

learn a bit about your target CPU and the compiler to find out the most efficient

way of enabling and disabling interrupts from C or C++. Generally, your first

choice should be the safe policy of “saving and restoring the interrupt status”

(Section 7.3.1 in Chapter 7). However, if you find out that it is safe to unlock

interrupts inside ISRs because your target system can prioritize interrupts in

hardware, you can use the simple and fast policy of “unconditional interrupt

unlocking” (Section 7.3.2 in Chapter 7). With the fast policy you must always

make sure that QF functions are invoked with interrupts unlocked, or more

generally, that critical sections don’t nest.

The next decision, related to the first, is the QK-specific interrupt entry and exit. Again,

you need find out whether your CPU enters ISRs with interrupts locked or unlocked

(most CPUs lock interrupts before vectoring to ISRs). If you decided to use the fast

interrupt-locking policy, you must unlock interrupts in QK_ISR_ENTRY() and lock

them again in QK_ISR_EXIT() to avoid nesting of critical sections when you call any

QF services. If your system has an interrupt controller, you might decide to unlock

interrupts inside ISRs even if you’re using the safe policy of “saving and restoring

interrupt context.” I would generally recommend leaving interrupts locked throughout

the whole ISR on systems that don’t have interrupt controllers. Obviously, in the latter
www.newnespress.com

527Preemptive Run-to-Completion Kernel
case you must be using the safe policy of “saving and restoring interrupt context,”

because most QF services that you call from ISRs use a critical section internally.

Finally, you need to customize the advanced features, such as the TLS and the

extended context switch, if you plan to use them in your applications. Here, you need

to find out which libraries require TLS support (e.g., Newlib). You also need to find

what kind of coprocessors you want to support and how to save and restore their

registers from C.

Listing 10.12 shows the qk_port.h header file for 80x86/QK/Turbo C++ 1.01/Large

memory model. I decided to use the simple “unconditional interrupt unlocking”

policy because the standard PC is equipped with the external 8259A Programmable

Interrupt Controller (PIC) and the Turbo C++ 1.01 compiler provides the pair of

functions disable() and enable(), to unconditionally lock and unlock interrupts,

respectively. With this simple interrupt-locking policy, I must unlock interrupts in

QK_ISR_ENTRY() and lock them again in QK_ISR_EXIT(). I also use the 80x87 floating

point coprocessor (FPU) and two libraries that require TLS support.
Listing 10.12 The qk_port.h header file for 80x86/QK/Turbo C++ 1.01/
Large memory model

#ifndef qk_port_h
#define qk_port_h

/* QF critical section entry/exit */
(1) /* QF_INT_KEY_TYPE not defined */
(2) #define QF_INT_LOCK(dummy) disable()
(3) #define QF_INT_UNLOCK(dummy) enable()

/* QK-specific ISR entry and exit */
(4) #define QK_ISR_ENTRY() do { \

++QK_intNest_; \
(5) enable(); \

} while (0)

(6) #define QK_ISR_EXIT() do { \
(7) disable(); \
(8) outportb(0x20, 0x20); \

- -QK_intNest_; \
if (QK_intNest_ == 0) { \

(9) QK_scheduleExt_(); \
} \

} while (0)

/* demonstration of advanced QK features: TLS and extended context switch */

Continued onto next page

www.newnespress.com

(10) typedef struct Lib1_contextTag { /* an example of a library context */
double x;

} Lib1_context;
(11) extern Lib1_context * volatile impure_ptr1;

(12) typedef struct Lib2_contextTag { /* an example of a library context */
double y;

} Lib2_context;
(13) extern Lib2_context * volatile impure_ptr2;

(14) typedef union FPU_contextTag {
uint32_t align;

(15) uint8_t x87 [108]; /* the x87 FPU context takes 108-bytes */
} FPU_context;

(16) typedef struct ThreadContextTag {
Lib1_context lib1; /* library1 context */
Lib2_context lib2; /* library2 context */
FPU_context fpu; /* the FPU context */

} ThreadContext;

(17) enum QKTaskFlags {
QK_LIB1_THREAD = 0x01,
QK_LIB2_THREAD = 0x02,
QK_FPU_THREAD = 0x04

};

/* QK thread-local storage */
(18) #define QK_TLS(act_) \
(19) impure_ptr1 = &((ThreadContext *)(act_)->thread)->lib1; \
(20) impure_ptr2 = &((ThreadContext *)(act_)->thread)->lib2

/* QK extended context (FPU) save/restore */
(21) #define QK_EXT_SAVE(act_) \
(22) if (((act_)->osObject & QK_FPU_THREAD) != 0) \
(23) FPU_save(&((ThreadContext *)(act_)->thread)->fpu)

(24) #define QK_EXT_RESTORE(act_) \
(25) if (((act_)->osObject & QK_FPU_THREAD) != 0) \
(26) FPU_restore(&((ThreadContext *)(act_)->thread)->fpu)

(27) void FPU_save (FPU_context *fpu); /* defined in assembly */
(28) void FPU_restore(FPU_context *fpu); /* defined in assembly */

#include <dos.h> /* see NOTE01 */
#undef outportb /*don't use the macro because it has a bug in Turbo C++ 1.01*/

(29) #include "qk.h" /* QK platform-independent public interface */
(30) #include "qf.h" /* QF platform-independent public interface */

#endif /* qk_port_h */

www.newnespress.com

528 Chapter 10

529Preemptive Run-to-Completion Kernel
(1) The macro QF_INT_KEY_TYPE is not defined, meaning that the fast policy

of “unconditional interrupt locking and unlocking” is used. This is

possible because the standard PC is equipped with the 8259A

Programmable Interrupt Controller (PIC), which allows unlocking interrupts

inside ISRs.

(2) The macro QF_INT_LOCK() is defined as the Turbo C++ function

disable().

(3) The macro QF_INT_UNLOCK() is defined as the Turbo C++ function

enable().

(4) As described in Section 10.3.3, the macro QK_ISR_ENTRY() is called upon the

entry to every ISR.

(5) The 80x86 CPU enters ISRs with interrupts locked. However, interrupts must

be unlocked before any QF or QK service can be used in the ISR body,

because the fast interrupt-locking policy does not support nesting critical

sections.

(6) As described in Section 10.3.3, the macro QK_ISR_EXIT() is called upon exit

from every ISR.

(7) The interrupts unlocked upon entry must be locked again to prevent corruption

of the QK variables.

(8) This output statement writes the EOI instruction to the master 8259A interrupt

controller.

(9) As described in Section 10.3.3, the QK scheduler must be called at the exit

from every interrupt to handle the asynchronous preemption. Here I use the

extended QK scheduler because this port supports the extended context switch

for the 80x87 FPU.
NOTE

If you don’t define the macros QK_EXT_SAVE() and QK_EXT_RESTORE(), the extended QK

scheduler is equivalent to the regular scheduler QK_schedule_(). You can always use the

extended scheduler in the QK_ISR_EXIT() macro without any performance penalty, but if

you want to save a little code space, you might want to use the regular scheduler.

www.newnespress.com

530 Chapter 10
(10) This typedef specifies the per-thread context used by a hypothetical reentrant

library lib1. I use this library to demonstrate the TLS switching capability

of the QK kernel.

(11) The impure_ptr1 pointer points to the per-thread context of library lib1.

(12) This typedef specifies the per-thread context used by a hypothetical reentrant

library lib2. I use this library to demonstrate that the TLS implementation can

handle multiple reentrant libraries.

(13) The impure_ptr2 pointer points to the per-thread context of library lib2.

(14) This typedef specifies the per-thread FPU context.

(15) The 80x87 FPU requires 108 bytes to store its context.

(16) This typedef specifies the entire per-thread context, which includes the contexts

of the library1, library2, and the FPU.

(17) This enumeration defines the thread flags.

(18) The macro QK_TLS() is the context-switch hook in which you customize TLS

management.

(19) The impure pointer for the reentrant library lib1 is switched to the current

active object.

(20) The impure pointer for the reentrant library lib2 is switched to the current

active object.

(21) The macro QK_EXT_SAVE() saves the extended context in asynchronous

preemption.

(22) The FPU context must only be saved for a task that actually uses the FPU.

(23) The FPU context is saved to the active object’s private location by calling the

function FPU_save().

(24) The macro QK_EXT_RESTORE() restores the extended context in asynchronous

preemption.

(25) The FPU context must only be restored for a task that actually uses the FPU.

(26) The FPU context is restored from the active object’s private location by calling

the function FPU_restore().
www.newnespress.com

531Preemptive Run-to-Completion Kernel
(27,28) The prototypes for the functions FPU_save() and FPU_restore() are

provided. These functions are defined in assembly.

(29) The qk_port.h header file must always include the QK platform-

independent qk.h header file.

(30) The qk_port.h header file must always include the QF platform-

independent qf.h header file.
10.5.4 Saving and Restoring FPU Context

The functions FPU_save() and FPU_restore(), declared in Listing 10.12(27,28),

are part of the QK port. They are defined in the assembly file <qp>\qpc\ports\

80x86\qk\tcpp101\l\src\fpu.asm. Both these functions are just shells for

executing the 80x87 machine instructions FSAVE and FRSTOR, respectively.
10.6 Testing the QK Port

As usual, I use the dining philosopher problem (DPP) application to test the port.

For QK, I have extended the basic DPP application discussed in Chapter 9 to

demonstrate and test the advanced QK features, such as the priority-ceiling mutex,

thread-local storage for multiple reentrant libraries, and the extended context switch for

the 80x87 FPU. The DPP application for QK is located in the directory <qp>\qpc\

examples\80x86\qk\tcpp101\l\dpp\.
10.6.1 Asynchronous Preemption Demonstration

As it turns out, an interesting asynchronous preemption is not that easy to observe in the

DPP application. By an interesting preemption, I mean a task asynchronously

preempting another task, as opposed to simply a task asynchronously preempting the

idle loop. Figure 10.9 illustrates why. The DPP application is mostly driven by the

system clock tick interrupt (ISR_tmr), which posts the time events to the Philosopher

active objects. Typically, the interrupts and state machines execute so quickly that all

processing happens very close to the clock tick and the CPU goes quickly back to

executing the QK idle loop. With the code executing so fast, the ISR_tmr() has no

chance to actually preempt any QK task, just the idle loop. Consequently an

asynchronous preemption cannot happen.
www.newnespress.com

532 Chapter 10
Therefore, to increase the odds of asynchronous preemptions in this application,

I have added the second interrupt (the ISR_kbd triggered by the keyboard), which is

asynchronous with respect to the clock tick and always posts an event to the

Table active object. I also added some artificial CPU loading in the form of various

busy-wait functions called from to the state machines and interrupts (I show

examples of these functions later in this section). Finally, I’ve instrumented the ISRs

to report preemptions caused by interrupts to the screen.

Since I cannot foresee the speed of your CPU, I have provided a command-line

parameter to the DPP application that determines the delay incurred by the

various busy-wait functions. On my 2GHz PC, I’ve been using the value of

100 iterations, which allowed me to easily catch several asynchronous

preemptions. You should be careful not to go overboard with this parameter,

though, because you can overload the CPU, or more scientifically stated, you can

create an unschedulable set of tasks. In this case, QF will eventually overflow an

event queue and assert.
QK idle loop

time

Philo[0..4]

ISR_kbd

priority

Table

ISR_tmr

(2)

(1)

0 5 10 15 20

Figure 10.9: Execution profile of the DPP application with QK.
With all this scaffolding, you actually have a chance to observe an interesting

a synchronous pr eemption, such as t he insta nc e shown in Figure 10.9 (1) . You need

to run the DPP application (with the command-line parameter of 100 or so). As

explained before, you will never get asynchronous preemptions unless you start
www.newnespress.com

533Preemptive Run-to-Completion Kernel
typing on the keyboard. When the keyboard interrupt happens to come close

enough after the clock tick, it might just manage to preempt one of the philosopher

tasks. The keyboard ISR always posts an event to the Table object, and because

Table has the highest priority in the system, upon the exit from ISR_kbd(), QK

performs an asynchronous context switch to the Table active object. When this

happens, you’ll see that the preemption counter for one of the Philosopher tasks

will increment on the screen (see Figure 10.10).
Number of
preemptions by

interrupts

Delay counter
(from command-line

Figure 10.10: DPP application with QK running in a DOS console.
If you want to examine an asynchronous preemption closer, you can use the

debugger built into the Turbo C++ IDE. You load the project DPP-DBG.PRJ

(located in <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\) into the IDE

and open the file qk_ext.c that I have specifically added to this project,

even though it is already included in the qk.lib library. You set a breakpoint

inside QK_scheduleExt_() indicated as label (1) in Figure 10.11 (see also

Listing 10.12(9)). Next, select Run | Arguments. . . to define a command-line

argument around 100. Now you can run the program. When you start typing on the

keyboard, eventually you should hit the breakpoint (asynchronous preemption).

You can step through the code from there. Figure 10.11 shows an example of

my debug session.
www.newnespress.com

(1)

(2)

(4)

(3)

Figure 10.11: Asynchronous preemption examined in the Turbo C++ debugger.

534 Chapter 10
(1) The original breakpoint is set at the instruction that is only executed when a task

preempts another task, but not the idle loop (inside QK_scheduleExt_()).

(2) When you step into the QF_ACTIVE_DISPATCH_() macro, you get inside the

functionQHsm_dispatch(). Keep stepping (F7) until you reach the highlighted line.

This line calls the current state-handler function of the high-priority active object.

(3) When you step into again, you end up inside the Table active object.

(4) The Call Stack window shows the call tree information, which is a nice byproduct

of QK using just a single stack. You see that the extended QK scheduler is

engaged and detects preemption, so it calls QHsm_dispatch() for the Table active

object. Finally, the Table_serving() state handler processes the TEST event.
www.newnespress.com

NOTE

This example should convince you that debugging QK tasks is straightforward, even though

they nest on the interrupt stack frame, as shown in the Call Stack window (see Section

10.2.5). In contrast, debugging ISRs is hard because the Turbo C++ debugger freezes when

interrupts are locked at the CPU or the 8259A PIC level.

535Preemptive Run-to-Completion Kernel
10.6.2 Priority-Ceiling Mutex Demonstration

To demonstrate the QK priority-ceiling mutex, I’ve extended the Philosopher active

object to allow random think and eat timeouts for philosophers rather than fixed

timeouts used in the basic implementation. To implement the feature, I use the

pseudorandom number (PRN) generator provided in Turbo C++ 1.01 (random()).

This generator, like most PRN generators, is not reentrant because it must preserve

its state from one call to the next. To prevent corruption of this internal state, I

protect the generator with the QK mutex, as shown in Listing 10.13.
Listing 10.13 Protecting PRN generator with the priority-ceiling mutex
(file <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\philo.c)

QState Philo_thinking(Philo *me, QEvent const *e) {
switch (e->sig) {

case Q_ENTRY_SIG: {
QTimeEvtCtr think_time;
QMutex mutex;

mutex = QK_mutexLock(N_PHILO);
think_time = (QTimeEvtCtr)(random(THINK_TIME) + 1);
QK_mutexUnlock(mutex);

QTimeEvt_postIn(&me->timeEvt, (QActive *)me, think_time);
return (QState)0;

}
. . .

}
return (QState)&QHsm_top;

}

Note that I use the number of philosophers N_PHILO as the priority ceiling to lock

the mutex. This ceiling corresponds to the highest-priority Philosopher active object

that can access the PRN generator (Philosopher active objects have priorities
www.newnespress.com

536 Chapter 10
1..N_PHILO). Since the priority of the Table active object (N_PHILO + 1) is above

the ceiling, the mutex does not affect Table, which is exactly what I wanted to achieve.

Table does not use the resource (PRN generator in this case), so it should not be

affected by the mutex.
10.6.3 TLS Demonstration

In the QK port header file qk_port.h (Listing 10.12), you saw the two contexts of two

hypothetical libraries lib1 and lib2, which need TLS support in the same way as

Newlib does. The QK port implemented the switching of the two “impure pointers” in

the macro QK_TLS (Listing 10.12(18)). At the application level, I need to add the

contexts to the active objects and I need to inform QK where these TLS contexts are

located. I also need to call the library functions so that they are shared among all

Philosopher active objects. Listing 10.14 shows these steps.
Listing 10.14 Incorporating the TLS context inside active objects
(file <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\philo.c)

typedef struct PhiloTag {
QActive super; /* derives from the QActive base class */

(1) ThreadContext context; /* thread context */
QTimeEvt timeEvt; /* for timing out thining or eating */

} Philo;
. . .
/*...*/
void Philo_start(uint8_t n,

uint8_t p, QEvent const *qSto[], uint32_t qLen)
{

Philo *me = &l_philo [n];
Philo_ctor(me); /* instantiate */

(2) impure_ptr1 = &me->context.lib1; /* initialize reentrant library1 */
(3) lib1_reent_init(p);
(4) impure_ptr2 = &me->context.lib2; /* initialize reentrant library2 */
(5) lib2_reent_init(p);

QActive_start((QActive *)me, p, qSto, qLen,
(6) &me->context,
(7) (uint8_t)(QK_LIB1_THREAD | QK_LIB2_THREAD | QK_FPU_THREAD),

(QEvent *)0);
}
QState Philo_thinking(Philo *me, QEvent const *e) {

switch (e->sig) {
. . .
case TIMEOUT_SIG: {

www.newnespress.com

(8) lib1_test();
(9) lib2_test();

return (QState)0;
}
. . .

}
return Q_SUPER(&QHsm_top);

}
/*...*/
QState Philo_hungry(Philo *me, QEvent const *e) {

switch (e->sig) {
. . .
case EAT_SIG: {

if (((TableEvt const *)e)->philoNum == PHILO_ID(me)) {
(10) lib1_test();
(11) lib2_test();

return (QState)0;
}
break;

}
. . .

}
return Q_SUPER(&QHsm_top);

}
/*...*/
QState Philo_eating(Philo *me, QEvent const *e) {

switch (e->sig) {
. . .
case TIMEOUT_SIG: {

(12) lib1_test();
(13) lib2_test();

return Q_TRAN(&Philo_thinking);
}
. . .

}
return Q_SUPER(&QHsm_top);

}

537Preemptive Run-to-Completion Kernel
(1) I place the data member context of ThreadContext type (defined in Listing

10.12(16)) directly inside the Philo class. That way I can be sure that every

Philo object has the private ThreadContext area.

(2) Upon the Philo active object initialization, I aim the “impure pointer” of

library lib1 at the TLS context for this library.

(3) I then let the library initialize the context.

(4,5) I repeat the same two steps for the library lib2.
www.newnespress.com

538 Chapter 10
(6) I pass the pointer to the TLS as the fifth parameter to the QActive_start()

function, to inform QK about the location of TLS for each active object

(see also Listing 10.5(17)).

(7) I set the thread attributes to inform QK that this active object uses library1,

library2, and the FPU.

(8-13) I pepper the Philo state machine with the calls to the libraries. These calls

take a long time to run and provide the CPU loading that was necessary to

test asynchronous preemptions.
NOTE

I made similar changes to the Table active object, so that it too shares the libraries with all

Philosophers.
Finally, I need to define the library functions lib1_test() and lib2_test() that

actually use the “impure pointers.” Listing 10.15 shows the test code.
Listing 10.15 Using the TLS context inside the libraries
(file <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\bsp.c)

#include <math.h>
. . .
/*---*/
void lib1_reent_init(uint8_t prio) {

(1) impure_ptr1->x = (double)prio * (M_PI / 6.0);
}
/*...*/
void lib1_test(void) {

(2) uint32_t volatile i = l_delay;
(3) while (i-->OUL) {
(4) volatile double r = sin(impure_ptr1->x) * sin(impure_ptr1->x)

+ cos(impure_ptr1->x) * cos(impure_ptr1->x);
(5) Q_ASSERT(fabs(r - 1.0) < 1e-99); /* assert the identity */

}
}
/*---*/
void lib2_reent_init(uint8_t prio) {

(6) impure_ptr2->y = (double)prio * (M_PI / 6.0) + M_PI;
}
/*...*/

www.newnespress.com

void lib2_test(void) {
uint32_t volatile i = l_delay;
while (i-->OUL) {

volatile double r = sin(impure_ptr2->y) * sin(impure_ptr2->y)
+ cos(impure_ptr2->y) * cos(impure_ptr2->y);

Q_ASSERT(fabs(r - 1.0) < 1e-99); /* assert the identity */
}

}

539Preemptive Run-to-Completion Kernel
(1) I initialize the per-thread context of library lib1 (the x variable)

so it depends on the priority of the task, which is different for each task.

(2,3) The parameter l_delayCtr is set from the command line (see Section 10.6.1)

and determines the number of iterations performed in this function (the

CPU loading that the function causes).

(4) I use a mathematical identity sin2(x)+cos2(x) == 1.0 to compute the value of

r based on the impure pointer impure_ptr1. This expression makes an

extensive use of the 80x87 FPU.

(5) I assert the identity. This assertion would fail if the impure pointer where

switched incorrectly or the FPU would compute the expression incorrectly.

(6) I initialize the per-thread context of library lib2 (the y variable) similarly

as lib1, except I add a phase shift, so that the per-thread values are

different that for lib1.
10.6.4 Extended Context Switch Demonstration

As discussed in Section 10.5.4, the 80x87 FPU context saving and restoring is

handled automatically in the QK extended scheduler. At the application level, you

need to include the per-thread FPU context in every active object, which is done in

Listing 10.14(1). You also need to set the QK_FPU_FLAG for every task that uses the

FPU (see Listing 10.14(7)). And finally, you must use the FPU to test it. Though

Listing 10.15 performs a lot of floating-point operations, it is also important to use

the correct compiler options to select the FPU. I’ve compiled both the QP libraries

and the DPP applications with the –f287 option, which instructs the Turbo C++

compiler to generate FPU hardware instructions.
www.newnespress.com

540 Chapter 10
10.7 Summary

A certain class of real-time embedded (RTE) systems, such as control applications,

can vastly benefit from preemptive multitasking. The QP event-driven platform

contains a lightweight, priority-based, preemptive kernel called QK.

QK is a special kind of a preemptive kernel, called a run-to-completion (RTC) or

single-stack kernel, in which tasks are one-shot, RTC functions as opposed to

endless loops as in most conventional RTOSs. The biggest limitation of RTC kernels

is inability to block in the middle of a task, but this limitation is irrelevant for

executing event-driven active objects, because active objects don’t block in the

middle of RTC steps anyway.

When applied in active object applications, the QK kernel provides the same

execution profile as any other conventional, priority-based, preemptive kernel or

RTOS. In fact, QK most likely outperforms all conventional preemptive RTOSs in

all respects, such as speed, stack usage, code size (ROM footprint), complexity, ease

of use, or any other metrics you want to apply.

QK supports advanced features, such as priority-ceiling mutex, thread-local storage, and

extended context switch, which you can find only in sophisticated RTOSs. All these

advanced features are helpful when you need to share memory, libraries, or devices

among active object threads.

QK is also easier to port to new CPUs and compilers than most RTOSs, mainly because

QK can work with compiler-generated interrupts that virtually all embedded C/C++

compilers support. Most of the time, you can complete a QK port without writing

assembly code. In this chapter, I discussed the QK port to 80x86 CPU with the

legacy C compiler running in real mode. Although this port can be valuable in itself,

here I used it mostly to demonstrate QK capabilities. This book’s accompanying

Website at www.quantum-leaps.com/p sicc2 contains links to many other QK

ports to popular embedded processors and compilers.
www.newnespress.com

http://www.quantum-leaps.com/psicc2

www.n
CHAP T E R 1 1
Software Tracing for Event-Driven
Systems
There has never been an unexpectedly short debugging period in the history of computers.
—Steven Levy

In any real-life project, getting the code written, compiled, and successfully linked is

only the first step. The system still needs to be tested, validated, and tuned for best

performance and resource consumption. A single-step debugger is frequently not

helpful because it stops the system and exactly hinders seeing live interactions within

the application. Clogging up high-performance code with printf() statements is

usually too intrusive and simply unworkable in most embedded systems, which

typically don’t have adequate screens to print to. So the questions are: How can you

monitor the behavior of a running real-time system without degrading the system itself?

How can you discover and document elusive, intermittent bugs that are caused by

subtle interactions among concurrent components? How do you design and execute

repeatable unit and integration tests of your system? How do you ensure that a system

runs reliably for long periods of time and gets top processor performance?

Techniques based on software tracing can answer many of these questions. Software

tracing is a method for obtaining diagnostic information in a live environment without

the need to stop the application to get the system feedback. Software tracing always

involves some form of a target system instrumentation to log interesting discrete events

for subsequent retrieval from the system and analysis.

Due to the inversion of a control, software tracing is particularly effective and

powerful in combination with the event-driven programming model. An instrumented
ewnespress.com

542 Chapter 11
event-driven framework can provide much more comprehensive and detailed

information than any traditional RTOS.

In this chapter, I describe the software-tracing system called Quantum Spy, which is

part of the QP event-driven platform. I begin with a quick introduction to software

tracing concepts. Next I walk you through an example of a software tracing session.

I then describe the target-resident software-tracing component, called QS, explaining in

detail the generation of trace data, the various filters, buffering, transmission protocol,

and porting QS. Subsequently, I present the QSPY host application for receiving,

displaying, storing, and analyzing the trace data. Finally I explain the steps required to

add the QS software tracing component to a QP application.
11.1 Software Tracing Concepts

In a nutshell, software tracing is similar to peppering the code with printf()

statements for logging and debugging, except that software tracing is much less

intrusive and more selective than the primitive printf(). This quick overview

introduces the basic concepts and describes some features you can expect from a

commercial-grade software-tracing system.
target

communication
link to the host

host receiving the trace
data for analysis and

visualization

Figure 11.1: Typical setup for collecting software trace data.

www.newnespress.com

543Software Tracing for Event-Driven Systems
Figure 11.1 shows a typical setup for software tracing. The embedded target system is

executing instrumented code, which logs the trace data into a RAM buffer inside the

target. From that buffer the trace data is sent over a data link to a host computer that

stores, displays, and analyzes the information. This configuration means that a software

tracing always requires two components: a target-resident component for collecting

and sending the trace data and a host-resident component to receive, decompress,

visualize, and analyze the data.
NOTE

Software-tracing instrumentation logs interesting discrete events that occur in the target

system. I will call these discrete events trace records, to avoid confusing them with the

application-level events.
A good tracing solution is minimally intrusive, which means that it can provide

visibility into the running code with minimal impact on the target system behavior.

Properly implemented and used, it will let you diagnose a live system without

interrupting or significantly altering the behavior of the system under investigation.

Of course, it’s always possible that the overhead of software tracing, no matter how

small, will have some effect on the target system behavior, which is known as the probe

effect (a.k.a. the Heisenberg effect). To help you determine whether that is occurring,

you must be able to configure the instrumentation in and out both at compile time

as well as at runtime.

To minimize the probe effect, a good trace system performs efficient, selective

logging of trace records using as little processing and memory resources of the target

as possible. Selective logging means that the tracing system provides user-definable,

fine-granularity filters so that the target-resident component only collects events of

interest—you can filter as many or as few instrumented events as you need. That way

you can make the tracing as noninvasive as necessary.

To minimize the RAM usage, the target-resident trace component typically uses a

circular trace buffer that is continuously updated, and new data overwrites the old when

the buffer “wraps around” due to limited size or transmission rate to the host. This

reflects the typically applied last-is-best policy in collecting the trace data. To focus on

certain periods of time, software tracing provides configurable software triggers that

can start and stop trace collection before the new data overwrites the old data of interest

in the circular buffer.
www.newnespress.com

544 Chapter 11
To further maximize the amount of data collected in the trace buffer, the target-resident

component typically applies some form of data compression to squeeze more trace

information into the buffer and to minimize the bandwidth required to uplink the data

to the host.

However, perhaps the most important characteristic of a flexible software-tracing

system is the separation of trace logging (what information is being traced) from the

data transmission mechanism (how and when exactly the data is sent to the host). This

separation of concerns allows the transmissions to occur in the least time-critical

paths of the code, such as the idle loop. Furthermore, clients should be able to employ

any data transmission mechanism available on the target, meaning both the physical

transport layer (e.g., serial port, SPI, USB, Ethernet, etc.) as well as implementation

strategy (polling, interrupt, DMA, etc.). The tracing facility should tolerate and be able

to detect any RAM buffer overruns due to bursts of tracing data production rate or

insufficient transmission rate to the host.

Finally, the tracing facility must allow consolidating data from all parts of the system,

including concurrently executing threads and interrupts. This means that the

instrumentation facilities must be reentrant (i.e., both thread-safe and interrupt-safe).

Also, to be able to correlate all this data, most tracing systems provide precise

timestamping of the trace records.
11.2 Quantum Spy Software-Tracing System

As I mentioned in the introduction to this chapter, software tracing is especially

effective and powerful in combination with the event-driven active object computing

model (see Chapter 6). A running application built of active objects is a highly

structured affair where all important system interactions funnel through the real-time

framework and the state-machine engine. This offers a unique opportunity to instrument

these relatively small parts of the overall code to gain unprecedented insight into the

entire system.

Quantum Spy is a software-tracing system that enables live monitoring of event-driven

QP applications with minimal target system resources and without stopping or

significantly slowing down the code. The Quantum Spy system consists of the target-

resident component, called QS, and the application running on a host workstation,

called QSPY.
www.newnespress.com

545Software Tracing for Event-Driven Systems
Many operating systems provide software-tracing capabilities. However, Quantum Spy

takes software tracing to the entirely new level. Due to inversion of control, an

instrumented state machine framework, as opposed to merely an RTOS, is capable of

providing incomparably more comprehensive information about the running system,

even without adding any instrumentation to the application code. For example, the QS

trace data is thorough enough to produce complete sequence diagrams and detailed state

machine activity for all state machines in the system. You can selectively monitor all

event exchanges, event queues, event pools, and time events because all these elements

are controlled by the framework. Additionally, if you use one of the kernels built into

QP (the vanilla kernel or the preemptive QK kernel), you can obtain all the data

available to a traditional RTOS as well, such as context switches and mutex activity.

11.2.1 Example of a Software-Tracing Session

To show you how software-tracing works in practice, I present an example of a

software-tracing session. I use the dining philosophers problem (DPP) test application,

which I introduced in Chapter 9. All versions of the DPP application included in the

code accompanying this book contain the QS instrumentation. The tracing

instrumentation becomes active when you build the “Spy” configuration.

Figure 11.2 shows how to collect the software trace data from the QK/DOS version of

the DPP application located at <qp>\qpc\examples\80x86\qk\

tcpp101\l\dpp\spy\dpp-spy.exe. You can rebuild the “Spy” configuration by

loading the DPP-SPY.PRJ project into the Turbo C++ IDE. You need to run the

DPP-SPY.EXE executable on a target PC with a serial port. You connect the serial port

of the target machine to the serial port of a Windows or a Linux host workstation via

a NULL-modem cable. On the host workstation, you need to start the QSPY host

application that decompresses and visualizes the QS trace data.

The Windows executable of the QSPY host application is located in the directory

<qp>\qpc\tools\qspy\win32\vc2005\Release\. Assuming that this directory is

your current directory or is in your path, you invoke this console application by typing

the following command at the command prompt:

qspy –c COM1 –b 115200
The first command-line parameter –c COM1 tells the QSPY host application to receive

the trace data from COM1. If your target is connected to a different COM port, you
www.newnespress.com

80x86
target

NULL-modem
serial cable to

the host

QSPY output
window

on the host

Figure 11.2: Collecting software trace data from a 80x86 target.

546 Chapter 11
need to adjust the COM number. The second parameter configures the baud rate of the

serial port to 115200.
NOTE

In the particular case of a Windows PC, you can use the same machine as the target and the

host at the same time. You need to use a machine with two serial ports, which you connect

with a NULL modem cable. You can use one serial port for the DPP target application

running in a DOS-window and the other for the QSPY host application.
You might also use a Linux host machine. In case of Linux, you must first build the

executable by running the Makefile located in the directory <qp>/qpc/tools/qspy/

linux/gnu/. You invoke the Linux executable by typing the following command at

the command prompt:

qspy –c /dev/ttyS0 –b 115200
www.newnespress.com

547Software Tracing for Event-Driven Systems
The first parameter –c /dev/ttyS0 tells the QSPY application to receive the trace

data from the ttyS0 serial device. If you connected a different serial port to the target,

you need to adjust the ttyS number.

As I mentioned before, all DPP applications included in the code accompanying this

book are instrumented for software tracing, and I encourage you to try them all. For

example, you can collect trace data from the EV-LM3S811 board (see Figure 11.1). The

EV-LM3S811 board sends the QS trace data through the UART0 connected to the

Virtual COM Port (VCP) provided by the USB debugger, so the QSPY host application

can conveniently receive the trace data on the host PC. No additional serial cable is

needed.
11.2.2 The Human-Readable Trace Output

The QSPY host application is just a simple console-type program without any fancy

user interface. QSPY application displays the trace data in a human-readable textual

format. Listing 11.1 shows fragments of such a data log generated from the DOS/QK

version of the DPP application.
NOTE

The QSPY host application supports also exporting data to the powerfulMATLAB environment,

as described in Section 11.5. MATLAB is a registered trademark of The Mathworks, Inc.

Listing 11.1 Fragments of the software trace log from the DOS/QK version
of the DPP application

qspy host application 3.5.00

Copyright (c) Quantum Leaps, LLC.

Mon Feb 25 12:20:13 2008

-T 4

-O 4

-F 4

-S 1

-E 2

-Q 1

-P 2

-B 2

-C 2

Continued onto next page

www.newnespress.com

Obj Dic: 16CA18D8->l_smlPoolSto

Obj Dic: 16CA1900->l_tableQueueSto

Obj Dic: 16CA1914->l_philoQueueSto[0]

.

EQ.INIT: Obj=l_tableQueueSto Len= 5

0000000000 AO.ADD : Active=16CA1CB8 Prio= 6

Obj Dic: 16CA1CB8->&l_table

Fun Dic: 141E0006->&QHsm_top

Fun Dic: 12DA00C9->&Table_initial

Fun Dic: 12DA020B->&Table_serving

Sig Dic: 00000008,Obj=16CA1CB8 ->HUNGRY_SIG

0000000000 AO.SUB : Active=l_table Sig=DONE_SIG

0000000000 AO.SUB : Active=l_table Sig=TERMINATE_SIG

Q_INIT : Obj=l_table Source=QHsm_top Target=Table_serving

0000000000 ==>Init: Obj=l_table New=Table_serving

0000070346 QF_isrE: IsrNest= 1, CurrPrio=255

TICK : Ctr= 1

0000070367 QF_isrX: IsrNest= 1, CurrPrio=255

0000135566 QF_isrE: IsrNest= 1, CurrPrio=255

TICK : Ctr= 2

0000135581 QF_isrX: IsrNest= 1, CurrPrio=255

.

0000461783 QF_isrE: IsrNest= 1, CurrPrio=255

TICK : Ctr= 7

TE.ADRM: Obj=l_philo[1].timeEvt Act=l_philo[1]

0000461797 TE.POST: Obj=l_philo[1].timeEvt Sig=TIMEOUT_SIG Act=l_philo[1]

0000461808 AO.FIFO: Obj=l_philo[1] Evt(Sig=TIMEOUT_SIG, Pool=0, Ref= 0) Queue(nUsed= 5, nMax= 5)

0000461824 QF_isrX: IsrNest= 1, CurrPrio=255

0000461836 AO.GETL: Active= l_philo[1] Evt(Sig=TIMEOUT_SIG, Pool=0, Ref= 0)

0000461850 NEW : Evt(Sig=HUNGRY_SIG, size= 3)

0000461862 MP.GET : Obj=l_smlPoolSto nFree= 9 nMin= 9

0000461874 AO.FIFO: Obj=l_table Evt(Sig=HUNGRY_SIG, Pool=1, Ref= 0) Queue(nUsed= 5, nMax= 5)

0000461886 AO.GETL: Active= l_table Evt(Sig=HUNGRY_SIG, Pool=1, Ref= 1)

0000461906 NEW : Evt(Sig=EAT_SIG, size= 3)

0000461917 MP.GET : Obj=l_smlPoolSto nFree= 8 nMin= 8

0000461929 PUBLISH: Evt(Sig=EAT_SIG, Pool=1, Ref= 0)

0000461941 AO.FIFO: Obj=l_philo[4] Evt(Sig=EAT_SIG, Pool=1, Ref= 1) Queue(nUsed= 5, nMax= 5)

0000461953 AO.FIFO: Obj=l_philo[3] Evt(Sig=EAT_SIG, Pool=1, Ref= 2) Queue(nUsed= 5, nMax= 5)

0000461965 AO.FIFO: Obj=l_philo[2] Evt(Sig=EAT_SIG, Pool=1, Ref= 3) Queue(nUsed= 5, nMax= 5)

0000461977 AO.FIFO: Obj=l_philo[1] Evt(Sig=EAT_SIG, Pool=1, Ref= 4) Queue(nUsed= 5, nMax= 5)

0000461987 AO.FIFO: Obj=l_philo[0] Evt(Sig=EAT_SIG, Pool=1, Ref= 5) Queue(nUsed= 5, nMax= 5)

0000462001 GC-ATT : Evt(Sig=EAT_SIG, Pool=1, Ref= 5)

0000462018 Intern : Obj=l_table Sig=HUNGRY_SIG Source=Table_serving

0000462030 GC : Evt(Sig=HUNGRY_SIG, Pool=1, Ref= 1)

0000462042 MP.PUT : Obj=l_smlPoolSto nFree= 9

0000462054 AO.GETL: Active= l_philo[4] Evt(Sig=EAT_SIG, Pool=1, Ref= 5)

0000462065 Intern : Obj=l_philo[4] Sig=EAT_SIG Source=Philo_thinking

0000462077 GC-ATT : Evt(Sig=EAT_SIG, Pool=1, Ref= 4)

0000462089 AO.GETL: Active= l_philo[3] Evt(Sig=EAT_SIG, Pool=1, Ref= 4)

0000462101 Intern : Obj=l_philo[3] Sig=EAT_SIG Source=Philo_thinking

www.newnespress.com

548 Chapter 11

0000462111 GC-ATT : Evt(Sig=EAT_SIG, Pool=1, Ref= 3)

0000462123 AO.GETL: Active= l_philo[2] Evt(Sig=EAT_SIG, Pool=1, Ref= 3)

0000462135 Intern : Obj=l_philo[2] Sig=EAT_SIG Source=Philo_thinking

0000462146 GC-ATT : Evt(Sig=EAT_SIG, Pool=1, Ref= 2)

Q_ENTRY: Obj=l_philo[1] State=Philo_hungry

0000462159 ==>Tran: Obj=l_philo[1] Sig=TIMEOUT_SIG Source=Philo_thinking New=Philo_hungry

0000462171 AO.GETL: Active= l_philo[1] Evt(Sig=EAT_SIG, Pool=1, Ref= 2)

0000462183 QK_muxL: OrgPrio= 2, CurrPrio= 5

0000462195 QK_muxU: OrgPrio= 2, CurrPrio= 5

0000462207 TE.ARM : Obj=l_philo[1].timeEvt Act=l_philo[1] nTicks= 8 Interval= 0

Q_ENTRY: Obj=l_philo[1] State=Philo_eating

0000462219 ==>Tran: Obj=l_philo[1] Sig=EAT_SIG Source=Philo_hungry New=Philo_eating

0000462231 GC-ATT : Evt(Sig=EAT_SIG, Pool=1, Ref= 1)

0000462243 AO.GETL: Active= l_philo[0] Evt(Sig=EAT_SIG, Pool=1, Ref= 1)

0000462255 Intern : Obj=l_philo[0] Sig=EAT_SIG Source=Philo_thinking

0000462265 GC : Evt(Sig=EAT_SIG, Pool=1, Ref= 1)

0000462277 MP.PUT : Obj=l_smlPoolSto nFree= 10

0000527134 QF_isrE: IsrNest= 1, CurrPrio=255

TICK : Ctr= 8

0000527153 QF_isrX: IsrNest= 1, CurrPrio=255

0000592283 QF_isrE: IsrNest= 1, CurrPrio=255

.

549Software Tracing for Event-Driven Systems
The QS trace log shown in Listing 11.1 contains quite detailed information because

most QS records are enabled (not blocked in the QS filters). The following bullet items

highlight the most interesting parts of the trace and illustrate how you can interpret

the trace data:

� The QS log always contains the QSPY application version number, the date and

time of the run, and all the configuration options used by the QSPY host

application.

� A log typically starts with the dictionary records that provide a mapping

between addresses of various objects in memory and their symbolic names. The

dictionary entries don’t have timestamps.

� After the dictionaries, you see the active object initialization. For example, the

EQ.INIT record indicates event queue initialization with the l_tableQueueSto

buffer. After this the AO.ADD trace record you see adding the Table object

with priority 6. At this point, the time-tick interrupt is not configured, so

all timestamps are 0000000000 (timestamps are always placed in the first

ten columns).
www.newnespress.com

550 Chapter 11
� Active object initialization can contain dictionary entries for items that are

encapsulated within the active object. For example, initialization of Table

inserts an object dictionary entry for l_table object and three function

dictionary entries for state handlers QHsm_top, Table_initial and

Table_serving. Finally, the topmost initial transition is taken from

QHsm_top to Table_serving.

� After the active object initialization, interrupts are enabled, and the first Tick

interrupt arrives at the timestamp 0000070346. You can find out the type of the

interrupt by the unique priority number. For example, the priority of the Tick

interrupt is 0xFF == 255.

� The Tick interrupt occurs seven times. You can determine the ticking rate by

comparing the timestamps between interrupt entry of Tick 1 and 2, which is

((0000135566 – 0000070346) = 65220 ~= 0x10000). In the case of the DPP

application, the timestamp is provided from counter-0 of the 8254 timer/

counter, which is driven from the oscillator running at 1.193182MHz. The same

counter-0 of the 8254 also generates time tick interrupts every 0x10000 number

of counts (the 18.2Hz DOS tick).

� In the Tick 7 interrupt entered at timestamp 0000461783, you see that a time

event posts TIMEOUT_SIG events to the l_philo[1] active objects. This

triggers a lot of activity in the application. In fact, over 42 trace records occur

before the next Tick 8.
NOTE

The QSPY human-readable format contains many cryptic names for various trace records.

The “QSPY Reference Manual” available in the code accompanying this book (see Section

11.6.6) contains documentation of all predefined QS trace records and their parameters.
11.3 QS Target Component

The target-resident component of the Quantum Spy tracing system is called QS. The QS

target component consists of the ring buffer, the QS filters, and the instrumentation

added to QEP, QF, QK, and the application, as shown in Figure 11.3.
www.newnespress.com

tural

Target
with QS

component-
specific filters

global
ON/OFF
filters

Host workstation running
QSPY host application

circular
trace
buffer

 data
link

QEP

QF

QK

Application

Figure 11.3: Structure of the QS target component.

551Software Tracing for Event-Driven Systems
Software tracing with QS is incomparably less intrusive than the primitive printf()

statements because all the data formatting is removed from the target system and is

done after the fact in the host. Additionally, the data-logging overhead incurred in the

time-critical path of the target code is reduced to just storing the data into the trace

buffer but typically does not include the overhead of sending the data out of the target

device. In QS, data logging and sending to the host are separated so that the target

system can typically perform the transmission outside of the time-critical path—for

example, in the idle loop of the target CPU.

A nice byproduct of removing the data formatting from the target is a natural data

compression compared to a formatted output. For example, ASCII representation of a

single byte takes two hexadecimal digits (and three decimal digits), so avoiding the

formatting gives at least a factor of two improvement in data density. On top of this na

compression, QS uses such techniques as data dictionaries, and compressed format

information, which in practice result in a compression factor of 4 to 5 compared to the

expanded human-readable format.

Obviously, QS cannot completely eliminate the overhead of software tracing. But with

the fine-granularity filters available in QS, you can make this impact as small as

necessary. For greatest flexibility, QS uses two complementary levels of filters

(see Figure 11.3). The first level is filtering based on trace record type, such as entry to
www.newnespress.com

).

552 Chapter 11
a state, or publishing an event. This level works globally for all state machines and

event publications in the entire system. The second level of filtering is

component-specific. You can set up a filter to trace only a specific state machine

object, for example. Combination of such two complementary filtering criteria results

in very selective tracing capabilities.

Most QS trace records are timestamped. QS provides an efficient API for obtaining

platform-specific timestamp information. Given the right timer-counter resource in your

target system, you can provide QS with as precise timestamp information as required.

The timestamp size is configurable to 1, 2, or 4 bytes.

One of its greatest QS strengths is the data transmission protocol. The QS protocol is

very lightweight but has many the elements of the High-Level Data Link Control

(HDLC) protocol [HDLC 07] defined by the International Standards Organization (ISO

The protocol has provisions for detecting transmission errors and allows for

instantaneous resynchronization after any error, such as data dropouts due to RAM

buffer overruns.

Finally, QS contains a lightweight API for implementing data transmission to

the host. The API supports any implementation strategy (polling, interrupt,

DMA, etc.) and any physical transport layer (e.g., serial port, SPI, USB, Ethernet,

data file, etc.)
11.3.1 QS Source Code Organization

Listing 11.2 shows the platform-independent directories and files comprising the QS

software-tracing component in C. The structure of the C++ version is almost identical,

except the implementation files have the .cpp extension.
Listing 11.2 Platform-independent QS source code organization

<qp>\qpc\ - QP/C root directory (<qp>\qpcpp for QP/C++)

|

+-include/ - QP platform-independent header files

| +-qs.h - QS platform-independent active interface

| +-qs_dummy.h - QS platform-independent inactive interface

|

+-qs/ - QS target component

| +-source/ - QS platform-independent source code (*.C files)

www.newnespress.com

| | +-qs_pkg.h - internal, packet-scope interface for QS implementation

| | +-qs.c - internal ring buffer and formatted output functions

| | +-qs_.c - definition of basic unformatted output functions

| | +-qs_blk.c - definition of block-oriented interface QS_getBlock()

| | +-qs_byte.c - definition of byte-oriented interface QS_getByte()

| | +-qs_f32.c - definition of 32-bit floating point output QS_f32()

| | +-qs_f64.c - definition of 64-bit floating point output QS_f64()

| | +-qs_mem.c - definition of memory-block output

| | +-qs_str.c - definition of zero-terminated string output

|

+-ports\ - Platform-specific QP ports

| +- . . .

+-examples\ - Platform-specific QP examples

| +- . . .

553Software Tracing for Event-Driven Systems
The QS source files contain typically just one function or a data structure definition per

file. This design aims at deploying QS as a fine-granularity library that you statically

link with your applications. Fine granularity means that the QS library consists of

several small loosely coupled modules (object files) rather than a single module that

contains all functionality.
11.3.2 The QS Platform-Independent Header Files
qs.h and qs_dummy.h

As most software tracing systems for C or C++, QS relies heavily on the C preprocessor

for the tracing instrumentation to be enabled or disabled at compile time without

changing the instrumented source code.
NOTE

Most QS facilities are provided in form of preprocessor macros. Depending on the global

macro Q_SPY, the QS facilities are either defined to provide actual QS services or are

“dummied-out” to prevent any code generation when the global macro Q_SPY is not defined.

That way, the QS instrumentation can be left in the code at all times but becomes active only

when the code is compiled with the macro Q_SPY defined. You typically define the macro
Q_SPY externally through the compiler option (usually –D).
Listing 11.3 shows the platform-independent header file <qp>\qpc\include\qs.h,

which specifies the active interface to all QS facilities. The platform-independent

header file <qp>\qpc\include\qs_dummy.h, shown in Listing 11.4, specifies the
www.newnespress.com

554 Chapter 11
inactive QS interface. Typically, you never need to explicitly include either of these

header files in your application, because they are already included by all instrumented

QP components. If the macro Q_SPY is defined, the QP components include the qs.h

header file; otherwise they include the qs_dummy.h header file.
Listing 11.3 Active QS interface (fragments of the header file
<qp>\qpc\include\qs.h)

#ifndef qs_h

#define qs_h

#ifndef Q_SPY

(1) #error "Q_SPY must be defined to include qs.h"

#endif

(2) enum QSpyRecords {

/* QEP records */

(3) QS_QEP_STATE_ENTRY, /**< a state was entered */

QS_QEP_STATE_EXIT, /**< a state was exited */

. . .

/* QF records */

(4) QS_QF_ACTIVE_ADD, /**< an AO has been added to QF (started) */

QS_QF_ACTIVE_REMOVE, /**< an AO has been removed from QF (stopped) */

QS_QF_ACTIVE_SUBSCRIBE, /**< an AO subscribed to an event */

QS_QF_ACTIVE_UNSUBSCRIBE, /**< an AO unsubscribed to an event */

QS_QF_ACTIVE_POST_FIFO, /**< an event was posted (FIFO) directly to AO */

. . .

/* QK records */

(5) QS_QK_MUTEX_LOCK, /**< the QK mutex was locked */

QS_QK_MUTEX_UNLOCK, /**< the QK mutex was unlocked */

QS_QK_SCHEDULE, /**< the QK scheduled a new task to execute */

. . .

/* Miscellaneous QS records */

(6) QS_SIG_DICTIONARY, /**< signal dictionary entry */

QS_OBJ_DICTIONARY, /**< object dictionary entry */

QS_FUN_DICTIONARY, /**< function dictionary entry */

QS_ASSERT, /** assertion failed */

. . .

/* User records */

(7) QS_USER /**< the first record available for user QS records */

};

. . .

/* Macros for adding QS instrumentation to the client code*/

(8) #define QS_INIT(arg_) QS_onStartup(arg_)

(9) #define QS_EXIT() QS_onCleanup()

(10) #define QS_FILTER_ON(rec_) QS_filterOn(rec_)

(11) #define QS_FILTER_OFF(rec_) QS_filterOff(rec_)

(12) #define QS_FILTER_SM_OBJ(obj_) (QS_smObj_ = (obj_))

www.newnespress.com

#define QS_FILTER_AO_OBJ(obj_) (QS_aoObj_ = (obj_))

#define QS_FILTER_MP_OBJ(obj_) (QS_mpObj_ = (obj_))

#define QS_FILTER_EQ_OBJ(obj_) (QS_eqObj_ = (obj_))

#define QS_FILTER_TE_OBJ(obj_) (QS_teObj_ = (obj_))

#define QS_FILTER_AP_OBJ(obj_) (QS_apObj_ = (obj_))

/* Macros to generate user QS records (formatted data output)*/

(13) #define QS_BEGIN(rec_, obj_) . . .

(14) #define QS_END() . . .

(15) #define QS_BEGIN_NOLOCK(rec_, obj_) . . .

(16) #define QS_END_NOLOCK() . . .

. . .

(17) #define QS_I8 (w_, d_) QS_u8((uint8_t) (((w_) << 4)) | QS_I8_T, (d_))

(18) #define QS_U8 (w_, d_) QS_u8((uint8_t) (((w_) << 4)) | QS_U8_T, (d_))

#define QS_I16(w_, d_) QS_u16((uint8_t)(((w_) << 4)) | QS_I16_T, (d_))

#define QS_U16(w_, d_) QS_u16((uint8_t)(((w_) << 4)) | QS_U16_T, (d_))

#define QS_I32(w_, d_) QS_u32((uint8_t)(((w_) << 4)) | QS_I32_T, (d_))

#define QS_U32(w_, d_) QS_u32((uint8_t)(((w_) << 4)) | QS_U32_T, (d_))

(19) #define QS_F32(w_, d_) QS_f32((uint8_t)(((w_) << 4)) | QS_F32_T, (d_))

(20) #define QS_F64(w_, d_) QS_f64((uint8_t)(((w_) << 4)) | QS_F64_T, (d_))

(21) #define QS_STR(str_) QS_str(str_)

(22) #define QS_STR_ROM(str_) QS_str_ROM(str_)

(23) #define QS_MEM(mem_, size_) QS_mem((mem_), (size_))

#if (QS_OBJ_PTR_SIZE == 1)

(24) #define QS_OBJ(obj_) QS_u8(QS_OBJ_T, (uint8_t)(obj_))

#elif (QS_OBJ_PTR_SIZE == 2)

(25) #define QS_OBJ(obj_) QS_u16(QS_OBJ_T, (uint16_t)(obj_))

#elif (QS_OBJ_PTR_SIZE == 4)

(26) #define QS_OBJ(obj_) QS_u32(QS_OBJ_T, (uint32_t)(obj_))

#else

(27) #define QS_OBJ(obj_) QS_u32(QS_OBJ_T, (uint32_t)(obj_))

#endif

#if (QS_FUN_PTR_SIZE == 1)

(28) #define QS_FUN(fun_) QS_u8(QS_FUN_T, (uint8_t)(fun_))

#elif (QS_FUN_PTR_SIZE == 2)

. . .

#endif

#if (Q_SIGNAL_SIZE == 1)

(29) #define QS_SIG(sig_, obj_) QS_u8 (QS_SIG_T, (sig_)); QS_OBJ_(obj_)

#elif (Q_SIGNAL_SIZE == 2)

. . .

#endif

/* Dictionary records ...*/

(30) #define QS_OBJ_DICTIONARY(obj_) . . .

(31) #define QS_FUN_DICTIONARY(fun_) . . .

(32) #define QS_SIG_DICTIONARY(sig_, obj_) . . .

Continued onto next page

www.newnespress.com

555Software Tracing for Event-Driven Systems

. . .

/* Macros used only internally in the QP code*/

(33) #define QS_BEGIN_(rec_, obj_) . . .

(34) #define QS_END_() . . .

(35) #define QS_BEGIN_NOLOCK_(rec_, obj_) . . .

(36) #define QS_END_NOLOCK_() . . .

/* QS functions for managing the QS trace buffer*/

(37) void QS_initBuf(uint8_t sto[], uint32_t stoSize);

(38) uint16_t QS_getByte(void); /* byte-oriented interface */

(39) uint8_t const *QS_getBlock(uint16_t *pNbytes); /* block-oriented interface */

/* QS callback functions, typically implemented in the BSP*/

(40) uint8_t QS_onStartup(void const *arg);

(41) void QS_onCleanup(void);

(42) void QS_onFlush(void);

(43) QSTimeCtr QS_onGetTime(void);

#endif /* qs_h */

556 Chapter 11
(1) A compile-time error is reported if the qs.h header file is included without

defining the Q_SPY macro (see also Listing 11.4(1)).

(2) The enumeration QSpyRecords defines all the standard QS record types.

(3-5) Each QP component generates specific QS record types. For example,

standard QS records are designed for entering a state (3), adding an active

object to the framework (4), or locking a QK mutex (5).

(6) Standard QS records include also miscellaneous records, like the dictionary

records (see Section 11.3.8).

(7) The list QS records can be extended by adding user-defined records. The user

records must start at the numerical value determined by QS_USER. Currently,

QS supports up to 256 records, from which the first 70 are reserved for the

standard, predefined records. This leaves 186 records for application-specific

records. I discuss application-specific records in Section 11.3.9.

(8,9) As I mentioned before, all QS services are defined as preprocessor macros.

That way, you can leave them in the code, even if software tracing is disabled.

Here the services for initializing and terminating QS are specified.

(10,11) These two macros implement the global QS filter, which turns tracing of a

given QS trace record on or off. I discuss QS filters in Section 11.3.5.
www.newnespress.com

557Software Tracing for Event-Driven Systems
(12) This macro implements the local QS filter. This filter type allows you selectively

trace only specified state machine object. I discuss QS filters in Section 11.3.5.

(13,14) These macros open and close an application-specific QS trace record.

I discuss the application-specific records in Section 11.3.9.

(15,16) These macros also open and close an application-specific QS trace record,

except they don’t lock and unlock interrupts. These macros are supposed to be

used inside an already established critical section.
NOTE

The QS trace buffer is obviously a shared resource, which must be protected against corrup-

tion. QS uses interrupt locking (critical section) as the mutual exclusion mechanism. The

macro QS_BEGIN() locks interrupts and the macro QS_END() unlocks interrupts, so the

whole QS record is saved to the QS buffer in one critical section. You should avoid produc-

ing big trace records because this could extend interrupt latency.
(17,18) These macros are used to output an unsigned 8-bit integer and a signed 8-bit

integer in an application-specific trace record.

(19,20) These two macros output a 32-bit and 64-bit IEEE floating-point numbers,

respectively, to an application-specific trace record.

(21) This macro outputs a zero-terminated string to an application-specific trace

record.

(22) This macro outputs a zero-terminated string allocated in ROM to an

application-specific trace record.
NOTE

Some Harvard CPU architectures use different instructions to access data in program mem-

ory (ROM) than in RAM.
(23) This macro outputs a memory block of specified length to an application-

specific trace record. The block size cannot exceed 255 bytes.

(24-27) The macro QS_OBJ() outputs an object pointer to an application-specific

trace record. Note how the actual macro definition depends on the object
www.newnespress.com

558 Chapter 11
pointer size defined by the macro QS_OBJ_PTR_SIZE. This idiom is used

quite often in QS.

(28) The macro QS_FUN() outputs a function pointer to an application-specific

trace record. Note how the actual macro definition depends on the function

pointer size defined by the macro QS_FUN_PTR_SIZE.

(29) The macro QS_SIG() outputs a signal value to an application-specific trace

record. Note how the actual macro definition depends on the signal size

defined by the macro Q_SIGNAL_SIZE.
NOTE

The macro QS_SIG() outputs both the signal value and state machine object pointer. This is

done to avoid ambiguities, when numerical signal values are reused in different state machines.
(30-32) These macros output various dictionary trace records to the QS trace buffer.

I discuss dictionary trace records in Section 11.3.8.

(33,34) These internal QS macros open and close an internal QS trace record.

(35,36) These internal macros also open and close an internal QS trace record, except

they don’t lock and unlock interrupts. These macros are supposed to be used

inside an already established critical section.

(37) The function QS_initBuf() initializes the QS buffer. The caller must

provide the storage for the buffer and its size. The function must be called

before QS trace buffer can be used, typically from QS_onStartup().

(38) The function QS_getByte() obtains 1 byte from the QS trace buffer (see

Section 11.3.7).

(39) The function QS_getBlock() obtains a contiguous block of data in QS trace

buffer (see Section 11.3.7).

(40) The QS_onStartup() callback function initializes the QS tracing output

and the trace buffer (see QS_initBuf()). The function returns the status of

initialization. It is called from the macro QS_INIT().

(41) The QS_onCleanup() callback function cleans up the QS tracing output.

The function is called from the macro QS_EXIT().
www.newnespress.com

559Software Tracing for Event-Driven Systems
(42) The QS_onFlush() callback function flushes the QS trace buffer to the host. The

function typically busy-waits until the whole buffer is transmitted to the host.

QS_onFlush() is called at the end of each dictionary record (see Section 11.3.8),

but you can also call it explicitly via macro QS_FLUSH(). I provide an example of

the QS_onFlush() callback implementation in Section 11.6.2.

(43) The QS_onGetTime() callback function returns the timestamp for a QS record.

I provide an example of the QS_onGetTime() callback implementation in

Section 11.6.3.
Listing 11.4 Inactive QS interface (fragments of the header file
<qp>\qpc\include\qs_dummy.h)

#ifndef qs_dummy_h
#define qs_dummy_h

#ifdef Q_SPY
(1) #error "Q_SPY must NOT be defined to include qs_dummy.h"

#endif

(2) #define QS_INIT(arg_) ((uint8_t)1)
(3) #define QS_EXIT() ((void)0)

#define QS_DUMP() ((void)0)
#define QS_FILTER_ON(rec_) ((void)0)
#define QS_FILTER_OFF(rec_) ((void)0)
#define QS_FILTER_SM_OBJ(obj_) ((void)0)
. . .

(4) #define QS_GET_BYTE(pByte_) ((uint16_t)0xFFFF)
(5) #define QS_GET_BLOCK(pSize_) ((uint8_t *)0)

(6) #define QS_BEGIN(rec_, obj_) if (0) {
(7) #define QS_END() }

#define QS_BEGIN_NOLOCK(rec_, obj_) QS_BEGIN(rec_, obj_)
#define QS_END_NOLOCK() QS_END()
#define QS_I8(width_, data_) ((void)0)
#define QS_U8(width_, data_) ((void)0)
. . .
#define QS_SIG(sig_, obj_) ((void)0)
#define QS_OBJ(obj_) ((void)0)
#define QS_FUN(fun_) ((void)0)

#define QS_SIG_DICTIONARY(sig_, obj_) ((void)0)
#define QS_OBJ_DICTIONARY(obj_) ((void)0)

Continued onto next page

www.newnespress.com

#define QS_FUN_DICTIONARY(fun_) ((void)0)
#define QS_FLUSH() ((void)0)

. . .
#endif /* qs_dummy_h */

560 Chapter 11
(1) A compile-time error is reported if the qs_dummy.h header file is included

when the Q_SPY macro is defined (see also Listing 11.3(1)).

(2) The dummy QS initialization always returns 1, meaning successful

initialization.

(3) Most other QS dummy macros are defined as ((void)0), which is a valid

empty C expression that can be terminated with a semicolon.

(4) The dummy QS macro for obtaining a byte from the trace buffer always returns

0xFFFF, which means that end of data is reached. I discuss QS API for

accessing the trace buffer in Section 11.3.7.

(5) The dummy QS macro for obtaining a block of data to output always returns a

NULL pointer, which means that there is no data in the buffer. I discuss

QS API for accessing the trace buffer in Section 11.3.7.

(6,7) The dummy QS macros for opening and closing a trace record compile as

if (0) {...}. Any active code between the braces is eliminated because of the

FALSE condition of the if statement.
NOTE

Some trace records might contain temporary variables and expressions that are only used for

the trace output. The “if (0) {” statement establishes a new scope to define such temporary

variables.
11.3.3 QS Critical Section

The QS target component must protect the internal integrity of the trace buffer, which is

shared among concurrently running tasks and interrupts (see Figure 11.3). To guarantee

mutually exclusive access to the trace buffer, QS uses the same mechanism as the

rest of the QP platform, that is, QS locks interrupts on entry to the critical section of

code and unlocks interrupts again on exit.
www.newnespress.com

561Software Tracing for Event-Driven Systems
When QS detects that the QF critical section macros QF_INT_LOCK()/

QF_INT_UNLOCK() are defined, QS uses the provided definitions for its own critical

section. However, when you use QS without the QF real-time framework, you need

to define the platform-specific interrupt locking/unlocking policy of QS in the

qs_port.h header file, as shown in Listing 11.5.
NOTE

QS can be used with just the QEP component or even completely standalone, without any

other QP components. In these cases, QS must provide its own, independent critical section

mechanism.

Listing 11.5 QS macros for interrupt locking and unlocking (file qs_port.h)

#define QS_INT_KEY_TYPE . . .
#define QS_INT_LOCK(key_) . . .
#define QS_INT_UNLOCK(key_) . . .
The QS macros are exactly analogous to the QF macros QF_INT_KEY_TYPE,

QF_INT_LOCK(), and QF_INT_UNLOCK(), respectively. Refer to Section 7.3 in

Chapter 7 for more details.
11.3.4 General Structure of QS Records

Like all software-tracing systems, QS logs the tracing data in discrete chunks called QS

trace records. These trace records have the general structure shown in Listing 11.6.

Listing 11.6 General structure of a QS record

QS_BEGIN_xxx(record_type) /* trace record begin */
QS_yyy(data); /* QS data element */
QS_zzz(data); /* QS data element */
. . . /* QS data element */

QS_END_xxx() /* trace record end */
Each trace record always begins with one variant of the macro QS_BEGIN_xxx() and

ends with the matching macro QS_END_xxx().
www.newnespress.com

NOTE

The macros QS_BEGIN_xxx() and QS_END_xxx() are not terminated with the semicolon.

562 Chapter 11
Sandwiched between these two macros are the data-generating macros that actually

insert individual data elements into the QS trace buffer. QS provides four variants of the

begin/end macro pairs for different purposes (Listing 11.3(13-16 and 33-36)).

The first two variants (Listing 11.3(13-16)) are for creating application-specific QS

records (see Section 11.3.9). The QS_BEGIN()/QS_END() pair locks interrupts at the

beginning of the record and unlocks at the end. The pair QS_BEGIN_NOLOCK()/

QS_END_NOLOCK() is for application-specific records without entering the QS critical

section and should be used only within an already established critical section.

The third and fourth variants of the begin-record/end-record QS macros (Listing 11.3

(33-36)) are for internal use within QP components to generate the predefined QS

records. Such predefined records are generated with QS_BEGIN_()/QS_END_() or

QS_BEGIN_NOLOCK_()/QS_END_NOLOCK_() macro pairs, depending whether a

critical section must be entered or not.
11.3.5 QS Filters

One of the main roles of the begin-record macros QS_BEGIN_xxx() is to implement the

filtering of QS records before they reach the trace buffer. QS provides two complementary

levels of filtering: the global on/off filter and local filters (see Figure 11.3).

Global On/Off Filter

The global on/off filter is based on the record IDs. The qs.h header file provides the

enumeration of all the predefined internal trace records IDs that are already

instrumented into the QP components (Listing 11.3(2)). The enumeration of the

predefined records ends with the QS_USER value, which is the first numerical value

available for application-specific trace records. I discuss the application-specific trace

records in Section 11.3.9.

The global on/off filter is efficiently implemented by means of an array of bitmasks

QS_glbFilter_[], where each bit represents one trace record. Currently the

QS_glbFilter_[] array contains 32 bytes for a total of 32*8 bits for 256 different
www.newnespress.com

563Software Tracing for Event-Driven Systems
trace records. A little more than a quarter of these records are already taken by the

predefined QP trace records. The remaining three quarters are available for

application-specific use.

The macro QS_BEGIN() for opening a trace record shows how the global on/off filter is

implemented:

#define QS_BEGIN(rec_, obj_) \
if (((QS_glbFilter_[(uint8_t)(rec_) >> 3U] \

& (1U << ((uint8_t)(rec_) & 7U))) != 0) . . .\
The global on/off filter works by checking the state of the bit corresponding to the given

trace record argument “rec_.” This check is accomplished by the familiar expression

(bitmask & bit) != 0, where the bitmask is QS_glbFilter_[(uint8_t)

(rec_) >> 3U] and the bit is (1U << ((uint8_t)(rec_) & 7U)). Note that for any

constant value of the argument rec_, both the bitmask and the bit are compile-time

constants. For example, a global filter check for a record ID of 46, say, costs as much as

the expression ((QS_glbFilter_[5] & 0x40) != 0).
NOTE

The global filter is specifically implemented to use byte-size computations only to be effi-

cient even on 8-bit machines.
QS provides a simple interface for setting and clearing individual bits in the

QS_glbFilter_[] bitmask array. The macro QS_FILTER_ON(rec_) turns on the bit

corresponding to record “rec_.” Conversely, the macro QS_FILTER_OFF(rec_)

turns off the bit corresponding to record “rec_.” In both cases, the special constant

QS_ALL_RECORDS affects all records. Specifically, QS_FILTER_ON

(QS_ALL_RECORDS) turns on all records, and QS_FILTER_OFF(QS_ALL_RECORDS)

turns off all records. Examples of these macros are provided in Listing 11.16.

Just after QS initialization, the global on/off filter is set to OFF for all record types.

You need to explicitly turn the filter ON for some records to enable the tracing.
www.newnespress.com

NOTE

Globally disabling all records through QS_FILTER_OFF(QS_ALL_RECORDS) is a useful way

of implementing a software-tracing trigger. You can use this trigger to rapidly stop the

tracing after an interesting event, to prevent new trace data from overwriting interesting data

in case the data uplink to the host cannot keep up with the production rate of new trace data.

564 Chapter 11
Local Filters

The local filters allow generation of trace records only for specified objects. For

example, you might set up a local filter to log only activities of a given state machine

object. Independently, you might set up another local filter to log only activities of a

given memory pool.

The Table 11.1 summarizes all specified local filters and the predefined QS records

controlled by these filters.
Table 11.1: Local filter summary

Local Filter
Object
Type Example Applies to QS Records

QS_FILTER_SM_OBJ() State
machine

QS_FILTER_SM_OBJ
(&l_qhsmTst);

QS_QEP_STATE_EMPTY,
QS_QEP_STATE_ENTRY,
QS_QEP_STATE_EXIT,
QS_QEP_STATE_INIT,
QS_QEP_INIT_TRAN,
QS_QEP_INTERN_TRAN,
QS_QEP_TRAN,
QS_QEP_IGNORED

QS_FILTER_AO_OBJ() Active
object

QS_FILTER_AO_OBJ
(&l_philo[3]);

QS_QF_ACTIVE_ADD,
QS_QF_ACTIVE_REMOVE,
QS_QF_ACTIVE_SUBSCRIBE,
QS_QF_ACTIVE_UNSUBSCRIBE,
QS_QF_ACTIVE_POST_FIFO,
QS_QF_ACTIVE_POST_LIFO,
QS_QF_ACTIVE_GET,
QS_QF_ACTIVE_GET_LAST

QS_FILTER_MP_OBJ()1 Memory
pool

QS_FILTER_MP_OBJ
(l_regPoolSto);

QS_QF_MPOOL_INIT,
QS_QF_MPOOL_GET
QS_QF_MPOOL_PUT,

www.newnespress.com

Table 11.1: Local filter summary—Cont’d

Local Filter
Object
Type Example Applies to QS Records

QS_FILTER_EQ_OBJ()2 Event
queue

QS_FILTER_EQ_OBJ
(l_philQueueSto[3]);

QS_QF_EQUEUE_INIT,
QS_QF_EQUEUE_POST_FIFO,
QS_QF_EQUEUE_POST_LIFO,
QS_QF_EQUEUE_GET,
QS_QF_EQUEUE_GET_LAST

QS_FILTER_TE_OBJ() Time event QS_FILTER_TE_OBJ
(&l_philo[3].
timeEvt);

QS_QF_TICK,
QS_QF_TIMEEVT_ARM,
QS_QF_TIMEEVT_AUTO_DISARM,
QS_QF_TIMEEVT_DISARM_ATTEMPT,
QS_QF_TIMEEVT_DISARM,
QS_QF_TIMEEVT_REARM,
QS_QF_TIMEEVT_POST,
QS_QF_TIMEEVT_PUBLISH

QS_FILTER_AP_OBJ() Generic
application
object

QS_FILTER_AP_OBJ
(&myAppObject);

Application-specific records starting
with QS_USER

1Memory pool is referenced by the memory buffer managed by the pool.
2Event queue is referenced by the ring buffer managed by the queue.

565Software Tracing for Event-Driven Systems
The first column of Table 11.1 enlists the QS macros you need to use to set/clear the

local filters. For example, you specify the state machine local filter by invoking:

QS_FILTER_SM_OBJ(aStateMachinePointer);
where aStateMachinePointer is the pointer to the state machine object you want to

trace.

You deactivate any local filter by passing the NULL pointer to the appropriate QS

macro. For example, to open up the local filter for all state machine objects, you write

the following code:

QS_FILTER_SM_OBJ(0);
s
Just after QS initialization, all local filters are set to NULL , meaning that the local filter

are open for all objects.
www.newnespress.com

566 Chapter 11
The highlighted code in the QS_BEGIN_NOLOCK()macro definition shows the actual

implementation of the local filter for the application-specific objects:

#define QS_BEGIN_NOLOCK(rec_, obj_) \
if (((QS_glbFilter_[(uint8_t)(rec_) >> 3U] \

& (1U << ((uint8_t)(rec_) & 7U))) != 0) \
&& ((QS_apObj_ == (void *)0) || (QS_apObj_ == (obj_)))) \

{ \
. . .
The QS local filters are closely related to the object dictionary records (see Section

11.3.8) and both facilities consistently use the same conventions.
11.3.6 QS Data Protocol

The data transmission protocol used in QS to transmit trace data from the target to the

host is one of its greatest strengths. The protocol is very lightweight but has many

elements of the HDLC protocol defined by the ISO.

The QS protocol has been specifically designed to simplify the data management

overhead in the target yet allow detection of any data dropouts due to the trace buffer

overruns. The protocol has not only provisions for detecting gaps in the data and

other errors but allows for instantaneous resynchronization after any error, to minimize

data loss.
...

Frame Frame Frame Frame Frame

Seq
No.

Rec
ID

Data Check
sum

Flag
0x7E

. . .

. . .

. . .

1111 N (= 0, 1, ...)Bytes:

Figure 11.4: QS transmission protocol.

www.newnespress.com

567Software Tracing for Event-Driven Systems
The QS protocol transmits each trace record in an HDLC-like frame. The upper part

of Figure 11.4 shows the serial data stream transmitted from the target containing frames

of different lengths. The bottom part of Figure 11.4 shows the details of a single frame:

1. Each frame starts with the Frame Sequence Number byte. The target QS

component increments the Frame Sequence Number for every frame inserted

into the circular buffer. The Sequence Number naturally rolls over from 255 to

0. The Frame Sequence Number allows the QSPY host component to detect

any data discontinuities.

2. Following the Frame Sequence Number is the Record ID byte, which is one of

the predefined QS records (see Listing 11.3(2)) or an application-specific

record (see Section 11.3.9).

3. Following the Record ID is zero or more data bytes.

4. Following the data is the Checksum. The Checksum is computed over the

Frame Sequence Number, the Record ID, and all the data bytes. The next

section gives the detailed checksum computation formula.

5. Following the Checksum is the HDLCFlag, which delimits the frame. TheHDLC

Flag is the 01111110 binary string (0x7E hexadecimal). Note that the QS protocol

uses only one HDLC Flag at the end of each frame and no HDLC Flag at the

beginning of a frame. In other words, only one Flag is inserted between frames.

The QS target component performs the HDLC-like framing described above at the

time the bytes are inserted into the circular trace buffer. This means that the data in the

buffer is already cleanly divided into frames and can be transmitted in any chunks,

typically not aligned with the frame boundaries.
Transparency

One of the most important characteristics of HDLC-type protocols is establishing very

easily identifiable frames in the serial data stream. Any receiver of such a protocol can

instantaneously synchronize to the frame boundary by simply finding the Flag byte.

This is because the special Flag byte can never occur within the content of a frame.

To avoid confusing unintentional Flag bytes that can naturally occur in the data stream

with an intentionally sent Flag, HDLC uses a technique known as transparency (a.k.a.

byte stuffing or escaping) to make the Flag bytes transparent during the transmission.

Whenever the transmitter encounters a Flag byte in the data, it inserts a 2-byte escape
www.newnespress.com

568 Chapter 11
sequence to the output stream. The first byte is the Escape byte, defined as binary

01111101 (hexadecimal 0x7D). The second byte is the original byte XOR-ed with 0x20.

Of course, now the Escape byte itself must also be transparent to avoid interpreting an

unintentional Escape byte as the 2-byte escape sequence. The procedure of escaping

the Escape byte is identical to that of escaping the Flag byte.

The transparency of the Flag and Escape bytes complicates slightly the computation

of the Checksum. The transmitter computes the Checksum over the Frame Sequence

Number, the Record ID, and all data bytes before performing any byte stuffing.

The receiver must apply the exact reversed procedure of performing the byte unstuffing

before computing the Checksum.

An example might make this clearer. Suppose that the following trace record needs to

be inserted to the trace buffer (the transparent bytes are shown in bold):

Record ID = 0x7D, Record Data = 0x7D 0x08 0x01
Assuming that the current Frame Sequence Number is, say, 0x7E, the Checksum will be

computed over the following bytes:
Checksum == (uint8_t)(~(0x7E + 0x7D + 0x7D + 0x08 + 0x01)) == 0x7E
and the actual frame inserted into the QS trace buffer will be as follows:
0x7D 0x5E 0x7D 0x5D 0x7D 0x5D 0x08 0x01 0x7D 0x5E 0x7E
Obviously, this is a degenerated example, where the Frame Sequence Number, the

Record ID, a data byte, and the Checksum itself turned out to be the transparent bytes.

Typical overhead of transparency with real trace data is one escape sequence per several

trace records.

Endianness

In addition to the HDLC-like framing, the QS transmission protocol specifies the

endianness of the data to be little endian. All multibyte data elements, such as 16- and

32-bit integers, pointers, and floating-point numbers, are inserted into the QS trace
www.newnespress.com

569Software Tracing for Event-Driven Systems
buffer in the little-endian byte order (least significant byte first). The QS data inserting

macros (see Listing 11.3(17-23)) place the data in the trace buffer in a platform-neutral

manner, meaning that the data is inserted into the buffer in the little-endian order

regardless of the endianness of the CPU. Also, the data-inserting macros copy the data

to the buffer 1 byte at a time, thus avoiding any potential data misalignment problems.

Many embedded CPUs, such as ARM, require certain alignment of 16- and 32-bit

quantities.

11.3.7 QS Trace Buffer

As described in the previous section, the QS target component performs the

HDLC-like framing at the time the bytes are inserted into the QS trace buffer. This

means that only complete frames are placed in the buffer, which is the pivotal point in

the design of the QS target component and has two important consequences.

First, the use of HDLC-formatted data in the trace buffer allows decoupling the data

insertion into the trace buffer from the data removal out of the trace buffer. You can

simply remove the data in whichever chunks you like, without any consideration for

frame boundaries. You can employ just about any physical data link available

on the target for transferring the trace data from the target to the host.

Second, the use of the formatted data in the buffer enables the “last is best” tracing

policy. The QS transmission protocol maintains both the Frame Sequence Number and

the Checksum over each trace record, which means that any data corruption caused by

overrunning the old data with the new data can be always reliably detected. Therefore,

the new trace data is simply inserted into the circular trace buffer, regardless of whether

it perhaps overwrites the old data that hasn’t been sent out yet or is in the process of

being sent. The burden of detecting any data corruption is placed on the QSPY host

component. When you start missing the frames (which the host component easily

detects by discontinuities in the Frame Sequence Number), you have several options.

You can apply some additional filtering, increase the size of the buffer, or improve the

data transfer throughput.

Initializing the QS Trace Buffer QS_initBuf()

Before you can start producing trace data, you must initialize the QS trace buffer

by calling the QS_initBuf() function. Typically, you invoke this function from

the QS_onStartup() callback, which you typically define in your application.

Listing 11.7 shows an example of initializing the QS trace buffer.
www.newnespress.com

Listing 11.7 Initializing QS trace buffer with QS_initBuf()

(1) #ifdef Q_SPY /* define QS callbacks */

(2) uint8_t QS_onStartup(void const *arg) {
(3) static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */
(4) QS_initBuf(qsBuf, sizeof(qsBuf));

Initialize the QS data link

return success; /* return 1 for success and 0 for failure */
}
#endif /* Q_SPY */

570 Chapter 11
(1) The QS callback functions (such as QS_onStartup()) are defined only when QS

tracing is enabled.

(2) At a minimum, the QS_onStartup() callback function must initialize the QS

trace buffer.

(3) You need to statically allocate the storage for the QS trace buffer. The size of the

buffer depends on the nature of your application and the data link to the host.

Obviously, a bigger buffer is needed if you want to trace events occurring at a high

rate and producing a higher volume of trace data. On the other hand, using a

higher-bandwidth data link to the host allows you to reduce the size of the trace

buffer.

(4) The QS_initBuf() function initializes internal QS variables to use the provided

trace buffer.
NOTE

QS can work with a trace buffer of any size, but smaller buffers will lose data if the buffer

“wraps around.” You will always know when any data loss occurs, however, because the

QS data protocol maintains a sequence number in every trace record (see Section 11.3.6).

When the QSPY host application detects a discontinuity in the sequence numbers, it produces

the following message:

*** Incorrect record past seq=xxx

*** Dropped yy records

www.newnespress.com

571Software Tracing for Event-Driven Systems
You have several options to avoid losing trace records due to data overruns. You can

increase the size of the trace buffer (Listing 11.7(3)) or apply more filtering to reduce

the amount of trace data produced (see Section 11.3.5). You can also employ a faster

data link to the host. Finally, sometimes you can improve the data throughput by

changing the policy of sending trace data to the host. For example, using only the idle

processing might not utilize the full available bandwidth of the data link if the idle

processing executes too infrequently.
Byte-Oriented Interface: QS_getByte()

The lack of any constraints on removing the data from the trace buffer means that you

can remove 1 byte at a time at arbitrary time instances. QS provides the function

QS_getByte() for such byte-oriented interfaces. The signature of QS_getByte() is

shown in Listing 11.3(38). Listing 11.8 shows an example of how to use this function.

The QS_getByte() function returns the byte in the least significant 8 bits of the 16-bit

return value if the byte is available. If the trace buffer has no more data, the function

returns QS_EOD (end-of-data), which is defined in qs.h as ((uint16_t)0xFFFF).
NOTE

The function QS_getByte() does not lock interrupts internally and is not reentrant. You

should always design your software such that QS_getByte() is called with interrupts

locked. In addition, an application should consistently use either the byte-oriented interface

QS_getByte() or the block-oriented interface QS_getBlock() (see the next subsection),

but never both at the same time.

Listing 11.8 Using QS_getByte() to output data
to a 16550-compatible UART

(1) void QF_onIdle(void) { /* called with interrupts LOCKED */

(2) QF_INT_UNLOCK(dummy); /* always unlock interrupts */

(3) #ifdef Q_SPY

(4) if ((inportb(l_uart_base + 5) & (1 << 5)) != 0) { /* THR Empty? */

(5) uint8_t fifo = UART_16550_TXFIFO_DEPTH;/*depth of the 16550 Tx FIFO */

(6) uint16_t b;
(7) QF_INT_LOCK(dummy);

Continued onto next page

www.newnespress.com

(8) while ((fifo != 0)

(9) && ((b = QS_getByte()) != QS_EOD)) /* get the next byte */
{

(10) QF_INT_UNLOCK(dummy);

(11) outportb(l_base + 0, (uint8_t)b); /* insert byte into TX FIFO */

(12) --fifo;

(13) QF_INT_LOCK(dummy);

}

(14) QF_INT_UNLOCK(dummy);

}

#endif

}

572 Chapter 11
(1) Idle processing is ideal for implementing trace data output. In this example, I use

the QF_onIdle() idle callback of the cooperative vanilla kernel (see Section

8.2.4 in Chapter 8).

(2) As explained at the end of Section 7.11.1 in Chapter 7, the QF_onIdle() idle

callback is invoked with interrupts locked and it always must unlock interrupts.

(3) The QS trace buffer output is performed only when QS is active, that is, when the

macro Q_SPY is defined.

(4) The Transmitter Holding Register Empty bit of the 16550 UART is checked.

(5) The 16550 UART can accept up to the TX FIFO depth bytes (typically 16).

(6) The temporary variable ‘b’ will hold the return value from QS_getByte(). Note

that it is 2 bytes wide.

(7) Interrupts are locked before calling QS_getByte().

(8) The loop continues until there is room in the TX FIFO.

(9) The QS_getByte() function is called to obtain the next trace byte to transmit.

The return value of QS_EOD indicates end of data.

(10) Interrupts can be unlocked.

(11) The trace byte is written to the Transmitter Holding Register.

(12) One less byte is available in the TX FIFO.

(13) Interrupts are locked to make another call to QS_getByte().

(14) Interrupts are unlocked before returning to the caller.
www.newnespress.com

573Software Tracing for Event-Driven Systems
Block-Oriented Interface: QS_getBlock()

QS also provides an alternative block-oriented interface for obtaining a contiguous

block of data at a time. QS provides the function QS_getBlock() for such block-

oriented interface. The signature of QS_getBlock() is shown in Listing 11.3(39).

Such a block-oriented interface is very useful for DMA-type transfers. Listing 11.9

shows an example of how to use this function.

If any bytes are available at the time of the call, the function returns the pointer to the

beginning of the data block within the QS trace buffer and writes the number of

contiguous bytes in the block to the location pointed to by pNbytes. The value of

*pNbytes is also used as input to limit the maximum size of the data block that the

caller can accept. Note that the bytes are not copied from the trace buffer.

If no bytes are available in the QS buffer when the function is called, the function

returns a NULL pointer and sets the value pointed to by pNbytes to zero.

You should not assume that the QS trace buffer becomes empty after QS_getBlock()

returns a data block with fewer bytes than the initial value of *pNbytes. Sometimes the

data block falls close to the end of the trace buffer and you need to call QS_getBlock()

again to obtain the rest of the data that “wrapped around” to the beginning of the QS data

buffer. After the QS_getBlock() returns a memory block to the caller, the caller

must transfer all the bytes in the returned block before calling QS_getBlock() again.
NOTE

The function QS_getBlock() does not lock interrupts internally and is not reentrant. You

should always design your software such that QS_getBlock() is called with interrupts

locked.

Listing 11.9 Using QS_getBlock() to output data
to a 16550-compatible UART

(1) void QF_onIdle(void) { /* called with interrupts LOCKED */

(2) QF_INT_UNLOCK(dummy); /* always unlock interrupts */

(3) #ifdef Q_SPY

(4) if ((inportb(l_uart_base + 5) & (1 << 5)) != 0) { /* THR Empty? */

(5) uint16_t fifo = UART_16550_TXFIFO_DEPTH; /* 16550 Tx FIFO depth */
(6) uint8_t const *block;

Continued onto next page

www.newnespress.com

(7) QF_INT_LOCK(dummy);

(8) block = QS_getBlock(&fifo); /* try to get next block to transmit */
(9) QF_INT_UNLOCK(dummy);

(10) while (fifo– – != 0) { /* any bytes in the block? */

(11) outportb(l_uart_base + 0, *block++);

}

}

#endif

}

574 Chapter 11
(1) Idle processing is ideal for implementing trace data output. In this example, I use

the QF_onIdle() idle callback of the cooperative vanilla kernel (see Section

8.2.4 in Chapter 8).

(2) As explained at the end of Section 7.11.1 in Chapter 7, the QF_onIdle() idle

callback is invoked with interrupts locked and it always must unlock interrupts.

(3) The QS trace buffer output is performed only when QS is active, that is, when the

macro Q_SPY is defined.

(4) The Transmitter Holding Register Empty bit of the 16550 UART is checked.

(5) The 16550 UART can accept up to the TX FIFO depth bytes (typically 16).

(6) The temporary pointer ‘block’ will hold the return value from

QS_getBlock().

(7) Interrupts are locked before calling QS_getBlock().

(8) The QS_getBlock() function is called to obtain the contiguous block of trace

data to transmit.

(9) Interrupts can be unlocked.

(10) The loop continues while there is room in the TX FIFO.

(11) The trace byte is written to the Transmitter Holding Register.
11.3.8 Dictionary Trace Records

By the time you compile and load your application image to the target, the symbolic

information about the object names, function names, and signal names is stripped from the

code. Therefore, if you want to have the symbolic information available to the QSPY host-

resident component, you need to supply it somehow to the software-tracing system.
www.newnespress.com

575Software Tracing for Event-Driven Systems
QS provides special trace records designed expressly for including the symbolic

information about the target code in the trace itself. The dictionary records included in

the trace for the QSPY host application are very much like the symbolic information

embedded in the object files for the traditional single-step debugger.

The dictionary trace records are not absolutely required to generate the trace in the same

way as the symbolic information in the object files is not absolutely required to debug

code. However, in both cases, the availability of the symbolic information greatly

improves productivity in working with the software trace or the debugger.

QS supports three types of dictionary trace records: object dictionary, function

dictionary, and signal dictionary. The following subsections cover these types in detail.
NOTE

As all QS trace records, the dictionary trace records are generated in a critical section of code,

that is, interrupts are locked for the time the data is inserted into the QS trace buffer. Addition-

ally, after unlocking interrupts, the callback function QS_onFlush() is invoked at the end of

each dictionary record. This callback function typically busy-waits until all data are sent out

to the host, which might take considerable time. For that reason, dictionary entries should be

generated only during the system initialization, when the real-time constraints do not yet apply.
Object Dictionaries

Object dictionaries are generated with the macro QS_OBJ_DICTIONARY() that

associates the address of the object in memory with its symbolic name. Listings 11.19

and 11.20 provide some examples of how you use this macro. The

QS_OBJ_DICTIONARY() macro takes only one argument, the address of the object, and

uses internally the “stringizing” preprocessor operator to convert the provided argument

to a C string. Therefore, you should invoke the QS_OBJ_DICTIONARY() macro

with meaningfully named persistent objects, such as &l_table, or &l_philo[3], and

not generic pointers, such as “me” (or “this” in C++), because the latter will not

help you much in recognizing the object name in the trace.

Table 11.2 enlists object dictionaries you can provide to furnish the symbolic

information used by the QSPY data output. Note that QS identifies memory pools by

the memory buffer managed by the memory pool, because the actual memory pool

objects are buried inside the QF framework and are not accessible to the application

developer. In addition, event queues are identified by the ring buffer managed by the

queue, not by the queue object itself.
www.newnespress.com

Table 11.2: Object dictionaries required for the predefined QS records

Object Type Example(s) QS Records

State machine QS_OBJ_DICTIONARY
(&l_table); See Listing
11.19(3)

QS_QEP_STATE_EMPTY,
QS_QEP_STATE_ENTRY,
QS_QEP_STATE_EXIT,
QS_QEP_STATE_INIT,
QS_QEP_INIT_TRAN,
QS_QEP_INTERN_TRAN,
QS_QEP_TRAN,
QS_QEP_IGNORED

Active object QS_OBJ_DICTIONARY
(&l_philo[0]); See Listing
11.20(4)

QS_QF_ACTIVE_ADD,
QS_QF_ACTIVE_REMOVE,
QS_QF_ACTIVE_SUBSCRIBE,
QS_QF_ACTIVE_UNSUBSCRIBE,
QS_QF_ACTIVE_POST_FIFO,
QS_QF_ACTIVE_POST_LIFO,
QS_QF_ACTIVE_GET,
QS_QF_ACTIVE_GET_LAST

Memory pool1 QS_OBJ_DICTIONARY
(l_smlPoolSto); See Listing
11.16(7)

QS_QF_MPOOL_INIT,
QS_QF_MPOOL_GET
QS_QF_MPOOL_PUT,

Event queue2 QS_OBJ_DICTIONARY
(l_philQueueSto[0]); See
Listing 11.16(9)

QS_QF_EQUEUE_INIT,
QS_QF_EQUEUE_POST_FIFO,
QS_QF_EQUEUE_POST_LIFO,
QS_QF_EQUEUE_GET,
QS_QF_EQUEUE_GET_LAST

Time event QS_OBJ_DICTIONARY
(&l_philo[0].timeEvt); See
Listing 11.20(5)

QS_QF_TICK,
QS_QF_TIMEEVT_ARM,
QS_QF_TIMEEVT_AUTO_DISARM,
QS_QF_TIMEEVT_DISARM_ATTEMPT,
QS_QF_TIMEEVT_DISARM,
QS_QF_TIMEEVT_REARM,
QS_QF_TIMEEVT_POST,
QS_QF_TIMEEVT_PUBLISH

1Memory pool is referenced by the memory buffer managed by the pool.
2Event queue is referenced by the ring buffer managed by the queue.

576 Chapter 11
The object dictionary records are closely related to the QS local filters (see Section

11.3.5). Both facilities consistently use the same conventions. For example, a local filter

for a specific memory pool is selected by means of the QS_FILTER_MP_OBJ() macro,
www.newnespress.com

577Software Tracing for Event-Driven Systems
which accepts a pointer to the memory buffer managed by the memory pool.

Similarly, a local filter for a specific event queue is selected by means of the

QS_FILTER_EQ_OBJ() macro, which accepts a pointer to the ring buffer managed by

the event queue.

Function Dictionaries

Function dictionaries are generated with the macro QS_FUN_DICTIONARY(), which

associates the address of the function in memory with its symbolic name. Listing 11.19

(4-6) provides examples of how you use this macro. The main purpose of the function

dictionaries is to provide symbolic names for state-handler functions.

The QS_FUN_DICTIONARY() macro takes only one argument: the address of the

function, and uses internally the “stringization” preprocessor operator to convert the

provided argument to a C string.

Signal Dictionaries

Signal dictionaries are generated with the macro QS_SIG_DICTIONARY() that

associates the numerical value of the event signal and the state machine object to the

symbolic name of the signal.

The reason for using both the signal value and the state machine object rather than just

the signal value is that a signal value alone is not sufficient to uniquely identify the

symbolic signal. Only the globally published signals are required to be systemwide

unique. Other signals, used only locally, can have completely different meanings for

different state machines in the system.

The QS_SIG_DICTIONARY() macro takes two arguments: the numerical value of the

signal and the address of the state machine object. The macro uses internally the

“stringization” preprocessor operator to convert the provided signal argument to a

string. The state machine object is not converted to a string, so the actual variable name

you use is irrelevant.

Listing 11.19(7-10) provides examples of how you use the QS_SIG_DICTIONARY()

macro. Listing 11.19(7-9) shows how to specify globally published signals that are

associated with multiple state machines. In this case, you specify NULL as the state

machine object. In contrast, Listing 11.19(10) shows a dictionary entry for the local

signal TIMEOUT_SIG. This signal is associated only with the Philosopher state

machines.
www.newnespress.com

578 Chapter 11
11.3.9 Application-Specific QS Trace Records

The application-specific QS records allow you to generate tracing information from the

application-level code. You can think of the application-specific records as an

equivalent to printf() but with much less overhead. Listing 11.10 shows an example

of an application-specific QS record.
Listing 11.10 Example of an application-specific trace record

QS_BEGIN(MY_QS_RECORD, myObjectPointer) /* trace record begin */
QS_STR("Hello"); /* string data element */
QS_U8(3, n); /* uint8_t data, 3-decimal digits format */
. . . /* QS data */
QS_MEM(buf, sizeof(buf)); /* memory block of a given size */

QS_END() /* trace record end */
In most cases, the application-specific records are enclosed with the QS_BEGIN()/

QS_END() pair of macros. This pair of macros locks interrupts at the beginning and

unlocks at the end of each record (see Section 11.3.3). Occasionally you would want to

generate trace data from within already established critical sections or ISRs. In such

rare occasions, you would use the macros QS_BEGIN_NOLOCK()/QS_END_NOLOCK()

to avoid nesting of critical sections.

The record-begin macro QS_BEGIN() takes two arguments. The first argument (e.g.,

MY_QS_RECORD) is the enumerated record type, which is used in the global on/off filter

(Section 11.3.5) and is part of the each record header. The application-specific record

types must start with the value QS_USER to avoid overlap with the predefined QS

records already instrumented into the QP components.

The second argument (e.g., myObjectPointer) is used for the local filter, which

allows you to selectively log only specific application-level objects. Listing 11.21

shows an example of an application-specific trace record, including the use of the

second parameter of the QS_BEGIN() macro.
NOTE

If you don’t want to use the local filter for a given application-specific trace record, you can

use NULL as the second argument to the macros QS_BEGIN() or QS_BEGIN_NOLOCK(). That

way, the trace record will always be produced, regardless of the setting of the application-

specific local filter.

www.newnespress.com

579Software Tracing for Event-Driven Systems
Sandwiched between the QS_BEGIN()/QS_END() macros are data elements that you

want to store in the trace record. The macros for generating the data elements are shown

in Listing 11.3(17-23). The supported data elements include signed and unsigned

integers of 8-bit, 16-bit, and 32-bit size; floating-point numbers of 32-bit and 64-bit

size; zero-terminated strings; and variable-size memory blocks. Special macros are also

provided for inserting platform-dependent elements, such as event signals, object

pointers, and function pointers. For these configurable or platform-specific data

elements, QS logs only the minimal number of bytes required on the given platform.
Seq
No.

Rec
ID

Chk
sum

Flag
0x7E

QS_TIME_SIZE

Time
stamp

fmt ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’ fmt n
. . .

fmt size
buf
[0]

buf
[1]

buf
[2]

. . .

QS_STR(“Hello”); QS_U8(3, n)

QS_MEM(buf, sizeof(buf))

MY_QS_RECORD

Figure 11.5: Encoding of the application-specific trace record from Listing 11.10
(escaping bytes are omitted for clarity).
The biggest challenge in supporting arbitrary trace records is that the host-resident

component (the QSPY application) doesn’t “know” the structure of such records, so the

data type information must be stored with the data itself. Figure 11.5 shows the

encoding of the application-specific trace record from Listing 11.10. The application-

specific trace record, like all QS records, starts with the Sequence Number and the

Record ID (see Section 11.3.6). Every application-specific trace record also contains the

timestamp immediately following the Record ID. The number of bytes used by the

timestamp is configurable by the macro QS_TIME_SIZE. After the timestamp, you see

the data elements, such as the “Hello” string, an unsigned byte ‘n,’ some other data, and

finally a memory block. Each of these data elements starts with a format byte, which

actually contains both the data-type information (in the lower nibble) and the format

width for displaying that element (in the upper nibble). For example, the data element

QS_U8(3, n) will cause the value ‘n’ to be encoded as uint8_t with the format width

of 3 decimal digits. The maximum allowed format width is 15 decimal digits.
www.newnespress.com

580 Chapter 11
As shown in Listing 11.10, you can place many data elements of any kind in any order

inside an application-specific record. The only limitation is that a complete record

must fit in the QS trace buffer. Of course, you should avoid big trace records anyway, to

keep the critical sections short (QS records are always placed in the buffer in a

critical section of code). Furthermore, you might want to conserve the buffer space.
11.3.10 Porting and Configuring QS

When you use QS in your application, you are responsible for adapting QS to the CPU,

compiler, and kernel/RTOS of your choice. Such adaptation is called a port.

The code accompanying this book contains the QS ports and application examples

for 80x86 (vanilla, QK, uC/OS-II, and Linux) as well as for Cortex-M3 (vanilla

and QK kernels).

The source code for a QS port is organized in the same way as any other port of a QP

component, as described in Chapter 8. The QS platform-specific code consists only

of qs_port.h and QS callback functions defined typically in the board support

package (bsp.c) of your application. Listing 11.11 shows an example of the

qs_port.h header file for 80x86, QK/DOS, large memory model. Section 11.6

provides examples of the QS callback functions such as QS_onStartup(),

QS_onCleanup(), QS_onFlush(), and QS_onGetTime().
Listing 11.11 QS port header file for 80x86, QK/DOS, large memory model
(<qp>\qpc\ports\80x86\qk\tcpp101\l\qs_port.h)

#ifndef qs_port_h
#define qs_port_h

(1) #define QS_OBJ_PTR_SIZE 4
(2) #define QS_FUN_PTR_SIZE 4
(3) #define QS_TIME_SIZE 4

(4) #include "qf_port.h" /* use QS with QF */
(5) #include "qs.h" /* QS platform-independent public interface */

#endif /* qs_port_h */
(1) The macro QS_OBJ_PTR_SIZE specifies the size (in bytes) of an object pointer on

the particular platform.
www.newnespress.com

581Software Tracing for Event-Driven Systems
(2) The macro QS_FUN_PTR_SIZE specifies the size (in bytes) of a function pointer

on the particular platform.

(3) The macro QS_TIME_SIZE configures the size (in bytes) of the QS time stamp

QSTimeCtr (see also Listing 11.3(43)).

(4) The QF port header file qf_port.h is included if QS is used together with the QF

real-time framework.
NOTE

When QS is combined with QF, the QS critical section is the same as it is defined in the
qf_port.h header file. However, QS can also be used with just the QEP component, or

even completely standalone. In these cases, QS must provide its own, independent critical

section mechanism by defining the macros QS_INT_KEY_TYPE, QS_INT_LOCK(), and
QS_INT_UNLOCK() (see Section 11.3.3).
(5) The platform-independent qs.h header file must always be included in the

qs_port.h header file.

11.4 The QSPY Host Application

As described in Section 11.2, the host-resident component for the Quantum Spy

software-tracing system is the QSPY host application. QSPY is a simple console

application without any fancy GUI because its purpose is to provide only the QS data

parsing, storing, and exporting to such powerful tools as MATLAB. QSPY has been

designed from the ground up to be platform-neutral. The application is written in

portable C++ and ports to Linux and Windows with various compilers are provided.

QSPY is easily adaptable to various target-host communication links. Out of the box,

the QSPY host application supports serial (RS232), TCP/IP, and file communication

links. Adding other communication links is easy because the data link is accessed only

through a generic hardware abstraction layer (HAL).

The QSPY application accepts several command-line parameters to configure the data

link and all target dependencies, such as pointer sizes, signal sizes, and the like. This

means that the single QSPY host application can process data from any embedded

target. The application has been tested with a wide range of 8-, 16-, or 32-bit CPUs.
www.newnespress.com

582 Chapter 11
QSPY provides a simple consolidated, human-readable textual output to the screen. If

the QS trace data contains dictionary trace records (see Section 11.3.8), QSPY applies

this symbolic information to output the provided identifiers for objects, signals, and

states. Otherwise, QSPY outputs the hexadecimal values of various pointers and signals.

Finally, QSPY can export the trace data in the matrix format readable by MATLAB.

A special MATLAB script to import QSPY trace data to MATLAB is provided. Once

the data is available in MATLAB matrices, it can be conveniently manipulated and

visualized with this powerful tool.

QSPY comes with a Reference Manual in electronic format (see Section 11.6.6), which

contains detailed explanations of all command-line options, the human-readable format,

and the MATLAB interface.

11.4.1 Installing QSPY

The QSPY host application is included in the code accompanying this book in the

directory <qp>\qpc\tools\qspy\ (for QP/C) and also in <qp>\qpcpp\tools\

qspy\ (for QP/C++). The two versions are actually identical except that QSPY for QP/

C includes the C-version of the qs.h header file, whereas the QP/C++ version includes

the C++ version of qs.h. Listing 11.12 shows the contents of the QP Root Directory

after the installation of QS component.
NOTE

The QSPY host application includes the header file <qp>\qpc\include\qs.h. The qs.h

header file provides the link between the QS target-resident component and the QSPY

host-resident component.

Listing 11.12 Source code organization for the QSPY host application

<qp>\qpc\ - QP/C root directory (<qp>\qpcpp for QP/C++)

|

+-doxygen\ - QP/C documentation generated with Doxygen

| +-html\ - "QP/C Reference Manual" in HTML format

| | +-index.html - The starting HTML page for the "QP/C Reference Manual"

| | | (contains the "QSPY Reference Manual")

| | +- . . .

| +-qpc.chm - "QP/C Reference Manual" in CHM Help format

| (contains the "QSPY Reference Manual")

www.newnespress.com

|

+-include/ - QP platform-independent header files

| +-qs.h - QS platform-independent header file (used by QSPY)
|

+-tools\ - Tools directory

| +-qspy\ - QSPY host application

| | +-include\ - platform-independent include

| | | +-dict.h - dictionary class header file

| | | +-getopt.h - command-line option parser

| | | +-hal.h - Hardware Abstraction Layer header file

| | | +-qspy.h - QSPY parser header file

| | +-source\ - platform-independent sources (C++)

| | | +-dict.cpp - dictionary class implementation

| | | +-getopt.c - command-line option parser

| | | +-main.cpp - main() entry point

| | | +-qspy.cpp - QSpy parser

| | |

| | +-linux\ - Linux version of QSPY

| | | +-gnu\ - GNU compiler

| | | | +-dbg\ - debug build directory

| | | | +-rel\ - release build directory

| | | | +-com.cpp - serial port HAL for Linux

| | | | +-tcp.cpp - TCP/IP port HAL for Linux

| | | | +-Makefile - make file to build QSPY for Linux

| | |

| | +-win32\ - Win32 (Windows) version of QSPY

| | | +-mingw\ - MinGW compiler (GNU)

| | | | +-dbg\ - debug build directory

| | | | +-rel\ - release build directory

| | | | | +-qspy.exe – QSPY executable
| | | | +-com.cpp - serial port HAL for Win32

| | | | +-tcp.cpp - TCP/IP port HAL for Win32

| | | | +-make.bat – Simple batch script to build QSPY

| | |

| | | +-vc2005\ - Visual C++ 2005 toolset

| | | | +-Debug\ - debug build directory

| | | | +-Release\ - release build directory

| | | | | +-qspy.exe – QSPY executable
| | | | +-com.cpp - serial port HAL for Win32

| | | | +-tcp.cpp - TCP/IP port HAL for Win32

| | | | +-qspy.sln - Visual C++ Solution to build QSPY for Win32

| | |

| | +-matlab\ - MATLAB scripts

| | | +-qspy.m - MATLAB script to import the QS data into MATLAB

| | | +-dpp.spy - Example of a QS binary file from DPP application

| | | +-philo_timing.m - example MATLAB script to generate timing diagrams

| | | for the DPP example

www.newnespress.com

583Software Tracing for Event-Driven Systems

584 Chapter 11
11.4.2 Building QSPY Application from Sources

The QSPY source code is written in portable C++, with ports to Windows and Linux

already provided (see Listing 11.12). Note that the QSPY host application is coupled

with the QS target component through the header file <qp>\qpc\include\qs.h,

which enumerates the predefined QS records.

Building QSPY for Windows with Visual C++ 2005

The Win32 executable of the QSPY application is provided in the file <qp>\qpc\

tools\qspy\win32\vc2005\Release\qspy.exe. This executable should run on

any version of 32-bit Windows.

If you want to rebuild the application, the directory <qp>\qpc\tools\qspy\win32\

vc2005\ contains the Microsoft Visual C++ 2005 solution file qspy.sln to build

the QSPY application. You simply load the solution file to the Visual C++ 2005 IDE

and start the build by pressing F7.

Building QSPY for Windows with MinGW

Alternatively, you can use the open source MinGW (Minimalist GNU for Windows)

toolset available from www.mingw.org to build the QSPY executable. The directory

<qp>\qpc\tools\qs py\win32\mingw\ contains a simple batch file make.bat

to build the QSPY application. You probably need to modify the definition of the

MINGW symbol at the top of the batch file to point it to the location where you

installed the MinGW toolset. By default, make.bat produces the debug version of

the application in the directory <qp>\qpc\tools\qs py\win32\mingw\dbg\ .

To produce the release version, add the ‘rel ’ parameter to the make.bat script

(make rel). The release version is produced in the release directory: <qp>\qpc\

tools\qspy\win32\ mingw\rel\ .

Building QSPY for Linux

The directory <qp>\qpc\tools\qspy\linux\gnu\ contains the Makefile for

building QSPY for Linux. By default, the Makefile produces the debug version of the

application in the directory <qp>\qpc\tools\qspy\linux\gnu\dbg\. To produce

the release version, add the ‘rel’ target to the make (make rel). The release version is

produced in the release directory: <qp>\qpc\tools\qspy\linux\gnu\rel\.
www.newnespress.com

http://www.mingw.org

585Software Tracing for Event-Driven Systems
11.4.3 Invoking QSPY

The QSPY host application is designed to work with all possible target CPUs and data

links, which requires a wide range of configurability. For example, for any given

target CPU, the QSPY application must “know” the size of object pointers, function

pointers, event signals, timestamp size, and so on. You provide this information to

QSPY by means of command-line parameters, which are summarized in Table 11.3

and also in the “QSPY Reference Manual” (see Section 11.6.6). Note that the options

are case sensitive.
Table 11.3: Summary of QSpy command-line options

Option Example Default
Must Match QP Macro
(QP Port Header File) Comments

-h -h Help; prints the summary
of options

-q -q Quiet mode (no stdout
output)

-o -o qs.txt Produces output to the
specified file

-s -s qs.spy Saves the binary input to
the specified file; not
compatible with -f

-m -m qs.mat Generates MATLAB
output to the specified
file

-c -c COM2 COM1 COM port selection; not
compatible with –t, -p, -f

-b -b 115200 38400 Baud rate selection; not
compatible with –t, -p, -f

-t -t TCP/IP input selection;
not compatible with –c,
-b, -f

-p -p 6602 6601 TCP/IP server port
number; not compatible
with –c, -b, -f

Continued onto next page

www.newnespress.com

Table 11.3: Summary of QSpy command-line options—Cont’d

Option Example Default
Must Match QP Macro
(QP Port Header File) Comments

-f -f qs.spy File input selection; not
compatible with –c, -b, -t,
-p

-T -T 2 4 QS_TIME_SIZE
(qs_port.h)

Time stamp size in bytes;
valid values: 1, 2, 4

-O -O 2 4 QS_OBJ_PTR_SIZE
(qs_port.h)

Object pointer size in
bytes; valid values: 1, 2, 4

-F -F 2 4 QS_FUN_PTR_SIZE
(qs_port.h)

Function pointer size in
bytes; valid values: 1, 2, 4

-S -S 2 1 Q_SIGNAL_SIZE
(qep_port.h)

Signal size in bytes; valid
values: 1, 2, 4

-E -E 1 2 QF_EVENT_SIZ_SIZE
(qf_port.h)

Event-size size in bytes
(i.e., the size of variables
that hold event size);
valid values: 1, 2, 4

-Q -Q 1 2 QF_EQUEUE_CTR_SIZE
(qf_port.h)

Queue counter size in
bytes; valid values 1, 2, 4

-P -P 4 2 QF_MPOOL_CTR_SIZE
(qf_port.h)

Pool counter size in
bytes; valid values: 1, 2, 4

-B -B 1 2 QF_MPOOL_SIZ_SIZE
(qf_port.h)

Block size size in bytes
(i.e., the size of variables
that hold memory block
size); valid values 1, 2, 4

-C -C 4 2 QF_TIMEEVT_CTR_SIZE
(qf_port.h)

Time event counter size;
valid values: 1, 2, 4

586 Chapter 11
Your main concern when invoking QSPY is to match exactly the target system you are

using. The fourth column of Table 11.3 lists the configuration macros used by the

target system as well as the platform-specific QP header files where those macros are

defined. You need to use the corresponding QSPY command-line option only when

the QP macro differs from the default. The default values assumed by QSPY are

consistent with the defaults used in QP.
www.newnespress.com

NOTE

When you do not match the QSPY host application with the QS target component, the QSPY

application will be unable to correctly parse the mismatched trace records and will start gen-

erating the following errors:

********** 028: Error xx bytes unparsed

********** 014: Error -yy bytes unparsed

The number in front of the error indicates the Record ID of the trace record that could not be

parsed.

587Software Tracing for Event-Driven Systems
11.5 Exporting Trace Data to MATLAB

The QSPY host application can also export trace data to MATLAB, which is a popular

numerical computing environment and a high-level technical programming language.

Created by The MathWorks, Inc., MATLAB allows easy manipulation and plotting of

data represented as matrices.

Figure 11.6 summarizes the interface between the QSPY host application and

MATLAB. The interface consists of the QSPY MATLAB output file, the qspy.m

MATLAB script, and MATLAB matrices generated by the script in the current

MATLAB workspace. The following sections explain these elements.
qspy.m

MATLAB

QSPY
host

application

Target
instrumented

with QS

QSPY
MATLAB
output file

MATLAB
matrices

in the current
workspace

Figure 11.6: Exporting trace data to MATLAB.
11.5.1 Analyzing Trace Data with MATLAB

When you invoke QSPY with the –m <file name> option, the QSPY application

generates a MATLAB-readable file of the specified name in addition to the human-

readable format discussed in the previous section.
www.newnespress.com

588 Chapter 11
The MATLAB output file is an ASCII file that contains all the trace records formatted

for MATLAB. However, the various trace records in the MATLAB file are still in

the same order as they were produced in the target and don’t yet form proper MATLAB

matrices, which are the most natural way of representing data within MATLAB.

You can find an example of a QSPY MATLAB output in the file <qp>\qpc\

examples\80x86\qk\tcpp101\l\dpp\dpp.mat.

The directory <qp>\qpc\tools\qspy\matlab\ contains the MATLAB script

qspy.m, which reads in the QSPY MATLAB file and converts the data into several

MATLAB matrices in the current workspace. Assuming that the directory <qp>\qpc\

tools\qspy\matlab\ is included in the MATLAB path, you invoke the script

from the MATLAB command window as follows:
Q_FILE=’<qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\dpp.mat’; qspy
The variable Q_FILE is set to the file name of the QSPY MATLAB file. Note that

the qspy.m script is intentionally not a MATLAB function because its main purpose is to

fill the current workspace with matrices that remain after the script is done, which is not

possible with a function that runs in a separate temporary workspace.

At this point you have all the data conveniently represented in MATLAB matrices. After

filling in the matrices, the qspy.m script executes the ‘whos’ command to show the

created objects. The matrices with the prefix Q_ contain the time-ordered trace data. All

MATLAB matrices are documented in the “QSPY Reference Manual,” which is

available in electronic format in the code accompanying this book (see Section 11.6.6).

Just to demonstrate what you can do with the data, the Figure 11.7 shows the timing

diagrams for all Philosopher state machines in the DPP application.

The plots shown in Figure 11.7 have been generated by running the scriptphilo_timing.m

provided in the <qp>\qpc\tools\qspy\matlab\ directory. Assuming that this

directory is in theMATLABpath, you simply type the script’s name at theMATLABprompt:
ww
hilo_timing
» p
The philo_timing.m script displays the data from the MATLAB matrix Q_STATE,

which you generated by running the qspy.m script. The Q_STATE matrix contains all the

state machine information. Section 11.5.4 explains how this plot has been generated.
w.newnespress.com

Figure 11.7: MATLAB plot showing timing diagrams of the five Philosophers
generated from the QS trace data. The vertical axis represents states “thinking”

(lowest), “hungry” (middle), and “eating” (top).

589Software Tracing for Event-Driven Systems
11.5.2 MATLAB Output File

The QSPY MATLAB file is in ASCII format and Listing 11.13 shows a snippet of the

QSPY MATLAB file generated from the DPP application (see also Section 11.2.1).
Listing 11.13 Fragment of the QSPY MATLAB file for the DPP application

.
62 Philo_initial= 308543675;
62 Philo_thinking= 308544589;
62 Philo_hungry= 308544835;
62 Philo_eating= 308545073;
60 HUNGRY_SIG=[8 382343546];
60 TIMEOUT_SIG=[10 382343546];
12 0 4 382343546
3 382343546 337510406 308544589

50 0 64 64
51 0 64 64

Continued onto next page

www.newnespress.com

32 0 382343694 382343546 9 0
1 382343546 308544589
4 0 382343546 308544589

.
33 382344192 382344044
37 528197 382344192 10 382344044
14 528208 10 382344044 0 0 5 5
33 382343860 382343712
37 528222 382343860 10 382343712
14 528234 10 382343712 0 0 5 5
42 528249 1 255
17 528262 10 382344044 0 0
28 528276 3 8
24 528287 382343384 9 9
14 528299 8 382344376 1 0 5 5
17 528312 8 382344376 1 1
28 528333 3 4
24 528343 382343384 8 8
26 528355 4 1
14 528367 4 382344210 1 1 5 5
14 528379 4 382344044 1 2 5 5
14 528391 4 382343878 1 3 5 5
14 528403 4 382343712 1 4 5 5
14 528415 4 382343546 1 5 5 5
.

590 Chapter 11
The QSPY MATLAB file is stored in portable ASCII format for cross-platform

portability, but is really not intended to be human-readable. The purpose of Listing 11.13

is simply to demonstrate that the data is mostly numerical, with the only exception of

the “dictionary” entries, which actually are stored as MATLAB commands.

The MATLAB output file shown in Listing 11.13 contains all the trace records

formatted for MATLAB. However, the various records at this stage are still in the same

order as they were produced in the target and don’t yet form proper MATLAB matrices,

which are the most natural way of representing data within MATLAB.

11.5.3 MATLAB Script qspy.m

The MATLAB script qspy.m, located in the directory <qp>\qpc\tools\qspy\

matlab\, is designed to read the QSPY MATLAB file and sort the different records

into various MATLAB matrices for subsequent analysis. In Section 11.5.1, I described

how to invoke the script from MATLAB. Here I discuss the qspy.m script itself,

which is shown in Listing 11.14.
www.newnespress.com

Listing 11.14 Script qspy.m for Importing QSPY trace data to MATLAB

(1) % the string Q_FILE must be defined
(2) fid = fopen(Q_FILE, ’r’);

if fid == -1
(3) error(’file not found’)

end

(4) Q_STATE = []; %sateentry/exit,init,tran,internaltran,ignored
Q_EQUEUE = []; % QEQueue
Q_MPOOL = []; % QMPool
Q_NEW = []; % new/gc
Q_ACTIVE = []; % active add/remove, subscribe/unsubscribe
Q_PUB = []; % publish/publish attempt
Q_TIME = []; % time event arm/disarm/rearm, clock tick
Q_INT_LOCK = []; % interrupt locking/unlocking
Q_ISR_LOCK = []; % ISR entry/exit
Q_MUTEX = []; % QK mutex locking/unlocking
Q_SCHED = []; % QK scheduler events

Q_TOT = 0; % total number of records processed

(5) while feof(fid) == 0
line = fgetl(fid);
Q_TOT = Q_TOT+1;

(6) rec = sscanf(line, ’%d’, 1); % extract the record type
(7) switch rec % discriminate based on the record type

% QEP trace records
(8) case 1 % QS_QEP_STATE_ENTRY

Q_STATE(size(Q_STATE,1)+1,:) = ...
[NaN 1 sscanf(line, ’%*u %u %u’)’ NaN 1];

case 2 % QS_QEP_STATE_EXIT
Q_STATE(size(Q_STATE,1)+1,:) = ...

[NaN 2 sscanf(line, ’%*u %u %u’)’ NaN 1];

case 3 % QS_QEP_STATE_INIT
Q_STATE(size(Q_STATE,1)+1,:) = ...

[NaN 3 sscanf(line, ’%*u %u %u %u’)’ 1];

case 4 % QS_QEP_INIT_TRAN
tmp = sscanf(line, ’%*u %u %u %u’)’;
Q_STATE(size(Q_STATE,1)+1,:) = ...

Continued onto next page

www.newnespress.com

591Software Tracing for Event-Driven Systems

[tmp(1) 3 tmp(2) NaN tmp(3) 1];
case 5 % QS_QEP_INTERN_TRAN

Q_STATE(size(Q_STATE,1)+1,:) = ...
[sscanf(line, ’%*u %u %u %u %u’)’ NaN 1];

case 6 % QS_QEP_TRAN
Q_STATE(size(Q_STATE,1)+1,:) = ...

[sscanf(line, ’%*u %u %u %u %u’)’ 1];

case 7 % QS_QEP_IGNORED
Q_STATE(size(Q_STATE,1)+1,:) = ...

[sscanf(line, ’%*u %u %u %u %u’)’ NaN 0];

% QF trace records
case 10 % QS_QF_ACTIVE_ADD

tmp = sscanf(line,’%*u %u %u %u %u’)’;
Q_ACTIVE(size(Q_ACTIVE,1)+1,:)=[tmp(1)NaNtmp(2)tmp(3)1];

. . . .

% Miscallaneous QS records
case 60 % QS_SIG_DICTIONARY

eval(line(5:end));

case 61 % QS_OBJ_DICTIONARY
eval(line(5:end));

case 62 % QS_FUN_DICTIONARY
eval(line(5:end));

. . .
% User records

(9) % . . .
end

end

% cleanup ...
(10) fclose(fid);

clear fid;
clear line;
clear rec;
clear tmp;

% display status information...
(11) Q_TOT
(12) whos

www.newnespress.com

592 Chapter 11

593Software Tracing for Event-Driven Systems
(1) This is a simple MATLAB script, not a MATLAB function, because the main

purpose of qspy.m is to create new data that remain in the workspace

after the script finishes so that you can use them for further computations.

(A MATLAB function runs in a separate workspace, which disappears after

the function returns.)

(2) The variable Q_FILE contains the name of the QSPY MATLAB file and must

be defined before starting the qspy.m script.

(3) The specified MATLAB file must exist.

(4) The QSPY MATLAB matrices are cleared to be filled with trace data.

(5) The entire MATLAB file is processed one line at a time.

(6) The first number in each line is the QS record type (see Listing 11.3(2)).

(7) The switch statement discriminates based on the record type.

(8) Different case statements read specific record types and place the data into

MATLAB matrices described in the “QSPY Reference Manual.”

(9) Here you can extend the script to include user-specific (your) trace records.

(10) In this section the temporary data is cleaned up (this is a simple script, not a

function).

(11,12) The total number of records and the contents of the current workspace are

displayed.
11.5.4 MATLAB Matrices Generated by qspy.m

The qspy.m script generates 11 MATLAB matrices (see Listing 11.14). Each of these

matrices contains different group of related QS trace records. The “QSPY Reference

Manual,” available in electronic format in the code accompanying this book (see

Section 11.6.6), contains documentation for all MATLAB matrices generated by the

qspy.m script. Here I give you only one example, the matrix Q_STATE, which stores

all QS records pertaining to state machine activities in the system. Table 11.4

summarizes how the QS records are stored in the Q_STATE matrix.

By MATLAB convention, the different variables such as timestamp, event signal, and

the like are put into columns, allowing observations to vary down through the rows.
www.newnespress.com

Table 11.4: Q_STATE matrix (N-by-6) produced by the qspy.m script

MATLAB Index 1 2 3 4 5 6

QS Record T
im

es
ta
m
p

S
ig
n
al

S
ta
te

M
ac
h
in
e

O
b
je
ct

S
o
u
rc
e
S
ta
te

N
ew

S
ta
te

E
ve
n
t

H
an

d
le
d

QS_QEP_STATE_ENTRY NaN 1 ffip 2 ffip NaN 1

QS_QEP_STATE_EXIT NaN 2 ffip 2 ffip NaN 1

QS_QEP_STATE_INIT NaN 3 ffip 2 ffip ffip 1

QS_QEP_STATE_INIT_TRAN ffip 3 ffip 2 NaN ffip 1

QS_QEP_STATE_INTERN_TRAN ffip ffip 1 ffip 2 ffip NaN 1

QS_QEP_STATE_TRAN ffip ffip 1 ffip 2 ffip ffip 1

QS_QEP_STATE_IGNORED ffip ffip 1 ffip 2 ffip NaN 0

1The valid user signal is > 3.
2Per inheritance, an active object is a state machine object as well.

594 Chapter 11
Therefore, a data set consisting of N time samples of six variables is stored in a matrix

of size N-by-6. The checkmark ‘
ffip
’ in a given cell of the matrix represents data

available from the QSPY file. Other values represent data added by the qspy.m script

to fill all the matrix cells and to allow unambiguous identification of the trace records.

For example, the following six index matrices unambiguously select the QS trace record

from the matrix:

QS Record MATLAB Index Matrix

QS_QEP_STATE_ENTRY Q_STATE(:,2) == 1

QS_QEP_STATE_EXIT Q_STATE(:,2) == 2

QS_QEP_STATE_INIT Q_STATE(:,2) == 3

QS_QEP_STATE_INIT_TRAN isnan(Q_STATE(:,4))

QS_QEP_STATE_INTERN_TRAN Q_STATE(:,2) > 3 & isnan(Q_STATE(:,5))

QS_QEP_STATE_TRAN Q_STATE(:,2) > 3 & ~isnan(Q_STATE(:,5))

QS_QEP_STATE_IGNORED ~Q_STATE(:,6)
w
ww.newnespress.com

595Software Tracing for Event-Driven Systems
As an example of using the information contained in the matrix Q_STATE, consider

the timing diagrams for the Philosopher active objects shown in Figure 11.7. These

timing diagrams have been generated with the script philo_timing.m shown in

Listing 11.15.
Listing 11.15 MATLAB script philo_timing.m that generates timing
diagrams shown in Figure 11.7

(1) t=Q_STATE(:,2)>3 & ~isnan(Q_STATE(:,5)); % QS_QEP_STATE_TRAN
(2) o=Q_STATE(:,3) == l_philo_0_;
(3) subplot(5,1,1); stairs(Q_STATE(o & t,1),Q_STATE(o & t,5),’r’)
(4) o=Q_STATE(:,3) == l_philo_1_;

subplot(5,1,2); stairs(Q_STATE(o & t,1),Q_STATE(o & t,5),’r’)
o=Q_STATE(:,3) == l_philo_2_;
subplot(5,1,3); stairs(Q_STATE(o & t,1),Q_STATE(o & t,5),’r’)
o=Q_STATE(:,3) == l_philo_3_;
subplot(5,1,4); stairs(Q_STATE(o & t,1),Q_STATE(o & t,5),’r’)
o=Q_STATE(:,3) == l_philo_4_;
subplot(5,1,5); stairs(Q_STATE(o & t,1),Q_STATE(o & t,5),’r’)
xlabel(’time stamp’); zoom on
(1) The index matrix ‘t’ selects only the rows of the Q_STATE matrix that correspond

to state transitions (the QS_QEP_STATE_TRAN trace record). The conditions

used for a transition are: signal >3 (user-defined signal) and new state is available

(not a NaN).

(2) The index matrix ‘o’ (object) selects only the Philosopher 0 state machine object.

This line of code makes use of the dictionary entry l_philo_0_.

(3) The timing diagram for Philosopher 0 is drawn using the index matrices ‘t’ and ‘o.’

(4) The index matrix ‘o’ is created for Philosopher 1, 2, 3, and 4 state machine objects

and timing diagrams for these objects are drawn.

Obviously, this short demonstration barely scratches the surface of the possibilities.

Refer to the “QSPY Reference Manual” for the description of other MATLAB matrices.

The rest is MATLAB.
www.newnespress.com

596 Chapter 11
11.6 Adding QS Software Tracing to a QP Application

In this section I show you how to add QS software tracing to the DPP application,

which I already used as an example of a software-tracing session at the beginning of

this chapter (Section 11.2.1).

The DPP example for 80x86 with the QK preemptive kernel demonstrates the use of

QS with all QP components: QEP, QF, and QK. The example is located in the directory

<qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\. You can rebuild the “Spy”

configuration by loading the DPP-SPY.PRJ project into the Turbo C++ IDE.

The application links to the “Spy” versions of the QP libraries located in the directory

<qp>\qpc\ports\80x86\qk\tcpp101\l\spy\.

The DPP example demonstrates all aspects of QS setup. In particular it demonstrates

how to send the QS trace data over a serial port (UART) and how to timestamp QS

records with submicrosecond precision using the 8254 timer/counter found in every

x86-based PC.
11.6.1 Initializing QS and Setting Up the Filters
Listing 11.16 Initialization of QS, setting up the filters, and generating
dictionary entries (file <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\
main.c)

(1) #include "qp_port.h"

#include "dpp.h"

#include "bsp.h"

/* Local-scope objects --*/

static QEvent const *l_tableQueueSto[N_PHILO];

static QEvent const *l_philoQueueSto[N_PHILO][N_PHILO];

static QSubscrList l_subscrSto[MAX_PUB_SIG];

static union SmallEvent {

void *min_size;

TableEvt te;

/* other event types to go into this pool */

} l_smlPoolSto[2*N_PHILO]; /* storage for the small event pool */

/*..*/

int main(int argc, char *argv[]) {

uint8_t n;

www.newnespress.com

Philo_ctor(); /* instantiate all Philosopher active objects */

Table_ctor(); /* instantiate the Table active object */

(2) BSP_init(argc, argv); /* initialize the BSP (including QS) */

QF_init(); /* initialize the framework and the underlying RT kernel */

/* setup the QS filters ... */

(3) QS_FILTER_ON (QS_ALL_RECORDS);

(4) QS_FILTER_OFF(QS_QF_INT_LOCK);

(5) QS_FILTER_OFF(QS_QF_INT_UNLOCK);

(6) QS_FILTER_OFF(QS_QK_SCHEDULE);

/* provide object dictionaries... */

(7) QS_OBJ_DICTIONARY(l_smlPoolSto);

(8) QS_OBJ_DICTIONARY(l_tableQueueSto);

(9) QS_OBJ_DICTIONARY(l_philoQueueSto[0]);

QS_OBJ_DICTIONARY(l_philoQueueSto[1]);

QS_OBJ_DICTIONARY(l_philoQueueSto[2]);

QS_OBJ_DICTIONARY(l_philoQueueSto[3]);

QS_OBJ_DICTIONARY(l_philoQueueSto[4]);

QF_psInit(l_subscrSto, Q_DIM(l_subscrSto)); /* init publish-subscribe */

/* initialize event pools... */

QF_poolInit(l_smlPoolSto, sizeof(l_smlPoolSto), sizeof(l_smlPoolSto[0]));

for (n = 0; n < N_PHILO; ++n) { /* start the active objects... */

QActive_start(AO_Philo[n], (uint8_t)(n + 1),

l_philoQueueSto[n], Q_DIM(l_philoQueueSto[n]),

(void *)0, 0, (QEvent *)0);

}

QActive_start(AO_Table, (uint8_t)(N_PHILO + 1),

l_tableQueueSto, Q_DIM(l_tableQueueSto),

(void *)0, 0, (QEvent *)0);

QF_run(); /* run the QF application */

return 0;

}

597Software Tracing for Event-Driven Systems
(1) When the QS tracing is enabled (i.e., the macro Q_SPY is defined), the header

file qp_port.h includes the QS active interface qs.h (see Listing 11.3).

(2) The BSP initialization also initializes QS (see Listing 11.17).

(3) Right after initialization, all QS global filters are disabled. Here I enable all

global filters.

(4-6) I disable the high-volume trace records to avoid overrunning the QS trace buffer

(see Section 11.3.7).
www.newnespress.com

598 Chapter 11
(7-9) I provide object dictionary entries (see Section 11.3.8) for all local-scope objects

defined in this module. Note that I need to do it here because these objects are

only known in this translation unit.
11.6.2 Defining Platform-Specific QS Callbacks

Listing 11.17 shows the platform-specific QS callback functions for QK/DOS. The QS

tracing uses one of the standard 16550 UARTs (COM1-COM4) for data output at

115200 baud rate. I defer the discussion of the QS timestamp (the QS_onGetTime()

callback) to the next section.
Listing 11.17 QS callbacks in the board support package (file <qp>\qpc\
examples\80x86\qk\tcpp101\l\dpp\bsp.c)

#include "qp_port.h"

#include "dpp.h"

#include "bsp.h"

. . .

/* Local-scope objects --*/

#ifdef Q_SPY

static uint16_t l_uart_base; /* QS data uplink UART base address */

. . .

#define UART_16550_TXFIFO_DEPTH 16

#endif

. . .

/*..*/

void BSP_init(int argc, char *argv[]) {

char const *com = "COM1";

uint8_t n;

if (argc > 1) {

l_delay = atol(argv[1]); /* set the delay counter for busy delay */

}

if (argc > 2) {

com = argv[2];

(void)com; /* avoid compiler warning if Q_SPY not defined */

}

(1) if (!QS_INIT(com)) { /* initialize QS */
(2) Q_ERROR();

}

. . .

}

/*..*/

www.newnespress.com

(3) void QK_onIdle(void) {

#ifdef Q_SPY

if ((inportb(l_uart_base + 5) & (1 << 5)) != 0) { /* Tx FIFO empty? */

uint16_t fifo = UART_16550_TXFIFO_DEPTH; /* 16550 Tx FIFO depth */

uint8_t const *block;

QF_INT_LOCK(dummy);

block = QS_getBlock(&fifo); /* try to get next block to transmit */
QF_INT_UNLOCK(dummy);

while (fifo-- != 0) { /* any bytes in the block? */

outportb(l_uart_base + 0, *block++);

}

}

#endif

}

. . .

/*--*/

#ifdef Q_SPY /* define QS callbacks */

/*...*/

(4) static uint8_t UART_config(char const *comName, uint32_t baud) {

switch (comName[3]) { /* Set the base address of the COMx port */

case ’1’: l_uart_base = (uint16_t)0x03F8; break; /* COM1 */

case ’2’: l_uart_base = (uint16_t)0x02F8; break; /* COM2 */

case ’3’: l_uart_base = (uint16_t)0x03E8; break; /* COM3 */

case ’4’: l_uart_base = (uint16_t)0x02E8; break; /* COM4 */

default: return (uint8_t)0; /* COM port out of range failure */

}

baud = (uint16_t)(115200UL / baud); /* divisor for baud rate */

outportb(l_uart_base + 3, (1 << 7)); /* Set divisor access bit (DLAB) */

outportb(l_uart_base + 0, (uint8_t)baud); /* Load divisor */

outportb(l_uart_base + 1, (uint8_t)(baud >> 8));

outportb(l_uart_base + 3, (1 << 1) | (1 << 0)); /* LCR:8-bits,no p,1stop */

outportb(l_uart_base + 4, (1 << 3) | (1 << 1) | (1 << 0)); /*DTR,RTS,Out2*/

outportb(l_uart_base + 1, 0); /* Put UART into the polling FIFO mode */

outportb(l_uart_base + 2, (1 << 2) | (1 << 0)); /* FCR: enable, TX clear */

return (uint8_t)1; /* success */

}

/*...*/

(5) uint8_t QS_onStartup(void const *arg) {

static uint8_t qsBuf[2*1024]; /* buffer for Quantum Spy */

(6) QS_initBuf(qsBuf, sizeof(qsBuf));
return UART_config((char const *)arg, 115200UL);

}

/*...*/

(7) void QS_onCleanup(void) {

}

/*...*/

(8) void QS_onFlush(void) {

uint16_t fifo = UART_16550_TXFIFO_DEPTH; /* 16550 Tx FIFO depth */

Continued onto next page

www.newnespress.com

599Software Tracing for Event-Driven Systems

uint8_t const *block;

QF_INT_LOCK(dummy);

while ((block = QS_getBlock(&fifo)) != (uint8_t *)0) {
QF_INT_UNLOCK(dummy);

/* busy-wait until TX FIFO empty */

(9) while ((inportb(l_uart_base + 5) & (1 << 5)) == 0) {

}

while (fifo– != 0) { /* any bytes in the block? */

outportb(l_uart_base + 0, *block++);

}

fifo = UART_16550_TXFIFO_DEPTH; /* re-load 16550 Tx FIFO depth */

QF_INT_LOCK(dummy);

}

QF_INT_UNLOCK(dummy);

}

/*...*/

(10) QSTimeCtr QS_onGetTime(void) { /* see Listing 11.18 */

. . .

}

#endif /* Q_SPY */

/*---*/

600 Chapter 11
(1) The macro QS_INIT() initializes the QS component. The macro returns FALSE

when the initialization fails (e.g., the specified COM port cannot be opened).

(2) Failing to initialize QS causes an error. Note that the assertion only fires when

QS is active because the dummy version of the QS_INIT() macro always

returns TRUE (see Listing 11.4(2)).

(3) The QK preemptive kernel calls the QK_onIdle() callback function from the

idle loop (see Section 10.3.5 in Chapter 10). This callback is an ideal place to

perform output of the trace data in the least intrusive way. The QS output in

the QK_onIdle() function uses the QS_getBlock() API, which I already

discussed in Listing 11.9 in Section 11.3.7.

(4) The function UART_config() configures one of the standard UARTs of the

80x86-based PC (COM1-COM4).

(5) The callback function QS_onStartup() initializes the QS component.

(6) The function QS_onStartup() must always initialize the QS trace buffer by

calling QS_initBuf() (see Section 11.3.7).

(7) The callback QS_onCleanup() function performs cleanup of QS. This function

has nothing to clean up in this case.
www.newnespress.com

601Software Tracing for Event-Driven Systems
(8) The callback function QS_onFlush() flushes the entire trace buffer to the host.

This function is called after each dictionary trace record to avoid overrunning the

trace buffer during the system initialization.

(9) The function QS_onFlush() busy-waits until the data is sent out. Note that this

policy might be only appropriate during the initial transient.

(10) The callback function QS_onGetTime() provides the timestamp for the QS

trace records. I discuss this function in the next section.
11.6.3 Generating QS Timestamps with the QS_onGetTime()

Callback

Most QS trace records are timestamped, which ties all the trace records to the common

timeline. To be truly useful, the QS timestamps should have microsecond-level

resolution or better, which is only possible with a dedicated clock or a timer device. The

callback function QS_onGetTime() encapsulates the particular method of obtaining

the timestamp. QS always calls this callback function inside a critical section of code.

In case of a standard PC, the time can be obtained from the 8254 timer/counter. The

counter-0 of the 8254 chip is a 16-bit down-counter that is set up to generate the

standard 18.2Hz clock-tick interrupt when it underflows from 0 to 0xFFFF. The

counting rate is 1.193182MHz, which works out to approximately 0.838 microseconds

per count.

The basic idea of using this 16-bit down-counter for 32-bit timestamping of the QS

records is shown in Figure 11.8. The system clock-tick interrupt maintains the

32-bit-wide timestamp at tick l_tickTime. The clock-tick interrupt increments

l_tickTime by 0x10000 counts to account for the 16-bit rollover. The complete 32-bit

timestamp is constructed by adding l_tickTime and the on-chip count, or actually

(0x10000 – the on-chip count), because the 8254 timer/counter counts down.

The method just described provides fine-granularity timestamp most of the time but

occasionally can be off by the full period of the 16-bit counter (0x10000 counts). This

can happen because the once-per-period “sampling” rate of the system tick interrupt is

not sufficient to completely resolve the timer-cycle ambiguity. This “undersampling”

allows a small time window in which the 16-bit clock rolls over but before the system

clock interrupt increments l_tickTime by 0x10000 counts. This can happen due to

interrupt locking. As a remedy, the QS_onGetTime() contains a protection against the
www.newnespress.com

time

count

count in the
8254 16-bit
count register

system
clock tick
period
(18.2 Hz)

32-bit time stamp
returned from
QS_onGetTime()

count in
l_tickTime

System
clock-tick

0x0000

0xFFFF

Figure 11.8: Using channel 0 of the 8254 PIT to generate 32-bit QS timestamp.

602 Chapter 11
time going “backward.” This solution assumes that the function QS_getTime() is

called at least once per system clock tick. Listing 11.18 shows the QS timestamp

implementation.
Listing 11.18 Generating QS timestamp (file <qp>\qpc\examples\80x86\
qk\tcpp101\l\dpp\bsp.c)

/* Local-scope objects --*/

#ifdef Q_SPY

static QSTimeCtr l_tickTime; /* keeps timestamp at tick */

static uint32_t l_lastTime; /* last timestamp */

#endif

. . .

void interrupt ISR_tmr(void) {

uint8_t pin;

#ifdef Q_SPY

(1) l_tickTime += 0x10000; /* add 16-bit rollover */

#endif

QK_ISR_ENTRY(pin, TMR_ISR_PRIO); /* inform QK about entering the ISR */

QF_tick(); /* call QF_tick() outside of critical section */

QK_ISR_EXIT(pin); /* inform QK about exiting the ISR */

}

www.newnespress.com

/*...*/

#ifdef Q_SPY /* define QS callbacks */

. . .

(2) QSTimeCtr QS_onGetTime(void) { /* invoked with interrupts locked */

uint32_t now;

uint16_t count16; /* 16-bit count from the 8254 */

(3) if (l_tickTime != 0) { /* time tick has started? */

(4) outportb(0x43, 0); /* latch the 8254’s counter-0 count */

(5) count16 = (uint16_t)inportb(0x40);/* read the low byte of counter-0 */

(6) count16 += ((uint16_t)inportb(0x40) << 8); /* add on the hi byte */

(7) now = l_tickTime + (0x10000 - count16);

(8) if (l_lastTime > now) { /* are we going "back" in time? */

(9) now += 0x10000; /* assume that there was one rollover */

}

(10) l_lastTime = now;

}

else {

(11) now = 0;

}

(12) return (QSTimeCtr)now;

}

#endif /* Q_SPY */

603Software Tracing for Event-Driven Systems
(1) The system clock tick interrupt increments the timestamp at tick l_tickTime

by 0x10000 to account for the 16-bit counter rollover.

(2) The QS_onGetTime() is always called inside a critical section of code. The

QSTimeCtr type is defined according to the macro QS_TIME_SIZE (see

Listing 11.11(3)).

(3,11) During the initial transient, before the clock-tick interrupt is enabled, the

QS_onGetTime() returns 0.

(4) The counter-0 in the 8254 is latched.

(5,6) The two halves of the counter can be now safely read, starting with the least

significant byte.

(7) The complete 32-bit timestamp ‘now’ is constructed.

(8) Due to undersampling of the counter, the check is performed to find out if a

counter rollover has been missed. (Note: This check assumes that

QS_onGetTime() is called at least once per rollover period.)
www.newnespress.com

604 Chapter 11
(9) If so, the counter is corrected by 0x10000.

(10) The last timestamp value is updated for the next time around.

(12) The timestamp value is returned to the caller.

11.6.4 Generating QS Dictionary Records from Active Objects

The few dictionary records generated from main() (Listing 11.16) provide only

the symbolic information available at the global level. However, the encapsulated

application components, such as the Philosopher and Table active objects, also

need to provide the symbolic information in the trace to the QSPY host

application. Listings 11.19 and 11.20 show how to generate dictionary trace

records from individual components without compromising their

encapsulation.
Listing 11.19 Generating dictionary trace records from the Table active
object (file <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\table.c)

(1) static Table l_table; /* the single instance of the Table active object */

. . .

(2) QState Table_initial(Table *me, QEvent const *e) {

(void)e; /* suppress the compiler warning about unused parameter */

(3) QS_OBJ_DICTIONARY(&l_table);

(4) QS_FUN_DICTIONARY(&QHsm_top);

(5) QS_FUN_DICTIONARY(&Table_initial);

(6) QS_FUN_DICTIONARY(&Table_serving);

(7) QS_SIG_DICTIONARY(DONE_SIG, 0); /* global signals */

(8) QS_SIG_DICTIONARY(EAT_SIG, 0);

(9) QS_SIG_DICTIONARY(TERMINATE_SIG, 0);

(10) QS_SIG_DICTIONARY(HUNGRY_SIG, me); /* signal just for Table */

/* signal HUNGRY_SIG is posted directly */

QActive_subscribe((QActive *)me, DONE_SIG);

QActive_subscribe((QActive *)me, TERMINATE_SIG);

return Q_TRAN(&Table_serving);

}

www.newnespress.com

605Software Tracing for Event-Driven Systems
(1) The Table active object instance is declared at file scope and is strictly

encapsulated inside table.c.

(2) Generally, the topmost initial pseudostate (see Section 4.5.3 in Chapter 4) is the

best place for generating the dictionary records. The QF real-time framework

executes the topmost initial transition directly from QActive_start();

therefore, the dictionary records are generated during the initial transient, before

the real-time constraints start to apply.

(3) Note that the object dictionary QS_OBJ_DICTIONARY() is generated using the

address of the static variable l_table rather than the generic pointer “me.”

Obviously, the name “l_table” is more descriptive than “me.”

(4-6) The function dictionary records provide symbolic names for the state-handler

functions. Note that a function dictionary record for QHsm_top() should be

also provided.

(7-9) The signal dictionary records for globally published signals must be associated

with all state machines in the system. You achieve this by using zero as the

second parameter to the macro QS_SIG_DICTIONARY().

(10) The HUNGRY_SIG signal is posted directly to the Table active object, so it

does not need to have the same meaning globally. You can associate such

signals with a particular state machine object by providing the address

of the state machine as the second parameter to the macro

QS_SIG_DICTIONARY().
Listing 11.20 Generating dictionary trace records from the Philosopher
active objects (file <qp>\qpc\examples\80x86\qk\tcpp101\l\dpp\
philo.c)

(1) static Philo l_philo[N_PHILO]; /* storage for all Philos */

. . .

/*..*/

(2) QState Philo_initial(Philo *me, QEvent const *e) {

static uint8_t registered; /* starts off with 0, per C-standard */

(3) if (!registered) {

registered = (uint8_t)1;

(4) QS_OBJ_DICTIONARY(&l_philo[0]);

(5) QS_OBJ_DICTIONARY(&l_philo[0].timeEvt);

QS_OBJ_DICTIONARY(&l_philo[1]);

Continued onto next page

www.newnespress.com

QS_OBJ_DICTIONARY(&l_philo[1].timeEvt);

QS_OBJ_DICTIONARY(&l_philo[2]);

QS_OBJ_DICTIONARY(&l_philo[2].timeEvt);

QS_OBJ_DICTIONARY(&l_philo[3]);

QS_OBJ_DICTIONARY(&l_philo[3].timeEvt);

QS_OBJ_DICTIONARY(&l_philo[4]);

QS_OBJ_DICTIONARY(&l_philo[4].timeEvt);

(6) QS_FUN_DICTIONARY(&Philo_initial);

QS_FUN_DICTIONARY(&Philo_thinking);

QS_FUN_DICTIONARY(&Philo_hungry);

QS_FUN_DICTIONARY(&Philo_eating);

randomize(); /* initialize the random number generator just once */

}

(7) QS_SIG_DICTIONARY(HUNGRY_SIG, me); /* signal for each Philos */

(8) QS_SIG_DICTIONARY(TIMEOUT_SIG, me); /* signal for each Philos */

QActive_subscribe((QActive *)me, EAT_SIG);

return Q_TRAN(&Philo_thinking); /* top-most initial transition */

}

606 Chapter 11
(1) All Philosopher active object instances are declared at file scope and are strictly

encapsulated inside philo.c.

(2) The Philo_initial() initial pseudostate is invoked once for every

Philosopher active object.

(3) The test of the static variable registered ensures that the code inside the if

statement runs only once.

(4) An object dictionary is generated for the Philosopher active object. Note that the

object dictionary QS_OBJ_DICTIONARY() is generated using the address of

the static variable l_philo[0] rather than the generic pointer “me”. Obviously,

the name “l_philo[0]” is more descriptive than “me.”

(5) An object dictionary entry is also generated for the private time event member

of the Philosopher active object.

(6) The function dictionary entries for all Philosopher state-handler functions are

generated only once.

(7,8) In contrast, the signal dictionary records for local signals are generated for every

Philosopher instance.
www.newnespress.com

607Software Tracing for Event-Driven Systems
11.6.5 Adding Application-Specific Trace Records

Although QS generates a very detailed trace even without adding any instrumentation to

the application, it also allows inserting application-specific records into the trace (see

Section 11.3.9). Listing 11.21 provides an example of a simple application-specific

trace record that reports the Philosopher status.
Listing 11.21 Generating application-specific trace records (file <qp>\qpc\
examples\80x86\qk\tcpp101\l\dpp\bsp.c)

#ifdef Q_SPY

. . .

enum AppRecords { /* application-specific trace records */

(1) PHILO_STAT = QS_USER
};

#endif

. . .

/*..*/

void BSP_displyPhilStat(uint8_t n, char const *stat) {

Video_printStrAt(17, 12 + n, VIDEO_FGND_YELLOW, stat);

(2) QS_BEGIN(PHILO_STAT, AO_Philo[n]) /* application-specific record begin */

(3) QS_U8(1, n); /* Philosopher number */

(4) QS_STR(stat); /* Philosopher status */

(5) QS_END()

}

(1) The application-specific trace record types need to be enumerated. Note that the

user-level record types do not start from zero but rather are offset by the constant

QS_USER.

(2) An application-specific trace record starts with QS_BEGIN(). The first parameter

is the record type. The second parameter is the object pointer corresponding to

this trace record, which is set to AO_philo[n]. This means that you have an

option to use the application-specific local filter QS_FILTER_AP_OBJ(AO_philo

[<n>]) to selectively trace only the AO_philo[<n>] object, where

<n>=0..4. As described in Section 11.3.9, you can also set the second parameter

to NULL, which will disable the local filter.

(3) The QS_U8() macro outputs the byte ‘n’ to the trace record to be formatted as

using one digit.

(4) The QS_STR() macro outputs the string ‘stat’ to the trace record.

(5) An application-specific trace record ends with QS_END().
www.newnespress.com

608 Chapter 11
The following QSPY trace output shows the application-specific trace records generated

by the DPP application:
w

. . .
0000525113 User000: 4 eating

. . .
0000591471 User000: 3 hungry

. . .
0000591596 User000: 2 hungry

. . .
0000591730 User000: 0 hungry

. . .
0000852276 User000: 4 thinking

. . .
0000852387 User000: 3 eating

. . .
0000983937 User000: 1 thinking

. . .
0000984047 User000: 0 eating

. . .
0001246064 User000: 3 thinking
11.6.6 “QSPY Reference Manual”

The source code available from the companion Website to this book at www.quantum-

leaps.com/psicc2/ contains the “QSPY Reference Manual” in HTML and CHM-

Help formats (see Figure 11.9). The “QSPY Reference Manual” contains descriptions

of the command-line options, human-readable format, and all MATLAB matrices

generated by the qspy.m script.

The “QSPY Reference Manual” is part of the bigger manual “QP Reference Manual”

(see Section 7.12 in Chapter 7), which is located in <qp>\qpc\doxygen\ directory.

The HTML documentation is found in <qp>\qpc\doxygen\html\, whereas the

CHM Help format is located in <qp>\qpc\qpc.chm.
11.7 Summary

Testing and debugging your system can often take more calendar time and effort than

analysis, design, and coding combined. The biggest problem, especially in embedded

systems domain, is the very limited visibility into the target system.
ww.newnespress.com

http://www.quantum-leaps.com/psicc2/
http://www.quantum-leaps.com/psicc2/

CHM format

HTML format

Figure 11.9: Screen shots of the “QSPY Reference Manual,” which is available
in HTML and CHM-help formats.

609Software Tracing for Event-Driven Systems
Software tracing is a method for obtaining diagnostic information in a live environment

without the need to stop the application to get the system feedback. Software-tracing

techniques are especially effective and powerful in combination with the event-driven

paradigm because all important system interactions funnel through the event-driven

infrastructure. The inversion of control so common in event-driven architectures offers

a unique opportunity to instrument just the event-driven infrastructure, to gain

unprecedented insight into the entire system.

The Quantum Spy software-tracing system allows you to monitor the behavior of QP

applications in a live environment without degrading the application itself. It allows you

to discover and document elusive, intermittent bugs that are caused by subtle

interactions among concurrent components. It enables executing repeatable unit and

integration tests of your system. It can help you ensure that your system runs reliably

for long periods of time and gets top processor performance.
www.newnespress.com

610 Chapter 11
Quantum Spy implements many advanced features, such as sophisticated data filtering,

good data compression, robust transmission protocol, high configurability, generic

application-specific tracing, and interfacing with external tools such as MATLAB.

Overall, the QS target-resident module and the QSPY host application were the most

difficult components of the QP event-driven platform to develop and test. I also

consider them the most valuable.
www.newnespress.com

www.n
CHAP T E R 1 2
QP-nano: How Small Can You Go?
All life on Earth is insects...
—Scientific American, July 2001

In this chapter I describe a reduced version of the event-driven infrastructure called

QP-nano, which has been specifically designed to enable active object computing with

UML-style hierarchical state machines on low-end 8- and 16-bit single-chip

microcontrollers (MCUs). By low-end MCUs I mean devices such as 8051, PIC, AVR,

MSP430, 68HC08/11/12, R8C/Tiny, and others alike, with a few hundred bytes of

RAM and a few kilobytes of ROM. Embedded in myriads of products, these “invisible

computers” far outnumber all other processor types in a similar way as countless

species of insects far outnumber all other life forms on Earth [Turley 02].

Even though the QP event-driven platform is by no means big, a minimal QP

application still requires around 1KB of RAM and some 10KB of ROM (see Figure 7.2

in Chapter 7), which is comparable to the footprint of a very small, bare-bones

conventional RTOS. In comparison, a minimal QP-nano application can fit in a system

with just 100 bytes of RAM and 2KB of ROM. This tiny footprint, especially in RAM,

makes QP-nano ideal for high-volume, cost-sensitive, event-driven applications such

as motor control, lighting control, capacitive touch sensing, remote access control,

RFID, thermostats, small appliances, toys, power supplies, battery chargers, or just

about any custom system on a chip (SOC or ASIC) that contains a small processor

inside. Also, because the event-driven paradigm naturally uses the CPU only when

handling events and otherwise can very easily switch the CPU into a low-power sleep

mode (see Section 6.3.7 in Chapter 6), QP-nano is particularly suitable for ultra-low

power applications, such as wireless sensor networks or implantable medical devices.
ewnespress.com

612 Chapter 12
I begin this chapter by describing the key features of QP-nano. I then walk you through

the QP-nano version of the “Fly ‘n’ Shoot” game, which I introduced in Chapter 1, so

that you can easily compare how QP-nano differs from the full-version QP. Next I

describe the QP-nano source code. I conclude with some more QP-nano examples for a

very small, ultra-low-power MSP430F2013 MCU [TI 07].
12.1 Key Features of QP-nano

QP-nano is a generic, portable, ultra-lightweight, event-driven infrastructure designed

specifically for low-end 8- and 16-bit MCUs. As shown in Figure 12.1, QP-nano

consists of a hierarchical event processor called QEP-nano, a minimal real-time

framework called QF-nano, and a choice between a preemptive run-to-completion

kernel called QK-nano or a cooperative “vanilla” kernel. The key QP-nano features are:

� Full support for hierarchical state nesting, including guaranteed entry/exit action

execution on arbitrary state transition topology with up to four levels of state

nesting

� Support for up to eight concurrently executing active objects1 with

deterministic, thread-safe event queues

� Support for events with a byte-wide signal (255 signals) and one scalar

parameter, configurable to 0 (no parameter), 1, 2, or 4 bytes

� Direct event delivery mechanism with first-in, first-out (FIFO) queuing policy

� One single-shot time event (timer) per active object with configurable dynamic

range of 0 (no time events), 1, 2, or 4 bytes

� Built-in cooperative “vanilla” kernel (see Section 6.3.7 in Chapter 6)

� Built-in preemptive RTC kernel called QK-nano (see Section 6.3.8 in

Chapter 6)

� Low-power architecture with idle callback function for easy implementation of

power-saving modes
1 This does not mean that your application is limited to eight state machines. Each active object can

manage any number of stateful components, as described in the “Orthogonal Component” state pattern in

Chapter 5.

www.newnespress.com

613QP-nano: How Small Can You Go?
� Provisions in the code to handle nonstandard extensions in the C compilers for

popular low-end CPU architectures (e.g., allocation of constant objects in the

code space, reentrant functions, etc.)

� Assertion-based error handling policy
QP-nano

Target (Hardware)

“Vanilla” Cooperative Kernel
or QK-nano Preemptive Kernel

QF-nano
Real-Time Framework

QEP-nano
Hierarchical Event Processor

BSP

Application (Your Code)

Figure 12.1: QP-nano components (in gray) and their relationship with
the target hardware, board support package (BSP), and application.
By far the biggest challenge in QP-nano design is the extremely tight RAM budget,

which I assumed to be only around 100 bytes, including the C stack. Obviously,

with RAM in such short supply I was forced to carefully count every byte of RAM.

This is in contrast to the full-version QP, where I was not trying to save every last

byte of RAM if this would reduce programming convenience, flexibility, or

performance.

Perhaps the most important implication of the severely limited RAM is that QP-nano

does not support events with arbitrary-sized parameters. Instead, QP-nano allows

only fixed-size events with one scalar parameter, configurable to 1, 2, or 4 bytes (or

0 bytes, which means no event parameter). This has far-reaching simplifying

consequences. First, event queues in QP-nano hold entire events, not just pointers

to events, as in the full-version QP. Small, fixed-size events are simply copied by

value into and out of event queues in an inherently thread-safe manner. Second, the

copy-by-value policy eliminates the need for event pools, which would not fit into

the available RAM anyway. Finally, reference counting of events is unnecessary in

this design.
www.newnespress.com

NOTE

A single scalar event parameter means that QP-nano always associates the configured num-

ber of bytes with every event, but it does not mean that you can have only one event param-

eter. In fact, each event can have as many event parameters as you can squeeze into the

available bits.

614 Chapter 12
At this time, QP-nano does not support software tracing (see Chapter 11), because I

assume that the available RAM is too small for any reasonable trace buffer. Also, most

low-end MCUs tend to be very limited in the number of pins, so allocating even one

extra output pin only for development purposes can be a challenge.

12.2 Implementing the “Fly ‘n’ Shoot” Example
with QP-nano

Perhaps the best way to learn about QP-nano capabilities and how the program differs

from the full version of QP is to reimplement a nontrivial QP example in QP-nano. In

this section, I’ll walk you through the QP-nano version of the “Fly ‘n’ Shoot” game

introduced in Chapter 1. I recommend that you flip back to Chapter 1 and refresh your

understanding of that application and its implementation based on the full-version QP.

The code accompanying this book contains four QP-nano implementations of the

“Fly ‘n’ Shoot” game for two embedded targets and two different kernels. Here I’ll use

the version for DOS with the nonpreemptive kernel compiled with the legacy Turbo

C++ 1.01 compiler, which you can run directly on any Windows PC. You can find this

version in the directory <qp>\qpn\examples\80x86\tcpp101\game\. The same

application code (except for the BSP) is also available for the Cortex-M3 EV-LM3S811

board (see Figure 1.2 in Chapter 1). The Cortex-M3 code is located in the directory

<qp>\qpn\examples\cortex-m3\iar\game-ev-lm3s811\.
NOTE

The LM3S811 MCU (32-bit ARM Cortex-M3) with 8KB of RAM and 64KB of ROM is cer-

tainly a very big machine for QP-nano. I use it in this section only to provide a direct com-

parison to the same application implemented with full-version QP. In the upcoming Section

12.7, I describe QP-nano examples for the ultra-low power Texas Instruments board called

eZ430-F2013, which is based on the MSP430F2013 MCU with only 128 bytes of RAM

and 2KB of ROM [TI 07].

www.newnespress.com

615QP-nano: How Small Can You Go?
12.2.1 The main() function

Listing 12.1 shows the main.c source file for the “Fly ‘n’ Shoot” application, which

contains the main() function along with some important data structures required by

QP-nano.
Listing 12.1 The file main.c of the “Fly ‘n’ Shoot” game application

(1) #include "qpn_port.h" /* QP-nano port */

(2) #include "bsp.h" /* Board Support Package (BSP) */

(3) #include "game.h" /* application interface */

/*...*/

(4) static QEvent l_tunnelQueue[GAME_MINES_MAX + 4];

(5) static QEvent l_shipQueue[2];

(6) static QEvent l_missileQueue[2];

/* QF_active[] array defines all active object control blocks ----*/

(7) QActiveCB const Q_ROM Q_ROM_VAR QF_active[] = {
(8) { (QActive *)0, (QEvent *)0, 0 },

(9) { (QActive *)&AO_tunnel, l_tunnelQueue, Q_DIM(l_tunnelQueue) },

(10) { (QActive *)&AO_ship, l_shipQueue, Q_DIM(l_shipQueue) },

(11) { (QActive *)&AO_missile, l_missileQueue, Q_DIM(l_missileQueue) }
};

/* make sure that the QF_active[] array matches QF_MAX_ACTIVE in qpn_port.h */

(12) Q_ASSERT_COMPILE(QF_MAX_ACTIVE == Q_DIM(QF_active) - 1);

/*...*/
void main (void) {

(13) Tunnel_ctor ();

(14) Ship_ctor ();

(15) Missile_ctor(GAME_MISSILE_SPEED_X);

(16) BSP_init(); /* initialize the board */

(17) QF_run(); /* transfer control to QF-nano */
}

(1) Every application C file that uses QP-nano must include the qpn_port.h header

file. This header file contains the specific adaptation of QP-nano to the given

processor and compiler, which is called a port. The QP-nano port is typically

located in the application directory.

(2) The bsp.h header file contains the interface to the board support package and is

located in the application directory.
www.newnespress.com

616 Chapter 12
(3) The game.h header file contains the declarations of events and other facilities

shared among the components of the “Fly ‘n’ Shoot” game. I will discuss this

header file in the upcoming Section 12.2.3. This header file is located in the

application directory.

(4-6) The application must provide storage for the event queues of all active objects

used in the application. In QP-nano the storage is provided at compile time

through the statically allocated arrays of events. Events are represented as

instances of the QEvent structure declared in the <qp>\qpn\include\qepn.h

header file, included from qpn_port.h. Each event queue of an active object

can have a different length, and you need to decide this length based on

your knowledge of the application. Refer to Chapters 6 and 7 for the

discussion of sizing event queues.

(7) Every QP-nano application must provide the constant array QF_active[],

which defines all active object control blocks in the application. The control

block QActiveCB structure groups together (1) the pointer to the corresponding

active object instance, (2) the pointer to the event queue buffer of the active

object, and (3) the length of the queue buffer.

In QP-nano, I use every opportunity to place data in ROM rather than in precious RAM.

The QActiveCB structure contains data elements known at compile time so that these

elements can be placed in ROM as opposed to placing them in the active object

structure (RAM). That way I save anywhere from 10 to 80 bytes of RAM, depending on

the number of active objects and the pointer size of the target CPU.

The Q_ROM macro is necessary on some CPU architectures to enforce placement of

constant objects, such as the QF_active[] array, in ROM. On Harvard architecture

CPUs (such as 8051 or AVR), the code and data spaces are separate and are accessed

through different CPU instructions. The const keyword is not sufficient to place

data in ROM, and various compilers often provide specific extended keywords to

designate the code space for placing constant data, such as the “__code” extended

keyword in the IAR 8051 compiler. The macro Q_ROM hides such nonstandard

extensions. If you don’t define Q_ROM in qepn_port.h, it will be defined to nothing

in the qepn.h platform-independent header file.

The Q_ROM_VAR macro defines the compiler-specific directive for accessing a constant

object in ROM. Many compilers for 8-bit MCUs provide variously sized pointers for

accessing objects in various memories. Constant objects allocated in ROM often
www.newnespress.com

617QP-nano: How Small Can You Go?
mandate the use of specific-size pointers (e.g., far pointers) to get access to ROM

objects. The macro Q_ROM_VAR specifies the kind of the pointer to be used to access the

ROM objects. An example of valid Q_ROM_VAR macro definition is __far (Freescale

HC(S)08 compiler).

(8) The first entry (QF_active[0]) corresponds to an active object priority of

zero, which is reserved for the idle task and cannot be used for any active

object.

(9-11) The QF_active[] entries starting from one define the active object control

blocks in the order of their relative priorities. The maximum number of active

objects in QP-nano cannot exceed eight.
NOTE

The order of the active object control blocks in the QF_active[] array defines the priorities
of active objects. This is the only place in the code where you assign active object priorities.
(12) This compile-time assertion (see Section 6.7.3 in Chapter 6) ensures that the

dimension of the QF_active[] array matches the number of active objects

QF_MAX_ACTIVE defined in the qpn_port.h header file.

In QP-nano, QF_MAX_ACTIVE denotes the exact number of active objects used in the

application, as opposed to the full-version QP, where QF_MAX_ACTIVE denotes just

the configurable maximum number of active objects.
NOTE

All active objects in QP-nano must be defined at compile time. This means that all active

objects exist from the beginning and cannot be started (or stopped) later, as is possible in

the full-version QP.
The macro QF_MAX_ACTIVE must be defined in the qpn_port.h header file because

QP-nano uses the macro to optimize the internal algorithms based on the number of

active objects. The compile-time assertion in line 12 makes sure that the configured

number of active objects does indeed match exactly the number of active object control

blocks defined in the QF_active[] array.
www.newnespress.com

618 Chapter 12
(13-15) The main() function must first explicitly call all active object constructors.

(16) The board support package (BSP) is initialized.

(17) At this point, you have initialized all components and have provided to the

QF-nano framework all the information it needs to manage your application.

The last thing you must do is to call the function QF_run() to pass the

control to the QF-nano framework.

Overall, the application startup is much simpler in QP-nano than in full-version QP.

Neither event pools nor publish-subscribe lists are supported, so you don’t need to

initialize them. You also don’t start active objects explicitly. The QF-nano framework

starts all active objects defined in the QF_active[] array automatically just after

it gets control in QF_run().
12.2.2 The qpn_port.h Header File

The qpn_port.h header file defines the QP-nano port and all configuration parameters

for the particular application. Unlike in the full-version QP, QP-nano ports are

typically defined at the application level. Also typically, the whole QP-nano port

consists of just the qpn_port.h header file. Listing 12.2 shows the complete

qpn_port.h file for the DOS version of the “Fly ‘n’ Shoot” game.
Listing 12.2 The qpn_port.h header file for the “Fly ‘n’ Shoot” game

#ifndef qpn_port_h

#define qpn_port_h

(1) #define Q_PARAM_SIZE 4

(2) #define QF_TIMEEVT_CTR_SIZE 2

(3) #define Q_NFSM

/* maximum # active objects--must match EXACTLY the QF_active[] definition */

(4) #define QF_MAX_ACTIVE 3

/* interrupt locking policy for task level */

(5) #define QF_INT_LOCK() disable()

(6) #define QF_INT_UNLOCK() enable()

/* Exact-width types (WG14/N843 C99 Standard) for Turbo C++/large model */

(7) typedef signed char int8_t;
typedef signed int int16_t;

www.newnespress.com

typedef signed long int32_t;
typedef unsigned char uint8_t;
typedef unsigned int uint16_t;
typedef unsigned long uint32_t;

#include <dos.h> /* DOS API */
#undef outportb /*don’t use the macro because it has a bug in Turbo C++ 1.01*/

(8) #include "qepn.h" /* QEP-nano platform-independent header file */

(9) #include "qfn.h" /* QF-nano platform-independent header file */

#endif /* qpn_port_h */

e

619QP-nano: How Small Can You Go?
(1) Themacro Q_PARAM_SIZE defines the size (in bytes) of the scalar event parameter.

The allowed values are 0 (no parameter), 1, 2, or 4 bytes. If you don’t define this

macro in qpn_port.h, the default of 0 (no parameter) will be assumed.

(2) The macro QF_TIMEEVT_CTR_SIZE defines the size (in bytes) of the time

event down-counter. The allowed values are 0 (no time events), 1, 2, or 4 bytes.

If you don’t define this macro in qpn_port.h, the default of 0 (no time events)

will be assumed.

(3) Defining the macro Q_NFSM eliminates the code for the simple nonhierarchical

FSMs.

(4) You must define the QF_MAX_ACTIVE macro as the exact number of active

objects used in the application. The provided value must be between 1 and

8 and must be consistent with the definition of the QF_active[] array (see

Listing 12.1(12)).

(5,6) The macros QF_INT_LOCK()/QF_INT_UNLOCK() define the task-level

interrupt-locking policy for QP-nano. I discuss the QP-nano critical section in

Section 12.3.2.

(7) Just like the full-version QP, QP-nano uses a subset of the C99-standard

exact-width integer types. The legacy Turbo C++ 1.01 compiler, which I’m using

here, is a prestandard compiler and does not provide the <stdint.h> header file.

In this case I just typedef the six exact-width integer types used in QP-nano.

(8) The qpn_port.h header file must include the QEP-nano event processor interfac

(9) The qpn_port.h must include the QF-nano real-time framework interface

qepn.h.
qfn.h.

www.newnespress.com

NOTE

The qpn_port.h header file in Listing 12.2 implicitly configures QP-nano to use the

built-in cooperative “vanilla” kernel. The other alternative, which is the preemptive

QK-nano kernel, is configured automatically when you include the qkn.h QK-nano interface

in the qpn_port.h header file.

620 Chapter 12
12.2.3 Signals, Events, and Active Objects
in the “Fly ‘n’ Shoot” Game

In QP-nano, event signals are enumerated just as in the full-version QP. The only

limitation is that signal values in QP-nano cannot exceed 255, because signals are

always represented in a single byte.

In QP-nano, you cannot specify arbitrary event parameters, so you don’t derive events

as you do in full-version QP. Instead, all events in QP-nano are simply instances of

the QEvent structure, which contains the fixed-size scalar parameter configured

according to your definition of Q_PARAM_SIZE (see Listing 12.2(1)).

On the other hand, active objects in QP-nano are derived from the QActive

base structure, just like they are in the full-version QP. One of the main concerns

with respect to active object structures is to keep them encapsulated. In all

QP-nano examples, including the “Fly ‘n’ Shoot” game, I demonstrate a technique

to keep the active object structures and state machines completely opaque.

I describe this technique in the explanation section following Listing 12.3, which

shows the header file game.h included by all components of the “Fly ‘n’ Shoot”

application.
Listing 12.3 Signals and active objects for the “Fly ‘n’ Shoot” game
(the game.h header file)

#ifndef game_h

#define game_h

(1) enum GameSignals { /* signals used in the game */

(2) TIME_TICK_SIG = Q_USER_SIG, /* published from tick ISR */
PLAYER_TRIGGER_SIG, /* published by Player (ISR) to trigger the Missile */
PLAYER_QUIT_SIG, /* published by Player (ISR) to quit the game */
GAME_OVER_SIG, /* published by Ship when it finishes exploding */
PLAYER_SHIP_MOVE_SIG, /* posted by Player (ISR) to the Ship to move it */

www.newnespress.com

BLINK_TIMEOUT_SIG, /* signal for Tunnel’s blink timeout event */
SCREEN_TIMEOUT_SIG, /* signal for Tunnel’s screen timeout event */
TAKE_OFF_SIG, /* from Tunnel to Ship to grant permission to take off */
HIT_WALL_SIG, /* from Tunnel to Ship when Ship hits the wall */
HIT_MINE_SIG, /* from Mine to Ship or Missile when it hits the mine */
SHIP_IMG_SIG, /* from Ship to the Tunnel to draw and check for hits */
MISSILE_IMG_SIG, /* from Missile the Tunnel to draw and check for hits */
MINE_IMG_SIG, /* sent by Mine to the Tunnel to draw the mine */
MISSILE_FIRE_SIG, /* sent by Ship to the Missile to fire */
DESTROYED_MINE_SIG, /* from Missile to Ship when Missile destroyed Mine */
EXPLOSION_SIG, /* from any exploding object to render the explosion */
MINE_PLANT_SIG, /* from Tunnel to the Mine to plant it */
MINE_DISABLED_SIG, /* from Mine to Tunnel when it becomes disabled */
MINE_RECYCLE_SIG, /* sent by Tunnel to Mine to recycle the mine */
SCORE_SIG /* from Ship to Tunnel to adjust game level based on score */

};

/* active objects ...*/

(3) extern struct TunnelTag AO_Tunnel;

(4) extern struct ShipTag AO_Ship;

(5) extern struct MissileTag AO_Missile;

(6) void Tunnel_ctor (void);

(7) void Ship_ctor (void);

(8) void Missile_ctor(uint8_t speed);

/* common constants and shared helper functions*/
. . .
#endif /* game_h */

621QP-nano: How Small Can You Go?
(1) All signals are defined in one enumeration, which automatically guarantees the

uniqueness of signals.

(2) Note that the user signals must start with the offset Q_USER_SIG to avoid

overlapping the reserved QEP-nano signals.

(3-5) I declare all active object instances in the system as extern variables. These

declarations are necessary for the initialization of the QF_active[] array (see

Listing 12.1(7)).
NOTE

The active object structures (e.g., struct TunnelTag) do not need to be defined globally in

the application header file. The QF_active[] array needs only pointers to the active objects

(see Listing 12.1(9-11)), which the compiler can resolve without knowing the full definition

of the active object structure.

www.newnespress.com

622 Chapter 12
I never declare active object structures globally. Instead, I declare the active object

structures in the file scope of the specific active object module (e.g., struct

TunnelTag is declared in the tunnel.c file scope). That way I can be sure that

each active object remains fully encapsulated.

(6-8) Every active object in the system must provide a “constructor” function, which

initializes the active object instance. These constructors don’t take the “me”

pointers, because they have access to the global active object instances (see

(3-5)). However, the constructors can take some other initialization parameters.

For instance, the Missile_ctor() takes the Missile speed parameter.

Listing 12.1(13-15) shows that the constructors are called right at the beginning

of main().
12.2.4 Implementing the Ship Active Object in QP-nano

Implementing active objects with QP-nano is very similar to the full-version QP.

As before, you derive the concrete active object structures from the QActive base

structure provided in QP-nano. Your main job is to elaborate the state machines of the

active objects, which is also very similar to the full-version QP. The only important

difference is that state-handler functions in QP-nano do not take the event pointer as the

second argument. In fact, QP-nano state handlers take only one argument—the “me”

pointer. The current event is embedded inside the state machine itself and is accessible

via the “me” pointer. QP-nano provides macros Q_SIG() and Q_PAR() to conveniently

access the signal and the scalar parameter of the current event, respectively.

Listing 12.4 shows the implementation of the Ship active object from the

“Fly ‘n’ Shoot” game, which illustrates all aspects of implementing active objects with

QP-nano. Correlate this implementation with the Ship state diagram in Figure 1.6 as

well as with the QP implementation described in Section 1.7 in Chapter 1.
Listing 12.4 The Ship active object definition (file ship.c); boldface
indicates QP-nano facilities

#include "qpn_port.h"
#include "bsp.h"
#include "game.h"

www.newnespress.com

/* local objects --*/

(1) typedef struct ShipTag {

(2) QActive super; /* extend the QActive class */
uint8_t x;
uint8_t y;
uint8_t exp_ctr;
uint16_t score;

} Ship; /* the Ship active object */

(3) static QState Ship_initial (Ship *me);

(4) static QState Ship_active (Ship *me);
static QState Ship_parked (Ship *me);
static QState Ship_flying (Ship *me);
static QState Ship_exploding(Ship *me);

/* global objects ---*/

(5) Ship AO_Ship;

/*..*/
void Ship_ctor(void) {

Ship *me = &AO_Ship;

(6) QActive_ctor(&me->super, (QStateHandler)&Ship_initial);
me->x = GAME_SHIP_X;
me->y = GAME_SHIP_Y;

}

/* HSM definition ---*/
QState Ship_initial(Ship *me) {

(7) return Q_TRAN(&Ship_active); /* top-most initial transition */
}
/*..*/
QState Ship_active(Ship *me) {

(8) switch (Q_SIG(me)) {
case Q_INIT_SIG: { /* nested initial transition */

(9) return Q_TRAN(&Ship_parked);
}
case PLAYER_SHIP_MOVE_SIG: {

(10) me->x = (uint8_t)Q_PAR(me);
(11) me->y = (uint8_t)(Q_PAR(me) >> 8);
(12) return Q_HANDLED();

}
}

(13) return Q_SUPER(&QHsm_top);
}
/*..*/
QState Ship_flying(Ship *me) {

switch (Q_SIG(me)) {
case Q_ENTRY_SIG: {

me->score = 0; /* reset the score */

(14) QActive_post((QActive *)&AO_Tunnel, SCORE_SIG, me->score);
return Q_HANDLED();

}
case TIME_TICK_SIG: {

Continued onto next page

www.newnespress.com

623QP-nano: How Small Can You Go?

/* tell the Tunnel to draw the Ship and test for hits */

(15) QActive_post((QActive *)&AO_Tunnel, SHIP_IMG_SIG,
((QParam)SHIP_BMP << 16)
| (QParam)me->x
| ((QParam)me->y << 8));

++me->score; /* increment the score for surviving another tick */
if ((me->score % 10) == 0) { /* is the score "round"? */

QActive_post((QActive *)&AO_Tunnel, SCORE_SIG, me->score);
}
return Q_HANDLED();

}
case PLAYER_TRIGGER_SIG: { /* trigger the Missile */

QActive_post((QActive *)&AO_Missile, MISSILE_FIRE_SIG,
(QParam)me->x
| (((QParam)me->y + SHIP_HEIGHT - 1) << 8));

return Q_HANDLED();
}
case DESTROYED_MINE_SIG: {

me->score += Q_PAR(me);
/* the score will be sent to the Tunnel by the next TIME_TICK */
return Q_HANDLED();

}
case HIT_WALL_SIG:
case HIT_MINE_SIG: {

(16) return Q_TRAN(&Ship_exploding);
}

}

(17) return Q_SUPER(&Ship_active);
}

624 Chapter 12
(1) This structure defines the Ship active object.

(2) The Ship active object structure derives from the framework structure QActive,

as described in the sidebar “Single Inheritance in C” in Chapter 1.

(3) The Ship_initial() function defines the topmost initial transition in the Ship

state machine. The only difference from the full-version QP is that the initial

pseudostate function does not take the initial event parameter.

(4) The state-handler functions in QP-nano also don’t take the event parameter. (In

QP-nano, the current event is embedded in the state machine.) As in the full-version

QP, a state-handler function in QP-nano returns the status of the event handling.

(5) In this line I allocate the global AO_Ship active object. Note that actual structure

definition for the Ship active object is accessible only locally at the file scope

of the ship.c file.
www.newnespress.com

NOTE

QP-nano assumes that all global or static variables without explicit initialization value are

initialized to zero upon system startup, which is a requirement of the ANSI-C standard.

You should make sure that your startup code clears the static variables data section (a.k.a.

the Block Started by Symbol section, or BSS) before calling main().

625QP-nano: How Small Can You Go?
(6) As always, the derived structure is responsible for initializing the part

inherited from the base structure. The “constructor” of the base class

QActive_ctor() puts the state machine in the initial pseudostate

&Ship_initial. The constructor also initializes the priority of the active

object based on the QF_active[] array.

(7) The topmost initial transition to state Ship_active is specified with the

Q_TRAN() macro.

(8) Every state handler is structured as a switch statement that discriminates

based on the signal of the event, which in QP-nano is obtained by the macro

Q_SIG(me).

(9) You designate the target of a nested initial transition with the Q_TRAN()macro.

(10,11) You access the data members of the Ship state machine via the “me”

parameter of the state-handler function. You access the event parameters

via the Q_PAR(me) macro. Note that in this case two logical event parameters

are actually from the scalar QP-nano parameter. The x coordinate of the

Ship is sent in the least significant byte, and the y coordinate in the next byte.
NOTE

Each event can have as many event parameters as you can squeeze into the available bits.
(12) You terminate the case statement with “return Q_HANDLED()” which

informs QEP-nano that the internal transition has been handled.

(13) The final return from a state-handler function designates the superstate

of that state by means of the macro Q_SUPER(), which is exactly the same

as in the full-version QP. QEP-nano provides the “top” state as a state-handler
www.newnespress.com

626 Chapter 12
function QHsm_top(), and therefore the Ship_active() state handler uses

the pointer &QHsm_top as the argument to the Q_SUPER() macro (see the

Ship state diagram in Figure 1.6 in Chapter 1).

(14) The function QActive_post() posts the specified event signal and

parameter directly to the recipient active object. Direct event posting is the

only event delivery mechanism supported in QP-nano.

(15) The event posting demonstrates how to combine several logical event

parameters into the single scalar parameter managed by QP-nano. Of course,

you must be careful not to overflow the range of the QP-nano

parameter configured with the Q_PARAM_SIZE macro (see Listing 12.2(1)).

(16) You designate the target of a transition with the Q_TRAN()macro.

(17) The state “flying” (see Figure 1.6 in Chapter 1) nests in the state “active,” so

the state handler Ship_flying() designates the superstate by returning

Q_SUPER(&Ship_active).
12.2.5 Time Events in QP-nano

QP-nano maintains a single private time event (timer) for each active object in the

system. These timers can be programmed (armed) to generate the reserved Q_TIMEOUT

events after the specified number of clock ticks. Internally, QP-nano represents a time

event only as a down-counter (typically 2 bytes of RAM). Only single-shot time

events are supported because a periodic time event would require twice as much

RAM to store the period. The Q_TIMEOUT signal is predefined in QP-nano and is one of

the reserved signals (similar to Q_ENTRY, Q_EXIT, and Q_INIT).

Listing 12.5 shows a fragment of the Tunnel active object state machine that uses the

QP-nano time event for blinking the “Game Over” text in the “game_over” state.
Listing 12.5 Using a QP-nano Time Event (file tunnel.c)

QState Tunnel_game_over(Tunnel *me) {
switch (Q_SIG(me)) {

case Q_ENTRY_SIG: {

(1) QActive_arm((QActive *)me, BSP_TICKS_PER_SEC/2); /* 1/2 sec */
me->blink_ctr = 5*2; /* 5s timeout */
BSP_drawNString((GAME_SCREEN_WIDTH - 6*9)/2, 0, "Game Over");
return Q_HANDLED();

}

www.newnespress.com

case Q_EXIT_SIG: {

(2) QActive_disarm((QActive *)me);
BSP_updateScore(0); /* clear the score on the display */
return Q_HANDLED();

}

(3) case Q_TIMEOUT_SIG: {
(4) QActive_arm((QActive *)me, BSP_TICKS_PER_SEC/2); /* 1/2 sec */

BSP_drawNString((GAME_SCREEN_WIDTH - 6*9)/2, 0,
(((me->blink_ctr & 1) != 0)
? "Game Over"
: " "));

if ((--me->blink_ctr) == 0) { /* blinked enough times? */
Q_TRAN(&Tunnel_demo);

}
return Q_HANDLED();

}
}
return Q_SUPER(&Tunnel_active);

}

627QP-nano: How Small Can You Go?
(1) The time event associated with the active object is armed to expire after the

specified number of clock ticks. Usually, arming of the time event occurs in the

entry action to a state.
NOTE

While arming a time event, you must be careful not to exceed the preconfigured dynamic

range of the internal down-counter. The dynamic range is configurable by means of the

macro QF_TIMEEVT_CTR_SIZE in the qpn_port.h header file (see Listing 12.2(2)).
(2) The time event can be disarmed. The disarming usually occurs in the exit action

from a state. At any moment you can also rearm a running timer by calling

QActive_arm(), which simply replaces the value of the timer down-counter.
NOTE

A QP-nano time event can be easily used as a watchdog timer. You constantly rearm such

time event by calling QActive_arm() so that it never expires.
(3) After the preprogrammed timeout, the timer generates the Q_TIMEOUT event,

which you can handle just like any other event dispatched to the state machine.
www.newnespress.com

628 Chapter 12
(4) You achieve a periodic timeout by arming the one-shot time event every time it

expires. Note that often the period is a compile-time constant, which takes no

precious RAM.
12.2.6 Board Support Package for “Fly ‘n’ Shoot”
Application in QP-nano

QP-nano calls several platform-specific callback functions that you must define,

typically in the board support package (BSP). Apart from the callbacks, you must also

define all the interrupt service routines (ISRs), explained in more detail in Sections

12.5.1 and 12.6.4. Listing 12.6 shows the most important elements of the BSP for the

“Fly ‘n’ Shoot” game in the DOS environment.
Listing 12.6 BSP for the “Fly ‘n’ Shoot” game under DOS (file bsp.c)

#include "qpn_port.h"
#include "game.h"
#include "bsp.h"

/* Local-scope objects ---*/
static void interrupt (*l_dosTmrISR)(void);
static void interrupt (*l_dosKbdISR)(void);

#define TMR_VECTOR 0x08
#define KBD_VECTOR 0x09

/*...*/

(1) static void interrupt tmrISR(void) { /* 80x86 enters ISRs with int. locked */

(2) QF_tick(); /* process all armed time events */

(3) QActive_postISR((QActive *)&AO_Tunnel, TIME_TICK_SIG, 0);
(4) QActive_postISR((QActive *)&AO_Ship, TIME_TICK_SIG, 0);
(5) QActive_postISR((QActive *)&AO_Missile, TIME_TICK_SIG, 0);

outportb(0x20, 0x20); /* write EOI to the master PIC */
}
/*...*/
void BSP_init(void) {

. . .
}
/*...*/
void BSP_drawBitmap(uint8_t const *bitmap, uint8_t width, uint8_t height) {

Video_drawBitmapAt(0, 8, bitmap, width, height);
}
/*...*/

www.newnespress.com

void BSP_drawNString(uint8_t x, uint8_t y, char const *str) {
Video_drawStringAt(x, 8 + y*8, str);

}
/*...*/
void BSP_updateScore(uint16_t score) {

if (score == 0) {
Video_clearRect(68, 24, 72, 25, VIDEO_BGND_RED);

}
Video_printNumAt(68, 24, VIDEO_FGND_YELLOW, score);

}
/*...*/

(6) void QF_onStartup(void) {
/* save the original DOS vectors ... */

l_dosTmrISR = getvect(TMR_VECTOR);
l_dosKbdISR = getvect(KBD_VECTOR);

QF_INT_LOCK();
setvect(TMR_VECTOR, &tmrISR);
setvect(KBD_VECTOR, &kbdISR);
QF_INT_UNLOCK();

}
/*...*/

(7) void QF_stop(void) {
/* restore the original DOS vectors ... */

if (l_dosTmrISR != (void interrupt (*)(void))0) { /* DOS vectors saved? */
QF_INT_LOCK();
setvect(TMR_VECTOR, l_dosTmrISR);
setvect(KBD_VECTOR, l_dosKbdISR);
QF_INT_UNLOCK();

}
_exit(0); /* exit to DOS */

}
/*...*/

(8) void QF_onIdle(void) { /* see NOTE01 */
QF_INT_UNLOCK();

}
/*---*/

(9) void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {
. . .
QF_stop(); /* stop QF and cleanup */

}

629QP-nano: How Small Can You Go?
(1) Usually you can use the compiler-generated ISRs with QP-nano. Here I use the

capability of the Turbo C++ 1.01 compiler to generate ISRs, which are

designated with the extended keyword “interrupt.”

(2) Just as in the full-version QP, you need to call QF_tick() from the system

clock-tick ISR.

(3-5) QP-nano does not support publishing events. Instead, you directly post the

TIME_TICK event to all active objects that need to receive it.
www.newnespress.com

NOTE

QP-nano provides different services for ISRs and for the task level. You can only call two

QP-nano functions from interrupts: QF_tick() and QActive_postISR(). Conversely,

you should never call these two functions from the task level. This separation of APIs is

closely related to the separate interrupt-locking policies for tasks and interrupts in QP-nano.

I discuss the QP-nano interrupt-locking policy in Section 12.3.2.

630 Chapter 12
(6) The callback function QF_onStartup() is invoked by QP-nano after all active

object state machines are started but before the event loop starts executing.

QF_onStartup() is intended for configuring and starting interrupts.

(7) The function QF_stop() stops QF-nano and returns control back to the operating

system. This function is rarely used in deeply embedded systems, because a

bare-metal system simply has no operating system to return to. In the DOS version,

however, the QF_stop() function restores the original interrupts and exits to DOS.

(8) This version of the “Fly ‘n’ Shoot” application has been implicitly configured to

use the “vanilla” cooperative kernel (see the final note in Section 12.2.2). The

vanilla kernel works in QP-nano exactly as described in Section 6.3.7 in Chapter 6.

In particular, the QF_onIdle() callback is invoked with interrupts locked and must

always unlock interrupts.

(9) Finally, in every QP-nano application you need to provide the assertion-failure

callback Q_onAssert(). QP-nano uses the same embedded-systems-friendly

assertions as the full-version QP (see Section 6.7.3 in Chapter 6).
12.2.7 Building the “Fly ‘n’ Shoot” QP-nano Application

As shown in Figure 12.2, building a QP-nano application is simpler than the full-version

QP. You merely need to add two QP-nano source files qepn.c and qfn.c to the

project, and you need to instruct the compiler to search for the header files in the

<qp>\qpn\include\ directory. (If you use QK-nano, you additionally need to add the

qkn.c source file.) The project file for building the “Fly ‘n’ Shoot” game for DOS with

the Turbo C++ 1.01 compiler is found in <qp>\qpn\examples\80x86\tcpp101\

game\GAME.PRJ. Similarly, the project file to build the game for Cortex-M3 with the

IAR compiler is found in <qp>\qpn\examples\cortex-m3\iar\game-

ev-lm3s811\game.ewp.
www.newnespress.com �

qpn_port.h

 Target
 MCU

application image

QP-nano Application
(Your Code)

C
Compiler

Linker/
Locator

object files

application
header file

application
source files

linker
script

compiler
options

platform-specific
QP-nano header file

qepn.c

qfn.c

qkn.c

only needed when
QK-nano is configured

Figure 12.2: Building a QP-nano application.

631QP-nano: How Small Can You Go?
12.3 QP-nano Structure

Figure 12.3 shows the main QP-nano elements and their relation to the application-level

code, such as the “Fly ‘n’ Shoot” game example. As all real-time frameworks, QP-nano

provides the central base class QActive for derivation of concrete2 active object classes.

The QActive class is abstract, which means that it is not intended for direct instantiation

but rather only for derivation of active object structures, such as Ship, Missile, and

Tunnel shown in Figure 12.3 (see also the sidebar “Single Inheritance in C” in Chapter 1).

By default, the QActive class derives from the QHsm hierarchical state machine class

defined in the QEP-nano event processor. This means that by virtue of inheritance,

active objects are HSMs and inherit the init() and dispatch() state machine

interface. QActive also contains the active object priority, which identifies the active

object thread of execution, as well as an event queue and a time event counter.

As an option, you can configure QP-nano to derive QActive from the simpler,

nonhierarchical state machine class QFsm. By doing this, you eliminate the hierarchical

state machine code, which can save you some 300-500 bytes of ROM, depending on the

code density of your target CPU.
2 Concrete class is the OOP term and denotes a class that has no abstract operations or protected

constructors. Concrete class can be instantiated, as opposed to abstract class, which cannot be instantiated.

www.newnespress.com

Ship

QEP-nano event processor

QF-nano real-time framework

sig : QSignal
par : QParam

QEvent

init()
dispatch()

state : QState Handler
evt : QEvent

«abstract»
QHsm

start()
post()
postISR()
arm()
disarm()

prio : uint8_t
head : uint8_t
tail : uint8_t
nUsed : uint8_t
tickCtr : QTimeEvtCtr

«abstract»
QActive

“Fly ‘n’ Shoot” application

Missile Tunnel

Mine2
n

Mine1
n

evt

act : * QActive
queue : * QEvent
end : uint8_t

QActiveCB
act

queue

end

1

1

QF_active[] : QActiveCB

1

QF_MAX_ACTIVE

Figure 12.3: QEP-nano event processor, QF-nano real-time framework,
and the “Fly ‘n’ Shoot” application.

632 Chapter 12
The QEvent class represents events in QP-nano. The event signal QSignal is

typedef’ed to a byte (uint8_t). Also embedded directly in the event is the single

scalar event parameter. You cannot add any other parameters to the event by derivation.

The size of the event parameter is configurable with the macro Q_PARAM_SIZE. In

QP-nano, the state machine class QHsm (as well as the simpler QFsm) contains the

current event. The event inside the state machine counts towards the event queue length.

QP-nano also introduces the active object control block structure QActiveCB,

which contains read-only data elements known at compile time (see Listing 12.1(7)).

Every QP-nano application must define the constant array QF_active[] that contains

initialized active object control blocks for all active objects in the application.
www.newnespress.com

633QP-nano: How Small Can You Go?
The length of the QF_active[] array must match exactly the QF_MAX_ACTIVE

macro in the qpn_port.h header file. The ordering of the active object control

blocks in the QF_active[] array determines the priorities of the active objects.
12.3.1 QP-nano Source Code, Examples, and Documentation

Listing 12.7 shows the directories and files comprising QP-nano. Note that the

<qp>\qpn\examples\ directory contains several QP-nano executable examples for

various embedded targets. In particular, I provide all the state design patterns

described in Chapter 5 in the <qp>\qpn\examples\80x86\tcpp101\ directory.

The QP-nano directory <qp>\qpn\doxygen\ also contains the “QP-nano Reference

Manual” generated from the source code by the Doxygen utility. The reference manual

is available in HTML and CHM Help formats.
Listing 12.7 QP-nano code organization

<qp>\qpn\ - QP-nano root directory

|

+-include\ - Platform independent QP header files
| +-qassert.h - QP-nano assertions (Section 6.7.3 in Chapter 6)
| +-qepn.h - QEP-nano platform-independent interface

| +-qfn.h - QF-nano platform-independent interface

| +-qkn.h - QK-nano platform-independent interface

|

+-source\ - QP-nano platform-independent source code (*.C files)
| +-qepn.c - QEP-nano platform-independent source code

| +-qfn.c - QF-nano platform-independent source code

| +-qkn.c - QK-nano platform-independent source code

|

+-examples\ - Platform-specific QP-nano examples
| +-80x86\ - Examples for the 80x86 processor

| | +-tcpp101\ - Examples with the Turbo C++ 1.01 compiler

| | +-comp\ - "Orthogonal Component" pattern (Chapter 5)

| | +-defer\ - "Deferred Event" pattern (Chapter 5)

| | +-dpp\ - DPP application (Chapter 9)

| | +-dpp-qk\ - DPP application with QK-nano

| | +-game\ - "Fly ‘n’ Shoot" game example

| | | +-dbg\ - Debug build

| | | | +-GAME.EXE - Debug executable

| | | +-GAME.PRJ - Turbo C++ project to build the Debug version

| | | +-qpn_port.h - QP-nano port

| | | +-game.h - The application header file

| | | +-bsp.c - BSP for the application

| | | +-main.c - main() entry point

| | +-. . .

Continued onto next page

www.newnespress.com

| | +-game-qk\ - "Fly ‘n’ Shoot" game example with QK-nano

| | +-history\ - "Transition to History" pattern (Chapter 5)

| | +-hook\ - "Ultimate Hook" pattern (Chapter 5)

| | +-pelican\ - PELICAN crossing example (see Section 12.7)
| | +-pelican-qk\ - PELICAN crossing example with QK-nano

| | +-qhsmtst\ - QHsmTst example (Section 2.3.15 in Chapter 2)
| | +-reminder\ - "Reminder" pattern (Chapter 5)

| |

| +-cortex-m3\ - Examples for the Cortex-M3 processor

| | +-iar\ - Examples with the IAR compiler

| | +-game-ev-lm3s811 - "Fly ‘n’ Shoot" game example

| | +-game-qk-ev-lm3s811 - "Fly ‘n’ Shoot" game example with QK-nano

| | +-pelican-ev-lm3s811 - PELICAN crossing example (see Section 12.7)
| | +-pelican-qk-ev-lm3s811 - PELICAN crossing example with QK-nano

| |

| +-msp430\ - Examples for the MSP430 processor

| | +-iar\ - Examples with the IAR compiler

| | +-bomb-eZ430 - Time bomb example (Section 3.6 in Chapter 3)
| | +-bomb-qk-eZ430 - Time bomb with QK-nano

| | +-dpp-eZ430 - Simplified DPP application

| | +-pelican-eZ430 - PELICAN crossing example (see Section 12.7)
| | +-pelican-qk-eZ430 - PELICAN crossing example with QK-nano

| | +-qhsmtst-eZ430 - QHsmTst example (Section 2.3.15 in Chapter 2)
|

+-doxygen\ - QP-nano documentation generated with Doxygen
| +-html\ - "QP-nano Reference Manual" in HTML format

| | +-index.html - The starting HTML page for "QP-nano Reference Manual"

| | +- . . .

| +-Doxyfile - Doxygen configuration file to generate the Manual

| +-qpn.chm - QP-nano Reference Manual" in CHM Help format

| +-qpn_rev.h - QP-nano revision history

634 Chapter 12
12.3.2 Critical Sections in QP-nano

QP-nano, just like the full-version QP, achieves atomic execution of critical sections

by briefly locking and unlocking interrupts. However, unlike the full-version QP,

QP-nano uses a separate interrupt-locking policy for the task-level code and a different

policy for ISRs. The ISR policy is used in the QP-nano functions QActive_postISR()

and QF_tick(). The task-level policy is used in all other QP-nano services.
NOTE

Because the interrupt-locking policies for active objects and ISRs are different, you should never
call the QP-nano functions intended for ISRs (QActive_postISR() and QF_tick()) inside

tasks, and conversely, you should never call task-level QP-nano functions inside ISRs.

www.newnespress.com

635QP-nano: How Small Can You Go?
Task-Level Interrupt Locking

For the task level (code called from active objects), QP-nano employs the simple

unconditional interrupt locking and unlocking policy, as described in Section 7.3.2 of

Chapter 7. In this policy, interrupts are always unconditionally unlocked upon exit from a

critical section, regardless of whether they were locked or unlocked before entry to the

critical section. The pair of QP-nano macros QF_INT_LOCK()/QF_INT_UNLOCK(),

shown in Listing 12.8, encapsulates the actual mechanism the compiler provides to lock and

unlock interrupts from C. You need to consult the documentation of your CPU and the

compiler to find how to achieve interrupt locking and unlocking in your particular system.
Listing 12.8 Example of QP-nano interrupt locking and unlocking macros
for the task level

#define QF_INT_LOCK() disable()
#define QF_INT_UNLOCK() enable()
The simple task-level policy of “unconditional locking and unlocking interrupts” matches

very well the architecture of low-end MCUs. The critical section is fast and

straightforward, but does not allow nesting of critical sections. QP-nano never nests critical

sections internally, but you should be careful not to nest critical sections in your own code.
NOTE

Since most of QP-nano functions lock interrupts internally, you should never call a QP-nano

function from within an already established critical section.
ISR-Level Interrupt Locking

For the ISR level, QP-nano offers three critical section implementation options. The

first default option is to do nothing, meaning that interrupts are neither locked nor

unlocked inside ISRs. This policy is appropriate when interrupts cannot nest, because in

this case the whole ISR represents a critical section of code, unless of course you

explicitly unlock interrupts inside the ISR body. But unlocking interrupts inside ISRs is

often not advisable, because most low-end micros aren’t really designed to handle

interrupt nesting. Low-end MCUs typically lack a fully prioritized interrupt controller

and cannot afford the bigger stack requirements caused by nesting interrupts.
www.newnespress.com

NOTE

Unlocking interrupts inside ISRs without an interrupt controller can cause all sorts of priority

inversions, including the pathological case of an interrupt preempting itself recursively.

636 Chapter 12
In case you can allow interrupt nesting, QP-nano offers two more interrupt-locking

policies for ISRs. The first of these options is to use the task-level interrupt policy

inside ISRs. As shown in Listing 12.9, you select this policy by defining the macro

QF_ISR_NEST. In this case the function QActive_postISR() (as well as QF_tick(),

which calls QActive_postISR()), unconditionally locks interrupts with the macro

QF_INT_LOCK() and unlocks with QF_INT_UNLOCK(). Of course, to avoid nesting

critical sections, you are responsible for making sure that interrupts are unlocked before

calling QActive_postISR() or QF_tick() from your ISRs.
Listing 12.9 The ISR-level policy of “unconditional interrupt locking
and unlocking”

#define QF_ISR_NEST
/* QF_ISR_KEY_TYPE not defined */

NOTE

You should always define the macro QF_ISR_NEST if interrupts can nest for some reason.
Finally, QP-nano also supports the more advanced policy of “saving and restoring

interrupt status” (see Section 7.3.1 in Chapter 7). Listing 12.10 shows an example of

this policy. This policy is the most expensive but also the most robust because interrupts

are only unlocked upon exit from the critical section if they were unlocked upon entry.
Listing 12.10 Example of ISR-level policy of “saving and restoring
interrupt status”

(1) #define QF_ISR_NEST
(2) #define QF_ISR_KEY_TYPE int
(3) #define QF_ISR_LOCK(key_) ((key_) = int_lock())
(4) #define QF_ISR_UNLOCK(key_) int_unlock(key_)

www.newnespress.com

637QP-nano: How Small Can You Go?
(1) The macro QF_ISR_NEST tells QP-nano that interrupts can nest.

(2) The macro QF_ISR_KEY_TYPE indicates a data type of the “interrupt key”

variable, which holds the interrupt status. Defining this macro in the qpn_port.h

header file indicates to the QF-nano framework that the policy of “saving and

restoring interrupt status” is used for ISRs.

(3) The macro QF_ISR_LOCK() encapsulates the mechanism of interrupt locking.

The macro takes the parameter key_, into which it saves the interrupt lock

status.

(4) The macro QF_ISR_UNLOCK() encapsulates the mechanism of restoring the

interrupt status. The macro restores the interrupt status from the argument key_.

As an example, where the “saving and restoring interrupt status” interrupt-locking

policy for ISRs is useful, consider the MCUs based on the popular ARM7 or ARM9

cores such as the AT91 family from Atmel, the LPC family from NXP, the TMS470

family from TI, the STR7 and STR9 families from ST, and others. The ARM7/ARM9

architecture supports two types of interrupts called FIQ and IRQ. In most

ARM-based MCUs, the IRQ interrupt is typically prioritized in a vectored interrupt

controller, but the FIQ typically is not. This means that you should never unlock

interrupts inside the FIQ interrupt, but you should unlock interrupts inside IRQs, to

allow the priority controller do its job. The advanced policy of “saving and restoring

interrupt status” can be used safely in both FIQ and IRQ interrupts (see also

[Samek 07a]).
12.3.3 State Machines in QP-nano

Just like the full-version QP, QP-nano contains an hierarchical event processor called

QEP-nano. QEP-nano supports both hierarchical and nonhierarchical state machines.

The only difference between the QEP-nano and full-version QEP is that the current

event in QEP-nano is directly embedded in the state machine. That way, the

current event is accessible to the state machine via the “me” pointer and does not need

to be passed as a parameter to the state-handler functions. Other than that, however,

QEP-nano supports the same set of features as the full-version QEP, including

fully hierarchical state machines with entry and exit actions and nested initial

transitions. Listing 12.11 shows the declaration of the QHsm base structure (class) that

serves for derivation of HSMs in QP-nano.
www.newnespress.com

Listing 12.11 QHsm structure and related functions
(file <qp>\qpn\include\qepn.h)

(1) typedef uint8_t QState; /* status returned from a state-handler function */

(2) typedef QState (*QStateHandler)(struct QHsmTag *me);

typedef struct QHsmTag {

(3) QStateHandler state; /* current active state of the HSM (private) */

(4) QEvent evt; /* currently processed event in the HSM (protected) */
} QHsm;

(5) #define QHsm_ctor (me_, initial_) ((me_)->state = (initial_))

(6) void QHsm_init (QHsm *me);
#ifndef QK_PREEMPTIVE

(7) void QHsm_dispatch(QHsm *me);
#else

(8) void QHsm_dispatch(QHsm *me) Q_REENTRANT;
#endif

(9) QState QHsm_top (QHsm *me);

(10) #define Q_SIG(me_) (((QFsm *)(me_))->evt.sig)

#if (Q_PARAM_SIZE != 0)

(11) #define Q_PAR(me_) (((FHsm *)(me_))->evt.par)
#endif

(12) #define Q_RET_HANDLED ((QState)0)

(13) #define Q_RET_IGNORED ((QState)1)

(14) #define Q_RET_TRAN ((QState)2)

(15) #define Q_RET_SUPER ((QState)3)

(16) #define Q_HANDLED() (Q_RET_HANDLED)

(17) #define Q_IGNORED() (Q_RET_IGNORED)

(18) #define Q_TRAN(target_) \
(((QFsm *)me)->state = (QStateHandler)(target_), Q_RET_TRAN)

(19) #define Q_SUPER(super_) \
(((QFsm *)me)->state = (QStateHandler)(super_), Q_RET_SUPER)

638 Chapter 12
(1) This typedef defines QState as a byte that conveys the status of the event

handling to the event processor (see also lines (12-15)).

(2) This typedef defines the QStateHandler as a pointer to state-handler function.

As you can see, the state-handler functions in QP-nano take only the “me”

pointer but no event parameter.

(3) The QHsm structure stores the state-variable state, which is a pointer to

state-handler function. Typically, a pointer to function requires just 2 or 4 bytes

of RAM depending on given CPU and C compiler options.
www.newnespress.com

639QP-nano: How Small Can You Go?
(4) In QP-nano, the QHsm structure also stores the current event evt, which can

take between 1 and 5 bytes of RAM, depending on the configuration macro

Q_PARAM_SIZE (see Listing 12.2(1)).

(5) The QHsm “constructor” function-like macro initializes the state variable to

the initial-pseudostate function that defines the initial transition. Note that the

initial transition is not actually executed at this point.

(6) The QHsm_init() function triggers the initial transition in the state machine.

(7,8) The QHsm_dispatch() function dispatches one event to the state machine.
NOTE

Some compilers for 8-bit MCUs, most notably the Keil C51 compiler for 8051, don’t gener-

ate ANSI-C compliant reentrant functions by default due to the limited stack architecture in

8051. These compilers allow dedicating specific functions to be reentrant with a special

extended keyword (such as “reentrant” for Keil C51). The macro Q_REENTRANT is

defined to nothing by default, to work with ANSI-C compliant compilers, but can be defined

to “reentrant” to work with Keil C51 and perhaps other embedded compilers.
(9) The QHsm_top() function is the hierarchical state handler for the top state.

The application-level state-handler functions that don’t explicitly nest in

any other state return the &QHsm_top pointer to the event processor.

(10) The Q_SIG() macro provides access to the signal of the current event

embedded in the state machine.

(11) The Q_PAR() macro provides access to the scalar parameter of the current

event embedded in the state machine. The macro is only defined if the event

parameter is configured.

(12-15) These constants define the status returned from state-handler functions to the

QEP-nano event processor. The status values are identical in QEP-nano as in

the full-version QEP.

(16) A state-handler function returns the macro Q_HANDLED() whenever it

handles the current event.

(17) A state-handler function returns the macro Q_IGNORED() whenever it

ignores (does not handle) the current event.
www.newnespress.com

640 Chapter 12
(18) The Q_TRAN() macro encapsulates the transition, exactly as it is done in the

full-version QEP. The Q_TRAN() macro is defined using the comma expression.

A comma expression is evaluated from left to right, whereas the type and value

of the whole expression is the rightmost operand. The rightmost operand is in

this case the status of the operation (transition), which is returned from the

state-handler function. The pivotal aspect of this design is that the Q_TRAN()

macro can be used with respect to structures derived (inheriting) from QFsm

or QHsm, which in C requires explicit casting (upcasting) to the QFsm base

structure (see the sidebar “Single Inheritance in C” in Chapter 1).

(19) The Q_SUPER() macro serves for specifying the superstate, exactly as it is done

in the full-version QEP. The Q_SUPER() macro is very similar to the Q_TRAN()

macro except Q_SUPER() returns the different status to the event processor.
12.3.4 Active Objects in QP-nano

As shown in Figure 12.3, the QF-nano real-time framework provides the base structure

QActive for deriving application-specific active object classes.QActive combines the

following three essential elements:

� It is a state machine (derives from QHsm or QFsm).

� It has an event queue.

� It has an execution thread with a unique priority.

Listing 12.12 shows the declaration of the QActive base structure and related

functions.
Listing 12.12 The QActive base class for derivation of active objects
(file <qp>\qpn\include\qfn.h)

typedef struct QActiveTag {

#ifndef QF_FSM_ACTIVE

(1) QHsm super; /* derives from the QHsm base structure */
#else

(2) QFsm super; /* derives from the QFsm base structure */
#endif

(3) uint8_t prio; /* active object priority 1..QF_MAX_ACTIVE */

(4) uint8_t head; /* index to the event queue head */

(5) uint8_t tail; /* index to the event queue tail */

www.newnespress.com

(6) uint8_t nUsed; /* number of events currently present in the queue */
#if (QF_TIMEEVT_CTR_SIZE != 0)

(7) QTimeEvtCtr tickCtr; /* time event down-counter */
#endif
} QActive;

#ifndef QF_FSM_ACTIVE

(8) #define QActive_ctor(me_, initial_) QHsm_ctor(me_, initial_)
#else

(9) #define QActive_ctor(me_, initial_) QFsm_ctor(me_, initial_)
#endif

#if (Q_PARAM_SIZE != 0)

(10) void QActive_post (QActive *me, QSignal sig, QParam par);

(11) void QActive_postISR(QActive *me, QSignal sig, QParam par);
#else

(12) void QActive_post (QActive *me, QSignal sig);

(13) void QActive_postISR(QActive *me, QSignal sig);
#endif

#if (QF_TIMEEVT_CTR_SIZE != 0)

(14) void QF_tick(void);
#if (QF_TIMEEVT_CTR_SIZE == 1) /* single-byte tick counter? */

(15) #define QActive_arm(me_, tout_) ((me_)->tickCtr = (QTimeEvtCtr)(tout_))

(16) #define QActive_disarm(me_) ((me_)->tickCtr = (QTimeEvtCtr)0)
#else /* multi-byte tick counter */

(17) void QActive_arm(QActive *me, QTimeEvtCtr tout);

(18) void QActive_disarm(QActive *me);
#endif /* (QF_TIMEEVT_CTR_SIZE == 1) */
#endif /* (QF_TIMEEVT_CTR_SIZE != 0) */

641QP-nano: How Small Can You Go?
(1) By default (when the macro QF_FSM_ACTIVE is not defined), the QActive

structure derives from the QHsm base structure, meaning that active objects are

hierarchical state machines in QP-nano.

(2) However, when you define the macro QF_FSM_ACTIVE in qpn_port.h, the

QActive structure derives from the QFsm base structure. In this case, active

objects are traditional “flat” state machines.

(3) Active object remembers its unique priority, which in QP-nano is the index into

the QF_active[] array. Priority numbering in QP-nano is identical as in

full-version QP. The lowest possible task priority is 1 and higher-priority values

correspond to higher-urgency active objects. The maximum allowed active

object priority is determined by the macro QF_MAX_ACTIVE, which in QP-nano

cannot exceed 8. Priority level zero is reserved for the idle loop.

(4,5) These are the head and tail indices for the event queue buffer.
www.newnespress.com

642 Chapter 12
(6) The nUsed data member represents the number of events currently present in

the queue. This number includes the extra event embedded in the state

machine itself, not just the number of events in the ring buffer, so that nUsed

of zero indicates an empty queue.

(7) The time event down-counter is only present when you define

QF_TIMEEVT_CTR_SIZE in qpn_port.h. The member ‘tickCtr’ is the

internal down-counter decremented in every QF_tick() invocation (see the

next section). The time event is posted when the down-counter reaches zero.

(8,9) The active object constructor boils down to calling the base class constructor,

which is either QHsm_ctor() or QFsm_ctor(), depending on the definition

of the macro QF_FSM_ACTIVE.

(10-13) The signatures of functions QActive_post() and QActive_postISR()

depend on the presence or absence of the event parameter.

(14) The QP-nano function QF_tick() (see the next section) handles the timeout

events. This function is only provided when time events are configured.

(15,16) On any CPU with the word size of at least 8 bits, setting a single-byte variable

is atomic. In this case the QActive_arm() and QActive_disarm()

operations don’t need to use a critical section. For speed, they are

implemented as macros.
NOTE

The tick counters inside active objects are simultaneously accessed from the task level and

from QF_tick(), which is called from the ISR level. To prevent corruption of the tick coun-

ters, they must be always accessed atomically.
(17,18) For multibyte tick counters I assume that they are updated by multiple machine

instructions. In this case the QActive_arm() and QActive_disarm()

operations are declared as functions that use critical sections inside.
12.3.5 The System Clock Tick in QP-nano

To manage time events QP-nano requires that you invoke the QF_tick() function

from a periodic time source called the system clock tick (see Chapter 6, “System Clock

Tick”). The system clock tick typically runs at a rate between 10Hz and 100Hz.
www.newnespress.com

643QP-nano: How Small Can You Go?
Listing 12.13 shows the implementation of QF_tick(). In QP-nano, this function

can be called only from the clock-tick ISR. QF_tick() must always run to completion

and never preempt itself. In particular the clock-tick ISR that calls QF_tick() must

not be allowed to preempt itself. In addition, QF_tick() should never be called from

two different ISRs, which potentially could preempt each other.
Listing 12.13 QF_tick() function (file <qp>\qpn\source\qfn.c)

void QF_tick(void) {

(1) static uint8_t p; /* declared static to save stack space */
(2) p = (uint8_t)QF_MAX_ACTIVE;

(3) do {

(4) static QActive *a; /* declared static to save stack space */
(5) a = (QActive *)Q_ROM_PTR(QF_active[p].act);

(6) if (a->tickCtr != (QTimeEvtCtr)0) {

(7) if ((--a->tickCtr) == (QTimeEvtCtr)0) {
#if (Q_PARAM_SIZE != 0)

(8) QActive_postISR(a, (QSignal)Q_TIMEOUT_SIG, (QParam)0);
#else

(9) QActive_postISR(a, (QSignal)Q_TIMEOUT_SIG);
#endif

}
}

(10) } while ((--p) != (uint8_t)0);
}

(1) The temporary variable ‘p’ (priority of an active object) is declared static to

save the stack space.
NOTE

Many older, but still immensely popular low-end micros (e.g., 8051 and PIC) have very lim-

ited stack. For these CPUs, trading regular RAM to save stack space is very desirable.
(2) All active objects are scanned starting from the highest-priority QF_MAX_ACTIVE,

which is also the exact number of active objects in the application (see Listing

12.1(12)).

(3) I use the do loop to avoid checking the loop condition the first time through. The

number of active objects QF_MAX_ACTIVE is guaranteed to be at least one, so

I don’t need to check it.
www.newnespress.com

644 Chapter 12
(4) The temporary variable ‘a’ (a pointer to active object) is declared static to

save the stack space.

(5) The active object pointer is loaded from the ROM array QF_active[], which

maps active object priorities to active object pointers.

(6) The time event of a given active object is running if the tick counter is

nonzero.

(7) The tick counter is decremented and tested against zero. By reaching zero, the

time event automatically disarms itself.

(8,9) QF_tick() posts the Q_TIMEOUT_SIG event to the active object that owns the

counter by means of the QActive_postISR() function. For that reason

QF_tick() can be called only from the ISR context.

(10) The loop continues for all active object priorities above zero.

12.4 Event Queues in QP-nano

Each active object in QP-nano has its own event queue. The queue consists of one

event located inside the QActive structure from which all active objects derive

(see Section 12.3.4), plus a ring buffer of events that is allocated outside of the active

object.

Figure 12.4 shows the data structures that QP-nano uses to manage event queues of

active objects. The constant array QF_active[] stores the active object “control

blocks,” which are instances of the QActiveCB structure. Each QF_active[] element

contains the pointer to the active object act, the pointer to the ring buffer queue,

and the index of the last element of the ring buffer end. All these elements are

initialized at compile time for each active object.

The QActive structure stores the event queue elements that are changing at runtime.

The queue storage consists of the external, user-allocated ring buffer queue plus the

current event evt stored inside the state machine (see Listing 12.11(4)). All events

dispatched to the state machine must go through the “current event” evt data member,

which is indicated as dashed lines in Figure 12.4. This extra location outside the ring

buffer optimizes queue operation by frequently bypassing buffering, because in most

cases queues alternate between empty and nonempty states with just one event present

in the queue at a time.
www.newnespress.com

NOTE

In extreme situations when the adequate queue depth is only one event, the whole ring buffer

can be eliminated entirely. In such a case, you don’t allocate the ring buffer and you use
NULL as the queue pointer and zero as a valid queue length to initialize the QF_active[]

array (see Listing 12.1(9-11)).

head

tail

super : QHsm

nUsed

current
event

QF_active[] : QActiveCB

endact queue

endact queue

. . .

. . .

: QActive

evt

pointer

index

user-allocated
buffer of events

Figure 12.4: The relationship between the QF_active[] array, the QActive struct
and the ring buffer of event queue in QP-nano.

645QP-nano: How Small Can You Go?
The ring-buffer indices head and tail as well as end from QF_active[] are

relative to the queue pointer. These indices manage a ring buffer queue that the

clients must preallocate as a contiguous array of events of type QEvent. Events are

always extracted from the buffer at the tail index. New events are inserted at the

head index, which corresponds to FIFO queuing. The tail index is always

decremented when the event is extracted, as is the head index when an event is

inserted. The end index limits the range of the head and tail indices that must

“wrap around” to end once they reach zero. The effect is a counterclockwise movement

of the head and tail indices around the ring buffer, as indicated by the arrow in

Figure 12.4.

12.4.1 The Ready-Set in QP-nano (QF_readySet_)

QP-nano contains a cooperative “vanilla” kernel and a preemptive RTC kernel

called QK-nano. To perform efficient scheduling in either one of these kernels,
www.newnespress.com

646 Chapter 12
QP-nano maintains the global status of all active object event queues in the

application in the single byte called the QF_readySet_. As shown in Figure 12.5,

QF_readySet_ is a bitmask that represents a “ready-set” of all nonempty event

queues in the system. Each bit in the QF_readySet_ byte corresponds to one active

object. For example, the bit number n is 1 in QF_readySet_ if and only if the event

queue of the active object with priority n+1 is nonempty (bits are traditionally

numbered starting from 0 while priorities in QP-nano are numbered from 1). With

this representation, posting an event to an empty queue with priority p sets the bit

number p-1 in the QF_readySet_ bitmask to 1. Conversely, removing the last event

from the queue with priority q clears the bit number q-1 in the QF_readySet_

bitmask. Obviously, all operations on the global QF_readySet_ bitmask must occur

inside critical sections.
:QActive
prio == 1

:QActive
prio == 5

:QActive
prio == 8

1...0..1

. . .

QF_readySet_ : uint8_t

. . .

Figure 12.5: Representing state of all event queues in the
QF_readySet_ priority set.
12.4.2 Posting Events from the Task Level (QActive_post())

Listing 12.14 shows the implementation of the QActive_post() function, which is

used for posting events from one active object to another. You should never use this

function to post events from the ISRs, because it uses task-level interrupt locking

policy.
www.newnespress.com

Listing 12.14 QActive_post() function
(file <qp>\qpn\source\qfn.c)

#if (Q_PARAM_SIZE != 0)

(1) void QActive_post(QActive *me, QSignal sig, QParam par) {
#else

(2) void QActive_post(QActive *me, QSignal sig) {
#endif

(3) QF_INT_LOCK();
if (me->nUsed == (uint8_t)0) { /* is the queue empty? */

++me->nUsed; /* update number of events */

(4) Q_SIG(me) = sig; /* deliver the event directly */
#if (Q_PARAM_SIZE != 0)

(5) Q_PAR(me) = par;
#endif

(6) QF_readySet_ |= Q_ROM_BYTE(l_pow2Lkup[me->prio]); /* set the bit */

#ifdef QK_PREEMPTIVE

(7) QK_schedule_(); /* check for synchronous preemption */
#endif

}
else {

(8) QF_pCB_ = &QF_active[me->prio];
/* the queue must be able to accept the event (cannot overflow) */

(9) Q_ASSERT(me->nUsed <= Q_ROM_BYTE(QF_pCB_->end));
++me->nUsed; /* update number of events */

/* insert event into the ring buffer (FIFO) */

(10) ((QEvent *)Q_ROM_PTR(QF_pCB_->queue))[me->head].sig = sig;
#if (Q_PARAM_SIZE != 0)

(11) ((QEvent *)Q_ROM_PTR(QF_pCB_->queue))[me->head].par = par;
#endif

(12) if (me->head == (uint8_t)0) {

(13) me->head = Q_ROM_BYTE(QF_pCB_->end); /* wrap the head */
}

(14) --me->head;
}

(15) QF_INT_UNLOCK();
}

647QP-nano: How Small Can You Go?
(1,2) The signature of the QActive_post() function depends whether you’ve

configured events with or without parameters.

(3) The task-level posting to the event queue always happens in the task-level

critical section.

(4,5) When the event queue is empty, the new event is copied directly to the current

event inside the state machine.
www.newnespress.com

648 Chapter 12
(6) The bit corresponding to the priority of the active object is set in the

QF_readySet_ bitmask. The constant lookup tablel_pow2Lkup[] is initialized

as follows: l_pow2Lkup[p] == (1 << (p-1)), for all priorities p = 1..8.

(7) When the preemptive QK-nano kernel is configured (see Section 12.6), the

preemptive scheduler is called to handle a potential synchronous preemption.

(A synchronous preemption occurs when an active object posts an event to a

higher-priority task.)

(8) The global QF_pCB_ variable holds a pointer to the active object control

block &QF_active[me->prio] located in ROM.

QF_pCB_ is defined as follows at the top of the qpn.c source file:

QActiveCB const Q_ROM * Q_ROM_VAR QF_pCB_;
The QF_pCB_ variable is used only locally within QP-nano functions, but I employ it to

avoid loading the stack with a temporary variable. Such a global variable can be

safely shared because all usage happens inside critical sections of code, anyway.

(9) The assertion makes sure that the queue can accept this event.
NOTE

QP-nano treats the inability to post an event to a queue as an error. This assertion is part of

the event delivery guarantee policy (see Section 6.7.6 in Chapter 6). It is the application

designer’s (your) responsibility to size the event queues adequately for the job at hand.
(10,11) The new event is copied to the ring buffer at the head index.

(12) The head index is checked for a wrap around.

(13) If wrap around is required the head index is moved to the end of the buffer.

This makes the buffer circular.

(14) The head index is always decremented, including just after the wraparound.

I’ve chosen to decrement the head (and also the tail) index because it

leads to a more efficient implementation than incrementing the indices. The

wraparound occurs in this case at zero rather than at the end. Comparing a

variable to a constant zero is more efficient than any other comparison.

(15) Interrupts are unlocked to leave the critical section.
www.newnespress.com

649QP-nano: How Small Can You Go?
12.4.3 Posting Events from the ISR Level (QActive_postISR())

Listing 12.15 shows the implementation of the QActive_postISR() function, which

is used for posting events from ISRs to active objects. You should never use this

function to post events from active objects, because it uses the ISR-specific critical

section mechanism (see Section 12.3.2).
Listing 12.15 QActive_postISR() function
(file <qp>\qpn\source\qfn.c)

#if (Q_PARAM_SIZE != 0)
void QActive_postISR(QActive *me, QSignal sig, QParam par)
#else
void QActive_postISR(QActive *me, QSignal sig)
#endif
{

(1) #ifdef QF_ISR_NEST

(2) #ifdef QF_ISR_KEY_TYPE

(3) QF_ISR_KEY_TYPE key;

(4) QF_ISR_LOCK(key);
#else

(5) QF_INT_LOCK();
#endif
#endif

if (me->nUsed == (uint8_t)0) {
++me->nUsed; /* update number of events */

Q_SIG(me) = sig; /* deliver the event directly */
#if (Q_PARAM_SIZE != 0)

Q_PAR(me) = par;
#endif

QF_readySet_ |= Q_ROM_BYTE(l_pow2Lkup[me->prio]); /* set the bit */
}
else {

QF_pCB_ = &QF_active[me->prio];
/* the queue must be able to accept the event (cannot overflow) */

Q_ASSERT(me->nUsed <= Q_ROM_BYTE(QF_pCB_->end));
++me->nUsed; /* update number of events */

/* insert event into the ring buffer (FIFO) */
((QEvent *)Q_ROM_PTR(QF_pCB_->queue))[me->head].sig = sig;

#if (Q_PARAM_SIZE != 0)
((QEvent *)Q_ROM_PTR(QF_pCB_->queue))[me->head].par = par;

#endif
if (me->head == (uint8_t)0) {

me->head = Q_ROM_BYTE(QF_pCB_->end); /* wrap the head */
}
--me->head;

}
#ifdef QF_ISR_NEST
#ifdef QF_ISR_KEY_TYPE

QF_ISR_UNLOCK(key);

Continued onto next page

www.newnespress.com

#else
QF_INT_UNLOCK();

#endif
#endif
}

650 Chapter 12
(1) Interrupts are only locked when interrupt nesting is allowed.

(2) If you define QF_ISR_KEY_TYPE, QP-nano uses the advanced policy of “saving

and restoring interrupt status.”

(3) The advanced policy requires a temporary variablekey.

(4) The interrupt status is saved into the key variable and interrupts are locked.

(5) If you don’t define QF_ISR_KEY_TYPE, QP-nano uses the simple policy of

“unconditional interrupt unlocking,” exactly the same as at the task level.
NOTE

The ISR-level event posting operation QActive_postISR() does not call the QK-nano

scheduler, because a task can never synchronously preempt an ISR (compare Listing 12.14(7)).
12.5 The Cooperative “Vanilla” Kernel in QP-nano

By default, QP-nano uses the simple, cooperative “vanilla” scheduler, which works

exactly as I described in Section 6.3.7 in Chapter 6. Listing 12.16 shows the QF_run()

function in the qfn.c source file, which implements the whole “vanilla” kernel.
Listing 12.16 The cooperative “vanilla” kernel
(file <qp>\qpn\source\qfn.c)

(1) #ifndef QK_PREEMPTIVE

void QF_run(void) {

(2) static uint8_t const Q_ROM Q_ROM_VAR log2Lkup[] = {
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4

};

(3) static uint8_t const Q_ROM Q_ROM_VAR invPow2Lkup[] = {
0xFF, 0xFE, 0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF, 0x7F

};

(4) static QActive *a; /* declared static to save stack space */

www.newnespress.com

(5) static uint8_t p; /* declared static to save stack space */

/* trigger initial transitions in all registered active objects... */

(6) for (p = (uint8_t)1; p <= (uint8_t)QF_MAX_ACTIVE; ++p) {

(7) a = (QActive *)Q_ROM_PTR(QF_active[p].act);

(8) Q_ASSERT(a != (QActive *)0); /* QF_active[p] must be initialized */

(9) a->prio = p; /* set the priority of the active object */

#ifndef QF_FSM_ACTIVE

(10) QHsm_init((QHsm *)a); /* take the initial transition in HSM */
#else

(11) QFsm_init((QFsm *)a); /* take the initial transition in FSM */
#endif

}

(12) QF_onStartup(); /* invoke startup callback */

(13) for (;;) { /* the event loop of the vanilla kernel */

(14) QF_INT_LOCK();
(15) if (QF_readySet_ != (uint8_t)0) {

#if (QF_MAX_ACTIVE > 4)

(16) if ((QF_readySet_ & 0xF0) != 0U) { /* upper nibble used? */

(17) p = (uint8_t)(Q_ROM_BYTE(log2Lkup[QF_readySet_ >> 4]) + 4);
}
else /* upper nibble of QF_readySet_ is zero */

#endif
{

(18) p = Q_ROM_BYTE(log2Lkup[QF_readySet_]);
}

(19) QF_INT_UNLOCK();

(20) a = (QActive *)Q_ROM_PTR(QF_active[p].act);

#ifndef QF_FSM_ACTIVE

(21) QHsm_dispatch((QHsm *)a); /* dispatch to HSM */
#else

(22) QFsm_dispatch((QFsm *)a); /* dispatch to FSM */
#endif

(23) QF_INT_LOCK();
(24) if ((--a->nUsed) == (uint8_t)0) { /* queue becoming empty? */

(25) QF_readySet_ &= Q_ROM_BYTE(invPow2Lkup[p]);/* clear the bit */
}
else {

(26) QF_pCB_ = &QF_active[a->prio];

(27) Q_SIG(a)=((QEvent*)Q_ROM_PTR(QF_pCB_->queue))[a->tail].sig;
#if (Q_PARAM_SIZE != 0)

(28) Q_PAR(a)=((QEvent*)Q_ROM_PTR(QF_pCB_->queue))[a->tail].par;
#endif

(29) if (a->tail == (uint8_t)0) { /* wrap around? */

Continued onto next page

www.newnespress.com

651QP-nano: How Small Can You Go?

(30) a->tail = Q_ROM_BYTE(QF_pCB_->end); /* wrap the tail */
}

(31) --a->tail;
}

(32) QF_INT_UNLOCK();
}

(33) else {

(34) QF_onIdle(); /* see NOTE01 */
}

}
}

#endif /* #ifndef QK_PREEMPTIVE */

652 Chapter 12
(1) The cooperative vanilla kernel is only compiled when the preemptive QK-nano

kernel is not configured.

(2) The constant array log2Lkup[] is the binary-logarithm (log-base-2) lookup

table, defined as log2Lkup[bitmask] == log2(bitmask), for 0 <= bitmask

<= 15 (see Figure 7.6 in Chapter 7). The log-base-2 lookup quickly determines

the most significant 1-bit in the bitmask.

(3) The constant array invPow2Lkup[] is a bitwise negated power-2 lookup table,

defined as invPow2Lkup[p] == ~(1 << (p-1)), for all priorities p = 1..8.

This lookup table is used for masking off bits in the QF_readySet_ bitmask.

(4,5) The temporary variables ‘a’ and ‘p’ are defined as static to save stack space.
NOTE

The static variable ‘p’ inside QF_run() is different than the analogous variable ‘p’ inside
QF_tick(). You cannot reuse the same static variable for both, because these functions

execute concurrently.
(6) This for loop triggers initial transitions in all active objects, starting from the

lowest-priority active object.
NOTE

Generally, active objects should be initialized in the order of priority because the lowest-

priority active objects tend to have the longest event queues. This might be important if

active objects post events to each other from the initial transitions.

www.newnespress.com

653QP-nano: How Small Can You Go?
(7) The active object pointer is obtained from the active object control block

in ROM.

(8) This assertion makes sure that the QF_active[] array has been initialized

correctly.

(9) This internal priority of the active object is initialized consistently with

the definition in the QF_active[] array.
NOTE

An active object instance (QActive) needs to know its priority to quickly access the

corresponding control block (QActiveCB) by indexing into the QF_active[] array.
(10,11) The initial transition in the active object state machine is triggered.

(12) The QF_onStartup() callback function configures and starts interrupts.

This function is implemented at the application level (in the BSP).

(13) This is the event loop of the “vanilla” kernel.

(14) Interrupts are locked to access the QF_readySet_ ready-set.

(15) If the ready-set QF_readySet_ is not empty, the “vanilla” kernel has some

events to process.

At this point, the vanilla kernel must quickly find the highest-priority active object

with a nonempty event queue, which is achieved via a binary logarithm lookup

table (see Section 7.11.1 in Chapter 7). However, to conserve the ROM, the

log2Lkup[] lookup table in QP-nano can only handle values 0..15, which covers

just four least significant bits of the QF_readySet_ bitmask.

(16) When the number of active objects is greater than the range of the log2Lkup[]

lookup table, I first test the upper nibble of the QF_readySet_ bitmask.

(17) If the upper nibble is not zero, I shift the upper nibble to the lower 4 bits and

apply the log2Lkup[] lookup table. I then need to add 4 to the priority of

the active object.

(18) Otherwise, I simply apply the log2Lkup[] lookup table to the lower nibble

of the QF_readySet_ bitmask.
www.newnespress.com

654 Chapter 12
(19) Interrupts can be unlocked.

(20) The active object pointer is loaded from the ROM array QF_active[],

which maps active object priorities to active object pointers.

(21,22) The current event is dispatched to the active object state machine.
NOTE

Dispatching of the event into the state machine represents the run-to-completion step of the

active object thread.
(23) Interrupts are locked again to update the status of the active object event

queue after processing the current event.

(24) The number of events in the queue is decremented and tested against zero.

(25) If the queue is becoming empty, the corresponding bit in the

QF_readySet_ bitmask is cleared by masking it off with the

invPow2Lkup[] lookup table.

(26) Otherwise, the queue is not empty, so the next event must be copied from the

ring buffer to the current event inside the active object state machine. The

global pointer QF_pCB_ is set to point to the control block of the active object

&QF_active[me->prio] located in ROM.

(27,28) The next event is copied from the ring buffer at the tail index to the current

event inside the state machine.

(29,30) The tail index is checked for wraparound.

(31) The tail index is always decremented.

(32) Interrupts can be unlocked.

(33) The else branch is taken when all active object event queues are empty, which

is by definition the idle condition of the “vanilla” kernel.

(34) The “vanilla” kernel calls the QF_onIdle() callback function to give the

application a chance to put the MCU to a low-power sleep mode. The

QF_onIdle() function is typically implemented at the application level (in

the BSP).
www.newnespress.com

NOTE

Most MCUs provide software-controlled low-power sleep modes, which are designed to

reduce power dissipation by gating the clock to the CPU and various peripherals. To ensure

a safe transition to a sleep mode, the “vanilla” kernel calls QF_onIdle() with interrupts

locked. The QF_onIdle() function must always unlock interrupts internally, ideally atom-

ically with the transition to a sleep mode.

655QP-nano: How Small Can You Go?
12.5.1 Interrupt Processing Under the “Vanilla” Kernel

Interrupt processing under the “vanilla” kernel is as simple as in the foreground/

background architecture. Typically, you can use the ISRs generated by the C compiler.

The only special consideration for QP-nano is that you need to be consistent with

respect to the interrupt-nesting policy. In particular, if you configured nesting interrupts

by defining the macro QF_ISR_NEST in the qpn_port.h header file, you need to be

consistent and unlock interrupts before calling the QP-nano functions

QActive_postISR() or QF_tick().
12.5.2 Idle Processing under the “Vanilla” Kernel

The idle callback QF_onIdle() works in QP-nano exactly the same way as in the full-

version QP. Refer to Section 8.2.4 in Chapter 8 for examples of defining this callback

function for various CPUs.
12.6 The Preemptive Run-to-Completion
QK-nano Kernel

QP-nano contains a preemptive run-to-completion (RTC) kernel called QK-nano,

which works very similarly to the QK preemptive kernel available in the full-version

QP and described in Chapter 10. I strongly recommend that you read Section 10.1 in

Chapter 10 before you decide to use a preemptive kernel such as QK-nano.

Note that the preemptive QK-nano kernel puts more demands on the target CPU and

the compiler than the nonpreemptive vanilla kernel. Generally, QK-nano can be

used with a given processor and compiler if they satisfy the following requirements:

� The processor supports a hardware stack that can accommodate stack variables

(not just return addresses).
www.newnespress.com

656 Chapter 12
� The MCU has enough stack memory to allow at least two levels of task

nesting so that a high-priority active object can preempt a low-priority active

object at least once. If you don’t have even that much stack, you’ll not be able

to take advantage of the preemptive kernel.

� The C or C++ compiler can generate reentrant code. In particular, the compiler

must be able to allocate automatic variables on the stack.

For example, some older CPU architectures, such as the 8-bit PIC MCUs, don’t have a

C-friendly stack architecture, even though they might have enough RAM, and

consequently cannot easily run QK-nano.

12.6.1 QK-nano Interface qkn.h

You configure your QP-nano application to use the QK-nano kernel (as opposed to

the default “vanilla” kernel) simply by including the QK-nano interface qkn.h at the

end of the qpn_port.h header file. Listing 12.17 shows the qkn.h header file.
Listing 12.17 QK-nano interface (file <qp>\qpn\include\qkn.h)

#ifndef qkn_h
#define qkn_h

(1) #define QK_PREEMPTIVE 1

(2) void QK_init(void);

(3) void QK_schedule_(void) Q_REENTRANT;
(4) void QK_onIdle(void);

(5) extern uint8_t volatile QK_currPrio_; /* current QK priority */

#ifndef QF_ISR_NEST

(6) #define QK_SCHEDULE_() \

(7) if (QF_readySet_ != (uint8_t)0) { \
QK_schedule_(); \

} else ((void)0)
#else

(8) extern uint8_t volatile QK_intNest_; /* interrupt nesting level */

#define QK_SCHEDULE_() \

(9) if ((QF_readySet_ != (uint8_t)0) && (QK_intNest_ == (uint8_t)0)) { \
QK_schedule_(); \

} else ((void)0)
#endif

www.newnespress.com

#ifdef QK_MUTEX

(10) typedef uint8_t QMutex;

(11) QMutex QK_mutexLock (uint8_t prioCeiling);

(12) void QK_mutexUnlock(QMutex mutex);
#endif /* QK_MUTEX */

#endif /* qkn_h */

657QP-nano: How Small Can You Go?
(1) The qkn.h header file defines the macro QK_PREEMPTIVE, which configures the

QF-nano real-time framework to use the QK-nano preemptive kernel rather than

the cooperative “vanilla” kernel.

(2) The QK_init() function performs CPU-specific initialization, if such

initialization is necessary. This function is optional and not all QK-nano ports

need to implement this function. However, if the function is provided, your

application must call it, typically during BSP initialization.

(3) The QK_schedule_() function implements the QK-nano scheduler. The QK

scheduler is always invoked from a critical section but might unlock interrupts

internally to launch a task.
NOTE

The macro Q_REENTRANT tells the compiler to generate ANSI-C compliant reentrant func-

tion code. See also Listing 12.11(8).

ler
(4) The QK_onIdle() callback function gives the application a chance to customize

the idle processing (see also Listing 12.18(11)).

(5) The global variable QK_currPrio_ represents the global systemwide priority of

the currently running task. QK_currPrio_ is declared as volatile because it

can change asynchronously in ISRs.

(6) The QK_SCHEDULE_() macro encapsulates the invocation of the QK-nano schedu

at the exit from an interrupt to handle asynchronous preemptions.

(7) When interrupt nesting is not allowed, the QK_SCHEDULE_() macro calls the

scheduler only when the ready-set is not empty. That way, you avoid a function

call overhead when all event queues are empty.
www.newnespress.com

658 Chapter 12
(8) The global variable QK_intNest_ represents the global systemwide

interrupt-nesting level. QK_intNest_ is declared as volatile because it

can change asynchronously in ISRs.

(9) When interrupt nesting is allowed, the QK_SCHEDULE_() macro calls the

scheduler only when the ready-set is not empty and additionally the

interrupt that is ending is not nesting on another interrupt (see also

Section 12.6.4).

(10-12) When you define the macro QK_MUTEX, qkn.h defines the priority-ceiling

mutex interface.
12.6.2 Starting Active Objects and the QK-nano Idle Loop

As shown in Listing 12.17(1), the qkn.h header file defines internally the macro

QK_PREEMPTIVE, which causes elimination of the “vanilla” kernel (see Listing 12.16

(1)), replacing it with the preemptive QK-nano kernel. In particular, the function

QF_run() has a different implementation under the QK-nano kernel, as shown in

Listing 12.18.
Listing 12.18 Starting active objects and the QK-nano idle loop
(file <qp>\qpn\source\qkn.c)

/* Global-scope objects ---*/

(1) uint8_t volatile QK_currPrio_ = (uint8_t)(QF_MAX_ACTIVE + 1);
#ifdef QF_ISR_NEST

(2) uint8_t volatile QK_intNest_; /* start with nesting level of 0 */
#endif

(3) extern QActiveCB const Q_ROM * Q_ROM_VAR QF_pCB_; /* ptr to AO control block */

/* local objects --*/

(4) static QActive *l_act; /* pointer to AO */

/*..*/
void QF_run(void) {

/* trigger initial transitions in all registered active objects... */

(5) static uint8_t p; /* declared static to save stack space */
(6) for (p = (uint8_t)1; p <= (uint8_t)QF_MAX_ACTIVE; ++p) {

l_act = (QActive *)Q_ROM_PTR(QF_active[p].act);
l_act->prio = p;

#ifndef QF_FSM_ACTIVE
QHsm_init((QHsm *)l_act); /* initial transition */

www.newnespress.com

#else
QFsm_init((QFsm *)l_act); /* initial transition */

#endif
}

QF_INT_LOCK();

(7) QK_currPrio_ = (uint8_t)0; /* set the priority for the QK idle loop */

(8) QK_SCHEDULE_(); /* process all events produced so far */
QF_INT_UNLOCK();

(9) QF_onStartup(); /* invoke startup callback */

(10) for (;;) { /* enter the QK idle loop */

(11) QK_onIdle(); /* invoke the on-idle callback */
}

}

659QP-nano: How Small Can You Go?
(1) The global variable QK_currPrio_ represents the global systemwide priority of

the currently running task. The QK-nano priority is initialized to a level above

any active object, which effectively locks the QK-nano scheduler during the

whole initial transient.

(2) The global variable QK_intNest_ represents the global systemwide

interrupt-nesting level. QK_intNest_ is only necessary when nesting of

interrupts is allowed.

(3) The qkn.c module reuses the global variable QF_pCB_, which is also used in

QActive_post() and QActive_postISR() defined in qfn.c (see Listings

12.14 and 12.15).

(4) The static variable l_act holds a pointer to an active object and is shared among

QK-nano functions.

(5) The local variable ‘p’ (active object priority) is declared static to save the

stack space.

(6) All active objects in the application are initialized, the same way as in

Listing 12.16(6-11).

(7) The QK-nano priority is lowered to the idle-loop level.

(8) The QK-nano scheduler is invoked to process all events that might

have been posted to event queues during the initialization of the active

objects.
www.newnespress.com

660 Chapter 12
(9) The QF_onStartup() callback function configures and starts interrupts. This

function is implemented at the application level (in the BSP).

(10) This is the idle loop of the QK-nano kernel.

(11) The idle loop continuously calls the QK_onIdle() callback function to give the

application a chance to put the CPU to a low-power sleep mode. The QK_onIdle()

function is typically implemented at the application level (in the BSP).
NOTE

As a preemptive kernel, QK-nano handles idle processing differently than does the non-

preemptive vanilla kernel. Specifically, the QK_onIdle() callback function is always called

with interrupts unlocked and does not need to unlock interrupts (as opposed to the

QF_onIdle() callback). Furthermore, a transition to a low-power sleep mode inside

QK_onIdle() does not need to occur with interrupts locked. Such a transition is safe and

does not cause any race conditions, because a preemptive kernel never switches the context

back to the idle loop as long as events are available for processing.
12.6.3 The QK-nano Scheduler

The scheduler is the most important part of the QK-nano kernel. As explained in

Section 10.2.3 in Chapter 10, the QK scheduler is called at two junctures: (1) when an

event is posted to an event queue of an active object (synchronous preemption), and

(2) at the end of ISR processing (asynchronous preemption). In the QActive_post()

function implementation (Listing 12.14(7)), you saw how the QK-nano scheduler gets

invoked to handle the synchronous preemptions. In the previous section, you also saw

the definition of the macro QK_SCHEDULE_(), which calls the scheduler from an

interrupt context to handle the asynchronous preemptions. Here I describe the QK-nano

scheduler itself.

The QK-nano scheduler is simply a regular C-function QK_schedule_() whose job is

to efficiently find the highest-priority active object that is ready to run and to execute it

as long as its priority is higher than the currently serviced QK-nano priority. To perform

this job, the QK-nano scheduler relies on two data elements: the set of tasks that are

ready to run QF_readySet_ (Section 12.4.1) and the currently serviced task priority

QK_currPrio_ (Listing 12.17(5)). Listing 12.19 shows the complete implementation

of the QK_schedule_() function. You will certainly recognize in this function

many elements that I already discussed for the nonpreemptive “vanilla” kernel.
www.newnespress.com

Listing 12.19 The preemptive QK-nano scheduler
(file <qp>\qpn\source\qkn.c)

(1) void QK_schedule_(void) Q_REENTRANT {
static uint8_t const Q_ROM Q_ROM_VAR log2Lkup[] = {

0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
};
static uint8_t const Q_ROM Q_ROM_VAR invPow2Lkup[] = {

0xFF, 0xFE, 0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF, 0x7F
};

(2) uint8_t p; /* the new highest-priority active object ready to run */

/* determine the priority of the highest-priority AO ready to run */
#if (QF_MAX_ACTIVE > 4)

if ((QF_readySet_ & 0xF0) != 0) { /* upper nibble used? */

(3) p = (uint8_t)(Q_ROM_BYTE(log2Lkup[QF_readySet_ >> 4]) + 4);
}
else /* upper nibble of QF_readySet_ is zero */

#endif
{

(4) p = Q_ROM_BYTE(log2Lkup[QF_readySet_]);
}

(5) if (p > QK_currPrio_) { /* is the new priority higher than the current? */

(6) uint8_t pin = QK_currPrio_; /* save the initial priority */
(7) do {

(8) QK_currPrio_ = p; /* new priority becomes the current priority */
(9) QF_INT_UNLOCK(); /* unlock interrupts to launch the new task */

/* dispatch to HSM (execute the RTC step) */
#ifndef QF_FSM_ACTIVE

(10) QHsm_dispatch((QHsm *)Q_ROM_PTR(QF_active[p].act));
#else

(11) QFsm_dispatch((QFsm *)Q_ROM_PTR(QF_active[p].act));
#endif

(12) QF_INT_LOCK();
/* set cb and act again, in case they change over the RTC step */

(13) QF_pCB_ = &QF_active[p];

(14) l_act = (QActive *)Q_ROM_PTR(QF_pCB_->act);

(15) if ((--l_act->nUsed) == (uint8_t)0) {/*is queue becoming empty? */
/* clear the ready bit */

(16) QF_readySet_ &= Q_ROM_BYTE(invPow2Lkup[p]);
}
else {

(17) Q_SIG(l_act) =
((QEvent *)Q_ROM_PTR(QF_pCB_->queue))[l_act->tail].sig;

#if (Q_PARAM_SIZE != 0)

(18) Q_PAR(l_act) =

Continued onto next page

www.newnespress.com

661QP-nano: How Small Can You Go?

((QEvent *)Q_ROM_PTR(QF_pCB_->queue))[l_act->tail].par;
#endif

(19) if (l_act->tail == (uint8_t)0) { /* wrap around? */

(20) l_act->tail = Q_ROM_BYTE(QF_pCB_->end); /* wrap the tail */
}

(21) --l_act->tail; /* always decrement the tail */
}

/* determine the highest-priority AO ready to run */

(22) if (QF_readySet_ != (uint8_t)0) {
#if (QF_MAX_ACTIVE > 4)

(23) if ((QF_readySet_ & 0xF0) != 0) { /* upper nibble used? */

(24) p = (uint8_t)(Q_ROM_BYTE(log2Lkup[QF_readySet_ >> 4])+ 4);
}
else /* upper nibble of QF_readySet_ is zero */

#endif
{

(25) p = Q_ROM_BYTE(log2Lkup[QF_readySet_]);
}

}
else {

(26) p = (uint8_t)0; /* break out of the loop */
}

(27) } while (p > pin); /* is the new priority higher than initial? */

(28) QK_currPrio_ = pin; /* restore the initial priority */
}

(29) }

662 Chapter 12
(1) The QK-nano scheduler must necessarily be a reentrant function. The scheduler

is always invoked with interrupts locked but might need to unlock interrupts

internally to launch a task.

(2) The stack variable ‘p’ will hold the priority of the new highest-priority active

object (task) ready to run.
NOTE

The ‘p’ variable must necessarily be allocated on the stack, because each level of preemption

needs to compute a separate copy of the highest-priority active object ready to run. The

compiler should never place the ‘p’ variable in a static memory. For that reason the
QK_schedule_() function is declared as “reentrant” in line (1).
(3,4) The highest-priority active object with a not-empty event queue is quickly found

out by means of the binary-logarithm lookup table, exactly the same way as

already explained in Listing 12.16(16-18).
www.newnespress.com

663QP-nano: How Small Can You Go?
(5) The QK scheduler can launch a task only when the new priority is higher than

the saved priority of the currently executing task.
NOTE

The QK-nano scheduler is an indirectly recursive function. The scheduler calls task func-

tions, which might post events to other tasks, which calls the scheduler (synchronous pre-

emption). The scheduler can also be preempted by ISRs, which also call the scheduler at

the exit (asynchronous preemption). However, this recursion can continue only as long as

the priority of the tasks keeps increasing. Posting an event to a lower- or equal-priority task

(posting to self) stops the recursion because of the if statement in line (5).
(6) To handle the preemption, the QK-nano scheduler will need to increase the

current priority. However, before doing this, the current priority is saved into

a stack variable pin.
NOTE

The ‘pin’ variable must necessarily be allocated on the stack because each level of preemp-

tion needs to save its own copy of the current priority. The compiler should never place the

‘pin’ variable in a static memory. For that reason the QK_schedule_() function is declared

as “reentrant” in line (1).
(7) The do loop continues as long as the scheduler finds ready-to-run tasks of

higher priority than the initial priority pin.

(8) The current QK-nano priority is raised to the level of the highest-priority task

that is about to be started.

(9) Interrupts are unlocked to launch the new RTC task.

(10,11) The current event is dispatched to the active object state machine.
NOTE

Dispatching of the event into the state machine represents the run-to-completion step of the

active object thread. Note that the RTC task is executed with interrupts unlocked.

www.newnespress.com

664 Chapter 12
(12) Interrupts are locked again to update the status of the active object event

queue after processing the current event.

(13) The global pointer QF_pCB_ is set to point to the control block of the active

object &QF_active[p] located in ROM.

(14) The static active object pointer l_act is set to point to the active object with

priority ‘p.’
NOTE

The active object pointed to by l_act is the same one that just finished the RTC step in lines

10-11. However, I did not set the l_act earlier because the local variable l_act could have

changed when the interrupts were unlocked.
(15) The number of events in the queue is decremented and tested against zero.

(16) If the queue is becoming empty, the corresponding bit in the QF_readySet_

bitmask is cleared by masking it off with the invPow2Lkup[] lookup table.

(17,18) The next event is copied from the ring buffer at the tail index to the current

event inside the state machine.

(19,20) The tail index is checked for wraparound.

(21) The tail index is always decremented.

(22) If some active objects are still ready to run.

(23-25) The scheduler finds out the next highest-priority active objects ready to run.

(26) If the QF_readySet_ turns out to be empty, the QK-nano kernel has nothing

more to do. The variable ‘p’ is set to zero to terminate the do-while loop

in the next step.

(27) The while condition loops back to step 7 as long as the QK-nano scheduler

still finds ready-to-run tasks of higher priority than the initial priority pin.

(28) After the loop terminates, the current QK-nano priority must be restored back

to the initial level.

(29) The QK-nano scheduler always returns with interrupts locked.
www.newnespress.com

665QP-nano: How Small Can You Go?
12.6.4 Interrupt Processing in QK-nano

QK-nano can typically work with ISRs synthesized by the C compiler, which

most embedded C cross-compilers support. However, unlike the nonpreemptive

vanilla kernel, the preemptive QK-nano kernel must be notified about entering and

exiting every ISR to handle potential asynchronous preemptions. The specific actions

required at the entry and exit from ISRs depend on the interrupt-locking policy

for ISRs.

When interrupt nesting is allowed (the macro QF_ISR_NEST is defined in

qpn_port.h), the interrupt processing in QK-nano is exactly the same as described

in Section 10.3.3 for the full-version QK. In particular, the interrupt-nesting

counter QK_intNest_ must be incremented upon interrupt entry and decremented

upon interrupt exit. The QK-nano scheduler can only be invoked when the

interrupt-nesting counter is zero, meaning that the calling ISR is not nested on top of

another ISR.

However, when interrupt nesting is not allowed (the macro QF_ISR_NEST is

not defined in qpn_port.h), QK-nano allows for a simpler interrupt handling

compared to the full-version QK. Specifically, when interrupts cannot nest you

don’t need to increment the interrupt-nesting counter (QK_intNest_) upon ISR entry,

and you don’t need to decrement it upon ISR exit. In fact, when the macro

QF_ISR_NEST not defined, the QK_intNest_ counter is not even available. This

simplification is possible because QP-nano uses a special ISR version of the event-

posting function QActive_postISR(), which does not call the QK-nano scheduler.

Consequently, there is no need to prevent the synchronous preemption within ISRs.

Listing 12.20 shows the simplified interrupt handling when interrupt nesting is not

allowed.
Listing 12.20 ISR structure when interrupt nesting is not allowed

void interrupt YourISR(void) { /* typically entered with interrupts locked */

/* QK_ISR_ENTRY() - empty */

Clear the interrupt source, if necessary

Execute ISR body, including calling QP-nano services, such as:

QActive_postISR() or QF_tick()

Send the EOI instruction to the interrupt controller, if necessary

QK_SCHEDULE_(); /* QK_ISR_EXIT() */
}

www.newnespress.com

666 Chapter 12
12.6.5 Priority Ceiling Mutex in QK-nano

QK-nano supports the priority-ceiling mutex mechanism in the exact same way as the

full-version QK (see Section 10.4.1 in Chapter 10). In QK-nano, the feature is disabled

by default, but you can enable it by defining the macro QK_MUTEX in the qpn_port.h

header file.
12.7 The PELICAN Crossing Example

The “Fly ‘n’ Shoot” game example described at the beginning of this chapter shows

most features of QP-nano, but it fails to demonstrate QP-nano running in a really small

MCU. In this section, I describe the pedestrian light-controlled (PELICAN) crossing

example application, which demonstrates a nontrivial hierarchical state machine, event

exchanges among active objects and ISRs, time events, and even the QK-nano

preemptive kernel. I was able to squeeze this application inside the MSP430-F2013

ultra-low-power MCU with only 128 bytes of RAM and 2KB of flash ROM.

Specifically, the accompanying code was tested on the eZ430-F2013 USB stick3

from Texas Instruments. The eZ430-F2013 is a complete development tool that

provides both the USB-based debugger and a MSP430-F2013 development board in

a small USB stick package (see Figure 12.6).

The code accompanying this book contains several versions of the PELICAN crossing

application for MSP430, Cortex-M3, and 80x86/DOS. For each target CPU I provide

two versions: the nonpreemptive configuration with vanilla kernel and the preemptive

QK-nano configuration. Refer to Listing 12.7 in Section 12.3.1 for the location of these

examples.

Before I describe the PELICAN crossing controller state machine and the QP-nano

implementation, I need to provide the problem specification. The PELICAN crossing

(see Figure 12.7) starts with cars enabled (green light for cars) and pedestrians disabled

(“Don’t Walk” signal for pedestrians). To activate the traffic light change, a pedestrian

must push the button at the crossing, which generates the PEDS_WAITING event. In

response, oncoming cars get a yellow light, which after a few seconds changes to

red light. Next, pedestrians get the “Walk” signal, which shortly thereafter changes to

the flashing “Don’t Walk” signal. When the “Don’t Walk” signal stops flashing,
3 At the time of this writing the eZ430-F2013 USB stick was available for $20 from the TI site

(www.ti.com/eZ430).

www.newnespress.com

http://www.ti.com/eZ430

USB debugger

MSP430 board
User LED

MSP430F2013
target device

(128 bytes of RAM
2KB of ROM)

4-pin
connector

Figure 12.6: The eZ430-F2013 USB stick.

667QP-nano: How Small Can You Go?
cars get the green light again. After this cycle, the traffic lights don’t respond to the

PEDS_WAITING button press immediately, although the button “remembers” that it has

been pressed. The traffic light controller always gives the cars a minimum of several

seconds of green light before repeating the traffic light change cycle. One additional

feature is that at any time an operator can take the PELICAN crossing offline (by

providing the OFF event). In the “offline” mode, the cars get a flashing red light and

pedestrians a flashing “Don’t Walk” signal. At any time the operator can turn the

crossing back online (by providing the ON event).
Figure 12.7: Pedestrian light-controlled (PELICAN) crossing.

www.newnespress.com

668 Chapter 12
12.7.1 PELICAN Crossing State Machine

Figure 12.8 shows the complete PELICAN crossing statechart. In the explanation

section following the diagram I describe how it works. If you are unfamiliar with some

aspects of the UML state machine notation, refer to Part I of this book.
exit / signalCars(CARS_RED);
carsEnabled exit / signalPeds(PEDS_DONT_WALK);

pedsEnabled

entry / signalCars(CARS_GREEN);
 QActive_arm(me, GREEN_TOUT);

carsGreen

carsGreenInt

entry / signalCars(CARS_YELLOW);
 QActive_arm(me, YELLOW_TOUT);

carsYellow

entry / signalPeds(PEDS_WALK);
 QActive_arm(me, WALK_TOUT);

pedsWalk

entry / me->pedFlashCtr= ...;
 QActive_arm(me, FLASH_TOUT);

Q_TIMEOUT[(me->pedFlashCtr&1)==0] /
 QActive_arm(me, FLASH_TOUT);
--me->pedFlashCtr;
 signalPeds(PEDS_DONT_WALK);

Q_TIMEOUT[else] /
 QActive_arm(me, FLASH_TOUT);
--me->pedFlashCtr;
 signalPeds(PEDS_BLANK);

pedsFlash

Q_TIMEOUT [me->pedFlashCtr == 0]

Q_TIMEOUT

Q_TIMEOUT

Q_TIMEOUT

entry / signalCars(CARS_RED); signalPeds(PEDS_DONT_WALK);
operational

OFF

PEDS_WAITING

carsGreenNoPed

carsGreenPedWait

Q_TIMEOUTPEDS_WAITING

offline

ON

entry / signalCars(CARS_RED);
 signalPeds(PEDS_DONT_WALK);
 QActive_arm(me, FLASH_TOUT);

offFlash
entry / signalCars(CARS_OFF);
 signalPeds(PEDS_BLANK);
 QActive_arm(me, FLASH_TOUT);

offPause

Q_TIMEOUT

Q_TIMEOUT

(1)

(2)

(3)

(6)

(8) (7)

(9)

(10)

(11)

(12)

(13)

(14)

(15) (17)

(16)

(4)

(5)

Figure 12.8: PELICAN crossing state machine.

www.newnespress.com

669QP-nano: How Small Can You Go?
(1) Upon the initial transition, the PELICAN state machine enters the “operational”

state and displays the red light for cars and the “Don’t Walk” signal for

pedestrians.

(2) The “operational” state has a nested initial transition to the “carsEnabled” substate.

Per the UML semantics, this transition must be taken after entering the superstate.

(3) The “carsEnabled” state has a nested initial transition to the “carsGreen” substate.

Per the UML semantics, this transition must be taken after entering the

superstate. Entry to “carsGreen” changes signals green light for cars and arms the

time event to expire in the GREEN_TOUT clock ticks. The GREEN_TOUT timeout

represents the minimum duration of green light for cars.

(4) The “carsGreen” state has a nested initial transition to the “carsGreenNoPed”

substate. Per the UML semantics, this transition must be taken after entering

the superstate. The “carsGreenNoPed” state is a leaf state, meaning that it has no

substates or initial transitions. The state machine stops and waits in this state.

(5) When the PEDS_WAITING event arrives in the “carsGreenNoPed” state, the state

machine transitions to another leaf state “carsGreenPedWait.” Note that the

state machine still remains in the “carsGreen” superstate because the minimum

green light period for cars hasn’t expired yet. However, by transitioning to the

“carsGreenPedWait” substate, the state machine remembers that the pedestrian is

waiting.

(6) However, when the Q_TIMEOUT event arrives while the state machine is still in the

“carsGreenNoPed” state, the state machine transitions to the “carsGreenInt”

(interruptible green light for cars) state.

(7) The “carsGreenInt” state handles the PEDS_WAITING event by immediately

transitioning to the “carsYellow” state, because the minimum green light for cars

has elapsed.

(8) The “carsGreenPedWait” state, on the other hand, handles only the Q_TIMEOUT

event, because the pedestrian is already waiting for the expiration of the

minimum green light for cars.

(9) The “carsYellow” state displays the yellow light for cars and arms the timer for

the duration of the yellow light. The Q_TIMEOUT event causes the transition to

the “pedsEnabled” state. The transition causes exit from the “carsEnabled”

superstate, which displays the red light for cars.
www.newnespress.com

670 Chapter 12
The pair of states “carsEnabled” and “pedsEnabled” realizes the main function of the

PELICAN crossing, which is to alternate between enabling cars and enabling

pedestrians. The exit action from “carsEnabled” disables cars (by showing a red light

for cars) while the exit action from “pedsEnabled” disables pedestrians (by showing

them the “Don’t Walk” signal). The UML semantics of state transitions guarantees that

these exit actions will be executed whichever way the states happen to be exited, so I

can be sure that the pedestrians will always get the “Don’t Walk” signal outside the

“pedsEnabled” state and cars will get the red light outside the “carsEnabled” state.
NOTE

Exit actions in the states “carsEnabled” and “pedsEnabled” guarantee mutually exclusive

access to the crossing, which is the main safety concern in this application.
(10) The “pedsEnabled” state has a nested initial transition to the “pedsWalk”

substate. Per the UML semantics, this transition must be taken after entering

the superstate. The entry action to “pedsWalk” shows the “Walk” signal to

pedestrians and arms the timer for the duration of this signal.

(11) The Q_TIMEOUT event triggers the transition to the “pedsFlash” state, in

which the “Don’t Walk” signal flashes on and off. I use the internal variable

of the PELICAN state machine me->pedFlashCtr to count the number of

flashes.

(12,13) The Q_TIMEOUT event triggers two internal transitions with complementary

guards. When the me->pedFlashCtr counter is even, the “Don’t Walk”

signal is turned on. When it’s odd, the “Don’t Walk” signal is turned off.

Either way the counter is always decremented.

(14) Finally, when the me->pedFlashCtr counter reaches zero, the Q_TIMEOUT

event triggers the transition to the “carsEnabled” state. The transition causes

execution of the exit action from the “pedsEnabled” state, which displays

“Don’t Walk” signal for pedestrians. The life cycle of the PELICAN crossing

then repeats.

At this point, the main functionality of the PELICAN crossing is done. However, I still

need to add the “offline” mode of operation, which is actually quite easy because of

the state hierarchy.
www.newnespress.com

671QP-nano: How Small Can You Go?
(15) The OFF event in the “operational” superstate triggers the transition to

the “offline” state. The state hierarchy ensures that the transition OFF is

inherited by all direct or transitive substates of the “operational” superstate,

so regardless in which substate the state machine happens to be, the OFF

event always triggers transition to “offline.” Also note that the semantics of

exit actions still apply, so the PELICAN crossing will be left in a consistent

safe state (both cars and pedestrians disabled) upon exit from the “operational”

state.

(16) The Q_TIMEOUT events in the substates of the “offline” state cause flashing

of the signals for cars and pedestrians, as described in the problem

specification.

(17) The ON event can interrupt the “offline” mode at any time by triggering the

transition to the “operational” state.

The actual implementation of the PELICAN state machine in QP-nano is very

straightforward and follows exactly the same simple rules as I described for the Ship

state machine in Section 12.2.4. The source code for the PELICAN application is

located in the directory <qp>\qpn\examples\msp430\iar\pelican-eZ430\.
12.7.2 The Pedestrian Active Object

The actual PELICAN crossing controller hardware will certainly provide a

push-button for generating the PEDS_WAITING event as well as a switch to generate the

ON/OFF events. But the eZ430 USB stick has no push-button or any other way to

provide external inputs (see Figure 12.6). For the eZ430, I need to simulate the

pedestrian/operator in a separate state machine. This is actually a good opportunity to

demonstrate how to incorporate a second state machine (active object) into the

application.

The Pedestrian active object is very simple. It periodically posts the PEDS_WAITING

event to the PELICAN active object and from time to time it turns the crossing offline

by posting the OFF event followed by the ON event. I leave it as an exercise for you to

draw the state diagram of the Pedestrian state machine from the source code found

in the file <qp>\qpn\examples\msp430\iar\pelican-eZ430\ped.c. Note that

such “reverse engineering” of source code is very easy in QP applications because the

code is always the precise specification of the state machine.
www.newnespress.com

672 Chapter 12
12.7.3 QP-nano Port to MSP430 with QK-nano Kernel

The source code for the PELICAN and Pedestrian active objects as well as the main.c

module is actually identical for all target CPUs, but each target requires a specific

QP-nano port. In this section I describe the QP-nano port to MSP430 with the

preemptive QK-nano kernel. A QP-nano port consists of the qpn_port.h header file

and the BSP implementation in the bsp.c source file.

Using the preemptive kernel in the PELICAN crossing example isn’t really justified by

the loose timing requirements of this application. I describe the preemptive QP-nano

configuration mainly to demonstrate that the QK-nano kernel is very lightweight and

can fit even in a very memory-constrained MCU, such as the MSP430-F2013. The code

accompanying this book contains the nonpreemptive version of the PELICAN crossing

example for the eZ430 target as well (see Listing 12.7).

The PELICAN crossing example for eZ430 with the preemptive QK-nano kernel is

located in the directory <qp>\qpn\examples\msp430\iar\pelican-qk-eZ430\.

Listings 12.21 and 12.22 show the qpn_port.h header file and the bsp.c source file,

respectively. This port has been compiled with the free KickStart edition of the IAR

Embedded Workbench for MSP430 v4.10A.
Listing 12.21 QP-nano Port to MSP430 with QK-nano
(file <qp>\qpn\examples\msp430\iar\pelican-qk-eZ430\qpn_port.h)

#ifndef qpn_port_h
#define qpn_port_h

#define Q_NFSM
#define Q_PARAM_SIZE 0
#define QF_TIMEEVT_CTR_SIZE 1

/* maximum # active objects--must match EXACTLY the QF_active[] definition */

(1) #define QF_MAX_ACTIVE 2

/* interrupt locking policy for IAR compiler */

(2) #define QF_INT_LOCK() __disable_interrupt()

(3) #define QF_INT_UNLOCK() __enable_interrupt()

(4) /*#define QF_ISR_NEST*/ /* nesting of ISRs not allowed */

/* interrupt entry and exit for QK */

(5) #define QK_ISR_ENTRY() ((void)0)

(6) #define QK_ISR_EXIT() QK_SCHEDULE_()

(7) #include <intrinsics.h> /* contains prototypes for the intrinsic functions */

www.newnespress.com

(8) #include <stdint.h> /* Exact-width integer types. WG14/N843 C99 Standard */
#include "qepn.h" /* QEP-nano platform-independent public interface */
#include "qfn.h" /* QF-nano platform-independent public interface */

(9) #include "qkn.h" /* QK-nano platform-independent public interface */

#endif /* qpn_port_h */

673QP-nano: How Small Can You Go?
(1) The PELICAN crossing application uses two active objects (PELICAN and

Pedestrian).

(2,3) The IAR compiler provided very efficient intrinsic functions for locking and

unlocking interrupts.

(4) Nesting of ISRs is not allowed in this QP-port.

(5,6) The interrupt entry and exit macro for QK-nano are defined consistently with the

interrupt nesting policy (see Listing 12.20).

(7) The IAR header file <intrinsics.h> provides declarations of intrinsic

functions, such as __disable_interrupt() and __enable_interrupt().

(8) The IAR compiler is C99-compliant and provides the standard header file

<stdint.h>, which defines exact-width integer types.

(9) The QK-nano is configured by including the qkn.h header file.
Listing 12.22 BSP for MSP430 with QK-nano
(file <qp>\qpn\examples\msp430\iar\pelican-qk-eZ430\bsp.c)

#pragma vector = TIMERA0_VECTOR

(1) __interrupt void timerA_ISR(void) { /* see NOTE01 */
(2) QK_ISR_ENTRY(); /* inform QK-nano about ISR entry */
(3) QF_tick();

(4) QK_ISR_EXIT(); /* inform QK-nano about ISR exit */
}
/*...*/
void BSP_init(void) {

WDTCTL = (WDTPW | WDTHOLD); /* Stop WDT */
P1DIR |= 0x01; /* P1.0 output */

(5) CCR0 = ((BSP_SMCLK + BSP_TICKS_PER_SEC/2) / BSP_TICKS_PER_SEC);
TACTL = (TASSEL_2 | MC_1); /* SMCLK, upmode */

}
/*...*/
void QF_onStartup(void) {

Continued onto next page

www.newnespress.com

(6) CCTL0 = CCIE; /* CCR0 interrupt enabled */
}
/*...*/
void QK_onIdle(void) { /* see NOTE02 */

(7) __low_power_mode_1(); /* adjust the low-power mode to your application */
}
/*...*/
void BSP_signalPeds(enum BSP_PedsSignal sig) {

if (sig == PEDS_DONT_WALK) {
LED_on();

}
else {

LED_off();
}

}
/*..*/
void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line) {

(void)file; /* avoid compiler warning */
(void)line; /* avoid compiler warning */
for (;;) {
}

}

674 Chapter 12
(1) QK-nano can use the ISRs synthesized by the C compiler. In MSP430, as in

most CPUs, the ISRs are entered with interrupts locked.

(2) The macro QK_ISR_ENTRY() informs QK-nano about entering the ISR.
NOTE

Even though this macro does not do anything in this particular port, I like to use it for sym-

metry with the QK_ISR_EXIT(). This also allows me to change the interrupt-locking policy

without modifying the ISRs.
(3) The ISR calls the QP-nano service designed for the ISR context.

(4) The macro QK_ISR_EXIT() informs QK-nano about exiting the ISR.

(5) The BSP initialization configures the system clock tick timer to tick at the

predefined rate BSP_TICKS_PER_SEC (I set to 20Hz in bsp.h).

(6) The startup callback enables the system clock-tick ISR. This is the only ISR in

the PELICAN crossing application.
www.newnespress.com

675QP-nano: How Small Can You Go?
(7) The idle callback of the QK-nano kernel transitions to the LPM1 mode, which is

just one of many low-power sleep modes available in the ultra-low-power

MSP430 architecture. In your application, you should adjust the power mode to

your particular requirements.
NOTE

When you apply low-power mode in MSP430, the QK_onIdle() function is actually called

only once and the idle loop stops. This is because the MSP430 core keeps the power-control

bits in the SR register of the CPU, which gets automatically restored upon interrupt return. So

when a power-saving mode is selected, the CPU stops when returning to the idle loop. If you

want to perform some processing in the QK-nano idle loop before going to sleep, you need to

call __low_power_mode_off_on_exit() in every ISR to clear the power-control bits in

the stacked SR register.
12.7.4 QP-nano Memory Usage

To give you an idea of the QP-nano memory usage, Tables 12.1 and 12.2 show the

memory footprint of the QP-nano components for various settings of the configuration

macros. The data for Table 12.1 has been obtained from the IAR compiler for

MSP430 v4.10A (the KickStart edition), whereas data for Table 12.2 has been

obtained from the IAR compiler for ARM Cortex-M3 v5.11 (also the KickStart

edition). In both cases I have selected optimization level High/Size.

The first column of Tables 12.1 and 12.2 lists the configuration macros that are

significant for the RAM or ROM usage in QP-nano. I have omitted the QF_ISR_NEST

and QF_ISR_KEY_TYPE macros because they have virtually no impact on the code or

data sizes shown in the tables (even though defining QF_ISR_KEY_TYPE somewhat

increases the stack usage.)

Both MSP430 and Cortex-M3 offer good code density and the IAR compiler

generates fantastic machine code for these CPU architectures. (I’ve seen much worse

results for older CPU architectures, such as 8051 or the PIC). Therefore, you should

treat the data in Tables 12.1 and 12.2 as minimum memory footprint of QP-nano rather

than average results. The intent of Table 12.1 is primarily to give you a general idea

for the relative cost of various options rather than to provide you absolutely accurate

measurements.
www.newnespress.com

NOTE

Th e Tables 12.1 and 12.2 show on ly the memor y used directly by the QP- nano component s

but do not include the memory required by the application. In particular, you don’t see the

stack usage or the RAM required by active objects and their event queues.

Table 12.1: QP-nano memory usage in bytes for various settings of the
configuration parameters (MSP430/IAR compiler/optimization-High/Size)

Configuration Parameters
in qpn_port.h

qepn.c
(RAM/ROM)

qfn.c
(RAM/ROM)

qkn.c
(RAM/
ROM)

QP-nano
Total
(RAM/ROM)

C
o
n
fi
gu

ra
ti
o
n
N
u
m
b
er

Q
N
FS
M

Q
N
H
SM

Q
P
A
R
A
M

SI
Z
E

Q
F
T
IM

E
E
V
T
C
T
R
SI
Z
E

Q
F
M
A
X
A
C
T
IV
E

Q
K
P
R
E
E
M
P
T
IV
E

1 ffip 0 0 4 0/110 6/420 N/A 6/530

2 ffip 2 0 4 0/110 6/474 N/A 6/584

3 ffip 0 0 8 0/110 6/504 N/A 6/614

4 ffip 2 2 8 0/110 9/578 N/A 9/688

5 ffip 2 2 8 0/634 9/578 N/A 9/1,212

6 2 2 8 0/722 9/578 N/A 9/1,300

7 ffip 0 0 4 ffip 0/110 3/207 4/246 7/563

8 ffip 2 0 4 ffip 0/110 3/238 4/268 7/616

9 ffip 0 0 8 ffip 0/110 3/207 4/292 7/609

10 ffip 2 2 8 ffip 0/110 6/313 4/314 10/737

11 ffip 2 2 8 ffip 0/634 6/313 4/314 10/1,261

12 2 2 8 ffip 0/722 6/313 4/314 10/1,349

www.newnespress.com

676 Chapter 12

677QP-nano: How Small Can You Go?
The various QP-nano configurations are listed separately in Tables 12.1 and 12.2 for the

nonpreemptive “vanilla” kernel (configurations 1-6) and the preemptive QK-nano

kernel (configurations 7-12). Within each group, the simpler configurations come

before the more expensive ones. For example, the absolutely minimal configuration

number 1 eliminates the HSM code (so only basic FSM support is provided), uses no

event parameters, no time events, and up to four active objects. This minimal
Table 12.2: QP-nano memory usage in bytes for various settings of the
configuration parameters (ARM Cortex-M3/IAR compiler/optimization-High/Size)

Configuration Parameters in qpn_port.h

qepn.c
(RAM/
ROM)

qfn.c
(RAM/
ROM)

qkn.c +
qkn.s
(RAM/
ROM)

QP-nano
Total
(RAM/ROM)

C
o
n
fi
gu

ra
ti
o
n
N
u
m
b
er

Q
N
FS
M

Q
N
H
SM

Q
P
A
R
A
M

SI
Z
E

Q
F
T
IM

E
E
V
T
C
T
R
SI
Z
E

Q
F
M
A
X
A
C
T
IV
E

Q
K
P
R
E
E
M
P
T
IV
E

1 ffip 0 0 4 0/110 12/406 N/A 12/516

2 ffip 2 0 4 0/110 12/456 N/A 12/566

3 ffip 0 0 8 0/110 12/426 N/A 12/536

4 ffip 2 2 8 0/110 13/550 N/A 13/660

5 ffip 2 2 8 0/620 13/550 N/A 13/1,170

6 2 2 8 0/702 13/550 N/A 13/1,252

7 ffip 0 0 4 ffip 0/110 8/224 8/334 16/668

8 ffip 2 0 4 ffip 0/110 8/260 8/350 16/720

9 ffip 0 0 8 ffip 0/110 8/224 8/374 16/708

10 ffip 2 2 8 ffip 0/110 9/334 8/390 17/834

11 ffip 2 2 8 ffip 0/620 9/334 8/390 17/1,334

12 2 2 8 ffip 0/702 9/334 8/390 17/1,426

www.newnespress.com

678 Chapter 12
configuration is clearly very limited. However, the configuration number 4 is already

quite reasonable. It still offers only nonhierarchical FSMs, but includes event parameter,

time events, and up to eight active objects at a cost of less than 700 bytes of code space.

By far, the most expensive feature (in terms of ROM) is the HSM support, which costs

about 650 bytes (e.g., compare configurations number 4 and 5 or 10 and 11). On the

other hand, the QK-nano preemptive kernel increases the ROM footprint only by

50-100 bytes compared to the “vanilla” kernel. Obviously, the true cost of QK-nano lies

in the increased stack requirements, which Tables 12.1 and 12.2 don’t show.

In comparison, the full-version QP4 compiled with the IAR compiler for Cortex-M3

requires 2,718 bytes of ROM (616 bytes for the QEP component and 2,102 bytes of

ROM for the QF component) and 121 bytes of RAM with eight active objects

configured. This corresponds roughly to the QP-nano configuration number 6 from

Table 12.2.

12.8 Summary

Low-end MCUs are a very important market segment for embedded systems because

many billions of units of these devices are sold each year. These small MCUs aren’t

well served by the traditional kernels or RTOSes, which simply require too much RAM.

However, QP-nano demonstrates that an event-driven framework is scalable to very

small systems, starting from about 2KB of ROM and some 100 bytes of RAM. Quite

possibly, QP-nano is the smallest event-driven framework with support for UML-style

hierarchical state machines and active objects in the industry.
4 Both C and C++ versions have essentially identical footprint, the C++ version being bigger by

insignificant 24 bytes of ROM, which represents less than 1% of the total code size.

www.newnespress.com

www.n
AP P END I X A
Licensing Policy for QP and QP-nano
Any licensor of open source software should consider dual licensing options as a way of attracting new
customers.
—Lawrence Rosen, general counsel and secretary of Open Source Initiative (OSI)

All software described in this book and available for download from the companion

Website at http://www.quantu m-leaps.com/psicc2 or any other sources is

available under a dual-licensing model, in which both the open-source software

distribution mechanism and traditional closed-source software licensing models are

combined.
A.1 Open-Source Licensing

All software described in this book is available under the GNU General Public License

Version 2 (GPL2), as published by the Free Software Foundation and reproduced in

Section A.5 of this Appendix.

The GPL2 license is probably the best known and most established open-source license.

It is fully compatible with the Open Source Definition, is endorsed by the Free Software

Foundation, and has been approved by the Open Source Initiative [Rosen 05].

Note that GPL2 applies to software based not on how it is used but on how it is

distributed. In this respect GPL2 can be restrictive because GPL2 Section 2(b) requires

that if you distribute the original software or any derivative works based on the software

under copyright law, you must release all such derivative works also under the terms

of the GPL2 open-source license. GPL2 clearly specifies that distributing the original

software or any derivative works based on it in binary form (e.g., embedded inside

devices) also represents distribution of the software.
ewnespress.com

http://www.quantum-leaps.com/psicc2

680 Appendix A
To read more about open-source licensing for QP or QP-nano or to contribute work to

the open-source community, visit www.quantum-leaps.com/licensing/open.

htm or contact Quantum Leaps, LLC via the following e-mail address: dev@quantum-

leaps.com .
A.2 Closed-Source Licensing

If you are developing and distributing traditional closed-source applications, you might

purchase one of the commercial licenses, which are specifically designed for users interested

in retaining the proprietary status of their code. This alternative licensing is possible because

Quantum Leaps LLC owns all intellectual property in the QP and QP-nano software and as

the copyright owner can license the software any number of ways. The Quantum Leaps

commercial licenses expressly supersede the GPL2 open-source license. This means that

when you license the software under a commercial license, you specifically do not use the

software under the open-source license and therefore you are not subject to any of its terms.

To read more about the commercial licensing options, pricing, and technical support

and to request a commercial license, visit www.quantum-leaps.com/licensing or

contact Quantum Leaps LLC via the following e-mail address: info@quantum-

leaps.com .

A.3 Evaluating the Software

The open character of the QP and QP-nano software allows anybody to evaluate the

software under the GPL2 open-source license. In this respect, evaluating dual-licensed

software delivers a large advantage over highly supervised trial licensing practices still

so common in the embedded systems marketplace.

Obviously, when you decide to distribute any portion of the original software or any

derivative works based on it, you must either make your software available to the

public, as required by GPL2 Section 2(b), or you can purchase one of the commercial

licenses, as described in Section A.2.

A.4 Nonprofits, Academic Institutions, and Private
Individuals

If you represent a nonprofit organization or an academic institution, you should

consider publishing your application as an open-source software project using the GPL2
www.newnespress.com

http://www.quantum-leaps.com/licensing/open.htm
http://www.quantum-leaps.com/licensing/open.htm
http://dev@quantum-leaps.com
http://dev@quantum-leaps.com
http://www.quantum-leaps.com/licensing
http://info@quantum-leaps.com
http://info@quantum-leaps.com

681Licensing Policy for QP and QP-nano
license. Thereby you’ll be able to use the QP or QP-nano software free of charge under

the GPL2 license. If you have strong reasons not to publish your application in

accordance with GPL2, you should purchase one of the commercial licenses. Note that

nonprofit organizations can apply for free commercial licenses, which will be liberally

granted.

If you are a private individual, you are free to use QP or QP-nano software for your

personal applications as long as you do not distribute them. If you distribute the software

in any way, you must make a decision between the GPL2 and the commercial licenses.

Note that these rules apply even if you ship (distribute) a free demo version of your own

applications.
A.5 GNU General Public License Version 2
GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public

License is intended to guarantee your freedom to share and change free software--to make sure the software is free for all its users.

This General Public License applies to most of the Free Software Foundation’s software and to any other program whose authors

commit to using it. (Some other Free Software Foundation software is covered by the GNU Lesser General Public License instead.)

You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can

get it if you want it, that you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights.

These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the rights that you have.

You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal permission to

copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there is no warranty for this free

software. If the software is modified by someone else and passed on, we want its recipients to know that what they have is not the

original, so that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a free

program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have made it clear that

any patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may be

distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work, and a “work
www.newnespress.com

682 Appendix A
based on the Program” means either the Program or any derivative work under copyright law: that is to say, a work containing the

Program or a portion of it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation is

included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of

running the Program is not restricted, and the output from the Program is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).

Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the

notices that refer to this License and to the absence of any warranty; and give any other recipients of the Program a copy of this

License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for

a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program or any part

thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for such

interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright notice and a notice

that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute the program under these

conditions, and telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but does not

normally print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Program, and

can be reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work

based on the Program, the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend

to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the Program) on a

volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form under the

terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the terms of

Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your cost of

physically performing source distribution, a complete machine-readable copy of the corresponding source code, to be distributed

under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative is allowed

only for noncommercial distribution and only if you received the program in object code or executable form with such an offer, in

accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work, complete

source code means all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to

control compilation and installation of the executable. However, as a special exception, the source code distributed need not include

anything that is normally distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself accompanies the executable.
www.newnespress.com

683Licensing Policy for QP and QP-nano
If distribution of executable or object code ismade by offering access to copy from a designated place, then offering equivalent access to

copy the source code from the same place counts as distribution of the source code, even though third parties are not compelled to

copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights under this

License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated

so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or

distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Program (or any work based on the Program), you indicate your acceptance of this License to do so,

and all its terms and conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license from the

original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not impose any further

restrictions on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties

to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do

not excuse you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a patent

license would not permit royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you,

then the only way you could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is

intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such

claims; this section has the sole purpose of protecting the integrity of the free software distribution system, which is implemented

by public license practices. Many people have made generous contributions to the wide range of software distributed through that

system in reliance on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute

software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Program under this License may add an explicit geographical distribution limitation

excluding those countries, so that distribution is permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time. Such new

versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which applies to it

and “any later version”, you have the option of following the terms and conditions either of that version or of any later version

published by the Free Software Foundation. If the Program does not specify a version number of this License, you may choose any

version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different, write to the

author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software

Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all

derivatives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO

THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED
www.newnespress.com

684 Appendix A
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL

NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT

HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED

ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT

NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR

THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it

free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively

convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is

found.

<one line to give the program’s name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as

published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty

of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public License. Of course, the

commands you use may be called something other than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items--

whatever suits your program. You should also get your employer (if you work as a programmer) or your school, if any, to sign a

“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program

‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine

library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use

the GNU Lesser General Public License instead of this License.
www.newnespress.com

1 I prepared all diagrams with Microsoft Visio 2003. The code accompanying th

stencil that I used (directory <qp>\visio\).

ClassName

attribute
attribute : DataType
. . .

ClassName
−priv
pro
+ pu
+$ p

−priv
pro
+ pu
+$ p

abstractMethod() : ResultType
method(arg_list)

« abstract »
AbstractClassName

for every attribute {
 attribute.foo();
}

A

B C D

Figure B.1: Various levels of detail, visibility, and proper

www.n
AP P END I X B
Guide to Notation
The good thing about bubbles and arrows, as opposed to programs, is that they never crash.
—Bertrand Meyer

This appendix describes the graphical notation that I use throughout the book.1 The

notation should be compatible with the UML specification [OMG 07].
B.1 Class Diagrams

A class diagram shows classes, their internal structures, and the static (compile-time)

relationships among them. Figure B.1 shows the various presentation options for

classes.
is book contains the Visio

ateMethod()
tectedMethod()

blicMethod()
ublicClassMethod()

ateAttribute
tectedAttribute

blicAttribute
ublicClassAttribute

ClassName

ties of classes.

ewnespress.com

686 Appendix B
� A class is always denoted by a box with the class name in bold type at the top.

Optionally, just below the name, a class box can have an attribute compartment

that is separated from the name by a horizontal line. Below the attributes, a class

box can have an optional method compartment.

� The UML notation allows you to distinguish abstract classes, which are

classes intended only for derivation and cannot have direct instances.

Figure B.1(C)shows the notation for such classes. The abstract class name

appears in italic font. Optionally you may use the «abstract» stereotype. If a

class has abstract methods (pure virtual member functions in Cþþ), they are

shown in an italic font as well.

� Sometimes it is helpful to provide pseudocode of some methods by means of a

note (Figure B.1(C)).

� Finally, a class box can also show the visibility of attributes and methods, as in

Figure B.1(D).
method() : ResultType
. . .

attribute
. . .

« abstract »
Superclass

Subclass

attribute
attribute : DataType
. . .

Subclass1

Superclass

Subclass2

Superclass

Subclass1 Subclass2

other
potential
subclasses

Figure B.2: Different presentation options for the generalization
and specialization of classes.
Figure B.2 shows the different presentation options for inheritance (the is-a-kind-of

relationship). The generalization arrow always points from the subclass to the

superclass. The right-hand side of Figure B.2 shows an inheritance tree that indicates an

open-ended number of subclasses.
www.newnespress.com

part1 : Part1Class
part2 : Part2Class
. . .

WholeClass

Part1Class

Part2Class

0..1

part1 1..*

0..*
aggregation
bidirectional navigability

composite aggregation
unidirectional navigability

Figure B.3: Aggregation, navigability, and multiplicity.

687Guide to Notation
Figure B.3 shows the aggregation of classes (the has-a-component relationship). An

aggregation relationship implies that one object physically or conceptually contains

another. The notation for aggregation consists of a line with a diamond at its base. The

diamond is at the side of the owner class (whole class), and the line extends to the

component class (part class). The full diamond represents physical containment; that is,

the instance of the part class physically residing in the instance of the whole class

(composite aggregation). A weaker form of aggregation, denoted with an empty

diamond, indicates that the whole class has only a reference or pointer to the part

instance but does not physically contain it. A name for the reference might appear at the

base (e.g., part1 in Figure B.3). Aggregation also could indicate multiplicity and

navigability between the whole and the parts.
«pattern»
behavioral
inheritance

init()
dispatch()

state : QHsmState

« abstract »
QHsm

Calc QHsmTst

concrete
HSMs

abstract
hierarchical
state machine
base class

Figure B.4: Design pattern as a collaboration of classes

www.newnespress.com

688 Appendix B
Figure B.4 shows a collaboration of classes as a dashed ellipse containing the name of

the collaboration (stereotyped here as a pattern). The dashed lines emanating from the

collaboration symbol to the various elements denote participants in the collaboration.

Each line is labeled by the role that the participant plays in the collaboration. The roles

correspond to the names of elements within the context for the collaboration; such

names in the collaboration are treated as parameters that are bound to specific elements

on each occurrence of the pattern within a model [OMG 07].
B.2 State Diagrams

A state diagram shows the static state space of a given context class, the events that

cause a transition from one state to another, and the actions that result.
entry / action1();

exit / x=3; y=1;

EVT(a, b) [guard()] / action2();

stateName

stateA EVT (a, b) [guard()] / action(), ^EVT_A

trigger

event
parameters

guard

actions

sent
events

transitionstate state

internal transition

Figure B.5: States and a transition.
Figure B.5 shows the presentation options for states and the notation for a state

transition. A state is always denoted by a rectangle with rounded corners. The name of

the state appears in bold type at the top. Optionally, right below the name, a state can

have an internal transition compartment separated from the name by a horizontal line.

The internal transition compartment can contain entry actions (actions following the

reserved symbol entry), exit actions (actions following the reserved symbol exit), and

other internal transitions (e.g., those triggered by EVT in Figure B.5).

A state transition is represented as an arrow originating at the boundary of the source

state and pointing to the boundary of the target state. At a minimum, a transition

must be labeled with the triggering event. Optionally, the trigger can be followed by

event parameters, a guard, a list of actions, and a list of events that have been sent.
www.newnespress.com

stateC

stateB
A

B

C

STOP

initial transition

final state

superstate

substate

entry / action1()
exit / x = 3;
EVT /

compositeStateName

entry /
stateA

A

initial transition

transition
to self

Figure B.6: Composite state, initial transitions, and the final state.

689Guide to Notation
Figure B.6 shows a composite state (superstate) that contains other states (substates).

Each composite state can have a separate initial transition to designate the initial

substate. Although Figure B.6 shows only one level of nesting, the substates can

be composite as well.
entry / actionA()
stateA

stateAA

stateAC

stateABA X

B

Y

C

[x > 0]

stateB

H*[else]

stateBA

stateBB

A
B

orthogonal
regions

choicepoint
deep history
pseudostate

Figure B.7: Orthogonal regions and pseudostates.
Figure B.7 shows composite “stateA” with the orthogonal regions (AND-states)

separated by a dashed line and two pseudostates: the choicepoint and the deep history.
B.3 Sequence Diagrams

A sequence diagram shows a particular sequence of event instances exchanged among

objects at runtime. A sequence diagram has two dimensions; the vertical dimension
www.newnespress.com

690 Appendix B
represents time and the horizontal dimension represents different objects. Time flows

down the page (the dimensions can be reversed, if desired).

Figure B.8 shows an example of a sequence diagram. Object boxes, together with

the descending vertical lines, represent objects participating in the scenario. As

always in the UML specification, the object name in each box is underlined (some

objects may be identified only by a colon and a class name). Heavy borders indicate

active objects.
QF Philo[n] Table

TIMEOUT

Philo[m]

thinking thinking serving

hungry
HUNGRY(m)

eating
EAT(m)

TIMEOUT
hungry

HUNGRY(n)

TIMEOUT DONE(m)

eating
thinking EAT(n)

focus
of control

state
changes

objects

events

time

Figure B.8: Sequence diagram.
Events are represented as horizontal arrows originating from the sending object and

terminating at the receiving object. Optionally, thin rectangles around instance lines can

indicate focus of control. Sequence diagrams also can contain state marks to indicate

explicit state changes resulting from the event exchange.
B.4 Timing Diagrams

A timing diagram shows the explicit changes of state in one or more objects along a

single time axis. Figure B.9 shows an example of a timing diagram for multiple objects
www.newnespress.com

691Guide to Notation
(T1, T2, and T3). The timing diagram has two dimensions; time flows along the

horizontal axis and the object state along the vertical axis. Each object is assigned a

horizontal band across the diagram (a “swim lane”) separated from other bands by

dashed lines. Presentation options include deadlines, propagated events, and jitter.
0

T
1

T
2

running
ready

blocked

running
ready

blocked

running
ready

blocked

T
3

time

malloc()
(promotion)

event

event

demotion

5 10 15 20

done

done

done

malloc() done

states deadlineevent jitter

Figure B.9: Timing diagram.

www.newnespress.com

Bibliography
[ARM 06a]
 ARM, Ltd., ARMv7-M Architecture Application Level Reference Manual,
2006, www.arm.com/products/CPUs/ARM_Cortex-M3_v7.html.
[Bal Sathe 88]
 Bal Sathe, Dhananjay, “Fast Algorithm Determines Priority,” EDN,
September 1988.
[Booch 94]
 Booch, Grady, Object-Oriented Analysis and Design with Applications,
Addison-Wesley, 1994.
[Brooks 95]
 Brooks, Frederick, The Mythical Man-Month, Anniversary Edition, Addison-
Wesley, 1995, ISBN 0-201-83595-9.
[Butenhof 97]
 Butenhof, David R., Programming with POSIX(R) Threads, Addison-
Wesley Professional, 1997, ISBN 0201633922.
[Butenhof 97]
 Butenhof, David R., Programming with POSIX(R) Threads, Addison-
Wesley Professional, 1997.
[Cargill 94]
 Cargill, Tom, “Exception Handling: A False Sense of Security,” C++
Report, November–December 1994, www.informit.com/content/
images/020163371x/supplements/Exception_Handling_Article.html.
[Carryer 05]
 Carryer, Edward J., “CMPE118/L: Introduction to Mechatronics:
Event-Driven Programming,” www.soe.ucsc.edu/classes/cmpe118/
Spring05/.
[Clugston 07]
 Clugston, Don, “Member Function Pointers and the Fastest Possible
C++ Delegates,” www.codeproject.com/cpp/FastDelegate.asp.
[Cormenþ 01]
 Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein, Introduction to Algorithms, 2nd edition, MIT Press and
McGraw-Hill, 2001, ISBN 0-262-03293-7; Section 6.5: Priority
queues, pp. 138–142.
[Diaz-Herrera 93]
 Diaz-Herrera, Jorge L. Software Engineering Education: 7th SEI CSEE
Conference, San Antonio 1993, Springer, 1994.
[Dijkstra 71]
 Dijkstra, Edsger W., “Hierarchical Ordering of Sequential Processes,”
Acta Informatica 1, 1971, pp. 115–138.
[Douglass 01]
 Douglass, Bruce Powel, “Class 505/525: State Machines and
Statecharts,” Proceedings of Embedded Systems Conference, San Francisco,
Fall 2001.
www.newnespress.com

http://www.codeproject.com/cpp/FastDelegate.asp
http://www.arm.com/products/CPUs/ARM_Cortex-M3_v7.html
http://www.informit.com/content/images/020163371x/supplements/Exception_Handling_Article.html
http://www.informit.com/content/images/020163371x/supplements/Exception_Handling_Article.html
http://www.soe.ucsc.edu/classes/cmpe118/Spring05/
http://www.soe.ucsc.edu/classes/cmpe118/Spring05/

w

694 Bibliography
[Douglass 02]
ww.newnespress
Douglass, Bruce Powel, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems, Addison-Wesley Professional, 2002.
[Douglass 06]
 Douglass, Bruce Powel, Real-Time UML Workshop for Embedded Systems,
Newnes, 2006.
[Douglass 99]
 Douglass, Bruce Powel, Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns, Addison-Wesley, 1999.
[Douglass 99b]
 Douglass, Bruce Powel, “UML Statecharts,” Embedded Systems
Programming, January 1999, pp. 22–42.
[Dunkelsþ 06]
 Dunkels, Adam; Oliver Schmidt, Thiemo Voigt, and Muneeb Ali,
“Protothreads: Simplifying event-driven programming of memory-
constrained embedded systems,” in Proceedings of the Fourth ACM
Conference on Embedded Networked Sensor Systems (SenSys 2006),
Boulder, Colorado, November 2006.
[ECþþ 01]
 Embedded C++ Technical Committee, www.caravan.net/ec2plus.
[Gammaþ 95]
 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns, Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.
[Ganssle 98]
 Ganssle, Jack. G., “The Challenges of Real-Time Programming,”
Embedded Systems Programming, July 1998, pp. 20–26.
[Gatliff 01]
 Gatliff, Bill, “Embedding with GNU: Newlib,” Embedded Systems Design,
December 2001, www.embedded.com/15201696.
[GoF 95]
 Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides,
Design Patterns, Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.
[Gomez 00]
 Gomez, Martin, “Embedded State Machine Implementation,”
Embedded Systems Programming, December 2000, pp. 40–50.
[Harel 87]
 Harel, David, “Statecharts: A Visual Formalism for Complex Systems,”
Science of Computer Programming, 8, 1987, pp. 231–274, www.wisdom.
weizmann.ac.il/�dharel/SCANNED.PAPERS/Statecharts.pdf.
[Harelþ 98]
 Harel, David, and Michal Politi, Modeling Reactive Systems with
Statecharts, The STATEMATE Approach, McGraw-Hill, 1998.
[HDLC 07]
 www.interfacebus.com/Design_HDLC.html.
[Hewitt 73]
 Hewitt, Carl, P. Bishop, and R. Steiger, “A universal, modular actor
formalism for artificial intelligence,” Third International Joint
Conference on Artificial Intelligence, pp. 235–245, 1973.
[Hoare 69]
 Hoare, C. A. R., “An axiomatic basis for computer programming,”
Communications of the ACM, 12(10):576–585, October 1969.
[Horrocks 99]
 Horrocks, Ian, “Constructing the User Interface with Statecharts,”
Addison-Wesley, 1999.
.com

http://www.caravan.net/ec2plus
http://www.embedded.com/15201696
http://www.interfacebus.com/Design_HDLC.html
http://www.wisdom.weizmann.ac.il/dharel/SCANNED.PAPERS/Statecharts.pdf
http://www.wisdom.weizmann.ac.il/dharel/SCANNED.PAPERS/Statecharts.pdf

695Bibliography
[Huntþ 00]
 Hunt, Andy, and Dave Thomas, The Pragmatic Programmer, Addison-
Wesley, 2000.
[IAR 00]
 IAR Systems, AB, IAR visualSTATE, www.iar.com/vs.
[ISO/IEC 9899:TC2]
 WG14/N1124 Committee Draft—ISO/IEC 9899:TC2, May 6, 2005,
www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf.
[Johnsonþ 88]
 Johnson, Ralph E., and Brian Foote, “Designing Reusable Classes,”
Journal of Object-Oriented Programming, June/July 1988, Volume 1,
Number 2, pages 22–35.
[Kalinsky 05]
 Kalinsky, David, “Mutexes Battle Priority Inversions,” white paper,
www.kalinskyassociates.com/Wpaper2.html.
[Kernighan 88]
 Kernighan, Brian, W. and Dennis M. Ritche, The C Programming
Language, 2nd edition, Prentice Hall, 1988.
[Labrosse 02]
 Labrosse, Jean J., MicroC/OS-II, The Real-Time Kernel, 2nd edition, CMP
Books, 2002.
[Lafreniere 98]
 Lafreniere, David, “An Efficient Dynamic Storage Allocator,” Embedded
Systems Programming, September 1998, pp. 72–80.
[Liþ 03]
 Li, Qing, and Caroline Yao, Real-Time Concepts for Embedded Systems,
CMP Books, 2003.
[Luminary 06]
 www.luminarymicro.com/products/kits.html.
[Maguire 93]
 Maguire, Steve, Writing Solid Code, Microsoft Press, 1993.
[Mayer 97b]
 North, R. D., T. DeMarco, J. Stern, and D. Morley, “When Software Is
Treated Much Too Lightly,” Computer, Volume 30, Issue 2, February
1997.
[Mellor 00]
 Mellor, Steve, “UML Point/Counterpoint: Modeling Complex
Behavior Simply,” Embedded Systems Programming, March 2000.
[Meyer 97]
 Bertrand Meyer, Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.
[MISRA 98]
 Motor Industry Software Reliability Association (MISRA), MISRA
Limited, MISRA-C: 1998 Guidelines for the Use of the C Language in Vehicle-
Based Software, April 1998, ISBN 0-9524156-9-0. See also www.misra.
org.uk.
[Montgomery 06]
 Montgomery, Paul Y., private communication.
[Murphy 01a]
 Murphy, Niall, “Assertiveness Training for Programmers,” Embedded
Systems Programming, March 2001.
[Murphy 01b]
 Murphy, Niall, “Assert Yourself,” Embedded Systems Programming, April
2001.
[OMG 07]
 Object Management Group, “Unified Modeling Language:
Superstructure version 2.1.1,” formal/2007-02-05, February 2007.
www.newnespress.com

http://www.iar.com/vs
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124 .pdf
http://www.kalinskyassociates.com/Wpaper2.html
http://www.luminarymicro.com/products/kits.html
http://www.misra.org.uk
http://www.misra.org.uk

w

696 Bibliography
[Petzold 96]
ww.newnespress
Petzold, Charles, Programming Windows: The Definitive Developer’s Guide
to Programming Windows, Microsoft Press, 1996.
[Preiss 99]
 Preiss, Bruno R., “Reference Counting Garbage Collection,” excerpt
from Data Structures and Algorithms with Object-Oriented Design Patterns in
Java, www.brpreiss.com/books/opus5/html/page421.html.
[Queens 07]
 www.cs.queensu.ca/Software-Engineering/tools.html.
[Rosen 05]
 Rosen, Lawrence, Open Source Licensing: Software Freedom and Intellectual
Property Law, Prentice Hall, 2005.
[Rumbaugh+ 91]
 Rumbaugh, James, Michael Blaha, William Premerlani, Frederick
Eddy, and William Lorensen, Object-Oriented Modeling and Design,
Prentice-Hall, 1991.
[Samek 02]
 Samek, Miro, Practical Statecharts in C/C++: Quantum Programming for
Embedded Systems, CMP Books, 2002.
[Samek 03a]
 Samek, Miro, “The Embedded Mindset,” C/C++ Users Journal, February
2003, www.ddj.com/cpp/184401620.
[Samek 03b]
 Samek, Miro, “Who Moved My State?” C/C++ Users Journal, April
2003, www.ddj.com/cpp/184401643.
[Samek 03c]
 Samek, Miro, “Dèjà Vu,” C/C++ Users Journal, June, 2003, www.ddj.
com/cpp/184401665.
[Samek 03d]
 Samek, Miro, “An Exception or a Bug?” C/C++ Users Journal, August
2003, www.ddj.com/cpp/184401686.
[Samek 03e]
 Samek, Miro, “Patterns of Thinking,” C/C++ Users Journal, October
2003, www.ddj.com/cpp/184401713.
[Samek 03f]
 Samek, Miro, “Back to Basics,” C/C++ Users Journal, December, 2003,
www.ddj.com/cpp/184401737.
[Samek 07a]
 Samek, Miro, “Building Bare-Metal ARM Systems with GNU,”
Embedded.com Design Articles, published in 10 installments in July/
August 2007, www.embedded.com/design/opensource/201802580.
[Samek 07b]
 Samek, Miro, “Use an MCU’s low-power modes in foreground/
background systems,” Embedded Systems Design, October 2007,
pp 31–45, www.embedded.com/design/202103425.
[Samekþ 06]
 Samek, Miro and Robert Ward, “Build a Super Simple Tasker,” cover
story, Embedded Systems Design, July 2006, www.embedded.com/
showArticle.jhtml?articleID¼190302110.
[Selicþ 94]
 Selic, Bran, Garth Gulleckson, an d Paul T. Ward, Real-Time Object-
Oriented Modeling, John Wiley & Sons, 1994.
[Serlin 72]
 Serlin, O., “Scheduling of Time Critical Processes,” Proceedings of the
Spring Joint Computer Conference, Atlantic City, NJ, May 16–18, 1972,
925–932, Montvale, NJ: American Federation of Information
Processing Societies, 1972.
.com

http://www.cs.queensu.ca/Software-Engineering/tools.html
http://www.ddj.com/cpp/184401620
http://www.ddj.com/cpp/184401643
http://www.ddj.com/cpp/184401686
http:// www.ddj.com/cpp/184401713
http://www.ddj.com/cpp/184401737
http://www.embedded.com/design/opensource/201802580
http://www.embedded.com/design/202103425
http://www.brpreiss.com/books/opus5/html/page421.html
http://www.ddj.com/cpp/184401665
http://www.ddj.com/cpp/184401665
http://www.embedded.com/showArticle.jhtml?articleID=190302110
http://www.embedded.com/showArticle.jhtml?articleID=190302110

697Bibliography
[Stroustrup 00]
 Stroustrup, Bjarne, The C++ Programming Language: Special Edition, 3rd
Edition, Addison-Wesley Professional, 2000.
[Sutter 07]
 Sutter, Herb, “Recursive Declarations,” GotW.ca Website, www.gotw.
ca/gotw/057.htm.
[Telelogic 07]
 http://modeling.telelogic.com/products/rhapsody.
[TI 07]
 Texas Instruments, Inc., “MSP430x20x1, MSP430x20x2,
MSP430x20x3 Mixed Signal Microcontroller (Rev. D),” TI Datasheet,
2007.
[Turley 02]
 Turley, Jim, “Embedded Processors, Part 1,” ExtremeTech, 2002, www.
extremetech.com/article2/0,3973,18917,00.asp.
[VxWorks 01]
 www-sgc.colorado.edu/�dixonc/vxworks/docs/vxworks/ref/
intArchLib.html.
www.newnespress.com

http://www.gotw.ca/gotw/057.htm
http://www.gotw.ca/gotw/057.htm
http://modeling.telelogic.com/products/rhapsody
http://www.extremetech.com/article2/0,3973,18917,00.asp
http://www-sgc.colorado.edu/~dixonc/vxworks/docs/vxworks/ref/intArchLib.html
http://www-sgc.colorado.edu/~dixonc/vxworks/docs/vxworks/ref/intArchLib.html
http://www.extremetech.com/article2/0,3973,18917,00.asp

Index
A
Abstract class, 631–632

Active objects-based application

internal state machines, 446

loose coupling, 445

resource sharing, 445

rules, 444

sequence diagrams, 446

Active object state machine, 626,

630, 653–654, 663

ANSI-C, 309, 336, 388

Arguments, 622

ARM7/ARM9 architecture, 637

ARM Cortex-M3, 310,

321–322, 330

ARM Procedure Call Standard

(APCS), 496

ARMv7 architecture, 276

Array, 15

B
16-Bit DOS platform, 4

8-Bit PIC MCUs, 656

Blocking tasks, 260

Block Started by Symbol

(BSS), 625

Board support package (BSP), 5,

307, 382–383, 412, 457,

461, 613, 618, 628

for “Fly ‘n’ Shoot”

application, 628–630

header file, 13

Linux, 473–475
mC/OS-II, 471

“vanilla” kernel

on Cortex-M3, 465–468

on DOS, 461–464

Borland Turbo Cþþ 1.01

compiler

INSTALL.EXE program, 8

bsp.h header file, 13

C
Calculator

cancel and off transition in, 94

negative numbers,

handling, 95

statechart, 93

submachines of, 94–95

Callback functions

QF_OnIdle(), 630, 654–655,

660, 675

QF_onStartup(), 630, 653, 660

QF_run(), 658

QF_stop(), 630

Q_onAssert(), 630

caps_locked state, 60

C compiler, 12–13

Central processing unit (CPU)

architectures, 613, 616

cycles, 260, 276, 312,

354, 378

Cold Fire Altera Nios II, 310

Comma expression, 640

Constructors, 618, 622, 624

Context switching, 259–260
ww
Controls

capacitive touch sensing, 611

lighting, 611

motor, 611

remote access, 611

Cooperative multitasking, 261

Cooperative “vanilla” kernel,

379–380

ports
idle processing QF_onIdle(),

418–420

qep_port.h header file,

414–415

qf_port.h header file,

415–417

system clock tick QF_tick(),

417–418

qvanilla.c source file, 380–384

qvanilla.h header file, 384–386

Cortex-M3 system tick timer, 38

D
Decimal Flag, 65–66

Defensive programming

strategy, 295

Deferred event state pattern

built-in UML mechanism,

event deferral using, 220

consequences, 229–230

difficulties in implementation,

228

intent and problems, 219–220

known uses, 230
w.newnespress.com

700 Index
Deferred event state pattern

(Continued)
real-time object-oriented

modeling (ROOM)

method, 230

sample code
DEFER.EXE, output

generation, 222

file defer.c implementation,

223–229

Q_NEW() macro file defer.

c, request events

generation, 228–229

solutions, 220–221

variations of, 227

Design by Contract (DbC)

philosophy, 169–170

Dining philosophers problem

(DPP), 545

application execution
Linux, 472–476

mC/OS-II, 469–472

“vanilla” kernel on Cortex-

M3, 465–469

“vanilla” kernel on DOS,

461–465

steps

application termination,

460–461

requirements, 447

sequence diagrams,

447–449

signals, events, and active

objects, 449–451

state machines, 451–457

system initialization and

application startup,

457–460

__disable_interrupt(), 673

DOS screen, 7–8

Doxyfile, 316, 387

E
End-of-interrupt (EOI), 464

errno facility, 294

Error, 296
www.newnespress.com
Event-action paradigm,

56–59, 265

Event delivery mechanism

direct event posting, 626

event delivery guarantee

policy, 648

Event-driven framework

active object computing

model, 266
asynchronous

communication, 269

encapsulation, 269–271

preemptive RTC kernel,

276–279

run-to-completion (RTC)

fashion, 269

sequential pseudocode, 271

state machines, support for,

271–272

system structure, 267–269

traditional preemptive

kernel, 273

vanilla kernel, 274–276

application design

assigning responsibilities

and resources, 17

object-oriented

technique, 16

CPU management and

background loop,

control flow, 257–258,

260

multiple tasks in, 259

multitasking, 259–263

traditional event-driven

system, 263–265

traditional sequential

systems, 257–259

error and exception handling

C and Cþþ, assertions,

297–300

design by contract, 294–296

errors and exceptional

conditions, 296–297

event delivery, 302–303

shipping, 301
state-based handling,

300–301

event delivery mechanisms,

279

direct event posting,

280–281

publish–subscribe model,

281–282

event memory management

brute-force approach, 284

copying, 282–283

event ownership, 288

garbage collection, 284, 287

memory pools, 289–291

reference-counting

algorithm, 286–287

static and dynamic, 286

zero-copy, 284–285

inversion of control, 256–257

software tracing, 303

QS (Q-SPY) component

in, 304

time management

system clock tick, 293–294

time events, 291–292

Event-driven systems

adding QS software

tracing, 596
application-specific trace

records, 607–608

initializing QS and setting

up filters, 596–598

platform-specific QS

callbacks, 598–601

QS dictionary records,

604–606

QSPY reference

manual, 608

QS target component,

550–581

QS timestamps, 601–604

MATLAB, 587

and analyzing trace data,

587–589

matrices generated by

qspy.m, 593–595

701Index
output file, 589–590

script qspy.m, 591–593

QSPY host applications,

581–582

installing, 582–583

invoking, 585–587

for Linux, 584

with MinGW, 584

with Visual Cþþ,

2005, 584

QS target component

application-specific, trace

records, 578–580

dictionary, trace records,

574–578

general structure of,

561–562

global on/off filter, 562–564

local filter, 564–566

porting and configuring,

580–581

QS critical section, 560–561

QS data protocol, 566–569

QS platform-independent

header files, 554–560

QS source code

organization, 552–553

trace buffer, 569–574

quantum spy software-tracing

system, 544–550

examples for, 545–547

human-readable trace

output, 547–550

software tracing concepts for,

542–544

Event-handler functions, 263

onA(), onB(), and onC(), 272

Event loop, 263

Event pool, 285

Events

GREEN_TOUT, 666

PEDS_WAITING, 666–669,

671

posting, types, 218

Q_TIMEOUT, 669

Q_TIMEOUT_SIG, 644
EV-LM3S811 board, 5–7

LMI FTDI debugger, 9

OLED display of, 6

Extended context switch

asynchronous preemptions,

520

coprocessor registers, 521

QK extended scheduler

implementation, 522–524

Extended state machines, 67

if or else, 65

key_count, 63–64

key_count ¼¼, 0, 64

Shift, Ctrl, and Alt keys, 66

F
Fine granularity library, 318

Finite state machine (FSM),

59–60, 101

graphical representation in, 61

First-in, first-out (FIFO) policy,

218, 612

Flash programming process,

Debug button, 10

Floating point coprocessor

(FPU), 524

“Fly ‘n’ Shoot-type” game, 286,

315, 328, 330

active objects
mine components, 29–31

missile active object, 21–23

ship active object, 24–26

tunnel active object, 27–28

BSP_init(), 14

code, 8

coding hierarchical state

machines

ship data structure, 39–41

state-handler function,

43–48

state machine initialization,

42–43

comparison with, 50–52

constant Q_USER_SIG, 35

demo mode, 5–6

design of, 16–20
www
DESTROYED_MINE(score)

event, 20

in DOS version for, 4, 6, 8–9,

15–16

Esc key, 7–8

event-driven application

design, 17

events, 32–36, 620–622

generating, posting, and

publishing events,

36–38

structure ObjectPosEvt, 35

execution model

operating system and

real-time operating

system, 50

plain vanilla, 48–49

QK preemptive kernel,

49–50

fire missile in, 5

game.h file, 33–34

game over screen, 5–6

HIT_MINE(score) event,

20, 23

HIT_WALL event, 20, 23

ISR_ADC(), 38

ISR_SysTick(), 38

loading into, 10

Luminary Micro Quickstart

application, 3

main.c file, 11–12

main() function, 11

MAX_PUB_SIG constant, 14

me-score data member, 26

in Microsoft Windows, 7

Mine

bitmap, 19

object, 30

types of, 4, 6

MINE_DISABLED(mine_id)

event, 28, 30

MINE_IMG(x, y, bmp)

event, 19

MINE_PLANT(x, y) event, 30

Mine2 state machine

diagram, 31
.newnespress.com

702 Index
“Fly ‘n’ Shoot-type” game

(Continued)
MISSILE_FIRE(x, y) event,

19, 22

object-oriented technique

of, 16

PLAYER_QUIT event, 28

PLAYER_SHIP_MOVE_SIG,

46

PLAYER_SHIP_MOVE

signal, 32

PLAYER_SHIP_MOVE(x, y)

event, 20, 24

PLAYER_TRIGGER button-

press event, 286

PLAYER_TRIGGER

event, 19

press button, 5

publish-subscribe event

delivery mechanism, 14

QActive_postFIFO(), 29, 47

QActive_postFIFO() and

QActive_postLIFO(), 35

QActive_start(), 15

QActive_subscribe(), 35

Q_ENTRY_SIG, 47

QEvent structure, 32

QF_init(), 14

QF macro Q_NEW, 38

QF_MAX_ACTIVE, 14

QF_poolInit(), 14–15

QF_publish(), 35, 38

QF_run(), 15

QF_tick(), 38

QHsm_dispatch(), 29

QHsm_top(), 46

Q_INIT_SIG, 45

Q_NEW() macro, 47

QP (MAX_PUB_SIG), 35

QP-nano application, building,

630–631

QTimeEvt_postEvery(), 28

QTimeEvt_postIn(), 28

Q_TRAN() macro, 45, 47

Quickstart application, 51–52

return Q_Handled(), 47
www.newnespress.com
ScoreEvt and QEvent

structure, 33

screen_saver, 28

screen time event (timer), 28

SCREEN_TIMEOUT

transition, 28

&Ship_active, 48

Ship_flying(), 48

SHIP_IMG(x, y, bmp) event, 18

Ship structure, 39–41

signals and active objects

for, 620

single inheritance in C, 32–33

sizeof(a)/sizeof(a[0]), 15

space bar, 7

state-handler functions, 43–48

state machine, 42–43

in Stellaris EV-LM3S811

evaluation board, 7

TIME_TICK event, 18–19,

23, 286

tunnel state machine

diagram, 27

UML sequence diagram of,

17–18

Up-arrow and Down-arrow

keys, 5

utility macro Q_DIM(a), 15

version of, 614, 620

Foreground/background

architecture, 257

Framework, 255

services, 282

Free Software Foundation, 679,

681, 683–684

G
GAME-DBG.PRJ, 8

game-ev-lm3s811.eww, 9

game-ev-lm3s811 project, 9

game.h header file, 13

Garbage collector in QF, 330,

340, 349–350, 369

Generic QEP event processor,

comma expression,

definition of, 136
Generic state machine interface

concurrency model, 105–106

events, 106–108

Gimpel Software, 309

GNU General Public License

Version 2 (GPL2), 679, 681,

683–684

Graphical notation guide

class diagrams, 685–688

sequence diagrams
horizontal dimension, 690

vertical dimension, 689–690

state diagrams, 689

static state space, 688

timing diagrams, 690

horizontal axis, 691

vertical axis, 691

Graphical user interface

(GUI), 56

frameworks, 265

Guard conditions, 64

Guidelines for the Use of the C
Language in Vehicle-Based
Software, 309

H
Hardware abstraction layer

(HAL), 581

Header files

qepn.h, 616

qepn_port.h, 616

qpn_port.h, 616, 619, 627, 655

Head index, 645, 648

Help formats

CHM, 633

HTML, 633

Hierarchical event processor.

See QEP event processor

Hierarchical nested states, 69–71,

149. See also Hierarchical

state machines (HSMs)

Hierarchical state-handler

functions

C version, 158–160

Cþþ version, 160–161

superstate designating, 158

703Index
Hierarchical state machines

(HSMs), 101

calculator state machine
enumerating signals,

167–168

implementing steps,

183–191

initial pseudostate

handler, 165

topmost initial transition,

170–171

implementation steps

coding initial transitions,

189–190

entry and exit actions

coding, 189

enumerating signals, 185

events, 185–186

guard conditions coding,

190–191

initial pseudostate, 188

internal transitions

coding, 190

regular transitions

coding, 190

specific state machine

derivation, 186–187

state-handler functions,

188–189

QHsm class

C version, 162–163

Cþþ version, 163–164

entry/exit actions, 166–168

events dispatch, 174–177

generic state transition

execution, 177–183

nested initial transitions,

166–168

reserved events and helper

macros, 168–170

topmost initial transition,

170–174

top state and initial

pseudostate, 164–165

High Level Data Link Control

(HDLC), 552
Housekeeping code, 85, 255

Hypothetical state machine, 88

I
IAR 8051 compiler, 673,

675–676

IAR C-Spy Debugger

Go button, 10

Reset button, 10

IAR EWARM toolset, 9

Flash programming

process, 10

IAR C-Spy debugger, 10

Inheritance in C, 624,

631, 640

Interrupt handling, 665

Interrupt locking levels

ISR-Level, 635–637

task-Level, 635–636

Interrupt-locking policies, 501,

503–504, 509, 524,

526–527, 529, 630, 634,

637, 646, 665, 672, 674

Interrupt-nesting policy,

counter, 655

Interrupt processing under

“vanilla” kernel, 655

Interrupt service routines (ISRs),

36–38, 105, 257, 489,

628–630, 657, 665

generating, posting, and

publishing events in, 37

Interrupt types

FIQ, 637

IRQ, 637

locking, 635, 672

nesting, 635–636, 665

unlocking, 635, 650,

662, 672

K
Kernel, 259

blocking, 310, 313, 330

execution profiles of, 261

nonpreemptive, 260–261,

274, 276
ww
preemptive, 260–262, 269,

273, 276, 279

single stack, 276–278

Key board

default and caps_locked state,

60, 62, 67

UML state diagram of, 78

Keystroke event, 66–67

L
Last-in, first-out (LIFO) policy,

218–219, 227, 230

Least common ancestor (LCA),

80, 177–180

Licensing

policy for QP and QP-nano
closed-source, 680

GNU general public license

version 2, 681–684

nonprofits, academic

institutions, and private

individuals, 680–681

open-source, 679–680

software evaluation, 680

types of

closed-source, 680

commercial licenses, 680

copyright law, 679

open-source, 679–680

Liskov Substitution Principle

(LSP), 73–74

LM3S811 MCU, 11

Low-end 8-and 16-bit single-chip

microcontrollers, 611

Luminary Quickstart

application, 6

M
Machine interface functions

dispatch(), 106–107, 112,

115, 129, 131–133,

135, 137, 142, 145,

162, 631

init(), 106, 111, 115–116,

118, 125, 129, 131, 133,

135, 631
w.newnespress.com

704 Index
Machine interface functions

(Continued)
QHsm_dispatch(), 154, 162,

171, 174–178, 196

QHsm_init(), 162, 165, 170,

172–174, 183

QHsm_isIn(), 154, 162–163

QHsm_top(), 163, 165

StateTable_empty(), 116, 135

Macro

Alarm_dispatch(), 236

Alarm_init(), 236

LEFT(), 456

OS_ENTER_CRITICAL(),

424

OS_EXIT_CRITICAL(), 425

QACTIVE_EQUEUE_

ONEMPTY_(), 406,

434–435, 501–502

QACTIVE_EQUEUE_

SIGNAL_(), 406,

434–435, 501

QACTIVE_EQUEUE_WAIT_

(), 406, 501

Q_ALLEGE(), 173

Q_ASSERT(), 170, 182

Q_DEFINE_THIS_MODULE

(), 409

QEP_EXIT_(), 182

QF_ACTIVE_DISPATCH_(),

534

QF_EPOOL_EVENT_SIZE_

(), 406

QF_EPOOL_GET_(), 407

QF_EPOOL_INIT_(), 406

QF_EPOOL_PUT_(), 407

QF_EPOOL_TYPE_, 406

QF_INT_KEY_TYPE, 402,

412, 424, 434

QF_INT_LOCK(), 404, 515,

529

QF_INT_LOCK()/

QF_INT_UNLOCK(),

561, 619

QF_INT_UNLOCK(), 404,

425, 515, 529
www.newnespress.com
QF_ISR_KEY_TYPE, 637,

650, 675

QF_ISR_LOCK()/

QF_ISR_UNLOCK(),

637

QF_ISR_NEST, 636, 655, 665

QF_MAX_ACTIVE, 617,

633, 643

QF_TIMEEVT_CTR_SIZE,

619, 627, 641–642, 672

Q_HANDLED(), 136,

141–142, 160, 188–191

Q_IGNORED(), 136, 142

QK_EXT_RESTORE(),

524, 530

QK_EXT_SAVE(), 523–524,

530

QK_ISR_ENTRY(), 504,

526–527, 529, 674

QK_ISR_EXIT(), 674

QK_MUTEX, qkn.h, 658, 666

QK_PREEMPTIVE, 657–658

QK_SCHEDULE_(), 501,

503, 506–507, 509, 529

QK_TLS(), 510–511, 530

Q_NFSM, 619

Q_PAR(), 622

Q_PARAM_SIZE, 617, 620,

626, 639

Q_PAR(me), 625

Q_ROM, 398, 412, 616

Q_ROM_BYTE(), 399

Q_ROM_VAR, 200, 616–617

QS_BEGIN(), 557, 562–563,

566, 578–579, 607

QS_END(), 557, 562,

578–579, 607

QS_FLUSH(), 559

QS_FUN(), 558

QS_FUN_DICTIONARY(),

577

QS_FUN_PTR_SIZE,

558, 581

Q_SIG(), 622

Q_SIGNAL_SIZE, 155, 200,

399–400, 558
QS_INIT(), 600

QS_OBJ_DICTIONARY(),

575, 605–606

QS_OBJ_PTR_SIZE, 558

Q_SPY, 553, 556

QS_QS_OBJ(), 557

QS_SIG(), 558

QS_SIG_DICTIONARY(),

577, 605

QS_STR(), 607

QS_TIME_SIZE, 581

QS_U8(), 607

Q_SUPER(), 158,

160, 173, 176–177,

188, 201, 625–626,

640

Q_TRAN(), 136–137,

141–143, 160, 163, 166,

173, 176, 188–191, 193,

201, 625–626

return Q_HANDLED(), 142

RIGHT(), 456

TRAN(), 111–112, 116, 122,

125, 129–130

Memory partition in QF event

pool, 335

Memory pools, 289–291,

369–377

free(), 289

malloc(), 289–290

native, 313

Message queues, 282

in active objects, QF,

329, 359

msgQReceive(), 283

msgQSend(), 283

safe mechanism, 283

Microcontrollers (MCUs)

8-bit, 311

16-bit, 311

Missile_ctor(), 620

Motor Industry Software

Reliability Association

(MISRA), 309

MSP430F2013 MCU [TI 07],

612, 672

705Index
N
Native QF active object

queue, 406

Nested switch statement, time

bomb state machine

disadvantages, 112–113

implementation techniques,

108–112

variations, 113

Nested Vectored Interrupt

Controller (NVIC), 321

Nonpreemptive kernel, 614

Numeric keypad, 74

O
Object-oriented programming

(OOP), 270

bird objects
flying (), 72

door_open state, 71, 76–77

Object-oriented state design

pattern

advantages and disadvantages,

130–131

implementation techniques,

125–130

UML class, 124–125

variations, 131–132

OMG 07, 266, 269, 292

One-shot time event, reusing

in QF real-time

framework, 359

Opaque pointer, 236

Orthogonal component state

pattern

advantages, 244

AlarmClock class and its UML

state machine, 231

consequences, 243–244

intent and problems, 230–231

known uses, 244

sample code
AlarmClock state machine

definition (file clock.c),

239–243
Alarm component

declaration (file alarm.

h), 236

Alarm state machine

definition (file alarm.

c), 237–239

common signals and events

(file clock.h), 235–236

COMP.EXE, output

generation, 234

solutions, 231–234

Orthogonal regions (OR), 74–75

osObject data member in active

object, QF, 326

P
Pedestrian active object, 671

Pedestrian light-controlled

(PELICAN), 666

crossing controller, 661, 671

crossing state machine,

668–671

Philosopher active object

event queue sizing, 478

sequence diagrams, 448

state machines, 451–452, 457

system initialization and DPP

application startup, 458

Platform abstraction layer (PAL),

50, 309–310, 323, 386,

388–389

Porting QK kernel

FPU saving and restoring, 531

qep_port.h header file, 525

qf_port.h header file, 525–526

qk_port.h header file, 526–531

requirements, 524–525

Preemptive run-to-completion

kernel, 655–666

features
advantages, 514–515

extended context switch,

520–524

priority-ceiling mutex,

515–518
ww
thread-local storage (TLS),

515–520

implementation

interrupt processing,

503–506

qk.c source file, 511–514

qk.h header file, 498–503

qk_sched.c source file,

506–511

source code organization,

496–498

porting

FPU saving and

restoring, 531

qep_port.h header file, 525

qf_port.h header file,

525–526

qk_port.h header file,

526–531

requirements, 524–525

port testing

asynchronous preemption,

531–535

dining philosopher problem

(DPP), 531

extended context

switch, 539

priority-ceiling mutex,

535–536

TLS demonstration,

536–539

RTC kernel

asynchronous preemption,

488–491

nonblocking, 487

stack multitasking, 486–487

stack utilization, 491–494

steps, 484–485

synchronous preemption,

487–489

traditional preemptive

kernels, 494–496

Priority-ceiling mutex

interface, 658

mechanism, 666
w.newnespress.com

706 Index
Priority numbering system in QF,

331, 333

Programmable interrupt

controller (PIC), 321,

527, 529

Publish-subscribe mechanism,

14–15

Q
QActiveCB, 615–616, 632,

644–645

QActive class, 268, 315–316,

327, 341

QActive_post(), 646–648, 660

QActive_postISR(), 649–650,

665

QEP event processor, 13, 297,

312, 315–316, 326, 333.

See also Run-to-completion

(RTC)

features, 150–151

hierarchical state-handler

functions
w

C version, 158–160

Cþþ version, 160–161

superstate designating, 158

HSM class

Cþþ (Class QHsm),

163–164

C (Structure QHsm),

162–163

entry/exit actions, 166–168

events dispatch, 174–177

generic state transitions,

177–183

nested initial transitions,

166–168

reserved events and helper

macros, 168–170

topmost initial transition,

170–174

top state and initial

pseudostate, 164–165

HSM implementation steps

coding initial transitions,

189–190
ww.newnespress.com
entry and exit actions

coding, 189

enumerating signals, 185

events, 185–186

guard conditions coding,

190–191

initial pseudostate, 188

internal transitions, 190

regular transitions, 190

specific state machine

derivation, 186–187

state-handler functions,

188–189

porting and configuring,

199–201

QEvent structure in C,

155–156

QEvent structure in Cþþ, 157

QSignal, 154–155

structure

QEvent class, 155–157

QHsm class, 152–153

source code organization,

153–154

usage guidelines

accessing event parameters,

194–195

ill-formed state

handlers, 193

inadvertent corruption of

current event, 198–199

incomplete state handlers,

192–193

incorrect casting of event

pointers, 194

nonsubstate targeting in

initial transition,

195–196

run-to-completion (RTC)

semantics violation,

198

state transition inside entry

or exit action, 193

suboptimal signal

granularity, 197–198

switch statement, 196–197
QEP FSM implementation

advantages, 142–143

application-specific code,

137–142

event processor structure,

132–134

implementation files, 134–137

state-handler function, 132

structure, 133

variations’ disadvantages,

143–144

QEP-nano event processor,

612–613, 619, 631–632,

637–640

QEP-nano signals, 621, 637

QEQueue queue class, 316

QEvent.dynamic_ data byte in

QF framework, 334

QEvent structure, 291

QF_active[] array, 615–619, 621,

625, 632–633, 644–645,

652–653

QF memory pool class

(QMPool), 316

QF_onStartup(), 653

qf_port.h header file

active object event queue

operations, 406

derivation of QActive, base

class, 402–403

event pool operations,

406–407

include files used, 404–405

interface used only inside QF,

not in applications,

405–406

linux (conventional POSIX-

compliant), 432–435

mC/OS-II (conventional
RTOS), 423–425

platform-specific QActive data

members, types, 402

QF critical section

mechanism, 404

QF framework, various object

sizes, 403–404

707Index
unconditional interrupt

unlocking policy, 416

QF, porting and configuring

building QF library, steps

required, 392

Linux (conventional POSIX-

compliant OS)
qep_port.h header file, 432

qf_port.c source file,

435–441

qf_port.h header file,

432–435

mC/OS-II (conventional
RTOS)

build script, 430

idle processing, 431

qep_port.h header file,

422–423

qf_port.c source file,

425–430

qf_port.h header file,

423–425

system clock tick (QF_tick

()), 430

platform abstraction layer, 389

ports, 389

QF_publish() function, 349

QF_publish() publishing

events, 316

QF_readySet_, 645–646,

652, 660

QF real-time framework, 13–14,

255

active objects, 324–328
event queue of, 328–330

internal state machine of,

328

thread of execution and

priority, 330–333

asynchronous event exchange

QActive_postFIFO () and

QActive_postLIFO (),

36

QF_publish () and

QActive_subscribe (),

36
critical sections in, 318

internal QF macros,

323–324

locking and unlocking

interrupts

unconditional, 321–323

lock_key variable, 319

saving and restoring the

interrupt status,

319–321

design by contract (DbC),

314

event delivery mechanisms in

direct event posting, 312,

343–344

publish-subscribe event

delivery, 344–350

event management in

automatic garbage

collection, 339–341

deferring and recalling

events, 341–343

dynamic events allocation,

335–339

structure event, 333–334

features of, 308

assertion-based error

handling, 314

built-in software tracing

instrumentation, 314

built-in “vanilla” scheduler,

313

direct event posting and

publish-subscribe event

delivery, 312

low-power architecture,

313–314

native event queues, 313

native memory pool, 313

open-ended number of time

events, 312

portability, 309–310

scalability, 310–311

source code, 309

support for modern state

machines, 312
www
tight integration with QK

preemptive kernel, 313

zero-copy event memory

management, 312

FIFO policy, 312, 367

LIFO policy, 312, 342

low-power, 313–314

macros

QF_INT_KEY_TYPE,

320–321

QF_INT_LOCK(), 318,

320

QF_INT_UNLOCK(), 318,

320

Q_NEW(), 284

memory management, 312

native QF event queue,

359–360

active object Queue,

362–367

QEQueue initialization, 362

QEQueue structure,

360–362

“raw” thread-safe queue,

367–369

native QF memory pool,

369–372

initialization of, 372–375

memory block of,

375–377

native QF priority set,

377–379

PLAYER_TRIGGER event,

19

portability, 309–310

QK preemptive kernel,

integration with, 313

scalability, 310–311

structure of

dispatch(), 316

init(), 316

missile, 315

QEQueue, 316

QF_publish(), 316

QMPool, 316

Q_NEW(), 316
.newnespress.com

708 Index
QF real-time framework

(Continued)

ship, 315

source code organization,

316–317

tunnel, 315

time events, 312

time management

arming and disarming,

356–359

system clock tick and

QF_tick() function,

354–356

time event structure and

interface, 351–354

TIME_TICK event, 18

QHsm base class, 268

QHsm_dispatch(), 639

QHsm_init(), 639

QK, 278

QK_init(), 657

QK kernel

advantages, 514–515

extended context switch
w

asynchronous preemptions,

520

coprocessor registers,

521

extended scheduler

implementation,

522–524

port testing

asynchronous preemption,

531–535

DPP application, 531

extended context switch,

539

pseudorandom number

(PRN), 535–536

TLS contexts, 536–539

priority-ceiling mutex,

515–518

scheduler implementation,

522–524

thread-local storage (TLS),

515–520
ww.newnespress.com
QK-nano

idle loop, 658–660

interrupt processing, 665

kernal, 655, 660, 665,

672–675

ports, 657, 672

preemptive Run-to-

Completion, 655–666

priority ceiling mutex, 666

scheduler of, 650, 657,

660–664

QK-nano Interface qkn.h,

655–658

QK preemptive kernel, 307, 310,

313–314

QK_schedule_(), 657–658, 660,

662–663

QMPool structure elements and

memory buffer relationship,

370

Q_NEW() new dynamic events,

316

QP

developing guidelines
heuristics, 445–446

rules, 444–445

DPP

application execution,

461–476

application termination,

460–461

Linux, 472–476

mC/OS-II, 469–472
requirements, 447

sequence diagrams,

447–449

signals, events, and active

objects, 449–451

state machines, 451–457

system initialization and

application startup,

457–460

“vanilla” kernel on Cortex-

M3, 465–469

“vanilla” kernel on DOS,

461–465
event-driven platform,

307, 310

RAM/ROM footprints of, 311

reference manual, 386–387

sizing

event pools, 479

event queues, 476–479

system integration, 480

source code, 309

Q_PARAM_SIZE, 620

QP/C or QP/Cþþ systems,

310–311

QP/C reference manual in HTML

and CHM, 387

QP event-driven platform, 49–50

QP-nano, 311

active objects, 640–642

compiler, 615

components of, 613

configurations, 676–678

constructor
QFsm_ctor(), 642

QHsm_ctor(), 642

cooperative “vanilla” kernel,

650–655

critical sections, 634–637

data structures of, 615

event-driven

applications, 611

infrastructure, 612

paradigm of, 611

platform of, 611

event queues, 644–650

elements, 644

QActive structure, 644

storages, 644

“Fly ‘n’ Shoot” game,

implementation

applications, 611, 613, 616,

630, 631, 656

example of, 614

header files of, 618–622

main() functions in,

615–618

signal limitations, 620

functions

709Index
QActive_postISR(), 629,

634, 636, 642, 655

QF_tick(), 629, 634, 636,

642–644, 652, 655

key features of

arbitrary state transition

topology, 612

nesting, 612

thread-safe event

queues, 612

macro

QActive_arm(), 642

QActive_disarm(), 642

QF_FSM_ACTIVE, 64–642

QF_MAX_ACTIVE,

64–642

memory usages, 675–678

pedestrian active object, 671

PELICAN crossing example

for, 666–678

ports, 615, 619

QK-nano kernel, 619

port to MSP430 with QK-nano

kernel, 672–675

posting events, 646–648

ISR level, 649–650

task-level posting, 647

processor, 615

QActive, 640

ready-set, 645–646

QF_readySet_, 646

reference manual, 633

sections, 634–637

source code, examples, and

documentation, 633–634

state machines, 637–640

structure, 631–633

system clock tick in, 642–644

time events, 626–628

version, 634

qpn_port.h, 618–620

QP platform abstraction layer,

255, 278

building applications, 390–391

building libraries, 391–392,

413
directories and files, 392–397

platform-specific QF callback

functions, 412–413

qep_port.h header file,

398–400

qf_port.c source file, 407–411

qf_port.h header file

active object event queue

operations, 406

active objects in application,

403

derivation of QActive, base

class, 402–403

event pool operations,

406–407

include files used, 404–405

interface used only inside

QF, not in applications,

405–406

platform-specific QActive

data members,

types, 402

QF critical section

mechanism, 404

QF framework, various

object sizes, 403–404

qp_port.h header file, 411

system clock tick (calling

QF_tick()), 413

QP Port, header file, 12–13

qp_port.h header file, 13

QPset64 data structure in native

QF priority set, 377

QS software-tracing system

interrupts, 548–550

serial ports, 544–547

QS target components

callback functions
QS_getTime(), 602

QS_initBuf(), 558, 569, 600

QS_onCleanup(), 558, 580,

600

QS_onFlush(), 559,

580, 601

QS_onGetTime(), 559, 580,

598, 601, 603
ww
QS_onInit(), 580

QS_onStartup(), 558,

569–570, 600

data

compression, 551

transmission protocol,

552, 567

filter, levels, 551–552,

562–566

header files

gs.h, 553

qs_dummy.h, 553

QS trace records, types of

application-specific,

579–580

function dictionaries, 577

object dictionaries, 575–577

signal dictionaries, 577

QS trace buffer

functions
QF_onIdle(), 574

QS_getBlock(), 573–574

QS_getByte(), 571–572

QS_initBuf(), 569–570

QS_onStartup(), 570

initializing, QS_initBuf(),

569–571

interface

block-oriented, 573–574

byte-oriented interface,

571–572

Quantum Spy(QS), 542

Quickstart application, 257

Q_USER_SIG, 621

R
Real-time embedded (RTE)

system, 255, 308, 540

Real-time object-oriented

modeling (ROOM), 266

language, 69

method, 230

Real-time operating system

(RTOS), 50, 420

Reminder state pattern

consequences, 218–219
w.newnespress.com

710 Index
Reminder state pattern

(Continued)
intent and problems, 211–212

sample code
file reminder.c

implementation,

214–218

REMINDER.EXE, output

generation, 213

solutions, 212–213

Ring buffer, 645, 648–649,

654, 664

events, 644

queue storage, 644

Root Directory qp, 4

Run-to-completion (RTC), 48,

484, 612, 645, 655, 663–664

kernel, 308, 331, 612, 645
asynchronous preemption,

488–491

asynchronous preemption

scenario, 492–493

interrupt processing,

503–506

nonblocking, 487

preemptive kernel, 498–499

qk.c source file, 511–514

qk.h header file, 498–503

qk_sched.c source file,

506–511

source code organization,

496–498

stack multitasking, 486–487

synchronous preemption,

487–489

synchronous preemption

scenario, 491–492

and traditional preemptive

kernels, 494–496

model, 67–68

S
Scheduler, 263, 274–276, 284

built-in “vanilla,” 313

Semaphores, 260, 270, 291, 305

Sequential pseudocode, 271
www.newnespress.com
Ship active object

implementation in QP-nano,

622–626

Ship structure, state-handler

functions, 39–41,

43–48

Single event-loop, 258

Software

bus, 281

licenses
copyright notice, 682

terms and conditions,

681–684

warranty, 681–684

tracing

macro Q_SPY, 314

QS, 307–308, 314

tracing concepts

data transmission

mechanism, 544

host-resident, 543

last-is-best policy, 543

target-resident, 543–544

timestamping, 544

tracing techniques, 304

printf() statements, 303

Spaghetti code, 65, 265

Standard state machine

implementations

Cþþ exception handling, 145

entry and exit actions, 146

generic state machine interface
concurrency model,

105–106

events, 106–108

guards and choice

pseudostates, 145–146

nested switch statement

advantages and

disadvantages,

112–113

implementation techniques,

108–112

variations, 113

object-oriented state design

pattern
advantages and

disadvantages,

130–131

implementation techniques,

125–130

UML class, 124–125

variations, 131–132

pointers to functions, role of,

144–145

QEP FSM event processor

advantages, 142–143

application-specific code,

137–142

files implementing,

134–137

state-handler function,

132–134

structure, 133

variations disadvantages,

143–144

state table

advantages, 122–123

generic event processor,

114–118

one-dimensional, 124

techniques, 118–122

two-dimensional, 113–114

variations, 123

time-bomb state machine,

102–103

State-based solution, 65

State-handler functions

AO_Ship, 624

final(), 210

generic(), 210

QActive_defer(), 227–228

QActive_post(), 626

QActive_recall(), 226, 228

QHsm_top(), 626, 639

QState, 638

QStateHandler, 638

Ship_active(), 626

Ship_flying(), 626

Ship_initial(), 624

specific(), 210

state-handler, 624

711Index
TServer_idle(), 228

typedef, 638

UltimateHook_specific(), 210

State machines, 311, 326, 328

functions, 639
QHsm_dispatch(), 639

QHsm_init(), 639

QHsm_top(), 639

initialization

constructor, 42–43

Quickstart application,

50–52

top-most initial transition,

42–43

macro

Q_HANDLED(), 639

Q_IGNORED(), 639

Q_PAR(), 639

Q_SIG(), 639

Q_SUPER(), 640

Q_TRAN(), 640

QFsm nonhierarchical, 312

QHsm hierarchical, 312, 316

types

hierarchical, 637

nonhierarchical, 637

UML-compliant, 312

States

basic machine concepts, 59–68

diagram comparison of, 61–62

event-driven programming, 63

keyboard
behavior of, 60

UML state diagram with, 78

machines, 63–64

patterns

deferred event, 219–230

definition, 205

essential elements, 204

orthogonal component,

230–244

reminder, 211–219

summary of, 205

transition to history,

244–251

ultimate hook, 205–211
qualitative aspects and

quantitative aspects, 65

roles in, 79

transformational

programming, 63

transition

guard g (), 79

State table

generic event processor
event structure, 116–122

secure code, 115–117

state machines, 114–115

implementing state machines

advantages, 122–123

one-dimensional, 124

state machines, 114–115

techniques, 118–122

two-dimensional, 113–114

variations, 123

Stellaris EV-LM3S811

evaluation kit, 3–4

ARM Cortex-M3, 4

sample code for, 9

Structure

active object, 616,

621–622, 631

QActiveCB, 616, 644

System clock tick, 293–294

jitter in, 293

QF_tick()function, 293

T
Table active object

DPP application termination,

460

event queues sizing, 478–479

Linux, 476

sequence diagrams, 448–449

state machines, 452–457

system initialization and DPP

application startup, 458

“vanilla” kernel on

Cortex-M3, 468

“vanilla” kernel on DOS, 465

Tail index in native QF active

object queue, 364–365
ww
Task control block (TCB), 259

Task-level interrupt locking,

635

Task-level response, 261–262,

273, 276

Tasks/threads, 259

Telelogic rhapsody design

automation tool, 273

Thread-local storage (TLS)

definition, 518

QActive_start() function, 514

QK port testing, 536–539

support in QK, 519–520

uses of, 515

thread_routine() static function,

439–440

Time-bomb state machine

FSM technique, 138–144

implementation techniques,

102–103

nested switch statement,

108–113

object-oriented state design

pattern, 124–132

source code, 104–105

state table techniques,

114–124

Timers, 291

disarm() operation, 292

postEvery(), 292

postIn(), 292

QEvent, 292

QTimeEvt, 292

rearm() operation., 292

signals
w.
BSP_TICKS_PER_SEC,

674

Q_ENTRY, 626

Q_EXIT(), 626

Q_INIT(), 626
Tools

borland C/Cþþ compiler, 4

Borland Turbo Cþþ 1.01, 8

IAR EWARM, 9

Traffic lights controller,

666–667
newnespress.com

712 Index
Transition to History state pattern

intent and problems, 245

sample code
consequences, 250–251

(file history.c)

implementation,

247–250

HISTORY.EXE, output

generation, 246

known uses, 251

solutions, 245

Turbo Cþþ 1.01 compiler, 614,

629–630

U
Ultimate Hook state pattern

consequences, 211

intent and problems, 205

sample code
(file hook.c)

implementation,

208–211

HOOK.EXE, output

generation, 208

solutions, 206–207

template method OO

design, 211

Unified Modeling Language

(UML), 685–686, 690

internal transitions,

ANY_KEY event, 78

semantics of, 165, 170,

669–670

sequence diagram, 17–18

specification, 190

statecharts, transition D, 90

state machines, 68–69, 668
ww
actions and transitions, 67

architectural decay, 65

behavior in, 69, 95–96

diagrams and flowcharts,

61–63

elaborating composite

states, 94–95
w.newnespress.com
entry and exit actions,

75–77

event-action paradigm,

56–59

event deferral, 83

event-driven programming,

55–56

events, 66–67, 82–83

extended machines, 63–64

finalization of, 96

guard conditions, 64–66

hierarchically nested states,

69–71

high-level design, 92–93

housekeeping code, 85

if-else constructs, 55

inheritance, 71–73

internal transitions, 77–78

limitations of, 86–87

Liskov substitution

principle, 73–74

local and external

transitions, 81–82

orthogonal regions, 74–75

problem specification,

91–92

pseudostates, 83–85

run-to-completion execution

model, 67–68

scavenging for, 93–94

semantics of, 87–91

state variable, value of, 60

toaster oven state machine

with, 76

transition execution

sequence, 78–81

state machines and event-

driven programming

DOS version (in C), 7–8

installation directory, 4

main() Function, 11–16

state machines semantics

DIGIT_0 case, 95

operand2 equals. . ., 92
operand1 operator, 92

printf (), 87

qhsmtst.c., 91

QHSMTST.EXE.,

87–88, 90

transition G, 89
UNIX-like platforms, 16

V
“Vanilla” kernel low-power sleep

modes in QF, 384

Vanilla scheduler, 309–310

Variables, 65

Visual basic calculator

CE (Cancel Entry) button, 57

before crash and after

crash, 57

current context, 58–59

DecimalFlag, 58, 65–66

entering_the_fractional_

part_of_a_number, 66

qpresourcesvbcalc.exe, 56, 58

event-action paradigm, 59

event-handler procedure, 58

global variables and flags, 58

LastInput, 58

NumOps, 58

operator events, 58

OpFlag, 58

priori, 66

problems with, 56–57

VisualSTATE engine, 266

W
Wait-for-interrupt (WFI),

callback function, 419

Z
Zero-copy event queues in active

object, 312, 329, 333, 341,

347, 387

	cover.jpg
	sdarticle.pdf
	Perface
	What's New in the Second Edition?
	New Code
	Open Source and Dual Licensing
	C as the Primary Language of Exposition
	More Examples
	Preemptive Multitasking Support
	Testing Support
	Ultra-Lightweight QP-nano Version
	Removed Quantum Metaphor

	What You Need to Use QP
	Intended Audience
	The Companion Websites

	sdarticle_001.pdf
	Acknowledgments

	sdarticle_002.pdf
	Copyright Page

	sdarticle_003.pdf
	Introduction
	Inversion of Control
	The Importance of the Event-Driven Framework
	Active Object Computing Model
	The Code-Centric Approach
	Focus on Real-Life Problems
	Object Orientation
	More Fun
	How to Contact Me

	sdarticle_004.pdf
	Part I UML State Machines

	sdarticle_005.pdf
	Getting Started with UML State Machines and Event-Driven Programming
	Installing the Accompanying Code
	Let's Play
	Running the DOS Version
	Running the Stellaris Version

	The main() Function
	The Design of the "Fly 'n' Shoot" Game
	Active Objects in the "Fly 'n' Shoot" Game
	The Missile Active Object
	The Ship Active Object
	The Tunnel Active Object
	The Mine Components

	Events in the "Fly 'n' Shoot" Game
	Generating, Posting, and Publishing Events

	Coding Hierarchical State Machines
	Step 1: Defining the Ship Structure
	Step 2: Initializing the State Machine
	Step 3: Defining State-Handler Functions

	The Execution Model
	Simple Nonpreemptive "Vanilla" Scheduler
	The QK Preemptive Kernel
	Traditional OS/RTOS

	Comparison to the Traditional Approach
	Summary

	sdarticle_006.pdf
	A Crash Course in UML State Machines
	The Oversimplification of the Event-Action Paradigm
	Basic State Machine Concepts
	States
	State Diagrams
	State Diagrams versus Flowcharts
	Extended State Machines
	Guard Conditions
	Events
	Actions and Transitions
	Run-to-Completion Execution Model

	UML Extensions to the Traditional FSM Formalism
	Reuse of Behavior in Reactive Systems
	Hierarchically Nested States
	Behavioral Inheritance
	Liskov Substitution Principle for States
	Orthogonal Regions
	Entry and Exit Actions
	Internal Transitions
	Transition Execution Sequence
	Local versus External Transitions
	Event Types in the UML
	Event Deferral
	Pseudostates
	UML Statecharts and Automatic Code Synthesis
	The Limitations of the UML State Diagrams
	UML State Machine Semantics: An Exhaustive Example

	Designing A UML State Machine
	Problem Specification
	High-Level Design
	Scavenging for Reuse
	Elaborating Composite States
	Refining the Behavior
	Final Touches

	Summary

	sdarticle_007.pdf
	Standard State Machine Implementations
	The Time-Bomb Example
	Executing the Example Code

	A Generic State Machine Interface
	Representing Events

	Nested Switch Statement
	Example Implementation
	Consequences
	Variations of the Technique

	State Table
	Generic State-Table Event Processor
	Application-Specific Code
	Consequences
	Variations of the Technique

	Object-Oriented State Design Pattern
	Example Implementation
	Consequences
	Variations of the Technique

	QEP FSM Implementation
	Generic QEP Event Processor
	Application-Specific Code
	Consequences
	Variations of the Technique

	General Discussion of State Machine Implementations
	Role of Pointers to Functions
	State Machines and C++ Exception Handling
	Implementing Guards and Choice Pseudostates
	Implementing Entry and Exit Actions

	Summary

	sdarticle_008.pdf
	Hierarchical Event Processor Implementation
	Key Features of the QEP Event Processor
	QEP Structure
	QEP Source Code Organization

	Events
	Event Signal (QSignal)
	QEvent Structure in C
	QEvent Structure in C++

	Hierarchical State-Handler Functions
	Designating the Superstate (Q_SUPER() Macro)
	Hierarchical State-Handler Function Example in C
	Hierarchical State-Handler Function Example in C++

	Hierarchical State Machine Class
	Hierarchical State Machine in C (Structure QHsm)
	Hierarchical State Machine in C++ (Class QHsm)
	The Top State and the Initial Pseudostate
	Entry/Exit Actions and Nested Initial Transitions
	Reserved Events and Helper Macros in QEP
	Topmost Initial Transition (QHsm_init())
	Dispatching Events (QHsm_dispatch(), General Structure)
	Executing a Transition in the State Machine (QHsm_dispatch(), Transition)

	Summary of Steps for Implementing HSMs with QEP
	Step 1: Enumerating Signals
	Step 2: Defining Events
	Step 3: Deriving the Specific State Machine
	Step 4: Defining the Initial Pseudostate
	Step 5: Defining the State-Handler Functions
	Coding Entry and Exit Actions
	Coding Initial Transitions
	Coding Internal Transitions
	Coding Regular Transitions
	Coding Guard Conditions

	Pitfalls to Avoid While Coding State Machines with QEP
	Incomplete State Handlers
	Ill-Formed State Handlers
	State Transition Inside Entry or Exit Action
	Incorrect Casting of Event Pointers
	Accessing Event Parameters in Entry/Exit Actions or Initial Transitions
	Targeting a Nonsubstate in the Initial Transition
	Code Outside the switch Statement
	Suboptimal Signal Granularity
	Violating the Run-to-Completion Semantics
	Inadvertent Corruption of the Current Event

	Porting and Configuring QEP
	Summary

	sdarticle_009.pdf
	State Patterns
	Ultimate Hook
	Intent
	Problem
	Solution
	Sample Code
	Consequences

	Reminder
	Intent
	Problem
	Solution
	Sample Code
	Consequences

	Deferred Event
	Intent
	Problem
	Solution
	Sample Code
	Consequences
	Known Uses

	Orthogonal Component
	Intent
	Problem
	Solution
	Sample Code
	Consequences
	Known Uses

	Transition to History
	Intent
	Problem
	Solution
	Sample Code
	Consequences
	Known Uses

	Summary

	sdarticle_010.pdf
	Part II Real-Time Framework

	sdarticle_011.pdf
	Real-Time Framework Concepts
	Inversion of Control
	CPU Management
	Traditional Sequential Systems
	Traditional Multitasking Systems
	Traditional Event-Driven Systems

	Active Object Computing Model
	System Structure
	Asynchronous Communication
	Run-to-Completion
	Encapsulation
	Support for State Machines
	Traditional Preemptive Kernel/RTOS
	Cooperative Vanilla Kernel
	Preemptive RTC Kernel

	Event Delivery Mechanisms
	Direct Event Posting
	Publish-Subscribe

	Event Memory Management
	Copying Entire Events
	Zero-Copy Event Delivery
	Static and Dynamic Events
	Multicasting Events and the Reference-Counting Algorithm
	Automatic Garbage Collection
	Event Ownership
	Memory Pools

	Time Management
	Time Events
	System Clock Tick

	Error and Exception Handling
	Design by Contract
	Errors versus Exceptional Conditions
	Customizable Assertions in C and C++
	State-Based Handling of Exceptional Conditions
	Shipping with Assertions
	Asserting Guaranteed Event Delivery

	Framework-Based Software Tracing
	Summary

	sdarticle_012.pdf
	Real-Time Framework Implementation
	Key Features of the QF Real-Time Framework
	Source Code
	Portability
	Scalability
	Support for Modern State Machines
	Direct Event Posting and Publish-Subscribe Event Delivery
	Zero-Copy Event Memory Management
	Open-Ended Number of Time Events
	Native Event Queues
	Native Memory Pool
	Built-in "Vanilla" Scheduler
	Tight Integration with the QK Preemptive Kernel
	Low-Power Architecture
	Assertion-Based Error Handling
	Built-in Software Tracing Instrumentation

	QF Structure
	QF Source Code Organization

	Critical Sections in QF
	Saving and Restoring the Interrupt Status
	Unconditional Locking and Unlocking Interrupts
	Internal QF Macros for Interrupt Locking/Unlocking

	Active Objects
	Internal State Machine of an Active Object
	Event Queue of an Active Object
	Thread of Execution and Active Object Priority

	Event Management in QF
	Event Structure
	Dynamic Event Allocation
	Automatic Garbage Collection
	Deferring and Recalling Events

	Event Delivery Mechanisms in QF
	Direct Event Posting
	Publish-Subscribe Event Delivery

	Time Management
	Time Event Structure and Interface
	The System Clock Tick and the QF_tick() Function
	Arming and Disarming a Time Event

	Native QF Event Queue
	The QEQueue Structure
	Initialization of QEQueue
	The Native QF Active Object Queue
	The "Raw" Thread-Safe Queue

	Native QF Memory Pool
	Initialization of the Native QF Memory Pool
	Obtaining a Memory Block from the Pool
	Recycling a Memory Block Back to the Pool

	Native QF Priority Set
	Native Cooperative "Vanilla" Kernel
	The qvanilla.c Source File
	The qvanilla.h Header File

	QP Reference Manual
	Summary

	sdarticle_013.pdf
	Porting and Configuring QF
	The QP Platform Abstraction Layer
	Building QP Applications
	Building QP Libraries
	Directories and Files
	The qep_port.h Header File
	The qf_port.h Header File
	Types of Platform-Specific QActive Data Members
	Base Class for Derivation of QActive
	The Maximum Number of Active Objects in the Application
	Various Object Sizes Within the QF Framework
	QF Critical Section Mechanism
	Include Files Used by this QF Port
	Interface Used Only Inside QF, But Not in Applications
	Active Object Event Queue Operations
	QF Event Pool Operations

	The qf_port.c Source File
	The qp_port.h Header File
	Platform-Specific QF Callback Functions
	void QF_onStartup(void)
	void QF_onCleanup(void)
	void QF_onIdle(void) or void QF_onIdle(QF_INT_KEY_TYPE lockKey)
	void Q_onAssert(char const Q_ROM * const Q_ROM_VAR file, int line)

	System Clock Tick (Calling QF_tick())
	Building the QF Library

	Porting the Cooperative ``Vanilla´´ Kernel
	The qep_port.h Header File
	The qf_port.h Header File
	The System Clock Tick (QF_tick())
	Idle Processing (QF_onIdle())

	QF Port to muC/OS-II (Conventional RTOS)
	The qep_port.h Header File
	The qf_port.h Header File
	The qf_port.c Source File
	Building the muC/OS-II Port
	The System Clock Tick (QF_tick())
	Idle Processing

	QF Port to Linux (Conventional POSIX-Compliant OS)
	The qep_port.h Header File
	The qf_port.h Header File
	The qf_port.c Source File

	Summary

	sdarticle_014.pdf
	Developing QP Applications
	Guidelines for Developing QP Applications
	Rules
	Heuristics

	The Dining Philosopher Problem
	Step 1: Requirements
	Step 2: Sequence Diagrams
	Step 3: Signals, Events, and Active Objects
	Step 4: State Machines
	Step 5: Initializing and Starting the Application
	Step 6: Gracefully Terminating the Application

	Running DPP on Various Platforms
	"Vanilla" Kernel on DOS
	"Vanilla" Kernel on Cortex-M3
	muC/OS-II
	Linux

	Sizing Event Queues and Event Pools
	In Sizing Event Queues
	Sizing Event Pools
	System Integration

	Summary

	sdarticle_015.pdf
	Preemptive Run-to-Completion Kernel
	Reasons for Choosing a Preemptive Kernel
	Introduction to RTC Kernels
	Preemptive Multitasking with a Single Stack
	Nonblocking Kernel
	Synchronous and Asynchronous Preemptions
	Stack Utilization
	Comparison to Traditional Preemptive Kernels

	QK Implementation
	QK Source Code Organization
	The qk.h Header File
	Interrupt Processing
	The qk_sched.c Source File (QK Scheduler)
	The qk.c Source File (QK Startup and Idle Loop)

	Advanced QK Features
	Priority-Ceiling Mutex
	Thread-Local Storage
	Extended Context Switch (Coprocessor Support)

	Porting QK
	The qep_port.h Header File
	The qf_port.h Header File
	The qk_port.h Header File
	Saving and Restoring FPU Context

	Testing the QK Port
	Asynchronous Preemption Demonstration
	Priority-Ceiling Mutex Demonstration
	TLS Demonstration
	Extended Context Switch Demonstration

	Summary

	sdarticle_016.pdf
	Software Tracing for Event-Driven Systems
	Software Tracing Concepts
	Quantum Spy Software-Tracing System
	Example of a Software-Tracing Session
	The Human-Readable Trace Output

	QS Target Component
	QS Source Code Organization
	The QS Platform-Independent Header Files qs.h and qs_dummy.h
	QS Critical Section
	General Structure of QS Records
	QS Filters
	Global On/Off Filter
	Local Filters

	QS Data Protocol
	Transparency
	Endianness

	QS Trace Buffer
	Initializing the QS Trace Buffer QS_initBuf()
	Byte-Oriented Interface: QS_getByte()
	Block-Oriented Interface: QS_getBlock()

	Dictionary Trace Records
	Object Dictionaries
	Function Dictionaries
	Signal Dictionaries

	Application-Specific QS Trace Records
	Porting and Configuring QS

	The QSPY Host Application
	Installing QSPY
	Building QSPY Application from Sources
	Building QSPY for Windows with Visual C++ 2005
	Building QSPY for Windows with MinGW
	Building QSPY for Linux

	Invoking QSPY

	Exporting Trace Data to MATLAB
	Analyzing Trace Data with MATLAB
	MATLAB Output File
	MATLAB Script qspy.m
	MATLAB Matrices Generated by qspy.m

	Adding QS Software Tracing to a QP Application
	Initializing QS and Setting Up the Filters
	Defining Platform-Specific QS Callbacks
	Generating QS Timestamps with the QS_onGetTime() Callback
	Generating QS Dictionary Records from Active Objects
	Adding Application-Specific Trace Records
	"QSPY Reference Manual"

	Summary

	sdarticle_017.pdf
	QP-nano: How Small Can You Go?
	Key Features of QP-nano
	Implementing the "Fly 'n' Shoot" Example with QP-nano
	The main() function
	The qpn_port.h Header File
	Signals, Events, and Active Objects in the "Fly 'n' Shoot" Game
	Implementing the Ship Active Object in QP-nano
	Time Events in QP-nano
	Board Support Package for "Fly 'n' Shoot" Application in QP-nano
	Building the "Fly 'n' Shoot" QP-nano Application

	QP-nano Structure
	QP-nano Source Code, Examples, and Documentation
	Critical Sections in QP-nano
	Task-Level Interrupt Locking
	ISR-Level Interrupt Locking

	State Machines in QP-nano
	Active Objects in QP-nano
	The System Clock Tick in QP-nano

	Event Queues in QP-nano
	The Ready-Set in QP-nano (QF_readySet_)
	Posting Events from the Task Level (QActive_post())
	Posting Events from the ISR Level (QActive_postISR())

	The Cooperative "Vanilla" Kernel in QP-nano
	Interrupt Processing Under the "Vanilla" Kernel
	Idle Processing under the "Vanilla" Kernel

	The Preemptive Run-to-Completion QK-nano Kernel
	QK-nano Interface qkn.h
	Starting Active Objects and the QK-nano Idle Loop
	The QK-nano Scheduler
	Interrupt Processing in QK-nano
	Priority Ceiling Mutex in QK-nano

	The PELICAN Crossing Example
	PELICAN Crossing State Machine
	The Pedestrian Active Object
	QP-nano Port to MSP430 with QK-nano Kernel
	QP-nano Memory Usage

	Summary

	sdarticle_018.pdf
	Licensing Policy for QP and QP-nano
	Open-Source Licensing
	Closed-Source Licensing
	Evaluating the Software
	Nonprofits, Academic Institutions, and Private Individuals
	GNU General Public License Version 2

	sdarticle_019.pdf
	Guide to Notation
	Class Diagrams
	State Diagrams
	Sequence Diagrams
	Timing Diagrams

	sdarticle_020.pdf
	Bibliography

	sdarticle_021.pdf
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

