Begin the journey toward your own
successful Android 2 applications

Beginning

Android 2

Mark L. Murphy

Apress

Beginning Android 2

Mark L. Murphy

Apress’

Beginning Android 2
Copyright © 2010 by Mark L. Murphy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2629-1
ISBN-13 (electronic): 978-1-4302-2630-7
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc., in the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and
this book was written without endorsement from Sun Microsystems, Inc.

President and Publisher: Paul Manning

Lead Editor: Steve Anglin

Development Editor: Matthew Moodie

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,
Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Fran Parnell

Copy Editor: Marilyn S. Smith

Compositor: MacPS, LLC

Indexer: John Collin

Artist: April Milne

Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales—eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

Contents at a Glance

Contents at a Glance iv
Contents v
About the Author Xiii
Acknowledgments Xiv
Preface XV
Chapter 1: The Big Picture 1
Chapter 2: Projects and Targets 5
Chapter 3: Creating a Skeleton Application 17
Chapter 4: Using XML-Based Layouts 23
Chapter 5: Employing Basic Widgets 29
Chapter 6: Working with Containers 39
Chapter 7: Using Selection Widgets 59
Chapter 8: Getting Fancy with Lists 75
Chapter 9: Employing Fancy Widgets and Containers 95
Chapter 10: The Input Method Framework 117
Chapter 11: Applying Menus 125
Chapter 12: Fonts 137
Chapter 13: Embedding the WebKit Browser 141
Chapter 14: Showing Pop-Up Messages 149
Chapter 15: Dealing with Threads 155
Chapter 16: Handling Activity Life Cycle Events 167
Chapter 17: Creating Intent Filters 171
Chapter 18: Launching Activities and Subactivities 177
Chapter 19: Handling Rotation 185
Chapter 20: Working with Resources 197
Chapter 21: Using Preferences 213
Chapter 22: Managing and Accessing Local Databases 225
Chapter 23: Accessing Files 237
Chapter 24: Leveraging Java Libraries 245
Chapter 25: Communicating via the Internet 253
Chapter 26: Using a Gontent Provider 259
Chapter 27: Building a Content Provider 265
Chapter 28: Requesting and Requiring Permissions 275
Chapter 29: Creating a Service 279
Chapter 30: Invoking a Service 285
Chapter 31: Alerting Users via Notifications 289
Chapter 32: Accessing Location-Based Services 295
Chapter 33: Mapping with MapView and MapActivity 301
Chapter 34: Handling Telephone Calls 311
Chapter 35: Development Tools 315
Chapter 36: Handling Multiple Screen Sizes 331
Chapter 37: Dealing with Devices 353
Chapter 38: Handling Platform Changes 359
Chapter 39: Where Do We Go from Here? 367

Index 369

Contents

Contents at @ GIANCE.....uurreemmmmmssssrsssssssssmsnsssssssssssssssssssssssnsssnnnnnsnsssssnnssnnnnnnnnnns IV
11 1 =] 1 R |

About the AUthOrccciiniemmmmnnsesnss s sssssessssssssssssansseess Xill
Acknowledgments........cccceemmmmrmssssssssssssnnnsssssssssssssssnsssssssssssssssnssnsssssssssssssnnnns XiV

] 1 [U 4 ||

Chapter 1: The Big Picture.......cccsmmmminemmmmmnsssssnmmissssnmmssssnmmsssssnsssssssssssssans
Challenges of Smartphone Programming
What Androids Are Made Of
Stuff at Your Disposal

Chapter 2: Projects and Targets.......cccumeemmmmmssnssmmsssssssssssssnssesssssssnssssssnsssssssnns
Pieces and Parts
Creating a Project
Project Structure
Root Contents
The Sweat Off Your Brow
And Now, the Rest of the Story
What You Get Out of It
Inside the Manifest
In the Beginning, There Was the Root, And It Was Good
Permissions, Instrumentations, and Applications (Oh My!)
Your Application Does Something, Right?
Achieving the Minimum
Version=Control
Emulators and Targets
Virtually There
Aiming at a Target

O oo NN L Ol wihy o =

©

—_
o

—_
—ry

—_
N

—_
N

—_
N

—
N

vi

CONTENTS

Chapter 3: Creating a Skeleton Application.............cccussnmemmennnnnnssssssssssssnnnnee 17

Begin at the Beginning 17
Dissecting the Activity 18
Building and Running the Activity 20
Chapter 4: Using XML-Based Layoutscccuseemmmmsssnsnsmsssssssssssssssssssssssssnnnsss 23
What Is an XML-Based Layout? 23
Why Use XML-Based Layouts? 24
0K, So What Does It Look Like? 24
What’s with the @ Signs? 25
And How Do We Attach These to the Java? 25
The Rest of the Story 26
Chapter 5: Employing Basic Widgets.......ccccummmmmmmmsmmnmmsssssnnmsssssnssssssssssssssssss 29
Assigning Labels 29
Button, Button, Who’s Got the Button? 30
Fleeting Images 31
Fields of Green. Or Other Colors. 32
Just Another Box to Check 33
Turn the Radio Up 35
It’s Quite a View 37

Useful Properties 37

Useful Methods 38

Colors 38
Chapter 6: Working with Containersccccuseemmsmssssnssmmsssssnssssssssssssssssssssssssss 39
Thinking Linearly 39

LinearLayout Concepts and Properties 40

LinearLayout Example 42
All Things Are Relative 46

RelativeLayout Concepts and Properties 47

RelativeLayout Example 49
Tabula Rasa 51

TableLayout Concepts and Properties 52

TableLayout Example 53
Scrollwork 54
Chapter 7: Using Selection Widgetsccccunsemmmmmssmmmmmsssssnnmssssssssssssssssssssssss 99
Adapting to the Circumstances 59
Lists of Naughty and Nice 60
Spin Control 63
Grid Your Lions (or Something Like That...) 66
Fields: Now with 35% Less Typing! 69
Galleries, Give or Take the Art 72
Chapter 8: Getting Fancy with Listscccccunmmmmnnssmmmmnmsesnmmmnssssnmssssssnnnns 79
Getting to First Base 75
A Dynamic Presentation 77
Better. Stronger. Faster. 80

Using convertView 80

Using the Holder Pattern 81

Making a List... 84
...And Checking It Twice 89
Adapting Other Adapters 94
Chapter 9: Employing Fancy Widgets and Containers.........cccccrvrnsssssssnnnnnnnes 99
Pick and Choose 95
Time Keeps Flowing Like a River 99
Making Progress 101
Seeking Resolution 101
Put It on My Tab 102

The Pieces 103

The Idiosyncrasies 103

Wiring It Together 104

Adding Them Up 106

Intents and Views 109
Flipping Them Off 109

Manual Flipping 110

Adding Contents on the Fly 112

Automatic Flipping 113
Getting in Someone’s Drawer 114
Other Good Stuff 116
Chapter 10: The Input Method Framework.........ccccccvvnnsssssssssnnsssssssssssssnsnnnns 117
Keyboards, Hard and Soft 117
Tailored to Your Needs 118
Tell Android Where It Can Go 121
Fitting In 123
Unleash Your Inner Dvorak 124
Chapter 11: Applying Menuscccccemermrmmmssssssssssssnssssssssssssssssssssssssssssssssssnnes 129
Menus of Options 125

Creating an Options Menu 125

Adding Menu Choices and Submenus 126
Menus in Context 127
Taking a Peek 128
Yet More Inflation 133

Menu XML Structure 133

Menu Options and XML 134

Inflating the Menu 135
Chapter 12: FONtSccccemmrmmmmmmmmmmssssssssnsssnnnsnnes 137
Love the One You’re With 137
More Fonts 138
Here a Glyph, There a Glyph 140
Chapter 13: Embedding the WebKit Browsercceinnssseensnsssssnnssssssnnnnnns 141
A Browser, Writ Small 141
Loading It Up 143
Navigating the Waters 144
Entertaining the Client 145
Settings, Preferences, and Options (Oh My!) 147

CONTENTS

vii

CONTENTS

viii

Chapter 14: Showing Pop-Up MeSSages........ucummmmsssmnnssssssnssssssssssnsssssannnnssss 149

Raising Toasts 149
Alert! Alert! 150
Checking Them Out 151
Chapter 15: Dealing with Threadscccimnnsemmmmmsssssnnmnsssssssmsssssssssssssassnnes 199
Getting Through the Handlers 155

Messages 156

Runnables 158
Running in Place 159
Where Oh Where Has My Ul Thread Gone? 159
Asyncing Feeling 159

The Theory 159

AsyncTask, Generics, and Varargs 160

The Stages of AsyncTask 160

A Sample Task 161
And Now, the Caveats 164
Chapter 16: Handling Activity Life Cycle Events.........ccccussseensnssssnnnssssssannnnss 167
Schroedinger’s Activity 167
Life, Death, and Your Activity 168

onCreate() and onDestroy() 168

onStart(), onRestart(), and onStop() 169

onPause() and onResume() 169
The Grace of State 169
Chapter 17: Creating Intent Filters.........cccivnnnemmmnnsssnnnnnsssssssssssssssssssssssnnnns 171
WHAL'S YOUE INTENEZ......eecececctre et s e e e e s e s e 171

Pieces of Intents 172

Intent Routing 172
Stating Your Intent(ions) 173
Narrow Receivers 174
The Pause Caveat 175
Chapter 18: Launching Activities and Subactivities.......cccccmrrrrerssssssnnnnnnnns 177
Peers and Subs 177
Start ’Em Up 178

Make an Intent 178

Make the Call 178
Tabbed Browsing, Sort Of 182
Chapter 19: Handling Rotationccoccccnmnnnsemmmnnnssssnmmnnsessnmnsssssssnssssssnes 189
A Philosophy of Destruction 185
It’s All the Same, Just Different 185
Now with More Savings! 189
DIY Rotation 191
Forcing the Issue 193
Making Sense of It All 195
Chapter 20: Working with ReSources.......c.ccuusemmmmmsssssnsmssssssssssssssssssssssasnnnss 197
The Resource Lineup 197
String Theory 198

Plain Strings 198

String Formats 198

Styled Text 199

Styled String Formats 199
Got the Picture? 202
XML: The Resource Way 204
Miscellaneous Values 206

Dimensions 207

Colors 207

Arrays 208
Different Strokes for Different Folks 208
Chapter 21: Using Preferences.......ccccumsemmmmsssssnsssssssssssssssssssssssssssssssssssnnnnss 213
Getting What You Want 213
Stating Your Preference 214
And Now, a Word from Our Framework 214
Letting Users Have Their Say 215
Adding a Wee Bit o' Structure 219
The Kind of Pop-Ups You Like 221
Chapter 22: Managing and Accessing Local Databases.........cccccunnssssnnnnnnnns 225
The Database Example 225
A Quick SQLite Primer 227
Start at the Beginning 227
Setting the Table 230
Makin’ Data 230
What Goes Around Comes Around 232

Raw Queries 232

Regular Queries 232

Building with Builders 233

Using Cursors 234
Data, Data, Everywhere 235
Chapter 23: AccesSing FIlesuuummemmmmmmmmmmmmmsssssssnnsmssssssssssssssnssssssssssssssssnnes 23 1
You and the Horse You Rode in On 237
Readin’ ’n Writin’ 240
Chapter 24: Leveraging Java Librariescccccnmmmsesmmmmssssssmnsssssssssssssssnnns 249
The Quter Limits 245
Ants and JARs 246
Following the Script 246
...And Not a Drop to Drink 250
Reviewing the Script 251
Chapter 25: Communicating via the Internetcccecvirnnnnssennnnnnssnnnnn, 293
REST and Relaxation 253
HTTP Operations via Apache HttpClient 254
Parsing Responses 255
Stuff to Consider 257
Chapter 26: Using a Content Providercoremmmmmnnnmmsssssssssssnssssssssssssssssens 299
Pieces of Me 259

CONTENTS

ix

CONTENTS

Getting a Handle 260
Makin’ Queries 260
Adapting to the Circumstances 261
Give and Take 263
Beware of the BLOB! 264
Chapter 27: Building a Content Providerccccciinrrrnsssssssssssnnsssssssssssssssnnes 269
First, Some Dissection 265
Next, Some Typing 266
Creating Your Content Provider 267

Step 1: Create a Provider Class 267

Step 2: Supply a Uri 272

Step 3: Declare the Properties 272

Step 4: Update the Manifest 273
Notify-on-Change Support 273
Chapter 28: Requesting and Requiring Permissionsccccesusssssssssssssssnnnes 279
Mother, May I? 275
Halt! Who Goes There? 276

Enforcing Permissions via the Manifest 277

Enforcing Permissions Elsewhere 278
May I See Your Documents? 278
Chapter 29: Creating @ ServiCe.......ccuvummmmmmmmsssnnnmmssssnssssssssssssssssssssssssssssssssss 279
Service with Class 279
There Can Only Be One 280
Manifest Destiny 281
Lobbing One Over the Fence 282

Callbacks 283

Broadcast Intents 283
Where’s the Remote? And the Rest of the Code? 284
Chapter 30: InVOKIiNg @ SErviCeccciummsmmmmmssssnssssssssssssssssssssssssssssssssssssnsnnss 289
The Ties That Bind 286
Catching the Lob 287
Chapter 31: Alerting Users via Notificationscccenssemmnnnssssnsnnnssssnnnnnnss 289
Types of Pestering 289

Hardware Notifications 290

Icons 290
Seeing Pestering in Action 290
Chapter 32: Accessing Location-Based Servicescccuumssmmmesnnnssssssssssssnnnnes 299
Location Providers: They Know Where You’re Hiding 295
Finding Yourself 296
On the Move 297
Are We There Yet? Are We There Yet? Are We There Yet? 298
Testing...Testing... 299
Chapter 33: Mapping with MapView and MapActivitycccceevrrnsnssnsnnnnnnns 301
Terms, Not of Endearment 301
Piling On 302

The Bare Bones 302

CONTENTS

Exercising Your Control 303
Zoom 304
Center 304

Rugged Terrain 304

Layers upon Layers 305
Overlay Classes 305
Drawing the ltemizedOverlay 305
Handling Screen Taps 307

My, Myself, and MyLocationOverlay 307

The Key to It All 308

Chapter 34: Handling Telephone Calls.........ccuseemmmmssssnnsmssssssssssssssssssssssnsnnnes 311

Report to the Manager 31

You Make the Call! 312

Chapter 35: Development TOOIS.......ccccussemmmmmssssnssmmssssssnssssssssssssssssssssssssasnnnss 319

Hierarchical Management 315

Delightful Dalvik Debugging Detailed, Demoed 321
Logging 322
File Push and Pull 323
Screenshots 324
Location Updates 325
Placing Calls and Messages 326

Put It on My Card 328
Creating a Card Image 328
Inserting the Card 329

Chapter 36: Handling Multiple Screen Sizesccccnnnnssssssssnnnmssssssssssssnes 331

Taking the Default 331

Whole in One 332
Think About Rules, Rather Than Positions 332
Consider Physical Dimensions 333
Avoid Real Pixels 333
Choose Scalable Drawables 334

Tailor-Made, Just for You (and You, and You, and...) 334
Add <supports-screens> 334
Resources and Resource Sets 335
Finding Your Size 336

Ain’t Nothing Like the Real Thing 337
Density Differs 337
Adjusting the Density 337
Accessing Actual Devices 338

Ruthlessly Exploiting the Situation 339
Replace Menus with Buttons 339
Replace Tabs with a Simple Activity 340
Consolidate Multiple Activities 340

Example: EU4You 340
The First Cut 340
Fixing the Fonts 346
Fixing the Icons 348

xi

CONTENTS

Xii

Using the Space 348
What If It’s Not a Browser? 350
What Are a Few Bugs Among Friends? 351
Chapter 37: Dealing with DeVICES.........ccssssmmmmssmsmsssnsmsssansssssnsssssnsssssnssssansssss 393
This App Contains Explicit Instructions 353
Button, Button, Who’s Got the Button? 354
A Guaranteed Market 355
The Down and Dirty Details 355
Archos 5 Android Internet Tablet 355
Motorola CLIQ/DEXT 356
Motorola DROID/Milestone 356
Google/HTC Nexus One 357
Motorola BACKFLIP 357
Chapter 38: Handling Platform Changesccccummmmmnnssmnnmmsssssssssssssssnnnnss 399
Brand Management 359
More Things That Make You Go Boom 360
View Hierarchy 360
Changing Resources 361
Handling API Changes 362
Detecting the Version 362
Wrapping the API 362
Chapter 39: Where Do We Go from Here?cccccusssemmmnssssssssssssssssssssssannnnss 367
Questions—Sometimes with Answers 367
Heading to the Source 368
Getting Your News Fix 368

- . 1 |

About the Author

Mark Murphy is the founder of CommonsWare and the author of the Busy
Coder’s Guide to Android Development. A three-time entrepreneur, his
experience ranges from consulting on open source and collaborative
development for the Fortune 500 to application development on just about
anything smaller than a mainframe. He has been a software developer for
more than 25 years, from the TRS-80 to the latest crop of mobile devices. A
polished speaker, Mark has delivered conference presentations and training
sessions on a wide array of topics internationally.

Mark writes the Building ‘Droids column for AndroidGuys and the Android
Angle column for NetworkWorld.

: Outside of CommonsWare, Mark has an avid interest in how the Internet will
play a role in citizen involvement with politics and government. He is also a contributor to the
Rebooting America essay collection.

xiv

Acknowledgments

I'would like to thank the Android team, not only for putting out a good product, but for
invaluable assistance on the Android Google Groups. In particular, I would like to thank Romain
Guy, Justin Mattson, Dianne Hackborn, Jean-Baptiste Queru, Jeff Sharkey, and Xavier Ducrohet.

Icons used in the sample code were provided by the Nuvola icon set: www.icon-king.com/?p=15.

Preface

Welcome to the Book!

Thanks for your interest in developing applications for Android! Increasingly, people will access
Internet-based services using so-called "nontraditional" means, such as mobile devices. The
more we do in that space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is new—Android-
powered devices first appeared on the scene in late 2008—but it likely will rapidly grow in
importance due to the size and scope of the Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you find it useful
and at least occasionally entertaining.

Prerequisites

If you are interested in programming for Android, you will need at least a basic understanding of
how to program in Java. Android programming is done using Java syntax, plus a class library that
resembles a subset of the Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works before attempting to dive
into programming for Android.

The book does not cover in any detail how to download or install the Android
development tools, either the Eclipse IDE flavor or the stand-alone flavor. The Android web site
covers this quite nicely. The material in the book should be relevant whether or not you use the
IDE. You should download, install, and test the Android development tools from the Android web
site before trying any of the examples presented in this book.

Some chapters may reference material in previous chapters. Also, not every sample shown
has the complete source code in the book, lest this book get too large. If you wish to compile the
samples, download the source code from the Apress web site (www.apress.com).

Editions of This Book

This book is being produced via a partnership between Apress and CommonsWare. You are
reading the Apress edition, which is available in print and in digital form from various digital
book services, such as Safari.

CommonsWare continually updates the original material and makes it available to
members of its Warescription program, under the title The Busy Coder's Guide to Android
Development.

CommonsWare maintains a FAQ about this partnership at
http://commonsware.com/apress.

Xv

PREFACE

Source Code and Its License

The source code for this book is available to readers at www.apress.com. All of the Android
projects are licensed under the Apache 2.0 License at www.apache.org/licenses/LICENSE-
2.0.html, in case you have the desire to reuse any of it.

XVi

Chapter

The Big Picture

Android devices, by and large, will be mobile phones. While the Android technology is
being discussed for use in other areas (e.g., car dashboard “PCs”), for now, the focus is
on phone applications. For developers, this has benefits and drawbacks.

Challenges of Smartphone Programming

On the plus side, Android-style smartphones are sexy. Offering Internet services over
mobile devices dates back to the mid-1990s and the Handheld Device Markup
Language (HDML). However, only in recent years have phones capable of Internet
access taken off. Now, thanks to trends like text messaging and products like Apple's
iPhone, phones that can serve as Internet-access devices are rapidly gaining popularity.
So, working on Android applications gives you experience with an interesting technology
(Android) in a fast-moving market segment (Internet-enabled phones), which is always a
good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the pain of phones
simply being small in all sorts of dimensions, such as the following:

B Screens are small (you won’t get comments like, “Is that a 24-inch
LCD in your pocket, or...?”).

B Keyboards, if they exist, are small.

B Pointing devices, if they exist, are annoying (as anyone who has lost a
stylus will tell you) or inexact (large fingers and “multitouch” LCDs are
not a good mix).

B CPU speed and memory are limited compared with what are available
on desktops and servers.

B You can have any programming language and development
framework you want, as long as it was what the device manufacturer
chose and burned into the phone’s silicon.

CHAPTER 1: The Big Picture

Moreover, applications running on a phone must deal with the fact that they are on a
phone.

People with mobile phones tend to get very irritated when those phones don’t work,
which is why the “Can you hear me now?” ad campaign from Verizon Wireless has been
popular for the past few years. Similarly, those same people will get angry with you if
your program “breaks” their phone:

B By tying up the CPU so that calls can’t be received

By not quietly fading into the background when a call comes in or
needs to be placed, because it does not work properly with the rest of
the phone’s operating system

B By crashing the phone’s operating system, such as by leaking memory
like a sieve

Hence, developing programs for a phone is a different experience than developing
desktop applications, web sites, or back-end server processes. The tools look different,
the frameworks behave differently, and there are more limitations on what you can do
with your programs.

What Android tries to do is meet you halfway:

B You get a commonly used programming language (Java) with some
commonly used libraries (e.g., some Apache Commons APIs), with
support for tools you may be used to using (Eclipse).

B You get a fairly rigid and separate framework in which your programs
need to run so they can be “good citizens” on the phone and not
interfere with other programs or the operation of the phone itself.

As you might expect, much of this book deals with that framework and how to write
programs that work within its confines and take advantage of its capabilities.

What Androids Are Made Of

When you write a desktop application, you are “master of your own domain.” You
launch your main window and any child windows —like dialog boxes—that are needed.
From your standpoint, you are your own world, leveraging features supported by the
operating system, but largely ignorant of any other program that may be running on the
computer at the same time. If you do interact with other programs, it is typically through
an API, such as Java Database Connectivity (JDBC), or frameworks atop it, to
communicate with MySQL or another database.

Android has similar concepts, but packaged differently and structured to make phones
more crash-resistant. Here are the main components used in an Android application:

CHAPTER 1: The Big Picture

B Activities: The building block of the user interface is the activity. You
can think of an activity as being the Android analogue for the window
or dialog box in a desktop application. While it is possible for activities
to not have a user interface, most likely your “headless” code will be
packaged in the form of content providers or services.

B Content providers: Content providers provide a level of abstraction for
any data stored on the device that is accessible by multiple
applications. The Android development model encourages you to
make your own data available to other applications, as well as your
own. Building a content provider lets you do that, while maintaining
complete control over how your data is accessed.

B Services: Activities and content providers are short-lived and can be
shut down at any time. Services, on the other hand, are designed to
keep running, if needed, independent of any activity. You might use a
service for checking for updates to an RSS feed or to play back music
even if the controlling activity is no longer operating.

B Intents: Intents are system messages, running around the inside of the
device, notifying applications of various events, from hardware state
changes (e.g., an SD card was inserted), to incoming data (e.g., an
SMS message arrived), to application events (e.g., your activity was
launched from the device’s main menu). Not only can you respond to
intents, but you can create your own to launch other activities or to let
you know when specific situations arise (e.g., raise such-and-so intent
when the user gets within 100 meters of this-and-such location).

Stuff at Your Disposal

Android comes with a number of features to help you develop applications:

B Storage: You can package data files with your application, for things
that do not change, such as icons or help files. You also can carve out
a bit of space on the device itself, for databases or files containing
user-entered or retrieved data needed by your application. And, if the
user supplies bulk storage, like an SD card, you can read and write
files there as needed.

B Network: Android devices will generally be Internet-ready, through one
communications medium or another. You can take advantage of the
Internet access at any level you wish, from raw Java sockets all the
way up to a built-in WebKit-based web browser widget you can
embed in your application.

CHAPTER 1: The Big Picture

B Multimedia: Android devices have the ability to play back and record
audio and video. While the specifics may vary from device to device,
you can query the device to learn its capabilities, and then take
advantage of the multimedia capabilities as you see fit—whether that
is to play back music, take pictures with the camera, or use the
microphone for audio note-taking.

B Global positioning system (GPS): Android devices will frequently have
access to location providers, such as a GPS, which can tell your
applications where the device is on the face of the Earth. In turn, you
can display maps or otherwise take advantage of the location data,
such as tracking a device’s movements if the device has been stolen.

B Phone services: Of course, since Android devices are typically phones,
your software can initiate calls, send and receive Short Message
Service (SMS) messages, and everything else you expect from a
modern bit of telephony technology.

Chapter

Projects and Targets

After you have downloaded and installed the latest Android Software Development Kit
(SDK), and perhaps the Android Developer Tools (ADT) plugin for Eclipse (both available
from the Android Developers web site), you're ready to get started. This chapter covers
what is involved in building an Android application.

Pieces and Parts

To create an Android application, you will need to create a corresponding Android
project. This could be an Eclipse project, if you are using Eclipse for Android
development. The project will hold all of your source code, resources (e.g.,
internationalized strings), third-party JARs, and related materials. The Android build
tools—whether Eclipse-integrated or stand-alone—will turn the contents of your project
into an Android package (APK) file, which is the Android application. Those tools will
also help you get your APK file onto an Android emulator or an actual Android device for
testing purposes.

One key element of a project is the manifest (AndroidManifest.xml). This file contains the
“table of contents” for your application, listing all of the major application components,
permissions, and so on. The manifest is used by Android at runtime to tie your
application into the operating system. The manifest contents are also used by the
Android Market (and perhaps other independent “app stores”), so applications that need
Android 2.0 will not be presented to people with Android 1.5 devices, for example.

To test your application with the emulator, you will need to create an Android Virtual
Device, or AVD. Most likely, you will create several of these, as each AVD emulates an
Android device with a particular set of hardware. You might have AVDs for different
screen sizes, Android versions, and so on.

When creating projects and creating AVDs, you will need to indicate to Android the API
level with which you are working. The API level is a simple integer that maps to an
Android version; for example, API level 3 means Android 1.5. When creating a project,
you will be able to tell Android the minimum and maximum API levels your application
supports. When creating an AVD, you will tell Android which API level the AVD should

CHAPTER 2: Projects and Targets

emulate, so you can see how your application runs on various (fake) devices
implementing different versions of Android.

All of these concepts are described in greater detail in this chapter.

Creating a Project

To create a project from the command line, for use with the command-line build tools
(e.g., ant), you will need to run the android create project command. This command
takes a number of switches to indicate the Java package in which the application’s code
will reside, the API level the application is targeting, and so on. The result of running this
command will be a directory containing all of the files necessary to build a “Hello,
World!” Android application.

Here is an example of running android create project:

android create project --target 2 --path ./FirstApp --activity FirstApp --package
apt.tutorial

If you intend to develop for Android using Eclipse, rather than android create project,
you will use the Eclipse new-project wizard to create a new Android application.

NOTE: The source code that accompanies this book was set up to be built using the command-
line build tools. If you prefer to use Eclipse, you can create empty Eclipse Android projects and
import the code into those projects.

Project Structure

The Android build system is organized around a specific directory tree structure for your
Android project, much like any other Java project. The specifics, though, are fairly
unique to Android. Here’s a quick primer on the project structure, to help you make
sense of it all, particularly for the sample code referenced in this book.

Root Contents

When you create a new Android project (e.g., via android create project), you get
several items in the project’s root directory, including the following:

B AndroidManifest.xml: An XML file describing the application being
built and which components —activities, services, and so on—are
being supplied by that application.

B build.xml: An Ant script for compiling the application and installing it
on the device.

CHAPTER 2: Projects and Targets

B default.properties and local.properties: Property files used by the
Ant build script.

B assets/: A folder that holds other static files you wish packaged with
the application for deployment onto the device.

bin/: A folder that holds the application once it is compiled.

B gen/: Where Android’s build tools will place source code that they
generate.

B 1libs/: Afolder that holds any third-party JARs your application
requires.

B src/: Afolder that holds the Java source code for the application.

res/: A folder that holds resources—such as icons, graphic user
interface (GUI) layouts, and the like—that are packaged with the
compiled Java in the application.

B tests/: Afolder that holds an entirely separate Android project used
for testing the one you created.

The Sweat Off Your Brow

When you create an Android project (e.g., via android create project), you supply the
fully qualified class name of the main activity for the application (e.g.,
com.commonsware.android.SomeDemo). You will then find that your project’s src/ tree
already has the namespace directory tree in place, plus a stub Activity subclass
representing your main activity (e.g., src/com/commonsware/android/SomeDemo. java). You
are welcome to modify this file and add others to the src/ tree as needed to implement
your application.

The first time you compile the project (e.g., via ant), out in the main activity’s namespace
directory, the Android build chain will create R.java. This contains a number of
constants tied to the various resources you placed in the res/ directory tree. Throughout
this book, you will see that many of the examples reference things in R. java (e.g.,
referring to a layout’s identifier via R. layout.main).

NOTE: You should not modify R. java yourself, but instead let the Android tools handle this for you.

And Now, the Rest of the Story

The res/ directory tree holds resources —static files that are packaged along with your
application, either in their original form or, occasionally, in a preprocessed form. These
are some of the subdirectories you will find or create under res/:

CHAPTER 2: Projects and Targets

res/drawable/: For images (PNG, JPEG, etc.).
res/layout/: For XML-based Ul layout specifications.

res/menu/: For XML-based menu specifications.

res/raw/: For general-purpose files (e.g., a CSV file of account
information).

B res/values/: For strings, dimensions, and the like.
B res/xml/: For other general-purpose XML files you wish to ship.

All of these, as well as other resources, are covered in this book.

What You Get Out of It

When you compile your project (via ant or the IDE), the results go into the bin/ directory
under your project root, as follows:

B bin/classes/: Holds the compiled Java classes.

B bin/classes.dex: Holds the executable created from those compiled
Java classes.

B bin/yourapp.ap_: Holds your application’s resources, packaged as a
ZIP file (where yourapp is the name of your application).

B bin/yourapp-debug.apk or bin/yourapp-unsigned.apk: The actual
Android application (where yourapp is the name of your application).

The . apk file is a ZIP archive containing the .dex file, the compiled edition of your
resources (resources.arsc), any uncompiled resources (such as what you put in
res/raw/), and the AndroidManifest.xml file. It is also digitally signed, with the -debug
portion of the filename indicating it has been signed using a debug key that works with
the emulator, or -unsigned indicating that you built your application for release (ant
release), but the APK still needs to be signed using jarsigner and an official key.

Inside the Manifest

The foundation for any Android application is the manifest file, AndroidManifest.xml in
the root of your project. Here is where you declare what is inside your application—the
activities, the services, and so on. You also indicate how these pieces attach themselves
to the overall Android system; for example, you indicate which activity (or activities)
should appear on the device’s main menu (a.k.a. the launcher).

When you create your application, a starter manifest will be generated for you
automatically. For a simple application, offering a single activity and nothing else, the
autogenerated manifest will probably work out fine, or perhaps require a few minor
modifications. On the other end of the spectrum, the manifest file for the Android API

CHAPTER 2: Projects and Targets

demo suite is more than 1,000 lines long. Your production Android applications will
probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater detail in the
chapters on their associated Android features. For example, the service element will be
described in greater detail in Chapter 29, which covers creating services. For now, you
just need to understand the role of the manifest and its general overall construction.

In the Beginning, There Was the Root, And It Was Good

The root of all manifest files is, not surprisingly, a manifest element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">

;}ﬁanifest>
Note the namespace declaration. Curiously, the generated manifests apply it only on the

attributes, not the elements (e.g., it’s manifest, not android:manifest). Since this pattern
works, unless Android changes, you should stick with it.

The biggest piece of information you need to supply on the manifest element is the
package attribute (also curiously not namespaced). Here, you can provide the name of
the Java package that will be considered the “base” of your application. Then,
everywhere else in the manifest file that needs a class name, you can just substitute a
leading dot as shorthand for the package. For example, if you needed to refer to
com.commonsware.android.search.Snicklefritz in this preceding manifest, you could
just use .Snicklefritz, since com.commonsware.android.search is defined as the
application’s package.

Permissions, Instrumentations, and Applications (Oh My!)

Underneath the manifest element, you may find the following:

B uses-permission elements: Indicate the permissions your application
will need in order to function properly.

B permission elements: Declare permissions that activities or services
might require other applications to hold in order to use your
application’s data or logic.

B instrumentation elements: Indicate code that should be invoked on
key system events, such as starting up activities, for the purposes of
logging or monitoring.

B uses-library elements: Hook in optional Android components, such
as mapping services.

B uses-sdk element: Indicates for which version of the Android SDK the
application was built.

CHAPTER 2: Projects and Targets

B application element: Defines the guts of the application that the
manifest describes.

Here’s an example:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.commonsware.android">

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

<uses-permission
android:name="android.permission.ACCESS_GPS" />

<uses-permission
android:name="android.permission.ACCESS_ASSISTED GPS" />

<uses-permission
android:name="android.permission.ACCESS_CELL_ID" />

<application>

</application>
</manifest>
In this example, the manifest has uses-permission elements to indicate some device
capabilities the application will need —in this case, permissions to allow the application
to determine its current location. The contents of the application element will describe
the activities, services, and whatnot that make up the bulk of the application itself.

Permissions will be covered in greater detail in Chapter 28.

Your Application Does Something, Right?
The children of the application element represent the core of the manifest file.
By default, when you create a new Android project, you get a single activity element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

This element supplies android:name for the class implementing the activity,
android:label for the display name of the activity, and (frequently) an intent-filter
child element describing under which conditions this activity will be displayed. The stock
activity element sets up your activity to appear in the launcher, so users can choose to
run it. As you’ll see later in this book, you can have several activities in one project, if
you so choose.

You may have one or more provider elements, indicating content providers, which are
the components that supply data to your activities and, with your permission, other

CHAPTER 2: Projects and Targets

activities in other applications on the device. These wrap up databases or other data
stores into a single API that any application can use. Later, you’ll see how to create
content providers and how to use content providers that you or others create.

Finally, you may have one or more service elements, describing services, which are
long-running pieces of code that can operate independently of any activity. The
quintessential example is the MP3 player, where you want the music to keep playing
even if the user pops open other activities and the MP3 player’s user interface is
“misplaced.” Chapters 29 and 30 cover how to create and use services.

Achieving the Minimum

Android, like most operating systems, goes through various revisions, versions, and
changes. Some of these affect the Android SDK, meaning there are new classes,
methods, or parameters you can use that you could not in previous versions of the SDK.

If you want to ensure your application is run only on devices that have a certain version
(or higher) of the Android environment, you will add a uses-sdk element, as a child of the
root <manifest> element in your AndroidManifest.xml file. The <uses-sdk> element has
one attribute, minsdkVersion, indicating which SDK version your application requires:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.search">
<uses-sdk minSdkVersion="2" />
</manifests
At the time of this writing, there are five possible minSdkversion values:
B 1: Android 1.0 SDK
B 2: Android 1.1 SDK
B 3: Android 1.5 SDK
B 4: Android 1.6 SDK
B 5: Android 2.0 SDK

If you omit the <uses-sdk> element, your application will behave as though
minSdkVersion is set to 1.

CAUTION: The Android Market seems to insist that you specifically state your minsdkversion,
S0 be certain to have a proper <uses-sdk> element if you are going to distribute via that
channel.

If you set <uses-sdk>, the application will install only on compatible devices. You do not
need to specify the latest SDK, but if you choose an older one, it is up to you to ensure
your application works on every SDK version you claim is compatible. For example, if
you leave out <uses-sdk>, in effect, you are stipulating that your application works on

CHAPTER 2: Projects and Targets

every Android SDK version ever released, and you will need to test your application to
determine if this is indeed the case.

Also note that a bug in the Android Market means you should make the <uses-sdk>
element be the first child of your <manifest> element.

Version=Control

Particularly if you are going to distribute your application, via the Android Market or
other means, you probably should add a pair of other attributes to the root <manifest>
element: android:versionCode and android:versionName. These assist in the process of
upgrading applications.

The android:versionName attribute is some human-readable label for the version name
or number of your application. So, you can use "3.0" or "System V" or "5eee" or "3.1"
as you see fit.

The android:versionCode attribute is a pure integer indication of the version of the
application. This is used by the system to determine if one version of your application is
newer than another. Newer is defined as “has a higher android:versionCode value.”
Whether you attempt to convert your actual version (as found in android:versionName) to
a number or simply increment this value by one for each release is up to you.

Emulators and Targets

Let’s take a moment to discuss the notion of targets in Android, since they can be a bit
confusing. Targets are important for your long-term application development,
particularly when you use the Android emulator for testing your applications.

Virtually There

To use the emulator, you will need to create one or more AVDs. These virtual devices are
designed to mimic real Android devices like the T-Mobile G1 or the HTC Magic. You tell
the emulator which AVD to use, and the emulator will pretend it is the device described
by that AVD.

When you create an AVD, you need to specify a target. The target indicates which class
of device the AVD will pretend to be. At the time of this writing, there are five targets:

B 1: An Android 1.1 device, such as a nonupgraded T-Mobile G1.

B 2: An Android 1.5 device that lacks Google Maps support. This is what
you might get from a home-brew port of Android onto a device.

B 3: An Android 1.5 device that has Google Maps support.
B 4: An Android 1.6 device that has Google Maps support.
B 5: An Android 2.0 device that has Google Maps support.

CHAPTER 2: Projects and Targets

TIP: You can find out the available API targets via the android 1list targets command.

If you are building applications that may use Google Maps, you will want to use an AVD
that has a target of 3 or higher.

You can create as many AVDs as you need and for which you have disk space. Each
AVD behaves as a totally distinct device, so installing your app on one AVD does not
affect any other AVDs that you have created.

AVDs can be created through the android create avd command, via Eclipse, or via the
AVD Manager, a GUI added in Android 1.6. To use the AVD Manager, simply run the
android command without any arguments. As shown in Figure 2-1, you will be
presented with a list of prebuilt AVDs, New and Delete buttons to add and remove
AVDs, a Start button to launch an emulator using a selected AVD, and so on.

(] Android SDK and 'AVD Manager ™ ==

Virtual Devices List of existing Android Virtual Devices:
Installed Packages AVD Name Target Name Platform | API Level | New... ‘
Available Packages + 1.6.Maps.QVG#£ Google APIs (Google Inc.) 1.6 4 ———
Settings + 1.5_NoMaps Android 1.5 15 3
About ~ 1.6.Maps.WVG: Google APIs (Google Inc.) 1.6 4

~ 1.6.Maps.HVG/ Google APIs (Google Inc.) 1.6 4

v 1.5.Maps Google APIs (Google Inc.) 15 3

v 2.0.HVGA Google APIs (Google Inc.) 2.0 5

v 1.6.Maps.WVG: Google APIs (Google Inc.) 1.6 4

~ 1.6.Tablet Google APIs (Google Inc.) 1.6 4

| Refresh |
~ A valid Android Virtual Device.
X An Android Virtual Device that failed to load. Clig('Details’ to see the error.

Figure 2-1. The AVD Manager GUI, showing a list of available AVDs

When you add an AVD through the GUI (via the New button in the main window), you will
be prompted for a name, target API/Google Maps combination, details about an SD
card image, and the size of screen you wish to emulate (called the skin). Figure 2-2
shows the Create New AVD dialog box.

CHAPTER 2: Projects and Targets

Create new AVD

Name: lTest |

Target: ’ Google APIs (Google Inc.) - APl Level 5 v ‘

SD Card:

® Size: [64] | MiB v |
O File: | | Browse
Skin: -
@ Built-in: | QVGA v
O Resolution: | | x
Hardware:
Property Value New.. |

Abstracted LCD densit 120

Create AVD ’ ‘ Cancel ‘

Figure 2-2. Adding an AVD

Aiming at a Target

When you create a new project (via android create project or Eclipse), you will need to
indicate which class of device this project targets. The same values shown in the
previous section apply. For example, creating a project with a target of 3 indicates
Android 1.5. Your resulting application will not install on devices that do not meet the
specified target.

Here are some rules of thumb for dealing with targets:

B Ask for only what you really need. If you are sticking with Android 1.5
APIs, you may as well ask to build with Android 1.5 APIs and maximize
the number of devices on which your program can run.

B Test on as many targets as you can and that are possible. For
example, you may be tempted to target 1, to reach the maximum
possible range of Android devices. That is fine, but you will need to
test on a target 1 AVD, and a target 2 AVD, and so on.

CHAPTER 2: Projects and Targets

B Check out the new target levels with each Android release. There
should be a new values with every Android point-release update (e.g.,
2.0 or 1.6), and possibly even for SDK patch levels (e.g., 1.5r1 versus
1.5r2). Be sure to test your application on those new targets whenever
you can, as some people may start getting devices with the new
Android release soon.

B Testing on AVDs, regardless of target, is no substitute for testing on
hardware. AVDs are designed to give you disposable environments
that let you test a wide range of environments, even those that may
not yet exist in hardware. However, you really need to test your
application on at least one actual Android device. If nothing else, the
speed of your emulator may not match the speed of the device; the
emulator may be faster or slower depending on your system.

Chapter

Creating a Skeleton
Application

Every programming language or environment book starts off with the popular “Hello,
World!” demonstration. This is just enough of a program to prove you can build things.
However, the typical Hello, World! program has no interactivity (e.g., it just dumps the
words to a console), and so it’s really boring.

This chapter demonstrates a simple project, but one using Advanced Push-Button
Technology and the current time, making it a bit more interesting than the typical Hello,
World! demo.

Begin at the Beginning

As described in the previous chapter, to work with anything in Android, you need a
project. If you are using tools that are not Android-enabled, you can use the android
create project script, found in the tools/ directory in your SDK installation. You will
need to pass to android create project the API target, the directory where you want
the skeleton generated, the name of the default activity, and the Java package where all
of this should reside:

android create project --target 2 \

--path /path/to/my/project/dir --activity Now \
--package com.commonsware.android.Now

You can also download the project directories of the samples shown in this book in a
ZIP file on the Apress web site. These projects are ready for use; you do not need to run
android create project on those unpacked samples.

Your project’s src/ directory contains the standard Java-style tree of directories based
on the Java package you used when you created the project (e.g., com. commonsware.android
results in src/com/commonsware/android/). Inside the innermost directory, you should
find a pregenerated source file named Now. java, which is where your first activity will go.

17

CHAPTER 3: Creating a Skeleton Application

This activity will contain a single button that displays the time that the button was last
pushed (or the time the application was started if the button has not been pushed).

NOTE: If you downloaded the source files from the Apress web site, you can just use the
Skeleton/Now project directly, rather than entering the code.

Open Now. java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();
setContentView(btn);

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());

}
}

Let’s examine this piece by piece.

Dissecting the Activity

The package declaration needs to be the same as the one you used when creating the
project. And, as with any other Java project, you need to import any classes you
reference. Most of the Android-specific classes are in the android package.

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

CHAPTER 3: Creating a Skeleton Application

It's worth noting that not every Java SE class is available to Android programs. Visit the
Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
Button btn;

Activities are public classes, inheriting from the android.app.Activity base class. In this
case, the activity holds a button (btn).

NOTE: A button, as you can see from the package name, is an Android widget, and widgets are
the user interface elements that you use in your application.

Since, for simplicity, we want to trap all button clicks just within the activity itself, we
also have the activity class implement OnClickListener:

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

btn=new Button(this);
btn.setOnClickListener(this);
updateTime();

) setContentView(btn);

The onCreate() method is invoked when the activity is started. The first thing you should
do is chain upward to the superclass, so the stock Android activity initialization can be
done.

In our implementation, we then create the button instance (new Button(this)), tell it to
send all button clicks to the activity instance itself (via setOnClickListener()), call a
private updateTime() method (shown shortly), and then set the activity’s content view to
be the button itself (via setContentView()).

NOTE: All widgets extend the View base class. You usually build the user interface out of a
hierarchy of views, but in this example, we are using a single view.

We will discuss that magical Bundle icicle in Chapter 16. For the moment, consider it
an opaque handle that all activities receive upon creation.

public void onClick(View view) {
updateTime();

In Swing, a JButton click raises an ActionEvent, which is passed to the ActionlListener
configured for the button. In Android, a button click causes onClick() to be invoked in
the OnClickListener instance configured for the button. The listener is provided to the
view that triggered the click (in this case, the button). All we do here is call that private
updateTime() method:

CHAPTER 3: Creating a Skeleton Application

private void updateTime() {
btn.setText(new Date().toString());

When we open the activity (onCreate()), or when the button is clicked (onClick()), we
update the button’s label to be the current time via setText(), which functions much the
same as the JButton equivalent.

Building and Running the Activity

To build the activity, use your integrated development environment’s (IDE’s) built-in
Android packaging tool or run ant in the base directory of your project. Then do the
following to run the activity:

1. Launch the emulator by running the android command, choosing an
AVD in the AVD Manager, and clicking the Start button. You should be
able to accept the defaults in the Launch Options dialog. Figure 3-1
shows the Android home screen.

NOTE: The first time you use an AVD with the emulator, it will take substantially longer to start
than it will subsequent times.

Ml @ 4:01pPm

~
-

5

Messaging —

© = @

Phone Contacts Browser

(TR

Figure 3-1. The Android home screen

2. Install the package (e.g., run ant install).

CHAPTER 3: Creating a Skeleton Application

3. View the list of installed applications in the emulator and find the Now
application. In Figure 3-2, it’s on the bottom row.

Tl @ 4:04PMm

P m @ &

Alarm Clock APIDemos Browser Calculator

o L -

Camera Contacts Custom Dev Tools

Locale

Y &

Gallery Gestures Messaging
Builder

P
Now

Phone Settings

Figure 3-2. The Android application launcher

4. Open that application. You should see an activity screen similar to the
one shown in Figure 3-3.

| Ml @& 9:59 pMI

Tue Aug 19 21:59:51 GMT+00:00 2008

e
Figure 3-3. The Now demonstration activity

CHAPTER 3: Creating a Skeleton Application

Clicking the button—in other words, clicking pretty much anywhere on the phone’s
screen—will update the time shown in the button’s label.

Note that the label is centered horizontally and vertically, as those are the default styles
applied to button captions. You can control that formatting, as described in Chapter 5.

After you are finished gazing at the awesomeness of Advanced Push-Button
Technology, you can click the back button on the emulator to return to the launcher.

Chapter

Using XML-Based Layouts

While it is technically possible to create and attach widgets to your activity purely
through Java code, as we did in the preceding chapter, the more common approach is
to use an XML-based layout file. Dynamic instantiation of widgets is reserved for more
complicated scenarios, where the widgets are not known at compile time (e.g.,
populating a column of radio buttons based on data retrieved from the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android
activities that way.

What Is an XML-Based Layout?

As the name suggests, an XML-based layout is a specification of widgets’ relationships
to each other—and to their containers (which are covered in Chapter 6)—encoded in
XML format. Specifically, Android considers XML-based layouts to be resources, and as
such, layout files are stored in the res/layout directory inside your Android project.

Each XML file contains a tree of elements specifying a layout of widgets and containers
that make up one View hierarchy. The attributes of the XML elements are properties,
describing how a widget should look or how a container should behave. For example, if
a Button element has an attribute value of android:textStyle = "bold", that means that
the text appearing on the face of the button should be rendered in a boldface font style.

Android’s SDK ships with a tool (aapt) that uses the layouts. This tool should be
automatically invoked by your Android toolchain (e.g., Eclipse or Ant’s build.xml). Of
particular importance to you as a developer is that aapt generates the R. java source file
within your project, allowing you to access layouts and widgets within those layouts
directly from your Java code, as will be demonstrated in this chapter.

23

CHAPTER 4: Using XML-Based Layouts

Why Use XML-Based Layouts?

Most everything you do using XML layout files can be achieved through Java code. For
example, you could use setTypeface() to have a button render its text in bold, instead
of using a property in an XML layout. Since XML layouts are yet another file for you to
keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition, such
as a GUI builder in an IDE like Eclipse or a dedicated Android GUI designer like
DroidDraw. Such GUI builders could, in principle, generate Java code instead of XML.
The challenge is rereading the Ul definition to support edits, which is far simpler when
the data is in a structured format like XML rather than in a programming language.
Moreover, keeping generated XML definitions separated from handwritten Java code
makes it less likely that someone’s custom-crafted source will get clobbered by
accident when the generated bits are regenerated. XML forms a nice middle ground
between something that is convenient for tool writers to use and easy for programmers
to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s
Extensible Application Markup Language (XAML), Adobe’s Flex, and Mozilla’s XML User
Interface Language (XUL) all take a similar approach to that of Android: put layout details
in an XML file and put programming smarts in source files (e.g., JavaScript for XUL).
Many less well-known GUI frameworks, such as ZK, also use XML for view definition.
While following the herd is not necessarily the best policy, it does have the advantage of
helping to ease the transition to Android from any other XML-centered view description
language.

OK, So What Does It Look Like?

Here is the Button from the previous chapter’s sample application, converted into an
XML layout file, found in the Layouts/NowRedux sample project:
<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/button”
android:text=""
android:layout width="fill parent"
android:layout_height="fill parent"/>

The class name of the widget, Button, forms the name of the XML element. Since Button
is an Android-supplied widget, we can just use the bare class name. If you create your
own widgets as subclasses of android.view.View, you will need to provide a full
package declaration as well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

All other elements will be children of the root and will inherit that namespace declaration.

CHAPTER 4: Using XML-Based Layouts

Because we want to reference this button from our Java code, we need to give it an
identifier via the android:id attribute. We will cover this concept in greater detail in the
next section.

The remaining attributes are properties of this Button instance:

B android:text: Indicates the initial text to be displayed on the button
face (in this case, an empty string).

B android:layout_width and android:layout_height: Tell Android to
have the button's width and height fill the parent—in this case, the
entire screen.

These attributes will be covered in greater detail in Chapter 6.

Since this single widget is the only content in our activity, we need just this single
element. Complex Uls will require a whole tree of elements, representing the widgets
and containers that control their positioning. All the remaining chapters of this book will
use the XML layout form whenever practical, so there are dozens of other examples of
more complex layouts for you to peruse.

What’s with the @ Signs?

Many widgets and containers need to appear only in the XML layout file and do not
need to be referenced in your Java code. For example, a static label (TextView)
frequently needs to be in the layout file just to indicate where it should appear. These
sorts of elements in the XML file do not need to have the android:id attribute to give
them a name.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/. .. as the id value, where the ... represents your locally
unique name for the widget in question. In the XML layout example in the preceding
section, @+id/button is the identifier for the Button widget.

Android provides a few special android:id values, of the form @android:id/.... You will
see some of these in various examples throughout this book.

And How Do We Attach These to the Java?

Given that you have painstakingly set up the widgets and containers in an XML layout
file named main.xml stored in res/layout, all you need is one statement in your activity’s
onCreate() callback to use that layout:

setContentView(R.layout.main);

This is the same setContentView() we used earlier, passing it an instance of a View
subclass (in that case, a Button). The Android-built View, constructed from our layout, is
accessed from that code-generated R class. All of the layouts are accessible under

CHAPTER 4: Using XML-Based Layouts

R.layout, keyed by the base name of the layout file; for example, res/layout/main.xml
results in R.1layout.main.

To access your identified widgets, use findViewById(), passing in the numeric identifier
of the widget in question. That numeric identifier was generated by Android in the R
class as R.id.something (where something is the specific widget you are seeking). Those
widgets are simply subclasses of View, just like the Button instance we created in the
previous chapter.

The Rest of the Story

In the original Now demo, the button’s face would show the current time, which would
reflect when the button was last pushed (or when the activity was first shown, if the
button had not yet been pushed). Most of that logic still works, even in this revised
demo (NowRedux). However, rather than instantiating the Button in our activity’s
onCreate() callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
implements View.OnClickListener {
Button btn;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

btn=(Button)findViewByld(R.id.button);
btn.setOnClickListener(this);
updateTime();

}

public void onClick(View view) {
updateTime();

private void updateTime() {
btn.setText(new Date().toString());

}
}
The first difference is that, rather than setting the content view to be a view we created
in Java code, we set it to reference the XML layout (setContentView(R.layout.main)).

CHAPTER 4: Using XML-Based Layouts

The R. java source file will be updated when we rebuild this project to include a
reference to our layout file (stored as main.xml in our project’s res/layout directory).

The other difference is that we need to get our hands on our Button instance, for which
we use the findViewById() call. Since we identified our button as @+id/button, we can
reference the button’s identifier as R.id.button. Now, with the Button instance in hand,
we can set the callback and set the label as needed.

The results look the same as with the original Now demo, as shown in Figure 4-1.

G @ 10:33PM
NowRedux

Tue Aug 19 22:32:29 GMT+00:00 2008

P ——
Figure 4-1. The NowRedux sample activity

Chapter

Employing Basic Widgets

Every GUI toolkit has some basic widgets: fields, labels, buttons, and so on. Android’s
toolkit is no different in scope, and the basic widgets will provide a good introduction to
how widgets work in Android activities.

Assigning Labels

The simplest widget is the label, referred to in Android as a TextView. As in most GUI
toolkits, labels are bits of text that cannot be edited directly by users. Typically, they are
used to identify adjacent widgets (e.g., a “Name:” label next to a field where you fill in a
name).

In Java, you can create a label by creating a TextView instance. More commonly,
though, you will create labels in XML layout files by adding a TextView element to the
layout, with an android:text property to set the value of the label itself. If you need to
swap labels based on certain criteria, such as internationalization, you may wish to use a
resource reference in the XML instead, as will be described in Chapter 20.

TextView has numerous other properties of relevance for labels, such as the following:

B android:typeface: Sets the typeface to use for the label (e.g.,
monospace).

B android:textStyle: Indicates that the typeface should be made bold
(bold), italic (italic), or bold and italic (bold italic).

B android:textColor: Sets the color of the label’s text, in RGB hex
format (e.g., #FF0000 for red).

For example, in the Basic/Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="You were expecting something profound?"
/>

29

CHAPTER 5: Employing Basic Widgets

Just that layout alone, with the stub Java source provided by Android’s project builder
(e.g., android create project), gives you the demo shown in Figure 5-1.

GhHl @ 12:56 PMm

LabelDemo

ou were expecting something profound

Figure 5-1. The LabelDemo sample application

Button, Button, Who’s Got the Button?

You have already seen the use of the Button widget in the previous two chapters. As it
turns out, Button is a subclass of TextView, so everything discussed in the preceding
section also applies to formatting the face of the button.

However, Android 1.6 adds a new feature for the declaration of the “on-click” listener for
a Button. In addition to the classic approach of defining some object (such as the
activity) as implementing the View.0OnClickListener interface, you can now take a
somewhat simpler approach:

B Define some method on your Activity that holds the button that takes
a single View parameter, has a void return value, and is public.

B In your layout XML, on the Button element, include the
android:onClick attribute with the name of the method you defined in
the previous step.

For example, you might have a method on your Activity that looks like this:

public void someMethod(View theButton) {
// do something useful here

}

Then you could use this XML declaration for the Button itself, including
android:onClick:

CHAPTER 5: Employing Basic Widgets

<Button
android:onClick="someMethod"

5

This is enough for Android to wire together the Button with the click handler.

Fleeting Images

Android has two widgets to help you embed images in your activities: ImageView and
ImageButton. As the names suggest, they are image-based analogues to TextView and
Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify which picture
to use. These usually reference a drawable resource, described in greater detail in
Chapter 20. You can also set the image content based on a Uri from a content provider
via setImageURI().

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for
responding to clicks and whatnot. For example, take a peek at the main.xml layout from
the Basic/ImageView sample project:

<?xml version="1.0" encoding="utf-8"?>

<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/icon"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:adjustViewBounds="true"
android:src="@drawable/molecule”
/>

The result, just using the code-generated activity, is simply the image shown in Figure 5-2.
GhHl @ 12:59 PM

ImageViewDemo

Figure 5-2. The ImageViewDemo sample application

CHAPTER 5: Employing Basic Widgets

Fields of Green. Or Other Colors.

Along with buttons and labels, fields are the third anchor of most GUI toolkits. In
Android, they are implemented via the EditText widget, which is a subclass of the
TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle), EditText has
many other properties that will be useful to you in constructing fields, including the
following:

B android:autoText: Controls if the field should provide automatic
spelling assistance.

B android:capitalize: Controls if the field should automatically
capitalize the first letter of entered text (useful for name or city fields,
for example).

B android:digits: Configures the field to accept only certain digits.

android:singleLine: Controls if the field is for single-line input or
multiple-line input (e.g., does pressing Enter move you to the next
widget or add a newline?).

Most of these properties are also available from the new android:inputType attribute,
introduced in Android 1.5 as part of adding “soft keyboards” to Android (discussed in
Chapter 10).

For example, from the Basic/Field project, here is an XML layout file showing an
EditText widget:

<?xml version="1.0" encoding="utf-8"?>

<EditText xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/field"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:singleline="false"
/>

Note that android:singlelLine is set to "false", so users will be able to enter in several
lines of text.

For this project, the FieldDemo. java file populates the input field with some prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

CHAPTER 5: Employing Basic Widgets

EditText fld=(EditText)findViewByld(R.id.field);

fld.setText("Licensed under the Apache License, Version 2.0 " +
"(the \"License\"); you may not use this file " +
"except in compliance with the License. You may " +
"obtain a copy of the License at " +
"http://www.apache.org/licenses/LICENSE-2.0");

}
}

The result, once built and installed into the emulator, is shown in Figure 5-3.

Eh M & 1:00 PM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin
compliance with the License. You
may obtain a copy of the License at
http://www.apache.org/licenses/LIC
ENSE-2.0

| e
Figure 5-3. The FieldDemo sample application

Another flavor of field is one that offers autocompletion, to help users supply a value
without typing in the whole entry. That is provided in Android as the
AutoCompleteTextView widget, discussed in greater detail in Chapter 9.

Just Another Box to Check

The classic check box has two states: checked and unchecked. Clicking the check box
toggles between those states to indicate a choice (e.g., “Add rush delivery to my order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an ancestor,
S0 you can use TextView properties like android:textColor to format the widget.

Within Java, you can invoke the following:

CHAPTER 5: Employing Basic Widgets

B isChecked(): Determines if the check box has been checked.

B setChecked(): Forces the check box into a checked or unchecked
state.

® toggle(): Toggles the check box as if the user checked it.

Also, you can register a listener object (in this case, an instance of
OnCheckedChangelistener) to be notified when the state of the check box changes.

For example, from the Basic/CheckBox project, here is a simple check box layout:

<?xml version="1.0" encoding="utf-8"?>

<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/check"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo. java retrieves and configures the behavior of the
check box:
public class CheckBoxDemo extends Activity

implements CompoundButton.OnCheckedChangeListener {
CheckBox cb;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

cb=(CheckBox)findViewByld(R.id.check);
cb.setOnCheckedChangeListener(this);
}

public void onCheckedChanged(CompoundButton buttonView,
boolean isChecked) {
if (isChecked) {
cb.setText("This checkbox is: checked");

else {
cb.setText("This checkbox is: unchecked");

}

}
}
Note that the activity serves as its own listener for check box state changes, since it
implements the OnCheckedChangeListener interface (via
cb.setOnCheckedChangelistener(this)). The callback for the listener is
onCheckedChanged(), which receives the check box whose state has changed and the
new state. In this case, we update the text of the check box to reflect what the actual
box contains.

What'’s the result? Clicking the check box immediately updates its text, as shown in
Figures 5-4 and 5-5.

CHAPTER 5: Employing Basic Widgets

EhH @ 1:38Pm

CheckBoxDemo

.This checkbox is: unchecked

Figure 5-4. The CheckBoxDemo sample application, with the check box unchecked

BNl & 1:38PM

CheckBoxDemo

This checkbox is: checked

Figure 5-5. The same application, with the check box checked

Turn the Radio Up

As with other implementations of radio buttons in other toolkits, Android’s radio buttons
are two-state, like check boxes, but can be grouped such that only one radio button in
the group can be checked at any time.

CHAPTER 5: Employing Basic Widgets

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits from
TextView. Hence, all the standard TextView properties for font face, style, color, and so
on are available for controlling the look of radio buttons. Similarly, you can call
isChecked() on a RadioButton to see if it is selected, toggle() to select it, and so on, as
you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside a RadioGroup. The
RadioGroup indicates a set of radio buttons whose state is tied, meaning only one button
in that group can be selected at any time. If you assign an android:id to your
RadioGroup in your XML layout, you can access the group from your Java code and
invoke the following:

B check(): Checks a specific radio button via its ID (e.g.,
group.check(R.id.radio1)).

B clearCheck(): Clears all radio buttons, so none in the group are
checked.

B getCheckedRadioButtonId(): Gets the ID of the currently checked
radio button (or -1 if none are checked).

For example, from the Basic/RadioButton sample application, here is an XML layout
showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<RadioButton android:id="@+id/radio1"
android:layout width="wrap_content"
android:layout height="wrap_content"
android:text="Rock" />

<RadioButton android:id="@+id/radio2"
android:layout_width="wrap_content"
android:layout height="wrap_content"
android:text="Scissors" />

<RadioButton android:id="@+id/radio3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get the
result shown in Figure 5-6.

CHAPTER 5: Employing Basic Widgets

EhHl @ 1:39 Pm

RadioButtonDemo

. Rock
. Scissors
. Paper

Figure 5-6. The RadioButtonDemo sample application

Note that the radio button group is initially set so that none of the buttons are checked
at the outset. To preset one of the radio buttons to be checked, use either setChecked()
on the RadioButton or check() on the RadioGroup from within your onCreate() callback
in your activity.

I’s Quite a View

All widgets, including the ones shown in the preceding sections, extend View, and as
such, give all widgets an array of useful properties and methods beyond those already
described.

Useful Properties

Some of the properties on View most likely to be used include the following, which
control the focus sequence:

B android:nextFocusDown
B android:nextFocuslLeft
B android:nextFocusRight
B android:nextFocusUp

Another useful property is android:visibility, which controls whether the widget is
initially visible.

CHAPTER 5: Employing Basic Widgets

Useful Methods

You can toggle whether or not a widget is enabled via setEnabled() and see if it is
enabled via isEnabled(). One common use pattern for this is to disable some widgets
based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via isFocused().
You might use this in concert with disabling widgets, to ensure the proper widget has
the focus once your disabling operation is complete.

To help navigate the tree of widgets and containers that make up an activity’s overall
view, you can use the following:

B getParent(): Finds the parent widget or container.
B findViewById(): Finds a child widget with a certain ID.

B getRootView(): Gets the root of the tree (e.g., what you provided to the
activity via setContentView()).

Colors

There are two types of color attributes in Android widgets. Some, like
android:background, take a single color (or a graphic image to serve as the
background). Others, like android:textColor on TextView (and subclasses), can take a
ColorStatelist, including via the Java accessor (in this case, setTextColor()).

A ColorStatelist allows you to specify different colors for different conditions. For
example, a TextView can have one text color when it is the selected item in a list and
another color when it is not selected (selection widgets are discussed in Chapter 7). This
is handled via the default ColorStatelist associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main
choices:

B Use ColorStatelist.valueOf(), which returns a ColorStatelList in
which all states are considered to have the same color, which you
supply as the parameter to the value0Of() method. This is the Java
equivalent of the android:textColor approach, to make the TextView
always a specific color, regardless of circumstances.

B Create a ColorStatelist with different values for different states,
either via the constructor or via an XML document.

Chapter

Working with Containers

Containers pour a collection of widgets (and possibly child containers) into specific
structures. If you want a form with labels on the left and fields on the right, you need a
container. If you want OK and Cancel buttons to be beneath the rest of the form, next
to one another, and flush to the right side of the screen, you need a container. Just
from a pure XML perspective, if you have multiple widgets (beyond RadioButton
widgets in a RadioGroup), you need a container just to have a root element to place the
widgets inside.

Most GUI toolkits have some notion of layout management, frequently organized into
containers. In Java/Swing, for example, you have layout managers like BoxLayout and
containers that use them (e.g., Box). Some toolkits, such as XUL and Flex, stick strictly
to the box model, figuring that any desired layout can be achieved through the correct
combination of nested boxes. Android, through LinearLayout, also offers a box model.
In addition, Android supports a range of containers that provide different layout rules.

In this chapter, we will look at several commonly used containers: LinearLayout (the box
model), Relativelayout (a rule-based model), TablelLayout (the grid model), and
ScrollView, a container designed to assist with implementing scrolling containers.

Thinking Linearly

LinearlLayout is a box model, in which widgets or child containers are lined up in a
column or row, one after the next. This works in a similar manner to FlowLayout in
Java/Swing, and vbox and hbox in Flex and XUL.

Flex and XUL use the box as their primary unit of layout. If you want, you can use
LinearLayout in much the same way, eschewing some of the other containers. Getting
the visual representation you want is mostly a matter of identifying where boxes should
nest and which properties those boxes should have, such as their alignment in relation
to other boxes.

39

CHAPTER 6: Working with Containers

LinearLayout Concepts and Properties

To configure a LinearlLayout, you have five main areas of control: the orientation, the fill
model, the weight, the gravity, and the padding.

Orientation

Orientation indicates whether the LinearLayout represents a row or a column. Just add
the android:orientation property to your LinearLayout element in your XML layout,
setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the
LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model

Let’s imagine a row of widgets, such as a pair of radio buttons. These widgets have a
“natural” size based on their text. Their combined sizes probably do not exactly match
the width of the Android device’s screen, particularly since screens come in various
sizes. You then have the issue of what to do with the remaining space.

All widgets inside a LinearLayout must supply android:layout_width and
android:layout_height properties to help address this issue. These properties’ values
have three flavors:

B You can provide a specific dimension, such as 125px to indicate the
widget should take up exactly 125 pixels.

B You can provide wrap_content, which means the widget should fill up
its natural space, unless that is too big, in which case Android can use
word-wrap as needed to make it fit.

B You can provide fill parent, which means the widget should fill up
all available space in its enclosing container, after all other widgets are
handled.

The latter two flavors are the most common, as they are independent of screen size,
allowing Android to adjust your view to fit the available space.

Weight

But what happens if you have two widgets that should split the available free space? For
example, suppose you have two multiline fields in a column, and you want them to take
up the remaining space in the column after all other widgets have been allocated their
space. To make this work, in addition to setting android:layout_width (for rows) or
android:layout_height (for columns) to fill parent, you must also set
android:layout_weight.

CHAPTER 6: Working with Containers

The android:layout weight property indicates the proportion of the free space that
should go to that widget. For exampile, if you set android:layout_weight to be the same
nonzero value for a pair of widgets (e.g., 1), the free space will be split evenly between
them. If you set it to be 1 for one widget and 2 for the other widget, the second widget
will use up twice the free space that the first widget does. The weight for a widget is
zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage basis.
To use this technique for, say, a horizontal layout:

B Set all the android:layout_width values to be 0 for the widgets in the
layout.

B Set the android:layout_weight values to be the desired percentage
size for each widget in the layout.

B Make sure all those weights add up to 100.

Gravity

By default, everything in a LinearLayout is left- and top-aligned. So, if you create a row
of widgets via a horizontal LinearLayout, the row will start flush on the left side of the
screen. If that is not what you want, you need to specify a gravity value. Using
android:layout gravity on a widget (or calling setGravity() at runtime on the widget’s
Java object), you can tell the widget and its container how to align it in on the screen.

For a column of widgets, common gravity values are left, center_horizontal, and
right for left-aligned, centered, and right-aligned widgets, respectively.

For a row of widgets, the default is for them to be aligned so their text is aligned on the
baseline (the invisible line that letters seem to “sit on”). You can specify a gravity of
center_vertical to center the widgets along the row’s vertical midpoint.

Padding

By default, widgets are tightly packed next to each other. If you want to increase the
whitespace between widgets, you will want to use the android:padding property (or call
setPadding() at runtime on the widget’s Java object). The padding specifies how much
space there is between the boundaries of the widget’s “cell” and the actual widget
contents, as shown in Figure 6-1.

CHAPTER 6: Working with Containers

doj Buipped

paddingLeft paddingRight

Widget

wonogbuipped

Figure 6-1. The relationship between a widget, its cell, and the padding values

The android:padding property allows you to set the same padding on all four sides of
the widget, with the widget’s contents centered within that padded-out area. If you want
the padding to vary on different sides, use android:paddingleft, android:paddingRight,
android:paddingTop, and android:paddingBottom. The value of the padding is a
dimension, such as 5px for 5 pixels’ worth of padding.

If you apply a custom background to a widget (e.g., via the android:background
attribute), the background will be behind both the widget and the padding area. To avoid
this, rather than using padding, you can establish margins, which add whitespace
without extending the intrinsic size of the widget. You can set margins via
android:layout_marginTop and related attributes.

LinearLayout Example

Let’s look at an example (Containers/Linear) that shows LinearLayout properties set
both in the XML layout file and at runtime. Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<RadioGroup android:id="@+id/orientation"”
android:orientation="horizontal"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:padding="5px">
<RadioButton

CHAPTER 6: Working with Containers

android:id="@+id/horizontal"
android:text="horizontal" />
<RadioButton
android:id="@+id/vertical"
android:text="vertical" />
</RadioGroup>
<RadioGroup android:id="@+id/gravity"
android:orientation="vertical"
android:layout width="fill parent"”
android:layout_height="wrap_content
android:padding="5px">
<RadioButton
android:id="@+id/left"
android:text="left" />
<RadioButton
android:id="@+id/center"
android:text="center" />
<RadioButton
android:id="@+id/right"
android:text="right" />
</RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is a
subclass of LinearLayout, so our example demonstrates nested boxes as if they were all
LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of
RadioButton widgets. The RadioGroup has 5px of padding on all sides, separating it from
the other RadioGroup. The width and height are both set to wrap_content, so the radio
buttons will take up only the space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of three
RadioButton widgets. Again, we have 5px of padding on all sides and a natural height
(android:layout_height = "wrap_content"). However, we have set
android:layout width to be fill parent, meaning the column of radio buttons claims
the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java code:

package com.commonsware.android.linear;

import android.app.Activity;

import android.os.Bundle;

import android.view.Gravity;

import android.text.TextWatcher;
import android.widget.LlinearlLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
implements RadioGroup.OnCheckedChangelistener {
RadioGroup orientation;
RadioGroup gravity;

@0verride

CHAPTER 6: Working with Containers

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

orientation=(RadioGroup)findViewByld(R.id.orientation);
orientation.setOnCheckedChangeListener(this);
gravity=(RadioGroup)findViewByld(R.id.gravity);

y gravity.setOnCheckedChangelListener(this);

public void onCheckedChanged(RadioGroup group, int checkedId) {
switch (checkedId) {
case R.id.horizontal:
orientation.setOrientation(LinearLayout.HORIZONTAL);
break;

case R.id.vertical:
orientation.setOrientation(LinearLayout.VERTICAL);
break;

case R.id.left:
gravity.setGravity(Gravity.LEFT);
break;

case R.id.center:
gravity.setGravity (Gravity.CENTER_HORIZONTAL);
break;

case R.id.right:
gravity.setGravity(Gravity.RIGHT);
break;

}
}
}
In onCreate(), we look up our two RadioGroup containers and register a listener on each,
so we are notified when the radio buttons change state
(setOnCheckedChangelListener(this)). Since the activity implements
OnCheckedChangelistener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which RadioGroup had a
state change. If it was the orientation group, we adjust the orientation based on the
user’s selection. If it was the gravity group, we adjust the gravity based on the user’s
selection.

Figure 6-2 shows the result when the layout demo is first launched inside the emulator.

CHAPTER 6: Working with Containers

G & 12:22Am

LinearLayoutDemo

. horizontal . vertical

. left
. center
. right

Figure 6-2. The LinearLayoutDemo sample application, as initially launched

If we toggle on the vertical radio button, the top RadioGroup adjusts to match, as shown
in Figure 6-3.

Gl @ 12:22Am

LinearLayoutDemo

. horizontal
e vertical

@ -
. center

. right

Figure 6-3. The same application, with the vertical radio button selected

If we toggle the center or right radio button, the bottom RadioGroup adjusts to match, as
shown in Figures 6-4 and 6-5.

CHAPTER 6: Working with Containers

B @ 12:23Am

LinearLayoutDemo

. horizontal
e vertical

. left
e center

. right

Figure 6-4. The same application, with the vertical and center radio buttons selected

Gl ® 12:23AM

LinearLayoutDemo

. horizontal
e vertical

0
. center

e right

Figure 6-5. The same application, with the vertical and right radio buttons selected

All Things Are Relative

Relativelayout, as the name suggests, lays out widgets based on their relationship to
other widgets in the container and the parent container. You can place widget X below
and to the left of widget Y, have widget Z’s bottom edge align with the bottom of the

CHAPTER 6: Working with Containers

container, and so on. This is reminiscent of James Elliot’s RelativeLayout for use with
Java/Swing.

RelativeLayout Concepts and Properties

To make your Relativelayout work, you need ways to reference other widgets within an
XML layout file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container

The easiest relationships to set up are those that tie a widget’s position to that of its
container:

B android:layout_alignParentTop: Aligns the widget’s top with the top
of the container.

B android:layout_alignParentBottom: Aligns the widget’s bottom with
the bottom of the container.

B android:layout_alignParentLeft: Aligns the widget’s left side with the
left side of the container.

B android:layout_alignParentRight: Aligns the widget’s right side with
the right side of the container.

B android:layout_centerHorizontal: Positions the widget horizontally at
the center of the container.

B android:layout centerVertical: Positions the widget vertically at the
center of the container.

B android:layout_centerInParent: Positions the widget both
horizontally and vertically at the center of the container.

All of these properties take a simple Boolean value (true or false).

NOTE: The padding of the widget is taken into account when performing the various alignments.
The alignments are based on the widget’s overall cell (combination of its natural space plus the
padding).

Relative Notation in Properties

The remaining properties of relevance to Relativelayout take as a value the identity of a
widget in the container. To do this:

B Put identifiers (android:id attributes) on all elements that you will need
to address, of the form @+id/....

CHAPTER 6: Working with Containers

B Reference other widgets using the same identifier value without the
plus sign (@id/...).

For example, if widget A is identified as @+id/widget_a, widget B can refer to widget A in
one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets

Four properties control the position of a widget in relation to other widgets:

B android:layout_above: Indicates that the widget should be placed
above the widget referenced in the property.

B android:layout_below: Indicates that the widget should be placed
below the widget referenced in the property.

B android:layout_toleftOf: Indicates that the widget should be placed
to the left of the widget referenced in the property.

B android:layout_toRightOf: Indicates that the widget should be placed
to the right of the widget referenced in the property.

Beyond those four, five additional properties can control one widget’s alignment relative
to another:

B android:layout_alignTop: Indicates that the widget’s top should be
aligned with the top of the widget referenced in the property.

B android:layout_alignBottom: Indicates that the widget’s bottom
should be aligned with the bottom of the widget referenced in the
property.

B android:layout_alignleft: Indicates that the widget’s left should be
aligned with the left of the widget referenced in the property.

B android:layout_alignRight: Indicates that the widget’s right should
be aligned with the right of the widget referenced in the property.

B android:layout_alignBaseline: Indicates that the baselines of the two
widgets should be aligned (where the baseline is the invisible line that
text appears to sit on).

The android:layout_alignBaseline property is useful for aligning labels and fields so
that the text appears natural. Since fields have a box around them and labels do not,
android:layout_alignTop would align the top of the field’s box with the top of the label,
which will cause the text of the label to be higher on the screen than the text entered
into the field.

So, if you want widget B to be positioned to the right of widget A, in the XML element for
widget B, you need to include android:layout toRightOf = "@id/widget a" (assuming
@id/widget_a is the identity of widget A).

CHAPTER 6: Working with Containers

Order of Evaluation

It used to be that Android would use a single pass to process Relativelayout-defined
rules. That meant you could not reference a widget (e.g., via android:layout_above) until
it had been declared in the XML. This made defining some layouts a bit complicated.
Starting in Android 1.6, Android uses two passes to process the rules, so you can now
safely have forward references to as-yet-undefined widgets.

RelativeLayout Example

Now let’s examine a typical “form” with a field, a label, and a pair of buttons labeled OK
and Cancel. Here is the XML layout, pulled from the Containers/Relative sample
project:

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="5px">
<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:paddingTop="15px"/>
<EditText
android:id="@+id/entry"
android:layout width="fill parent"”
android:layout_height="wrap_content"
android:layout_toRightOf="@id/label"
android:layout_alignBaseline="@id/label"/>
<Button
android:id="@+id/ok"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />
<Button
android:id="@+id/cancel"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_tolLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />
</Relativelayout>

First, we open the Relativelayout. In this case, we want to use the full width of the
screen (android:layout width = "fill parent"), only as much height as we need
(android:layout_height = "wrap_content"), and have 5 pixels of padding between the
boundaries of the container and its contents (android:padding = "5px").

Next, we define the label, which is fairly basic, except for its own 15-pixel padding
(android:padding = "15px"). More on that in a moment.

CHAPTER 6: Working with Containers

After that, we add in the field. We want the field to be to the right of the label and have
the text aligned along the baseline. Also, the field should take up the rest of this “row” in
the layout. These requirements are handled by three properties:

B android:layout toRightOf = "@id/label”
B android:layout_alignBaseline = "@id/label”
B android:layout_width = "fill parent"

If we skipped the 15-pixel padding on the label, we would find that the top of the field
was clipped off. That’s because of the 5-pixel padding on the container itself. The
android:layout_alignBaseline = "@id/label" simply aligns the baselines of the label
and field. The label, by default, has its top aligned with the top of the parent. But the
label is shorter than the field because of the field’s box. Since the field is dependent on
the label’s position, and the label’s position is already defined (because it appeared first
in the XML), the field winds up being too high and has the top of its box clipped off by
the container’s padding.

You may find yourself running into these sorts of problems as you try to get your
Relativelayout to behave the way you want it to.

The solution to this conundrum, used in the XML layout shown above, is to give the label
15 pixels’ worth of padding on the top This pushes the label down far enough that the
field will not get clipped.

The OK button is set to be below the field (android:layout below = "@id/entry") and
have its right side align with the right side of the field (android:layout_alignRight =
"@id/entry"). The Cancel button is set to be to the left of the OK button
(android:layout_toleft = "@id/ok") and have its top aligned with the OK button
(android:layout_alignTop = "@id/ok").

Of course, that 15px of padding is a bit of a hack. A better solution, for Android 1.6 and
beyond, is to anchor the EditText to the top of the screen and have the TextView say it
is aligned with the EditText widget's baseline, as shown in the following example. (In
Android 1.5 and earlier, this was not possible, because of the single-pass rule
interpretation mentioned earlier.)

<?xml version="1.0" encoding="utf-8"?>
<Relativelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:padding="5px">
<TextView android:id="@+id/label"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="URL:"
android:layout_alignBaseline="@+id/entry"
android:layout_alignParentLeft="true"/>
<EditText
android:id="@id/entry"
android:layout width="fill parent"”
android:layout_height="wrap_content"

CHAPTER 6: Working with Containers

android:layout_toRightOf="@id/label"
android:layout_alignParentTop="true"/>
<Button
android:id="@+id/ok"
android:layout_width="wrap content"”
android:layout_height="wrap_content"
android:layout_below="@id/entry"
android:layout_alignRight="@id/entry"
android:text="0K" />
<Button
android:id="@+id/cancel”
android:layout_width="wrap_content"”
android:layout_height="wrap content"
android:layout_tolLeftOf="@id/ok"
android:layout_alignTop="@id/ok"
android:text="Cancel" />
</Relativelayout>

With no changes to the autogenerated Java code, the emulator gives us the result
shown in Figure 6-6.

Gl @ 12:34 AM

RelativeLayoutDemo

Figure 6-6. The RelativeLayoutDemo sample application

Tahula Rasa

If you like HTML tables, spreadsheet grids, and the like, you will appreciate Android’s
Tablelayout, which allows you to position your widgets in a grid to your specifications.
You control the number of rows and columns, which columns might shrink or stretch to
accommodate their contents, and so on.

CHAPTER 6: Working with Containers

Tablelayout works in conjunction with TableRow. TablelLayout controls the overall
behavior of the container, with the widgets themselves poured into one or more
TableRow containers, one per row in the grid.

TableLayout Concepts and Properties

For your table layout, you need to figure out how widgets work with rows and columns,
plus how to handle widgets that reside outside rows.

Putting Cells in Rows

Rows are declared by you, the developer, by putting widgets as children of a TableRow
inside the overall TablelLayout. You, therefore, control directly how many rows appear in
the table.

The number of columns is determined by Android; you control the number of columns in
an indirect fashion. First, there will be at least one column per widget in your longest
row. So if you have three rows—one with two widgets, one with three widgets, and one
with four widgets—there will be at least four columns. However, a widget can take up
more than one column by including the android:1layout_span property, indicating the
number of columns the widget spans. This is akin to the colspan attribute one finds in
table cells in HTML. In this XML layout fragment, the field spans three columns:
<TableRow>
<TextView android:text="URL:" />
<EditText
android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>

Ordinarily, widgets are put into the first available column. In the preceding fragment, the
label would go in the first column (column 0, as columns are counted starting from 0),
and the field would go into a spanned set of three columns (columns 1 through 3).
However, you can put a widget into a different column via the android:layout_column
property, specifying the 0-based column the widget belongs to:

<TableRow>
<Button
android:id="@+id/cancel”
android:layout_column="2"
android:text="Cancel" />
<Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column
(column 2). The OK button then goes into the next available column, which is the
fourth column.

CHAPTER 6: Working with Containers

Other Children of TableLayout

Normally, TableLayout contains only TableRow elements as immediate children.
However, it is possible to put other widgets in between rows. For those widgets,
TablelLayout behaves a bit like LinearLayout with vertical orientation. The widgets
automatically have their width set to fill_parent, so they will fill the same space that
the longest row does.

One pattern for this is to use a plain View as a divider. For example, you could use <View
android:layout_height = "2px" android:background = "#0000FF" /> for a 2-pixel-high
blue bar across the width of the table.

Stretch, Shrink, and Collapse

By default, each column will be sized according to the natural size of the widest widget
in that column (taking spanned columns into account). Sometimes, though, that does
not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The value
should be a single column number (again, 0-based) or a comma-delimited list of column
numbers. Those columns will be stretched to take up any available space on the row.
This helps if your content is narrower than the available space.

Conversely, you can place a android:shrinkColumns property on the Tablelayout.
Again, this should be a single column number or a comma-delimited list of column
numbers. The columns listed in this property will try to word-wrap their contents to
reduce the effective width of the column. By default, widgets are not word-wrapped.
This helps if you have columns with potentially wordy content that might cause some
columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TableLayout, again
with a column number or comma-delimited list of column numbers. These columns will
start out collapsed, meaning that they will be part of the table information but will be
invisible. Programmatically, you can collapse and uncollapse columns by calling
setColumnCollapsed() on the TableLayout. You might use this to allow users to control
which columns are of importance to them and should be shown versus which ones are
less important and can be hidden.

You can also control stretching and shrinking at runtime via setColumnStretchable()
and setColumnShrinkable().

TableLayout Example

The XML layout fragments shown earlier, when combined, give us a TablelLayout
rendition of the form we created for Relativelayout, with the addition of a divider line
between the label/field and the two buttons (found in the Containers/Table demo):

CHAPTER 6: Working with Containers

<?xml version="1.0" encoding="utf-8"?>
<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1">
<TableRow>
<TextView
android:text="URL:" />
<EditText android:id="@+id/entry"
android:layout_span="3"/>
</TableRow>
<View
android:layout_height="2px"
android:background="#0000FF" />
<TableRow>
<Button android:id="@+id/cancel”
android:layout column="2"
android:text="Cancel" />
<Button android:id="@+id/ok"
android:text="0K" />
</TableRow>
</Tablelayout>

When compiled against the generated Java code and run on the emulator, we get the
result shown in Figure 6-7.

Gl @ 12:35 AM

TableLayoutDemo

-
o

Figure 6-7. The TableLayoutDemo sample application

Scrollwork

Phone screens tend to be small, which requires developers to use some tricks to
present a lot of information in the limited available space. One trick for doing this is to

CHAPTER 6: Working with Containers

use scrolling, so only part of the information is visible at one time, and the rest is
available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a layout
that might be too big for some screens, wrap it in a ScrollView, and still use your
existing layout logic. It just so happens that the user can see only part of your layout at
one time.

For example, here is a ScrollView used in an XML layout file (from the
Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content">
<TableLayout
android:layout_width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="0">
<TableRow>
<View
android:layout_height="80px"
android:background="#000000"/>
<TextView android:text="#000000"
android:paddinglLeft="4px"
android:layout_gravity="center vertical" />

</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#440000" />
<TextView android:text="#440000"

android:

paddinglLeft="4px"

android:layout_gravity="center vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"

android:

background="#884400" />

<TextView android:text="#884400"
android:paddinglLeft="4px"
android:layout_gravity="center vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#aa8844" />
<TextView android:text="#aa8844"

android:

paddinglLeft="4px"

android:layout_gravity="center vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"

android:

<TextView

background="#ffaa88" />
android:text="#ffaa88"

CHAPTER 6: Working with Containers

android:paddinglLeft="4px"
android:layout_gravity="center vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80px"
android:background="#ffffaa" />
<TextView android:text="#ffffaa"
android:paddingleft="4px"
android:layout_gravity="center_vertical" />
</TableRow>
<TableRow>
<View
android:layout_height="80opx"
android:background="#ffffff" />
<TextView android:text="#ffffff"
android:paddingleft="4px"
android:layout_gravity="center vertical" />
</TableRow>
</TablelLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (seven rows at 80
pixels each, based on the View declarations). There may be some devices with screens
capable of showing that much information, but many will be smaller. The ScrollView lets
us keep the table as is, but present only part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see the result
shown in Figure 6-8.

Gl @ 12:36 AM

ScrollViewDemo

Figure 6-8. The ScrollViewDemo sample application

CHAPTER 6: Working with Containers

Notice how only five rows and part of the sixth are visible. By pressing the up/down
buttons on the D-pad, you can scroll up and down to see the remaining rows. Also note
how the right side of the content is clipped by the scrollbar. Be sure to put some
padding on that side or otherwise ensure your content does not get clipped in this
fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView, but
horizontally. This can be useful for forms that might be too wide rather than too tall. Note
that neither ScrollView nor HorizontalScrollView will give you bidirectional scrolling;
you need to choose vertical or horizontal.

Chapter

Using Selection Widgets

Back in Chapter 5, you saw how fields could have constraints placed on them to limit
possible input, such as only digits. These sorts of constraints help users “get it right”
when entering information, particularly on mobile devices with cramped keyboards.

Of course, the ultimate in constrained input is to allow selection only from a set of items,
such as a radio button group (also discussed in Chapter 5). Classic Ul toolkits have list
boxes, combo boxes, drop-down lists, and the like for that very purpose. Android
provides many of the same sorts of widgets, plus others of particular interest for mobile
devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining which choices are
available in these widgets. Specifically, Android offers a framework of data adapters that
provide a common interface for selection lists, ranging from static arrays to database
contents. Selection views —widgets for presenting lists of choices—are handed an
adapter to supply the actual choices.

This chapter begins with a look at Android’s adapters, and then introduces its selection
widgets.

Adapting to the Circumstances

In the abstract, adapters provide a common interface to multiple disparate APIs. More
specifically, in Android’s case, adapters provide a common interface to the data model
behind a selection-style widget, such as a list box. This use of Java interfaces is fairly
common (e.g., Java/Swing’s model adapters for JTable), and Java is far from the only
environment offering this sort of abstraction (e.g., Flex’s XML data-binding framework
accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection
widget, as well as for converting individual elements of data into specific views to be
displayed inside the selection widget. The latter facet of the adapter system may sound
a little odd, but in reality, it is not that different from other GUI toolkits’ ways of
overriding default display behavior. For example, in Java/Swing, if you want a JList-
backed list box to actually be a checklist (where individual rows are a check box plus

CHAPTER 7: Using Selection Widgets

label, and clicks adjust the state of the check box), you inevitably wind up calling
setCellRenderer() to supply your own ListCellRenderer, which in turn converts strings
for the list into JCheckBox-plus-JLabel composite widgets.

The easiest adapter to use is ArrayAdapter. All you need to do is wrap one of these
around a Java array or java.util.List instance, and you have a fully functioning
adapter:
String[] items={"this", "is", "a",
"really", "silly", "list"};
new ArrayAdapter<String>(this,
android.R.layout.simple list item 1, items);

The ArrayAdapter constructor takes three parameters:
B The Context to use (typically this will be your activity instance)

B The resource ID of a view to use (such as a built-in system resource
ID, as shown in the preceding example)

B The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and wrap
each of those strings in the view designated by the supplied resource.
android.R.layout.simple 1ist item 1 simply turns those strings into TextView objects.
Those TextView widgets, in turn, will be shown in the list, spinner, or whatever widget
uses this ArrayAdapter. In Chapter 8, you’ll see how to subclass Adapter and override
row creation, to give you greater control over how rows appear.

Here are two other adapters in Android that you may want to use:

B CursorAdapter: Converts a Cursor, typically from a content provider,
into something that can be displayed in a selection view. (We’ll look at
CursorAdapter in greater detail in Chapter 22, which covers
databases.)

B SimpleAdapter: Converts data found in XML resources.

Lists of Naughty and Nice

The classic list box widget in Android is known as ListView. Include one of these in your
layout, invoke setAdapter() to supply your data and child views, and attach a listener
via setOnItemSelectedlListener() to find out when the selection has changed. With that,
you have a fully functioning list box.

However, if your activity is dominated by a single list, you might consider creating your
activity as a subclass of ListActivity, rather than the regular Activity base class. If
your main view is just the list, you do not even need to supply a layout; ListActivity will
construct a full-screen list for you. If you do want to customize the layout, you can, as
long as you identify your ListView as @android:id/1ist, so ListActivity knows which
widget is the main list for the activity.

CHAPTER 7: Using Selection Widgets

For example, here is a layout pulled from the Selection/List sample project, which is
simply a list with a label on top to show the current selection:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent" >
<TextView
android:id="@+id/selection”
android:layout_width="fill parent"
android:layout_height="wrap content"/>
<ListView
android:id="@android:id/1ist"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:drawSelectorOnTop="false"
/>
</LinearLayout>

The Java code to configure the list and connect the list with the label is as follows:

public class ListViewDemo extends ListActivity {
TextView selection;
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,
items));
y selection=(TextView)findViewByld(R.id.selection);

public void onListltemClick(ListView parent, View v, int position,
long id) {
selection.setText(items[position]);

}
}
With ListActivity, you can set the list adapter via setListAdapter()—in this case,
providing an ArrayAdapter wrapping an array of nonsense strings. To find out when the
list selection changes, override onListItemClick() and take appropriate steps based on
the supplied child view and position—in this case, updating the label with the text for
that position. The results are shown in Figure 7-1.

CHAPTER 7: Using Selection Widgets

N Bl @ s5:38Pm

| ListViewDemo

consectetuer

Figure 7-1. The ListViewDemo sample application

The second parameter to our ArrayAdapter, android.R.layout.simple 1ist item 1,
controls the appearance of the rows. The value used in the preceding example provides
the standard Android list row: big font, a lot of padding, and white text.

By default, ListView is set up to simply collect clicks on list entries. If you want a list that
tracks a user’s selection, or possibly multiple selections, ListView can handle that as
well, but it requires a few changes:

B Call setChoiceMode() on the ListView in Java code to set the choice
mode, supplying either CHOICE_MODE_SINGLE or CHOICE MODE MULTIPLE
as the value. You can get your ListView from a ListActivity via
getListView().

B Rather than using android.R.layout.simple_ list item 1 as the layout
for the list rows in your ArrayAdapter constructor, use either
android.R.layout.simple list item single choice or
android.R.layout.simple 1list item multiple choice for single-
choice (see Figure 7-2) or multiple-choice (see Figure 7-3) lists.

B To determine which ones the user checked, call
getCheckedItemPositions() on your ListView.

CHAPTER 7: Using Selection Widgets

G @ 11:51 Am

ListViewDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 7-2. Single-select mode

Tl @ 11:56 AM

ListViewDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 7-3. Multiple-select mode

Spin Control

In Android, the Spinner is the equivalent of the drop-down selector you might find in
other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the D-pad
pops up a selection dialog box from which the user can choose an item. You basically

CHAPTER 7: Using Selection Widgets

get the ability to select from a list without taking up all the screen space of a ListView,
at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via setAdapter(),
and hook in a listener object for selections via setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you need
to configure the adapter, not the Spinner widget. Use the setDropDownViewResource()
method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML layout
for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<Spinner android:id="@+id/spinner"”
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:drawSelectorOnTop="true"
/>
</LinearlLayout>

This is the same view as shown in the previous section, but with a Spinner instead of a
ListView. The Spinner property android:drawSelectorOnTop controls whether the arrow
is drawn on the selector button on the right side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity

implements AdapterView.OnItemSelectedlListener {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewByld(R.id.selection);

Spinner spin=(Spinner)findViewByld(R.id.spinner);
spin.setOnltemSelectedListener(this);

CHAPTER 7: Using Selection Widgets

ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
android.R.layout.simple_spinner_item,
items);

aa.setDropDownViewResource(
android.R.layout.simple spinner dropdown item);

spin.setAdapter(aa);

public void onltemSelected(AdapterView<?> parent,
View v, int position, long id) {
selection.setText(items[position]);

}

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

}

Here, we attach the activity itself as the selection listener
(spin.setOnItemSelectedListener(this)). This works because the activity implements
the OnItemSelectedlListener interface. We configure the adapter not only with the list of
fake words, but also with a specific resource to use for the drop-down view (via
aa.setDropDownViewResource()). Also notice the use of

android.R.layout.simple spinner item as the built-in View for showing items in the

spinner itself.

Finally, we implement the callbacks required by OnItemSelectedlListener to adjust the
selection label based on user input. Figures 7-4 and 7-5 show the results.

GH® 11:36 PM

SpinnerDemo

orem

lorem

Figure 7-4. The SpinnerDemo sample application, as initially launched

CHAPTER 7: Using Selection Widgets

G @ 11:36 PM

consectetuer

Figure 7-5. The same application, with the spinner drop-down list displayed

Grid Your Lions (or Something Like That...)

As the name suggests, GridView gives you a two-dimensional grid of items from which
to choose. You have moderate control over the number and size of the columns; the
number of rows is dynamically determined based on the number of items the supplied
adapter says are available for viewing.

When combined, a few properties determine the number of columns and their sizes:

B android:numColumns: Specifies how many columns there are, or, if you
supply a value of auto_fit, Android will compute the number of
columns based on the available space and the following properties.

B android:verticalSpacing and android:horizontalSpacing: Indicate
how much whitespace there should be between items in the grid.

B android:columnWidth: Indicates how many pixels wide each column
should be.

B android:stretchMode: Indicates, for grids with auto_fit for
android:numColumns, what should happen for any available space not
taken up by columns or spacing. This can be columnWidth, to have the
columns take up available space, or spacingWidth, to have the
whitespace between columns absorb extra space.

For example, suppose the screen is 320 pixels wide, and you have android:columnWidth
set to 100px and android:horizontalSpacing set to 5px. Three columns would use 310
pixels (three columns of 100 pixels and two whitespace areas of 5 pixels). With

CHAPTER 7: Using Selection Widgets

android:stretchMode set to columnWidth, the three columns will each expand by 3 to 4
pixels to use up the remaining 10 pixels. With android:stretchMode set to spacingWidth,
the two whitespace areas will each grow by 5 pixels to consume the remaining 10
pixels.

Otherwise, the GridView works much like any other selection widget: use setAdapter()
to provide the data and child views, invoke setOnItemSelectedListener() to register a
selection listener, and so on.

For example, here is a XML layout from the Selection/Grid sample project, showing a
GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<GridView
android:id="@+id/grid"
android:layout _width="fill parent"
android:layout_height="fill parent"
android:verticalSpacing="35px"
android:horizontalSpacing="5px"
android:numColumns="auto_fit"
android: columniWidth="100px"
android:stretchMode="columnWidth"
android:gravity="center"
/>
</LinearlLayout>

For this grid, we take up the entire screen except for what our selection label requires.
The number of columns is computed by Android (android:numColumns = "auto fit")
based on 5-pixel horizontal spacing (android:horizontalSpacing = "5px") and 100-
pixel columns (android:columnWidth = "100px"), with the columns absorbing any “slop”
width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is as follows:

public class GridDemo extends Activity

implements AdapterView.OnItemSelectedListener {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride
public void onCreate(Bundle icicle) {

CHAPTER 7: Using Selection Widgets

super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewByld(R.id.selection);

GridvView g=(Gridview) findViewByld(R.id.grid);

g.setAdapter(new FunnyLookingAdapter(this,
android.R.layout.simple list item 1,
items));

g.setOnltemSelectedListener(this);

public void onltemSelected(AdapterView<?> parent, View v,
int position, long id) {
selection.setText(items[position]);

public void onNothingSelected(AdapterView<?> parent) {
selection.setText("");

private class FunnylLookingAdapter extends ArrayAdapter {
Context ctxt;

FunnyLookingAdapter(Context ctxt, int resource,
String[] items) {
super(ctxt, resource, items);

this.ctxt=ctxt;

public View getView(int position, View convertView,
ViewGroup parent) {
TextView label=(TextView)convertView;

if (convertView==null) {
convertView=new TextView(ctxt);
label=(TextView)convertView;

}
label.setText(items[position]);

return(convertView);

}

}
}
For the grid cells, rather than using autogenerated TextView widgets as in the previous
sections, we create our own views, by subclassing ArrayAdapter and overriding
getView(). In this case, we wrap the funny-looking strings in our own TextView widgets,
just to be different. If getView() receives a TextView, we just reset its text; otherwise, we
create a new TextView instance and populate it.

With the 35-pixel vertical spacing from the XML layout (android:verticalSpacing =
"35"), the grid overflows the boundaries of the emulator’s screen, as shown in Figures
7-6 and 7-7.

CHAPTER 7: Using Selection Widgets

G ® 11:43PM

GridDemo

ipsur

consectetuer

placerat

GridDemo

morbi

aliquet

pellentesque augue

purus

Figure 7-7. The same application, scrolled to the bottom of the grid

Fields: Now with 35% Less Typing!

The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the
Spinner. With autocompletion, as the user types, the text is treated as a prefix filter,
comparing the entered text as a prefix against a list of candidates. Matches are shown

CHAPTER 7: Using Selection Widgets

in a selection list that, as with Spinner, drops down from the field. The user can either
type the full entry (e.g., something not in the list) or choose an item from the list to be the
value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard look-

and-feel aspects, such as font face and color. In addition, AutoCompleteTextView has an

android:completionThreshold property, to indicate the minimum number of characters a
user must enter before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate values
via setAdapter(). However, since the user could type something that is not in the list,
AutoCompleteTextView does not support selection listeners. Instead, you can register a
TextWatcher, as you can with any EditText widget, to be notified when the text changes.
These events will occur either because of manual typing or from a selection from the
drop-down list.

The following is a familiar XML layout, this time containing an AutoCompleteTextView
(pulled from the Selection/AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<Linearlayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<TextView
android:id="@+id/selection”
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>
<AutoCompleteTextView android:id="@+id/edit"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:completionThreshold="3"/>
</LinearlLayout>

The corresponding Java code is as follows:

public class AutoCompleteDemo extends Activity

implements TextWatcher {

TextView selection;

AutoCompleteTextView edit;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewByld(R.id.selection);
edit=(AutoCompleteTextView)findViewByld(R.id.edit);

CHAPTER 7: Using Selection Widgets

edit.addTextChangedListener(this);

edit.setAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple dropdown_item 1line,

items));

}

public void onTextChanged(CharSequence s, int start, int before,
int count) {

selection.setText(edit.getText());

}

public void beforeTextChanged(CharSequence s, int start,
int count, int after) {
// needed for interface, but not used

public void afterTextChanged(Editable s) {
// needed for interface, but not used

}

This time, our activity implements TextWatcher, which means our callbacks are
onTextChanged() and beforeTextChanged(). In this case, we are interested in only the
former, and we update the selection label to match the AutoCompleteTextView’s current

contents.
Figures 7-8, 7-9, and 7-10 show the results.
Gl @& 11:47PM

AutoCompleteDemo

I——

Figure 7-8. The AutoCompleteDemo sample application, as initially launched

CHAPTER 7: Using Selection Widgets

Gl @ 11:47PM

AutoCompleteDemo

Figure 7-9. The same application, after a few matching letters were entered, showing the autocomplete drop-
down

Bl @ 11:47 PM
AutoCompleteDemo

lor

Figure 7-10. The same application, after the autocomplete value was selected

Galleries, Give or Take the Art

The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a list box
that is horizontally laid out. One choice follows the next across the horizontal plane, with

CHAPTER 7: Using Selection Widgets

the currently selected item highlighted. On an Android device, the user rotates through
the options via the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space, while still showing
multiple choices at one time (assuming they are short enough). Compared to the
Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview. Given a collection of
photos or icons, the Gallery lets people preview the pictures in the process of choosing
one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout, you
have a few properties at your disposal:

B android:spacing: Controls the number of pixels between entries in the
list.

B android:spinnerSelector: Controls what is used to indicate a
selection. This can either be a reference to a Drawable (see Chapter
20) or an RGB value in #AARRGGBB or similar notation.

B android:drawSelectorOnTop: Indicates if the selection bar (or Drawable)
should be drawn before (false) or after (true) drawing the selected
child. If you choose true, be sure that your selector has sufficient
transparency to show the child through the selector; otherwise, users
will not be able to read the selection.

Chapter

Getting Fancy with Lists

The humble ListView is one of the most important widgets in all of Android, simply
because it is used so frequently. Whether choosing a contact to call, an e-mail message
to forward, or an e-book to read, ListView widgets are employed in a wide range of
activities. Of course, it would be nice if they were more than just plain text. The good
news is that Android lists can be as fancy as you want (within the limitations of a mobile
device’s screen, obviously). However, making them fancy takes some work, as you will
learn in this chapter.

Getting to First Base

The classic Android ListView is a plain list of text—solid but uninspiring. We hand the
ListView a bunch of words in an array, and then tell Android to use a simple built-in
layout for pouring those words into a list.

However, you can have a list whose rows are made up of icons, icons and text, check
boxes and text, or whatever you want. It is merely a matter of supplying enough data to
the adapter and helping the adapter to create a richer set of View objects for each row.

For example, suppose we want a ListView whose entries are made up of an icon,
followed by some text. We could construct a layout for the row that looks like this, found
in the FancyLists/Static sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
>
<ImageView
android:id="@+id/icon"
android:layout_width="22px"
android:paddingleft="2px"
android:paddingRight="2px"
android:paddingTop="2px"
android:layout_height="wrap content"
android:src="@drawable/ok"

75

CHAPTER 8: Getting Fancy with Lists

/>

<TextView
android:id="@+id/label"”
android:layout_width="wrap_content"”
android:layout_height="wrap_content"
android:textSize="44sp"

/>

</LinearlLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and the text (in
a nice big font) on the right.

However, by default, Android has no idea that we want to use this layout with our
ListView. To make the connection, we need to supply our Adapter with the resource ID
of our custom layout:

public class StaticDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new ArrayAdapter<String>(this,
R.layout.row, R.id.label,
items));
selection=(TextView)findViewByld(R.id.selection);

}

public void onListltemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

}
}

This follows the general structure for the previous ListView sample. The key difference
is that we have told ArrayAdapter that we want to use our custom layout (R.1layout.row)
and that the TextView where the word should go is known as R.id.label within that
custom layout.

NOTE: Remember that to reference a layout (row.xml), use R.layout as a prefix on the base
name of the layout XML file (R. Layout. row).

The result is a ListView with icons down the left side. In this case, all the icons are the
same, as shown in Figure 8-1.

CHAPTER 8: Getting Fancy with Lists

EhHl @ 5:10 Pm

StaticDemo

“lorem
“ipsum

“dolor

“Sit

vamet
vconsectetuer
vadipiscing

Figure 8-1. The StaticDemo application

A Dynamic Presentation

Supplying an alternate layout to use for rows, as in the preceding example, handles
simple cases very nicely. However, it falls down when you have more complicated
scenarios for your rows, such as the following:

B Not every row uses the same layout (e.g., some rows one line of text
and others have two).

B You need to configure the widgets in the rows (e.g., use different icons
for different cases).

In those cases, the better option is to create your own subclass of your desired Adapter,
override getView(), and construct your rows yourself. The getView() method is
responsible for returning a View, representing the row for the supplied position in the
adapter data.

As an example, let’s rework the code shown in the previous section to use getView(), so
we can show different icons for rows. We’ll use one icon for short words and one for
long words (from the FancylLists/Dynamic sample project).

public class DynamicDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

CHAPTER 8: Getting Fancy with Lists

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewByld(R.id.selection);

public void onListltemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

class IconicAdapter extends ArrayAdapter {
IconicAdapter() {
super (DynamicDemo.this, R.layout.row, items);

public View getView(int position, View convertView,
ViewGroup parent) {
LayoutInflater inflater=getLayoutlinflater();
View row=inflater.inflate(R.layout.row, parent, false);
TextView label=(TextView)row.findViewByld(R.id.label);

label.setText(items[position]);
ImageView icon=(ImageView)row.findViewByld(R.id.icon);

if (items[position].length()>4) {
icon.setimageResource(R.drawable.delete);

else {
icon.setimageResource(R.drawable.ok);

}

) return(row);
}
}

The theory is that we override getView() and return rows based on which object is being
displayed, where the object is indicated by a position index into the Adapter. However, if
you look at the preceding implementation, you will see a reference to a LayoutInflater
class, which requires a bit of an explanation.

In this case, “inflation” means the act of converting an XML layout specification into
the actual tree of View objects the XML represents. This is undoubtedly a tedious bit of
code: take an element, create an instance of the specified View class, walk the
attributes, convert those into property setter calls, iterate over all child elements,
lather, rinse, and repeat. The good news is that the fine folks on the Android team
wrapped up all that into a class called LayoutInflater, which we can use ourselves.
For our fancy list, we want to inflate a View for each row shown in the list, so we can

CHAPTER 8: Getting Fancy with Lists

use the convenient shorthand of the XML layout to describe what the rows are
supposed to look like.

In our example, we inflate the R.layout.row layout we created. This gives us a View
object, which, in reality, is our LinearLayout with an ImageView and a TextView, just as
R.layout.row specifies. However, rather than needing to create all those objects
ourselves and wire them together, the XML and LayoutInflater handle the “heavy
lifting” for us.

So, we have used LayoutInflater to give us a View representing the row. This row is
“empty,” since the static layout file has no idea what actual data goes into the row. It is
our job to customize and populate the row as we see fit before returning it, as follows:

B Fill in the text label for our label widget, using the word at the supplied
position.

B See if the word is longer than four characters and, if so, find our
ImageView icon widget and replace the stock resource with a different
one.

Now, we have a ListView with different icons based on the context of the specific entry
in the list, as shown in Figure 8-2.

Bl @& 5:14pPm

DynamicDemo

alorem
3jpsum
adolor
vSit

vamet
sconsectetuer
madipiscing
velit

Figure 8-2. The DynamicDemo application

Obviously, this was a fairly contrived example, but you can see where this technique
could be used to customize rows based on any sort of criteria, such as other columns in
a returned Cursor.

CHAPTER 8: Getting Fancy with Lists

Better. Stronger. Faster.

The getView() implementation shown in the preceding section works, but it’s inefficient.
Every time the user scrolls, we must create a bunch of new View objects to
accommodate the newly shown rows. This is bad.

It might be bad for the immediate user experience, if the list appears to be sluggish.
More likely, though, it will be bad due to battery usage —every bit of CPU that is used
eats up the battery. This is compounded by the extra work the garbage collector needs
to do to get rid of all those extra objects we create. So the less efficient our code, the
more quickly the phone’s battery will be drained, and the less happy the user will be.
And we want happy users, right?

So, let’s take a look at a few tricks to make your fancy ListView widgets more efficient.

Using convertView

The getView() method receives, as one of its parameters, a View named, by convention,
convertView. Sometimes, convertView will be null. In those cases, you need to create a
new row View from scratch (e.g., via inflation), just as in the previous example. However,
if convertView is not null, then it is actually one of your previously created View objects.
This will happen primarily when the user scrolls the ListView. As new rows appear,
Android will attempt to recycle the views of the rows that scrolled off the other end of
the list, to save you from needing to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use
findViewById() to get at the individual widgets that make up your row and change their
contents, and then return convertView from getView(), rather than create a whole new
row. For example, here is the getView() implementation from the previous example, now
optimized via convertView (from the FancylLists/Recycling project):

public class RecyclingDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());

) selection=(TextView)findViewByld(R.id.selection);

public void onListltemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

CHAPTER 8: Getting Fancy with Lists

}

class IconicAdapter extends ArrayAdapter {

IconicAdapter() {
super(RecyclingDemo.this, R.layout.row, items);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;

if (row==null) {
LayoutInflater inflater=getlLayoutinflater();

row=inflater.inflate(R.layout.row, parent, false);

}

TextView label=(TextView)row.findViewByld(R.id.label);
label.setText(items[position]);
ImageView icon=(ImageView)row.findViewByld(R.id.icon);

if (items[position].length()>4) {
icon.setimageResource(R.drawable.delete);

else {
icon.setimageResource(R.drawable.ok);
}

return(row);

}
}
}

Here, we check to see if the convertView is null. If so, we inflate our row; otherwise, we
just reuse it. The work to fill in the contents (icon image and text) is the same in either
case. The advantage is that we avoid the potentially expensive inflation step.

Using the Holder Pattern

Another somewhat expensive operation commonly done with fancy views is calling
findViewById(). This dives into your inflated row and pulls out widgets by their assigned
identifiers, so you can customize the widget contents (e.g., to change the text of a
TextView or change the icon in an ImageView). Since findViewById() can find widgets
anywhere in the tree of children of the row’s root View, this could take a fair number of
instructions to execute, particularly if you need to find the same widgets repeatedly.

In some GUI toolkits, this problem is avoided by having the composite View objects, like
rows, be declared totally in program code (in this case, Java). Then accessing individual
widgets is merely a matter of calling a getter or accessing a field. And you can certainly
do that with Android, but the code gets rather verbose.

CHAPTER 8: Getting Fancy with Lists

What would be nice is a way where you can still use the layout XML, yet cache your
row’s key child widgets so you need to find them only once. That’s where the holder
pattern comes into play. All View objects have getTag() and setTag() methods. These
allow you to associate an arbitrary object with the widget. The holder pattern uses that
“tag” to hold an object that, in turn, holds each of the child widgets of interest. By
attaching that holder to the row View, every time you use the row, you already have
access to the child widgets you care about, without needing to call findvViewById()
again.

So, let’s take a look at one of these holder classes (taken from the
FancylLists/ViewWrapper sample project):
class ViewWrapper {

View base;

TextView label=null;
ImageView icon=null;

ViewWrapper(View base) {
this.base=base;

TextView getLabel() {
if (label==null) {
label=(TextView)base.findViewByld(R.id.label);

return(label);

ImageView getlcon() {
if (icon==null) {
icon=(ImageView)base.findViewByld(R.id.icon);

return(icon);

}

ViewWrapper not only holds onto the child widgets, but it also lazy-finds the child
widgets. If you create a wrapper and don’t need a specific child, you never go through
the findViewById() operation for it, and never have to pay for those CPU cycles.

The holder pattern has some other advantages:

B [t allows you to consolidate all your per-widget type casting in one
place, rather than needing to cast everywhere you call
findViewById().

B You could use it to track other information about the row, such as
state information you are not yet ready to flush to the underlying
model.

CHAPTER 8: Getting Fancy with Lists

Using ViewWrapper is a matter of creating an instance whenever we inflate a row and
attaching said instance to the row View via setTag(), as shown in this rewrite of
getView():

public class ViewWrapperDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer", "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
setListAdapter(new IconicAdapter());
selection=(TextView)findViewByld(R.id.selection);

private String getModel(int position) {
return(((IconicAdapter)getListAdapter()).getltem(position));

public void onListltemClick(ListView parent, View v,
int position, long id) {
selection.setText(getModel(position));

}

class IconicAdapter extends ArrayAdapter<String> {

IconicAdapter() {
super (ViewWrapperDemo.this, R.layout.row, items);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
ViewWrapper wrapper=null;

if (row==null) {
LayoutInflater inflater=getLayoutinflater();

row=inflater.inflate(R.layout.row, parent, false);
wrapper=new ViewWrapper(row);
row.setTag(wrapper);

else {
wrapper=(ViewhWrapper)row.getTag();
wrapper.getLabel() .setText(getModel(position));

if (getModel(position).length()>4) {
wrapper.getlcon() .setimageResource(R.drawable.delete);

CHAPTER 8: Getting Fancy with Lists

else {
wrapper.getlcon() . setimageResource(R.drawable.ok);

return(row);

}
}

Just as we check convertView to see if it is null in order to create the row View objects
as needed, we also pull out (or create) the corresponding row’s Viewhrapper. Then
accessing the child widgets is merely a matter of calling their associated methods on the
wrapper.

Making a List...

Lists with pretty icons next to them are all fine and well. But can we create ListView
widgets whose rows contain interactive child widgets instead of just passive widgets like
TextView and ImageView? For example, there is a RatingBar widget that allows users to
assign a rating by clicking on a set of star icons. Could we combine the RatingBar with
text in order to allow people to scroll a list of, say, songs and rate them directly inside
the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is that it
is a little tricky, specifically when it comes to taking action when the interactive widget’s
state changes (e.g., a value is typed into a field). You need to store that state
somewhere, since your RatingBar widget will be recycled when the ListView is scrolled.
You need to be able to set the RatingBar state based on the actual word you are
viewing as the RatingBar is recycled, and you need to save the state when it changes so
it can be restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea
which model in the ArrayAdapter it is looking at. After all, the RatingBar is just a widget,
used in a row of a ListView. You need to teach the rows which model they are currently
displaying, so when their rating bar is checked, they know which model’s state to
modify.

So, let’s see how this is done, using the activity in the FancyLists/Ratelist sample
project. We’ll use the same basic classes as our previous demo, showing a list of
nonsense words that you can rate. In addition, words given a top rating are put in all
uppercase.

public class RatelistDemo extends ListActivity {
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

CHAPTER 8: Getting Fancy with Lists

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

ArraylList<RowModel> list=new ArraylList<RowModel>();

for (String s : items) {
list.add(new RowModel(s));
}

setListAdapter(new RatingAdapter(list));

private RowModel getModel(int position) {
return(((RatingAdapter)getListAdapter()).getltem(position));

class RatingAdapter extends ArrayAdapter<RowModel> {
RatingAdapter(ArrayList<RowModel> list) {
super(RatelListDemo.this, R.layout.row, list);

public View getView(int position, View convertView,
ViewGroup parent) {
View row=convertView;
ViewhWrapper wrapper;
RatingBar rate;

if (row==null) {
LayoutInflater inflater=getLayoutinflater();

row=inflater.inflate(R.layout.row, parent, false);
wrapper=new ViewWrapper(row);
row.setTag(wrapper);

rate=wrapper.getRatingBar();

RatingBar.OnRatingBarChangelistener 1=
new RatingBar.OnRatingBarChangelListener() {

public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {

Integer myPosition=(Integer)ratingBar.getTag();
RowModel model=getModel(myPosition);

model.rating=rating;

LinearLayout parent=(LinearLayout)ratingBar.getParent();
TextView label=(TextView)parent.findViewByld(R.id.label);

label.setText(model.toString());

}
};

rate.setOnRatingBarChangelListener(1);

else {
wrapper=(Viewhrapper)row.getTag();

CHAPTER 8: Getting Fancy with Lists

rate=wrapper.getRatingBar();

RowModel model=getModel(position);

wrapper.getLabel() .setText(model.toString());
rate.setTag(new Integer(position));
rate.setRating(model.rating);

} return(row);
}

class RowModel {
String label;
float rating=2.0f;

RowModel(String label) {
this.label=1abel;

public String toString() {
if (rating>=3.0) {
return(label.toUpperCase());

return(label);

}
}

Here are the differences in this activity and getView() implementation compared with
the previous examples:

B While we are still using String[] items as the list of nonsense words,
rather than pour that String array straight into an ArrayAdapter, we
turn it into a list of RowModel objects. RowModel is the mutable model. It
holds the nonsense word plus the current checked state. In a real
system, these might be objects populated from a Cursor, and the
properties would have more business meaning.

m Utility methods like onListItemClick() needed to be updated to
reflect the change from a pure String model to use a RowModel.

B The ArrayAdapter subclass (RatingAdapter), in getView(), looks to see
if convertView is null. If so, we create a new row by inflating a simple
layout and also attach a ViewWrapper. For the row’s RatingBar, we add
an anonymous onRatingChanged() listener that looks at the row’s tag
(getTag()) and converts that into an Integer, representing the position
within the ArrayAdapter that this row is displaying. Using that, the
rating bar can get the actual RowModel for the row and update the
model based on the new state of the rating bar. It also updates the
text adjacent to the RatingBar when checked to match the rating bar
state.

CHAPTER 8: Getting Fancy with Lists

B We make sure that the RatingBar has the proper contents and has a
tag (via setTag()) pointing to the position in the adapter the row is
displaying.

The row layout is just a RatingBar and a TextView inside a LinearlLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:orientation="horizontal"
>
<RatingBar
android:id="@+id/rate"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:numStars="3"
android:stepSize="1"
android:rating="2" />
<TextView
android:id="@+id/label"
android:paddingleft="2px"
android:paddingRight="2px"
android:paddingTop="2px"
android:textSize="40sp"
android:layout_width="fill parent"
android:layout_height="wrap content"/>
</LinearlLayout>

The ViewWrapper simply extracts the RatingBar and the TextView from the row View:

class Viewhrapper {
View base;
RatingBar rate=null;
TextView label=null;

ViewWrapper(View base) {
this.base=base;

}

RatingBar getRatingBar() {
if (rate==null) {
rate=(RatingBar)base.findViewByld(R.id.rate);

return(rate);

TextView getLabel() {
if (label==null) {
label=(TextView)base.findViewByld(R.id.label);

return(label);

CHAPTER 8: Getting Fancy with Lists

And the visual result is what you would expect, as shown in Figure 8-3. This includes
the toggled rating bars turning their words into all uppercase, as shown in Figure 8—4.

M@ 6:14PMm

RateListDemo

ﬁ{‘ﬁ{*lorem
ﬁﬁ{*ipsum
ﬁ{f{*dolor
Y Y W sit

v T W amet
ﬁ‘ﬁ{*consect

etuer

A A A

Figure 8-3. The RateListDemo application, as initially launched

£ Ml @ 7:46 Am

RateListDemo

Tfhf{*lorem
ﬁ{f{*ipsum
Tfhfr*dolor

¥ Y W sit
Y Y Y AMET
¥ ¥ W consect

etuer

A A A

Figure 8-4. The same application, showing a top-rated word

CHAPTER 8: Getting Fancy with Lists

...And Checking It Twice

The rating list in the previous section works, but implementing it was very tedious.
Worse, much of that tedium would not be reusable, except in very limited
circumstances. We can do better.

What we would really like is to be able to create a layout like this:

<?xml version="1.0" encoding="utf-8"?>
<com.commonsware.android.fancylists.seven.RatelListView
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout width="fill parent"
android:layout _height="fill parent"
android:drawSelectorOnTop="false"
/>

In our code, almost all of the logic that might have referred to a ListView before “just
works” with the RatelListView we put in the layout:
String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue",
"purus"};

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

setlListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,
items));

}
}

Where things get a wee bit challenging is when you stop and realize that, in everything
up to this point in this chapter, we never actually changed the ListView itself. All our
work was with the adapters, overriding getView() and inflating our own rows.

So, if we want RatelListView to take in any ordinary ListAdapter and just work—putting
rating bars on the rows as heeded —we are going to need to do some fancy footwork.
Specifically, we need to wrap the “raw” ListAdapter in some other ListAdapter that
knows how to put the rating bars on the rows and track the state of those rating bars.

First, we need to establish the pattern of one ListAdapter augmenting another. Here is
the code for AdapterWrapper, which takes a ListAdapter and delegates all of the
interface’s methods to the delegate (from the FancylLists/RatelListView sample project):

public class AdapterWrapper implements ListAdapter {
ListAdapter delegate=null;

public AdapterWrapper(ListAdapter delegate) {
this.delegate=delegate;

CHAPTER 8: Getting Fancy with Lists

}

public int getCount() {
return(delegate.getCount());

public Object getltem(int position) {
return(delegate.getltem(position));

public long getltemld(int position) {
return(delegate.getltemld(position));

public View getView(int position, View convertView,
ViewGroup parent) {
return(delegate.getView(position, convertView, parent));

public void registerDataSetObserver(DataSetObserver observer) {
delegate.registerDataSetObserver(observer);

public boolean hasStablelds() {
return(delegate.hasStablelds());

public boolean isEmpty() {
return(delegate.isEmpty());

public int getViewTypeCount() {
return(delegate.getViewTypeCount());

public int getltemViewType(int position) {
return(delegate.getltemViewType(position));

public void unregisterDataSetObserver(DataSetObserver observer) {
delegate.unregisterDataSetObserver(observer);

public boolean areAllltemsEnabled() {
return(delegate.areAllltemsEnabled());

public boolean isEnabled(int position) {
return(delegate.isEnabled(position));

}
}
We can then subclass AdapterWrapper to create RateableWrapper, overriding the default
getView() but otherwise allowing the delegated ListAdapter to do the real work:

public class RateableWrapper extends AdapterWrapper {
Context ctxt=null;
float[] rates=null;

CHAPTER 8: Getting Fancy with Lists

public RateableWrapper(Context ctxt, ListAdapter delegate) {
super(delegate);

this.ctxt=ctxt;
this.rates=new float[delegate.getCount()];

for (int i=0;i<delegate.getCount();i++) {
this.rates[i]=2.0f;

}

public View getView(int position, View convertView,
ViewGroup parent) {
ViewWrapper wrap=null;
View row=convertView;

if (convertView==null) {
LinearLayout layout=new LinearLayout(ctxt);
RatingBar rate=new RatingBar(ctxt);

rate.setNumStars(3);
rate.setStepSize(1.0f);

View guts=delegate.getView(position, null, parent);
layout.setOrientation(LinearLayout.HORIZONTAL);

rate.setLayoutParams(new LinearlLayout.LayoutParams(
LinearLayout.LayoutParams.WRAP_CONTENT,
LinearLayout.LayoutParams.FILL PARENT));

guts.setLayoutParams(new LinearLayout.LayoutParams(
LinearLayout.LayoutParams.FILL_PARENT,
LinearLayout.LayoutParams.FILL PARENT));

RatingBar.OnRatingBarChangelistener 1=
new RatingBar.OnRatingBarChangeListener() {
public void onRatingChanged(RatingBar ratingBar,
float rating,
boolean fromTouch) {
rates[(Integer)ratingBar.getTag()]=rating;

};
rate.setOnRatingBarChangeListener(1);

layout.addView(rate);
layout.addView(guts);

wrap=new ViewWrapper(layout);
wrap.setGuts(guts);
layout.setTag(wrap);

rate.setTag(new Integer(position));
rate.setRating(rates[position]);

CHAPTER 8: Getting Fancy with Lists

row=layout;

else {
wrap=(ViewWrapper)convertView.getTag();
wrap.setGuts(delegate.getView(position, wrap.getGuts(),
parent));
wrap.getRatingBar() .setTag(new Integer(position));
wrap.getRatingBar() . setRating(rates[position]);

return(row);

}

The idea is that RateableWrapper is where most of our rate-list logic resides. It puts the
rating bars on the rows, and it tracks the rating bars’ states as they are adjusted by the
user. For the states, it has a float[] sized to fit the number of rows that the delegate
says are in the list.

Rateablelrapper’s implementation of getView() is reminiscent of the one from
RatelListDemo, except that rather than use LayoutInflater, we need to manually
construct a LinearLayout to hold our RatingBar and the “guts” (a.k.a., whatever view the
delegate created that we are decorating with the rating bar). LayoutInflater is designed
to construct a View from raw widgets. In our case, we don’t know in advance what the
rows will look like, other than that we need to add a rating bar to them. However, the
rest is similar to the one from RatelListDemo, including using a ViewhWrapper, hooking up
onRatingBarChanged() to have the rating bar update the state, and so forth:

class Viewhrapper {
ViewGroup base;
View guts=null;
RatingBar rate=null;

ViewWrapper(ViewGroup base) {
this.base=base;

RatingBar getRatingBar() {
if (rate==null) {
rate=(RatingBar)base.getChildAt(0);

return(rate);

void setRatingBar(RatingBar rate) {
this.rate=rate;

}

View getGuts() {
if (guts==null) {
guts=base.getChildAt(1);

return(guts);

CHAPTER 8: Getting Fancy with Lists

}

void setGuts(View guts) {
this.guts=guts;

}
With all that in place, RatelListView is comparatively simple:

public class RateListView extends ListView {
public RateListView(Context context) {
super(context);

public RateListView(Context context, AttributeSet attrs) {
super(context, attrs);

public RateListView(Context context, AttributeSet attrs,
int defStyle) {
super(context, attrs, defStyle);

public void setAdapter(ListAdapter adapter) {
super.setAdapter(new RateableWrapper(getContext(), adapter));

}
}
We simply subclass ListView and override setAdapter() so we can wrap the supplied
ListAdapter in our own RateableWrapper.

Visually, the results are similar to the RateListDemo, albeit without top-rated words
appearing in all uppercase, as shown in Figure 8-5.

Ml @ 6:40PM

RateListViewDemo

L P P orer
iare
N =

166 &
T T I e
T T W consecener

Figure 8-5. The RateListViewDemo sample application

CHAPTER 8: Getting Fancy with Lists

The difference is in reusability. We could package RatelListView in its own JAR and plop
it into any Android project where we need it. So while RateListView is somewhat
complicated to write, we need to write it only once, and the rest of the application code
is blissfully simple.

NOTE: Of course, the sample RatelListView could use some more features, such as
programmatically changing states (updating both the float[] and the actual RatingBar itself)
and allowing other application logic to be invoked when a RatingBar state is toggled (via some
sort of callback). These and other enhancements are left as exercises for the reader.

Adapting Other Adapters

All adapter classes can follow the ArrayAdapter pattern of overriding getView() to define
the rows. However, CursorAdapter and its subclasses have a default implementation of
getView().

The getView() method inspects the supplied View to recycle. If it is null, getView() calls
newView(), then bindView(). If it is not null, getView() just calls bindView().

If you are extending CursorAdapter, which is used for displaying results of a database or
content provider query, you should override newView() and bindView(), instead of
getView(). All this does is remove your if() test you would have in getView() and put
each branch of that test in an independent method, akin to the following:

public View newView(Context context, Cursor cursor,
ViewGroup parent) {
LayoutInflater inflater=context.getlLayoutinflater();
View row=inflater.inflate(R.layout.row, null);
ViewWrapper wrapper=new ViewWrapper(row);

row.setTag(wrapper);
return(row);

public void bindView(View row, Context context, Cursor cursor) {
ViewWrapper wrapper=(ViewhWrapper)row.getTag();

// actual logic to populate row from Cursor goes here

Chapter 22 provides details about using a Cursor.

Chapter

Employing Fancy Widgets
and Containers

The widgets and containers covered so far are not only found in many GUI toolkits (in
one form or fashion), but also are widely used in building GUI applications —whether
web-based, desktop, or mobile. The widgets and containers described in this chapter
are a little less widely used, though you will likely find many to be quite useful.

Pick and Choose

With limited-input devices like phones, having widgets and dialogs that are aware of the
type of stuff someone is supposed to be entering is very helpful. These elements
minimize keystrokes and screen taps, as well as reduce the chance of making some sort
of error (e.g., entering a letter somewhere only numbers are expected).

As shown in Chapter 5, EditText has content-aware flavors for entering numbers and
text. Android also supports widgets (DatePicker and TimePicker) and dialogs
(DatePickerDialog and TimePickerDialog) for helping users enter dates and times.

DatePicker and DatePickerDialog allow you to set the starting date for the selection, in
the form of a year, month, and day of month value. Note that the month runs from o for
January through 11 for December. Each lets you provide a callback object
(OnDateChangedListener or OnDateSetListener) where you are informed of a new date
selected by the user. It is up to you to store that date someplace, particularly if you are
using the dialog, since there is no other way for you to get at the chosen date later.

Similarly, TimePicker and TimePickerDialog let you set the initial time the user can
adjust, in the form of an hour (0 through 23) and a minute (0 through 59). You can
indicate if the selection should be in 12-hour mode with an AM/PM toggle or in 24-hour
mode (what in the United States is thought of as “military time” and in the rest of the
world as “the way times are supposed to be”). You can also provide a callback object
(OnTimeChangedListener or OnTimeSetlListener) to be notified of when the user has
chosen a new time, which is supplied to you in the form of an hour and minute.

CHAPTER 9: Employing Fancy Widgets and Containers

For example, from the Fancy/Chrono sample project, here’s a trivial layout containing a
label and two buttons, which will pop up the dialog flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout
xmlns:android:"http://schemas.android.com/apk/res/android"
android:orientation=' vertical"
android:layout_width="fill parent"
and101d layout_height="fill_parent"

<TextView android:id="@+id/dateAndTime"
android:layout_width= "flll _parent”
android:layout_height="wrap_content"
/>

<Button android:id="@+id/dateBtn"
android:layout_width= "f111 _parent"
android:layout_height="wrap_content"
android:text="Set the Date"
/>

<Button android:id="@+id/timeBtn"
android:layout width="fill parent"”
android:layout_height="wrap_content"
android:text="Set the Time"
/>

</Linearlayout>

The more interesting stuff comes in the Java source:

public class ChronoDemo extends Activity {
DateFormat fmtDateAndTime=DateFormat.getDateTimelnstance();
TextView dateAndTimelabel;
Calendar dateAndTime=Calendar.getinstance();
DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener() {
public void onDateSet(DatePicker view, int year, int monthOfYear,
int dayOfMonth) {
dateAndTime.set(Calendar.YEAR, year);
dateAndTime.set(Calendar.MONTH, monthOfYear);
dateAndTime.set(Calendar.DAY_OF MONTH, dayOfMonth);
updatelLabel();
}
};
TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener() {
public void onTimeSet(TimePicker view, int hourOfDay,
int minute) {
dateAndTime.set(Calendar.HOUR_OF DAY, hourOfDay);
dateAndTime.set(Calendar .MINUTE, minute);
updatelabel();

b

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.dateBtn);

CHAPTER 9: Employing Fancy Widgets and Containers

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
new DatePickerDialog(ChronoDemo.this,

d,
dateAndTime.get(Calendar.YEAR),
dateAndTime.get(Calendar.MONTH),
dateAndTime.get(Calendar.DAY OF MONTH)).show();

}
};

btn=(Button)findViewByld(R.id.timeBtn);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
new TimePickerDialog(ChronoDemo.this,

)
dateAndTime.get(Calendar.HOUR OF DAY),
dateAndTime.get(Calendar.MINUTE),
true).show();

}
1

dateAndTimelLabel=(TextView)findViewByld(R.id.dateAndTime);

updateLabel();

private void updatelLabel() {
dateAndTimelLabel.setText(fmtDateAndTime
.format(dateAndTime.getTime()));
}

}

The model for this activity is just a Calendar instance, initially set to be the current date
and time. We pour it into the view via a DateFormat formatter. In the updatelLabel()
method, we take the current Calendar, format it, and put it in the TextView.

Each button is given an OnClickListener callback object. When the button is clicked,
either a DatePickerDialog or a TimePickerDialog is shown. In the case of the
DatePickerDialog, we give it an OnDateSetListener callback that updates the Calendar
with the new date (year, month, and day of month). We also give the dialog the last-
selected date, getting the values from the Calendar. In the case of the
TimePickerDialog, it gets an OnTimeSetListener callback to update the time portion of
the Calendar, the last-selected time, and a true indicating we want 24-hour mode on the
time selector.

With all this wired together, the resulting activity looks like Figures 9-1, 9-2, and 9-3.

CHAPTER 9: Employing Fancy Widgets and Containers

Eh Ml @ 6:50 PM

ChronoDemo

Aug 23, 2008 6:49

Set the Date

Set the Time

Figure 9-1. The ChronoDemo sample application, as initially launched

il @ 6:51PMm

@ Sat, August 23, 2008

+ [+ +
Aug il 23 § 2008

Cancel

Figure 9-2. The same application, showing the date picker dialog

CHAPTER 9: Employing Fancy Widgets and Containers

Ml & 6:51pPm

Cancel

Figure 9-3. The same application, showing the time picker dialog

Time Keeps Flowing Like a River

If you want to display the time, rather than have users enter it, you may wish to use the
DigitalClock or AnalogClock widgets. These are extremely easy to use, as they
automatically update with the passage of time. All you need to do is put them in your
layout and let them do their thing.

For example, from the Fancy/Clocks sample application, here is an XML layout
containing both DigitalClock and AnalogClock widgets:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android:"http://schemas.android.com/apk/res/android"
android:orientation=" vertlcal"
android:layout_width="fill parent"
andr01d layout_height="fill parent"

<Ana10gC10ck android:id="@+id/analog"
android:layout_width="fill parent"
android:layout_height=" wrap_content
android:layout_centerHorizontal="true'
android:layout_alignParentTop="true"
/>

<DigitalClock android:id="@+id/digital"
android:layout width= wrap_content"
android:layout_height="wrap content"
android:layout_centerHorizontal="true"
android:layout_below="@id/analog"
/>

</Relativelayout>

CHAPTER 9: Employing Fancy Widgets and Containers

Without any Java code other than the generated stub, we can build this project and get
the activity shown in Figure 9-4.

il @& 6:52pPMm

ClocksDemo

Figure 9-4. The ClocksDemo sample application

If you are looking for more of a timer, Chronometer may be of interest. With a
Chronometer, you can track elapsed time from a starting point. You simply tell it when to
start() and stop(), and possibly override the format string that displays the text. Figure
9-5 shows an example.

Al @ 9:23AM |

Views/Chronometer

Initial format: 00:12

Set format string
Clear format string

Figure 9-5. The Views/Chronometer APl demo from the Android 2.0 SDK

CHAPTER 9: Employing Fancy Widgets and Containers

Making Progress

If you need to be doing something for a long period of time, you owe it to your users to
do two things:

B Use a background thread.

B Keep them apprised of your progress, lest they think your activity has
wandered away and will never come back.

The typical approach to keeping users informed of progress is to display some form of
progress bar, or “throbber” (like the animated graphic that appears near the upper-right
corner of many web browsers). Android supports this through the ProgressBar widget.

A ProgressBar widget keeps track of progress, defined as an integer, with 0 indicating no progress
has been made. You can define the maximum end of the range —the value that indicates progress
is complete—via setMax (). By default, ProgressBar starts with a progress of 0, though you can
start from some other position via setProgress().

If you prefer your progress bar to be indeterminate, use setIndeterminate(), setting it to
true.

In your Java code, you can either positively set the amount of progress that has been
made (via setProgress()) or increment the progress from its current amount (via
incrementProgressBy()). You can find out how much progress has been made via
getProgress().

Since the ProgressBar is tied closely to the use of threads—a background thread doing
work, updating the Ul thread with new progress information —its use is demonstrated in
Chapter 15.

Seeking Resolution

A subclass of ProgressBar is SeekBar. A ProgressBar is an output widget, telling the
user how much progress has been made. Conversely, the SeekBar is an input widget,
allowing the user to select a value along a range of possible values, as shown in
Figure 9-6.

CHAPTER 9: Employing Fancy Widgets and Containers

Figure 9-6. The Views/SeekBar APl demo from the Android 2.0 SDK

The user can drag the thumb or click either side of it to reposition the thumb. The thumb
then points to a particular value along a range. That range will be 0 to some maximum
value, 100 by default, which you control via a call to setMax(). You can determine the
current position via getProgress(), or find out when the user makes a change to the
thumb’s position by registering a listener via setOnSeekBarChangeListener().

You saw a variation on this theme with the RatingBar example in Chapter 8.

Put It on My Tab

The general Android philosophy is to keep activities short and sweet. If there is more
information than can reasonably fit on one screen, albeit perhaps with scrolling, then it
perhaps belongs in another activity kicked off via an Intent, as will be described in
Chapter 18. However, that can be complicated to set up. Moreover, sometimes there
legitimately is a lot of information that needs to be collected to be processed as an
atomic operation.

In a traditional Ul, you might use tabs to hold the information, such as a JTabbedPane in
Java/Swing. In Android, you now have the option of using a TabHost container in much
the same way. In this setup, a portion of your activity’s screen is taken up with tabs,
which, when clicked, swap out part of the view and replace it with something else. For
example, you might have an activity with a tab for entering a location and a second tab
for showing a map of that location.

Some GUI toolkits refer to tabs as just the things a user clicks to toggle from one view to
another. Others refer to tabs as the combination of the clickable buttonlike element and

CHAPTER 9: Employing Fancy Widgets and Containers

the content that appears when it is chosen. Android treats the tab buttons and contents
as discrete entities, which I'll refer to as “tab buttons” and “tab contents” in this section.

The Pieces

You need to use the following items to set up a tabbed portion of a view:

B TabHost is the overarching container for the tab buttons and tab
contents.

B TabWidget implements the row of tab buttons, which contain text
labels and, optionally, icons.

B Framelayout is the container for the tab contents. Each tab content is
a child of the FrameLayout.

This is similar to the approach that Mozilla’s XUL takes. In XUL'’s case, the tabbox
element corresponds to Android’s TabHost, the tabs element corresponds to TabWidget,
and tabpanels corresponds to FramelLayout.

The Idiosyncrasies

There are a few rules to follow, at least in this milestone edition of the Android toolkit, in
order to make the three tab pieces work together:

B You must give the TabWidget an android:id of @android:id/tabs.

B If you wish to use the TabActivity, you must give the TabHost an
android:id of @android:id/tabhost.

TabActivity, like ListActivity, wraps a common Ul pattern (an activity made up
entirely of tabs) into a pattern-aware activity subclass. You do not necessarily have to
use TabActivity—a plain activity can use tabs as well.

For example, here is a layout definition for a tabbed activity, from Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
android:id= "@+1d/tabhost“
android:layout_width="fill parent"
android:layout_height="fill parent">
<LinearlLayout
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
<FramelLayout android:id="@android:id/tabcontent"
android:layout width="fill parent"
android:layout_height="fill parent">
<AnalogClock android:id="@+id/tab1"

CHAPTER 9: Employing Fancy Widgets and Containers

android:layout_width="fill parent"
android:layout_height="fill parent"”
android:layout_centerHorizontal="true'
/>
<Button android:id="@+id/tab2"
android:layout_width="fill parent"
android:layout_height="fill parent"
android:text="A semi-random button"
/>
</Framelayout>
</LinearLayout>
</TabHost>

Note that the TabWidget and FrameLayout are immediate children of the TabHost, and the
FramelLayout itself has children representing the various tabs. In this case, there are two
tabs: a clock and a button. In a more complicated scenario, the tabs could be some
form of container (e.g., LinearLayout) with their own contents.

Wiring It Together

The Java code needs to tell the TabHost which views represent the tab contents and
what the tab buttons should look like. This is all wrapped up in TabSpec objects. You get
a TabSpec instance from the host via newTabSpec(), fill it out, and then add it to the host
in the proper sequence.

TabSpec has two key methods:

B setContent(): Indicates what goes in the tab content for this tab,
typically the android:id of the view you want shown when this tab is
selected.

B setIndicator(): Sets the caption for the tab button and, in some
flavors of this method, supplies a Drawable to represent the icon for
the tab.

Note that tab “indicators” can actually be views in their own right, if you need more
control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these
TabSpec objects. The call to setup() is not needed if you are using the TabActivity base
class for your activity.

For example, here is the Java code to wire together the tabs from the preceding layout
example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {

CHAPTER 9: Employing Fancy Widgets and Containers

super.onCreate(icicle);
setContentView(R.layout.main);

TabHost tabs=(TabHost)findViewByld(R.id.tabhost);
tabs.setup();
TabHost.TabSpec spec=tabs.newTabSpec("tagl");

spec.setContent(R.id.tab1);
spec.setindicator("Clock");
tabs.addTab(spec);

spec=tabs.newTabSpec("tag2");
spec.setContent(R.id.tab2);
spec.setindicator("Button");
tabs.addTab(spec);

}
}

We find our TabHost via the familiar findViewById() method, and then have it setup().
After that, we get a TabSpec via newTabSpec(), supplying a tag whose purpose is
unknown at this time. Given the spec, we call setContent() and setIndicator(), and
then call addTab() back on the TabHost to register the tab as available for use. Finally,
we can choose which tab is the one to show via setCurrentTab(), providing the 0-based
index of the tab.

The results are shown in Figures 9-7 and 9-8.
Ml @ 6:54 PM

TabDemo

Figure 9-7. The TabDemo sample application, showing the first tab

CHAPTER 9: Employing Fancy Widgets and Containers

Ml @ 6:54 PM

TabDemo

Button

A semi-random button

_—
Figure 9-8. The same application, showing the second tab

Adding Them Up

TabWidget is set up to allow you to easily define tabs at compile time. However,
sometimes, you want to add tabs to your activity during runtime. For example, imagine
an e-mail client where individual messages are opened in their own tab, for easy
toggling between messages. In this case, you don’t know how many tabs you will need
or what their contents will be until runtime, when the user chooses to open a message.
Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs described in
the previous section, except you use a different flavor of setContent() —one that takes a
TabHost.TabContentFactory instance. This is just a callback that will be invoked. You
provide an implementation of createTabContent(), and use it to build and return the
View that becomes the content of the tab.

Let’s take a look at an example (Fancy/DynamicTab). First, here is some layout XML for
an activity that sets up the tabs and defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TabHost android:id="@+id/tabhost"
android:layout_width="fill parent"
android:layout_height="fill parent">
<TabWidget android:id="@android:id/tabs"
android:layout_width="fill parent"
android:layout_height="wrap_content"

CHAPTER 9: Employing Fancy Widgets and Containers

/>
<Framelayout android:id="@android:id/tabcontent”
android:layout_width="fill parent"
android:layout_height="fill parent"
android:paddingTop="62px">
<Button android:id="@+id/buttontab"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:text="A semi-random button"
/>
</Framelayout>
</TabHost>
</LinearLayout>

Now we want to add new tabs whenever the button is clicked. That can be
accomplished with the following code:
public class DynamicTabDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

final TabHost tabs=(TabHost)findViewByld(R.id.tabhost);
tabs.setup();

TabHost.TabSpec spec=tabs.newTabSpec("buttontab");
spec.setContent(R.id.buttontab);
spec.setindicator("Button");

tabs.addTab(spec);

Button btn=(Button)tabs.getCurrentView().findViewByld(R.id.buttontab);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
TabHost.TabSpec spec=tabs.newTabSpec("tagl");

spec.setContent(new TabHost.TabContentFactory() {
public View createTabContent(String tag) {
return(new AnalogClock(DynamicTabDemo.this));

}
D;
spec.setindicator("Clock");
tabs.addTab(spec);

}
D;
}
}
In our button’s setOnClickListener() callback, we create a TabHost.TabSpec object and
give it an anonymous TabHost.TabContentFactory. The factory, in turn, returns the View
to be used for the tab—in this case, just an AnalogClock. The logic for constructing the

tab’s View could be much more elaborate, such as using LayoutInflater to construct a
view from layout XML.

CHAPTER 9: Employing Fancy Widgets and Containers

Initially, when the activity is launched, we have just the one tab, as shown in Figure 9-9.
Figure 9-10 shows all three tabs.

& il

Dynamic Tabs

Button

A semi-random button

L
Figure 9-9. The DynamicTab application, with the single initial tab

Dynamic Tabs

£3 Gl @ 3:49Pm

Button Clock Clock

A semi-random button

L
Figure 9-10. The DynamicTab application, with three dynamically created tabs

CHAPTER 9: Employing Fancy Widgets and Containers

Intents and Views

In the preceding examples, the contents of each tab were set to be a View, such as a
Button. This is easy and straightforward, but it is not the only option. You can also
integrate another activity from your application via an Intent.

Intents are ways of specifying something you want accomplished, and then telling
Android to go find something to accomplish it. Frequently, these are used to cause
activities to spawn. For example, whenever you launch an application from the main
Android application launcher, the launcher creates an Intent and has Android open the
activity associated with that Intent. This whole concept, and how activities can be
placed in tabs, is described in Chapter 18.

Flipping Them Off

Sometimes, you want the overall effect of tabs (only some Views visible at a time), but
you do not want the actual Ul implementation of tabs. Maybe the tabs take up too much
screen space. Maybe you want to switch between perspectives based on a gesture or a
device shake. Or maybe you just like being different.

The good news is that the guts of the view-flipping logic from tabs can be found in the
ViewFlipper container, which can be used in other ways than the traditional tab.

ViewFlipper inherits from FrameLayout, in the same way you use it to describe the
innards of a TabWidget. However, initially, the ViewFlipper container just shows the first
child view. It is up to you to arrange for the views to flip, either manually by user
interaction or automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a Button and a
ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout width="fill parent"”

android:layout_height="fill parent"

>

<Button android:id="@+id/flip me"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:text="Flip Me!"
/>
<ViewFlipper android:id="@+id/details"

android:layout_width="fill parent"

android:layout_height="fill parent"

>

<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFOOFF00"
android:text="This is the first panel"

CHAPTER 9: Employing Fancy Widgets and Containers

/>
<TextView
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFFF0000"
android:text="This is the second panel"
/>
<TextView
android:layout width="fill parent"
android:layout_height="wrap_content"
android:textStyle="bold"
android:textColor="#FFFFFF00"
android:text="This is the third panel"
/>
</ViewFlipper>
</LinearLayout>

Notice that the layout defines three child views for the ViewFlipper, each a TextView
with a simple message. Of course, you could have very complicated child views, if you
so chose.

Manual Flipping
To manually flip the views, we need to hook into the Button and flip them ourselves
when the button is clicked:

public class FlipperDemo extends Activity {
ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewByld(R.id.details);
Button btn=(Button)findViewByld(R.id.flip me);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
flipper.showNext();

B;
}
}

This is just a matter of calling showNext () on the ViewFlipper, as you can on any
ViewAnimator class.

The result is a trivial activity: click the button, and the next TextView in sequence is
displayed, wrapping around to the first after viewing the last, as shown in Figures 9-11
and 9-12.

CHAPTER 9: Employing Fancy Widgets and Containers

£3 Gl @ 3:49 PM

FlipperDemo

Flip Me!

Figure 9-11. The Flipper1 application, showing the first panel

£ Ml @ 3:49Pm
FlipperDemo

Flip Me!

Figure 9-12. The same application, after switching to the second panel

Of course, this could be handled more simply by having a single TextView and changing
the text and color on each click. However, you can imagine that the ViewFlipper
contents could be much more complicated, like the contents you might put into a
TabView.

CHAPTER 9: Employing Fancy Widgets and Containers

Adding Contents on the Fly

As with the TabWidget, sometimes, your ViewFlipper contents may not be known at
compile time. And as with TabWidget, you can add new contents on the fly with ease.

For example, let’s look at another sample activity (Fancy/Flipper2), using this layout:

<?xml version="1.0" encoding="utf-8"?>

<Linearlayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"
>

<ViewFlipper android:id="@+id/details"

android:layout_width="fill parent"
android:layout_height="fill parent"

>
</ViewFlipper>
</LinearlLayout>

Notice that the ViewFlipper has no contents at compile time. Also notice that there is no
Button for flipping between the contents —more on this in the next section.

For the ViewFlipper contents, we will create large Button widgets, each containing one
of the random words used in many chapters in this book. Then we will set up the
ViewFlipper to automatically rotate between the Button widgets, using an animation for
transition.

public class FlipperDemo2 extends Activity {

static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing”, "elit",
"morbi", "vel", "ligula", "vitae",
"arcu", "aliquet", "mollis", "etiam",
"vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque",
llauguell’ llpurusll};

ViewFlipper flipper;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

flipper=(ViewFlipper)findViewByld(R.id.details);
flipper.setinAnimation(AnimationUtils.loadAnimation(this,
R.anim.push left in));

flipper.setOutAnimation(AnimationUtils.loadAnimation(this,
R.anim.push left out));

for (String item : items) {
Button btn=new Button(this);

btn.setText(item);

flipper.addView(btn,

CHAPTER 9: Employing Fancy Widgets and Containers

new ViewGroup.LayoutParams(
ViewGroup.LayoutParams.FILL_PARENT,
ViewGroup.LayoutParams.FILL PARENT));

}

flipper.setFlipinterval (2000);
flipper.startFlipping();

}

After getting our ViewFlipper widget from the layout, we first set up the “in” and “out”
animations. In Android terms, an animation is a description of how a widget leaves (out)
or enters (in) the viewable area. Animations are resources, stored in res/anim/ in your
project. For this example, we are using a pair of animations supplied by the SDK
samples, available under the Apache 2.0 license. As their names suggest, widgets are
“pushed” to the left, either to enter or leave the viewable area.

NOTE: Animation is a complex beast. | cover it in my book The Busy Coder’s Guide to Advanced
Android Development (CommonsWare LLC, 2009).

Automatic Flipping

After iterating over the funky words, turning each into a Button, and adding the Button
as a child of the ViewFlipper, we set up the flipper to automatically flip between children
(flipper.setFlipInterval(2000);) and to start flipping (flipper.startFlipping();).

The result is an endless series of buttons. Each appears and then slides out to the left
after 2 seconds, being replaced by the next button in sequence, wrapping around to the
first after the last has been shown. Figure 9-13 shows an example.

Bl SR @ 3:49PM

FlipperDemo2

sit

Figure 9-13. The Flipper2 application, showing an animated transition

CHAPTER 9: Employing Fancy Widgets and Containers

The auto-flipping ViewFlipper is useful for status panels or other situations where you
have a lot of information to display, but not much room. The caveat is that, since it
automatically flips between views, expecting users to interact with individual views is
dicey, because the view might switch away partway through their interaction.

Getting in Someone’s Drawer

For a long time, Android developers yearned for a sliding-drawer container that worked
like the one on the home screen, containing the icons for launching applications. The
official implementation was in the open source code but was not part of the SDK, until
Android 1.5, when the developers released SlidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching from a closed to
an open position. This puts some restrictions on which container holds the
SlidingDrawer. It needs to be in a container that allows multiple widgets to sit atop each
other. Relativelayout and FrameLayout satisfy this requirement; FrameLayout is a
container purely for stacking widgets atop one another. On the flip side, LinearLayout
does not allow widgets to stack (they fall one after another in a row or column), and so
you should not have a SlidingDrawer as an immediate child of a LinearLayout.

Here is a layout showing a SlidingDrawer in a FramelLayout, from the Fancy/DrawerDemo
project:

<?xml version="1.0" encoding:"utf-8"?>
<FramelLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:background="#FF4444CC"
>
<SlidingDrawer
android:id="@+id/drawer"
android:layout_width="fill parent"
android:layout | helght "fill parent”
android:handle="@+id/handle"
android:content="@+id/content">
<ImageView
android:id:"@id/handle"
android:layout_width=' wrap content”
android: layout height="wrap_content"
android:src="@drawable/tray_handle_normal"
/>
<Button
android:id= @1d/content
android:layout width="fill parent"
android: layout helght "fill parent"
android:text="I'm in here!"
/>
</SlidingDrawer>
</Framelayout>

The SlidingDrawer should contain two things:

CHAPTER 9: Employing Fancy Widgets and Containers

B A handle, frequently an ImageView or something along those lines,
such as the one used here, pulled from the Android open source
project

B The contents of the drawer itself, usually some sort of container, but a
Button in this case

Moreover, SlidingDrawer needs to know the android:id values of the handle and
contents, via the android:handle and android:content attributes, respectively. This tells
the drawer how to animate itself as it slides open and closed.

Figure 9-14 shows what the SlidingDrawer looks like closed, using the supplied handle,
and Figure 9-15 shows it open.

O Bl @ s:28Pm

O @ s:28Pm

DrawerDemo DrawerDemo

I'm in here!

Figure 9-14. A SlidingDrawer, closed Figure 9-15. A SlidingDrawer, open

As you might expect, you can open and close the drawer from Java code, as well as via
user touch events (which are handled by the widget, so that's not something you need
to worry about). However, you have two sets of these methods: ones that take place
instantaneously (open(), close(), and toggle()) and ones that use the animation
(animateOpen(), animateClose(), animateToggle()).

You can lock() and unlock() the drawer; while locked, the drawer will not respond to
touch events.

You can also register three types of callbacks if you wish:
B Alistener to be invoked when the drawer is opened

B A listener to be invoked when the drawer is closed

CHAPTER 9: Employing Fancy Widgets and Containers

B Alistener to be invoked when the drawer is “scrolled” (i.e., the user
drags or flings the handle)

For example, the launcher’s S1idingDrawer toggles the icon on the handle from open to
closed to “delete” (if you long-tap something on the desktop). It accomplishes this, in
part, through callbacks like these.

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its orientation
despite the screen orientation. In other words, if you rotate the Android device or
emulator running DrawerDemo, the drawer always opens from the bottom—it does not
always stick to the original side from which it opened. This means that if you want the
drawer to always open from the same side, as the launcher does, you will need separate
layouts for portrait versus landscape, a topic discussed in Chapter 20.

Other Good Stuff

Android offers Absolutelayout, where the contents are laid out based on specific
coordinate positions. You tell Absolutelayout where to place a child in precise x and y
coordinates, and Android puts it that location, no questions asked.

On the plus side, Absolutelayout gives you precise positioning. On the minus side, it
means your views will look right only on screens of a certain dimension, or you will need
to write a bunch of code to adjust the coordinates based on screen size. Since Android
screens might run the gamut of sizes, and new sizes crop up periodically, using
Absolutelayout could get quite annoying.

NOTE: Absolutelayout is officially deprecated, meaning that while it is available to you, its
use is discouraged.

Android also has the ExpandablelListView. This provides a simplified tree representation,
supporting two levels of depth: groups and children. Groups contain children; children
are “leaves” of the tree. This requires a new set of adapters, since the ListAdapter
family does not provide any sort of group information for the items in the list.

Chapter

The Input Method
Framework

Android 1.5 introduced the input method framework (IMF), which is commonly referred
to as soft keyboards. However, the soft keyboard term is not necessarily accurate, as
IMF could be used for handwriting recognition or other means of accepting text input via
the screen.

This chapter describes how to use the IMF to tailor software keyboards to your
application’s needs.

Keyboards, Hard and Soft

Some Android devices, like the HTC Magic, do not have a hardware keyboard. Other
Android devices, like the T-Mobile G1, have a hardware keyboard that is visible some of
the time (when it is slid out). It is likely that in the future, there will be Android devices
that always have a hardware keyboard available (such as netbooks and phones with an
always-available QWERTY keyboard beneath the screen). The IMF handles all of these
scenarios. In short, if there is no hardware keyboard, an input method editor (IME) will be
available to users when they tap an enabled EditText.

This does not require any code changes to your application, as long as the default
functionality of the IME is what you want. Fortunately, Android is fairly smart about
guessing what you want, so it may be you can just test with the IME, but otherwise
make no specific code changes.

But the keyboard may not quite behave how you would like to work for your application.
For example, in the Basic/Field sample project, the FieldDemo activity has the IME
overlaying the multiple-line EditText, as shown in Figure 10-1. It would be nice to have
more control over how this appears, as well as to specify other behavior of the IME.
Fortunately, the framework as a whole gives you many options for this, as is described
in this chapter.

117

CHAPTER 10: The Input Method Framework

TN ® 12:35PM
FieldDemo

Licensed under the Apache License,
Version 2.0 (the "License"); you may
not use this file exceptin

compliance with the License. You

Figure 10-1. The input method editor, as seen in the FieldDemo sample application

Tailored to Your Needs

Android 1.1 and earlier offered many attributes on EditText widgets to control their style
of input, such as android:password to indicate a field should be for password entry
(shrouding the password keystrokes from prying eyes). In Android 1.5, with the IMF,
many of these attributes have been combined into a single android: inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited format
(where | is the pipe character). The class generally describes what the user is allowed to
input, and this determines the basic set of keys available on the soft keyboard. The
following classes are available:

text (the default)
number

phone

datetime

date

time

Many of these classes offer one or more modifiers to further refine what the user will be
entering. To help understand these modifiers, take a look at the res/layout/main.xml file
from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>

<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"

CHAPTER 10: The Input Method Framework

android:layout_height="fill parent"
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text |textEmailAddress"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number | numberSigned|numberDecimal”
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultiline|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</Tablelayout>

Here, you will see a TablelLayout containing five rows, each demonstrating a slightly
different flavor of EditText:

B The first row does not have any attributes at all on the EditText,
meaning you get a plain text-entry field.

B The second row has android:inputType = "text|textEmailAddress",
meaning it is text entry, but specifically seeks an e-mail address.

B The third row allows for signed decimal numeric input, via
android:inputType = "number|numberSigned|numberDecimal".

CHAPTER 10: The Input Method Framework

B The fourth row is set up to allow for data entry of a date
(android:inputType = "date").

B The last row allows for multiline input with autocorrection of probable
spelling errors (android: inputType =
"text|textMultiline|textAutoCorrect").

The class and modifiers tailor the keyboard. So, a plain text-entry field results in a plain
soft keyboard, as shown in Figure 10-2.

Tl @ 9:19 Am

IMEDemo1

Figure 10-2. A standard input method editor (a.k.a., soft keyboard)

An e-mail address field puts the @ symbol on the soft keyboard, at the cost of a smaller
spacebar, as shown in Figure 10-3.

Ml @ 9:19 Am

IMEDemo1

Figure 10-3. The input method editor for e-mail addresses

CHAPTER 10: The Input Method Framework

Number and date fields restrict the keys to numeric keys, plus a set of symbols that may
or may not be valid on a given field, as shown in Figure 10-4.

LMl € 9:19Am

IMEDemo1

18§24 131 144 £S5 16l 7 8Y 9] O

@ # $ % & * -+ ()

VAN K

Figure 10-4. The input method editor for signed decimal numbers

These are just a few examples. By choosing the appropriate android:inputType, you
can give users a soft keyboard that best suits the data they should be entering.

Tell Android Where It Can Go

You may have noticed a subtle difference between the IME shown in Figure 10-2 and
the one shown in Figure 10-4, beyond the addition of the @ key. If you look in the lower-
right corner of the soft keyboard, the second field’s editor has a Next button, while the
first field’s editor has a newline button. This points out two things:

B EditText widgets are multiline by default if you do not specify
android:inputType.

B You can control what goes on with that lower-right button, called the
accessory button.

By default, on an EditText widget where you have specified android:inputType, the
accessory button will be Next, moving you to the next EditText in sequence, or Doneg, if
you are on the last EditText on the screen. You can manually stipulate what the
accessory button will be labeled via the android: imeOptions attribute. For example, in
the res/layout/main.xml from InputMethod/IMEDemo2, you will see an augmented
version of the previous example, where two input fields specify the appearance of the
accessory button:

CHAPTER 10: The Input Method Framework

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
>
<TableLayout
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:stretchColumns="1"
>
<TableRow>
<TextView
android:text="No special rules:"
/>
<EditText
/>
</TableRow>
<TableRow>
<TextView
android:text="Email address:"
/>
<EditText
android:inputType="text|textEmailAddress"
android: imeOptions="actionSend"
/>
</TableRow>
<TableRow>
<TextView
android:text="Signed decimal number:"
/>
<EditText
android:inputType="number |numberSigned|numberDecimal”
android:imeOptions="actionDone"
/>
</TableRow>
<TableRow>
<TextView
android:text="Date:"
/>
<EditText
android:inputType="date"
/>
</TableRow>
<TableRow>
<TextView
android:text="Multi-line text:"
/>
<EditText
android:inputType="text|textMultiline|textAutoCorrect"
android:minLines="3"
android:gravity="top"
/>
</TableRow>
</Tablelayout>
</ScrollView>

CHAPTER 10: The Input Method Framework

Here, we attach a Send action to the accessory button for the e-mail address
(android:imeOptions = "actionSend"), and the Done action on the middle field
(android:imeOptions = "actionDone").

By default, Next will move the focus to the next EditText, and Done will close the IME.
However, for those actions, or for any other ones like Send, you can use
setOnEditorActionListener() on EditText (technically, on the TextView superclass) to
get control when the accessory button is clicked or the user presses the Enter key. You
are provided with a flag indicating the desired action (e.g., IME_ACTION_SEND), and you
can then do something to handle that request (e.g., send an e-mail to the supplied e-
mail address).

Fitting In

You will notice that the IMEDemo2 layout shown in the preceding section has another
difference from its IMEDemo1 predecessor: the use of a ScrollView container wrapping
the Tablelayout. This ties into another level of control you have over IMEs: what
happens to your activity’s own layout when the soft keyboard appears? There are three
possibilities, depending on the circumstances:

B Android can “pan” your activity, effectively sliding the whole layout up
to accommodate the IME, or overlaying your layout, depending on
whether the EditText being edited is at the top or bottom. This has the
effect of hiding some portion of your Ul.

B Android can resize your activity, effectively causing it to shrink to a
smaller screen dimension, allowing the IME to sit below the activity
itself. This is great when the layout can readily be shrunk (e.g., it is
dominated by a list or multiline input field that does not need the whole
screen to be functional).

B Inlandscape mode, Android may display the IME full-screen,
obscuring your entire activity. This allows for a bigger keyboard and
generally easier data entry.

Android controls the full-screen option purely on its own. And, by default, Android will
choose between pan and resize modes depending on what your layout looks like. If you
want to specifically choose between pan and resize, you can do so via an
android:windowSoftInputMode attribute on the <activity> element in your
AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.imf.two"
android:versionCode="1"
android:versionName="1.0">
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".IMEDemo2"
android:label="@string/app_name"
android:windowSoftInputMode="adjustResize">

CHAPTER 10: The Input Method Framework

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Because we specified resize, Android will shrink our layout to accommodate the IME.
With the ScrollView in place, this means the scroll bar will appear as needed, as shown
in Figure 10-5.

T Ml @ 10:58 AM

IMEDemo2

Figure 10-5. The shrunken, scrollable layout

Unleash Your Inner Dvorak

You are also welcome to make and distribute your own IME. Perhaps you want to create
a Dvorak soft keyboard, a keyboard for another language, or one that echoes pressed
keys verbally.

An IME is packaged in the form of a service, an Android component described in
Chapters 29 and 30. If you are interested in creating such an editor, you should take a
look at the SoftKeyboard sample application distributed with the Android 1.5 SDK and,
of course, the Android source code (search for the LatinIME class).

Chapter

Applying Menus

Like applications for the desktop and some mobile operating systems, such as Windows
Mobile, Android supports activities with application menus. In Android, this is called an
options menu. Some Android phones will have a dedicated key for popping up the
options menu; others will offer alternate means for triggering the menu to appear, such
as the on-screen button used by the Archos 5 Android tablet.

Also, as with many GUI toolkits, you can create context menus for your Android
applications. On mobile devices, context menus typically appear when the user taps and
holds over a particular widget. For example, if a TextView had a context menu, and the
device was designed for finger-based touch input, you could push the TextView with
your finger, hold it for a second or two, and a pop-up menu would appear.

This chapter describes how to work with Android options and context menus.

Menus of Options

The options menu is triggered by pressing the hardware Menu button on the device.

This menu operates in one of two modes: icon and expanded. When the user first
presses the Menu button, the icon mode will appear, showing up to the first six menu
choices as large, finger-friendly buttons in a grid at the bottom of the screen. If the
menu has more than six choices, the sixth button will be labeled More. Choosing the
More option will bring up the expanded mode, showing the remaining choices not
visible in the regular menu. The menu is scrollable, so the user can get to any of the
menu choices.

Creating an Options Menu

Rather than building your activity’s options menu during onCreate(), the way you wire
up the rest of your Ul, you instead need to implement onCreateOptionsMenu(). This
callback receives an instance of Menu.

125

CHAPTER 11: Applying Menus

The first thing you should do is chain upward to the superclass
(super.onCreateOptionsMenu(menu)), so the Android framework can add in any menu
choices it feels are necessary. Then you can go about adding your own options, as
described in the next section.

If you will need to adjust the menu during your activity’s use (e.g., disable a now-invalid
menu choice), just hold onto the Menu instance you receive in onCreateOptionsMenu().
Alternatively, you can implement onPrepareOptionsMenu(), which is called just before
displaying the menu each time it is requested.

Adding Menu Choices and Submenus

Given that you have received a Menu object via onCreateOptionsMenu(), you add menu
choices by calling add(). There are many flavors of this method, which require some
combination of the following parameters:

B A group identifier (int), which should be NONE unless you are creating a
specific grouped set of menu choices for use with
setGroupCheckable() (described shortly)

B A choice identifier (also an int), for use in identifying this choice in the
onOptionsItemSelected() callback when a menu choice is chosen

B An order identifier (yet another int), for indicating where this menu
choice should be slotted if the menu has Android-supplied choices
alongside your own; for now, just use NONE

B The text of the menu choice, as a String or a resource 1D

The add() family of methods all return an instance of MenuItem, where you can adjust
any of the menu item settings you have already set (e.g., the text of the menu choice).

You can also set the shortcuts for the menu choice, which are single-character
mnemonics that choose that menu item when the menu is visible. Android supports both
an alphabetic (or QWERTY) set of shortcuts and a numeric set of shortcuts. These are
set individually by calling setAlphabeticShortcut() and setNumericShortcut(),
respectively. The menu is placed into alphabetic shortcut mode by calling
setQwertyMode() on the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu features, such
as the following:

B Calling MenuItemttsetCheckable() with a choice identifier, to control if
the menu choice has a two-state check box alongside the title, where
the check box value is toggled when the user chooses that item

B Calling Menu#fsetGroupCheckable() with a group identifier, to turn a set
of menu choices into ones with a mutual-exclusion radio button
between them, so only one choice in the group can be in the checked
state at any time

CHAPTER 11: Applying Menus

Finally, you can create fly-out submenus by calling addSubMenu(), supplying the same
parameters as addMenu(). Android will eventually call onCreatePanelMenu(), passing it
the choice identifier of your submenu, along with another Menu instance representing the
submenu itself. As with onCreateOptionsMenu(), you should chain upward to the
superclass, and then add menu choices to the submenu. One limitation is that you
cannot indefinitely nest submenus. A menu can have a submenu, but a submenu cannot
have a sub-submenu.

If the user makes a menu choice, your activity will be notified that a menu choice was
selected via the onOptionsItemSelected() callback. You are given the MenuItem object
corresponding to the selected menu choice. A typical pattern is to switch() on the
menu ID (item.getItemId()) and take appropriate behavior. Note that
onOptionsItemSelected() is used regardless of whether the chosen menu item was in
the base menu or a submenu.

Menus in Context

The context menu is raised by a tap-and-hold action on the widget sporting the menu.

By and large, context menus use the same guts as option menus. The two main
differences are how you populate the menu and how you are informed of menu choices.

First, you need to indicate which widget(s) on your activity have context menus. To do
this, call registerForContextMenu() from your activity, supplying the View that is the
widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other things, is
passed the View you supplied in registerForContextMenu(). You can use that to
determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the context
menu is associated with, and a ContextMenu.ContextMenuInfo, which tells you which
item in the list the user did the tap-and-hold over, in case you want to customize the
context menu based on that information. For example, you could toggle a checkable
menu choice based on the current state of the item.

It is also important to note that onCreateContextMenu() is called for each time the
context menu is requested. Unlike the options menu (which is built only once per
activity), context menus are discarded after they are used or dismissed. Hence, you do
not want to hold onto the supplied ContextMenu object; just rely on getting the chance to
rebuild the menu to suit your activity’s needs on an on-demand basis based on user
actions.

To find out when a context menu choice was chosen, implement
onContextItemSelected() on the activity. Note that you get only the MenuItem instance
that was chosen in this callback. As a result, if your activity has two or more context
menus, you may want to ensure they have unique menu item identifiers for all their
choices, so you can distinguish between them in this callback. Also, you can call
getMenuInfo() on the MenuItem to get the ContextMenu.ContextMenuInfo you received in

CHAPTER 11: Applying Menus

onCreateContextMenu(). Otherwise, this callback behaves the same as
onOptionsItemSelected(), as described in the previous section.

Taking a Peek

In the sample project Menus/Menus, you will find an amended version of the ListView
sample (List) from Chapter 7 with an associated menu. Since the menus are defined in
Java code, the XML layout does not need to change from the one shown in that chapter.
However, the Java code has a few new behaviors:

public class MenuDemo extends ListActivity {

TextView selection;

String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
"consectetuer”, "adipiscing", "elit", "morbi", "vel",
"ligula", "vitae", "arcu", "aliquet", "mollis",
"etiam", "vel", "erat", "placerat", "ante",
"porttitor", "sodales", "pellentesque", "augue", "purus"};

public static final int EIGHT_ID = Menu.FIRST+1;

public static final int SIXTEEN_ID = Menu.FIRST+2;

public static final int TWENTY_FOUR_ID = Menu.FIRST+3;

public static final int TWO_ID = Menu.FIRST+4;

public static final int THIRTY_TWO_ID = Menu.FIRST+5;

public static final int FORTY_ID = Menu.FIRST+6;

public static final int ONE_ID = Menu.FIRST+7;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1, items));
selection=(TextView)findViewByld(R.id.selection);

registerForContextMenu(getListView());

public void onListltemClick(ListView parent, View v,
int position, long id) {
selection.setText(items[position]);

@0verride
public void onCreateContextMenu(ContextMenu menu, View v,
ContextMenu.ContextMenuInfo menuInfo) {

populateMenu(menu) ;

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
populateMenu(menu) ;

return(super.onCreateOptionsMenu(menu));

CHAPTER 11: Applying Menus

@0verride

public boolean onOptionsltemSelected(MenuItem item) {
return(applyMenuChoice(item) ||

y super.onOptionsltemSelected (item));

@0verride

public boolean onContextltemSelected(MenuItem item) {
return(applyMenuChoice(item) ||

y super.onContextltemSelected (item));

private void populateMenu(Menu menu) {
menu.add(Menu.NONE, ONE_ID, Menu.NONE, "1 Pixel");
menu.add(Menu.NONE, TWO ID, Menu.NONE, "2 Pixels");
menu.add(Menu.NONE, EIGHT ID, Menu.NONE, "8 Pixels");
menu.add(Menu.NONE, SIXTEEN ID, Menu.NONE, "16 Pixels");
menu.add(Menu.NONE, TWENTY_FOUR_ID, Menu.NONE, "24 Pixels");
menu.add(Menu.NONE, THIRTY TWO ID, Menu.NONE, "32 Pixels");

) menu.add(Menu.NONE, FORTY_ ID, Menu.NONE, "40 Pixels");

private boolean applyMenuChoice(MenuItem item) {
switch (item.getltemld()) {
case ONE_ID:
getListView().setDividerHeight(1);
return(true);

case EIGHT_ID:
getListView() . setDividerHeight(8) ;
return(true);

case SIXTEEN_ID:

getListView() .setDividerHeight(16) ;
return(true);

case TWENTY_FOUR_ID:
getListView() .setDividerHeight(24) ;
return(true);

case TWO_ID:
getListView() . setDividerHeight(2);
return(true);

case THIRTY TWO_ID:
getListView() .setDividerHeight(32);
return(true);

case FORTY_ID:
getListView() .setDividerHeight(40);
return(true);

return(false);

CHAPTER 11: Applying Menus

In onCreate(), we register our list widget as having a context menu, which we fill in via
our populateMenu() private method, by way of onCreateContextMenu().

We also implement the onCreateOptionsMenu() callback, indicating that our activity also
has an options menu. Once again, we delegate to populateMenu() to fill in the menu.

Our implementations of onOptionsItemSelected() (for options menu selections) and
onContextItemSelected() (for context menu selections) both delegate to a private
applyMenuChoice() method, plus chaining upward to the superclass if none of our menu
choices was the one selected by the user.

In populateMenu(), we add seven menu choices, each with a unique identifier. Being
lazy, we eschew the icons.

In applyMenuChoice(), we see if any of our menu choices were chosen. If so, we set the
list’s divider size to be the user-selected width.

Initially, the activity looks the same in the emulator as it did for ListDemo, as shown in
Figure 11-1.

Bl @ 4:31pPm
MenuDemo

lorem
ipsum

dolor

sit

amet

consectetuer

Figure 11-1. The MenuDemo sample application, as initially launched

When you press the Menu button, you will get our options menu, as shown in Figure 11-2.

CHAPTER 11: Applying Menus

£ Gl @ 9:17 Am

MenuDemo

lorem

ipsum

dolor

sit

1 Pixel 2 Pixels 8 Pixels
16 Pixels 24 Pixels More

Figure 11-2. The same application, showing the options menu

Choosing the More button shows the remaining two menu choices, as shown in
Figure 11-3.

Al @ 9:17 AM
MenuDemo
- |

lorem
ipsum

dolor

sit

32 Pixels

40 Pixels

Figure 11-3. The same application, showing the remaining menu choices

Choosing a height (say, 16 pixels) from the menu changes the divider height of the list to
something garish, as shown in Figure 11-4.

CHAPTER 11: Applying Menus

i @ 4:32PM

MenuDemo

lorem

ipsum

dolor

Figure 11-4. The same application, made ugly

You can trigger the context menu, shown in Figure 11-5, by tapping and holding on any
item in the list. Once again, choosing an option sets the divider height.

Ml @ 9:17 Am

1 Pixel

2 Pixels

8 Pixels

16 Pixels

24 Pixels

3?7 Piyxels

Figure 11-5. The same application, showing a context menu

CHAPTER 11: Applying Menus

Yet More Inflation

Chapter 8 explained how you can describe Views via XML files and “inflate” them into
actual View objects at runtime. Android also allows you to describe menus via XML files
and inflate them when a menu is needed. This helps you keep your menu structure
separate from the implementation of menu-handling logic, and it provides easier ways to
develop menu-authoring tools.

Menu XML Structure

Menu XML goes in res/menu/ in your project tree, alongside the other types of resources
that your project might employ. As with layouts, you can have several menu XML files in
your project, each with its own filename and the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called
sample.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
<item android:id="@+id/close"
android:title="Close"
android:orderInCategory="3"
android:icon="@drawable/eject" />
<item android:id="@+id/no_icon"
android:orderInCategory="2"
android:title="Sans Icon" />
<item android:id="@+id/disabled"
android:orderInCategory="4"
android:enabled="false"
android:title="Disabled" />
<group android:id="@+id/other_stuff"
android:menuCategory="secondary"
android:visible="false">
<item android:id="@+id/later"
android:orderInCategory="0"
android:title="2nd-To-Last" />
<item android:id="@+id/last"
android:orderInCategory="1"
android:title="Last" />
</group>
<item android:id="@+id/submenu"
android:orderInCategory="3"
android:title="A Submenu">
<menu>
<item android:id="@+id/non_ghost"
android:title="Non-Ghost"
android:visible="true"
android:alphabeticShortcut="n" />
<item android:id="@+id/ghost"
android:title="A Ghost"
android:visible="false"
android:alphabeticShortcut=
</menu>
</item>
</menu>

g" />

CHAPTER 11: Applying Menus

Note the following about the XML for menus:
B You must start with a menu root element.

B Inside a menu element are item elements and group elements. The
latter represents a collection of menu items that can be operated upon
as a group.

B Submenus are specified by adding a menu element as a child of an
item element, using this new menu element to describe the contents of
the submenu.

B If you want to detect when an item is chosen, or to reference an item
or group from your Java code, be sure to apply an android:id, just as
you do with View layout XML.

Menu Options and XML

Inside the item and group elements, you can specify various options, matching up with
corresponding methods on Menu or MenuItem, as follows:

m Title: The title of a menu item is provided via the android:title
attribute on an item element. This can be either a literal string or a
reference to a string resource (e.g., @string/foo).

B /con: Menu items optionally have icons. To provide an icon, in the form
of a reference to a drawable resource (e.g., @drawable/eject), use the
android:icon attribute on the item element.

B Order: By default, the order of the items in the menu is determined by
the order in which they appear in the menu XML. You can change that
by specifying the android:orderInCategory attribute on the item
element. This is a 0-based index of the order for the items associated
with the current category. There is an implicit default category. Groups
can provide an android:menuCategory attribute to specify a different
category to use for items in that group. Generally, it is simplest just to
put the items in the XML in the order you want them to appear.

B Enabled: Items and groups can be enabled or disabled, controlled in
the XML via the android:enabled attribute on the item or group
element. By default, items and groups are enabled. Disabled items and
groups appear in the menu but cannot be selected. You can change
an item’s status at runtime via the setEnabled() method on MenuItem,
or change a group’s status via setGroupEnabled() on Menu.

CHAPTER 11: Applying Menus

B Visible: Items and groups can be visible or invisible, controlled in the
XML via the android:visible attribute on the item or group element.
By default, items and groups are visible. Invisible items and groups do
not appear in the menu. You can change an item’s status at runtime
via the setVisible() method on MenuItem, or change a group’s status
via setGroupVisible() on Menu. In the layout XML shown in the
previous section, the other stuff group is initially invisible. If we make
it visible in our Java code, the two menu items in the group will
“magically” appear.

B Shortcut: Iltems can have shortcuts —single letters
(android:alphabeticShortcut) or numbers (android:numericShortcut)
that can be pressed to choose the item without needing to use the
touchscreen, D-pad, or trackball to navigate the full menu.

Inflating the Menu

Actually using the menu, once it’s defined in XML, is easy. Just create a MenuInflater
and tell it to inflate your menu:

@0verride
public boolean onCreateOptionsMenu(Menu menu) {
theMenu=menu;

new Menulnflater(getApplication())
.inflate(R.menu.sample, menu);

return(super.onCreateOptionsMenu(menu));

Chapter

Fonts

When you’re developing any types of applications, inevitably, you’ll get the question,
“Hey, can we change this font?” The answer depends on which fonts come with the
platform, whether you can add other fonts, and how to apply them to the widget or
whatever needs the font change.

Fonts in Android applications are no different. Android comes with some fonts, plus a
means for adding new fonts. But, as with any new environment, there are a few
idiosyncrasies to deal with, as you’ll learn in this chapter.

Love the One You’re With

Android natively knows three fonts, by the shorthand names of "sans", "serif", and
"monospace". These fonts are actually the Droid series of fonts, created for the Open
Handset Alliance by Ascender (http://www.ascendercorp.com/oha.html). To use these
fonts, you can just reference them in your layout XML, such as the following layout from
the Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:stretchColumns="1">
<TableRow>
<TextView
android:text="sans:"
android:layout marginRight="4px"
android:textSize="20sp"
/>
<TextView
android:id="@+id/sans"
android:text="Hello, world!"
android:typeface="sans"
android:textSize="20sp"
/>
</TableRow>
<TableRow>

137

CHAPTER 12: Fonts

<TextView
android:text="serif:"
android:layout_marginRight="4px"
android:textSize="20sp"
/>
<TextView
android:id="@+id/serif"
android:text="Hello, world!"
android:typeface="serif"
android:textSize="20sp"
/>
</TableRow>
<TableRow>
<TextView
android:text="monospace:"
android:layout marginRight="4px"
android:textSize="20sp"
/>
<TextView
android:id="@+id/monospace"
android:text="Hello, world!"
android:typeface="monospace"
android:textSize="20sp"
/>
</TableRow>
<TableRow>
<TextView
android:text="Custom:"
android:layout marginRight="4px"
android:textSize="20sp"
/>
<TextView
android:id="@+id/custom"
android:text="Hello, world!"
android:textSize="20sp"
/>
</TableRow>
</TableLayout>

This layout builds a table showing short samples of the four fonts. Notice how the first
three have the android:typeface attribute, whose value is one of the three built-in font
faces (e.g., "sans").

More Fonts

The three built-in fonts are very nice. However, it may be that a designer, a manager, or
a customer wants to use a different font, or perhaps you want to use a font for
specialized purposes, such as a dingbats font instead of a series of PNG graphics. The
easiest way to accomplish this is to package the desired font(s) with your application.
Simply create an assets/ folder in the project root, and put your TrueType (TTF) fonts in
that folder. You might, for example, create assets/fonts/ and put your TTF files there.

CHAPTER 12: Fonts

Then you need to tell your widgets to use that font. Unfortunately, you can no longer use
layout XML for this, since the XML does not know about any fonts you may have tucked
away as an application asset. Instead, you need to make the change in Java code:
public class FontSampler extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

TextView tv=(TextView)findViewByld(R.id.custom);
Typeface face=Typeface.createFromAsset(getAssets(),
“fonts/HandmadeTypewriter.ttf");

tv.setTypeface(face);
}

Here, we grab the TextView for our custom sample, and then create a Typeface object via
the static createFromAsset() builder method. This takes the application’s AssetManager
(from getAssets()) and a path within your assets/ directory to the font you want.

Then it is just a matter of telling the TextView to setTypeface(), providing the Typeface
you just created. In this case, we are using the Handmade Typewriter font
(http://moorstation.org/typoasis/designers/klein07/texto1/handmade.htm). Figure
12-1 shows the results.

£ G Ml @ 3:49Pm

FontSampler

sans: Hello, world!
serif: Hello, world!
monospace:Hello, world!

Custom: Hello, world!

Figure 12-1. The FontSampler application

Note that Android does not seem to like all TrueType fonts. When Android dislikes a
custom font, rather than raise an Exception, it seems to substitute Droid Sans ("sans")

CHAPTER 12: Fonts

quietly. So, if you try to use a different font and it does not appear to be working, the
font in question may be incompatible with Android.

Also, you are probably best served by changing the case of your font filenames to be all
lowercase, to match the naming convention used in the rest of your resources.

Android 1.6 added the ability to create Typeface objects based on TrueType files in
the filesystem, such as on the user’s SD card, via the createFromFile() static method
on Typeface.

Here a Glyph, There a Glyph

TrueType fonts can be rather pudgy, particularly if they support an extensive subset of
the available Unicode characters. The Handmade Typewriter font used in the previous
example runs over 70KB. The DejaVu free fonts can run upwards of 500KB apiece. Even
compressed, these add bulk to your application, so be careful not to go overboard with
custom fonts, lest your application take up too much room on your users’ phones.

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As an
example, let’s talk about the ellipsis.

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and adding
an ellipsis if the text is longer than the available space. You can use this viathe
android:ellipsize attribute, for example. This works fairly well, at least for single-line text.

The ellipsis that Android uses is not three periods. Rather, it is an actual ellipsis
character, where the three dots are contained in a single glyph. Hence, if you use the
ellipsizing feature, any font that you display will need the ellipsis glyph.

Beyond that, though, Android pads out the string that is rendered on the screen, such
that the length (in characters) is the same before and after ellipsizing. To make this work,
Android replaces one character with the ellipsis, and replaces all other removed
characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’ (U+FEFF). This
way, the extra characters after the ellipsis do not take up any visible space on the
screen, yet they can be part of the string. However, this means any custom fonts you
use for TextView widgets that you use with android:ellipsize must also support this
special Unicode character. Not all fonts do, and you will get artifacts in the on-screen
representation of your shortened strings if your font lacks this character (e.g., rogue Xs
appear at the end of the line).

And, of course, Android’s international deployment means your font must handle any
language your users might want to enter, perhaps through a language-specific input
method editor.

Hence, while using custom fonts in Android is very possible, there are many potential
problems. For your applications, you should weigh carefully the benefits of the custom
fonts versus their potential costs.

Chapter

Embedding the WebKit
Browser

Other GUI toolkits let you use HTML for presenting information, from limited HTML
renderers (e.g., Java/Swing and wxWidgets) to embedding Internet Explorer into .NET
applications. Android is much the same, in that you can embed the built-in web
browser as a widget in your own activities, for displaying HTML or full-fledged
browsing. The Android browser is based on WebKit, the same engine that powers
Apple’s Safari web browser.

The Android browser is sufficiently complex that it gets its own Java package
(android.webkit). Using the WebView widget itself can be simple or powerful, based on
your requirements, as you’ll learn in this chapter.

A Browser, Writ Small

For simple stuff, WebView is not significantly different than any other widget in Android.
You pop it into a layout, tell it which URL to navigate to via Java code, and you’re
finished.

For example (WebKit/Browser1), here is a simple layout with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<WebView android:id="@+id/webkit"
android:layout width="fill parent"”
android:layout_height="fill parent"
/>
</Linearlayout>

As with any other widget, you need to tell it how it should fill up the space in the layout.
In this case, it fills all remaining space.

141

CHAPTER 13: Embedding the WebKit Browser

The Java code is equally simple:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemol extends Activity {
WebView browser;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
browser=(WebView)findViewByld(R.id.webkit);

browser.loadUrl("http://commonsware.com");
}
}
The only unusual bit with this edition of onCreate() is that we invoke loadUrl() on the

WebView widget, to tell it to load a web page (in this case, the home page of some
random firm).

However, we also need to make one change to AndroidManifest.xml, requesting
permission to access the Internet:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.browser1">
<uses-permission android:name="android.permission.INTERNET" />
<application android:icon="@drawable/cw">
<activity android:name=".BrowserDemol" android:label="BrowserDemo1">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

If we fail to add this permission, the browser will refuse to load pages. Permissions are
covered in greater detail in Chapter 28.

The resulting activity looks like a web browser, but with hidden scrollbars, as shown in
Figure 13-1.

CHAPTER 13: Embedding the WebKit Browser

i & s:13PMm

BrowserDemo1

Home

COMMONSWARE the

What We Offer

The
> Books firm's

> Professional Training

> Consulting Services mission
is to
help
General Info people
> Privacy Policy and
> Em.nzl'er‘s Bio organizatior

Figure 13-1. The Browser1 sample application

As with the regular Android browser, you can pan around the page by dragging it. The
D-pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that makes up a web browser, such as a
navigational toolbar.

Now, you may be tempted to replace the URL in that source code with something that
relies on JavaScript, such as Google’s home page. By default, JavaScript is turned off in
WebView widgets. If you want to enable JavaScript, call
getSettings().setJavaScriptEnabled(true); on the WebView instance.

Loading It Up

There are two main ways to get content into the WebView. One is to provide the browser
with a URL and have the browser display that page via loadUrl(), as described in the
previous section. The browser will access the Internet through whatever means are
available to that specific device at the present time (Wi-Fi, cellular network, Bluetooth-
tethered phone, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the browser to view.
You might use this to do the following:

B Display a manual that was installed as a file with your application
package.

B Display snippets of HTML you retrieved as part of other processing,
such as the description of an entry in an Atom feed.

CHAPTER 13: Embedding the WebKit Browser

B Generate a whole Ul using HTML, instead of using the Android widget
set.

There are two flavors of loadData(). The simpler one allows you to provide the content,
the MIME type, and the encoding, all as strings. Typically, your MIME type will be
text/html and your encoding will be UTF-8 for ordinary HTML.

For example, you could replace the loadUrl() invocation in the previous example with
the following:

browser.loadData("<html><body>Hello, world!</body></html>",
"text/html", "UTF-8");

The result would be as shown in Figure 13-2.

Bl @ s:18pPm
BrowserDemo2

Hello, world!

Figure 13-2. The Browser2 sample application

This is also available as a fully buildable sample, as WebKit/Browser?2.

Navigating the Waters

As you’ve seen, the WebView widget doesn’t come with a navigation toolbar. This allows
you to use it in places where such a toolbar would be pointless and a waste of screen
real estate. That being said, if you want to offer navigational capabilities, you can, but
you need to supply the UL.

WebView offers ways to perform garden-variety browser navigation, including the
following methods:

B reload(): Refreshes the currently viewed web page.

B goBack(): Goes back one step in the browser history.

CHAPTER 13: Embedding the WebKit Browser

canGoBack(): Determines if there is any history to go back to.
goForward(): Goes forward one step in the browser history.

canGoForward(): Determines if there is any history to go forward to.

goBackOrForward(): Goes backward or forward in the browser history.
A negative number as an argument represents a count of steps to go
backward. A positive number represents how many steps to go
forward.

B canGoBackOrForward(): Determines if the browser can go backward or
forward the stated number of steps (following the same
positive/negative convention as goBackOrForward()).

clearCache(): Clears the browser resource cache.

B clearHistory(): Clears the browsing history.

Entertaining the Client

If you are going to use the WebView as a local Ul (versus browsing the Web), you will
want to be able to get control at key times, particularly when users click links. You will
want to make sure those links are handled properly, by loading your own content back
into the WebView, by submitting an Intent to Android to open the URL in a full browser,
or by some other means (see Chapter 18).

Your hook into the WebView activity is via setWebViewClient(), which takes an instance
of a WebViewClient implementation as a parameter. The supplied callback object will be
notified of a wide range of activities. For example, it will be notified when parts of a page
have been retrieved (e.g., onPageStarted()), as well as when you, as the host
application, need to handle certain user- or circumstance-initiated events (e.g.,
onTooManyRedirects() or onReceivedHttpAuthRequest()).

A common hook will be shouldOverrideUrlLoading(), where your callback is passed a
URL (plus the WebView itself), and you return true if you will handle the request or false if
you want default handling (e.g., actually fetch the web page referenced by the URL). In
the case of a feed reader application, for example, you will probably not have a full
browser with navigation built into your reader. In this case, if the user clicks a URL, you
probably want to use an Intent to ask Android to load that page in a full browser. But if
you have inserted a “fake” URL into the HTML, representing a link to some activity-
provided content, you can update the WebView yourself.

As an example, let’'s amend the first browser demo to make it an application that, upon
a click, shows the current time. From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
WebView browser;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

CHAPTER 13: Embedding the WebKit Browser

setContentView(R.layout.main);
browser=(WebView)findViewByld(R.id.webkit);
browser.setWebViewClient(new Callback());

loadTime();

}

void loadTime() {
String page="<html><body>"
+new Date().toString()
+"</body></html>";

browser.loadDataWithBaseURL("x-data://base", page,
"text/html", "UTF-8",
null);

}

private class Callback extends WebViewClient {
public boolean shouldOverrideUrlLoading(WebView view, String url) {
loadTime();

return(true);
}
}

Here, we load a simple web page into the browser (loadTime()) that consists of the
current time, made into a hyperlink to the /clock URL. We also attach an instance of a
WebViewClient subclass, providing our implementation of shouldOverrideUrlLoading().
In this case, no matter what the URL, we want to just reload the WebView via loadTime().

Running this activity gives the result shown in Figure 13-3.

EhMl @ 9:46 PM
BrowserDemo3

Thu Aug 21 21:46:26 GMT+00:00 2008

Figure 13-3. The Browser3 sample application

CHAPTER 13: Embedding the WebKit Browser

Selecting the link and clicking the D-pad center button will select the link, causing the
page to be rebuilt with the new time.

Settings, Preferences, and Options (Oh My!)

With your favorite desktop web browser, you have some sort of settings, preferences, or
options window. Between that and the toolbar controls, you can tweak and twiddle the
behavior of your browser, from preferred fonts to the behavior of JavaScript.

Similarly, you can adjust the settings of your WebView widget as you see fit, via the
WebSettings instance returned from calling the widget’s getSettings() method.

There are a lot of options on WebSettings to play with. Most appear fairly esoteric (e.g.,
setFantasyFontFamily()). However, here are some that you may find more useful:

B Control the font sizing via setDefaultFontSize() (to use a point size)
or setTextSize() (to use constants indicating relative sizes like LARGER
and SMALLEST).

B Control JavaScript via setJavaScriptEnabled() (to disable it outright)
and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it
from opening pop-up windows).

® Control web site rendering via setUserAgent(). A value of 0 means the
WebView gives the web site a user-agent string that indicates it is a
mobile browser. A value of 1 results in a user-agent string that
suggests it is a desktop browser.

The settings you change are not persistent, so you should store them somewhere (such
as via the Android preferences engine, discussed in Chapter 21) if you are allowing your
users to determine the settings, rather than hard-wiring the settings in your application.

Chapter

Showing Pop-Up
Messages

Sometimes, your activity (or other piece of Android code) will need to speak up.

Not every interaction with Android users will be tidy and containable in activities
composed of views. Errors will crop up. Background tasks may take much longer than
expected. Something asynchronous may occur, such as an incoming message. In these
and other cases, you may need to communicate with the user outside the bounds of the
traditional UL.

Of course, this is nothing new. Error messages in the form of dialog boxes have been
around for a very long time. More subtle indicators also exist—from task tray icons to
bouncing dock icons to vibrating cell phones.

Android has quite a few systems for letting you alert your users outside the bounds of an
Activity-based Ul. One, notifications, is tied heavily into intents and services and, as
such, is covered in Chapter 31. In this chapter, you will learn about two means of raising
pop-up messages: toasts and alerts.

Raising Toasts

A Toast is a transient message, meaning that it displays and disappears on its own
without user interaction. Moreover, it does not take focus away from the currently active
Activity, so if the user is busy writing the next Great Programming Guide, his
keystrokes will not be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it. You
get no acknowledgment, nor does the message stick around for a long time to pester
the user. Hence, the Toast is mostly for advisory messages, such as indicating a long-
running background task is completed, the battery has dropped to a low (but not too
low) level, and so on.

149

CHAPTER 14: Showing Pop-Up Messages

Making a Toast is fairly easy. The Toast class offers a static makeText () that accepts a
String (or string resource ID) and returns a Toast instance. The makeText () method also
needs the Activity (or other Context) plus a duration. The duration is expressed in the
form of the LENGTH_SHORT or LENGTH_LONG constants to indicate, on a relative basis, how
long the message should remain visible.

If you would prefer your Toast be made out of some other View, rather than be a boring
old piece of text, simply create a new Toast instance via the constructor (which takes a
Context), and then call setView() to supply it with the view to use and setDuration() to
set the duration.

Once your Toast is configured, call its show() method, and the message will be
displayed.

Alert! Alert!

If you would prefer something in the more classic dialog box style, what you want is an
AlertDialog. As with any other modal dialog box, an AlertDialog pops up, grabs the
focus, and stays there until closed by the user. You might use this for a critical error, a
validation message that cannot be effectively displayed in the base activity Ul, or some
other situation where you are sure that the user needs to see the message and needs to
see it now.

The simplest way to construct an AlertDialog is to use the Builder class. Following in
true builder style, Builder offers a series of methods to configure an AlertDialog, each
method returning the Builder for easy chaining. At the end, you call show() on the
builder to display the dialog.

Commonly used configuration methods on Builder include the following:

B setMessage(): Sets the “body” of the dialog to be a simple textual
message, from either a supplied String or a supplied string
resource ID.

B setTitle() and setIcon(): Configure the text and/or icon to appear in
the title bar of the dialog.

B setPositiveButton(), setNeutralButton(), and setNegativeButton():
Indicate which button(s) should appear across the bottom of the
dialog, where they should be positioned (left, center, or right,
respectively), what their captions should be, and what logic should be
invoked when the button is clicked (besides dismissing the dialog).

If you need to configure the AlertDialog beyond what the builder allows, instead of
calling show(), call create() to get the partially built AlertDialog instance, configure it
the rest of the way, and then call one of the flavors of show() on the AlertDialog itself.

Once show() is called, the dialog will appear and await user input.

CHAPTER 14: Showing Pop-Up Messages

Checking Them Out

To see how these work in practice, take a peek at Messages/Message, containing the
following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent" >
<Button
android:id="@+id/alert"
android:text="Raise an alert"
android:layout_width="fill parent"
android:layout_height="wrap content"/>
<Button
android:id="@+id/toast"
android:text="Make a toast"
android:layout_width="fill parent"
android:layout_height="wrap content"/>
</LinearLayout>

Here’s the Java code:

public class MessageDemo extends Activity implements View.OnClickListener {
Button alert;
Button toast;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

setContentView(R.layout.main);

alert=(Button)findViewByld(R.id.alert);

alert.setOnClickListener(this);

toast=(Button)findViewByld(R.id.toast);
y toast.setOnClickListener(this);

public void onClick(View view) {
if (view==alert) {
new AlertDialog.Builder(this)
.setTitle("MessageDemo")
.setMessage("eek!")
.setNeutralButton("Close", new DialogInterface.OnClickListener() {
public void onClick(DialogInterface dlg, int sumthin) {
// do nothing - it will close on its own

}
b
.show();
else {

Toast
.makeText(this, "<clink, clink>", Toast.LENGTH_SHORT)

CHAPTER 14: Showing Pop-Up Messages

.show();

}
}

The layout is unremarkable—just a pair of buttons to trigger the alert and the toast.

When the Raise an alert button is clicked, we use a builder (new Builder(this)) to set
the title (setTitle("MessageDemo")), message (setMessage("eek!")), and neutral button
(setNeutralButton("Close", new OnClickListener() ...) before showing the dialog.
When the Close button is clicked, the OnClickListener callback does nothing; the mere
fact that the button was pressed causes the dialog to be dismissed. However, you could
update information in your activity based on the user action, particularly if you have
multiple buttons for the user to choose from. The result is a typical dialog, as shown in
Figure 14-1.

il & 6:05Pm

@ MessageDemo

eek!

Figure 14-1. The MessageDemo sample application, after clicking the Raise an alert button

When the Make a toast button is clicked, the Toast class makes us a text-based toast
(makeText(this, "<clink, clink>", LENGTH_SHORT)), which we then show(). The result
is a short-lived, noninterrupting message, as shown in Figure 14-2.

CHAPTER 14: Showing Pop-Up Messages

MessageDemo

Raise an alert

Make a toast

<clink, clink>

Figure 14-2. The same application, after clicking the Make a toast button

Chapter

Dealing with Threads

Ideally, you want your activities to be downright snappy, so your users don’t feel that
your application is sluggish. Responding to user input quickly (e.g., within in 200
milliseconds) is a fine goal. At minimum, though, you need to make sure you respond
within 5 seconds, lest the ActivityManager decide to play the role of the Grim Reaper
and kill off your activity as being nonresponsive.

Of course, your activity might have real work to do, which takes nonnegligible amount of
time. This invariably involves the use of a background thread. Android provides a
veritable cornucopia of means to set up background threads, yet allow them to safely
interact with the Ul on the Ul thread.

The “safely interact” concept is crucial. You cannot modify any part of the Ul from a
background thread. That must be done on the Ul thread. This generally means that there
will need to be some coordination between background threads doing the work and the
Ul thread showing the results of that work.

This chapter covers how to work with background and Ul threads in your Android
applications.

Getting Through the Handlers

The most flexible means of making an Android-friendly background thread is to create
an instance of a Handler subclass. You need only one Handler object per activity, and
you do not need to manually register it. Merely creating the instance is sufficient to
register it with the Android threading subsystem.

Your background thread can communicate with the Handler, which will do all of its work
on the activity’s Ul thread. This is important, as Ul changes, such as updating widgets,
should occur only on the activity’s Ul thread.

You have two options for communicating with the Handler: messages and Runnable
objects.

155

CHAPTER 15: Dealing with Threads

Messages

To send a Message to a Handler, first invoke obtainMessage() to get the Message object
out of the pool. There are a few flavors of obtainMessage(), allowing you to create empty
Message objects or ones populated with message identifiers and arguments. The more
complicated your Handler processing needs to be, the more likely it is you will need to
put data into the Message to help the Handler distinguish different events.

Then you send the Message to the Handler via its message queue, using one of the
sendMessage. .. () family of methods, such as the following:

B sendMessage(): Puts the message on the queue immediately.

B sendMessageAtFrontOfQueue(): Puts the message on the queue
immediately, placing it at the front of the message queue, so your
message takes priority over all others.

B sendMessageAtTime(): Puts the message on the queue at the stated
time, expressed in the form of milliseconds based on system uptime
(SystemClock.uptimeMillis()).

B sendMessageDelayed(): Puts the message on the queue after a delay,
expressed in milliseconds.

To process these messages, your Handler needs to implement handleMessage(), which
will be called with each message that appears on the message queue. There, the
handler can update the Ul as needed. However, it should still do that work quickly, as
other Ul work is suspended until the Handler is finished.

For example, let’s create a ProgressBar and update it via a Handler. Here is the layout
from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<ProgressBar android:id="@+id/progress"
style="?android:attr/progressBarStyleHorizontal"
android:layout_width="fill parent"
android:layout_height="wrap content" />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also employs the
style property. This particular style indicates the ProgressBar should be drawn as the
traditional horizontal bar showing the amount of work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;

CHAPTER 15: Dealing with Threads

import android.os.Message;
import android.widget.ProgressBar;

public class HandlerDemo extends Activity {
ProgressBar bar;
Handler handler=new Handler() {
@0verride
public void handleMessage(Message msg) {
bar.incrementProgressBy(5);

}
};

boolean isRunning=false;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
bar=(ProgressBar)findViewByld(R.id.progress);

public void onStart() {
super.onStart();
bar.setProgress(0);

Thread background=new Thread(new Runnable() {
public void run() {
try {
for (int i=0;i<20 &3 isRunning;i++) {
Thread.sleep(1000);
handler.sendMessage(handler.obtainMessage());

}

catch (Throwable t) {
// just end the background thread

}
b

isRunning=true;
background.start();

public void onStop() {
super.onStop();
isRunning=false;

}

As part of constructing the Activity, we create an instance of Handler, with our
implementation of handleMessage(). Basically, for any message received, we update the
ProgressBar by 5 points, and then exit the message handler.

In onStart(), we set up a background thread. In a real system, this thread would do
something meaningful. Here, we just sleep 1 second, post a Message to the Handler, and
repeat for a total of 20 passes. This, combined with the 5-point increase in the

CHAPTER 15: Dealing with Threads

ProgressBar position, will march the bar clear across the screen, as the default
maximum value for ProgressBar is 100. You can adjust that maximum via setMax(). For
example, you might set the maximum to be the number of database rows you are
processing, and update once per row.

Note that we then leave onStart(). This is crucial. The onStart() method is invoked on
the activity Ul thread, so it can update widgets and such. However, that means we need
to get out of onStart(), both to let the Handler get its work done and also so Android
does not think our activity is stuck.

The resulting activity is simply a horizontal progress bar, as shown in Figure 15-1.

@l (I 8:58 AM

HandlerDemo

_)

Figure 15-1. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code arranging to
update the progress on the Ul thread, for this specific widget, that is not necessary. At
least as of Android 1.5, ProgressBar is now Ul thread-safe, in that you can update it
from any thread, and it will handle the details of performing the actual Ul update on the
Ul thread.

Runnables

If you would rather not fuss with Message objects, you can also pass Runnable objects to
the Handler, which will run those Runnable objects on the activity Ul thread. Handler
offers a set of post... () methods for passing Runnable objects in for eventual
processing.

CHAPTER 15: Dealing with Threads

Running in Place

Just as Handler supports post() and postDelayed() to add Runnable objects to the
event queue, you can use those same methods on View. This slightly simplifies your
code, in that you can then skip the Handler object. However, you lose a bit of flexibility.
Also, the Handler has been in the Android toolkit longer, and it may be more tested.

Where Oh Where Has My Ul Thread Gone?

Sometimes, you may not know if you are currently executing on the Ul thread of your
application. For example, if you package some of your code in a JAR file for others to
reuse, you might not know whether your code is being executed on the Ul thread or
from a background thread.

To help combat this problem, Activity offers runOnUiThread(). This works similar to the
post() methods on Handler and View, in that it queues up a Runnable to run on the Ul
thread, if you are not on the Ul thread right now. If you are already on the Ul thread, it
invokes the Runnable immediately. This gives you the best of both worlds: no delay if
you are on the Ul thread, yet safety in case you are not.

Asyncing Feeling

Android 1.5 introduced a new way of thinking about background operations: AsyncTask.
In one (reasonably) convenient class, Android will handle all of the chores of doing work
on the Ul thread versus on a background thread. Moreover, Android itself allocates and
removes that background thread. And it maintains a small work queue, further
accentuating the fire-and-forget feel to AsyncTask.

The Theory

There is a saying, popular in marketing circles: “When a man buys a 1/4-inch drill bit at a
hardware store, he does not want a 1/4-inch drill bit—he wants 1/4-inch holes.”
Hardware stores cannot sell holes, so they sell the next-best thing: devices (drills and
drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread management
do not strictly want background threads. Rather, they want work to be done off the Ul
thread, so users are not stuck waiting and activities do not get the dreaded “application
not responding” (ANR) error. And while Android cannot magically cause work to not
consume Ul thread time, it can offer things that make such background operations
easier and more transparent. AsyncTask is one such example.

To use AsyncTask, you must:

B Create a subclass of AsyncTask, commonly as a private inner class of
something that uses the task (e.g., an activity).

CHAPTER 15: Dealing with Threads

B Override one or more AsyncTask methods to accomplish the
background work, plus whatever work associated with the task that
needs to be done on the Ul thread (e.g., update progress).

B When needed, create an instance of the AsyncTask subclass and call
execute() to have it begin doing its work.

What you do not need to do is:
B Create your own background thread.
B Terminate that background thread at an appropriate time.

B Call all sorts of methods to arrange for bits of processing to be done
on the Ul thread.

AsyncTask, Generics, and Varargs

Creating a subclass of AsyncTask is not quite as easy as, say, implementing the
Runnable interface. AsyncTask uses generics, and so you need to specify three data
types:

B The type of information that is needed to process the task (e.g., URLs
to download)

B The type of information that is passed within the task to indicate
progress

B The type of information that is passed when the task is completed to
the post-task code

What makes this all the more confusing is that the first two data types are actually used
as varargs, meaning that an array of these types is used within your AsyncTask subclass.

This should become clearer as we work our way toward an example.

The Stages of AsyncTask

There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This will
be called by AsyncTask on a background thread. It can run as long as necessary in order
to accomplish whatever work needs to be done for this specific task. Note, though, that
tasks are meant to be finite; using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first of
the three data types listed in the preceding section—the data needed to process the
task. So, if your task’s mission is to download a collection of URLs, doInBackground()
will receive those URLs to process. The doInBackground() method must return a value
of the third data type listed —the result of the background work.

CHAPTER 15: Dealing with Threads

You may wish to override onPreExecute(). This method is called, from the Ul thread,
before the background thread executes doInBackground(). Here, you might initialize a
ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the Ul
thread, after doInBackground() completes. It receives, as a parameter, the value
returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss the
ProgressBar and make use of the work done in the background, such as updating the
contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground() calls the
task’s publishProgress() method, the object(s) passed to that method are provided to
onProgressUpdate(), but in the Ul thread. That way, onProgressUpdate() can alert the
user as to the progress that has been made on the background work, such as updating
a ProgressBar or continuing an animation. The onProgressUpdate() method will receive
a varargs of the second data type from the list in the preceding section—the data
published by doInBackground() via publishProgress().

A Sample Task

As mentioned earlier, implementing an AsyncTask is not quite as easy as implementing a
Runnable. However, once you get past the generics and varargs, it is not too bad.

For example, the following is an implementation of a ListActivity that uses an
AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;

import android.os.Bundle;

import android.os.SystemClock;
import android.widget.ArrayAdapter;
import android.widget.Toast;

import java.util.Arraylist;

public class AsyncDemo extends ListActivity {
private static String[] items={"lorem", "ipsum", "dolor",
"sit", "amet", "consectetuer",
"adipiscing", "elit", "morbi",
"vel", "ligula", "vitae",
"arcu", "aliquet", "mollis",
"etiam", "vel", "erat",
"placerat", "ante",
"porttitor", "sodales",
"pellentesque”, "augue",
"purus"};
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

setlListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,

CHAPTER 15: Dealing with Threads

new ArrayList()));

new AddStringTask().execute();
}

class AddStringTask extends AsyncTask<Void, String, Void> {
@0verride

protected Void dolnBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(200);

return(null);

@0verride
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

@0verride
protected void onPostExecute(Void unused) {
Toast
.makeText(AsyncDemo.this, "Done!", Toast.LENGTH_ SHORT)
.show();

}
}

This is another variation on the lorem ipsum list of words, used frequently throughout
this book. This time, rather than simply hand the list of words to an ArrayAdapter, we
simulate needing to work to create these words in the background using AddStringTask,
our AsyncTask implementation.

If you build, install, and run this project, you will see the list being populated in real time
over a few seconds, followed by a Toast indicating completion, as shown in Figure 15-2.

Ml @ 3:24pPm

Async Demo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 15-2. The AsyncDemo, partway through loading the list of words

CHAPTER 15: Dealing with Threads

Let’s examine this project’s code piece by piece.

The AddStringTask Declaration

First, let’s look at the AddStringTask declaration:
class AddStringTask extends AsyncTask<Void, String, Void> {

Here, we use the generics to set up the specific types of data we are going to leverage
in AddStringTask, as follows:

B We do not need any configuration information in this case, so our first
type is Void.

B We want to pass each string generated by our background task to
onProgressUpdate(), to allow us to add it to our list, so our second
type is String.

B We do not have any results, strictly speaking (beyond the updates), so
our third type is Void.

The doInBackground() Method
Next up is the doInBackground() method:

@Override
protected Void dolnBackground(Void... unused) {
for (String item : items) {
publishProgress(item);
SystemClock.sleep(200);

return(null);

The doInBackground() method is invoked in a background thread. Hence, we can take
as long as we like. In a production application, we might be doing something like
iterating over a list of URLs and downloading each. Here, we iterate over our static list of
lorem ipsum words, call publishProgress() for each, and then sleep 1/4 second to
simulate real work being done.

Since we elected to have no configuration information, we should not need parameters
to doInBackground(). However, the contract with AsyncTask says we need to accept a
varargs of the first data type, which is why our method parameter is Void... unused.

Since we elected to have no results, we should not need to return anything. Again,
though, the contract with AsyncTask says we must return an object of the third data type.
Since that data type is Void, our returned object is null.

The onProgressUpdate() Method
The onProgressUpdate() method looks like this:

CHAPTER 15: Dealing with Threads

@0verride
protected void onProgressUpdate(String... item) {
((ArrayAdapter)getListAdapter()).add(item[0]);

The onProgressUpdate() method is called on the Ul thread, and we want to do something
to let the user know we are making progress on loading these strings. In this case, we
simply add the string to the ArrayAdapter, so it is appended to the end of the list.

The onProgressUpdate() method receives a String. .. varargs because that is the
second data type in our class declaration. Since we are passing only one string per call
to publishProgress(), we need to examine just the first entry in the varargs array.

The onPostExecute() Method

Here’s the onPostExecute() method:

@0verride
protected void onPostExecute(Void unused) {
Toast
.makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
.show();

The onPostExecute() method is called on the Ul thread, and we want to do something to
indicate that the background work is complete. In a real system, there may be some
ProgressBar to dismiss or some animation to stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters. The contract
with AsyncTask says we must accept a parameter of the third data type. Since that data
type is Void, our method parameter is Void unused.

The Activity

Finally, let’s look at the activity:
new AddStringTask().execute();

To use AddStringsTask, we simply create an instance and call execute() on it. That
starts the chain of events eventually leading to the background thread doing its work.

If AddStringsTask required configuration parameters, we would not have used Void as
our first data type, and the constructor would accept zero or more parameters of the
defined type. Those values would eventually be passed to doInBackground().

And Now, the Caveats

Background threads, while eminently possible using the Android Handler system, are
not all happiness and warm puppies. Background threads not only add complexity, but
they also have real-world costs in terms of available memory, CPU, and battery life.

CHAPTER 15: Dealing with Threads

Hence, there are a wide range of scenarios you need to account for with your
background thread, including the following:

B The possibility that users will interact with your activity’s Ul while the
background thread is chugging along. If the work that the background
thread is doing is altered or invalidated by the user input, you will need
to communicate this to the background thread. Android includes many
classes in the java.util.concurrent package that will help you
communicate safely with your background thread.

B The possibility that the activity will be killed off while background work
is occurring. For example, after starting your activity, the user might
have a call come in, followed by a text message, followed by a need to
look up a contact—all of which might be sufficient to kick your activity
out of memory. Chapter 16 will cover the various events Android will
take your activity through. Hook to the proper ones, and be sure to
shut down your background thread cleanly when you have the chance.

B The possibility that your user will get irritated if you chew up a lot of
CPU time and battery life without giving any payback. Tactically, this
means using ProgressBar or other means of letting the user know that
something is happening. Strategically, this means you still need to be
efficient at what you do—background threads are no panacea for
sluggish or pointless code.

B The possibility that you will encounter an error during background
processing. For example, if you are gathering information from the
Internet, the device might lose connectivity. Alerting the user of the
problem via a notification (discussed in Chapter 31) and shutting down
the background thread may be your best option.

Chapter

Handling Activity Life
Cycle Events

As you know, Android devices, by and large, are phones. As such, some activities are
more important that others—taking a call is probably more important to users than
playing Sudoku. And, since it is a phone, it probably has less RAM than your current
desktop or notebook possesses.

As a result of the device’s limited RAM, your activity may find itself being killed off
because other activities are going on and the system needs your activity’s memory.
Think of it as the Android equivalent of the circle of life: Your activity dies so others may
live, and so on.

You cannot assume that your activity will run until you think it is complete, or even until
the user thinks it is complete. This is one example—perhaps the most important
example—of how an activity’s life cycle will affect your own application logic.

This chapter covers the various states and callbacks that make up an activity’s life cycle,
and how you can hook into them appropriately.

Schroedinger’s Activity

An activity, generally speaking, is in one of four states at any point in time:

B Active: The activity was started by the user, is running, and is in the
foreground. This is what you’re used to thinking of in terms of your
activity’s operation.

B Paused: The activity was started by the user, is running, and is visible,
but a notification or something is overlaying part of the screen. During
this time, the user can see your activity but may not be able to interact
with it. For example, if a call comes in, the user will get the opportunity
to take the call or ignore it.

167

CHAPTER 16: Handling Activity Life Cycle Events

B Stopped: The activity was started by the user, is running, but is hidden
by other activities that have been launched or switched to. Your
application will not be able to present anything meaningful to the user
directly, but may communicate by way of a notification (discussed in
Chapter 31).

B Dead: Either the activity was never started (e.g., just after a phone
reset) or the activity was terminated, perhaps due to lack of available
memory.

Life, Death, and Your Activity

Android will call into your activity as the activity transitions between the four states listed
in the previous section, using the methods described in this section. Some transitions
may result in multiple calls to your activity, and sometimes Android will kill your
application without calling it. This whole area is rather murky and probably subject to
change, so pay close attention to the official Android documentation as well as the
information here when deciding which events deserve attention and which you can
safely ignore.

Note that for all of these methods, you should chain upward and invoke the superclass’s
edition of the method, or Android may raise an exception.

onCreate() and onDestroy()

We have been implementing onCreate() in all of our Activity subclasses in all the
examples. This method will be called in three situations:

B When the activity is first started (e.g., since a system restart),
onCreate() will be invoked with a null parameter.

B If the activity had been running, then sometime later was killed off,
onCreate() will be invoked with the Bundle from
onSavelInstanceState() as a parameter.

B If the activity had been running and you have set up your activity to
have different resources based on different device states (e.g.,
landscape versus portrait), your activity will be re-created and
onCreate() will be called. Resources are covered in Chapter 20.

Here is where you initialize your Ul and set up anything that needs to be done once,
regardless of how the activity is used.

On the other end of the life cycle, onDestroy() may be called when the activity is
shutting down, either because the activity called finish() (which “finishes” the activity)
or because Android needs RAM and is closing the activity prematurely. Note that
onDestroy() may not be called if the need for RAM is urgent (e.g., an incoming phone
call), and that the activity will still be shut down. Hence, onDestroy() is mostly for cleanly
releasing resources you obtained in onCreate() (if any).

CHAPTER 16: Handling Activity Life Cycle Events

onStart(), onRestart(), and onStop()

An activity can come to the foreground because it is first being launched, or because it
is being brought back to the foreground after having been hidden (e.g., by another
activity or by an incoming phone call). The onStart() method is called in either of those
cases.

The onRestart() method is called in the case where the activity had been stopped and
is now restarting.

Conversely, onStop() is called when the activity is about to be stopped.

onPause() and onResume()

The onResume() method is called just before your activity comes to the foreground, after
being initially launched, being restarted from a stopped state, or a pop-up dialog (e.g.,
an incoming call) is cleared. This is a great place to refresh the Ul based on things that
may have occurred since the user was last looking at your activity. For example, if you
are polling a service for changes to some information (e.g., new entries for a feed),
onResume() is a fine time to both refresh the current view and, if applicable, kick off a
background thread to update the view (e.g., via a Handler).

Conversely, anything that steals your user away from your activity —usually, the
activation of another activity—will result in your onPause() being called. Here, you
should undo anything you did in onResume(), such as stopping background threads,
releasing any exclusive-access resources you may have acquired (e.g., a camera), and
the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process at
any point. Hence, you should not be relying on receiving any further events.

The Grace of State

Mostly, the aforementioned methods are for dealing with things at the application-
general level (e.g., wiring together the last pieces of your Ul in onCreate() or closing
down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of seamlessness.
Activities may come and go as dictated by memory requirements, but ideally, users are
unaware that this is occurring. If, for example, a user was working with a calculator, and
came back to that calculator after an absence, he should see whatever number he was
working on originally, unless he actually took some action to close down the calculator.

To make all this work, activities need to be able to save their application-instance state,
and to do so quickly and cheaply. Since activities could be killed off at any time,
activities may need to save their state more frequently than you might expect. Then,
when the activity restarts, the activity should get its former state back, so it can restore
the activity to the way it appeared previously.

CHAPTER 16: Handling Activity Life Cycle Events

Saving instance state is handled by onSaveInstanceState(). This supplies a Bundle, into
which activities can pour whatever data they need (e.g., the number showing on the
calculator’s display). This method implementation needs to be speedy, so do not try to
be fancy—just put your data in the Bundle and exit the method.

That instance state is provided to you again in two places: in onCreate() and in
onRestoreInstanceState(). It is your choice when you wish to reapply the state data to
your activity; either callback is a reasonable option.

Chapter

Creating Intent Filters

Up to now, the focus of this book has been on activities opened directly by the user
from the device’s launcher. This is the most obvious case for getting your activity up
and visible to the user. And, in many cases, it is the primary way the user will start
using your application.

However, the Android system is based on many loosely coupled components. The
things that you might accomplish in a desktop GUI via dialog boxes, child windows,
and the like are mostly supposed to be independent activities. While one activity will
be “special,” in that it shows up in the launcher, the other activities all need to be
reached somehow.

The “somehow” is via intents.

An intent is basically a message that you pass to Android saying, “Yo! | want to
do...er...something! Yeah!” How specific the “something” is depends on the situation.
Sometimes you know exactly what you want to do (e.g., open one of your other
activities), and sometimes you don’t.

In the abstract, Android is all about intents and receivers of those intents. So, now let’s
dive into intents, so we can create more complex applications while simultaneously
being “good Android citizens.”

What’s Your Intent?

When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol (HTTP), he set up
a system of verbs plus addresses in the form of URLs. The address indicates a resource,
such as a web page, graphic, or server-side program. The verb indicates what should be
done: GET to retrieve it, POST to send form data to it for processing, and so on.

Intents are similar, in that they represent an action plus context. There are more actions
and more components to the context with Android intents than there are with HTTP
verbs and resources, but the concept is the same. Just as a web browser knows how to
process a verb+URL pair, Android knows how to find activities or other application logic
that will handle a given intent.

1m

CHAPTER 17: Creating Intent Filters

Pieces of Intents

The two most important pieces of an intent are the action and what Android refers to as
the data. These are almost exactly analogous to HTTP verbs and URLs: the action is the
verb, and the data is a Uri, such as content://contacts/people/1, representing a
contact in the contacts database. Actions are constants, such as ACTION_VIEW (to bring
up a viewer for the resource), ACTION_EDIT (to edit the resource), or ACTION_PICK (to
choose an available item given a Uri representing a collection, such as
content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of
content://contacts/people/1, and pass that intent to Android, Android would know to
find and open an activity capable of viewing that resource.

You can place other criteria inside an intent (represented as an Intent object), besides
the action and data Uri, such as the following:

B Category: Your “main” activity will be in the LAUNCHER category,
indicating it should show up on the launcher menu. Other activities will
probably be in the DEFAULT or ALTERNATIVE categories.

B MIME type: This indicates the type of resource on which you want to
operate, if you don’t know a collection Uri.

B Component: This is the class of the activity that is supposed to receive
this intent. Using components this way obviates the need for the other
properties of the intent. However, it does make the intent more fragile,
as it assumes specific implementations.

B Extras: A Bundle of other information you want to pass along to the
receiver with the intent, that the receiver might want to take advantage
of. Which pieces of information a given receiver can use is up to the
receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android SDK
documentation for the Intent class.

Intent Routing

As noted in the previous section, if you specify the target component in your intent,
Android has no doubt where the intent is supposed to be routed to, and it will launch the
named activity. This might be appropriate if the target intent is in your application. It
definitely is not recommended for sending intents to other applications.

Component names, by and large, are considered private to the application and are
subject to change. Content Uri templates and MIME types are the preferred ways of
identifying services you wish third-party code to supply.

If you do not specify the target component, Android must figure out which activities (or
other intent receivers) are eligible to receive the intent. Note the use of the plural

CHAPTER 17: Creating Intent Filters

activities, as a broadly written intent might well resolve to several activities. That is
the...ummm...intent (pardon the pun), as you will see later in this chapter. This routing
approach is referred to as implicit routing.

Basically, there are three rules, all of which must be true for a given activity to be eligible
for a given intent:

B The activity must support the specified action.
B The activity must support the stated MIME type (if supplied).
B The activity must support all of the categories named in the intent.

The upshot is that you want to make your intents specific enough to find the correct
receiver(s), and no more specific than that. This will become clearer as we work through
some examples later in this chapter.

Stating Your Intent(ions)

All Android components that wish to be notified via intents must declare intent filters, so
Android knows which intents should go to that component. To do this, you need to add
intent-filter elements to your AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the Android
application-building script (activityCreator or the IDE equivalent). They look something
like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.skeleton">
<application>
<activity android:name=".Now" android:label="Now">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Note the intent-filter element under the activity element. Here, we declare that this
activity:
B |s the main activity for this application

B |sin the LAUNCHER category, meaning it gets an icon in the Android
main menu

Because this activity is the main one for the application, Android knows this is the
component it should launch when someone chooses the application from the main
menu.

You are welcome to have more than one action or more than one category in your intent
filters. That indicates that the associated component (e.g., activity) handles multiple
different sorts of intents.

CHAPTER 17: Creating Intent Filters

More than likely, you will also want to have your secondary (non-MAIN) activities specify
the MIME type of data on which they work. Then, if an intent is targeted for that MIME
type—either directly, or indirectly by the Uri referencing something of that type —
Android will know that the component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
<intent-filter>
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
</intent-filter>
</activity>

This activity will be launched by an intent requesting to view a Uri representing a
vnd.android.cursor.item/vnd.commonsware.tour piece of content. That Intent could
come from another activity in the same application (e.g., the MAIN activity for this
application) or from another activity in another Android application that happens to know
a Uri that this activity handles.

Narrow Receivers

In the preceding examples, the intent filters were set up on activities. Sometimes, tying
intents to activities is not exactly what you want, as in these cases:

B Some system events might cause you to want to trigger something in
a service rather than an activity.

B Some events might need to launch different activities in different
circumstances, where the criteria are not solely based on the intent
itself, but some other state (e.g., if you get intent X and the database
has a Y, then launch activity M; if the database does not have a Y,
then launch activity N).

For these cases, Android offers the intent receiver, defined as a class implementing the
BroadcastReceiver interface. Intent receivers are disposable objects designed to receive
intents—particularly broadcast intents —and take action. The action typically involves
launching other intents to trigger logic in an activity, service, or other component.

The BroadcastReceiver interface has only one method: onReceive(). Intent receivers
implement that method, where they do whatever it is they wish to do upon an incoming
intent. To declare an intent receiver, add a receiver element to your
AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />

An intent receiver is alive for only as long as it takes to process onReceive(). As soon as
that method returns, the receiver instance is subject to garbage collection and will not
be reused. This means intent receivers are somewhat limited in what they can do,
mostly to avoid anything that involves any sort of callback. For example, they cannot
bind to a service, and they cannot open a dialog.

CHAPTER 17: Creating Intent Filters

The exception is if the BroadcastReceiver is implemented on some longer-lived
component, such as an activity or service. In that case, the intent receiver lives as long
as its “host” does (e.g., until the activity is frozen). However, in this case, you cannot
declare the intent receiver via AndroidManifest.xml. Instead, you need to call
registerReceiver() on your Activity’s onResume() callback to declare interest in an
intent, and then call unregisterReceiver() from your Activity’s onPause() when you no
longer need those intents.

The Pause Caveat

There is one hiccup with using Intent objects to pass arbitrary messages around: It
works only when the receiver is active. To quote from the documentation for
BroadcastReceiver:

If registering a receiver in your Activity.onResume() implementation, you
should unregister it in Activity.onPause(). (You won’t receive intents
when paused, and this will cut down on unnecessary system overheaqd).
Do not unregister in Activity.onSavelnstanceState(), because this won’t
be called if the user moves back in the history stack.

Hence, you can use the Intent framework as an arbitrary message bus only in the
following situations:

B Your receiver does not care if it misses messages because it was not
active.

B You provide some means of getting the receiver “caught up” on
messages it missed while it was inactive.

In Chapters 29 and 30, you will see an example of the former condition, where the
receiver (service client) will use Intent-based messages when they are available, but
does not need them if the client is not active.

Chapter

Launching Activities
and Subactivities

As you’ve learned, the theory behind the Android Ul architecture is that developers
should decompose their application into distinct activities Each activity is implemented
as an Activity, and each is reachable via intents, with a “main” activity being the one
launched by the Android launcher. For example, a calendar application could have
activities for viewing the calendar, viewing a single event, editing an event (including
adding a new one), and so forth.

This implies that one of your activities has the means to start up another activity. For
example, if someone selects an event from the view-calendar activity, you might want to
show the view-event activity for that event. So, you need to be able to cause the view-
event activity to launch and show a specific event (the one the user chose). This chapter
describes how to do that.

NOTE: This chapter assumes that you know which activity you want to launch, probably because
it is another activity in your own application. It’s also possible that you have a content Uri to do
something, and you want your users to be able to do something with it, but you do not know up
front what the options are. This situation requires more advanced handling, which | cover in my
book The Busy Coders Guide to Advanced Android Development (CommonsWare, 2009).

Peers and Subs

One key question you need to answer when you decide to launch an activity is this:
Does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect authentication
information for some web service you are connecting to—maybe you need to
authenticate with OpenlD (http://openid.net/) in order to use an OAuth service

177

CHAPTER 18: Launching Activities and Subactivities

(http://o0auth.net/). In this case, your main activity will need to know when the
authentication is complete so it can start to use the web service.

On the other hand, imagine an e-mail application in Android. When the user elects to
view an attachment, neither you nor the user necessarily expect the main activity to
know when the user is finished viewing that attachment.

In the first scenario, the launched activity is clearly subordinate to the launching activity.
In that case, you probably want to launch the child as a subactivity, which means your
activity will be notified when the child activity is complete.

In the second scenario, the launched activity is more a peer of your activity, so you
probably want to launch the child just as a regular activity. Your activity will not be
informed when the child is done, but, then again, your activity really doesn’t need to
know.

Start ’Em Up

The two pieces for starting an activity are an intent and your choice of how to start it up.

Make an Intent

As discussed in the previous chapter, intents encapsulate a request, made to Android,
for some activity or other intent receiver to do something.

If the activity you intend to launch is one of your own, you may find it simplest to create
an explicit intent, naming the component you wish to launch. For example, from within
your activity, you could create an intent like this:

new Intent(this, HelpActivity.class);

This stipulates that you want to launch the HelpActivity. This activity would need to be
named in your AndroidManifest.xml file, though not necessarily with any intent filter,
since you are trying to request it directly.

Or you could put together an intent for some Uri, requesting a particular action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION VIEW, uri);

Here, given that you have the latitude and longitude of some position (1at and lon,
respectively) of type Double, you construct a geo scheme Uri and create an intent
requesting to view this Uri (ACTION_VIEW).

Make the Call

Once you have your intent, you need to pass it to Android and get the child activity to
launch. You have two choices:

CHAPTER 18: Launching Activities and Subactivities

B The simplest option is to call startActivity() with the Intent. This
will cause Android to find the best-match activity and pass the intent
to it for handling. Your activity will not be informed when the child
activity is complete.

B You can call startActivityForResult(), passing it the Intent and a
number (unique to the calling activity). Android will find the best-match
activity and pass the intent over to it. Your activity will be notified when
the child activity is complete via the onActivityResult() callback.

With startActivityForResult(), as noted, you can implement the onActivityResult()
callback to be notified when the child activity has completed its work. The callback
receives the unique number supplied to startActivityForResult(), so you can
determine which child activity is the one that has completed. You also get the following:

B Aresult code, from the child activity calling setResult(). Typically, this
is RESULT_OK or RESULT_CANCELLED, though you can create your own
return codes (pick a number starting with RESULT_FIRST USER).

B An optional String containing some result data, possibly a URL to
some internal or external resource. For example, an ACTION PICK intent
typically returns the selected bit of content via this data string.

B An optional Bundle containing additional information beyond the result
code and data string.

To demonstrate launching a peer activity, take a peek at the Activities/Launch sample
application. The XML layout is fairly straightforward: two fields for the latitude and
longitude, plus a button.

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"

>
<TableLayout
android:layout_width="fill parent"
android:layout_height="wrap content"
android:stretchColumns="1,2"
>
<TableRow>
<TextView
android:layout_width="wrap_content"
android:layout_height="wrap content"
android:paddingleft="2dip"
android:paddingRight="4dip"
android:text="Location:"
/>
<EditText android:id="@+id/lat"
android:layout _width="fill parent"
android:layout_height="wrap content"
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"

CHAPTER 18: Launching Activities and Subactivities

android:layout_weight="1"
/>
<EditText android:id="@+id/lon"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:cursorVisible="true"
android:editable="true"
android:singlelLine="true"
android:layout weight="1"
/>
</TableRow>
</TablelLayout>
<Button android:id="@+id/map"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Show Me!"
/>
</LinearlLayout>

The button’s OnClickListener simply takes the latitude and longitude, pours them into a
geo scheme Uri, and then starts the activity.

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LaunchDemo extends Activity {
private EditText lat;
private EditText lon;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.map);
lat=(EditText)findViewByld(R.id.lat);
lon=(EditText)findViewByld(R.id.1lon);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
String lat=lat.getText().toString();
String lon=lon.getText().toString();
Uri uri=Uri.parse("geo:"+ lat+","+ lon);
startActivity (new Intent(Intent.ACTION VIEW, uri));

}
1
}

CHAPTER 18: Launching Activities and Subactivities

The activity is not much to look at, as you can see in Figure 18-1.

Bfl @ 2:11pm

LaunchDemo

Location: [SLARAl -77.0492

Figure 18-1. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and click the
button, the resulting map is more interesting, as shown in Figure 18-2.

Bl & 2:11prm
a
2 $
z &
3 &
&
y o
. <
X ool Memoria/ Cir pan
%“5,,
%
g
B
o
Lincoln National ¥
Memorial g
\\\\\ Lnggip Memot®
)
/ ! o)
West %’.9
Potomac[Park %Q’
fA00gIe Q
%NV\?’ +_Independ, &

Figure 18-2. The map launched by LaunchDemo, showing the Lincoln Memorial in Washington DC

Note that this is the built-in Android map activity; we did not create our own activity to
display this map. In Chapter 33, you will see how you can create maps in your own
activities, in case you need greater control over how the map is displayed.

CHAPTER 18: Launching Activities and Subactivities

NOTE: This sample application may not work on an Android 2.0 AVD in the emulator, as the AVD
appears to lack the Maps application.

Tabbed Browsing, Sort Of

One of the main features of the modern desktop web browser is tabbed browsing,
where a single browser window can show several pages split across a series of tabs. On
a mobile device, this may not make a lot of sense, given that you lose screen real estate
for the tabs themselves. In this book, however, we do not let little things like sensibility
stop us, so let’s demonstrate a tabbed browser, using TabActivity and Intent objects.

As you may recall from Chapter 9, a tab can have either a View or an Activity as its
contents. If you want to use an Activity as the content of a tab, you provide an Intent
that will launch the desired Activity; Android’s tab-management framework will then
pour the Activity’s Ul into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo: Uri in the
previous example:

Intent i=new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in browser application and get all of the features that it
offers.

Alas, this does not work. You cannot host other applications’ activities in your tabs; only
your own activities are allowed, for security reasons.

So, we dust off our WebView demos from Chapter 13 and use those instead, repackaged
as Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

public class IntentTabDemo extends TabActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

TabHost host=getTabHost();

host.addTab(host.newTabSpec("one"
.setIndicator("CW")
.setContent(new Intent(this, CWBrowser.class)));
host.addTab(host.newTabSpec("two")
.setIndicator("Android")
.setContent(new Intent(this, AndroidBrowser.class)));

CHAPTER 18: Launching Activities and Subactivities

As you can see, we are using TabActivity as the base class, and so we do not need our
own layout XML, since TabActivity supplies it for us. All we do is get access to the
TabHost and add two tabs, each specifying an Intent that directly refers to another
class. In this case, our two tabs will host a CWBrowser and an AndroidBrowser,
respectively.

Those activities are simple modifications to the earlier browser demos:

public class CWBrowser extends Activity {
WebView browser;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

browser=new WebView(this);
setContentView (browser);
browser.loadUrl("http://commonsware.com");

public class AndroidBrowser extends Activity {
WebView browser;

@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);

browser=new WebView(this);
setContentView (browser);
browser.loadUrl("http://www.android.com/");

}
}

They simply load a different URL into the browser: the CommonsWare home page in
one and the Android home page in the other.

TIP: Using distinct subclasses for each targeted page is rather wasteful. Instead, you could
package the URL to open as an “extra” in an Intent and used that Intent to spawn a general-
purpose BrowsexrTab activity, which would read the URL out of the Intent extra and use that.

The resulting Ul shows what tabbed browsing could look like on Android, as shown in
Figures 18-3 and 18-4.

CHAPTER 18: Launching Activities and Subactivities

Ml € 6:00 Pm

IntentTabDemo

Androld

€@ CoMMONSWARE

e R

Three Android
Books, One Low

Price.
= Fresh
m;;;:} u.-..,r.-.-\r-;:h ﬂl‘ldl’Oil:i;‘ titles

Android™ Android rrogramming from
Development Development Tutorials

Figure 18-3. The IntentTabDemo sample application, showing the first tab

' @A 5:37pm

IntentTabDemo

Android

QN>30iD

dEVE|DperS search deve

Developer Announcements

m DEVELOPER 1
CONFERENCE mhi

utl

vIC

Figure 18-4. The IntentTabDemo sample application, showing the second tab

Chapter

Handling Rotation

Some Android handsets, like the T-Mobile G1, offer a slide-out keyboard that triggers
rotating the screen from portrait to landscape orientation. Other handsets might use
accelerometers to determine screen rotation, as the iPhone does. As a result, it is
reasonable to assume that switching from portrait to landscape orientation and back
again may be something your users will want to do.

As you’ll learn in this chapter, Android has a number of ways for you to handle screen
rotation, so your application can properly handle either orientation. But realize that these
facilities just help you detect and manage the rotation process. You are still required to
make sure you have layouts that look decent in each orientation.

A Philosophy of Destruction

By default, when there is a change in the phone configuration that might affect resource
selection, Android will destroy and re-create any running or paused activities the next
time they are to be viewed. While this could happen for a variety of different
configuration changes (e.g., change of language selection), it is most likely to trip you up
for rotations, since a change in orientation can cause you to load a different set of
resources (e.g., layouts).

The key here is that this is the default behavior. It may even be the behavior that is best for
one or more of your activities. You do have some control over the matter, though, and can
tailor how your activities respond to orientation changes or similar configuration switches.

It’s All the Same, Just Different

Since, by default, Android destroys and re-creates your activity on a rotation, you may
only need to hook into the same onSaveInstanceState() that you would if your activity
were destroyed for any other reason (e.g., low memory). Implement that method in your
activity and fill in the supplied Bundle with enough information to get you back to your
current state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick the
data out of the Bundle and use it to bring your activity back to the way it was.

185

CHAPTER 19: Handling Rotation

To demonstrate this, let’s take a look at the Rotation/RotationOne project. This and the
other sample projects in this chapter use a pair of main.xml layouts: one in res/layout/
and one in res/layout-land/ for use in landscape mode. Here is the portrait layout:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
andr01d layout_height="fill_parent"

<Button android:id="@+id/pick"
android:layout_width="fill parent"
android:layout_height="fill parent"
android: layout weight="1"
android:text="Pick"
android:enabled="true"

/>

<Button android:id="@+id/view"
android:layout_width="fill parent"
android:layout_height="fill parent"
android: layout welght "1
android:text="View"
android:enabled="false"

/>

</LinearLayout>

Here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android:"http://schemas.android.com/apk/res/android"
android:orientation="horizontal"
android:layout width="fill parent"
android:layout_height="fill_parent"
>
<Button android:id="@+id/pick"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:layout_weight="1"
android:text="Pick"
android:enabled="true"
/>
<Button android:id="@+id/view"
android:layout_width="fill parent"
android:layout_height="fill parent"
android: layout welght "1"
android:text="View"
android:enabled="false"
/>
</LinearLayout>

Basically, the layout contains a pair of buttons, each taking up half the screen. In portrait
mode, the buttons are stacked; in landscape mode, they are side by side.

If you were to simply create a project, put in those two layouts, and compile it, the
application would appear to work just fine—a rotation (pressing Ctrl+F12 in the
emulator) will cause the layout to change. And while buttons lack state, if you were using

CHAPTER 19: Handling Rotation

other widgets (e.g., EditText), you would even find that Android hangs onto some of the
widget state for you (e.g., the text entered in the EditText).

What Android cannot help you with automatically is anything held outside the widgets.

This application lets you pick a contact, and then view the contact, via separate buttons.
The View button is enabled only after a contact has been selected.

Let’s see how we handle this, using onSaveInstanceState():

public class RotationOneDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.pick);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT _URI);

startActivityForResult(i, PICK REQUEST);
}
D;
viewButton=(Button)findViewByld(R.id.view);

viewButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
startActivity (new Intent(Intent.ACTION VIEW, contact));

}
D;
restoreMe(savedInstanceState);

viewButton.setEnabled(contact!=null);

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
y viewButton.setEnabled(true);
}
}

@0verride

CHAPTER 19: Handling Rotation

protected void onSavelnstanceState(Bundle outState) {
super.onSavelnstanceState(outState);

if (contact!=null) {
outState. putString("contact”, contact.toString());

}

private void restoreMe(Bundle state) {
contact=null;

if (state!=null) {
String contactUri=state.getString("contact");

if (contactUril=null) {
contact=Uri.parse(contactUri);

}
}
}

By and large, it looks like a normal activity (because it is). Initially, the “model” —a Uri
named contact—is null. It is set as the result of spawning the ACTION_PICK subactivity.
Its string representation is saved in onSaveInstanceState() and restored in restoreMe()
(called from onCreate()). If the contact is not null, the View button is enabled and can
be used to view the chosen contact.

Visually, it looks pretty much as you would expect, as shown in Figures 19-1 and 19-2.

Ml @ 7:48 AM

RotationOne Demo

Pick

Figure 19-1. The RotationOne application, in portrait mode

CHAPTER 19: Handling Rotation

£ Ml @ 7:48 Am

RotationOne Demo

Figure 19-2. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system events beyond
mere rotation, such as being closed by Android due to low memory.

For fun, comment out the restoreMe() call in onCreate() and try running the application.
You will see that the application “forgets” a contact selected in one orientation when you
rotate the emulator or device.

NOTE: All the samples for this chapter work only on Android 2.0 and higher, as they use the
newer means of picking a contact from the Contacts content provider (discussed in Chapter 26).

Now with More Savings!

The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s
because this callback is also used in cases where your whole process might be
terminated (e.g., low memory), so the data to be saved must be something that can be
serialized and does not have any dependencies on your running process.

For some activities, that limitation is not a problem. For others, it is more annoying. Take
an online chat, for example. You have no means of storing a socket in a Bundle, so by
default, you will need to drop your connection to the chat server and reestablish it. That
not only may be a performance hit, but it might also affect the chat itself, such as
appearing in the chat logs as disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of
onSaveInstanceState() for “light” changes like a rotation. Your activity’s
onRetainNonConfigurationInstance() callback can return an Object, which you can
retrieve later via getLastNonConfigurationInstance(). The Object can be just about
anything you want. Typically, it will be some kind of “context” object holding activity
state, such as running threads, open sockets, and the like. Your activity’s onCreate()
can call getLastNonConfigurationInstance(). Then if you get a non-null response, you
now have your sockets and threads and whatnot. The biggest limitation is that you do

CHAPTER 19: Handling Rotation

not want to put in the saved context anything that might reference a resource that will
get swapped out, such as a Drawable loaded from a resource.

Let’s take a look at the Rotation/RotationTwo sample project, which uses this approach
to handling rotations. The layouts, and hence the visual appearance, is the same as with
Rotation/RotationOne. Where things differ slightly is in the Java code:

public class RotationTwoDemo extends Activity {
static final int PICK REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.pick);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT_URI);

startActivityForResult(i, PICK REQUEST);
}
D;
viewButton=(Button)findViewByld(R.id.view);

viewButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
startActivity (new Intent(Intent.ACTION VIEW, contact));

}
D;
restoreMe();

viewButton.setEnabled(contact!=null);

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);

}
}

@0verride
public Object onRetainNonConfigurationinstance() {
return(contact);

CHAPTER 19: Handling Rotation

}

private void restoreMe() {
contact=null;

if (getLastNonConfigurationinstance()!=null) {
contact=(Uri)getLastNonConfigurationinstance();

}
}
In this case, we override onRetainNonConfigurationInstance(), returning the actual Uri
for our contact, rather than a string representation of it. In turn, restoreMe() calls
getLastNonConfigurationInstance(), and if it is not null, we hold onto it as our contact
and enable the View button.

The advantage here is that we are passing around the Uri rather than a string
representation. In this case, that is not a big saving. But our state could be much more
complicated, including threads, sockets, and other things we cannot pack into a Bundle.

However, even this approach may be too intrusive to your application. Suppose, for
example, you are creating a real-time game, such as a first-person shooter. The
“hiccup” your users experience as your activity is destroyed and re-created might be
enough to get them shot, which they may not appreciate. While this would be less of an
issue on the T-Mobile G1, since a rotation requires sliding open the keyboard and
therefore is unlikely to be done mid-game, other devices might rotate based solely on
the device’s position as determined by accelerometers. For these situations, you may
want to tell Android that you will rotations yourself, and you do not want any assistance
from the framework, as described next.

DIY Rotation

To handle rotations on your own, do this:

1. Putan android:configChanges entry in your AndroidManifest.xml file,
listing the configuration changes you want to handle yourself versus
allowing Android to handle for you.

2. Implement onConfigurationChanged() in your Activity, which will be
called when one of the configuration changes you listed in
android:configChanges occurs.

Now, for any configuration change you want, you can bypass the whole activity-
destruction process and simply get a callback letting you know of the change.

To see this in action, turn to the Rotation/RotationThree sample application. Once
again, our layouts are the same, so the application looks just like the preceding two
samples. However, the Java code is significantly different, because we are no longer
concerned with saving our state, but rather with updating our Ul to deal with the layout.

CHAPTER 19: Handling Rotation

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.three"
android:versionCode="1"
android:versionName="1.0.0">
<uses-sdk
android:minSdkVersion="5"
android:targetSdkVersion="6"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".RotationThreeDemo"
android:label="@string/app_name"
android:configChanges="keyboardHidden|orientation">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Here, we state that we will handle keyboardHidden and orientation configuration
changes ourselves. This covers us for any cause of the rotation, whether it is a sliding
keyboard or a physical rotation. Note that this is set on the activity, not the application. If
you have several activities, you will need to decide for each which of the tactics outlined
in this chapter you wish to use.

The Java code for this project is as follows:

public class RotationThreeDemo extends Activity {
static final int PICK_REQUEST=1337;
Button viewButton=null;
Uri contact=null;

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setupViews();

@0verride
protected void onActivityResult(int requestCode, int resultCode,
Intent data) {
if (requestCode==PICK REQUEST) {
if (resultCode==RESULT OK) {
contact=data.getData();
viewButton.setEnabled(true);
}
}
}

public void onConfigurationChanged(Configuration newConfig) {

CHAPTER 19: Handling Rotation

super.onConfigurationChanged (newConfig);

setupViews();

private void setupViews() {
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.pick);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
Intent i=new Intent(Intent.ACTION PICK,
Contacts.CONTENT_URI);

startActivityForResult(i, PICK REQUEST);
}
D;
viewButton=(Button)findViewByld(R.id.view);

viewButton.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
startActivity (new Intent(Intent.ACTION VIEW, contact));

}
1

viewButton.setEnabled(contact!=null);

}
}

The onCreate() implementation delegates most of its logic to a setupViews() method,
which loads the layout and sets up the buttons. This logic was broken out into its own
method because it is also called from onConfigurationChanged().

Forcing the Issue

In the previous three sections, we covered ways to deal with rotational events. There is,
of course, a radical alternative: tell Android not to rotate your activity at all. If the activity
does not rotate, you do not need to worry about writing code to deal with rotations.

To block Android from rotating your activity, all you need to do is add
android:screenOrientation = "portrait" (or "landscape”, as you prefer) to your
AndroidManifest.xml file, as follows (from the Rotation/RotationFour sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.four"
android:versionCode="1"
android:versionName="1.0.0">
<uses-sdk
android:minSdkVersion="5"
android:targetSdkVersion="6"

CHAPTER 19: Handling Rotation

/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".RotationFourDemo"
android:screenOrientation="portrait"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of your
activities may need it turned on.

At this point, your activity is locked into whatever orientation you specified, regardless of
what you do. Figures 19-3 and 19-4 show the same activity as in the previous three
sections, but using the preceding manifest and with the emulator set for both portrait
and landscape orientation. Notice that the Ul does not move a bit, but remains in portrait
mode.

M @ 6:11pPMm

RotationFourDemo

e [T T AR TR T

';[_’_ = f_')[_[_

ALT

Figure 19-3. The RotationFour application, in portrait mode

CHAPTER 19: Handling Rotation

=
a
-
hr]
1=
@
=
22

RotationFourDemo

1 loda e dside 718 1o lo MMM ¢ M)W b
NEDEEEEEEE A (e») &
205 Iy le v le In v | e VALY

Figure 19-4. The RotationFour application, in landscape mode

Note that Android will still destroy and re-create your activity, even if you have the
orientation set to a specific value as shown here. If you wish to avoid that, you will also
need to set android:configChanges in the manifest, as described earlier in this chapter.

Making Sense of It All

All of the scenarios presented in this chapter assume that you rotate the screen by
opening the keyboard on the device (or by pressing Ctrl+F12 in the emulator).
Certainly, this is the norm for Android applications. However, we haven’t covered the
iPhone scenario.

You may have seen one (or several) commercials for the iPhone, showing how the
screen rotates just by turning the device. Some Android devices, such as the HTC
Magic, will behave the same way. With other devices, though, you do not get this
behavior; instead, the screen rotates based on whether the keyboard is open or closed.

However, even for those devices, it is easy for you to change this behavior, so your
screen will rotate based on the position of the phone. Just add
android:screenOrientation = "sensor" to your AndroidManifest.xml file (from the
Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.rotation.five"

CHAPTER 19: Handling Rotation

android:versionCode="1"
android:versionName="1.0.0">
<uses-sdk
android:minSdkVersion="5"
android:targetSdkVersion="6"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".RotationFiveDemo"
android:screenOrientation="sensor"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

The sensor, in this case, tells Android you want the accelerometers to control the screen
orientation, so the physical shift in the device orientation controls the screen orientation.

At least on the T-Mobile G1, this appears to work only when going from the traditional
upright portrait position to the traditional landscape position —rotating 90 degrees
counterclockwise. Rotating the device 90 degrees clockwise results in no change in
the screen.

Also note that this setting disables having the keyboard trigger a rotation event. Leaving
the device in the portrait position, if you slide out the keyboard, in a normal Android
activity, the screen will rotate; in an android:screenOrientation = "sensor" activity, the
screen will not rotate.

Chapter

Working with Resources

Resources are static bits of information held outside the Java source code. You have
seen one type of resource—the layout—frequently in the examples in this book. As you’ll
learn in this chapter, there are many other types of resources, such as images and
strings, that you can take advantage of in your Android applications.

The Resource Lineup

Resources are stored as files under the res/ directory in your Android project layout.
With the exception of raw resources (res/raw/), all the other types of resources are
parsed for you, either by the Android packaging system or by the Android system on the
device or emulator. So, for example, when you lay out an activity’s Ul via a layout
resource (res/layout/), you do not need to parse the layout XML yourself; Android
handles that for you.

In addition to layout resources (introduced in Chapter 4) and animation resources
(introduced in Chapter 9), several other types of resources are available, including the
following:

B Images (res/drawable/), for putting static icons or other pictures in a
user interface

B Raw (res/raw/), for arbitrary files that have meaning to your
application but not necessarily to Android frameworks

B Strings, colors, arrays, and dimensions (res/values/), to both give
these sorts of constants symbolic names and to keep them separate
from the rest of the code (e.g., for internationalization and localization)

B XML (res/xml/), for static XML files containing your own data and
structure

197

CHAPTER 20: Working with Resources

String Theory

Keeping your labels and other bits of text outside the main source code of your
application is generally considered to be a very good idea. In particular, it helps with
internationalization and localization, covered in the “Different Strokes for Different Folks”
section later in this chapter. Even if you are not going to translate your strings to other
languages, it is easier to make corrections if all the strings are in one spot, instead of
scattered throughout your source code.

Android supports regular externalized strings, along with string formats, where the string
has placeholders for dynamically inserted information. On top of that, Android supports
simple text formatting, called styled text, so you can make your words be bold or italic
intermingled with normal text.

Plain Strings

Generally speaking, all you need for plain strings is an XML file in the res/values
directory (typically named res/values/strings.xml), with a resources root element, and
one child string element for each string you wish to encode as a resource. The string
element takes a name attribute, which is the unique name for this string, and a single text
element containing the text of the string.
{resources>

<string name="quick">The quick brown fox...</string>

<string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quotation mark (") or an apostrophe
("). In those cases, you will want to escape those values, by preceding them with a
backslash (e.g., These are the times that try men\'s souls). Or, if it is just an
apostrophe, you could enclose the value in quotation marks (e.g., "These are the times
that try men's souls.").

You can then reference this string from a layout file (as @string/. .., where the ellipsis is
the unique name, such as @string/laughs). Or you can get the string from your Java
code by calling getString() with the resource ID of the string resource, which is the
unique name prefixed with R.string. (e.g., getString(R.string.quick)).

String Formats

As with other implementations of the Java language, Android’s Dalvik virtual machine
supports string formats. Here, the string contains placeholders representing data to be
replaced at runtime by variable information (e.g., My name is %1$s). Plain strings stored
as resources can be used as string formats:

String strFormat=getString(R.string.my name);
String strResult=String.format(strFormat, "Tim");
((Textview)findViewByld(R.id.some_label)).setText(strResult);

CHAPTER 20: Working with Resources

Styled Text

If you want really rich text, you should have raw resources containing HTML, and then
pour those into a WebKit widget. However, for light HTML formatting, using , <i>,
and <u>, you can just use a string resource. The catch is that you must escape the
HTML tags, rather than treating them normally:
{resources>

<string name="b">This has &1t;b>bold</b8gt; in it.</string>

<string name="i">Whereas this has &1t;i8gt;italics</i>!</string>
</resources>

You can access these the same way as you get plain strings, with the exception that the

result of the getString() call is really an object supporting the android.text.Spanned
interface:

((TextView)findViewByld(R.id.another label))
.setText(getString(R.string.b));

Styled String Formats

Where styled text gets tricky is with styled string formats, as String.format() works on
String objects, not Spanned objects with formatting instructions. If you really want to
have styled string formats, here is the work-around:

1. Entity-escape the angle brackets in the string resource (e.g., this is
&1t;bdgt;%1$s8&1t; /blgt;).

2. Retrieve the string resource as normal, though it will not be styled at this
point (e.g., getString(R.string.funky format)).

3. Generate the format results, being sure to escape any string values you
substitute, in case they contain angle brackets or ampersands.

String.format(getString(R.string.funky format),
TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via
Html.fromHtml().

someTextView.setText(Html
.fromHtml(resultFromStringFormat));

To see this in action, let’s look at the Resources/Strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<LinearlLayout
android:orientation="horizontal"
android:layout width="fill parent"

CHAPTER 20: Working with Resources

android:layout_height="wrap_content"
>
<Button android:id=' @+id/format
android:layout_width=' wrap content"”
android: layout height="wrap_ content
android:text="@string/btn_name"
/>
<EditText android:id= @+1d/name
android:layout_width="fill parent"
android:layout_height="wrap_content
/>
</Linearlayout>
<TextView android:id="@+id/result"
android:layout_width= "flll _parent”
android:layout_height="wrap_content"
/>
</LinearLayout>

As you can seg, it is just a button, a field, and a label. The idea is for users to enter their
name in the field, and then click the button to cause the label to be updated with a
formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name), so we need
a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string name="app_name">StringsDemo</string>

<string name="btn_name">Name:</string>

<string name="funky_format">My name is %1$s&1t;/bdgt;</string>
</resources>

The app_name resource is automatically created by the activityCreator script. The
btn_name string is the caption of the Button, while our styled string format is in
funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
EditText name;
TextView result;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

CHAPTER 20: Working with Resources

name=(EditText)findViewByld(R.id.name);
result=(TextView)findViewByld(R.id.result);

Button btn=(Button)findViewByld(R.id.format);

btn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
applyFormat();

};
}

private void applyFormat() {
String format=getString(R.string.funky format);
String simpleResult=String.format(format,
TextUtils.htmlEncode(name.getText().toString()));
y result.setText(Html.fromHtml(simpleResult));

}

The string resource manipulation can be found in applyFormat(), which is called when
the button is clicked. First, we get our format via getString() (something we could have
done at onCreate() time for efficiency). Next, we format the value in the field using this
format, getting a String back, since the string resource is in entity-encoded HTML. Note
the use of TextUtils.htmlEncode() to entity-encode the entered name, in case someone
decides to use an ampersand or something. Finally, we convert the simple HTML into a
styled text object via Html.fromHtml() and update our label.

When the activity is first launched, we have an empty label, as shown in Figure 20-1.

EhH & 1:03Pm
StringsDemo

Figure 20-1. The StringsDemo sample application, as initially launched

CHAPTER 20: Working with Resources

When you fill in a name and click the button, you get the result shown in Figure 20-2.
EhH & 1:03Pm

StringsDemo

Inigo Montoya

e is Inigo Montoya

Figure 20-2. The same application, after filling in some heroic figure's name

Got the Picture?

Android supports images in the PNG, JPEG, and GIF formats. GIF is officially
discouraged, however. PNG is the overall preferred format. Images can be used
anywhere you require a Drawable, such as the image and background of an ImageView.

Using images is simply a matter of putting your image files in res/drawable/ and then
referencing them as a resource. Within layout files, images are referenced as
@drawable/... where the ellipsis is the base name of the file (e.g., for
res/drawable/foo.png, the resource name is @drawable/foo). In Java, where you need
an image resource ID, use R.drawable. plus the base name (e.g., R.drawable.foo).

To demonstrate, let’s update the previous example to use an icon for the button instead
of the string resource. This can be found as Resources/Images. First, we slightly adjust
the layout file, using an ImageButton and referencing a Drawable named @drawable/icon:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent"
>
<Linearlayout
android:orientation="horizontal"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
>
<ImageButton android:id="@+id/format"

CHAPTER 20: Working with Resources

android:layout_width="' wrap content”
android: layout height="wrap_content"
android:src="@drawable/icon"
/>
<EditText android:id= @+1d/name
android:layout width="fill parent"
android:layout_height="wrap_content"
/>
</LinearlLayout>
<TextView android:id="@+id/result"
android:layout_width= "f111 _parent"
android:layout_height="wrap_content"
/>
</LinearLayout>

Next, we need to put an image file in res/drawable with a base name of icon. In this
case, we use a 32-by-32 PNG file from the Nuvola icon set (http://www.icon-
king.com/projects/nuvola/). Finally, we twiddle the Java source, replacing our Button
with an ImageButton:

package com.commonsware.android.images;

import android.app.Activity;
import android.os.Bundle;

import android.text.TextUtils;
import android.text.Html;

import android.view.View;

import android.widget.Button;
import android.widget.ImageButton;
import android.widget.EditText;
import android.widget.TextView;

public class ImagesDemo extends Activity {
EditText name;
TextView result;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

name=(EditText)findViewByld(R.id.name);
result=(TextView)findViewByld(R.id.result);

ImageButton btn=(ImageButton)findViewByld(R.id.format);

btn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
applyFormat();

D;
}
private void applyFormat() {

String format=getString(R.string.funky format);
String simpleResult=String.format(format,

CHAPTER 20: Working with Resources

TextUtils.htmlEncode(name.getText().toString()));
result.setText(Html.fromHtml(simpleResult));

}
}

Now, our button has the desired icon, as shown in Figure 20-3.
Bl @ 1:04pPm

ImagesDemo

7]

Figure 20-3. The ImagesDemo sample application

XML: The Resource Way

If you wish to package static XML with your application, you can use an XML resource.
Simply put the XML file in res/xml/. Then you can access it by getXml() on a Resources
object, supplying it a resource ID of R.xml. plus the base name of your XML file. For
example, in an activity, with an XML file of words.xml, you could call
getResources().getXml(R.xml.words).

This returns an instance of an XmlPullParser, found in the org.xmlpull.vi Java
namespace. An XML pull parser is event-driven: you keep calling next() on the parser to
get the next event, which could be START TAG, END_TAG, END_DOCUMENT, and so on. On a
START_TAG event, you can access the tag’s name and attributes; a single TEXT event
represents the concatenation of all text nodes that are direct children of this element. By
looping, testing, and invoking per-element logic, you parse the file.

To see this in action, let’s rewrite the Java code for the Files/Static sample project to
use an XML resource. This new project, Resources/XML, requires that you place the
words.xml file from Static notin res/raw/, but in res/xml/. The layout stays the same,
so all that needs to be replaced is the Java source:

CHAPTER 20: Working with Resources

package com.commonsware.android.resources;

import android.app.Activity;

import android.os.Bundle;

import android.app.ListActivity;
import android.view.View;

import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;

import java.io.InputStream;

import java.util.Arraylist;

import org.xmlpull.vi.XmlPullParser;
import org.xmlpull.vi.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
TextView selection;
Arraylist<String> items=new ArraylList<String>();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewByld(R.id.selection);

try {
XmlPullParser xpp=getResources().getXml(R.xml.words);

while (xpp.getEventType()!=XmlPullParser.END DOCUMENT) {
if (xpp.getEventType()==XmlPullParser.START TAG) {
if (xpp.getName().equals("word")) {
items.add(xpp.getAttributeValue(0));

}
xpp.next();

catch (Throwable t) {
Toast

.makeText(this, "Request failed: "+t.toString(), 4000)
.show();

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple list item 1,

items));
}
public void onListltemClick(ListView parent, View v, int position,
long id) {

selection.setText(items.get(position).toString());

CHAPTER 20: Working with Resources

Now, inside our try...catch block, we get our XmlPullParser and loop until the end of
the document. If the current event is START_TAG and the name of the element is word
(xpp.getName().equals("word")), then we get the one and only attribute, and pop that
into our list of items for the selection widget. Since we have complete control over the
XML file, it is safe enough to assume there is exactly one attribute. If you are not sure
that the XML is properly defined, you might consider checking the attribute count
(getAttributeCount()) and the name of the attribute (getAttributeName()) before blindly
assuming the 0-index attribute is what you think it is.

The result looks the same as before, albeit with a different name in the title bar, as
shown in Figure 20-4.

il & 1:06 Pm

XMLResourceDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 20-4. The XMLResourceDemo sample application

Miscellaneous Values

In the res/values/ directory, in addition to string resources, you can place one (or more)
XML files describing other simple resources, such as dimensions, colors, and arrays.
You have already seen uses of dimensions and colors in previous examples, where they
were passed as simple strings (e.g., "10px") as parameters to calls. You could set these
up as Java static final objects and use their symbolic names, but that works only inside
Java source, not in layout XML files. By putting these values in resource XML files, you
can reference them from both Java and layouts, plus have them centrally located for
easy editing.

Resource XML files have a root element of resources; everything else is a child of that root.

CHAPTER 20: Working with Resources

Dimensions

Dimensions are used in several places in Android to describe distances, such a widget’s
padding. Most of this book’s examples use pixels (e.g., 10px for 10 pixels). Several
different units of measurement are also available:

B in and mm for inches and millimeters, respectively. These are based on
the actual size of the screen.

B pt for points. In publishing terms, a point is 1/72 inch (again, based on
the actual physical size of the screen).

B dip and sp for device-independent pixels and scale-independent
pixels, respectively. One pixel equals one dip for a 160-dpi resolution
screen, with the ratio scaling based on the actual screen pixel density.
Scale-independent pixels also take into account the user’s preferred
font size.

To encode a dimension as a resource, add a dimen element, with a name attribute for
your unique name for this resource, and a single child text element representing the
value:

<resources>
<dimen name="thin">10px</dimen>
<dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is a
placeholder for your unique name for the resource (e.g., thin and fat from the
preceding sample). In Java, you reference dimension resources by the unique name
prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors

Colors in Android are hexadecimal RGB values, also optionally specifying an alpha
channel. You have your choice of single-character hex values or double-character hex
values, providing four styles:

B #RGB
B #ARGB
H #RRGGBB

B #AARRGGBB
These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or layout
resources. If you wish to turn them into resources, though, all you need to do is add
color elements to the resource file, with a name attribute for your unique name for this
color, and a single text element containing the RGB value itself:

<{resources>

CHAPTER 20: Working with Resources

<color name="yellow_orange">#FFD555</color>

<color name="forest green">#005500</color>

<color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/.. ., replacing the ellipsis with your
unique name for the color (e.g., burnt_umber). In Java, you reference color resources by
the unique name prefixed with R.color. (e.g.,
Resources.getColor(R.color.forest green)).

Arrays

Array resources are designed to hold lists of simple strings, such as a list of honorifics
(Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a name attribute
for the unique name you are giving the array. Then add one or more child item elements,
each with a single text element containing the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>
</string-array>
<string-array name="airport codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A0O</item>
<item>MDT</item>
</string-array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a String[]
of the items in the list. The parameter to getStringArray() is your unique name for the
array, prefixed with R.array. (e.g., Resources.getStringArray(R.array.honorifics)).

Different Strokes for Different Folks

One set of resources may not fit all situations where your application may be used. One
obvious area comes with string resources and dealing with internationalization (118N)

CHAPTER 20: Working with Resources

and localization (L10N). Putting strings all in one language works fine —at least, for the
developer—but covers only one language.

That is not the only scenario where resources might need to differ, though. Here are others:

B Screen orientation: Is the screen in a portrait or landscape orientation?
Or is the screen square and, therefore, without an orientation?

B Screen size: How many pixels does the screen have, so you can size
your resources accordingly (e.g., large versus small icons)?

B Touchscreen: does the device have a touchscreen? If so, is the
touchscreen set up to be used with a stylus or a finger?

B Keyboard: Which keyboard does the user have (QWERTY, numeric,
neither), either now or as an option?

B Other input: Does the device have some other form of input, like a D-
pad or click-wheel?

The way Android currently handles this is by having multiple resource directories, with
the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.
Normally, for a single-language setup, you would put your strings in a file named
res/values/strings.xml. To support both English and Spanish, you would create two
folders, named res/values-en/ and res/values-es/, where the value after the hyphen is
the ISO 639-1 two-letter code for the language. Your English strings would go in
res/values-en/strings.xml, and the Spanish ones would go in res/values-
es/strings.xml. Android will choose the proper file based on the user’s device settings.

An even better approach is for you to consider some language to be your default, and
put those strings in res/values/strings.xml. Then create other resource directories for
your translations (e.g., res/values-es/strings.xml for Spanish). Android will try to
match a specific language set of resources; failing that, it will fall back to the default of
res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple disparate criteria
for your resources. For example, suppose you want to develop both for the T-Mobile G1
and two currently fictitious devices. One device (Fictional One) has a VGA (“large”)
screen normally in a landscape orientation, an always-open QWERTY keyboard, a D-
pad, but no touchscreen. The other device (Fictional Two) has a G1-sized screen
(normal), a numeric keyboard but no QWERTY, a D-pad, and no touchscreen.

You may want to have somewhat different layouts for these devices, to take advantage
of different screen real estate and different input options, as follows:

B For each combination of resolution and orientation
B For touchscreen devices versus ones without touchscreens
® For QWERTY versus non-QWERTY devices

CHAPTER 20: Working with Resources

Once you get into these sorts of situations, all sorts of rules come into play, such as these:

B The configuration options (e.g., -en) have a particular order of
precedence, and they must appear in the directory name in that order.
The Android documentation outlines the specific order in which these
options can appear. For the purposes of this example, screen
orientation must precede touchscreen type, which must precede
screen size.

B There can be only one value of each configuration option category per
directory.

B Options are case-sensitive.
So, for the sample scenario, in theory, we would need the following directories:

B res/layout-large-port-notouch-querty

res/layout-normal-port-notouch-qwerty
res/layout-large-port-notouch-12key
res/layout-normal-port-notouch-12key
res/layout-large-port-notouch-nokeys
res/layout-normal-port-notouch-nokeys
res/layout-large-port-stylus-qwerty
res/layout-normal-port-stylus-qwerty
res/layout-large-port-stylus-12key
res/layout-normal-port-stylus-12key
res/layout-large-port-stylus-nokeys
res/layout-normal-port-stylus-nokeys
res/layout-large-port-finger-querty
res/layout-normal-port-finger-qwerty
res/layout-large-port-finger-12key
res/layout-normal-port-finger-12key
res/layout-large-port-finger-nokeys
res/layout-normal-port-finger-nokeys
res/layout-large-land-notouch-qwerty
res/layout-normal-land-notouch-qwerty
res/layout-large-land-notouch-12key

res/layout-normal-land-notouch-12key

res/layout-large-land-notouch-nokeys

CHAPTER 20: Working with Resources

res/layout-normal-land-notouch-nokeys
res/layout-large-land-stylus-qwerty
res/layout-normal-land-stylus-qwerty
res/layout-large-land-stylus-12key
res/layout-normal-land-stylus-12key
res/layout-large-land-stylus-nokeys
res/layout-normal-land-stylus-nokeys
res/layout-large-land-finger-qwerty
res/layout-normal-land-finger-qwerty
res/layout-large-land-finger-12key

res/layout-normal-land-finger-12key

res/layout-large-land-finger-nokeys
B res/layout-normal-land-finger-nokeys
Don’t panic! We will shorten this list in just a moment.

Note that for many of these, the actual layout files will be identical. For example, we only
care about touchscreen layouts being different from the other two layouts, but since we
cannot combine those two, we would theoretically need separate directories with
identical contents for finger and stylus.

Also note that there is nothing preventing you from having another directory with the
unadorned base name (res/layout). In fact, this is probably a good idea, in case future
editions of the Android runtime introduce other configuration options you did not
consider. Having a default layout might make the difference between your application
working or failing on that new device.

Now, we can cheat a bit, by decoding the rules Android uses for determining which,
among a set of candidates, is the correct resource directory to use:

B First up, Android tosses out ones that are specifically invalid. So, for
example, if the screen size of the device is normal, the -large
directories would be dropped as candidates, since they call for some
other size.

B Next, Android counts the number of matches for each folder, and pays
attention to only those with the most matches.

B Finally, Android goes in the order of precedence of the options; in
other words, it goes from left to right in the directory name.

So, we could skate by with only the following configurations:
B res/layout-large-port-notouch-qwerty

B res/layout-port-notouch-querty

CHAPTER 20: Working with Resources

res/layout-large-port-notouch
res/layout-port-notouch
res/layout-large-port-querty
res/layout-port-querty
res/layout-large-port
res/layout-port
res/layout-large-land-notouch-qwerty
res/layout-land-notouch-qwerty
res/layout-large-land-notouch
res/layout-land-notouch
res/layout-large-land-qwerty
res/layout-land-querty

res/layout-large-land

res/layout-land

Here, we take advantage of the fact that specific matches take precedence over
unspecified values. So, a device with a QWERTY keyboard will choose a resource with
gwerty in the directory over a resource that does not specify its keyboard type.
Combining that with the “most matches wins” rule, we see that res/layout-port will
match only devices with normal-sized screens, no QWERTY keyboard, and a
touchscreen in portrait orientation.

We could refine this even further, to cover only the specific devices we are targeting (T-
Mobile G1, Fictional One, and Fictional Two), plus take advantage of res/layout being
the overall default:

B res/layout-large-port-notouch
res/layout-port-notouch
res/layout-large-land-notouch

res/layout-land-notouch

res/layout-large-land
B res/layout

Here, -large differentiates Fictional One from the other two devices, while notouch
differentiates Fictional Two from the T-Mobile G1.

You will see these resource sets again in Chapter 36, which describes how to support
multiple screen sizes.

Chapter

Using Preferences

Android has many different ways for you to store data for long-term use by your activity.
The simplest to use is the preferences system, which is the topic of this chapter.

Android allows activities and applications to keep preferences, in the form of key/value
pairs (akin to a Map), which will hang around between invocations of an activity. As the
name suggests, the primary purpose is for you to store user-specified configuration
details, such as the last feed the user looked at in your feed reader, the sort order to use
by default on a list, or whatever. Of course, you can store in the preferences whatever you
like, as long as it is keyed by a String and has a primitive value (boolean, String, etc.)

Preferences can be for a single activity or shared among all activities in an application.
(Eventually, preferences might be shareable across applications, but that is not
supported as of the time of this writing.)

Getting What You Want

To get access to the preferences, you can use the following APIs:

B getPreferences() from within your Activity, to access activity-
specific preferences

®m getSharedPreferences() from within your Activity (or other
application Context), to access application-level preferences

B getDefaultSharedPreferences(), on PreferencesManager, to get the
shared preferences that work in concert with Android’s overall
preference framework

The first two take a security mode parameter; for now, pass in 0. The
getSharedPreferences() method also takes a name of a set of preferences.
getPreferences() effectively calls getSharedPreferences() with the activity’s class
name as the preference set name. The getDefaultSharedPreferences() method takes
the Context for the preferences (e.g., your Activity).

213

CHAPTER 21: Using Preferences

All of these methods return an instance of SharedPreferences, which offers a series of
getters to access named preferences, returning a suitably typed result (e.g.,
getBoolean() to return a Boolean preference). The getters also take a default value,
which is returned if there is no preference set under the specified key.

Stating Your Preference

Given the appropriate SharedPreferences object, you can use edit() to get an editor for
the preferences. This object has a set of setters that mirror the getters on the parent
SharedPreferences object. It also has the following methods:

® remove(): Deletes a single named preference.
B clear(): Deletes all preferences.
B commit(): Persists your changes made via the editor.

The commit() method is important. If you modify preferences via the editor and fail to
commit() the changes, those changes will evaporate once the editor goes out of scope.

Conversely, since the preferences object supports live changes, if one part of your
application (say, an activity) modifies shared preferences, another part of your
application (say, a service) will have access to the changed value immediately.

And Now, a Word from Our Framework

Beginning with the 0.9 SDK, Android has introduced a framework for managing
preferences. Ironically, this framework does not change anything shown so far. Instead,
the framework is more for presenting a consistent set of preference-setting options for
users, so different applications do not need to reinvent the wheel.

The linchpin to the preferences framework is yet another XML data structure. You can
describe your application’s preferences in an XML file stored in your project’s res/xml/
directory. Given that, Android can present a pleasant Ul for manipulating those
preferences, which are then stored in the SharedPreferences you get back from
getDefaultSharedPreferences().

The following is the preference XML for the Prefs/Simple preferences sample project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off" />
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"

CHAPTER 21: Using Preferences

android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. You will see why it is
named that later in this chapter. For now, take it on faith that it is a sensible name.

Some of the things you can have inside a PreferenceScreen element, not surprisingly,
are preference definitions. These are subclasses of Preference, such as
CheckBoxPreference or RingtonePreference, as shown in the preceding XML. As you
might expect, these allow you to check a check box or choose a ringtone, respectively.
In the case of RingtonePreference, you have the option of allowing users to choose the
system default ringtone or to choose “silence” as a ringtone.

Letting Users Have Their Say

Given that you have set up the preference XML, you can use a nearly built-in activity for
allowing your users to set their preferences. The activity is “nearly built-in” because you
merely need to subclass it and point it to your preference XML, plus hook the activity
into the rest of your application.

For example, here is the EditPreferences activity of the Prefs/Simple project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.preferences);
}
}
As you can see, there is not much to see. All you need to do is call

addPreferencesFromResource() and specify the XML resource containing your
preferences.

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.simple">
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity
android:name=".SimplePrefsDemo"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

CHAPTER 21: Using Preferences

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity
android:name=".EditPreferences"
android:label="@string/app_name">

</activity>

</application>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu option, here
pulled from SimplePrefsDemo:
public boolean onCreateOptionsMenu(Menu menu) {
menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")

.setlcon(R.drawable.misc)
.setAlphabeticShortcut('e');

return(super.onCreateOptionsMenu(menu));

@0verride
public boolean onOptionsltemSelected(MenuItem item) {

switch (item.getltemld()) {
case EDIT_ID:
startActivity (new Intent(this, EditPreferences.class));
return(true);

return(super.onOptionsltemSelected(item));

}

That is all that is required, and it really is not that much code outside the preferences
XML. What you get for your effort is an Android-supplied preference Ul, as shown in
Figure 21-1.

The check box can be directly checked or unchecked. To change the ringtone
preference, just select the entry in the preference list to bring up a selection dialog, as
shown in Figure 21-2.

CHAPTER 21: Using Preferences

£ Gl @ 4:26 Pm
Checkbox Prefgrence

Ringtone Preference

Pick a tone, any tone

Figure 21-1. The Simple project's preference Ul

Ml @ 5:40 PM

Default ringtone

Silent

Figure 21-2. Choosing a ringtone preference

Notice that there is no explicit save or commit button or menu. Any changes are
persisted as soon as they are made.

The SimplePrefsDemo activity, beyond having the aforementioned menu, also displays
the current preferences via a TablelLayout:

CHAPTER 21: Using Preferences

<?xml version="1.0" encoding="utf-8"?>

<Tablelayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"

<TableRow>
<TextView
android:text="Checkbox:"
android:paddingRight="5px"
/>
<TextView android:id="@+id/checkbox"
/>
</TableRow>
<TableRow>
<TextView
android:text="Ringtone:"
android:paddingRight="5px"
/>
<TextView android:id="@+id/ringtone"
/>
</TableRow>
</TableLayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

checkbox=(TextView)findViewByld(R.id.checkbox);
ringtone=(TextView)findViewByld(R.id.ringtone);

The fields are updated on each onResume():

public void onResume() {
super.onResume();

SharedPreferences prefs=PreferenceManager
.getDefaultSharedPreferences(this);

checkbox.setText(new Boolean(prefs
.getBoolean("checkbox", false))
.toString());
ringtone.setText(prefs.getString("ringtone", "<unset>"));

This means that the fields will be updated when the activity is opened and after the
preferences activity is left (e.g., via the back button), as shown in Figure 21-3.

CHAPTER 21: Using Preferences

EhH & 6:19 PMm

SimplePrefsDemo

://media/internal/audio/media/

Figure 21-3. The Simple project's list of saved preferences

Adding a Wee Bit o' Structure

If you have a lot of preferences for users to set, putting them all in one big list may not
be the best idea. Android’s preference framework gives you a few ways to impose a bit
of structure on your bag of preferences, including categories and screens.

Categories are added via a PreferenceCategory element in your preference XML and are
used to group together related preferences. Rather than have your preferences all as
children of the root PreferenceScreen, you can place a few PreferenceCategory
elements in the PreferenceScreen, and then put your preferences in their appropriate
categories. Visually, this adds a divider with the category title between groups of
preferences.

If you have a whole lot of preferences—more than are convenient for users to scroll
through—you can also put them on separate “screens” by introducing the
PreferenceScreen element. Yes, that PreferenceScreen element.

Any children of PreferenceScreen go on their own screen. If you nest
PreferenceScreens, the parent screen displays the screen as a placeholder entry, and
tapping that entry brings up the child screen.

For example, from the Prefs/Structured sample project, here is a preference XML file
that contains both PreferenceCategory and nested PreferenceScreen elements:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="checkbox"

CHAPTER 21: Using Preferences

android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"
android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your PreferenceActivity
implementation, is a categorized list of elements, as shown in Figure 21-4.

Ml @ 4:26 Pm

Simple Preferences

Figure 21-4. The Structured project's preference Ul, showing categories and a screen placeholder

If you tap the Detail Screen entry, you are taken to the child preference screen, as
shown in Figure 21-5.

CHAPTER 21: Using Preferences

i @ 6:39 Pm
Another Checkbox
tr loesn't matter.

Figure 21-5. The child preference screen of the Structured project's preference Ul

The Kind of Pop-Ups You Like

Of course, not all preferences are check boxes and ringtones. For others, like entry
fields and lists, Android uses pop-up dialogs. Users do not enter their preference
directly in the preference Ul activity, but rather tap a preference, fill in a value, and click
OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly different from
other preference types, as seen in this preference XML from the Prefs/Dialogs
sample project:

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android">
<PreferenceCategory android:title="Simple Preferences">
<CheckBoxPreference
android:key="checkbox"
android:title="Checkbox Preference"
android:summary="Check it on, check it off"
/>
<RingtonePreference
android:key="ringtone"
android:title="Ringtone Preference"
android:showDefault="true"
android:showSilent="true"
android:summary="Pick a tone, any tone"
/>
</PreferenceCategory>
<PreferenceCategory android:title="Detail Screens">
<PreferenceScreen
android:key="detail"

CHAPTER 21: Using Preferences

android:title="Detail Screen"
android:summary="Additional preferences held in another page">
<CheckBoxPreference
android:key="checkbox2"
android:title="Another Checkbox"
android:summary="0On. Off. It really doesn't matter."
/>
</PreferenceScreen>
</PreferenceCategory>
<PreferenceCategory android:title="Simple Preferences">
<EditTextPreference
android:key="text"
android:title="Text Entry Dialog"
android:summary="Click to pop up a field for entry"
android:dialogTitle="Enter something useful"
/>
<ListPreference
android:key="list"
android:title="Selection Dialog"
android:summary="Click to pop up a list to choose from"
android:entries="@array/cities"
android:entryValues="@array/airport_codes"
android:dialogTitle="Choose a Pennsylvania city" />
</PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary you put on the
preference itself, you can also supply the title to use for the dialog.

With the list (ListPreference), you supply both a dialog title and two string-array
resources: one for the display names and one for the values. These need to be in the
same order, because the index of the chosen display name determines which value is
stored as the preference in the SharedPreferences. For example, here are the arrays for
use by the ListPreference shown in the preceding example:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<string-array name="cities">
<item>Philadelphia</item>
<item>Pittsburgh</item>
<item>Allentown/Bethlehem</item>
<item>Erie</item>
<item>Reading</item>
<item>Scranton</item>
<item>Lancaster</item>
<item>Altoona</item>
<item>Harrisburg</item>

</string-array>

<string-array name="airport_codes">
<item>PHL</item>
<item>PIT</item>
<item>ABE</item>
<item>ERI</item>
<item>RDG</item>
<item>AVP</item>
<item>LNS</item>
<item>A00</item>

CHAPTER 21: Using Preferences

<item>MDT</item>
</string-array>
</resources>
When you bring up the preference Ul, you start with another category with another pair
of preference entries, as shown in Figure 21-6.

B Rl @ 4:26 Pm

Simple Preferences

Checkbox Preference

Check it on, check it off

Ringtone Preference

1y tone
Detail Screens

Detail Screen
or es held in another ®

Simple Preferences

Text Entry Dialog

Click to pop up a field for entry

Selection Dialo

Figure 21-6. The preference screen of the Dialogs project's preference Ul

Tapping the Text Entry Dialog entry brings up a text-entry dialog with the prior
preference entry already filled in, as shown in Figure 21-7.

Eh Ml @ 6:54 PM

o Enter something useful

Cancel

Figure 21-7. Editing a text preference

CHAPTER 21: Using Preferences

Tapping Selection Dialog brings up a selection dialog showing the display names from
the one array, as shown in Figure 21-8.

Ml @ 6:54 PM

@ Choose a Pennsylvania city
Philadelphia

Pittsburgh

Allentown/Bethlehem (&)

Erie O
Reading O

OK ll Cancel

Figure 21-8. Editing a list preference

Chapter

Managing and Accessing
Local Databases

SQLite is a very popular embedded database, as it combines a clean SQL interface with
a very small memory footprint and decent speed. Moreover, it is public domain, so
everyone can use it. Many firms (e.g., Adobe, Apple, Google, Sun, and Symbian) and
open source projects (e.g., Mozilla, PHP, and Python) ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android application
can create SQLite databases. Since SQLite uses a SQL interface, it is fairly
straightforward to use for people with experience in other SQL-based databases.
However, its native APl is not JDBC, and JDBC might be too much overhead for a
memory-limited device like a phone, anyway. Hence, Android programmers have a
different API to learn. The good news is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working on Android. It
by no means is a thorough coverage of SQLite as a whole. If you want to learn more
about SQLite and how to use it in environments other than Android, a fine book is The
Definitive Guide to SQLite by Michael Owens (Apress, 2006).

The Database Example

Much of the sample code shown in this chapter comes from the Database/Constants
application. This application presents a list of physical constants, with names and values
culled from Android’s SensorManager, as shown in Figure 22-1.

225

CHAPTER 22: Managing and Accessing Local Databases

Ll @ 9:10 Am
ConstantsBrowser

Star I

Figure 22-1. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to fill in the
name and value of the constant, as shown in Figure 22-2.

Ll @ 9:10 Am

(® Add Constant

Display Name:

va[ue _

Figure 22-2. The Constants sample application's Add Constant dialog

The constant is then added to the list. A long-tap on an existing constant will bring up a
context menu with a Delete option, which, after confirmation, will delete the constant.

CHAPTER 22: Managing and Accessing Local Databases

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer

SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT), data
manipulation (INSERT, et. al.), and data definition (CREATE TABLE, et. al.). SQLite has a few
places where it deviates from the SQL-92 standard, as is common for most SQL
databases. The good news is that SQLite is so space-efficient that the Android runtime
can include all of SQLite, not some arbitrary subset to trim it down to size.

A big difference between SQLite and other SQL databases is the data typing. While you
can specify the data types for columns in a CREATE TABLE statement, and SQLite will use
those as a hint, that is as far as it goes. You can put whatever data you want in whatever
column you want. Put a string in an INTEGER column? Sure, no problem! Vice versa?
That works, too! SQLite refers to this as manifest typing, as described in the
documentation:

In manifest typing, the datatype is a property of the value itself, not of
the column in which the value is stored. SQLite thus allows the user to
store any value of any datatype into any column regardless of the
declared type of that column.

In addition, a handful of standard SQL features are not supported in SQLite, notably
FOREIGN KEY constraints, nested transactions, RIGHT OUTER JOIN, FULL OUTER JOIN, and
some flavors of ALTER TABLE.

Beyond that, though, you get a full SQL system, complete with triggers, transactions,
and the like. Stock SQL statements, like SELECT, work pretty much as you might expect.

NOTE: If you are used to working with a major database, like Oracle, you may look upon SQLite
as being a “toy” database. Please bear in mind that Oracle and SQLite are meant to solve
different problems, and that you will not be seeing a full copy of Oracle on a phone any time
soon, in all likelihood.

Start at the Beginning

No databases are automatically supplied to you by Android. If you want to use SQLite,
you will need to create your own database, and then populate it with your own tables,
indexes, and data.

To create and open a database, your best option is to craft a subclass of
SQLiteOpenHelper. This class wraps up the logic to create and upgrade a database, per
your specifications, as needed by your application. Your subclass of SQLiteOpenHelper
will need three methods:

CHAPTER 22: Managing and Accessing Local Databases

B The constructor, chaining upward to the SQLiteOpenHelper
constructor. This takes the Context (e.g., an Activity), the name of the
database, an optional cursor factory (typically, just pass null), and an
integer representing the version of the database schema you are
using.

B onCreate(), which passes you a SQLiteDatabase object that you need
to populate with tables and initial data, as appropriate.

B onUpgrade(), which passes you a SQLiteDatabase object and the old
and new version numbers, so you can figure out how best to convert
the database from the old schema to the new one. The simplest, albeit
least friendly, approach is to drop the old tables and create new ones.

For example, here is a DatabaseHelper class from Database/Constants that, in
onCreate(), creates a table and adds a number of rows, and in onUpgrade() cheats by
dropping the existing table and executing onCreate():

package com.commonsware.android.constants;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

public class DatabaseHelper extends SQLiteOpenHelper {
private static final String DATABASE_NAME="db";
public static final String TITLE="title";
public static final String VALUE="value";

public DatabaseHelper(Context context) {
super(context, DATABASE NAME, null, 1);

@0verride
public void onCreate(SQLiteDatabase db) {
db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,«
title TEXT, value REAL);");

ContentValues cv=new ContentValues();

cv.put(TITLE, "Gravity, Death Star I");
cv.put(VALUE, SensorManager.GRAVITY DEATH STAR I);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Earth");
cv.put(VALUE, SensorManager.GRAVITY EARTH);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Jupiter");
cv.put(VALUE, SensorManager.GRAVITY JUPITER);

CHAPTER 22: Managing and Accessing Local Databases

db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Mars");
cv.put(VALUE, SensorManager.GRAVITY MARS);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Mercury");
cv.put(VALUE, SensorManager.GRAVITY MERCURY);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Moon");
cv.put(VALUE, SensorManager.GRAVITY_ MOON);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Neptune");
cv.put(VALUE, SensorManager.GRAVITY NEPTUNE);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Pluto");
cv.put(VALUE, SensorManager.GRAVITY PLUTO);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Saturn");
cv.put(VALUE, SensorManager.GRAVITY SATURN);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Sun");
cv.put(VALUE, SensorManager.GRAVITY SUN);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, The Island");
cv.put(VALUE, SensorManager.GRAVITY THE ISLAND);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Uranus");
cv.put(VALUE, SensorManager.GRAVITY URANUS);
db.insert("constants", TITLE, cv);

cv.put(TITLE, "Gravity, Venus");
cv.put(VALUE, SensorManager.GRAVITY VENUS);
db.insert("constants", TITLE, cv);

}

@0verride
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
android.util.Llog.w("Constants", "Upgrading database, which will destroy all old
data");
db.execSQL("DROP TABLE IF EXISTS constants");
onCreate(db);

CHAPTER 22: Managing and Accessing Local Databases

To use your SQLiteOpenHelper subclass, create an instance and ask it to
getReadableDatabase() or getWriteableDatabase(), depending on whether or not you
will be changing its contents. For example, our ConstantsBrowser activity opens the
database in onCreate():

db=(new DatabaseHelper(this)).getWritableDatabase();

This will return a SQLiteDatabase instance, which you can then use to query the
database or modify its data.

When you are finished with the database (e.g., your activity is being closed), simply call
close() on the SQLiteDatabase to release your connection.

Setting the Table

For creating your tables and indexes, you will need to call execSQL() on your
SQLiteDatabase, providing the Data Definition Language (DDL) statement you wish to
apply against the database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in the
DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT, =
value REAL);");

This will create a table, named constants, with a primary key column named _id that is
an autoincremented integer (i.e., SQLite will assign the value for you when you insert
rows), plus two data columns: title (text) and value (a float, or real in SQLite terms).
SQLite will automatically create an index for you on your primary key column. You could
add other indexes here via some CREATE INDEX statements.

Most likely, you will create tables and indexes when you first create the database, or
possibly when the database needs upgrading to accommodate a new release of your
application. If you do not change your table schemas, you might never drop your tables
or indexes, but if you do, just use execSQL() to invoke DROP INDEX and DROP TABLE
statements as needed.

Makin’ Data

Given that you have a database and one or more tables, you probably want to put some
data in them. You have two major approaches for doing this.

B Use execSQL(), just as you did for creating the tables. The execSQL()
method works for any SQL that does not return results, so it can
handle INSERT, UPDATE, DELETE, and so on just fine.

CHAPTER 22: Managing and Accessing Local Databases

B Use the insert(), update(), and delete() methods on the
SQLiteDatabase object. These are “builder” sorts of methods, in that
they break down the SQL statements into discrete chunks, then take
those chunks as parameters.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
ContentValues values=new ContentValues(2);

values.put("title", wrapper.getTitle());
values.put("value", wrapper.getValue());

db.insert("constants", "title", values);
constantsCursor.requery();

}

These methods make use of ContentValues objects, which implement a Map-esque
interface, albeit one that has additional methods for working with SQLite types. For
example, in addition to get() to retrieve a value by its key, you have getAsInteger(),
getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column as the “null
column hack,” and a ContentValues with the initial values you want put into this row. The
null column hack is for the case where the ContentValues instance is empty. The column
named as the null column hack will be explicitly assigned the value NULL in the SQL
INSERT statement generated by insert().

The update() method takes the name of the table, a ContentValues representing the
columns and replacement values to use, an optional WHERE clause, and an optional list of
parameters to fill into the WHERE clause, to replace any embedded question marks (?).
Since update() replaces only columns with fixed values, versus ones computed based
on other information, you may need to use execSQL() to accomplish some ends. The
WHERE clause and parameter list work akin to the positional SQL parameters you may be
used to from other SQL APlIs.

The delete() method works similar to update(), taking the name of the table, the
optional WHERE clause, and the corresponding parameters to fill into the WHERE clause. For
example, here we delete a row from our constants table, given its _ID:

private void processDelete(long rowId) {
String[] args={String.valueOf(rowId)};

db.delete("constants", " ID=?", args);
constantsCursor.requery();

}

CHAPTER 22: Managing and Accessing Local Databases

What Goes Around Comes Around

As with INSERT, UPDATE, and DELETE, you have two main options for retrieving data from a
SQLite database using SELECT:

B Use rawQuery() to invoke a SELECT statement directly.
B Use query() to build up a query from its component parts.

Confounding matters further is the SQLiteQueryBuilder class and the issue of cursors
and cursor factories. Let’s take this one piece at a time.

Raw Queries

The simplest solution, at least in terms of the API, is rawQuery(). Just call it with your
SQL SELECT statement. The SELECT statement can include positional parameters; the
array of these forms your second parameter to rawQuery(). So, we wind up with this:

constantsCursor=db.rawQuery("SELECT _ID, title, value "+
"FROM constants ORDER BY title",
null);

The return value is a Cursor, which contains methods for iterating over results
(discussed in the “Using Cursors” section a little later in the chapter).

If your queries are pretty much baked into your application, this is a very straightforward
way to use them. However, it gets complicated if parts of the query are dynamic,
beyond what positional parameters can really handle. For example, if the set of columns
you need to retrieve is not known at compile time, puttering around concatenating
column names into a comma-delimited list can be annoying, which is where query()
comes in.

Regular Queries

The query() method takes the discrete pieces of a SELECT statement and builds the
query from them. The pieces, in the order they appear as parameters to query(), are as
follows:

B The name of the table to query against

The list of columns to retrieve

The WHERE clause, optionally including positional parameters
The list of values to substitute in for those positional parameters
The GROUP BY clause, if any

The ORDER BY clause, if any

The HAVING clause, if any

CHAPTER 22: Managing and Accessing Local Databases

These can be null when they are not needed (except the table name, of course):

String[] columns={"ID", "inventory"};

String[] parms={"snicklefritz"};

Cursor result=db.query("widgets", columns, "name=?",
parms, null, null, null);

Building with Builders

Yet another option is to use SQLiteQueryBuilder, which offers much richer query-
building options, particularly for nasty queries involving things like the union of multiple
subquery results.

The SQLiteQueryBuilder interface dovetails nicely with the ContentProvider interface for
executing queries. Hence, a common pattern for your content provider’s query()
implementation is to create a SQLiteQueryBuilder, fill in some defaults, and then allow it
to build up (and optionally execute) the full query combining the defaults with what is
provided to the content provider on the query request.

For example, here is a snippet of code from a content provider using
SOLiteQueryBuilder:

@verride
public Cursor query(Uri url, String[] projection, String selection,
String[] selectionArgs, String sort) {
SQLiteQueryBuilder gb=new SQLiteQueryBuilder();

gb.setTables(getTableName());

if (isCollectionUri(url)) {
gb.setProjectionMap (getDefaultProjection()) ;

else {
gb.appendWhere (getldColumnName()+

+url.getPathSegments().get(1));

String orderBy;

if (TextUtils.isEmpty(sort)) {
orderBy=getDefaultSortOrder() ;
} else {
orderBy=sort;

Cursor c=gb.query(db, projection, selection, selectionArgs,
null, null, orderBy);
c.setNotificationUri(getContext() .getContentResolver(), url);

return c;

CHAPTER 22: Managing and Accessing Local Databases

Content providers are explained in greater detail in Chapters 26 and 27, so some of this
you will have to take on faith until then. Here, you see the following:

B A SQLiteQueryBuilder is constructed.
B [tis told the table to use for the query (setTables(getTableName())).

B |t is told the default set of columns to return (setProjectionMap()), or it
is given a piece of a WHERE clause to identify a particular row in the
table by an identifier extracted from the Uri supplied to the query()
call (appendihere()).

B Finally, it is told to execute the query, blending the preset values with
those supplied on the call to query() (qb.query(db, projection,
selection, selectionArgs, null, null, orderBy)).

Instead of having the SQLiteQueryBuilder execute the query directly, we could have
called buildQuery() to have it generate and return the SQL SELECT statement we
needed, which we could then execute ourselves.

Using Cursors

No matter how you execute the query, you get a Cursor back. This is the Android/SQLite
edition of the database cursor, a concept used in many database systems. With the
cursor, you can do the following:

B Find out how many rows are in the result set via getCount().

B [terate over the rows via moveToFirst(), moveToNext(), and
isAfterlast().

B Find out the names of the columns via getColumnNames (), convert
those into column numbers via getColumnIndex(), and get values for
the current row for a given column via methods like getString(),
getInt(), and so on.

B Reexecute the query that created the cursor via requery().
B Release the cursor’s resources via close().

For example, here we iterate over a widgets table entries:
Cursor result=

db.rawQuery("SELECT ID, name, inventory FROM widgets");
result.moveToFirst();

while (!result.isAfterLast()) {
int id=result.getint(0);
String name=result.getString(1);
int inventory=result.getint(2);

// do something useful with these

CHAPTER 22: Managing and Accessing Local Databases

result.moveToNext();

}

result.close();

You can also wrap a Cursor in a SimpleCursorAdapter or other implementation, and then
hand the resulting adapter to a ListView or other selection widget. For example, after
retrieving the sorted list of constants, we pop those into the ListView for the
ConstantsBrowser activity in just a few lines of code:
ListAdapter adapter=new SimpleCursorAdapter(this,

R.layout.row, constantsCursor,

new String[] {"title", "value"},
new int[] {R.id.title, R.id.value});

setListAdapter(adapter);

TIP: There may be circumstances in which you want to use your own Cursor subclass, rather
than the stock implementation provided by Android. In those cases, you can use
queryWithFactory() and rawQueryWithFactory(), which take a
SQLiteDatabase.CursorFactory instance as a parameter. The factory is responsible for
creating new cursors via its newCursoxr () implementation.

Data, Data, Everywhere

If you are used to developing for other databases, you are also probably used to having
tools to inspect and manipulate the contents of the database, beyond merely the
database’s API. With Android’s emulator, you have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program and make it
available from the adb shell command. Once you are in the emulator’s shell, just
execute sqlite3, providing it the path to your database file. Your database file can be
found at the following location:

/data/data/your.app.package/databases/your-db-name

Here, your.app.package is the Java package for your application (e.g.,
com. commonsware.android), and your-db-name is the name of your database, as supplied
to createDatabase().

The sqlite3 program works, and if you are used to poking around your tables using a
console interface, you are welcome to use it. If you prefer something a little friendlier,
you can always copy the SQLite database off the device onto your development
machine, and then use a SQLite-aware client program to putter around. Note, though,
that you are working off a copy of the database; if you want your changes to go back to
the device, you will need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or the
equivalent in your IDE, or File Manager in the Dalvik Debug Monitor Service, discussed

CHAPTER 22: Managing and Accessing Local Databases

in Chapter 35), which takes the path to the on-device database and the local destination
as parameters. To store a modified database on the device, use adb push, which takes
the local path to the database and the on-device destination as parameters.

One of the most accessible SQLite clients is the SQLite Manager extension for Firefox,
shown in Figure 22-2, as it works across all platforms.

J SQLite Manager, N EE
Database Table Index View Trigger Tools Help Profile Database: [(Select Profile Database) 3][Go]

Refresh DNew Database ﬁConnect Database ﬁCreate Table #Drop Table éCreate Index ﬁDrop Index

Structure [Browse & Search] Execute SQL l DB Settings

Database

Database Not Selected

- T

Figure 22-3. SQLite Manager Firefox extension

You can find other client tools on the SQLite web site.

Chapter

Accessing Files

While Android offers structured storage, via preferences and databases, sometimes a
simple file will suffice. Android offers two models for accessing files: one for files
prepackaged with your application and one for files created on-device by your
application. Both of these models are covered in this chapter.

You and the Horse You Rode in On

Let’s suppose you have some static data you want to ship with the application, such as
a list of words for a spell checker. The easiest way to deploy that is to place the file in
the res/raw directory, so it will be put in the Android application APK file as part of the
packaging process as a raw resource.

To access this file, you need to get yourself a Resources object. From an activity, that is
as simple as calling getResources(). A Resources object offers openRawResource() to get
an InputStream on the file you specify. Rather than a path, openRawResource() expects
an integer identifier for the file as packaged. This works just like accessing widgets via
findViewById(). For example, if you put a file named words.xml in res/raw, the identifier
is accessible in Java as R.raw.words.

Since you can get only an InputStream, you have no means of modifying this file. Hence,
it is really useful just for static reference data. Moreover, since it is unchanging until the
user installs an updated version of your application package, either the reference data
must be valid for the foreseeable future or you will need to provide some means of
updating the data. The simplest way to handle that is to use the reference data to
bootstrap some other modifiable form of storage (e.g., a database), but you end up with
two copies of the data in storage.

An alternative is to keep the reference data as is but keep modifications in a file or
database, and merge them together when you need a complete picture of the
information. For example, if your application ships a file of URLs, you could have a
second file that tracks URLs added by the user or reference URLs that were deleted by
the user.

237

CHAPTER 23: Accessing Files

In the Files/Static sample project, you will find a reworking of the list box example
from Chapter 7, this time using a static XML file instead of a hardwired array in Java. The
layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout_height="fill parent" >
<TextView
android:id="@+id/selection”
android:layout width="fill parent"”
android:layout_height="wrap_content"
/>
<ListView
android:id="@android:id/list"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:drawSelectorOnTop="false"
/>
</Linearlayout>

In addition to that XML file, you also need an XML file with the words to show in the list:

<words>
<word value="lorem" />
<word value="ipsum" />
<word value="dolor" />
<word value="sit" />
<word value="amet" />
<word value="consectetuer" />
<word value="adipiscing" />
<word value="elit" />
<word value="morbi" />
<word value="vel" />
<word value="ligula" />
<word value="vitae" />
<word value="arcu" />
<word value="aliquet" />
<word value="mollis" />
<word value="etiam" />
<word value="vel" />
<word value="erat" />
<word value="placerat" />
<word value="ante" />
<word value="porttitor" />
<word value="sodales" />
<word value="pellentesque" />
<word value="augue" />
<word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will suffice for a
demo.

The Java code now must read in that XML file, parse out the words, and put them
someplace for the list to pick up:

CHAPTER 23: Accessing Files

public class StaticFileDemo extends ListActivity {
TextView selection;
Arraylist<String> items=new ArraylList<String>();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
selection=(TextView)findViewByld(R.id.selection);

try {
InputStream in=getResources().openRawResource(R.raw.words);
DocumentBuilder builder=DocumentBuilderFactory
.newlnstance()
.newDocumentBuilder();

Document doc=builder.parse(in, null);
NodelList words=doc.getElementsByTagName("word");

for (int i=0;i<words.getLength();i++) {
items.add(((Element)words.item(i)).getAttribute("value"));

in.close();

zatch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(), 2000)
.show();

setListAdapter(new ArrayAdapter<String>(this,
android.R.layout.simple_list item_1,
items));

}

public void onListltemClick(ListView parent, View v, int position,
long id) {
selection.setText(items.get(position).toString());

}
}
The differences mostly lie within onCreate(). We get an InputStream for the XML file
(getResources().openRawResource(R.raw.words)), then use the built-in XML parsing
logic to parse the file into a DOM Document, pick out the word elements, and then pour
the value attributes into an ArraylList for use by the ArrayAdapter.

The resulting activity looks the same as before, as shown in Figure 23-1, since the list of
words is the same, just relocated.

CHAPTER 23: Accessing Files

EhMl @ s:51PM

StaticFileDemo

lorem

ipsum

dolor

sit

amet

consectetuer

Figure 23-1. The StaticFileDemo sample application

Of course, there are even easier ways to have XML files available to you as prepackaged
files, such as by using an XML resource, as discussed in Chapter 20. However, while
this example used XML, the file could just as easily have been a simple one-word-per-
line list or in some other format not handled natively by the Android resource system.

Readin’ ’n Writin’

Reading or writing your own, application-specific data files is nearly identical to what
you might do in a desktop Java application. The key is to use openFileInput() or
openFileOutput() on your Activity or other Context to get an InputStream or
OutputStream, respectively. From that point forward, it is not much different from regular
Java /O logic:

B Wrap those streams as needed, such as using an InputStreamReader
or QutputStreamiWriter for text-based I/O.

B Read or write the data.
B Use close() to release the stream when done.

If two applications both try reading a notes. txt file via openFileInput(), each will
access its own edition of the file. If you need to have one file accessible from many
places, you probably want to create a content provider, as described in Chapter 27.

Note that openFileInput() and openFileOutput() do not accept file paths (e.g.,
path/to/file.txt), just simple filenames.

CHAPTER 23: Accessing Files

Here is the layout for the world’s most trivial text editor, pulled from the Files/ReadWrite
sample application:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent"
android:orientation="vertical">
<Button android:id="@+id/close"
layout_width="wrap_content"
layout_height="wrap_content"
text="Close" />

android:
android:
android:

<EditText

android:
android:
android:
android:
android:

/>

id

="@+id/editor"

layout_width="fill parent"”
layout_height="fill parent"
singleLine="false"
gravity="top"

</LinearLayout>

All we have here is a large text-editing widget, with a Close button above it.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import
import
import
import
import
import
import
import
import
import
import
import

public

android
android
android
android
android
android

java.
java.
Jjava.
Jjava.
java.
java.

io
io
io
io
io
io

.app.Activity;
.0s.Bundle;
.view.View;
.widget.Button;
.widget.EditText;
.widget.Toast;
.BufferedReader;
.File;
.InputStream;
.InputStreamReader;
.OutputStream;
.OutputStreamhriter;

class ReadWriteFileDemo extends Activity {
private final static String NOTES="notes.txt";
private EditText editor;

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);
editor=(EditText)findViewByld(R.id.editor);

Button btn=(Button)findViewByld(R.id.close);

btn.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
finish();

}
1

CHAPTER 23: Accessing Files

}

public void onResume() {
super.onResume();

try {
InputStream in=openFilelnput(NOTES);

if (inl!=null) {
InputStreamReader tmp=new InputStreamReader(in);
BufferedReader reader=new BufferedReader(tmp);
String str;
StringBuffer buf=new StringBuffer();

while ((str = reader.readLine()) != null) {
buf.append(str+"\n");

in.close();
editor.setText(buf.toString());
}

catch (java.io.FileNotFoundException e) {
// that's OK, we probably haven't created it yet

}
catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(), 2000)
.show();

}

public void onPause() {
super.onPause();

try {
OutputStreamWriter out=
new OutputStreamWriter(openFileOutput(NOTES, 0));

out.write(editor.getText().toString());
out.close();

catch (Throwable t) {
Toast
.makeText(this, "Exception: "+t.toString(), 2000)
.show();

CHAPTER 23: Accessing Files

First, we wire up the button to close our activity when clicked by using
setOnClickListener() to invoke finish() on the activity.

Next, we hook into onResume(), so we get control when our editor is coming back to life,
from a fresh launch or after having been frozen. We use openFileInput() to read in
notes.txt and pour the contents into the text editor. If the file is not found, we assume
this is the first time the activity was run (or the file was deleted by other means), and we
just leave the editor empty.

Finally, we hook into onPause(), so we get control as our activity is hidden by another
activity or closed, such as via our Close button. Here, we use openFileOutput() to open
notes.txt, into which we pour the contents of the text editor.

The net result is that we have a persistent notepad, as shown in Figures 23-2 and 23-3.
Whatever is typed in will remain until deleted, surviving our activity being closed, the
phone being turned off, or similar situations.

< BN @ 6:31Pm

ReadWriteFileDemo

Close

|
Figure 23-2. The ReadWriteFileDemo sample application, as initially launched

CHAPTER 23: Accessing Files

O B @ 6:31Pm

ReadWriteFileDemo

Close

This is a test of the Emergency
Broadcast System. This is only a test|

Figure 23-3. The same application, after entering some text

You are also welcome to read and write files on external storage (a.k.a., the SD card).
Use Environment.getExternalStorageDirectory() to obtain a File object at the root of
the SD card. Starting with Android 1.6, you will also need to hold permissions to work

with external storage (e.g., WRITE_EXTERNAL_STORAGE). Permissions are covered in
Chapter 28.

Bear in mind that external storage is accessible by all applications, whereas
openFileInput() and openFileOutput() are in an application-private area.

Chapter 24

Leveraging Java Libraries

Java has as many, if not more, third-party libraries than any other modern programming
language. The third-party libraries I’'m referring to here are the innumerable JAR files that
you can include in a server or desktop Java application—the things that the Java SDKs
themselves do not provide.

In the case of Android, the Dalvik virtual machine (VM) at its heart is not precisely Java,
and what it provides in its SDK is not precisely the same as any traditional Java SDK.
That being said, many Java third-party libraries still provide capabilities that Android
lacks natively, and therefore may be of use to you in your project (if you can get them to
work with Android’s flavor of Java).

This chapter explains what it will take for you to leverage such libraries and the
limitations on Android’s support for arbitrary third-party code.

The Quter Limits

Not all available Java code will work well with Android. There are a number of factors to
consider, including the following:

B Expected platform APIs: Does the code assume a newer Java Virtual
Machine (JVM) than the one Android is based on? Or, does the code
assume the existence of Java APIs that ship with Java SE but not with
Android, such as Swing?

B Size: Existing Java code designed for use on desktops or servers does
not need to be concerned much with on-disk size, or, to some extent,
even in-RAM size. Android, of course, is short on both. Using third-
party Java code, particularly when prepackaged as JARs, may balloon
the size of your application.

B Performance: Does the Java code effectively assume a much more
powerful CPU than what you may find on many Android devices? Just
because a desktop can run it without issue doesn’t mean your average
mobile phone will handle it well.

245

CHAPTER 24: Leveraging Java Libraries

B Interface: Does the Java code assume a console interface? Oris it a
pure API that you can wrap your own interface around?

One trick for addressing some of these concerns is to use open source Java code, and
actually work with the code to make it more Android-friendly. For example, if you’re using
just 10% of the third-party library, maybe it’s worthwhile to recompile the subset of the
project to be only what you need, or at least to remove the unnecessary classes from the
JAR. The former approach is safer, in that you get compiler help to make sure you’re not
discarding some essential piece of code, although it may be quite tedious to do.

Ants and JARs

You have two choices for integrating third-party code into your project: use source code
or use prepackaged JARs.

If you choose to use source code, all you need to do is copy it into your own source tree
(under sxc/ in your project), so it can sit alongside your existing code, and then let the
compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the source
code, you will need to teach your build chain how to use the JAR. First, place the JAR in
the 1ibs/ directory in your Android project. Then, if you are using an IDE, you probably
need to add the JAR to your build path. (Ant will automatically pick up all JARs found in
libs/.)

Following the Script

Unlike other mobile device operating systems, Android has no restrictions on what you
can run on it, so long as you can do it in Java using the Dalvik VM. This includes
incorporating your own scripting language into your application, something that is
expressly prohibited on some other devices.

One possible Java scripting language is BeanShell (http://beanshell.org). BeanShell
gives you Java-compatible syntax with implicit typing and no compilation required.

To add BeanShell scripting, you need to put the BeanShell interpreter’s JAR file in your
libs/ directory. Unfortunately, the 2.0b4 JAR available for download from the BeanShell
site does not work out of the box with the Android 0.9 and newer SDKs (perhaps due to
the compiler that was used to build it). Instead, you should probably check out the
source code from Subversion and execute ant jarcore to build it, and then copy the
resulting JAR (in BeanShell’s dist/ directory) to your own project’s 1ibs/. Or, just use
the BeanShell JAR that accompanies the source code for this book, up in the
Java/AndShell project.

CHAPTER 24: Leveraging Java Libraries

From there, using BeanShell on Android is no different than using BeanShell in any other
Java environment:

1.
2,
3.

Create an instance of the BeanShell Interpreter class.
Set any globals for the script’s use via Interpreter#set().

Call Interpretertfeval() to run the script and, optionally, get the result
of the last statement of the script.

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"”
android:layout_height="fill parent"

>

<Button
android:id="@+id/eval"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:text="Go!"

/>

<EditText
android:id="@+id/script"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:singlelLine="false"
android:gravity="top"

/>

</Linearlayout>

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import
import
import
import
import
import
import
import

public

android.app.Activity;
android.app.AlertDialog;
android.os.Bundle;
android.view.View;
android.widget.Button;
android.widget.EditText;
android.widget.Toast;
bsh.Interpreter;

class MainActivity extends Activity {

private Interpreter i=new Interpreter();

@0verride

public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.eval);
final EditText script=(EditText)findViewByld(R.id.script);

CHAPTER 24: Leveraging Java Libraries

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
String src=script.getText().toString();

try {
i.set("context", MainActivity.this);

i.eval(src);

catch (bsh.EvalError e) {
AlertDialog.Builder builder=
new AlertDialog.Builder(MainActivity.this);

builder
.setTitle("Exception!")
.setMessage(e.toString())
.setPositiveButton("0K", null)
.show();

}
}
};
}

}

Compile and run it (including incorporating the BeanShell JAR as mentioned earlier), and
install it on the emulator. Fire it up, and you get a trivial IDE, with a large text area for
your script and a big Go! button to execute it, as shown in Figure 24-1.

Bl & 1:57Pm

Beanshell Demo

I —
Figure 24-1. The AndShell BeanShell IDE

CHAPTER 24: Leveraging Java Libraries

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", 5000).show();

Note the use of context to refer to the activity when making the Toast. That is the global
set by the activity to reference back to itself. You could call this global variable anything
you want, as long as the set() call and the script code use the same name.

Click the Go! button, and you get the result shown in Figure 24-2.
GHl @ 2:01pPm

Beanshell Demo

import android.widget.Toast;

Toast.makeText(context, "Hello,
|World!", 5000).show();

Hello, world!
e —

Figure 24-2. The AndShell BeanShell IDE, executing some code

And now, some caveats:

B Not all scripting languages will work. For example, those that
implement their own form of just-in-time (JIT) compilation, generating
Java bytecodes on the fly, would probably need to be augmented to
generate Dalvik VM bytecodes instead of those for stock Java
implementations. Simpler languages that execute from parsed
scripts, calling Java reflection APIs to call back into compiled
classes, will likely work better. Even there, though, not every feature
of the language may work, if it relies on some facility in a traditional
Java API that does not exist in Dalvik. For example, there could be
stuff hidden inside BeanShell or the add-on JARs that does not work
on today’s Android.

CHAPTER 24: Leveraging Java Libraries

B Scripting languages without JIT will inevitably be slower than compiled
Dalvik applications. Slower may mean users experience sluggishness.
Slower definitely means more battery life is consumed for the same
amount of work. So, building a whole Android application in
BeanShell, simply because you feel it is easier to program in, may
cause your users to be unhappy.

B Scripting languages that expose the whole Java API, like BeanShell,
can pretty much do anything the underlying Android security model
allows. So, if your application has the READ_CONTACTS permission,
expect any BeanShell scripts your application runs to have the same
permission. (Permissions are covered in Chapter 28.)

B Last, but certainly not least, is that language interpreter JARs tend to
be rather portly. The BeanShell JAR used in this example is 200KB.
That is not ridiculous, considering what it does, but it will make
applications that use BeanShell that much bigger to download, take
up that much more space on the device, and so on.

...And Not a Drop to Drink

As noted earlier, not all Java code will work on Android and Dalvik. Here are some
examples:

B If the Java code assumes it runs on Java SE, Java ME, or Java EE, it
may be missing some APIs that Android does not provide. For
example, some charting libraries assume the existence of Swing or
AWT drawing primitives, which are generally unavailable on Android.

B The Java code might have a dependency on other Java code that, in
turn, might have problems running on Android. For example, you might
want to use a JAR that relies on an earlier (or newer) version of the
Apache HttpComponents than the one that is bundled with Android.

B The Java code may use language capabilities beyond what the Dalvik
engine is capable of using.

In all these cases, if you have a compiled JAR to work with, you may not encounter
problems at compile time, but only when running the application. Hence, where
possible, it is best to use open source code with Android, so you can build the third-
party code alongside your own and find out about difficulties sooner.

CHAPTER 24: Leveraging Java Libraries

Reviewing the Script

Since this chapter covers scripting in Android, you may be interested to know that you
have options beyond embedding BeanShell directly in your project.

Some experiments have been conducted with other JVM-based programming
languages, such as JRuby and Jython. At present, their support for Android is
incomplete, but progress is being made.

Additionally, the Android Scripting Environment (ASE), available from the Android
Market, allows you to write scripts in Python and Lua, to go along with BeanShell. These
scripts are not full-fledged applications and, at the time of this writing, are not really
distributable to others. Also note that ASE is not precisely designed to extend other
applications, though it can be used that way. But if you want to do on-device
programming, ASE is probably the best answer. For more information about ASE, see its
project page at http://code.google.com/p/android-scripting/.

Chapter

Communicating via the
Internet

The expectation is that most, if not all, Android devices will have built-in Internet access.
That could be Wi-Fi, cellular data services (EDGE, 3G, etc.), or possibly something else
entirely. Regardless, most people—or at least those with a data plan or Wi-Fi access—
will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to make
use of this Internet access. Some offer high-level access, such as the integrated WebKit
browser component. If you want, you can drop all the way down to using raw sockets. In
between, you can leverage APIs—both on-device and from third-party JARs—that give
you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit
component (discussed in Chapter 13) and Internet-access APlIs (discussed in this
chapter). As busy coders, we should be trying to reuse existing components versus
rolling our own on-the-wire protocol wherever possible.

REST and Relaxation

Android does not have built-in SOAP or XML-RPC client APIs. However, it does have the
Apache HttpComponents library baked in. You can either layer a SOAP/XML-RPC layer
atop this library or use it “straight” for accessing REST-style web services. For the
purposes of this book, REST-style web services are considered simple HTTP requests
for ordinary URLs over the full range of HTTP verbs, with formatted payloads (XML,
JSON, etc.) as responses.

More expansive tutorials, FAQs, and HOWTOs can be found at the HttpClient web site
(http://hc.apache.org/). Here, we’ll cover the basics, while checking the weather.

253

CHAPTER 25: Communicating via the Internet

HTTP Operations via Apache HttpClient

The HttpClient component of HttpComponents handles all HTTP requests on your
behalf. The first step to using HttpClient is, not surprisingly, to create an HttpClient
object. Since HttpClient is an interface, you will need to actually instantiate some
implementation of that interface, such as DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different HttpRequest
implementations for each different HTTP verb (e.g., HttpGet for HTTP GET requests). You
create an HttpRequest implementation instance, fill in the URL to retrieve and other
configuration data (e.g., form values if you are doing an HTTP POST via HttpPost), and
then pass the method to the client to actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want. You can
get an HttpResponse object back, with a response code (e.g., 200 for OK), HTTP
headers, and the like. Or, you can use a flavor of execute() that takes a
ResponseHandler<String> as a parameter, with the net result being that execute()
returns just the String representation of the response body. In practice, this is not a
recommended approach, because you really should be checking your HTTP response
codes for errors. However, for trivial applications, like book examples, the
ResponseHandler<String> approach works just fine.

For example, let’s take a look at the Internet/Weather sample project. This implements
an activity that retrieves weather data for your current location from the National
Weather Service. (Note that this probably only works only for geographic locations in the
United States.) That data is converted into an HTML page, which is poured into a
WebKit widget for display. Rebuilding this demo using a ListView is left as an exercise
for the reader. Also, since this sample is relatively long, we will only show relevant
pieces of the Java code here in this chapter, though you can always download the full
source code from the Apress web site.

To make this a bit more interesting, we use the Android location services to figure out
where we are—well, sort of. The full details of how that works are left until Chapter 32.

In the onResume () method, we toggle on location updates, so we will be informed where
we are now and when we move a significant distance (10 kilometers). When a location is
available—either at the start or based on movement—we retrieve the National Weather
Service data via our updateForecast() method:

private void updateForecast(Location loc) {
String url=String.format(format, loc.getlLatitude(),
loc.getLongitude());
HttpGet getMethod=new HttpGet(url);

try {
ResponseHandler<String> responseHandler=new BasicResponseHandler();

String responseBody=client.execute(getMethod,
responseHandler);

buildForecasts(responseBody);

CHAPTER 25: Communicating via the Internet

String page=generatePage();

browser.loadDataWithBaseURL (null, page, "text/html",
"UTF-8", null);

iatch (Throwable t) {
Toast
.makeText(this, "Request failed: "+t.toString(), 4000)
.show();

}

The updateForecast() method takes a Location as a parameter, obtained from the
location update process. For now, all you need to know is that Location sports
getlatitude() and getLongitude() methods, which return the latitude and longitude of
the device’s position, respectively.

We hold the URL to the National Weather Service XML in a string resource, and pour in
the latitude and longitude at runtime. Given our HttpClient object created in
onCreate(), we populate an HttpGet with that customized URL, and then execute that
method. Given the resulting XML from the REST service, we build the forecast HTML
page, as described next, and pour that into the WebKit widget. If the HttpClient blows
up with an exception, we provide that error as a Toast.

Parsing Responses

The response you get will be formatted using some system—HTML, XML, JSON, or
whatever. It is up to you, of course, to pick out the information you need and do
something useful with it. In the case of the WeatherDemo, we need to extract the forecast
time, temperature, and icon (indicating sky conditions and precipitation), and generate
an HTML page from it.

Android includes three XML parsers: the traditional W3C DOM parser (org.w3c.dom), a
SAX parser (org.xml.sax), and the XML pull parser (discussed in Chapter 20). It also has
a JSON parser (org. json).

You are also welcome to use third-party Java code, where possible, to handle other
formats, such as a dedicated RSS/Atom parser for a feed reader. The use of third-party
Java code is discussed in Chapter 24.

For WeatherDemo, we use the W3C DOM parser in our buildForecasts() method:

void buildForecasts(String raw) throws Exception {
DocumentBuilder builder=DocumentBuilderFactory
.newlinstance()
.newDocumentBuilder();
Document doc=builder.parse(new InputSource(new StringReader(raw)));
Nodelist times=doc.getElementsByTagName("start-valid-time");

for (int i=0;i<times.getLength();i++) {
Element time=(Element)times.item(i);
Forecast forecast=new Forecast();

CHAPTER 25: Communicating via the Internet

forecasts.add(forecast);
forecast.setTime(time.getFirstChild().getNodeValue());
}

NodelList temps=doc.getElementsByTagName("value");

for (int i=0;i<temps.getLength();i++) {
Element temp=(Element)temps.item(i);
Forecast forecast=forecasts.get(i);

forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));

NodelList icons=doc.getElementsByTagName("icon-1ink");

for (int i=0;i<icons.getlLength();i++) {
Element icon=(Element)icons.item(i);
Forecast forecast=forecasts.get(i);

forecast.setlcon(icon.getFirstChild().getNodeValue());
}

The National Weather Service XML format is curiously structured, relying heavily on
sequential position in lists versus the more object-oriented style you find in formats like
RSS or Atom. That being said, we can take a few liberties and simplify the parsing
somewhat, taking advantage of the fact that the elements we want (start-valid-time
for the forecast time, value for the temperature, and icon-1ink for the icon URL) are
unique within the document.

The HTML comes in as an InputStream and is fed into the DOM parser. From there, we
scan for the start-valid-time elements and populate a set of Forecast models using
those start times. Then we find the temperature value elements and icon-1link URLs
and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with the
forecasts:

String generatePage() {
StringBuffer bufResult=new StringBuffer("<html><body><table>");

bufResult.append("<tr><th width=\"50%\">Time</th>"+
"<th>Temperature</th><th>Forecast</th></tr>");

for (Forecast forecast : forecasts) {
bufResult.append("<tr><td align=\"center\">");
bufResult.append(forecast.getTime());
bufResult.append("</td><td align=\"center\">");
bufResult.append(forecast.getTemp());
bufResult.append("</td><td><img src=\"");
bufResult.append(forecast.getlcon());
bufResult.append("\"></td></tr>");

bufResult.append("</table></body></html>");

return(bufResult.toString());

The result looks like Figure 25-1.

il & 9:40Pm
WeatherDemo

Time Temperature Forecast
T
ST
ST
S
ST+
S * |
2008-09-01 u_

Figure 25-1. The WeatherDemo sample application

Stuff to Consider

If you need to use Secure Sockets Layer (SSL) protocol, bear in mind that the default
HttpClient setup does not include SSL support. Mostly, this is because you need to
decide how to handle SSL certificate presentation. Do you blindly accept all certificates,
even self-signed or expired ones? Or do you want to ask the users if they really want to
use some strange certificates?

CHAPTER 25: Communicating via the Internet

Similarly, the HttpClient component, by default, is designed for single-threaded use. If
you will be using HttpClient from a service or some other place where multiple threads
might be an issue, you can readily set up HttpClient to support multiple threads.

For these sorts of topics, you are best served by checking out the HttpClient web site
for documentation and support.

Chapter

Using a Content Provider

Any Uri in Android that begins with the content:// scheme represents a resource
served up by a content provider. Content providers offer data encapsulation using Uri
instances as handles. You neither know nor care where the data represented by the Uri
comes from, as long as it is available to you when needed. The data could be stored in a
SQLite database, in flat files, or on some far-off server accessed over the Internet.

Given a Uri, you can perform basic CRUD (create, read, update, delete) operations

using a content provider. Uri instances can represent either collections or individual
pieces of content. Given a collection Uri, you can create new pieces of content via

insert operations. Given an instance Uri, you can read data represented by the Uri,
update that data, or delete the instance outright.

Android lets you use existing content providers or create your own. This chapter covers
using content providers. Chapter 27 explains how you can serve up your own data using
the content provider framework.

Pieces of Me

The simplified model of the construction of a content Uri is the scheme, the namespace
of data, and, optionally, the instance identifier—all separated by slashes in URL-style
notation. The scheme of a content Uri is always content://.

So, a content Uri of content://constants/5 represents the constants instance with an
identifier of 5.

The combination of the scheme and the namespace is known as the base Uri of a
content provider, or a set of data supported by a content provider. In the preceding
example, content://constants is the base Uri for a content provider that serves up
information about “constants” (in this case, physical constants).

The base Uri can be more complicated. For example, if the base Uri for contacts were
content://contacts/people, the Contacts content provider may serve up other data
using other base Uri values.

259

CHAPTER 26: Using a Content Provider

The base Uri represents a collection of instances. The base Uri combined with an
instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common discussion,
it is simpler to think of them as strings. The Uri.parse() static method creates a Uri
from the string representation.

Getting a Handle

So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to work with, is to
get the base Uri from the content provider itself in code. For example, CONTENT _URI is
the base Uri for contacts represented as people; this maps to
content://contacts/people. If you just need the collection, this Uri works as is. If you
need an instance and know its identifier, you can call addId() on the Uri to inject it, so
you have a Uri for the instance.

You might also get Uri instances handed to you from other sources, such as getting Uri
handles for contacts via subactivities responding to ACTION_PICK intents. In this case,
the Uri is truly an opaque handle, unless you decide to pick it apart using the various
getters on the Uri class.

You can also hardwire literal String objects (e.g., "content://contacts/people") and
convert them into Uri instances via Uri.parse(). This is not an ideal solution, as the
base Uri values could conceivably change over time. For example, the Contacts content
provider’s base Uri is no longer content://contacts/people due to an overhaul of that
subsystem.

Makin’ Queries

Given a base Uri, you can run a query to return data from the content provider related to
that Uri. This has much of the feel of SQL—you specify the “columns” to return, the
constraints to determine which “rows” to return, a sort order, and so on. The difference
is that this request is being made of a content provider, not directly of some database
(e.g., SQLite).

The nexus of this is the managedQuery() method available to your activity. This method
takes five parameters:

B The base Uri of the content provider to query, or the instance Uri of a
specific object to query

B An array of properties of instances from that content provider that you
want returned by the query

B A constraint statement, functioning like a SQL WHERE clause

CHAPTER 26: Using a Content Provider

B An optional set of parameters to bind into the constraint clause,
replacing any ? characters that appear there

B An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data returned by
the query.

Properties are to content providers as columns are to databases. In other words, each
instance (row) returned by a query consists of a set of properties (columns), each
representing some piece of data.

This should make more sense given an example.

Our content provider examples come from the ContentProvider/ConstantsPlus sample
application, specifically the ConstantsBrowser class:

constantsCursor=managedQuery (Provider.Constants.CONTENT URI,
PROJECTION, null, null, null);

In the call to managedQuery(), we provide the following:

B The Uri passed into the activity by the caller (CONTENT_URI); in this
case, representing the collection of physical constants managed by
the content provider

B Alist of properties to retrieve

B Three null values, indicating that we do not need a constraint clause
(the Uri represents the instance we need), nor parameters for the
constraint, nor a sort order (we should get only one entry back)

private static final String[] PROJECTION = new String[] {

Provider.Constants. ID, Provider.Constants.TITLE,
Provider.Constants.VALUE};

The biggest “magic” here is the list of properties. The lineup of what properties are
possible for a given content provider should be provided by the documentation (or
source code) for the content provider itself. In this case, we define logical values on the
Provider content provider implementation class that represent the various properties
(namely, the unique identifier, the display name or title, and the value of the constant).

Adapting to the Circumstances

Now that we have a Cursor via managedQuery(), we have access to the query results and
can do whatever we want with them. We might, for example, manually extract data from
the Cursor to populate widgets or other objects.

However, if the goal of your query is to return a list from which the user should choose
an item, you probably should consider using SimpleCursorAdapter. This class bridges
between the Cursor and a selection widget, such as a ListView or Spinner. Pour the
Cursor into a SimpleCursorAdapter, hand the adapter off to the widget, and you’re set—
your widget will show the available options.

CHAPTER 26: Using a Content Provider

For example, here is the onCreate() method from ConstantsBrowser, which gives the
user a list of physical constants:

@0verride
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

constantsCursor=managedQuery(Provider.Constants.CONTENT URI,
PROJECTION, null, null, null);

ListAdapter adapter=new SimpleCursorAdapter(this,
R.layout.row, constantsCursor,
new String[] {Provider.Constants.TITLE,
Provider.Constants.VALUE},
new int[] {R.id.title, R.id.value});

setListAdapter(adapter);
registerForContextMenu(getListView());

After executing the managedQuery() and getting the Cursor, ConstantsBrowser creates a
SimpleCursorAdapter with the following parameters:

B The activity (or other Context) creating the adapter; in this case, the
ConstantsBrowser itself

B The identifier for a layout to be used for rendering the list entries
(R.1layout.row)

B The cursor (constantsCursor)

B The properties to pull out of the cursor and use for configuring the list
entry View instances (TITLE and VALUE)

B The corresponding identifiers of TextView widgets in the list entry
layout that those properties should go into (R.id.title and
R.id.value)

After that, we put the adapter into the ListView, and we get the result shown in Figure 26-1.

If you need more control over the views than you can reasonably achieve with the stock
view construction logic, subclass SimpleCursorAdapter and override getView() to create
your own widgets to go into the list, as demonstrated earlier in this book.

And, of course, you can manually manipulate the Cursor (e.g., moveToFirst(),
getString()), as demonstrated in Chapter 22.

CHAPTER 26: Using a Content Provider

Eh Ml @ 6:57 Pm

ConstantsBrowser

ar I

Figure 26-1. ConstantsBrowser, showing a list of physical constants

Give and Take

Of course, content providers would be astonishingly weak if you couldn’t add or remove
data from them, as well as update what is there. Fortunately, content providers offer
these abilities.

To insert data into a content provider, you have two options available on the
ContentProvider interface (available through getContentProvider() to your activity):

B Use insert() with a collection Uri and a ContentValues structure
describing the initial set of data to put in the row.

B Use bulkInsert() with a collection Uri and an array of ContentValues
structures to populate several rows at once.

The insert() method returns a Uri for you to use for future operations on that new
object. The bulkInsert() method returns the number of created rows; you would need
to do a query to retrieve the data you just inserted.

For example, here is a snippet of code from ConstantsBrowser to insert a new constant
into the content provider, given a DialogWrapper that can provide access to the title and
value of the constant:

private void processAdd(DialogWrapper wrapper) {
ContentValues values=new ContentValues(2);

values.put(Provider.Constants.TITLE, wrapper.getTitle());
values.put(Provider.Constants.VALUE, wrapper.getValue());

CHAPTER 26: Using a Content Provider

getContentResolver() .insert(Provider.Constants.CONTENT URI,
values);

constantsCursor.requery();

}

Since we already have an outstanding Cursor for the content provider’s contents, we
call requery() on that to update the Cursor’s contents. This, in turn, will update any
SimpleCursorAdapter you may have wrapping the Cursor, and that will update any
selection widgets (e.g., ListView) you have using the adapter.

To delete one or more rows from the content provider, use the delete() method on
ContentResolver. This works akin to a SQL DELETE statement and takes three
parameters:

B A Uri representing the collection (or instance) you wish to update

B A constraint statement, functioning like a SQL WHERE clause, to
determine which rows should be updated

B An optional set of parameters to bind into the constraint clause,
replacing any ? characters that appear there

Beware of the BLOB!

Binary large objects (BLOBSs) are supported in many databases, including SQLite.
However, the Android model is more aimed at supporting such hunks of data via their
own separate content Uri values. A content provider, therefore, does not provide direct
access to binary data, like photos, via a Cursor. Rather, a property in the content
provider will give you the content Uri for that particular BLOB. You can use
getInputStream() and getOutputStream() on your ContentProvider to read and write
the binary data.

Quite possibly, the rationale is to minimize unnecessary data copying. For example, the
primary use of a photo in Android is to display it to the user. The ImageView widget can
do just that, via a content Uri to a JPEG file. By storing the photo in a manner that has
its own Uri, you do not need to copy data out of the content provider into some
temporary holding area just to be able to display it—just use the Uri. The expectation,
presumably, is that few Android applications will do much more than upload binary data
and use widgets or built-in activities to display that data.

Chapter

Building a Content
Provider

Building a content provider is probably the most complicated and tedious task in all of
Android development. There are many requirements of a content provider, in terms of
methods to implement and public data members to supply. And, until you try using your
content provider, you have no great way of telling if you did it correctly (versus, say,
building an activity and getting validation errors from the resource compiler).

That being said, building a content provider is of huge importance if your application
wishes to make data available to other applications. If your application is keeping its
data solely to itself, you may be able to avoid creating a content provider, and just
access the data directly from your activities. But if you want your data to possibly be
used by others—for example, you are building a feed reader and you want other
programs to be able to access the feeds you are downloading and caching—then a
content provider is right for you.

This chapter shows some sample bits of code from the ContentProvider/ConstantsPlus
application. This is the same basic application as was first shown back in Chapter 22,
but rewritten to pull the database logic into a content provider, which is then used by the
activity.

First, Some Dissection

As discussed in the previous chapter, the content Uri is the linchpin behind accessing
data inside a content provider. When using a content provider, all you really need to
know is the provider’s base Uri. From there, you can run queries as needed, or
construct a Uri to a specific instance if you know the instance identifier.

However, when building a content provider, you need to know a bit more about the
innards of the content Uri.

265

CHAPTER 27: Building a Content Provider

A content Uri has two to four pieces, depending on the situation:

B |t always has a scheme (content://), indicating it is a content Uri
instead of a Uri to a web resource (http://).

B |t always has an authority, which is the first path segment after the
scheme. The authority is a unique string identifying the content
provider that handles the content associated with this Uri.

B |t may have a data type path, which is the list of path segments after
the authority and before the instance identifier (if any). The data type
path can be empty, if the content provider handles only one type of
content. It can be a single path segment (foo) or a chain of path
segments (foo/bar/goo) as needed to handle whatever data access
scenarios the content provider requires.

B It may have an instance identifier, which is an integer identifying a
specific piece of content. A content Uri without an instance identifier
refers to the collection of content represented by the authority (and,
where provided, the data path).

For example, a content Uri could be as simple as content://sekrits, which would refer
to the collection of content held by whatever content provider was tied to the sekrits
authority (e.g., SecretsProvider). Or it could be as complex as
content://sekrits/card/pin/17, which would refer to a piece of content (identified as
17) managed by the Sekrits content provider that is of the data type card/pin.

Next, Some Typing

Next, you need to come up with some MIME types corresponding with the content your
content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify content on the
device. A collection content Uri—or, more accurately, the combination authority and
data type path—should map to a pair of MIME types. One MIME type will represent the
collection; the other will represent an instance. These map to the Uri patterns listed in
the previous section for no-identifier and identifier, respectively. As you saw earlier in
this book, you can fill a MIME type into an Intent to route the Intent to the proper
activity (e.g., ACTION_PICK on a collection MIME type to call up a selection activity to pick
an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where X is the
name of your firm, organization, or project, and Y is a dot-delimited type name. So, for
example, you might use vnd.tlagency.cursor.dir/sekrits.card.pin as the MIME type
for your collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually for the
same values of X and Y as you used for the collection MIME type (though that is not
strictly required).

CHAPTER 27: Building a Content Provider

Creating Your Content Provider

Creating a content provider involves four basic steps: create a provider class, supply a
Uri, declare the properties, and update the manifest.

Step 1: Create a Provider Class

Just as an activity and intent receiver are both Java classes, so is a content provider.
So, the big step in creating a content provider is crafting its Java class, with a base
class of ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing six methods
that, when combined, perform the services that a content provider is supposed to offer
to activities wishing to create, read, update, or delete content.

onCreate()

As with an activity, the main entry point to a content provider is onCreate(). Here, you
can do whatever initialization you want. In particular, here is where you should lazy-
initialize your data store. For example, if you plan on storing your data in such-and-so
directory on an SD card, with an XML file serving as a table of contents, you should
check and see if that directory and XML file are there; if not, create them so the rest of
your content provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause the data store
to shift structure, you should check to see what structure you have now and adjust it if
what you have is out of date. You don’t write your own “installer” program. This means
that you have no great way of determining if, when onCreate() is called, this is the first
time ever for the content provider, the first time for a new release of a content provider
that was upgraded in place, or just a normal startup.

For example, here is the onCreate() method for Provider, from the
ContentProvider/ConstantsPlus sample application:

@0verride
public boolean onCreate() {
db=(new DatabaseHelper(getContext())).getWritableDatabase();

return (db == null) ? false : true;

While that doesn’t seem all that special, the “magic” is in the private DatabaseHelper
object, described in Chapter 22.

query()

As you might expect, the query() method is where your content provider gets details on
a query some activity wants to perform. It is up to you to actually process said query.

CHAPTER 27: Building a Content Provider

The query method gets the following as parameters:
B A Uri representing the collection or instance being queried
B A String[] representing the list of properties that should be returned

B A String representing what amounts to a SQL WHERE clause,
constraining which instances should be considered for the query
results

B A String[] representing values to go in the WHERE clause, replacing
any ? character found there

B A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make sense, and
returning a Cursor that can be used to iterate over and access the data.

As you can imagine, these parameters are aimed toward people using a SQLite
database for storage. You are welcome to ignore some of these parameters (e.g., you
can elect not to try to roll your own SQL WHERE clause parser), but you need to document
that fact so activities attempt to query you only by instance Uri, and not by using
parameters you choose not to handle.

For SQLite-backed storage providers, however, the query() method implementation
should be largely boilerplate. Use a SQLiteQueryBuilder to convert the various
parameters into a single SQL statement, and then use query() on the builder to actually
invoke the query and give you back a Cursor. The Cursor is what your query() method
returns.

For example, here is query() from Provider:

@0verride
public Cursor query(Uri url, String[] projection, String selection,
String[] selectionArgs, String sort) {
SOLiteQueryBuilder gb=new SQLiteQueryBuilder();

gb.setTables(getTableName());

if (isCollectionUri(url)) {
gb.setProjectionMap (getDefaultProjection()) ;

else {
gb.appendWhere(getldColumnName()+"="+url.getPathSegments().get(1));
String orderBy;
if (TextUtils.isEmpty(sort)) {
orderBy=getDefaultSortOrder() ;

} else {
orderBy=sort;

Cursor c=gb.query(db, projection, selection, selectionArgs,

CHAPTER 27: Building a Content Provider

null, null, orderBy);

c.setNotificationUri(getContext() . getContentResolver(), url);
return c;

We create a SQLiteQueryBuilder and pour the query details into the builder. Note that
the query could be based around either a collection or an instance Uri. In the latter
case, we need to add the instance ID to the query. When done, we use the query()
method on the builder to get a Cursor for the results.

insert()

Your insert() method will receive a Uri representing the collection and a ContentValues
structure with the initial data for the new instance. You are responsible for creating the
new instance, filling in the supplied data, and returning a Uri to the new instance.

If this is a SQLite-backed content provider, once again, the implementation is mostly
boilerplate. You just need to validate that all required values were supplied by the
activity, merge your own notion of default values with the supplied data, and call
insert() on the database to actually create the instance.

For example, here is insert() from Provider:

@Override

public Uri insert(Uri url, ContentValues initialValues) {
long rowID;
ContentValues values;

if (initialvalues!=null) {

values=new ContentValues(initialValues);
} else {

values=new ContentValues();

if (lisCollectionUri(url)) {
throw new lllegalArgumentException("Unknown URL " + url);

for (String colName : getRequiredColumns()) {
if (values.containsKey(colName) == false) {
throw new lllegalArgumentException("Missing column: "+colName);

}
}

populateDefaultValues(values);

rowID=db.insert(getTableName(), getNullColumnHack(), values);
if (rowID > 0) {

Uri uri=ContentUris.withAppendedid(getContentUri(), rowID);

getContext () .getContentResolver() . notifyChange (uri, null);
return uri;

}

CHAPTER 27: Building a Content Provider

throw new SQLException("Failed to insert row into

}

The pattern is the same as before: use the provider particulars plus the data to be
inserted to actually do the insertion. Note the following regarding the example:

+ url);

B You can insert only into a collection Uri, so we validate that by calling
isCollectionUri().

B The provider also knows which columns are required
(getRequiredColumns()), so we iterate over those and confirm our
supplied values cover the requirements.

B The provider is also responsible for filling in any default values
(populateDefaultValues()) for columns not supplied in the insert()
call and not automatically handled by the SQLite table definition.

update()

Your update() method gets the Uri of the instance or collection to change, a
ContentValues structure with the new values to apply, a String for a SQL WHERE clause,
and a String[] with parameters to use to replace ? characters found in the WHERE
clause. Your responsibility is to identify the instance(s) to be modified (based on the Uri
and WHERE clause), and then replace those instances’ current property values with the
ones supplied.

This will be annoying, unless you’re using SQLite for storage. Then you can pretty much
pass all the parameters you received to the update() call to the database, although the
update() call will vary slightly depending on whether you are updating one instance or
several instances.

For example, here is update() from Provider:

@0verride

public int update(Uri url, ContentValues values, String where, String[] whereArgs) {
int count;

if (isCollectionUri(url)) {
count=db.update(getTableName(), values, where, whereArgs);

else {
String segment=url.getPathSegments().get(1);
count=db
.update(getTableName(), values, getldColumnName()+"="
+ segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where
+ ') ¢ ""), whereArgs);

}

getContext() . getContentResolver() . notifyChange(url, null);
return count;

}

CHAPTER 27: Building a Content Provider

In this case, updates can either be to a specific instance or applied across the entire
collection, so we check the Uri (isCollectionUri()) and, if it is an update for the
collection, just perform the update. If we are updating a single instance, we need to add
a constraint to the WHERE clause to update only for the requested row.

delete()

As with update(), delete() receives a Uri representing the instance or collection to
work with and a WHERE clause and parameters. If the activity is deleting a single instance,
the Uri should represent that instance and the WHERE clause may be null. But the
activity might be requesting to delete an open-ended set of instances, using the WHERE
clause to constrain which ones to delete.

As with update(), this is simple if you are using SQLite for database storage (sense a
theme?). You can let it handle the idiosyncrasies of parsing and applying the WHERE
clause. All you need to do is call delete() on the database.

For example, here is delete() from Provider:

@0verride

public int delete(Uri url, String where, String[] whereArgs) {
int count;
long rowId=0;

if (isCollectionUri(url)) {
count=db.delete(getTableName(), where, whereArgs);

else {
String segment=url.getPathSegments().get(1);
rowId=Long.parseLong(segment);

count=db
.delete(getTableName(), getldColumnName()+"="
+ segment
+ (!TextUtils.isEmpty(where) ? " AND (" + where

+ ') ¢ ""), whereArgs);

}

getContext() .getContentResolver() .notifyChange(url, null);
return count;

}

This is almost a clone of the update() implementation described in the preceding
section, It either deletes a subset of the entire collection or deletes a single instance (if it
also satisfies the supplied WHERE clause).

getType()

The last method you need to implement is getType(). This takes a Uri and returns the
MIME type associated with that Uri. The Uri could be a collection or an instance Uri;
you need to determine which was provided and return the corresponding MIME type.

CHAPTER 27: Building a Content Provider

For example, here is getType() from Provider:

@0verride
public String getType(Uri url) {
if (isCollectionUri(url)) {
return(getCollectionType());

return(getSingleType());

As you can see, most of the logic delegates to private getCollectionType() and
getSingleType() methods:

private String getCollectionType() {
return("vnd.android.cursor.dir/vnd.commonsware.constant");

}

private String getSingleType() {
return("vnd.android.cursor.item/vnd.commonsware.constant");

Step 2: Supply a Uri

You also need to add a public static member—somewhere—containing the Uri for each
collection your content provider supports. Typically, this is a public static final Uri put on
the content provider class itself:

public static final Uri CONTENT URI
=Uri.parse("content://com.commonsware.android.constants.Provider/constants");

You may wish to use the same namespace for the content Uri that you use for your
Java classes, to reduce the chance of collision with others.

Step 3: Declare the Properties

Remember those properties you referenced when you were using a content provider, in
the previous chapter? Well, you also need to have those for your own content provider.

Specifically, you want a public static class implementing BaseColumns that contains your
property names, such as this example from Provider:

public static final class Constants implements BaseColumns {
public static final Uri CONTENT_URI
=Uri.parse("content://com.commonsware.android.constants.Provider/constants");
public static final String DEFAULT_SORT_ORDER="title";
public static final String TITLE="title";
public static final String VALUE="value";
}

If you are using SQLite as a data store, the values for the property name constants
should be the corresponding column names in the table, so you can just pass the

CHAPTER 27: Building a Content Provider

projection (array of properties) to SQLite on a query(), or pass the ContentValues on an
insert() or update().

Note that nothing in here stipulates the types of the properties. They could be strings,
integers, or whatever. The biggest limitation is what a Cursor can provide access to via
its property getters. The fact that there is nothing in code that enforces type safety
means you should document the property types well, so people attempting to use your
content provider know what they can expect.

Step 4: Update the Manifest

The glue tying the content provider implementation to the rest of your application
resides in your AndroidManifest.xml file. Simply add a <provider> element as a child of
the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.constants">
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<provider android:name=".Provider"
android:authorities="com.commonsware.android.constants.Provider" />
<activity android:name=".ConstantsBrowser" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

The android:name property is the name of the content provider class, with a leading dot
to indicate it is in the stock namespace for this application’s classes (just like you use
with activities).

The android:authorities property should be a semicolon-delimited list of the authority
values supported by the content provider. As discussed earlier in this chapter, each
content Uri is made up of a scheme, authority, data type path, and instance identifier.
Each authority from each CONTENT _URI value should be included in the
android:authorities list.

Now, when Android encounters a content Uri, it can sift through the providers
registered through manifests to find a matching authority. That tells Android which
application and class implement the content provider, and from there, Android can
bridge between the calling activity and the content provider being called.

Notify-on-Change Support

An optional feature your content provider can offer to its clients is notify-on-change
support. This means that your content provider will let clients know if the data for a
given content Uri changes.

CHAPTER 27: Building a Content Provider

For example, suppose you have created a content provider that retrieves RSS and Atom
feeds from the Internet based on the user’s feed subscriptions (via OPML, perhaps). The
content provider offers read-only access to the contents of the feeds, with an eye
toward several applications on the phone using those feeds versus everyone
implementing their own feed poll-fetch-and-cache system. You have also implemented
a service that will get updates to those feeds asynchronously, updating the underlying
data store. Your content provider could alert applications using the feeds that such-and-
so feed was updated, so applications using that specific feed can refresh and get the
latest data.

On the content provider side, to do this, call notifyChange() on your ContentResolver
instance (available in your content provider via getContext().getContentResolver()).
This takes two parameters: the Uri of the piece of content that changed and the
ContentObserver that initiated the change. In many cases, the latter will be null; a non-
null value simply means that the observer that initiated the change will not be notified of
its own changes.

On the content consumer side, an activity can call registerContentObserver() on its
ContentResolver (via getContentResolver()). This ties a ContentObserver instance to a
supplied Uri, and the observer will be notified whenever notifyChange() is called for
that specific Uri. When the consumer is done with the Uri,
unregisterContentObserver() releases the connection.

Chapter

Requesting and Requiring
Permissions

In the late 1990s, a wave of viruses spread through the Internet, delivered via e-mail,
using contact information culled from Microsoft Outlook. A virus would simply e-mail
copies of itself to each of the Outlook contacts that had an e-mail address. This was
possible because, at the time, Outlook did not take any steps to protect data from
programs using the Outlook API, since that APl was designed for ordinary developers,
not virus authors.

Nowadays, many applications that hold onto contact data secure that data by requiring
that a user explicitly grant rights for other programs to access the contact information.
Those rights could be granted on a case-by-case basis or a once at install time.

Android is no different, in that it requires permissions for applications to read or write
contact data. Android’s permission system is useful well beyond contact data, and for
content providers and services other than those supplied by the Android framework.

You, as an Android developer, will frequently need to ensure your applications have the
appropriate permissions to do what you want to do with other applications’ data. You
may also elect to require permissions for other applications to use your data or services,
if you make those available to other Android components. This chapter covers how to
accomplish both these ends.

Mother, May 1?

Requesting the use of other applications’ data or services requires the uses-permission
element to be added to your AndroidManifest.xml file. Your manifest may have zero or
more uses-permission elements, all as direct children of the root manifest element.

275

CHAPTER 28: Requesting and Requiring Permissions

The uses-permission element takes a single attribute, android:name, which is the name
of the permission your application requires:

<uses-permission
android:name="android.permission.ACCESS_LOCATION" />

All of the stock system permissions begin with android.permission and are listed in the
Android SDK documentation for Manifest.permission. Third-party applications may
have their own permissions, which hopefully they have documented for you. Here are
some of the more important built-in permissions:

B INTERNET, if your application wishes to access the Internet through any
means, from raw Java sockets through the WebView widget

B READ_CALENDAR, READ_CONTACTS, and the like for reading data from the
built-in content providers

B WRITE_CALENDAR, WRITE_CONTACTS, and the like for modifying data in the
built-in content providers

Permissions are confirmed at the time the application is installed. The user will be
prompted to confirm it is acceptable for your application to do what the permission calls
for. Hence, it is important for you to ask for as few permissions as possible and to justify
those you request, so users do not elect to skip installing your application because you
ask for too many unnecessary permissions. This prompt is not available in the current
emulator, however.

If you do not have the desired permission and try to do something that needs it, you
may get a SecurityException informing you of the missing permission, but this is not a
guarantee. Failures may come in other forms, depending on if something else is
catching and trying to handle that exception. Note that you will fail on a permission
check only if you forgot to ask for the permission; it is impossible for your application to
be running and not have been granted your requested permissions.

Halt! Who Goes There?

The other side of the coin is to secure your own application. If your application is merely
activities and intent receivers, security may be just an “outbound” thing, where you
request the right to use resources of other applications. If, on the other hand, you put
content providers or services in your application, you will want to implement “inbound”
security to control which applications can do what with the data.

Note that the issue here is less about whether other applications might mess up your
data, but rather about privacy of the user’s information or use of services that might
incur expense. That is where the stock permissions for built-in Android applications are
focused: whether you can read or modify contacts, send messages, and so on. If your
application does not store information that might be considered private, security is less
of an issue. If, on the other hand, your application stores private data, such as medical
information, security is much more important.

CHAPTER 28: Requesting and Requiring Permissions

The first step to securing your own application using permissions is to declare said
permissions, once again in the AndroidManifest.xml file. In this case, instead of uses-
permission, you add permission elements. Once again, you can have zero or more
permission elements, all as direct children of the root manifest element.

Declaring a permission is slightly more complicated than using a permission. You need
to supply three pieces of information:

B The symbolic name of the permission: To keep your permissions from
colliding with those from other applications, you should use your
application’s Java namespace as a prefix.

B A label for the permission: Something short that would be
understandable by users.

B A description for the permission: Something a wee bit longer that is
understandable by your users.
<permission
android:name="vnd.tlagency.sekrits.SEE_SEKRITS"

android:label="@string/see_sekrits_label"”
android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a possible permission.
Your application must still flag security violations as they occur.

There are two ways for your application to enforce permissions, dictating where and
under which circumstances they are required. You can enforce permissions in your
code, but the easier option is to indicate in the manifest where permissions are required.

Enforcing Permissions via the Manifest

Activities, services, and intent receivers can declare an attribute named
android:permission, whose value is the name of the permission that is required to
access those items:

<activity
android:name=".SekritApp"
android:label="Top Sekrit"
android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

Only applications that have requested your indicated permission will be able to access
the secured component. In this case, “access” means:

B Activities cannot be started without the permission.

B Services cannot be started, stopped, or bound to an activity without
the permission.

CHAPTER 28: Requesting and Requiring Permissions

B Intent receivers ignore messages sent via sendBroadcast() unless the
sender has the permission.

Content providers offer two distinct attributes: readPermission and writePermission.

<provider
android:name=".SekritProvider"
android:authorities="vnd.tla.sekrits.SekritProvider"
android:readPermission="vnd.tla.sekrits.SEE_SEKRITS"
android:writePermission="vnd.tla.sekrits.MOD_SEKRITS" />

In this case, readPermission controls access to querying the content provider, and
writePermission controls access to insert, update, or delete data in the content
provider.

Enforcing Permissions Elsewhere

In your code, you have two additional ways to enforce permissions:

B Your services can check permissions on a per-call basis via
checkCallingPermission(). This returns PERMISSION GRANTED or
PERMISSION_DENIED, depending on whether the caller has the
permission you specified. For example, if your service implements
separate read and write methods, you could get the effect of
readPermission and writePermission in code by checking those
methods for the permissions you need from Java.

B You can include a permission when you call sendBroadcast(). This
means that eligible receivers must hold that permission; those without
the permission are ineligible to receive it. For example, the Android
subsystem presumably includes the RECEIVE _SMS permission when it
broadcasts that an SMS message has arrived. This will restrict the
receivers of that intent to be only those authorized to receive SMS
messages.

May | See Your Documents?

There is no automatic discovery of permissions at compile time; all permission failures
occur at runtime. Hence, it is important that you document the permissions required for
your public APIs, including content providers, services, and activities intended for
launching from other activities. Otherwise, the programmers attempting to interface with
your application will need to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be prompted to
confirm any permissions your application says it needs. Hence, you need to document
for your users what they should expect, lest they get confused by the question posed by
the phone and elect to not install or use your application.

Chapter

Creating a Service

As noted previously, Android services are for long-running processes that may need to
keep running even when decoupled from any activity. Examples include playing music
even if the player activity gets garbage-collected, polling the Internet for RSS/Atom feed
updates, and maintaining an online chat connection even if the chat client loses focus
due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity tries
connecting to the service via interprocess communication (IPC). Services will live until no
longer needed and if RAM needs to be reclaimed, or until shut down (on their own
volition or because no one is using them anymore). Running for a long time isn’t without
its costs, though, so services need to be careful not to use too much CPU or keep
radios active too much of the time, lest the service cause the device’s battery to get
used up too quickly.

This chapter covers how you can create your own services. The next chapter covers
how you can use such services from your activities or other contexts. Both chapters will
analyze the Service/WeatherPlus sample application. This chapter focuses mostly on
the WeatherPlusService implementation. WeatherPlusService extends the weather-
fetching logic of the original Internet/Weather sample, by bundling it in a service that
monitors changes in location, so the weather is updated as the emulator is “moved.”

Service with Class

Creating a service implementation shares many characteristics with building an activity.
You inherit from an Android-supplied base class, override some life-cycle methods, and
hook the service into the system via the manifest.

So, the first step in creating a service is to extend the Service class—in our case, with
our own WeatherPlusService subclass.

Just as activities have onCreate(), onResume(), onPause(), and the like, Service
implementations have their own life-cycle methods, such as the following:

279

CHAPTER 29: Creating a Service

B onCreate(): As with activities, called when the service process is
created, by any means.

B onStart(): Called each time the service is started via startService().
B onDestroy(): Called as the service is being shut down.

For example, here is the onCreate() method for WeatherPlusService:

@0verride
public void onCreate() {
super.onCreate();

client=new DefaultHttpClient();
format=getString(R.string.url);

mgr=(LocationManager)getSystemService(Context.LOCATION SERVICE);
mgr .requestLocationUpdates(LocationManager.GPS_PROVIDER,
10000, 10000.0f, onLocationChange);
}

First, we chain upward to the superclass, so Android can do any setup work it needs to
have done. Then we initialize our HttpClient component and format string as we did in
the Weather demo. We then get the LocationManager instance for our application and
request to get updates as our location changes, via the GPS LocationProvider, which
will be discussed in greater detail in Chapter 32.

The onDestroy() method is much simpler:

@0verride
public void onDestroy() {
super.onDestroy();

mgr .removeUpdates(onLocationChange);

Here, we just shut down the location-monitoring logic, in addition to chaining upward to
the superclass for any Android internal bookkeeping that might be needed.

In addition to those life-cycle methods, your service also needs to implement onBind().
This method returns an IBinder, which is the linchpin behind the IPC mechanism. We
will examine onBind() a bit more closely in the next section.

There Can Only Be One

Services, by default, run in the same process as all other components of the application,
such as its activities. Hence, you can call APl methods on the service object—if you can
get your hands on it. Ideally, there would be some means, perhaps even type-safe, to
ask Android to give you the local service object. Unfortunately, at the time of this writing,
there is no such API. Hence, we are forced to cheat.

Any given service can, at most, have one copy running in memory. There might be zero
copies in memory, if the service has not been started. But even if multiple activities try

CHAPTER 29: Creating a Service

using the service, only one will actually be running. This is a fine implementation of the
singleton pattern—all we need to do is expose the singleton itself, so other components
can access the object.

We could expose the singleton via a public static data member or a public static getter
method. However, then we run into some memory-management risks. Since everything
referenced from a static context is immune to garbage collection, we would need to be
very careful to set the static reference to null in our service’s onDestroy(). Otherwise,
our service, while disconnected from Android, would remain in memory indefinitely, until
Android elected to shut down our process.

Fortunately, there is an alternative, and that is using onBind().

Binding allows a service to expose an API to activities (or other services) that bind to it.
Much of this infrastructure is set up to support remote services, where the bound-to API
is available via IPC, so one service can expose its API to other applications. However,
the simple act of binding itself can be useful in situations where the service and its
clients are all in the same application—the local service scenario.

To expose the service itself to activities via local binding, you must first create a public
inner class that extends the android.os.Binder class:

public class LocalBinder extends Binder {
WeatherPlusService getService() {
return(WeatherPlusService.this);

}
}

Here, our binder exposes one method: getService(), which returns the service itself. In
a remote service scenario, this would not work, because the limitations of IPC prevent
us from passing services between processes. However, for local services, this is a
perfectly fine binder.

Next, we need to return that binder object in our onBind() method:

@0verride
public IBinder onBind(Intent intent) {
return(binder);

At this point, any client that binds to our service will be able to access the service object
itself and call methods on it. We will go into this in greater detail in the next chapter.

Manifest Destiny

Finally, you need to add the service to your AndroidManifest.xml file, for it to be
recognized as an available service for use. That is simply a matter of adding a service
element as a child of the application element, providing android:name to reference your
service class.

CHAPTER 29: Creating a Service

For example, here is the AndroidManifest.xml file for WeatherPlus:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.service">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".WeatherPlus" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
<service android:name=".WeatherPlusService" />
</application>
</manifest>

Since the service class is in the same Java namespace as everything else in this
application, we can use the shorthand dot notation (".WeatherPlusService") to
reference our class.

If you want to require some permission of those who wish to start or bind to the service,
add an android:permission attribute naming the permission you are mandating. See
Chapter 28 for more details.

Lobbing One Over the Fence

Sometimes, the service needs to asynchronously alert an activity of some occurrence.

For example, the theory behind the WeatherPlusService implementation is that the
service gets “tickled” when the device (or emulator) position changes. At that point, the
service calls out to the web service and generates a new forecast web page for the
activity to display. Then the service needs to let the activity know that a new forecast is
available, so the activity can load and display it.

To interoperate with components this way, there are two major alternatives: callbacks
and broadcast Intents.

Note that if all your service needs to do is alert the user of some event, you may wish to
consider using a notification (described in Chapter 31), as that is the more normal way to
handle that requirement.

CHAPTER 29: Creating a Service

Callbacks

Since an activity can work with a local service directly, an activity could provide some
sort of listener object to the service, which the service could then call when needed. To
make this work, you would need to:

1. Define a Java interface for that listener object.
2. Give the service a public API to register and retract listeners.

3. Have the service use those listeners at appropriate times, to notify those
who registered the listener of some event.

4. Have the activity register and retract a listener as needed.

5. Have the activity respond to the listener-based events in some suitable
fashion.

The biggest catch is to make sure that the activity retracts the listeners when it is done.
Listener objects generally know their activity, explicitly (via a data member) or implicitly
(by being implemented as an inner class). If the service is holding onto defunct listener
objects, the corresponding activities will linger in memory, even if the activities are no
longer being used by Android. This represents a big memory leak. You may wish to use
WeakReferences, SoftReferences, or similar constructs to ensure that if an activity is
destroyed, any listeners it registers with your service will not keep that activity in
memory.

Broadcast Intents

An alternative approach, first mentioned in Chapter 17, is to have the service send a
broadcast Intent that can be picked up by the activity —assuming the activity is still
around and is not paused. We will look at the client side of this exchange in Chapter 30.
Here, let’s examine how the service can send a broadcast.

The high-level implementation of the flow is packaged in FetchForecastTask, an
AsyncTask implementation that allows us to move the Internet access to a background
thread:

class FetchForecastTask extends AsyncTask<Location, Void, Void> {
@0verride
protected Void doInBackground(Location... locs) {
Location loc=locs[0];
String url=String.format(format, loc.getlLatitude(),
loc.getLongitude());
HttpGet getMethod=new HttpGet(url);

try {
ResponseHandler<String> responseHandler=new BasicResponseHandler();
String responseBody=client.execute(getMethod, responseHandler);
String page=generatePage(buildForecasts(responseBody));

CHAPTER 29: Creating a Service

synchronized(this) {
forecast=page;

sendBroadcast(broadcast);

catch (Throwable t) {

android.util.Llog.e("WeatherPlus",
"Exception in updateForecast()", t);
}

return(null);

@0verride
protected void onProgressUpdate(Void... unused) {
// not needed here

@0verride
protected void onPostExecute(Void unused) {
// not needed here

}
}

Much of this is similar to the equivalent piece of the original Weather demo. It performs
the HTTP request, converts that into a set of Forecast objects, and turn those into a web
page. The first difference, besides the introduction of the AsyncTask, is that the web
page is simply cached in the service, since the service cannot put the page directly into
the activity’s WebView. The second difference is that we call sendBroadcast(), which
takes an Intent and sends it out to all interested parties. That Intent is declared up
front in the class prologue:

private Intent broadcast=new Intent(BROADCAST ACTION);
Here, BROADCAST_ACTION is simply a static String with a value that will distinguish this
Intent from all others:

public static final String BROADCAST_ACTION=
"com.commonsware.android.service.ForecastUpdateEvent";

Where’s the Remote? And the Rest of the Code?

In Android, services can either be local or remote. Local services run in the same
process as the launching activity. Remote services run in their own process. A detailed
discussion of remote services can be found in The Busy Coder’s Guide to Advanced
Android Development (CommonsWare, 2009).

We will return to this service in Chapter 32, at which point we will flesh out how locations
are tracked (and, in this case, mocked up).

Chapter

Invoking a Service

Services can be used by any application component that hangs around for a reasonable
period of time. This includes activities, content providers, and other services. Notably, it
does not include pure broadcast receivers (i.e., intent receivers that are not part of an
activity), since those will get garbage collected immediately after each instance
processes one incoming Intent.

To use a local service, you need to start the service, get access to the service object,
and then call methods on that service. You can then stop the service when you are
finished with it, or perhaps let the service stop itself. In this chapter, we will look at the
client side of the Service/WeatherPlus sample application. The WeatherPlus activity
looks a lot like the original Weather application. It’s just a web page showing a weather
forecast, as shown in Figure 30-1.

G & 11:33pPMm
WeatherPlus

Time Temperature Forecast

2008-09-04
20:00

84

.

2008-09-04

23:00 7

2008-09-05

02:00 7

2008-09-05

05:00 68

2008-09-05

08:00 7

2008-09-05

11:00 80

10 DRI

2008-09-05

Figure 30-1. The WeatherPlus service client

285

CHAPTER 30: Invoking a Service

The Ties That Bind

To start a service, one approach is to simply call startService(), providing the Intent
specifying the service to start (again, the easiest way is probably to specify the service
class, if it’s your own service). Conversely, to stop a service started via startService(),
call stopService() with the Intent you used in the corresponding startService() call.

Once the service is started, you need to communicate with it. It could be that all the
communication you need can be via the extras you package in the Intent. Or, if itis a
local service that offers a singleton, you can reference the singleton.

However, if you implemented onBind() as shown in the previous chapter, there is a
different way to get at the service: through bindService().

When an activity binds to a service, it primarily is requesting to be able to access the
public API exposed by that service via the service’s binder, as returned by the service’s
onBind() method. When doing this, the activity can also indicate, via the

BIND AUTO CREATE flag, to have Android automatically start up the service if it is not
already running.

To use this technique with our WeatherPlus and WeatherPlusService classes, we first
need to make a call to bindService() from onCreate():

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewByld(R.id.webkit);
bindService(new Intent(this, WeatherPlusService.class),
onService, Context.BIND_AUTO_CREATE);
}

This bindService() call refers to an onService callback object, an instance of
ServiceConnection:

private ServiceConnection onService=new ServiceConnection() {
public void onServiceConnected(ComponentName className,
IBinder rawBinder) {
appService=((WeatherPlusService.LocalBinder)rawBinder).getService();

public void onServiceDisconnected(ComponentName className) {
appService=null;

};

Our onService object will be called with onServiceConnected() as soon as the
WeatherPlusService is up and running. We are given an IBinder object, which is an
opaque handle representing the service. We can use that to obtain the LocalBinder
exposed by the WeatherPlusService, and from there to get the actual
WeatherPlusService object itself, held as a private data member:

private WeatherPlusService appService=null;

CHAPTER 30: Invoking a Service

We can then call methods on the WeatherPlusService, such as a call to get the forecast
page when needed:

private void updateForecast() {
try {
String page=appService.getForecastPage();

browser.loadDataWithBaseURL (null, page, "text/html",
"UTF-8", null);

}
catch (final Throwable t) {
goBlooey(t);

}

We also need to call unbindService() from onDestroy(), to release our binding to
WeatherPlusService:

@0verride
public void onDestroy() {
super.onDestroy();

unbindService(onService);

If there are no other bound clients to the service, Android will shut down the service as
well, releasing its memory. Hence, we do not need to call stopService() ourselves,
because Android handles that, if needed, as a side effect of unbinding.

This is a fair bit more code than simply using a public static singleton for the service
object. However, this approach is less likely to result in memory leaks.

So to recap:

B To have a service start running, use bindService() with
BIND AUTO CREATE (if you wish to communicate via the binding
mechanism) or startService().

B To have a service stop running, do the inverse of what you did to start
it: unbindService() or stopService().

Another possibility for stopping a service is to have the service call stopSelf() on itself.
You might do this if you use startService() to have a service begin running and do
some work on a background thread, so the service will stop itself when that background
work is completed.

Catching the Lob

In the preceding chapter, you saw how the service sends a broadcast to let the
WeatherPlus activity know a change was made to the forecast based on movement.
Now, you’'ll see how the activity receives and uses that broadcast.

CHAPTER 30: Invoking a Service

Here are the implementations of onResume() and onPause() for WeatherPlus:

@0verride
public void onResume() {
super.onResume();

registerReceiver(receiver,
new IntentFilter(WeatherPlusService.BROADCAST ACTION));

}

@0verride
public void onPause() {
super.onPause();

unregisterReceiver(receiver);

In onResume (), we register a static BroadcastReceiver to receive Intents matching the
action declared by the service. In onPause(), we disable that BroadcastReceiver, since
we will not be receiving any such Intents while paused.

The BroadcastReceiver, in turn, simply arranges to update the forecast:

private BroadcastReceiver receiver=new BroadcastReceiver() {
public void onReceive(Context context, Intent intent) {
updateForecast();

};

Chapter

Alerting Users via
Notifications

Pop-up messages, tray icons with their associated “bubble” messages, bouncing dock
icons, and so on—you are no doubt used to programs trying to get your attention,
sometimes for good reason. Your phone also probably chirps at you for more than just
incoming calls: low battery, alarm clocks, appointment notifications, incoming text
messages, and so on.

Not surprisingly, Android has a whole framework for dealing with these sorts of alerts,
collectively called notifications, which is the subject of this chapter.

Types of Pestering

A service, running in the background, needs a way to let users know something of
interest has occurred, such as when e-mail has been received. Moreover, the service
may need some way to steer users to an activity where they can act on the event, such
as reading a received message. For this, Android supplies status bar icons, flashing
lights, and other indicators collectively known as “notifications”.

Your current phone may already have such icons, to indicate battery life, signal strength,
whether Bluetooth is enabled, and the like. With Android, applications can add their own
status bar icons, with an eye toward having them appear only when needed (e.g., a
message has arrived).

In Android, you can raise notifications via the NotificationManager. The
NotificationManager is a system service. To use it, you need to get the service object
via getSystemService (NOTIFICATION SERVICE) from your activity.

The NotificationManager gives you three methods: one to pester (notify()) and two to
stop pestering (cancel() and cancelAll()).

289

CHAPTER 31: Alerting Users via Notifications

The notify() method takes a Notification, which is a data structure that spells out the
form your pestering should take. The capabilities of this object are described in the
following sections.

Hardware Notifications

You can flash LEDs on the device by setting lights to true, also specifying the color (as
an #ARGB value in 1edARGB) and the pattern in which the light should blink (by providing
off/on durations in milliseconds for the light via 1edOnMS and ledOffMS). Note, however,
that Android devices will apply best efforts to meet your color request, meaning that
different devices may give you different colors, or perhaps no control over color at all.
For example, the Motorola CLIQ reportedly has only a white LED, so you can ask for any
color you want, and you will still get white.

You can play a sound, using a Uri to a piece of content held, perhaps, by a
ContentManager (sound). Think of this as a “ringtone” for your application.

You can vibrate the device, controlled via a long[] indicating the on/off patterns (in
milliseconds) for the vibration (vibrate). You might do this by default, or you might make
it an option the user can choose when circumstances require a more subtle notification
than a ringtone. To use this approach, you will need to request the VIBRATE permission
(see Chapter 28 for more on permissions).

Icons

While the flashing lights, sounds, and vibrations are aimed at getting users to look at the
device, icons are designed to take them the next step and tell them what’s so important.

To set up an icon for a Notification, you need to set two public fields: icon, where you
provide the identifier of a Drawable resource representing the icon, and contentIntent,
where you supply an PendingIntent to be raised when the icon is clicked. You should
make sure the PendingIntent will be caught by something—perhaps your own
application code—to take appropriate steps to let the user deal with the event triggering
the notification. You can also supply a text blurb to appear when the icon is put on the
status bar (tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(), which wraps
an icon, contentIntent, and tickerText in a single call.

Seeing Pestering in Action

Let’s now take a peek at the Notifications/Notifyl sample project, in particular the
NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;
import android.app.Notification;

CHAPTER 31: Alerting Users via Notifications

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import java.util.Timer;

import java.util.TimerTask;

public class NotifyDemo extends Activity {
private static final int NOTIFY_ME_ID=1337;
private Timer timer=new Timer();
private int count=0;

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Button btn=(Button)findViewByld(R.id.notify);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
TimerTask task=new TimerTask() {
public void run() {
notifyMe() ;

b

timer.schedule(task, 5000);
%
btn=(Button)findViewByld(R.id.cancel);

btn.setOnClickListener(new View.OnClickListener() {
public void onClick(View view) {
NotificationManager mgr=
(NotificationManager)getSystemService (NOTIFICATION SERVICE);

mgr.cancel (NOTIFY_ME_ID);
1;
}

private void notifyMe() {
final NotificationManager mgr=
(NotificationManager)getSystemService (NOTIFICATION SERVICE);

Notification note=new Notification(R.drawable.red ball,

"Status message!",

System.currentTimeMillis());
PendingIntent i=PendingIntent.getActivity(this, o,

new Intent(this, NotifyMessage.class),

)

CHAPTER 31: Alerting Users via Notifications

note.setLatestEventinfo(this, "Notification Title",
"This is the notification message", i);
note.number=++count;

mgr .notify (NOTIFY_ME_ID, note);
}

As shown in Figure 31-1, this activity sports two large buttons: one to kick off a
notification after a 5-second delay and one to cancel that notification (if it is active).

< Bl @ 5:40Pm
NotifyDemo

Click to raise a notification in 5 seconds

Click to clear the notification

Figure 31-1. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in six steps:
1. Get access to the NotificationManager instance.

2. Create a Notification object with our icon (red ball), a message to flash
on the status bar as the notification is raised, and the time associated
with this event.

3. Create a PendingIntent that will trigger the display of another activity
(NotifyMessage).

4. Use setlatestEventInfo() to specify that, when the notification is
clicked, we are to display a certain title and message, and if that is
clicked, we launch the PendingIntent.

5. Update the number associated with the notification.

6. Tell the NotificationManager to display the notification.

CHAPTER 31: Alerting Users via Notifications

Hence, if we click the top button, after 5 seconds, our red ball icon will appear in the

status bar, along with a brief display of our status message, as shown in Figure 31-2.
The red ball will have our number (initially 1) superimposed on the lower-right corner

(you might use this to signify the number of unread messages, for example).

@ status message!
NotifyDemo

Click to raise a notification in 5 seconds

-

Click to clear the notification

Figure 32-2. Our notification as it appears on the status bar, with our status message

If you click the red ball, a drawer will appear beneath the status bar. Drag that drawer all
the way to the bottom of the screen to see the outstanding notifications, including our

own, as shown in Figure 32-3.

June 29, 2009 < Ml @ 5:40 PM

Android Clear notifications |

@ Notification Title
This is the notification message 5:39 PM

Figure 32-3. The notifications drawer, fully expanded, with our notification

CHAPTER 31: Alerting Users via Notifications

If you click the notification entry in the drawer, you’ll be taken to a trivial activity
displaying a message. In a real application, this activity would do something useful
based on the event that occurred (e.g., take users to the newly arrived mail messages).

Clicking the button to clear the notification will remove the red ball from the status bar.

Chapter 3 2

Accessing Location-Based
Services

A popular feature on current mobile devices is GPS capability, so the device can tell you
where you are at any point in time. While the most common uses of GPS services are for
mapping and getting directions, there are other things you can do if you know your
location. For example, you might set up a dynamic chat application based on physical
location, so you’re chatting with those people who are nearest to you. Or you could
automatically geo-tag posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location. Alternatives include
the following:

B The European equivalent to GPS, called Galileo, which is still under
development at the time of this writing

B Cell tower triangulation, where your position is determined based on
signal strength to nearby cell towers

B Proximity to public Wi-Fi hotspots that have known geographic
locations

Android devices may have one or more of these services available to them. You, as a
developer, can ask the device for your location, plus details on which providers are
available. There are even ways for you to simulate your location in the emulator, for use
in testing your location-enabled applications.

Location Providers: They Know Where You’re Hiding

Android devices can have access to several different means of determining your
location. Some will have better accuracy than others. Some may be free, while others
may have a cost associated with them. Some may be able to tell you more than just
your current position, such as your elevation over sea level or your current speed.

295

CHAPTER 32: Accessing Location-Based Services

Android has abstracted all this out into a set of LocationProvider objects. Your Android
environment will have zero or more LocationProvider instances: one for each distinct
locating service that is available on the device. Providers know not only your location,
but also are aware of their own characteristics, in terms of accuracy, cost, and so on.

You, as a developer, will use a LocationManager, which holds the LocationProvider set,
to figure out which LocationProvider is right for your particular circumstance. You will
also need a permission in your application, or the various location APIs will fail due to a
security violation. Depending on which location providers you wish to use, you may
need ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both. (Permissions are
discussed in Chapter 28.)

Finding Yourself

The obvious thing to do with a location service is to figure out where you are right now.

To determine your current location, first you need to get a LocationManager —call
getSystemService (LOCATION SERVICE) from your activity or service and cast it to be a
LocationManager.

The next step is to get the name of the LocationProvider you want to use. Here, you
have two main options:

B Ask the user to pick a provider.
B Find the best-match provider based on a set of criteria.

If you want the user to pick a provider, calling getProviders() on the LocationManager
will give you a List of providers, which you can then present to the user for selection.

Alternatively, you can create and populate a Criteria object, stating the particulars of
what you want out of a LocationProvider. Here are some of the criteria you can specify:

B setAltitudeRequired(): Indicates whether or not you need the current
altitude.

B setAccuracy(): Sets a minimum level of accuracy, in meters, for the
position.

B setCostAllowed(): Controls if the provider must be free or if it can
incur a cost on behalf of the device user.

Given a filled-in Critieria object, call getBestProvider() on your LocationManager.
Android will sift through the criteria and give you the best answer. Note that not all of
your criteria may be met. All but the monetary cost criterion might be relaxed if nothing
matches.

You are also welcome to hardwire in a LocationProvider name (e.g., GPS_PROVIDER),
perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call
getLastKnownPosition() to find out where you were recently. Note that “recently”

CHAPTER 32: Accessing Location-Based Services

might be fairly out of date (e.g., the phone was turned off) or even null if there has
been no location recorded for that provider yet. Calling getLastKnownPosition() incurs
no monetary or power cost, since the provider does not need to be activated to get
the value.

This method returns a Location object, which can give you the latitude and longitude of
the device in degrees as a Java double. If the particular location provider offers other
data, you can get at that as well:

B For altitude, hasAltitude() will tell you if there is an altitude value, and
getAltitude() will return the altitude in meters.

B For bearing (i.e., compass-style direction), hasBearing() will tell you if
there is a bearing available, and getBearing() will return it as degrees
east of true north.

B For speed, hasSpeed() will tell you if the speed is known and
getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider, though, is to
register for updates, as described in the next section.

On the Move

Not all location providers are necessarily immediately responsive. GPS, for example,
requires activating a radio and getting a fix from the satellites before you get a location.
That is why Android does not offer a getMeMyCurrentLocationNow() method. Combine
that with the fact that your users may want their movements to be reflected in your
application, and you are probably best off registering for location updates and using that
as your means of getting the current location.

The Weather and WeatherPlus sample applications show how to register for updates: call
requestLocationUpdates() on your LocationManager instance. This method takes four
parameters:

B The name of the location provider you wish to use

B How long, in milliseconds, must have elapsed before you might get a
location update

B How far, in meters, the device must have moved before you might get
a location update

B A LocationlListener that will be notified of key location-related events
Here’s an example of a LocationlListener:

LocationListener onLocationChange=new LocationListener() {
public void onLocationChanged(Location location) {
updateForecast(location);

CHAPTER 32: Accessing Location-Based Services

public void onProviderDisabled(String provider) {
// required for interface, not used

public void onProviderEnabled(String provider) {
// required for interface, not used

public void onStatusChanged(String provider, int status,
Bundle extras) {
// required for interface, not used

}
};
Here, all we do is call updateForecast() with the Location supplied to the
onLocationChanged() callback method. The updateForecast() implementation, as
shown in Chapter 29, builds a web page with the current forecast for the location, and
sends a broadcast so the activity knows an update is available.

When you no longer need the updates, call removeUpdates () with the LocationListener
you registered. If you fail to do this, your application will continue receiving location
updates even after all activities and such are closed up, which will also prevent Android
from reclaiming your application’s memory.

Are We There Yet? Are We There Yet? Are We There
Yet?

Sometimes, you are not interested in where you are now, or even when you move, but
want to know when you get to where you’re going. This could be an end destination, or
it could be getting to the next step on a set of directions, so you can give the user the
next instruction.

To accomplish this, LocationManager offers addProximityAlert(). This registers an
PendingIntent, which will be fired off when the device gets within a certain distance of a
certain location. The addProximityAlert() method takes the following as parameters:

B The latitude and longitude of the position of interest

B Aradius, specifying how close you should be to that position for the
Intent to be raised

B A duration for the registration, in milliseconds (after this period, the
registration automatically lapses); a value of -1 means the registration
lasts until you manually remove it via removeProximityAlert()

B The PendingIntent to be raised when the device is within the target
zone expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent. There may be in
an interruption in location services, or the device may not be in the target zone during
the period of time the proximity alert is active. For example, if the position is off by a

CHAPTER 32: Accessing Location-Based Services

bit, and the radius is a little too tight, the device might only skirt the edge of the target
zone, or it may go by the target zone so quickly that the device’s location isn’t
sampled during that time.

It is up to you to arrange for an activity or intent receiver to respond to the Intent you
register with the proximity alert. What you do when the Intent arrives is up to you. For
example, you might set up a notification (e.g., vibrate the device), log the information to
a content provider, or post a message to a web site.

Note that you will receive the Intent whenever the position is sampled and you are
within the target zone, not just upon entering the zone. Hence, you will get the Intent
several times —perhaps quite a few times, depending on the size of the target zone and
the speed of the device’s movement.

Testing...Testing...

The Android emulator does not have the ability to get a fix from GPS, triangulate your
position from cell towers, or identify your location by some nearby Wi-Fi signal. So, if

you want to simulate a moving device, you will need to have some means of providing
mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes as Android
itself has evolved. It used to be that you could provide mock location data within your
application, which was very handy for demonstration purposes. Alas, those options were
removed in Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug Monitor Service
(DDMS). This is an external program, separate from the emulator, which can feed the
emulator single location points or full routes to traverse, in a few different formats.
DDMS is described in greater detail in Chapter 35.

Chapter

Mapping with MapView
and MapActivity

One of Google’s most popular services—after search, of course—is Google Maps,
which lets you find everything from the nearest pizza parlor to directions from New
York City to San Francisco (only 2,905 miles!), along with supplying street views and
satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those that do, there
is a mapping activity available to users directly from the main Android launcher. More
relevant to you, as a developer, are MapView and MapActivity, which allow you to
integrate maps into your own applications. Not only can you display maps, control the
zoom level, and allow people to pan around, but you can tie in Android’s location-based
services (covered in Chapter 32) to show where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project is fairly easy.
And there is also a fair bit of power available to you, if you want to get fancy.

Terms, Not of Endearment

Integrating Google Maps into your own application requires agreeing to a fairly lengthy
set of legal terms. These terms include clauses that you may find unpalatable.

If you are considering Google Maps, please review these terms closely to determine if
your intended use will not run afoul of any clauses. You are strongly recommended to
seek professional legal counsel if there are any potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based on other sources of map
data, such as OpenStreetMap (http://www.openstreetmap.org/).

301

CHAPTER 33: Mapping with MapView and MapActivity

Piling On

As of Android 1.5, Google Maps is not strictly part of the Android SDK. Instead, it is part
of the Google APIs add-on, an extension of the stock SDK. The Android add-on system
provides hooks for other subsystems that may be part of some devices but not others.

NOTE: Google Maps is not part of the Android open source project, and undoubtedly there will
be some devices that lack Google Maps due to licensing issues. For example, at the time of this
writing, the Archos 5 Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your day-to-day
development. However, bear in mind the following:

B You will need to create your project with a suitable target to ensure the
Google Maps APIs will be available.

B To test your Google Maps integration, you will also need an AVD that
supports the Google Maps API.

The Bare Bones

Far and away the simplest way to get a map into your application is to create your own
subclass of MapActivity. Like ListActivity, which wraps up some of the smarts behind
having an activity dominated by a ListView, MapActivity handles some of the nuances
of setting up an activity dominated by a MapView.

In your layout for the MapActivity subclass, you need to add an element named, at the
time of this writing, com.google.android.maps.MapView. This is the “longhand” way to
spell out the names of widget classes, by including the full package name along with the
class name. This is necessary because MapView is not in the com.google.android.widget
namespace. You can give the MapView widget whatever android:id attribute value you
want, plus handle all the layout details to have it render properly alongside your other
widgets.

However, you do need to have these two items:

B android:apiKey, which in production will need to be a Google Maps
API key

B android:clickable = "true", if you want users to be able to click and
pan through your map

For example, from the Maps/NooYawk sample application, here is the main layout:

<?xml version="1.0" encoding="utf-8"?>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="fill parent">
<com.google.android.maps.MapView android:id="@+id/map"

CHAPTER 33: Mapping with MapView and MapActivity

android:layout_width="fill parent"

android:layout_height="fill parent"”

android:apiKey="<YOUR_API_KEY>"

android:clickable="true" />
</Relativelayout>

We'll cover that mysterious apiKey later in this chapter, in the “The Key to It All” section.
In addition, you will need a couple of extra things in your AndroidManifest.xml file:

B The INTERNET and ACCESS_COARSE_LOCATION permissions (the latter for
use with the MyLocationOverlay class, described later in this chapter)

B Inside your <application>, a <uses-library> element with
android:name = "com.google.android.maps", to indicate you are using
one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.maps">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

<application android:label="@string/app_name"
android:icon="@drawable/cw">
<uses-library android:name="com.google.android.maps" />
<activity android:name=".NooYawk" android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity from
MapActivity. If you were to do nothing else, and built that project and tossed it in the
emulator, you would get a nice map of the world. Note, however, that MapActivity is
abstract. You need to implement isRouteDisplayed() to indicate if you are supplying
some sort of driving directions.

In theory, users could pan around the map using the D-pad. However, that’s not terribly
useful when they have the whole world in their hands.

Since a map of the world is not much good by itself, we need to add a few things, as
described next.

Exercising Your Control

You can find your MapView widget by findViewById(), just as with any other widget. The
widget itself offers a getMapController() method. Between the MapView and
MapController, you have a fair bit of capability to determine what the map shows and

CHAPTER 33: Mapping with MapView and MapActivity

how it behaves. The following sections cover zoom and center, the features you will
most likely want to use.

Zoom

The map of the world you start with is rather broad. Usually, people looking at a map on
a phone will be expecting something a bit narrower in scope, such as a few city blocks.

You can control the zoom level directly via the setZoom() method on the MapController.
This takes an integer representing the level of zoom, where 1 is the world view and 21 is
the tightest zoom you can get. Each level is a doubling of the effective resolution: 1 has
the equator measuring 256 pixels wide, while 21 has the equator measuring 268,435,456
pixels wide. Since the phone’s display probably doesn’t have 268,435,456 pixels in
either dimension, the user sees a small map focused on one tiny corner of the globe. A
level of 16 will show several city blocks in each dimension, which is probably a
reasonable starting point for experimentation.

If you wish to allow users to change the zoom level, call
setBuiltInZoomControls(true);, and the user will be able to zoom in and out of the
map via zoom controls found at the bottom center of the map.

Center

Typically, you will need to control what the map is showing, beyond the zoom level,
such as the user’s current location or a location saved with some data in your activity.
To change the map’s position, call setCenter() on the MapController.

The setCenter() method takes a GeoPoint as a parameter. A GeoPoint represents a
location, via latitude and longitude. The catch is that the GeoPoint stores latitude and
longitude as integers representing the actual latitude and longitude multiplied by 1E6.
This saves a bit of memory versus storing a float or double, and it greatly speeds up
some internal calculations Android needs to do to convert the GeoPoint into a map
position. However, it does mean you must remember to multiply the real-world latitude
and longitude by 1EG6.

Rugged Terrain

Just as the Google Maps service you use on your full-size computer can display satellite
imagery, so can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on and off the
satellite perspective on the area being viewed. You can have the user trigger these via
an options menu or, in the case of NooYawk, via key presses:

@0verride
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE S) {
map .setSatellite (!map.isSatellite()) ;

CHAPTER 33: Mapping with MapView and MapActivity

return(true);

else if (keyCode == KeyEvent.KEYCODE Z) {
map .displayZoomControls(true);
return(true);

return(super.onKeyDown(keyCode, event));

Layers upon Layers

If you have ever used the full-size edition of Google Maps, you are probably used to
seeing things overlaid atop the map itself, such as pushpins indicating businesses near
the location being searched. In map parlance (and, for that matter, in many serious
graphic editors), the pushpins are on a layer separate from than the map itself, and what
you are seeing is the composition of the pushpin layer atop the map layer.

Android’s mapping allows you to create layers as well, so you can mark up the maps as
you need to based on user input and your application’s purpose. For example, NooYawk
uses a layer to show where select buildings are located in the island of Manhattan.

Overlay Classes

Any overlay you want to add to your map needs to be implemented as a subclass of
Overlay. There is an ItemizedOverlay subclass available if you are looking to add
pushpins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your MapView and
add() your Overlay instance to it, as we do here with a custom SitesOverlay:

marker.setBounds(0, 0, marker.getintrinsicWidth(),
marker . getintrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will take a closer look at that marker in the next section.

Drawing the ItemizedOverlay

As the name suggests, ItemizedOverlay allows you to supply a list of points of interest
to be displayed on the map—specifically, instances of OverlayItem. The overlay handles
much of the drawing logic for you. Here are the minimum steps to make this work:

1. Override ItemizedOverlay<OverlayItem> as your own subclass (in this
example, SitesOverlay).

2. In the constructor, build your roster of OverlayItem instances, and call
populate() when they are ready for use by the overlay.

CHAPTER 33: Mapping with MapView and MapActivity

3. Implement size() to return the number of items to be handled by the
overlay.

4. Override createItem() to return OverlayItem instances given an index.

5. When you instantiate your ItemizedOverlay subclass, provide it with a
Drawable that represents the default icon (e.g., a pushpin) to display for
each item.

The marker from the NooYawk constructor is the Drawable used for step 5. It shows a
pushpin.

You may also wish to override draw() to do a better job of handling the shadow for your
markers. While the map will handle casting a shadow for you, it appears you need to
provide a bit of assistance for it to know where the bottom of your icon is, so it can draw
the shadow appropriately.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
private List<OverlayItem> items=new ArraylList<OverlayItem>();
private Drawable marker=null;

public SitesOverlay(Drawable marker) {
super(marker);
this.marker=marker;

items.add(new Overlayltem(getPoint(40.748963847316034,
-73.96807193756104),
"UN", "United Nations"));
items.add(new Overlayltem(getPoint(40.76866299974387,
-73.98268461227417),
"Lincoln Center",
"Home of Jazz at Lincoln Center"));
items.add(new Overlayltem(getPoint(40.765136435316755,
-73.97989511489868),
"Carnegie Hall",
"Where you go with practice, practice, practice"));
items.add(new Overlayltem(getPoint(40.70686417491799,
-74.01572942733765),
"The Downtown Club",
"Original home of the Heisman Trophy"));

populate();

@0verride
protected OverlayItem createltem(int i) {
return(items.get(i));

@0verride
public void draw(Canvas canvas, MapView mapView,
boolean shadow) {
super.draw(canvas, mapView, shadow);

CHAPTER 33: Mapping with MapView and MapActivity

boundCenterBottom (marker);

@0verride
protected boolean onTap(int i) {
Toast.makeText(NooYawk.this,
items.get(i).getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

@0verride
public int size() {
return(items.size());

Handling Screen Taps

An Overlay subclass can also implement onTap(), to be notified when the user taps the
map, so the overlay can adjust what it draws. For example, in full-size Google Maps,
clicking a pushpin pops up a bubble with information about the business at that pin’s
location. With onTap(), you can do much the same in Android.

The onTap() method for ItemizedOverlay receives the index of the OverlayItem that was
clicked. It is up to you to do something worthwhile with this event.

In the case of SitesOverlay, as shown in the preceding section, onTap() looks like this:

@0verride
protected boolean onTap(int i) {
Toast.makeText(NooYawk.this,
items.get(1i).getSnippet(),
Toast.LENGTH_SHORT).show();

return(true);

Here, we just toss up a short Toast with the snippet from the OverlayItem, returning
true to indicate we handled the tap.

My, Myself, and MyLocationOverlay

Android has a built-in overlay to handle two common scenarios:

B Showing where you are on the map, based on GPS or other location-
providing logic

B Showing where you are pointed, based on the built-in compass
sensor, where available

CHAPTER 33: Mapping with MapView and MapActivity

All you need to do is create a MyLocationOverlay instance, add it to your MapView’s list of
overlays, and enable and disable the desired features at appropriate times.

The “at appropriate times” notion is for maximizing battery life. There is no sense in
updating locations or directions when the activity is paused, so it is recommended that
you enable these features in onResume() and disable them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay. To do this,
we first need to create the overlay and add it to the list of overlays:

me=new MylLocationOverlay(this, map);
map.getOverlays() .add(me);

Then we enable and disable the compass rose as appropriate:

@0verride
public void onResume() {
super.onResume();

me.enableCompass();

@0verride
public void onPause() {
super.onPause();

me . disableCompass();

}

The Key to It All

If you actually download the source code for the book, compile the NooYawk project,
install it in your emulator, and run it, you will probably see a screen with a grid and a
couple of pushpins, but no actual maps.

That’s because the API key in the source code is invalid for your development machine.
Instead, you will need to generate your own API key(s) for use with your application.

Full instructions for generating API keys for development and production use can be
found on the Android web site (http://code.google.com/android/add-ons/google-
apis/mapkey.html). In the interest of brevity, let’s focus on the narrow case of getting
NooYawk running in your emulator. Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Reread those terms of service and make really sure you want to agree to
them.

3. Find the MD5 digest of the certificate used for signing your debug-mode
applications.

4. On the API key signup page, paste in that MD5 signature and submit the
form.

CHAPTER 33: Mapping with MapView and MapActivity

5. On the resulting page, copy the API key and paste it as the value of
apiKey in your MapView-using layout.

The trickiest part is finding the MD5 signature of the certificate used for signing your
debug-mode applications. Actually, much of the complexity is merely in making sense of
the concept.

All Android applications are signed using a digital signature generated from a certificate.
You are automatically given a debug certificate when you set up the SDK, and there is a
separate process for creating a self-signed certificate for use in your production

applications. This signature process involves the use of the Java keytool and jarsigner
utilities. For the purposes of getting your API key, you only need to worry about keytool.

To get your MD5 digest of your debug certificate, if you are on Mac OS X or Linux, use
the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore -storepass«
android -keypass android

On other development platforms, you will need to replace the value of the -keystore
switch with the location for your platform and user account:

B On Windows XP, use C:\Documents and
Settings\<user>\.android\debug.keystore.

B On Windows Vista/Windows 7, use
C:\Users\<user>\.android\debug.keystore (where <user> is your
account name).

The second line of the output contains your MD5 digest, as a series of pairs of hex digits
separated by colons.

Chapter 34

Handling Telephone Calls

Many, if not most, Android devices will be phones. As such, not only will users be
expecting to place and receive calls using Android, but you will have the opportunity to
help them place calls, if you wish.

Why might you want to?

B Maybe you are writing an Android interface to a sales management
application (a /la Salesforce.com) and you want to offer users the ability
to call prospects with a single button click, and without them needing
to keep those contacts both in your application and in the phone’s
contacts application.

B Maybe you are writing a social networking application, and the roster
of phone numbers that you can access shifts constantly, so rather
than try to synchronize the social network contacts with the phone’s
contact database, you let people place calls directly from your
application.

B Maybe you are creating an alternative interface to the existing contacts
system, perhaps for users with reduced motor control (e.g., the
elderly), sporting big buttons and the like to make it easier for them to
place calls.

Whatever the reason, Android has the means to let you manipulate the phone just like
any other piece of the Android system.

Report to the Manager

To get at much of the phone API, you use the TelephonyManager. That class lets you do
things like the following:

®m Determine if the phone is in use via getCallState(), with return values
of CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call
requested but still being connected), and CALL_STATE_OFFHOOK (call in
progress).

311

CHAPTER 34: Handling Telephone Calls

B Find out the SIM ID (IMSI) via getSubscriberId().

B Find out the phone type (e.g., GSM) via getPhoneType(), or find out the
data connection type (e.g., GPRS or EDGE) via getNetworkType().

You Make the Call!

You can also initiate a call from your application, such as from a phone number you
obtained through your own web service. To do this, simply craft an ACTION_DIAL Intent
with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial) and use that
Intent with startActivity(). This will not actually dial the phone; rather, it activates the
dialer activity, from which the user can press a button to place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude (but
effective) layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill parent"
android:layout_height="fill parent"”
>
<LinearlLayout
android:orientation="horizontal"
android:layout_width="fill parent"
android:layout_height="wrap_ content"
>
<TextView
android:layout_width="wrap_content"
android:layout height="wrap_content
android:text="Number to dial:"
/>
<EditText android:id="@+id/number"
android:layout_width="fill parent"
android:layout_height="wrap_content
android:cursorVisible="true"
android:editable="true"
android:singleline="true"
/>
</Linearlayout>
<Button android:id="@+id/dial"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:layout_weight="1"
android:text="Dial It!"
/>
</LinearlLayout>

We have a labeled field for typing in a phone number, plus a button for dialing that
number.

The Java code simply launches the dialer using the phone number from the field:

CHAPTER 34: Handling Telephone Calls

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class DialerDemo extends Activity {
@0verride
public void onCreate(Bundle icicle) {
super.onCreate(icicle);
setContentView(R.layout.main);

final EditText number=(EditText)findViewByld(R.id.number);
Button dial=(Button)findViewByld(R.id.dial);

dial.setOnClickListener(new Button.OnClickListener() {
public void onClick(View v) {
String toDial="tel:"+number.getText().toString();

startActivity (new Intent(Intent.ACTION DIAL,

Uri.parse(toDial)));
}
D;
}
}
The activity’s own Ul is not that impressive, as you can see in Figure 34-1.

Bl @ 7:34Pm

DialerDemo

Dial It!

]
Figure 34-1. The DialerDemo sample application, as initially launched

CHAPTER 34: Handling Telephone Calls

However, the dialer you get from clicking the dial button is better, showing you the
number you are about to dial, as shown in Figure 34-2.

Bl @ 7:34Pm

Contacts = Favorites

2

Figure 34-2. The Android Dialer activity, as launched from DialerDemo

Chapter

Development Tools

The Android SDK is more than a library of Java classes and API calls. It also includes a
number of tools to assist in application development.

Much of the focus has been on the Eclipse plug-in, to integrate Android development
with that IDE. Secondary emphasis has been placed on the plug-in’s equivalents for use
in other IDEs or without an IDE, such as adb for communicating with a running emulator.

This chapter will cover other tools beyond those two groups.

Hierarchical Management

Android comes with a Hierarchy Viewer tool, designed to help you visualize your layouts
as they are seen in a running activity in a running emulator. So, for example, you can
determine how much space a certain widget is taking up, or try to find where a widget
that does not appear on the screen is hiding.

To use Hierarchy Viewer, you first need to fire up your emulator, install your application,
launch your activity, and navigate to spot you wish to examine. Note that you cannot
use Hierarchy Viewer with a production Android device (e.g., T-Mobile G1). For
illustration purposes, we’ll use the ReadWrite demo application introduced back in
Chapter 23, as shown in Figure 35-1.

You can launch Hierarchy Viewer via the hierarchyviewer program, found in the tools/
directory in your Android SDK installation. This brings up the main Hierarchy Viewer
window, as shown in Figure 35-2.

315

CHAPTER 35: Development Tools

O B @ 6:31Pm

ReadWriteFileDemo

P —
Figure 35-1. ReadWWrite demo application

7 = T o= T
- Hierarchy Viewer: = (rey(Ex

File VYiew Hierarchy Server

Start Server | Stop Server | Refresh Windows | Devices | Load View Hierarchy | Display View | Invalidate | Request Layout

Devices Windows

emulator-5554

EN

Figure 35-2. Hierarchy Viewer main window

CHAPTER 35: Development Tools

The list on the left shows the various emulators you have opened. The number after the
hyphen should line up with the number in parentheses in your emulator’s title bar.

When you click an emulator, the list of windows available for examination appears on
the right, as shown in Figure 35-3.

= Hierarchy Viewer L=1E80 X

File View Hierarchy Server

Start Server ‘Slop Server” Refresh Windows| Devices ‘Load Yiew Hierarchy‘ Display View | Invalidate Request Layout

[Devices Windows
lemulator-5554 <Focused Window>

com.android.launcher/com. android.launcher. Launcher
com.commonsware. android.files/com. commonsware. android.f...
TrackingView

StatusBarExpanded

StatusBar

Keyguard

_ EX

Figure 35-3. Hierarchy Viewer list of available windows

Notice how there are many other windows besides our open activity, including the
Launcher window (i.e., the home screen), the Keyguard window (i.e., the “Press Menu to
Unlock” black screen you get when first opening the emulator), and so on. Your activity
will be identified by application package and class (e.g.,
com.commonsware.android.files/...).

Things get interesting when you choose a window and click Load View Hierarchy. After
a few seconds, the details spring into view, in a perspective called the Layout view, as
shown in Figure 35-4.

CHAPTER 35: Development Tools

[m Hierarchy Viewer e =y
File View Hierarchy Server
Start Server | Stop Sewer“ Refresh Windows | Devices H Load View Hierarchy‘ Display View | Invalidate | Request Layout
Property | Yalue
PhoneWindow$DecorView
@4336abds
NO_ID
LinearLayout
@4336b580
NO_ID
FramelLayout FrameLayout B d
43360608 4336000 On White | On Black | [] Show Extras
NO_ID id/content -
TextView LinearLayout
24336400 @4336d680
id/title NO_ID
/ \ < Ii I»]
Button EditText
@4336db1E 24336ee88
id/close id/editor
) 1 200% 8 views

Figure 35-4. Hierarchy Viewer Layout view

The main area of the Layout view shows a tree of the various views that make up your
activity, starting from the overall system window and driving down into the individual Ul
widgets. You will see, on the lower-right branch of the tree, the LinearLayout, Button,
and EditText shown in the preceding code listing. All of the remaining views, including
the title bar, are supplied by the system.

Clicking one of the views adds more information to this perspective, as shown in
Figure 35-5.

CHAPTER 35: Development Tools

Hierarchy Viewer. e =y

File View Hierarchy Server

Start Server | Stop Server “ Refresh Windows | Devices H Load View Hierarchy | Display View H Invalidate H Request Layoul‘

Property Value
absolute_x 0 a
ahsolute_y 50
PhoneWindow$DecorView getBas_eIlneo 27
@4336abds getHeight{) 48 _
NO_ID getTag(null o
getVisibility)) WISIBLE
getWidth(56
hasFocus(false ||
isClickable true
isDrawingCache... [false
LinearLayout isEnabled(true
@4336b580 isFocusable) true
NO_ID isFocusablelnTo... [false
isFocusec) false
isinTouchMode() |true
isSelected() false
isSoundEffectsk... [true =
N = e
FramelLayout FrameLayout N
@4336be08 @4336¢fb0 IMIM []Show Bxtras
NO_ID id/content A
TextView LinearLayout
24336400 @4336d680
id/title NO_ID

Button EditText
@4336dblE 24336ee88
id/close id/editor

1 200% 8 views

Figure 35-5. Hierarchy Viewer view properties

Now, in the upper-right region of the viewer, you see properties of the selected widget—
in this case, the Button. Alas, these properties do not appear to be editable.

Also, the widget is highlighted in red in the wireframe of the activity, shown beneath the
properties (by default, views are shown as white outlines on a black background). This
can help you ensure you have selected the correct widget, if, say, you have several
buttons and cannot readily tell from the tree what is what.

If you double-click a view in the tree, you will see a pop-up pane showing just that view
(and its children), isolated from the rest of your activity.

Down in the lower-left corner, you will see two toggle buttons, with the tree button
initially selected. Clicking the grid button puts the viewer in a whole new perspective,
called the Pixel Perfect view, as shown in Figure 35-6.

CHAPTER 35: Development Tools

- Hierarchy Viewer e =y
File View Hierarchy Server

Start Server | Stop Server “ Refresh Windows | Devices H Load View Hierarchy‘ Display View H Invalidate H Request Layoul‘

¢ [LinearLayout qu 5:10 PM

¢ [FrameLayout ReadWriteFileDemo
D Textyiew
¢ [FramelLayout
¢ [LinearLayout
[Button

[EditText

Overlay: 0% ¢ 4. 1 100%
[]Show in Loupe
Refresh Rate: 1s =1) 40s
Zoom: 2x ¢) 24x

: 216 X 160 px

G: 220 Y: 240 px
: 216

Figure 35-6. Hierarchy Viewer Pixel Perfect view

On the left, you see a tree representing the widgets and other views in your activity. In
the middle, you see your activity (the Normal view), and on the right, you see a zoomed
edition of your activity (the Loupe view).

What may not be initially obvious is that this imagery is live. Your activity is polled every
so often, controlled by the Refresh Rate slider. Anything you do in the activity will then
be reflected in the Pixel Perfect view’s Normal and Loupe views.

The hairlines (cyan) overlaying the activity show the position being zoomed. Just click a
new area to change where the Loupe view is inspecting. And, of course, there is another
slider to adjust how much the Loupe view is zoomed.

CHAPTER 35: Development Tools

Delightful Dalvik Debugging Detailed, Demoed

Another tool in the Android developer’s arsenal is the Dalvik Debug Monitor Service
(DDMS). This is like a Swiss army knife, allowing you to do everything from browse log
files, update the GPS location provided by emulator, simulate incoming calls and
messages, and browse the on-emulator storage to push and pull files.

DDMS has a wide range of uses. Here, | will introduce some of the most useful features.

To launch DDMS, run the ddms program inside the tools/ directory in your Android SDK
distribution. It will initially display just a tree of emulators and running programs on the
left, as shown in Figure 35-7.

(m Dalvik Debug Monitor, e
File Edit Actions Device Help
f ﬂ Info 'Threads l VM Heap] Allocation Tracker] Sysinfo]’

=~ DDM-aware? -

Name o
- App description: -

< @ emulator-555¢ Online 1.0)
VM version: -

system_prc 48 8600

Process ID: -

com.androi 83 8601

android.pro 89 8602

b b b g b ub @b

com.google 110 8603
com.androi 125 8604
com.androi 134 8605 B
android.pro 142 8606
com.comm 166 8607 E

+ & ®O0O0OO®6® B H

Log

Time pid | tag Message

i D

Filter: []

Figure 35-7. DDMS initial view

Clicking an emulator allows you to browse the event log on the bottom and manipulate
the emulator via the tabs on the right, as shown in Figure 35-8.

CHAPTER 35: Development Tools

Y Dalvik Debug Monitor. M e =
File Edit Actions Device Help

4| Allocation Tracker | Sysinfo | Emulator Control [P

$
@

v)

Telephony Status
Name =

. v porm =) spets [_5]
< @ emulator-555¢ Online 1.0 olee pas

e 48 % aso0 cute [=] satenc [ome]<]
) 2 -
com.androi 83 3 8601 Telephony Actions
androidpro 83 ¥ 8602 .)
e Incoming number: []
com.google 110 % 8603
0
com.androi 125 % 8604
= M
com.androi 134 ¥ 8605
Message -
android.pro 142 % 8606 '
com.comm 166 % 8607 & (+]

+ & ®O0OO®® B H

Log

Time pid tag Message

09-28 18:43:15. D 48 PackageM Activities: com.commonsware.android.fancy.TabDemo

09-28 18:43:15. D 48 PackageM Scanning package com.commonsware.android.fancy

09-28 18:43:15. | 48 PackageV /data/app/vmd|13291.tmp changed; unpacking

09-28 18:43:15. D 27 installd Dexinv: --- BEGIN ‘/data/app/vmdl13291.tmp' ---

09-78 18:43:15. N 552 dalvikvm DNexOnt: load 49ms. verifv 139ms. oot 2ms b/

] | D]

Filter: []

Figure 35-8. DDMS, with emulator selected

Logging

Rather than use adb logcat, DDMS lets you view your logging information in a scrollable
table. Just highlight the emulator or device you want to monitor, and the bottom half of
the screen shows the logs.

In addition, you can do the following:

B Filter the Log tab by any of the five logging levels, shown as the V
through E toolbar buttons.

B Create a custom filter, so you can view only those entries tagged with
your application’s tag, by pressing the + toolbar button and
completing the form (see Figure 35-9). The name you enter in the form
will be used as the name of another logging output tab in the bottom
portion of the DDMS main window.

B Save the log information to a text file for later perusal, or for searching.

CHAPTER 35: Development Tools

[]
Filter Name: | |
by Log Tag: [}
by pid: []
by Log level: [<none> IZ]
&

Figure 35-9. DDMS logging filter

File Push and Pull

While you can use adb pull and adb push to get files to and from an emulator or device,
DDMS lets you do that visually. Just highlight the emulator or device you wish to work
with, and then choose Device » File Explorer from the main menu. That will bring up
your typical directory browser, as shown in Figure 35-10.

] =
B @
Name Size Date Time Permission Info a
v @ data 2008-09-22 16:44 drwxrwx--x
b @@ anr 2008-10-28 20:03 drwxrwxrwx
D @8 app 2008-09-22 16:44 drwxrwx--x
D @8 app-private 2008-10-28 20:02 drwxrwx--x
D @ dalvik-cache 2008-10-28 20:02 drwxrwx--x
<~ @ data 2008-10-28 20:02 drwxrwx--x —
P @@ com.android.alarmclock 2008-10-28 20:03 drwxr-xr-x
b @@ com.android.browser 2008-10-28 20:03 drwxr-xr-x
b @@ com.android.calculator2 2008-10-28 20:03 drwxr-xr-x
b @@ com.android.camera 2008-10-28 20:03 drwxr-xr-x
b @@ com.android.contacts 2008-10-28 20:03 drwxr-xr-x
b @8 com.android.development 2008-10-28 20:03 drwxr-xr-x
P @8 com.android fallback 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.googlesearch 2008-10-28 20:03 drwxr-xr-x
b @ com.android.htmlviewer 2008-10-28 20:03 drwxr-xr-x
P @8 com.android.launcher 2008-10-28 20:03 drwxr-xr-x
P @ com.android.mms 2008-10-28 20:03 drwxr-xr-x
‘ D Mm com.android.music 2008-10-28 20:03 drwxr-xr-x | :]Z
4 »

Figure 35-10. DDMS File Explorer

Just browse to the file you want and click either the pull (leftmost) or push (middle)
toolbar button to transfer the file to or from your development machine. To delete a file,
click the delete (rightmost) toolbar button.

CHAPTER 35: Development Tools

There are a few caveats to using File Explorer:

B You cannot create directories through this tool. You will either need to
use adb shell or create them from within your application.

B While you can putter through most of the files on an emulator, you can
access very little outside /sdcard on an actual device, due to Android
security restrictions.

Screenshots

To take a screenshot of the Android emulator or device, simply press Ctrl+S or choose
Device » Screen Capture from the main menu. This will bring up a dialog box containing
an image of the current screen, as shown in Figure 35-11.

‘Refresh Rotate H Save H Copy H Done ‘
Captured image:

Z M @ 6:00 Pm

IntentTabDemo

Android

€@ CoMMONSWARE

Three Android
Books, One Low
Price.

= - Fresh

i titles.
------------- Aﬂdrold
%ﬂ?ﬁ Android eogamming from
Development Developmenl Tutorials the
et

Figure 35-11. DDMS screen capture

From here, you can do the following:

B Click Save to save the image as a PNG file somewhere on your
development machine.

B Click Refresh to update the image based on the current state of the
emulator or device.

B Click Done to close the dialog box.

CHAPTER 35: Development Tools

Location Updates

To use DDMS to supply location updates to your application, the first thing you must do
is have your application use the gps LocationProvider, as that is the one that DDMS is
set to update.

Next, click the Emulator Control tab and scroll down to the Location Controls section.
Here, you will find a smaller tabbed pane with three options for specifying locations:
Manual, GPX, and KML, as shown in Figure 35-12.

DalvikDebug Montor

File Edit Actions Device Help

2 8 o ‘[Allocation Tracker] Sysinfo
— | Location Controls
Name —
. Manual
< B emulator-555¢ Online 1.0 G KM
system_prc 48 B 8600 @® Decimal
com.androi 83 % 8601 O sexagesimal
android.pro 89 % 8602 Longitude [-122.084095 B
3
R Latitude [37.422006
com.androi 125 % 8604
com.androi 134 ¥ 8605 B —
android.pro 142 ¥ 8606
com.comm 166 % 8607 =) [~
+ 2 e OO®E B H
Log
Time pid tag Message =
09-28 18:43:15. D 48 PackageM Activities: com.commonsware.android.fancy.TabDemo
09-28 18:43:15. D 48 PackagelM Scanning package com.commonsware.android.fancy
09-28 18:43:15. | 48 PackagelV /data/app/vmd|13291.tmp changed; unpacking B
09-28 18:43:15. D 27 installd Dexinv: --- BEGIN Y/data/appivmd|13291.tmp' --- o
09-78 18:43:15. D552 dalvikum NexOnt: load 49ms. verifv 139ms. ont 2ms =

€1l I D}

Filter: []

Figure 35-12. DDMS location controls

To use the Manual tab, provide a latitude and longitude and click the Send button to
submit that location to the emulator. The emulator will notify any location listeners of the
new position.

The other tabs allow you to specify locations using GPS Exchange (GPX) format or
Keyhole Markup Language (KML) format.

CHAPTER 35: Development Tools

Placing Calls and Messages

If you want to simulate incoming calls or SMS messages to the Android emulator, DDMS
can handle that as well.

On the Emulator Control tab, above the Location Controls group, is the Telephony
Actions group, as shown in Figure 35-13.

(R DAk DEBUG Monitor ™=
File Edit Actions Device Help

% g 0 4| sysinfo | Emulator Control | Event Log |P

Telephony Actions

3

[v)

Name =
- Incoming number: | 17035551212 I

< [emulator-5554 Online 1.0

system_proce 51 B 8600

com.androidj 86 % 8601 O sms =

android.proce 90 2 8602 [EEEEEBES Thisis atest | =

_ - text message
com.android.t 110 % 8603 -
com.googlep 121 % 8604 ~
3

com.android.; 136 8605 x| |call| [Hang Up
. — [Hang up |
+ & OO ® B H

(o]

Log I RotationDemo l MMTracking] LogDemo]

Time pid | tag Message
(4]] [)
Filter: [

Figure 35-13. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice radio button, and
click Call. At that point, the emulator will show the incoming call, allowing you to accept

it (via the green phone button) or reject it (via the red phone button), as shown in Figure
35-14.

CHAPTER 35: Development Tools

£ M@ 11:02AM

Incoming call

Jane Doe
Mobile 1 5>5-

1212

Figure 35-14. Simulated incoming call

To simulate an incoming text message, fill in a phone number, choose the SMS radio
button, enter a message in the provided text area, and click Send. The text message will

then appear as a notification, as shown in Figure 35-15.

| November 30, 2008 &5 Ml @ 11:02 AM|

Android Clear notifications

Notifications
Jane Doe
This is a test text message 11:58 AM

Figure 35-15. Simulated text message

And, of course, you can click the notification to view the message in the full-fledged
messaging application, as shown in Figure 35-16.

CHAPTER 35: Development Tools

B R @ 11:02Am
Jane Doe

Jane Doe: This is a test text message
Sent: 11:58 AM

"Open keyboard to compose |
message

Send

Figure 35-16. Simulated text message, in messaging application

Put It on My Card

The T-Mobile G1 has a microSD card slot. Many other Android devices are likely to have
similar forms of removable storage, which the Android platform refers to generically as
an SD card.

It’s strongly recommended that developers use SD cards as the holding pen for large
data sets: images, movie clips, audio files, and so on. The T-Mobile G1, in particular,
has a relatively paltry amount of on-board flash memory, so the more you can store on
an SD card, the better.

Of course, the challenge is that, while the G1 has an SD card by default, the emulator
does not. To make the emulator work like the G1, you need to create and “insert” an SD
card into the emulator.

Creating a Card Image

Rather than require emulators to somehow have access to an actual SD card reader and
use actual SD cards, Android is set up to use card images. A card image is simply a file
that the emulator will treat as if it were an SD card volume. If you are used to disk
images used with virtualization tools (e.g., VirtualBox), the concept is the same. Android
uses a disk image representing the SD card contents.

CHAPTER 35: Development Tools

To create such an image, use the mksdcard utility, provided in the tools/ directory of
your SDK installation. This takes two main parameters:

B The size of the image, and hence the size of the resulting “card.” If you
just supply a number, it is interpreted as a size in bytes. Alternatively,
you can append K or M to the number to indicate a size in kilobytes or
megabytes, respectively.

B The filename under which to store the image.

So, for example, to create a 1GB SD card image, to simulate the G1’s SD card in the
emulator, you could run the following:

mksdcard 1024M sdcard.img

Inserting the Card

To have your emulator use this SD card image, start the emulator with the -sdcard
switch, containing a fully qualified path to the image file you created using mksdcaxrd.
While there will be no visible impact—you won’t see an icon or anything else in Android
showing that you have a card mounted—the /sdcard path will now be available for
reading and writing.

To put files on the /sdcard, either use File Explorer in DDMS or adb push and adb pull
from the console.

Chapter

Handling Multiple Screen
Sizes

For the first year or so since Android 1.0 was released, all production Android devices
had the same screen resolution (HVGA, 320 by 480) and size (around 3.5 inches, or 9
centimeters). Starting in the fall of 2009, though, devices have been arriving with widely
disparate screen sizes and resolutions, from tiny QVGA (240 by 320) screens to much
larger WVGA (480 by 800) screens.

Of course, users will be expecting your application to be functional on all of these
screens, and perhaps take advantage of larger screen sizes to add greater value. To that
end, Android 1.6 added new capabilities to help better support these different screen
sizes and resolutions.

The Android documentation has extensive coverage of the mechanics of handling multiple
screen sizes (http://d.android.com/guide/practices/screens_support.html). You are
encouraged to read that information along with this chapter, to get the best understanding
of how to cope with, and perhaps take advantage of, multiple screen sizes.

After a number of sections discussing the screen size options and theory, the chapter
wraps with an in-depth look at making a fairly simple application that handles multiple
screen sizes well.

Taking the Default

Let’s suppose that you start off by totally ignoring the issue of screen sizes and
resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will assume your
application was designed to look good on the classic screen size and resolution. If
your application is installed on a device with a larger screen, Android automatically will
run your application in compatibility mode, scaling everything based on the actual
screen size.

331

CHAPTER 36: Handling Multiple Screen Sizes

For example, suppose you have a 24-pixel square PNG file, and Android installs and
runs your application on a device with the standard physical size but a WVGA resolution
(a so-called high-density screen). Android might scale your PNG file to be 36 pixels, so it
will take up the same visible space on the screen. On the plus side, Android handles this
automatically. On the minus side, bitmap-scaling algorithms tend to make the images a
bit fuzzy.

Additionally, Android will block your application from running on a device with a smaller
screen. Hence, QVGA devices, like the HTC Tattoo, will be unable to get your
application, even if it is available on the Android Market.

If your application is compiled for Android 1.6 or higher, Android assumes that you are
properly handling all screen sizes, and therefore will not run your application in
compatibility mode. You will see how to tailor this in a later section.

Whole in One

The simplest approach to handling multiple screen sizes in Android is to design your Uls
so that they automatically scale for the screen size, without any size-specific code or
resources. In other words, “it just works.”

This implies, though, that everything you use in your Ul can be gracefully scaled by
Android and that everything will fit, even on a QVGA screen.

The following sections contain some tips for achieving this all in one solution.

Think About Rules, Rather Than Positions

Some developers, perhaps those coming from the drag-and-drop school of Ul
development, think first and foremost about the positions of widgets. They think that
they want particular widgets to be certain fixed sizes at certain fixed locations. They get
frustrated with Android layout managers (containers) and may gravitate to the
deprecated Absolutelayout as a way to design Uls in a familiar way.

That approach rarely works well—even on desktops—as can be seen by applications
that do a poor job of window resizing. Similarly, it will not work on mobile devices,
particularly Android, with their wide range of screen sizes and resolutions.

Instead of thinking about positions, think about rules. You need to teach Android the
business rules about where widgets should be sized and placed, and then Android will
interpret those rules based on what the device’s screen actually supports in terms of
resolution.

The simplest rules are the fill _parent and wrap content values for
android:layout_width and android:layout_height. Those do not specify specific sizes,
but rather adapt to the space available.

The richest environment for easily specifying rules is to use Relativelayout (discussed
in Chapter 6). While complicated on the surface, Relativelayout does an excellent job

CHAPTER 36: Handling Multiple Screen Sizes

of letting you control your layout while still adapting it to other screen sizes. For
example, you can do the following:

B Explicitly anchor widgets to the bottom or right side of the screen,
rather than hoping they will wind up there courtesy of some other
layout.

B Control the distances between widgets that are connected (e.g., a
label for a field that should be to the left of the field) without needing to
rely on padding or margins.

The greatest control for specifying rules is to create your own layout class. For example,
suppose you are creating a series of applications that implement card games. You may
want to have a layout class that knows about playing cards—how they overlap, which
are face up versus face down, how big to be to handle varying number of cards, and so
on. While you could achieve the desired look with, say, a Relativelayout, you may be
better served implementing a PlayingCardLayout or something that is more explicitly
tailored for your application. Unfortunately, creating custom layout classes is
underdocumented at this point in time.

Consider Physical Dimensions

Android offers a wide range of available units of measure for dimensions. The most
popular has been the pixel (px), because it is easy to wrap your head around the
concept. After all, each Android device will have a screen with a certain number of pixels
in each direction.

However, pixels start to become troublesome as screen density changes. As the number
of pixels in a given screen size increases, the pixels effectively shrink. A 32-pixel icon on
a traditional Android device might be finger-friendly, but on a high-density device (say,
WVGA in a mobile phone form factor), 32 pixels may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had been
specifying a size in pixels, you might consider switching to using millimeters (mm) or
inches (in) as the unit of measure—10 millimeters are 10 millimeters, regardless of the
screen resolution or the screen size. This way, you can ensure that your widget is sized
to be finger-friendly, regardless of the number of pixels that might take.

Avoid Real Pixels

In some circumstances, using millimeters for dimensions will not make sense. Then you
may wish to consider using other units of measure while still avoiding real pixels.

Android offers dimensions measured in density-independent pixels (dip). These map 1:1
to pixels for a 160-dpi screen (e.g., a classic HVGA Android device) and scale from
there. For example, on a 240-dpi device (e.g., a phone-sized WVGA device), the ratio is
2:3, so 50dip = 50px at 160 dpi = 75px at 240 dpi. The advantage to the user of going

CHAPTER 36: Handling Multiple Screen Sizes

with dip is that the actual size of the dimension stays the same, so visibly there is no
difference between 50dip at 160 dpi and 50dip at 240 dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled pixels, in theory,
are scaled based on the user’s choice of font size (FONT_SCALE value in
System.Settings).

Choose Scalable Drawables

Classic bitmaps—PNG, JPG, and GIF —are not intrinsically scalable. If you are not
running in compatibility mode, Android will not even try to scale them for you based on
screen resolution and size. Whatever size of bitmap you supply is the size it will be, even
if that makes the image too large or too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch bitmaps and
XML-defined drawables (e.g., GradientDrawable) as alternatives. A nine-patch bitmap is
a PNG file specially encoded to have rules indicating how that image can be stretched
to take up more space. XML-defined drawables use a quasi-SVG XML language to
define shapes, their strokes and fills, and so on.

Tailor-Made, Just for You (and You, and You, and...)

There will be times when you want to have different looks or behaviors based on screen
size or density. Android has ways for you to switch out resources or code blocks based
on the environment in which your application runs. When properly used in combination
with the techniques discussed in the previous section, achieving screen size- and
density-independence is eminently possible, at least for devices running Android 1.6
and newer.

Add <supports-screens>

The first step to proactively supporting screen sizes is to add the <supports-screens>
element to your AndroidManifest.xml file. This specifies which screen sizes you
explicitly support and which you do not. Those that you do not explicitly support will be
handled by the automatic compatibility mode described previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eu4you"
android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>

CHAPTER 36: Handling Multiple Screen Sizes

<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Each of the attributes android:smallScreens, android:normalScreens, and
android:largeScreens takes a Boolean value indicating if your application explicitly
supports those screens (true) or requires compatibility mode assistance (false).

The android:anyDensity attribute indicates whether you are taking density into account
in your calculations (true) or not (false). If false, Android will behave as though all of
your dimensions (e.g., 4px) were for a normal-density (160-dpi) screen. If your
application is running on a screen with lower or higher density, Android will scale your
dimensions accordingly. If you indicate that android:anyDensity = "true", you are
telling Android not to do that, putting the onus on you to use density-independent units,
such as dip, mm, or in.

Resources and Resource Sets

The primary way to toggle different things based on screen size or density is to create
resource sets. By creating resource sets that are specific to different device
characteristics, you teach Android how to render each, with Android switching among
those sets automatically.

Default Scaling

By default, Android will scale all drawable resources. Those that are intrinsically scalable
will scale nicely. Ordinary bitmaps will be scaled using a normal scaling algorithm, which
may or may not give you great results. It also may slow things down a bit. If you wish to
avoid this, you will need to set up separate resource sets containing your nonscalable
bitmaps.

Density-Based Sets

If you wish to have different layouts, dimensions, or the like based on different screen
densities, you can use the -1dpi, -mdpi, and -hdpi resource set labels. For example,
res/values-hdpi/dimens.xml would contain dimensions used in high-density devices.

CHAPTER 36: Handling Multiple Screen Sizes

Size-Based Sets

Similarly, if you wish to have different resource sets based on screen size, Android offers
-small, -normal, and -large resource set labels. Creating res/layout-large-land/
would indicate layouts to use on large screens (e.g., WVGA) in landscape orientation.

Version-Based Sets

There may be times when earlier versions of Android get confused by newer resource
set labels. To help with that, you can include a version label to your resource set, of the
form -vN, where N is an API level. Hence, res/drawable-large-v4/ indicates these
drawables should be used on large screens at API level 4 (Android 1.6) and newer.

Android has had the ability to filter on version from early on, and so this technique will
work going back to Android 1.5 (and perhaps earlier).

So, if you find that Android 1.5 emulators or devices are grabbing the wrong resource
sets, consider adding -v4 to their resource set names to filter them out.

Finding Your Size

If you need to take different actions in your Java code based on screen size or density,
you have a few options.

If there is something distinctive in your resource sets, you can sniff on that and branch
accordingly in your code. For example, as will be seen in the code sample later in this
chapter, you can have extra widgets in some layouts (e.g., res/layout-large/main.xml);
simply seeing if an extra widget exists will tell you if you are running a large screen.

You can also find out your screen size class via a Configuration object, typically
obtained by an Activity via getResources().getConfiguration(). A Configuration
object has a public field named screenlLayout that is a bitmask indicating the type of
screen on which the application is running. You can test to see if your screen is small,
normal, or large, or if it is long (where long indicates a 16:9 or similar aspect ratio,
compared to 4:3). For example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenlLayout
& Configuration.SCREENLAYOUT SIZE LARGE)
==Configuration.SCREENLAYOUT SIZE LARGE) {
// yes, we are large

else {
// no, we are not

There does not appear to be an easy way to find out your screen density in a similar
fashion. If you absolutely need to know that, a hack would be to create res/values-
ldpi/, res/values-mdpi/, and res/values-hdpi/ directories in your project, and add a
strings.xml file to each. Put a string resource in strings.xml that has a common name
across all three resource sets and has a distinctive value (e.g., name it density, with

CHAPTER 36: Handling Multiple Screen Sizes

values of 1dpi, mdpi, and hdpi, respectively). Then test the value of the string resource at
runtime. This is inelegant but should work.

Ain’t Nothing Like the Real Thing

The Android emulators will help you test your application on different screen sizes.
However, that will get you only so far, because mobile device LCDs have different
characteristics than your desktop or notebook, such as the following:

B Mobile device LCDs may have a much higher density than that of your
development machine.

B A mouse allows for much more precise touchscreen input than does
an actual fingertip.

Where possible, you are going to need to either use the emulator in new and exciting
ways or try to get your hands on actual devices with alternative screen resolutions.

Density Differs

The Motorola DROID has a 240-dpi, 3.7-inch, 480-by-854 pixel screen (an FWVGA
display). To emulate a DROID screen, based on pixel count, takes up one third of a 19-
inch, 1280-by-1024 LCD monitor, because the LCD monitor’s density is much lower
than that of the DROID —around 96 dpi. So, when you fire up your Android emulator for
an FWVGA display like that of the DROID, you will get a massive emulator window.

This is still perfectly fine for determining the overall look of your application in an FWVGA
environment. Regardless of density, widgets will still align the same, sizes will have the
same relationships (e.g., widget A might be twice as tall as widget B, and that will be
true regardless of density), and so on.

However, these issues may come up:

B Things that might appear to be a suitable size when viewed on a 19-
inch LCD may be entirely too small on a mobile device screen of the
same resolution.

B Things that you can easily click with a mouse in the emulator may be
much too small to pick out on a physically smaller and denser screen
when used with a finger.

Adjusting the Density

By default, the emulator will keep the pixel count accurate at the expense of density,
which is why you get the really big emulator window. You do have an option of keeping
the density accurate at the expense of pixel count.

CHAPTER 36: Handling Multiple Screen Sizes

The easiest way to do this is to use the Android AVD Manager, introduced in Android
1.6. The Android 2.0 edition of this tool has a Launch Options dialog that pops up when
you go to start an emulator instance via the Start button, as shown in Figure 36-1.

skin: WVGAB800 (480x800)
Density: High (240)

[Scale display to real size

Screen Size (in):
Monitor dpi: 86 | E’

[] Wipe user data

N

Launch ‘ ‘ Cancel ‘

Figure 36-1. The Launch Options dialog

By default, the “Scale display to real size” check box is unchecked, and Android will
open the emulator window normally. You can check that check box, and then provide
two bits of scaling information:

B The screen size of the device you wish to emulate, in inches (e.g., 3.7
for the Motorola DROID)

B The dots-per-inch resolution of your monitor (click the ? button to
bring up a calculator to help you determine that value)

This will give you an emulator window that more accurately depicts what your Ul will
look like on a physical device, at least in terms of sizes. However, since the emulator is
using far fewer pixels than will a device, fonts may be difficult to read, images may be
blocky, and so forth.

Accessing Actual Devices

Of course, the best possible way to see what your application looks like on different
devices is to actually test it on different devices. You do not necessarily need to get
every Android device ever made, but you may want to have access to ones with
distinctive hardware that impacts your application, and screen size impacts just about
everyone. Here are some suggestions:

B Virtually test devices using services like DeviceAnywhere
(http://www.deviceanywhere.com/). This is an improvement over the
emulator, but it is not free and certainly cannot test everything (e.g.,
changes in location).

CHAPTER 36: Handling Multiple Screen Sizes

B Purchase devices, perhaps through back channels like eBay.
Unlocked GSM phones can readily share a SIM when you need to test
telephony operations or go SIM-less otherwise.

B If you live in or near a city, you may be able to set up some form of a
user group, and use that group for testing applications on your
collective set of hardware.

B Take the user-testing route, releasing your application as a free beta or
something, and then letting user feedback guide adjustments. You
may wish to distribute this outside the Android Market, lest beta test
feedback harm your application’s market rating.

Ruthlessly Exploiting the Situation

So far, we have focused on how you can ensure your layouts look decent on other
screen sizes. And, for smaller screens than the norm (e.g., QVGA), that is perhaps all you
can achieve.

Once we get into larger screens, though, another possibility emerges: using different
layouts designed to take advantage of the extra screen space. This is particularly useful
when the physical screen size is larger (e.g., a 5-inch LCD like on the Archos 5 Android
tablet), rather than simply having more pixels in the same physical space.

The following sections describe some ways you might take advantage of additional space.

Replace Menus with Buttons

An option menu selection requires two physical actions: press the Menu button, and
then tap on the appropriate menu choice. A context menu selection requires two
physical actions as well: long-tap on the widget, and then tap on the menu choice.
Context menus have the additional problem of being effectively invisible; for example,
users may not realize that your ListView has a context menu.

You might consider augmenting your Ul to provide direct on-screen ways of
accomplishing things that might otherwise be hidden away on a menu. Not only does
this reduce the number of steps a user needs to take to do things, but it also makes
those options more obvious.

For example, suppose you are creating a media player application, and you want to offer
manual playlist management. You have an activity that displays the songs in a playlist in
a ListView. On an option menu, you have an Add choice, to add a new song from the
ones on the device to the playlist. On a context menu on the ListView, you have a
Remove choice, plus Move Up and Move Down choices to reorder the songs in the list.
On a large screen, you might consider adding four ImageButton widgets to your Ul for
these four options, with the three from the context menu enabled only when a row is
selected by the D-pad or trackball. On regular or small screens, you would stick with just
using the menus.

CHAPTER 36: Handling Multiple Screen Sizes

Replace Tabs with a Simple Activity

You may have introduced a TabHost into your Ul to allow you to display more widgets in
the available screen space. As long as the widget space you save by moving them to a
separate tab is more than the space taken up by the tabs themselves, you win.
However, having multiple tabs means more user steps to navigate your Ul, particularly if
the user needs to flip back and forth between tabs frequently.

If you have only two tabs, consider changing your Ul to offer a large-screen layout that
removes the tabs and puts all the widgets on one screen. This places everything in front
of the user, without needing to switch tabs all the time.

’

If you have three or more tabs, you probably will lack screen space to put all those tabs
contents on one activity. However, you might consider going half and half: have popular
widgets be on the activity all of the time, leaving your TabHost to handle the rest on
(roughly) half of the screen.

Consolidate Multiple Activities

The most powerful technique is to use a larger screen to get rid of activity transitions
outright. For example, if you have a ListActivity where clicking an item brings up that
item’s details in a separate activity, consider supporting a large-screen layout where the
details are on the same activity as the ListView (e.g., ListView on the left, details on the
right, in a landscape layout). This eliminates the user having to constantly press the
Back button to leave one set of details before viewing another.

You will see this technique applied in the sample code presented in the following section.

Example: EU4You

To examine how to use some of the techniques discussed so far, let’s look at the
ScreenSizes/EU4You sample application. This application has one activity (EU4You) that
contains a ListView with the roster of European Union (EU) members and their
respective flags (http://www.wpclipart.com/flags/Countries/index.html). Clicking one of
the countries brings up the mobile Wikipedia page for that country.

In the source code to this book, you will find four versions of this application. We start
with an application that is ignorant of screen size and slowly add in more screen-
related features.

The First Cut

First, here is our AndroidManifest.xml file, which looks distinctly like one shown earlier
in this chapter:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.commonsware.android.eu4you"

CHAPTER 36: Handling Multiple Screen Sizes

android:versionCode="1"
android:versionName="1.0">
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:anyDensity="true"
/>
<application android:label="@string/app_name"
android:icon="@drawable/cw">
<activity android:name=".EU4You"
android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Notice we have the <supports-screens> element, saying that we do indeed support all
screen sizes. This blocks most of the automatic scaling that Android would do if we said
we did not support certain screen sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

<?xml version="1.0" encoding="utf-8"?>

<ListView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@android:id/list"
android:layout width="fill parent"
android:layout _height="fill parent"

/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_gravity="center_vertical|left"
android:paddingRight="4px"

/>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap content"
android:layout gravity="center vertical|right
android:textSize="20px"

/>

</LinearlLayout>

CHAPTER 36: Handling Multiple Screen Sizes

For example, right now, our font size is set to 20px, which will not vary by screen size or
density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU members, and
we need to have the smarts to display the flag and the text in the row:

package com.commonsware.android.eudyou;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;

import android.os.Bundle;

import android.view.View;

import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.Arraylist;

public class EU4You extends ListActivity {
static private ArraylList<Country> EU=new ArraylList<Country>();

static {

EU.add(new Country(R.string.austria, R.drawable.austria,
R.string.austria url));

EU.add(new Country(R.string.belgium, R.drawable.belgium,
R.string.belgium url));

EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
R.string.bulgaria url));

EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
R.string.cyprus url));

EU.add(new Country(R.string.czech republic,
R.drawable.czech_republic,
R.string.czech republic_url));

EU.add(new Country(R.string.denmark, R.drawable.denmark,
R.string.denmark url));

EU.add(new Country(R.string.estonia, R.drawable.estonia,
R.string.estonia url));

EU.add(new Country(R.string.finland, R.drawable.finland,
R.string.finland url));

EU.add(new Country(R.string.france, R.drawable.france,
R.string.france url));

EU.add(new Country(R.string.germany, R.drawable.germany,
R.string.germany url));

EU.add(new Country(R.string.greece, R.drawable.greece,
R.string.greece url));

EU.add(new Country(R.string.hungary, R.drawable.hungary,
R.string.hungary url));

EU.add(new Country(R.string.ireland, R.drawable.ireland,
R.string.ireland url));

EU.add(new Country(R.string.italy, R.drawable.italy,
R.string.italy url));

EU.add(new Country(R.string.latvia, R.drawable.latvia,
R.string.latvia_url));

CHAPTER 36: Handling Multiple Screen Sizes

EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
R.string.lithuania_url));

EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
R.string.luxembourg url));

EU.add(new Country(R.string.malta, R.drawable.malta,
R.string.malta url));

EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
R.string.netherlands url));

EU.add(new Country(R.string.poland, R.drawable.poland,
R.string.poland url));

EU.add(new Country(R.string.portugal, R.drawable.portugal,
R.string.portugal url));

EU.add(new Country(R.string.romania, R.drawable.romania,
R.string.romania url));

EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
R.string.slovakia url));

EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
R.string.slovenia url));

EU.add(new Country(R.string.spain, R.drawable.spain,
R.string.spain_url));

EU.add(new Country(R.string.sweden, R.drawable.sweden,
R.string.sweden url));

EU.add(new Country(R.string.united kingdom,
R.drawable.united kingdom,
R.string.united kingdom url));

}

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
setListAdapter(new CountryAdapter());

@0verride
protected void onListltemClick(ListView 1, View v,
int position, long id) {
startActivity (new Intent(Intent.ACTION VIEW,
) Uri.parse(getString(EU.get(position).url))));

static class Country {
int name;
int flag;
int url;

Country(int name, int flag, int url) {
this.name=name;
this.flag=flag;
this.url=url;
}
}

class CountryAdapter extends ArrayAdapter<Country> {
CountryAdapter() {

CHAPTER 36: Handling Multiple Screen Sizes

super(EU4You.this, R.layout.row, R.id.name, EU);

@verride
public View getView(int position, View convertView,
ViewGroup parent) {
CountryWrapper wrapper=null;

if (convertView==null) {
convertView=getLayoutinflater() .inflate(R.layout.row, null);
wrapper=new CountryWrapper(convertView);
convertView.setTag(wrapper);

else {
wrapper=(CountryWrapper)convertView.getTag();

wrapper . populateFrom(getltem(position));

return(convertView);
}
}

class CountryWrapper {
private TextView name=null;
private ImageView flag=null;
private View row=null;

CountryWrapper(View row) {
this.row=row;

}

TextView getName() {
if (name==null) {
name=(TextView)row.findViewByld(R.id.name);

return(name);

ImageView getFlag() {
if (flag==null) {
flag=(ImageView)row.findViewByld(R.id.flag);

return(flag);

void populateFrom(Country nation) {
getName() .setText(nation.name);
getFlag() . setimageResource(nation.flag);

CHAPTER 36: Handling Multiple Screen Sizes

Figures 36-2, 36-3, and 36-4 show what the activity looks like in an ordinary HVGA
emulator, a WVGA emulator, and a QVGA screen.

Tl @ 5:05pPMm

EU4You

i CErmany

E=creece

= Hungary

Bl ireland

I Italy

— | AtVig

Figure 36-2. EU4You, original version, HVGA

Z Ml @ 5:08 Pm

EGyee(e

I Hungary

. Ireland

I Italy

— | atvia

(NGUERIE]

I Luxembourg

Figure 36-3. EU4You, original version, WVGA (800x480 pixels)

CHAPTER 36: Handling Multiple Screen Sizes

@@ s5:13pm

IEuaYou

= Greece
= Hungary

Bl ireland

B italy

= | atvia

el M GUERIE]

Figure 36-44. EU4You, original version, QVGA

Fixing the Fonts

The first problem that should be fixed is the font size. As you can see, with a fixed 20-
pixel size, the font ranges from big to tiny, depending on screen size and density. For a
WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have different
versions of that resource based on screen size or density. However, it is simpler to just
specify a density-independent size, such as 5mm, as seen in the ScreenSizes/EU4You_2

project:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="wrap_content"
android:padding="2dip"
android:minHeight="?android:attr/listPreferredItemHeight"

<ImageView android:id="@+id/flag"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center verticall|left"
android:paddingRight="4px"

/>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout gravity="center vertical|right
android:textSize="5mm"

/>

</Linearlayout>

CHAPTER 36: Handling Multiple Screen Sizes

Figures 36-5, 36-6, and 36-7 shows the results on HVGA, WVGA, and QVGA screens.
Tl @ 6:03pPm

EU4You

mm Austria
I Belgium
== Bulgaria
Bl cyprus
W Czech Republic

== Denmark

I Belgium

= Bulgaria
BlCyprus

W Czech Republic
==Denmark

= EStONIA

Figure 36-6. EU4You, 5mm font version, WVGA (800x480 pixels)

CHAPTER 36: Handling Multiple Screen Sizes

@@ 601pm

EU4You

mm Austria
I Belgium

=== Bulgaria

-Cyprus
W Czech Republic

-'—Dpnmark

Figure 36-7. EU4You, 5mm font version, QVGA

Now our font is a consistent size and large enough to match the flags.

Fixing the Icons

So, what about those icons? They should be varying in size as well, since they are the
same for all three emulators.

However, Android automatically scales bitmap resources, even with <supports-screens>
and its attributes set to true. On the plus side, this means you may not need to do
anything with these bitmaps. However, you are relying on a device to do the scaling,
which definitely costs CPU time (and, hence, battery life). Also, the scaling algorithms
that the device uses may not be optimal, compared to what you can do with graphics
tools on your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-1dpi and res/drawable-hdpi,
putting in smaller and larger renditions of the flags, respectively. This project also
renames res/drawable to res/drawable-mdpi. Android will use the flags for the
appropriate screen density, depending on what the device or emulator needs.

Using the Space

While the activity looks fine on WVGA in portrait mode, it really wastes a lot of space in
landscape mode, as shown in Figure 36-8.

CHAPTER 36: Handling Multiple Screen Sizes

Za Ml @ 6:36 PM

EU4You

A Stria

I Belgium

Bulgaria

Cyprus

Figure 36-8. EU4You, landscape WVGA (800x480 pixels)

We can put that to better use by having the Wikipedia content appear directly on the
main activity when in large-screen landscape mode, instead of needing to spawn a
separate browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-land
rendition that incorporates a WebView widget, as seen in ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill parent"
android:layout_height="fill parent"
>
<ListView
android:id="@android:id/list"
android:layout_width="fill parent"
android:layout_height="fill parent"”
android:layout_weight="1"
/>
<WebView
android:id="@+id/browser"
android:layout_width="fill parent"
android:layout_height="fill parent”
android:layout_weight="1"
/>
</Linearlayout>

Then we need to adjust our activity to look for that WebView and use it when found;
otherwise, it will default to launching a browser activity:

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

browser=(WebView)findViewByld(R.id.browser);

setListAdapter(new CountryAdapter());

@0verride

CHAPTER 36: Handling Multiple Screen Sizes

protected void onListltemClick(ListView 1, View v,
int position, long id) {
String url=getString(EU.get(position).url);

if (browser==null) {
startActivity (new Intent(Intent.ACTION VIEW,

Uri.parse(url)));
else {
browser.loadUrl(url);

}
}
This gives us a more space-efficient edition of the activity, as shown in Figure 36-9.

Ml @ 6:49 Pm
[EUaYou |
= AUstria W s Q
\: Text WIKI to 25383 to donate $10 to Wikipedia!

I Belgium Austria

This article is about the country. For other uses of terms redirecting
here, see Austria (disambiguation) and Osterreich (disambiguation).

= Bulgaria
Republic of Austria
Republik Osterreich

Bl Cyprus [
"W Czech Republic e

Flag

Anthem: Land der Berge, Land am Strome (German)
Land of Mountains, Land by the River

T

Figure 36-9. EU4You, landscape WVGA (800x480 pixels), set for normal density, and showing the embedded
WebView

When the user clicks a link in the Wikipedia page, a full browser opens, for easier surfing.

Note that to test this version of the activity, and see this behavior, requires a bit of extra
emulator work. By default, Android sets up WVGA devices as being high-density,
meaning WVGA is not large in terms of resource sets, but rather normal. You will need to
create a different emulator AVD that is set for normal (medium) density, which will result in
a large screen size.

What If It’s Not a Browser?

Of course, EU4You does cheat a bit. The second activity is a browser (or WebView in the
embedded form), not some activity of your own creation. Things get slightly more
complicated if the second activity is some activity of yours, with many widgets in a

CHAPTER 36: Handling Multiple Screen Sizes

layout, and you want to use it both as an activity (for smaller screens) and have it
embedded in your main activity Ul (for larger screens).

Here is one pattern to deal with this scenario:
1. Initially develop and test the second activity as an activity.

2. Have all of the second activity’s life-cycle methods delegate their logic
to an inner class. Move all data members of the activity that are needed
by only the inner class to that inner class, and ensure that still works.

3. Pull the inner class out into a separate public class, and ensure that still
works.

4. For your first (or main) activity, create a separate layout for large screens
and use the <include> directive to blend in the contents of your second
activity’s layout into the proper spot in the large-screen first activity’s
layout.

5. Inthe first activity, if it finds the second activity’s layout has been
inflated as part of its own (e.g., by checking for the existence of some
widget via findViewById()), create an instance of the public class you
created in step 3 and have it deal with all of those widgets. Adjust your
code to reference that class directly, rather than start the second activity
as shown in the previous section.

In short, use a public class and reusable layout to keep your code and resources in one
place, yet use them from both a stand-alone activity and as part of a large-screen
version of the main activity.

What Are a Few Bugs Among Friends?

The Motorola DROID, which shipped with Android 2.0, had two bugs of relevance for
screen sizes:

B |t had incorrect values for the screen density, both horizontal and
vertical. This means it incorrectly scaled dimensions based on physical
sizes: pt, mm, and in.

B It had Android 2.0 as API level 6 instead of level 5, so version-specific
resource directories need to use the -v6 suffix instead of -v5

Both of these bugs are fixed in Android 2.0.1 and later, and no other devices should ship
with Android 2.0 or be affected by these bugs.

Chapter

Dealing with Devices

Android is “free as in beer” for device manufacturers, as it is an open source project.
Hence, device manufacturers have carte blanche to do what they want with Android as
they put it on their devices. This means a breadth of choices for device users, who will
be able to have Android devices in all shapes, sizes, and colors. This also means
developers will have some device differences and idiosyncrasies to take into account.

This chapter will give you some tips and advice for dealing with these device-specific
issues, to go along with the screen size material in Chapter 36.

This App Contains Explicit Instructions

Originally, the only Android device was the T-Mobile G1. Hence, if you were writing an
Android application, you could assume the existence of a hardware QWERTY keyboard,
a trackball for navigation, and so on. Now, other devices (e.g., HTC Magic) exist with
different hardware capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various types of hardware.
Some applications, though, will be unusable without certain hardware characteristics. For
example, a full-screen game may rely on a hardware keyboard or trackball to indicate
player actions—soft keyboards and touchscreens may be insufficient.

Fortunately, starting with Android 1.5, you can add explicit instructions telling Android
what you need, so your application is not installed on devices lacking such hardware.

In addition to using the target ID system to indicate the level of device that your project
is targeting, you can use a new AndroidManifest.xml element to specify hardware that is
required for your application to run properly. You can add one or more <uses-
configuration> elements inside the <manifest> element. Each <uses-configuration>
element specifies one valid configuration of hardware with which your application will
work. At the present time, there are five possible hardware requirements you can specify
this way:

B android:reqFiveWayNav: Indicates you need a five-way navigation
pointing device of some form (e.g., android:reqFivelWayNav = "true").

353

CHAPTER 37: Dealing with Devices

B android:regqNavigation: Restricts the five-way navigation pointing
device to a specific type (e.g., android:reqNavigation = "trackball").

B android:reqHardKeyboard: Specifies if a hardware (physical) keyboard
is required (e.g., android:reqHardKeyboard = "true").

B android:regKeyboardType: Used in conjunction with
android:reqHardKeyboard, indicates a specific type of hardware
keyboard is required (e.g., android:reqKeyboardType = "querty").

B android:reqTouchScreen: Indicates what type of touchscreen is
required, if any (e.g., android:reqTouchScreen = "finger").

Starting in Android 1.6, there is a similar manifest element, <uses-feature>, which is
designed to document requirements an application has for other optional features on
Android devices. Specifically, the following attributes can be placed in a <uses-feature>
element:

B android:glEsVersion: Indicates that your application requires
OpenGL, where the value of the attribute indicates the level of OpenGL
support (e.g., 0x00010002 for OpenGL 1.2 or higher).

B android:name = "android.hardware.camera": Indicates that your
application needs a camera.

B android:name = "android.hardware.camera.autofocus": Indicates that
your application specifically needs an autofocus camera.

Button, Button, Who’s Got the Button?

There are few, if any, requirements on device manufacturers as to what buttons are
available as physical buttons, versus on-screen soft keys, versus simply not being
available on a given Android device.

For example, the HTC Dream (a.k.a., T-Mobile G1) has call, end call, home, back, menu,
and camera buttons, along with a volume control and a dedicated search button on its
QWERTY keyboard. The HTC Magic (a.k.a., T-Mobile myTouch 3G) lacks the camera
button, putting the search button in its place. The Archos 5 Android Internet Tablet has
no hardware buttons at all beyond the volume control, with soft keys for home, back,
and menu.

Therefore, you should be careful about assuming the existence or placement of
hardware buttons. Provide alternative means of performing operations that you tie to
buttons. For example, if you override the volume control to serve as page-up/page-
down keys, make sure there is some other way for the user to move between pages.

CHAPTER 37: Dealing with Devices

A Guaranteed Market

As mentioned in the introduction to the chapter, Android is open source. Specifically, it
is mostly available under the Apache Software License 2.0. This license places few
restrictions on device manufacturers. Therefore, it is very possible for a device
manufacturer to create a device that, frankly, does not run Android very well. It might
work fine for standard applications shipped on the device but do a poor job of handling
third-party applications, like the ones you might write.

To help address this, Google has some applications, such as the Android Market, that it
has not released as open source. While these applications are available to device
manufacturers, the devices that run the Android Market are tested first, to help ensure
that a user’s experience with the device will be reasonable.

A Google engineer cited one case where a device manufacturer was readying a phone
that had a QVGA screen, before the release of Android 1.6 where QVGA support was
officially added to the platform. While that manufacturer had arranged for the built-in
applications to work acceptably on the smaller-resolution screen, third-party
applications were a mess. Google apparently declined to provide the Android Market to
the manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing a distribution
means for your applications, also serves as a bit of a seal of approval that the device
should support well-written third-party applications.

The Down and Dirty Details

Unfortunately, the Android Market does not guarantee problem-free deployment on
Market-enabled devices, nor does it prevent manufacturers from shipping Android
devices without going through the Market. Inevitably, devices will have some quirks or
idiosyncrasies that might have a negative impact on your applications. The following is a
selection of some Android devices, in the order of their public availability, and ways that
they differ from more standard devices.

Archos 5 Android Internet Tablet

The Archos 5 Android Internet Tablet is the first mainstream device to be based purely
on the Android open source project. Unlike the phones from HTC, Motorola, and others,
the Archos 5 is not a Google Experience device and does not have the Android Market,
Google Maps, or other proprietary Google applications.

The Archos 5 is a WVGA device, but shipped with Android 1.5. Hence, an original
Archos 5 will not honor the new -large resource set designation as documented in
Chapter 36. Given that this device is not selling in major quantities, you may wind up
with it simply having an unoptimized Ul until the Archos 5 has Android 1.6 support.

CHAPTER 37: Dealing with Devices

The Archos 5’s touchscreen is resistive, not capacitive. This means users will be using
fingernails or styli to manipulate the screen, more so than fingertips. Bear this in mind
when designing finger-friendly Uls.

The Archos 5, as of firmware 1.1.01, returned a somewhat invalid value for ANDROID ID (a
unique ID assigned to each Android device). ANDROID ID is null in the emulator and is
supposed to be a hex string in devices. On the Archos 5, ANRDROID ID is a non-null but
non-hex string. If all you care about is null versus non-null, then the Archos 5 is fine; if
you need a hex value for ANDROID ID, you will experience some problems.

Since the Archos 5 is not a phone, all telephony-related features, such as dialing via
ACTION_DIAL, are unavailable. Similarly, since the Archos 5 lacks a camera, all camera-
related features are unavailable. As noted earlier, the Archos 5 lacks Google Maps, the
Android Market, and other proprietary Google applications.

Also, the Archos IMEI value is fake, since it is not a phone.

Motorola CLIQ/DEXT

The Motorola CLIQ (or DEXT, as it is known outside the United States) is an HVGA
device, originally shipping with Android 1.5.

The CLIQ has a D-pad for non-touchscreen navigation. However, the D-pad is on a side-
slider QWERTY keyboard, and as such, the D-pad is not available to users when the
device is in portrait mode, unless you force portrait mode for your activity via the
manifest and force users to use their CLIQ with the keyboard slid out. Do not write
applications that assume the D-pad is always available.

The CLIQ also ships with MOTOBLUR, Motorola’s social media presentation layer. This
means that the home application, contacts, and select other features that Android
normally ships with have been replaced by MOTOBLUR-specific features. This should
not cause too many problems if you stick to the SDK. The one area that does get a bit
interesting is that not all MOTOBLUR contacts will be available to you via the Android
Contacts content provider. For example, Facebook contacts are available to
MOTOBLUR, but not to third-party applications, perhaps for licensing reasons. This
situation may change when the CLIQ is updated to the new ContactsContract system
with Android 2.0.1 and beyond.

Motorola DROID/Milestone

The Motorola DROID (or Milestone, as it is known outside the United States) is a
WVGAB854 device, originally shipping with Android 2.0, though most of these devices will
now be running Android 2.0.1.

The DROID, like the CLIQ, has a D-pad on the side-slider keyboard, meaning the D-pad is
not readily available to users when the device is in portrait mode.

Because the DROID has a WVGA854 screen on a normal phone-sized device, Android will
consider the DROID to have a high-density screen, so -hdpi resource sets will be used.

CHAPTER 37: Dealing with Devices

Google/HTC Nexus One

The Nexus One—built by HTC and sold by Google—is a WVGAS800 device, originally
shipping with Android 2.1.

Like the DROID, the Nexus One will be a high-density (-hdpi) device.

Motorola BACKFLIP

The Motorola BACKFLIP has yet another take on pointing devices. Rather than a
trackball or a D-pad, the BACKFLIP has two non-touchscreen navigation options:

B The QWERTY keyboard has PC-style arrow keys, which should
generate standard DPAD key events.

B The BACKFLIP touchpad on the reverse side of the touchscreen will
generate trackball events (or DPAD key events, if the trackball events
are not consumed).

Chapter

Handling Platform
Changes

Android will continue to rapidly evolve over the next few years. Perhaps, in time, the rate
of change will decline some. However, for the here and now, you should assume that
there will be significant Android releases every 6 to 12 months, and changes to the
lineup of possible Android hardware on an ongoing basis. So, while right now, the focus
of Android is phones, soon you will see Android netbooks, Android tablets, Android
media players, and so on.

Many of these changes will have little impact on your existing code. However, some will
necessitate at least new rounds of testing for your applications, and perhaps changes to
those applications based on the test results.

This chapter covers a number of the areas that may cause you trouble in the future as
Android evolves, with some suggestions on how to deal with them.

Brand Management

As of the time of this writing, the Android devices that have been released have been
Google Experience phones. This means they get the standard Android interface —the
things you find in the emulator—along with the standard roster of add-on applications
like Google Maps and Gmail. In turn, manufacturers are allowed to put the “with Google”
brand on the device. But not all devices will be this way.

Some manufacturers will take Android as a base and change what is included, adding
some of their own applications and perhaps even changing the look and feel (menu
icons, home screen structure, etc.).

Others may use Android solely from the open source repository, and while they may
ship with the standard look and feel, they will lack the commercial add-on applications.

359

CHAPTER 38: Handling Platform Changes

Even today, some devices have a different mix of applications based on where they are
distributed. US recipients of the T-Mobile G1 have an Amazon MP3 store application;
not all international recipients do.

If your application is independent of all of this, then it should run anywhere. However, if
your application code or documentation assumes the existence of Google Maps, Gmail,
Amazon MP3 store, and the like, you may run into trouble. Be certain to test your
application thoroughly in environments where these applications are not available.

More Things That Make You Go Boom

Most of the items noted in the previous section focused on hardware changes. Now,
let’s examine some ways in which Android can cause difficulty to you when the
operating system itself changes.

View Hierarchy

Android is not designed to handle arbitrarily complicated view hierarchies. Here, view
hierarchy means containers holding containers holding containers holding widgets.

The Hierarchy Viewer program, described in Chapter 35, depicts such view hierarchies
well, as shown in Figure 38-1. In this example, you see a five-layer-deep hierarchy,
because the longest chain of containers and widgets is five (from
PhoneWindow$DecorView through to Button).

Android has always had limits as to how deep the view hierarchy can be. In Android 1.5,
though, the limit was reduced, so some applications that worked fine on Android 1.1
would crash with a StackOverflowException in the newer Android. This, of course, was
frustrating to developers who never realized there was an issue with view hierarchy
depth and then got caught by this change.

The lessons to take from this are as follows:

B Keep your view hierarchies shallow. Once you drift into double-digit
depth, you are increasingly likely to run out of stack space.

B If you encounter a StackOverflowException, and the stack trace looks
like it is somewhere in the middle of drawing your widgets, your view
hierarchy is probably too complex.

CHAPTER 38: Handling Platform Changes

File View Hierarchy Server
Start Server | Stop Sewer“ Refresh Windows Qevices” Load Yiew Hierarchy | Display View | Invalidate | Request Layout
Property [Value
PhoneWindow$DecorView
@4336abd8
NO_ID
LinearLayout
@4336b580
NO_ID
FrameLayout FrameLayout - ‘ J
43360808 4336000 | On White | On Black []Show Extras
NO_ID id/content -
TextView LinearLayout
24336400 @4336d680
id/title NO_ID
/ \ < Ii I»]
Button EditText
@4336db1E 24336ee88
id/close id/editor
) 1 200% 8 views

Figure 38-1. Hierarchy Viewer Layout view

Changing Resources

The core Android team may change resources with an Android upgrade, and those may
have unexpected effects in your application. For example, in Android 1.5, they changed
the stock Button background, to allow for smaller buttons. However, applications that
implicitly relied on the former larger minimum size wound up breaking and needing
some Ul adjustment.

Similarly, applications can reuse public resources, such as icons, available inside of
Android proper. While doing so saves some storage space, many of these resources are
public by necessity and are not considered part of the SDK. For example, hardware
manufacturers may change the icons to fit some alternative Ul look and feel. Relying on
the existing ones to always look as they do is a bit dangerous. You are better served
copying those resources out of the Android open source project
(http://source.android.com/) into your own code base.

CHAPTER 38: Handling Platform Changes

Handling APl Changes

The core Android team has generally done a good job of keeping APIs stable, and
supporting a deprecation model when they change APIs. In Android, being deprecated
does not mean it is going away —just that its continued use is discouraged. And, of
course, new APls are released with every new Android update. Changes to the APIs are
well documented with each release via an API differences report.

Unfortunately, the Android Market (the primary distribution channel for Android
applications) allows you to upload only one APK file for each application. Hence, you
need that one APK file to deal with as many Android versions as possible. Many times,
your code will “just work” and not require changing. Other times, though, you will need
to make adjustments, particularly if you want to support new APIs on new versions while
not breaking old versions. Let’s examine some techniques for handling these cases.

Detecting the Version

If you just want to take different branches in your code based on version, the easiest
thing to do is inspect android.os.VERSION.SDK INT. This public static integer value will
reflect the same API level as you use when creating AVDs and specifying API levels in
the manifest. So, you can compare that value to, say, android.os.VERSION CODES.DONUT
to see whether you are running on Android 1.6 or newer.

Wrapping the API

So long as the APIs you try to use exist across all Android versions you are supporting,
just branching may be sufficient. Where things get troublesome is when the APIs
change, such as when there are new parameters to methods, new methods, or even
new classes. You need code that will work regardless of Android version, yet lets you
take advantage of new APIs where available.

There is a recommended trick for dealing with this: reflection, plus a wee bit of caching.

For example, back in Chapter 8, we used getTag() and setTag() to associate an
arbitrary object with a View. Specifically, we used this to associate a wrapper object that
would lazy-find all necessary widgets. You also learned that about the new versions of
getTag() and setTag() that are indexed, taking a resource ID as a parameter.

However, these new indexed methods do not exist on Android 1.5. If you want to use
this new technique, you need to wait until you are willing to support only Android 1.6
and beyond, or you will need to use reflection. Specifically, on Android 1.5, you could
associate an ArrayList<Object> as the tag, and have your own getTag()/setTag() pair
that takes the index.

This seems straightforward enough, so let’s look at APIVersions/Tagger. Our activity has
a simple layout, with just a TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearlLayout xmlns:android="http://schemas.android.com/apk/res/android"

CHAPTER 38: Handling Platform Changes

android:orientation="vertical"
android:layout width="fill parent"”
android:layout_height="fill parent”

>

<TextView android:id="@+id/test"
android:layout_width="fill parent"
android:layout_height="wrap_content"
/>

</LinearlLayout>

The source code to our Tagger activity looks at the API version we are running, and
routes our getTag() and setTag() operations to either the native indexed one (for
Android 1.6 and above) or to the original nonindexed getTag() and setTag(), where we
use a HashMap to track all of the individual indexed objects:

package com.commonsware.android.api.tag;

import android.app.Activity;
import android.os.Build;

import android.os.Bundle;
import android.util.Log;

import android.view.View;
import android.widget.TextView;
import java.util.HashMap;
import java.util.Date;

public class Tagger extends Activity {
private static final String LOG_KEY="Tagger";

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

TextView view=(TextView)findViewByld(R.id.test);
setTag(view, R.id.test, new Date());

view.setText(getTag(view, R.id.test).toString());
}

public void setTag(View v, int key, Object value) {
if (Build.VERSION.SDK INT>=Build.VERSION CODES.DONUT) {
v.setTag(key, value);

else {
HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

if (meta==null) {
meta=new HashMap<Integer, Object>();
}

meta.put(key, value);

CHAPTER 38: Handling Platform Changes

public Object getTag(View v, int key) {
Object result=null;

if (Build.VERSION.SDK INT>=Build.VERSION CODES.DONUT) {
result=v.getTag(key);

else {
HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

if (meta==null) {
meta=new HashMap<Integer, Object>();

result=meta.get(key);

return(result);

}
}

This looks great, and if we build it and deploy it on a Android 1.6 or greater emulator or
device, it runs like a champ, showing the current time in the activity.

If we build it and deploy it on an Android 1.5 emulator or device, and try to run it it
blows up with a VerifyError. VerifyError, in this case, basically means we are referring
to things that do not exist in our version of Android, specifically:

B We are referring to SDK_INT, which was not introduced until Android
1.6.

B We are referring to the indexed versions of getTag() and setTag().
Even though we will not execute that code, the classloader still wants
to resolve those methods and fails.

So, we need to use some reflection.

Take a look at APIVersions/Tagger2. This is the same project with the same layout, but
we have a more elaborate version of the Java source:

package com.commonsware.android.api.tag;

import android.app.Activity;
import android.os.Build;

import android.os.Bundle;

import android.util.log;

import android.view.View;

import android.widget.TextView;
import java.lang.reflect.Method;
import java.util.HashMap;

import java.util.Date;

public class Tagger extends Activity {
private static final String LOG_KEY="Tagger";
private static Method _setTag=null;
private static Method _getTag=null;

CHAPTER 38: Handling Platform Changes

static {
int sdk=new Integer(Build.VERSION.SDK).intValue();

if (sdk>=4) {
try {
_setTag=View.class.getMethod("setTag",
new Class[] {Integer.TYPE,
Object.class});

_getTag=View.class.getMethod("getTag",
new Class[] {Integer.TYPE});

}
catch (Throwable t) {
Log.e(LOG_KEY, "Could not initialize 1.6 accessors", t);

}
};

@0verride

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

TextView view=(TextView)findViewByld(R.id.test);
setTag(view, R.id.test, new Date());

view.setText(getTag(view, R.id.test).toString());

public void setTag(View v, int key, Object value) {
if (_setTag!=null) {
try {
_setTag.invoke(v, key, value);

catch (Throwable t) {
Log.e(LOG_KEY, "Could not use 1.6 setTag()", t);

else {
HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

if (meta==null) {

meta=new HashMap<Integer, Object>();
v.setTag(meta);

meta.put(key, value);

}

public Object getTag(View v, int key) {
Object result=null;

if (_getTag!=null) {
try {

CHAPTER 38: Handling Platform Changes

result=_getTag.invoke(v, key);

catch (Throwable t) {
Log.e(LOG_KEY, "Could not use 1.6 getTag()", t);

else {
HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

if (meta==null) {
meta=new HashMap<Integer, Object>();
v.setTag(meta);

result=meta.get(key);

return(result);

}

First, when the class is initially loaded, the static initialization routines run. Here, we see
what version of Android we are running, using the old SDK String instead of the new
SDK_INT integer. If we are on Android 1.6 or newer, we use reflection to attempt to find
the indexed getTag() and setTag() methods, and we cache those results. Since those
methods should not change during the lifetime of our application, it is safe to cache
them in static variables.

Then, when it comes time to actually use getTag() or setTag(), we look to see if the
cached Method objects exist or are null. If they are null, we assume we need to use the
old versions of those methods. If the Method objects exist, we use them instead, to take
advantage of the native indexed versions.

This version of the application works fine on Android 1.5 and above. Android 1.6 and
above uses the built-in indexed methods, and Android 1.5 uses our fake version of the
indexed methods.

There is a little extra overhead for going through the Method-based reflection, but it may
be worth it in some cases, to access APlIs that exist in newer versions of Android, rather
than restricting ourselves to only the older APIs.. There are even ways to use this
technique for cases where entire classes are new to newer Android versions (see
http://android-developers.blogspot.com/2009/04/backward-compatibility-for-
android.html).

Chapter

Where Do We Go from
Here?

Obviously, this book does not cover everything. And while your main resource (besides
the book) is the Android SDK documentation, you are likely to need more information.

Searching online for “android” and a class name is a good way to turn up tutorials that
reference a given Android class. However, bear in mind that tutorials written before late
August 2008 are probably written for the M5 SDK and, as such, will require considerable
adjustment to work properly in current SDKs.

Beyond randomly hunting around for tutorials, you can use some of the resources
outlined in this chapter.

Questions—Sometimes with Answers

The official places to get assistance with Android are the Android Google Groups. With
respect to the SDK, there are three to consider:

B android-beginners, a great place to ask entry-level questions

B android-developers, best suited for more complicated questions or
ones that delve into less-used portions of the SDK

B android-discuss, designed for free-form discussion of anything
Android-related, not necessarily for programming questions and
answers

You might also consider these resources:

B The Android tutorials and programming forums over at
http://anddev.org

B The Open Mob for Android wiki (http://wiki.andmob.org/)

B The #android IRC channel on freenode

367

CHAPTER 39: Where Do We Go from Here?

B StackOverflow’'s android and android-sdk tags

B The Android board on JavaRanch

Heading to the Source

The source code to Android is now available. Mostly, this is for people looking to
enhance, improve, or otherwise fuss with the insides of the Android operating system.
But it is possible that you will find the answers you seek in that code, particularly if you
want to see how some built-in Android component does its thing.

The source code and related resources can be found at http://source.android.com.
Here, you can do the following:

B Download or browse the source code.
B File bug reports against the operating system itself.

B Submit patches and learn about the process for how such patches are
evaluated and approved.

B Join a separate set of Google Groups for Android platform
development.

Rather than download the multigigabyte Android source code snapshot, you may wish
to use Google Code Search instead (http://www.google.com/codesearch). Just add the
android:package constraint to your search query, and it will search only in Android and
related projects.

Getting Your News Fix

Ed Burnette, a nice guy who happened to write his own Android book, is also the
manager of Planet Android (http://www.planetandroid.com/), a feed aggregator for a
number of Android-related blogs. Subscribing to the planet’s feed will let you monitor
Android-related blog posts, though not exclusively related to programming.

To try to focus more on programming-related, Android-referencing blog posts, you can
search DZone for “android” and subscribe to a feed based on that search.

Index

" Symbols and
Numerics

@ symbol
entering e-mail address, 120
XML layout file, 25, 27

@+id notation, 47

@id notation, 48

12- and 24-hour modes, 95

A

aapt tool, 23
AbsolutelLayout container, 116, 332
accelerometers
handling iPhone rotation, 196
ACCESS_COARSE_LOCATION, 303
accessing files see file access
accessory button, EditText, 121
ACTION_DIAL
making phone call, 312
ACTION_EDIT, 172
ACTION_PICK
handling screen rotation, 188
intents, 172
getting Uri handles, 260
starting intents, 179
ACTION_VIEW, 172, 178
actions, intents, 172
active state, activities, 167
handling screen rotation, 185
activities, 3, 19, 177
attaching widgets to, 23
binding to services, 286
blocking rotation of, 193
building and running, 20-22
custom handling of screen rotation, 191
embedding second activity in main
activity Ul, 351
getPreferences method, 213

getSharedPreferences method, 213
handling screen rotation, 185
invoking onCreate method, 19
killing off activity as nonresponsive, 155
knowing, or not, when launched activity
ends, 177
launching, 177-181
life cycle, 167
not rotating activities, 193-195
peer activities, 178, 179
permissions, 277
preferences, 213
relative importance of, 167
replacing tabs with, 340
Schroedinger’s Activity, 167
starting, 178-181
states, 167
saving application-instance state,
169
transitions between, 168-169
subactivities, 177
supplying fully qualified class name of
main activity, 7
TabActivity, 103
trapping button clicks within, 19
Activity class
creating Android projects, 7
runOnUiThread method, 159
tabbed browsing, 182
activity classes
ListActivity, 60, 61
TabActivity, 103
MapActivity, 302, 303
activity element, 10, 173
activityCreator script, 173
ActivityManager, 155
adapters, 59-60
ArrayAdapter, 60, 76, 84
controlling appearance of rows, 62
CursorAdapter, 60, 94
ListAdapter, 89, 90, 93

369

ListView with icons and text, 76, 77, 78
setAdapter method, 60, 64, 67, 70
setListAdapter method, 61
setting list adapter, 61
SimpleAdapter, 60
SimpleCursorAdapter, 261, 262
AdapterWrapper class, 90
adb logcat command, 322
adb pull command, 235, 323
adb push command, 236, 323
adb shell command, 235, 324
Add Constant dialog, 226
add method, options menu, 126
addld method, Uri class, 260
addMenu method, 127
addPreferencesFromResource method, 215
addProximityAlert method, 298
AddStringTask class, 161-164
class declaration, 163
dolnBackground method, 163
execute method, 164
onPostExecute method, 164
onProgressUpdate method, 163
addSubMenu method, 127
addTab method, 105
AlertDialog, 150
alerts, 150
see also notifications
MessageDemo example, 151-153
alignment
widgets, 47
alignment, RelativeLayout container
layout_alignParentXyz properties, 47
layout_alignXyz properties, 48
alphabeticShortcut attribute, item element
describing menus via XML files, 135
AnalogClock widget, 99
Android
accessing binary data, 264
accessing REST-style web services, 253
building content provider, 265-274
creating card image, 328-329
file access, 237
Google Maps, 302
handling API changes, 362-366
handling multiple screen sizes, 331-351
handling platform changes, 359-366
handling work on Ul/background
threads, 159-165
indicating API level to, 5
international deployment, 140

invoking onClick method, 19
Java using Dalvik VM, 246
making friendly background threads, 155
objective of, 2
online help, 367
operating system changes, 360-361
permission system, 275
preferences framework, 214-215, 219-
220
source code, 368
SQLite in runtime, 227
states, transitions between, 168-169
storage, 237
targets, 12-15
using BeanShell on, 247
using Java third-party libraries, 245
WebKit browser, 141
when Android dislikes font, 139
Android adapters see adapters
Android applications see applications
Android AVD Manager see AVD Manager
Android browser, 143
Android build system, 6
creating R.java, 7
android command
building and running activities, 20
using AVD Manager, 13
android create avd command, 13
android create project command, 6, 17
Android devices see devices
Android emulator see emulators
Android Google Groups, 367
Android handsets
handling screen rotation, 185
Android help, 367
Android launcher see launcher
android list targets command, 13
Android map activity, 181
Android Market, 355
APK files, 362
avoiding for user testing, 339
first child of manifest bug, 12
minSdkVersion attribute, 11
versions of Android affecting, 5
Android package files see APK files
Android packaging tool, 20-22
Android programming, 1, 19
Android projects see projects
Android Scripting Environment (ASE), 251
Android SDK, 315
documentation, 367

Android technology, future uses of, 1
Android Ul architecture, 177
Android Virtual Device see AVD
Android widgets see widgets
ANDROID_ID
Archos 5 Android Internet Tablet, 356
android:id attribute, XML, 25
android:layout see layout properties
android:text attribute, XML, 25
AndroidManifest.xml file, 5, 6, 8-12
adding service to, 281
allowing users to set preferences, 215
blocking rotation of activities, 193
creating intents, 178
custom handling of screen rotation, 191
declaring intent receivers, 174
enforcing permissions via, 277-278
EU4You application, 340
getting map into application, 303
intent-filter elements, adding, 173
minSdkVersion attribute, 11
permission element, 277
requesting permission to access
Internet, 142
requesting permission to use data, 275
securing application using permissions,
277
specifying hardware requirements, 353
supports-screens element, 334
updating for content provider, 273
uses-configuration element, 353
uses-feature element, 354
uses-permission element, 275
uses-sdk element, 11
versionCode attribute, 12
versionName attribute, 12
animateXyz methods, SlidingDrawer, 115
ant build tool, 6, 20-22
Ants
using Java third-party libraries, 246
anyDensity attribute, supports-screens, 335
ap file, bin folder, 8
Apache HttpClient, 254-255
Apache HttpComponents, 253
Apache Software License 2.0, 355
API keys, generating, 308, 309
API level, indicating, 5
apiKey attribute, 302, 309
APls
deprecated API, 362
handling API changes, 362-366

wrapping API, 362-366
APK (Android package) files, 5
Android Market, 362
static application reference data, 237
apk file, bin folder, 8
application element, 10
updating manifest for content provider,
273
application menus see options menu
application-level preferences, 213
applications
see also projects
access to external storage, 244
building, 5-15
components used in, 2
enforcing permissions via manifest, 277-
278
explicitly specifying hardware
requirements, 353-354
generating API keys, 308
getting map into, 302
handling platform changes, 359-366
making data available, 265
manifest file, 8
permissions, 275
preferences, 213
requesting permission to use data, 275
saving instance state, 169
securing application using permissions,
277
skeleton application, creating, 17
starter manifest, 8
static reference data, 237-240
table of contents, 5
testing with emulator, 5
writeable data files, 240-244
applications, list of
see also projects, list of
AsyncDemo, 162
Browser1, 141, 143
Browser2, 144
Browser3, 145, 146
Constants, 226
ConstantsPlus, 261, 265
Dialer, 312
DialerDemo, 313
EU4You, 340, 346, 348, 349
FontSampler, 137, 139
HandlerDemo, 158
ImagesDemo, 204
IntentTabDemo, 184

LaunchDemo, 181
MenuDemo, 130
NooYawk, 302
ReadWrite, 315
ReadWriteFileDemo, 243
RotationFour, 193, 194
RotationOne, 186, 188, 189
RotationThree, 191
RotationTwo, 190
StaticFileDemo, 240
StringsDemo, 201
WeatherDemo, 257
WeatherPlus, 285
XMLResourceDemo, 206
applyFormat method, string, 201
applyMenuChoice method, 130
Archos 5 Android Internet Tablet, 355
ANDROID_ID, 356
buttons, 354
ArrayAdapter class, 60
combining RatingBar with ListView, 84,
86
controlling appearance of rows, 62
creating views, 68
ListView with icons and text, 76
arrays, resources, 208
assets folder
Android project root directory, 7
using different fonts, 138
AsyncDemo application, 162
AsyncTask class, 159-161
see also AddStringTask class
broadcast intents, 283, 284
creating subclass of, 160
doInBackground method, 160, 163
generics, 160
handling work on Ul/background
threads, 159-165
onPostExecute method, 161, 164
onPreExecute method, 161
onProgressUpdate method, 161, 163
overrideable methods, 160
publishProgress method, 161, 163, 164
varargs, 160
authentication
launching activities, 177
authorities property
updating manifest for content provider,
273
authority, content Uri, 266
auto_fit value, numColumns, GridView, 66

AutoCompleteTextView widget, 69-72
autocorrection
entering text on soft keyboard, 120
automatic flipping, 113-114
autoText property, EditText, 32
AVD (Android Virtual Device)
adding AVD through GUI, 13
Google Maps API, 302
showing list of available AVDs, 13
testing applications with emulator, 5
using Android emulator, 12-15
AVD Manager
adjusting density, 338
building and running activities, 20
Launch Options dialog, 338
showing list of available AVDs, 13
using, 13

BACKFLIP see Motorola BACKFLIP
background attribute, widgets, 38, 42
background threads, 155
avoiding sluggish/pointless code, 165
communicating safely with, 165
communicating with Handler, 155
dolnBackground method, 160
encountering error during processing,
165
handling work on, 159-165
interacting with Ul on Ul thread, 155
making Android-friendly, 155
modifying Ul from, 155
ProgressBar widget, 101
risk that activity is killed off, 165
users interacting with activity’s Ul, 165
base Uri, content providers, 259, 260
BaseColumns class, 272
BeanShell scripting, 246-250
beforeTextChanged method, 71
bin folder
Android project root directory, 7
subdirectories, 8
binary large objects (BLOBs), 264
BIND_AUTO_CREATE flag, 286
Binder class, 281
binding
communicating with services, 286
service exposing API, 281
bindService method, 286, 287
bindView method, CursorAdapter, 94

bitmaps, 334
blinking light
hardware notifications, 290
BLOBs (binary large objects), 264
box model, 39
BoxLayout, Java/Swing, 39
broadcast intents
activity receiving/using broadcast, 287-
288
BroadcastReceiver interface, 174
enforcing permissions, 278
services alerting activities, 283-284
BROADCAST_ACTION, intents, 284
BroadcastReceiver interface
activity receiving/using broadcast, 288
intents, 174, 175
onReceive method, 174
Browser1 application, 141, 143
Browser2 application, 144
Browser3 application, 145, 146
browsers see web browsers
BrowserTab activity, 183
browsing
tabbed browsing, 182-184
build system, Android, 6
build.xml file, 6
Builder class, 150
MessageDemo example, 152
builders, SQLite
SQLiteQueryBuilder class, 233-234
buildForecasts method
W3C DOM parser, 255
buildQuery method, SQLite, 234
bulkinsert method, content providers, 263
bundles
handling screen rotation, 185, 191
saving application-instance state, 170
starting intents, 179
button clicks
invoking onClick method, 19
Button widget, 30-31
additional properties/methods, 37-38
XML layout file, 24
buttons
Android operating system changes, 361
hardware devices, 354
taking advantage of larger screens, 339

we

Calendar object, updating, 97

calendars

READ_CALENDAR permission, 276

WRITE_CALENDAR permission, 276
CALL_STATE_XYZ values,

TelephonyManager, 311

callbacks

binding to services, 286

services alerting activities, 283

transitions between states, 168-169
calls see phone calls
camera

specifying device requirements, 354
canGoBack method, WebView, 145
canGoBackOrForward method, 145
canGoForward method, WebView, 145
capitalize property, EditText, 32
card image

creating, 328-329

emulator using SD card image, 329
category, Intent objects, 172
cell tower triangulation, 295
cells, TableLayout container, 52
check method, RadioGroup, 36, 37
CheckBox widget, 33-35

additional properties/methods, 37-38

disabling widgets based on, 38
checkCallingPermission method, 278
choice identifier, menus, 126
Chronometer, 100
classes

Activity, 7

AddStringTask, 161-164

AnalogClock, 99

ArrayAdapter, 60

AsyncTask, 159-161

AutoCompleteTextView, 69-72

Button, 30-31

CheckBox, 33-35

ColorStatelList, 38

CompoundButton, 36

ConstantsBrowser, 261

CursorAdapter, 60

DatabaseHelper, 228

DatePicker, 95

DigitalClock, 99

EditText, 32-33

Gallery, 72

GridView, 66-69

Handler, 155-158

HashMap, 363

ImageButton, 31

ImageView, 31

InputStream, 237, 239, 240

ListActivity, 60, 61

ListView, 60-63, 75-94

MapActivity, 302, 303

NotificationManager, 289, 292

OutputStream, 240

Overlay, 305, 307

ProgressBar, 101

R class, 25

RadioButton, 35-37

RadioGroup, 36

RatingBar, 84-94

SeekBar, 101

SimpleAdapter, 60

Spinner, 63-66

supplying fully qualified class name for

main activity, 7

TabActivity, 103

TabSpec, 104, 105

TabWidget, 103, 106

TextView, 29-30

TimePicker, 95

Toast, 150

WebSettings, 147

WebView, 141
classes folder (bin/classes/), 8
classes.dex file (bin/classes.dex), 8
clear method, preferences, 214
clearCache method, WebView, 145
clearCheck method, RadioGroup, 36
clearHistory method, WebView, 145
clickable attribute

getting map into application, 302
CLIQ see Motorola CLIQ/DEXT
clocks

AnalogClock/DigitalClock widgets, 99
close method, cursors, SQLite, 234
close method, SlidingDrawer, 115
collapseColumns property, TableLayout, 53
collection Uri, content providers, 259
color attributes, widgets, 38
colors

hardware notifications, 290

resources, 206, 207-208

textColor property, TextView, 29
ColorStatelList class, 38
columns, TableLayout container

collapseColumns property, 53

determining number of columns, 52

layout_column property, 52

layout_span property, 52
shrinkColumns property, 53
stretchColumns property, 53
columnWidth property, GridView, 66, 67
command line
creating projects from, 6
commit method, preferences, 214
compatibility mode
automatically scaling Ul to screen size,
334
screen sizes and resolutions, 331, 332
completionThreshold property,
AutoCompleteTextView, 70
components, Intent objects, 172
CompoundButton class, 36
configChanges entry, android
blocking rotation of activities, 195
custom handling of screen rotation, 191
Configuration object
finding screen size class, 336
console interfaces
using Java third-party libraries, 246
Constants application, 226
ConstantsBrowser
creating SimpleCursorAdapter, 262
inserting constant into content providers,
263
onCreate method, 262
querying content provider, 261
showing list of physical constants, 263
ConstantsPlus application, 265
querying content provider, 261
constraints, SQLite, 227
contacts
handling phone calls, 311
MOTOBLUR, 356
READ_CONTACTS permission, 276
WRITE_CONTACTS permission, 276
containers, 39
AbsoluteLayout, 116
adding tabs during runtime, 106
containing SlidingDrawer, 114
FramelLayout, 103, 104
LinearLayout, 39-45
positioning widgets relative to, 47
RelativeLayout, 46-51
ScrollView, 54-57, 123
SlidingDrawer, 114-116
TabHost, 102, 103, 104
TableLayout, 51-54, 119
TabWidget, 103, 104, 106

ViewFlipper, 109-114
content
setContentView method, 25, 26
content providers
accessing binary data, 264
accessing data inside, 265
accessing query results, 261
Android application components, 3
AndroidManifest.xml file, 10
base Uri of, 259
building, 265-274
content Uri, 265-266
creating provider class, 267-272
declaring properties, 272
delete method, 271
getType method, 271
insert method, 269
MIME types, 266
notify-on-change support, 273
onCreate method, 267
query method, 267-269
supplying Uri, 272
update method, 270
updating manifest, 273
ConstantsPlus application, 261, 265
construction of content Uri, 259
data encapsulation, 259
deleting data from, 264
description, 259
getting Uri handles, 260
inserting data into, 263
permissions, 276, 278
properties for, 261
querying base Uri, 260
using SQLiteQueryBuilder, 233
content Uri, 265-266
accessing binary data, 264
construction of, 259
Content Uri templates
intent routing, 172
contentintent field, notifications, 290
ContentProvider class, 267
context menus, 125, 127
MenuDemo application, 130, 132
convertView
combining RatingBar with ListView, 86
ListView with icons and text, 80-81, 84
CREATE INDEX statement, SQLite, 230
create method, AlertDialog, 150
Create New AVD dialog, 13
CREATE TABLE statement, SQLite, 230

createFromAsset method, Typeface class,
139
createFromFile method, Typeface class, 140
createTabContent method, 106
creating activities see onCreate method
Criteria object
requirements for LocationProvider, 296
CRUD (create, read, update, delete)
operations, 259
Cursor object
managedQuery method returning, 261
SimpleCursorAdapter class, 261, 262
Cursor object, SQLite, 234-235
creating custom Cursor subclass, 235
rawQuery method returning, 232
CursorAdapter class, 60
methods, 94

Dalvik Debug Monitor Service see DDMS
Dalvik virtual machine (VM), 245
Android with Java using, 246
just-in-time (JIT) compilation, 249
string formats, 198
using Java third-party libraries, 245
data
content provider abstraction of, 3
intents, 172
making available to other applications,
265
requesting permission to use, 275
using tabs to hold information, 102
data connection type, finding, 312
data encapsulation, content providers, 259
data type path, content Uri, 266
data typing, SQLite, 227
DatabaseHelper class, 228
onCreate method, 230
databases
Constants application, 226
getting database off device, 235
inspecting and manipulating contents,
235
SQLite, 225, 227-236
creating database, 227-230
storing modified database on device,
236
date
entering on soft keyboard, 120
inputting, 95

DateFormat formatter, 97
DatePicker widget, 95
DatePickerDialog, 95, 97
days of month
DatePicker/DatePickerDialog, 95
DDMS (Dalvik Debug Monitor Service), 299,
321-327
File Explorer, 323
File Manager, 235
incoming SMS messages, 327-328
launching, 321
location updates, 325
logging, 322
screen capture, 324
screenshots, 324
simulating incoming calls, 326-327
Telephony Actions group, 326
with emulator selected, 322
ddms program, 321
dead state, activities, 168
debug certificate, MD5 digest of, 309
debug key, apk file, 8
decimal numeric input
entering on soft keyboard, 119, 121
default.properties file, 7
DejaVu free fonts, 140
delete method, ContentProvider, 264
building content provider, 271
delete method, SQLite
managing data in tables, 231
density see screen density
density-based resource sets
screen size/density independence, 335
density-independent pixels, 333
deprecated API, 362
destroying activities see onDestroy method
development features, Android devices, 3
development tools
Android SDK, 315
Dalvik Debug Monitor Service, 321-327
Hierarchy Viewer tool, 315-320
DeviceAnywhere
testing on actual devices, 338
device-independent pixels, 207
devices
button requirements, 354
development features, 3
device-specific issues, 353-357
explicitly specifying hardware
requirements, 353-354
getting database from, 235

Google Maps, 301
Hierarchy Viewer tool, 315
identifying location, 295
Internet access, 253
phones, 311
SD cards, 328-329
smartphone programming, 1
storing modified database on, 236
testing on, 338
“with Google” branding, 359
dex file (bin/classes.dex), 8
DEXT see Motorola CLIQ/DEXT
Dialer application, 312
DialerDemo application, 313
dialogs
AlertDialog, 150
DatePickerDialog, 95, 97
TimePickerDialog, 95, 97
value for limited-input devices, 95
dialogs
Add Constant, 226
AlertDialog, 150
Create New AVD, 13
DatePickerDialog, 95, 97
Launch Options, 20, 338
modal dialogs, 150
pop-up dialogs, 221-224
TimePickerDialog, 95, 97
value for limited-input devices, 95
DigitalClock widget, 99
digits property, EditText, 32
dimen element, 207
dimensions
automatically scaling Ul to screen size,
333
Motorola DROID bugs, 351
resources, 206, 207
documentation, Android SDK, 367
dolnBackground method, AsyncTask, 160
background work with AddStringTask,
163
dot notation
referencing classes, 282
D-pad
Motorola CLIQ/DEXT, 356
Motorola DROID/Milestone, 356
moving around focusable elements, 143
rotating through options, 73
scrolling, 57
drawable folder (res/drawable/), 8
referencing images, 202, 203

types of resources, 197
drawable resources

EU4You_3 project, 348

screen size/density independence, 335
drawers

SlidingDrawer container, 114-116
drawSelectorOnTop property

Gallery, 73

Spinner, 64
DROID see Motorola DROID/Milestone
Droid fonts, 137

when Android dislikes font, 139
drop-down selector

setDropDownViewResource method, 64,

65

Spinner widget, 63

DynamicDemo class, 77

Eclipse projects, 5, 6
edit method, preferences, 214
EditPreferences activity, 215
EditText widget, 32-33
accessory button, 121
additional properties/methods, 37-38
attributes to control style of input, 118
default settings, 121
imeOptions attribute, 121
input method editor (IME), 117, 118
inputType attribute, 118-120
properties, 32
setOnEditorActionListener, 123
EditTextPreference element, 222
ellipsis, substituting text with, 140
ellipsize attr bute, TextView, 140
e-mail addresses
entering on soft keyboard, 119, 120
emulators
adjusting density, 337
Android targets, 12
Dalvik Debug Monitor Service, 322
EU4You application, 345
Hierarchy Viewer tool, 317
identifying location, 299
simulating incoming calls, 326-327
simulating incoming SMS messages,
327, 328
testing applications with emulator, 5
testing screen size and density, 337
using, 12-15

using SD card image, 329
enabled attribute, items/groups
describing menus via XML files, 134
Enter key
changing purpose of soft keys, 121
Environment object
getExternalStorageDirectory method,
244
errors
AlertDialog, 150
“application not responding”, 159
background processing, 165
VerifyError, 364
escaping values, strings.xml file, 198
EU4You application, 340
fonts, 346
icons, 348
EU4You_2 project, 346
EU4You_3 project, 348
EU4You_4 project, 349
exceptions
SecurityException, 276
StackOverflowException, 360
execSQL method, SQLite, 230
execute method
AddStringTask class, 164
HttpClient handling HTTP requests, 254
ExpandableListView, 116
expanded mode, options menu, 125
external storage, 244
extras, Intent objects, 172

“F

fancy lists
ListView with icons and text, 75-84
ListView with ratings and text, 84-94
feeds
making data available to other
applications, 265
notify-on-change support, 274
Planet Android, 368
FetchForecastTask class, 283
fields see EditText widget
file access, 237
static application reference data, 237-
240
writeable application data files, 240-244
File Explorer
Dalvik Debug Monitor Service, 323
fill model, LinearLayout container, 40

fill_parent rule
automatically scaling Ul to screen size,
332
LinearLayout container, 40, 43
filters
declaring intent filters, 173
findViewByld method
accessing widgets, 26
additional methods for widgets, 38
finding MapView, 303
finding TabHost, 105
ListView with icons and text, 80, 81, 82
XML layout file, 27
finger-friendly screens
Archos 5 Android Internet Tablet, 356
automatically scaling Ul to screen size,
333
emulating screens, 337
resistive or capacitive, 356
Firefox
SQLite Manager extension, 236
five-way navigation pointing device
specifying hardware requirements, 353
FlipperDemo class, 110
flipping, 109-114
adding contents at runtime, 112-113
automatic flipping, 113-114
manual flipping, 110-111
ViewFlipper container, 109-114
FlowLayout, Java/Swing, 39
focus
isFocused method, 38
requestFocus method, 38
fonts, 137
custom fonts, 140
Droid series of fonts, 137
EU4You application, 346
glyphs, 140
setDefaultFontSize method, 147
setFantasyFontFamily method, 147
typeface attribute, 138
using different fonts, 138-140
when Android dislikes font, 139
FontSampler application, 137, 139
formats
string formats, 198
styled string formats, 199-202
FramelLayout container, 103, 104
containing SlidingDrawer, 114
fromHtml| method
styled string formats, 201

fully qualified class name
supplying for main activity, 7
FWVGA screens, emulating, 337

G

Galileo, 295
Gallery widget, 72
gen folder, 7
generatePage method, 256
generics, 160, 163
GeoPoint, 304
GET requests, 254
getAltitude method, 297
getAttributeCount method, 206
getAttributeName method, 206
getBearing method, 297
getBestProvider method, 296
getCallState method, 311
getCheckedltemPositions method, 62
getCheckedRadioButtonld method, 36
getColumnindex method, 234
getColumnNames method, 234
getConfiguration method

finding screen size class, 336
getContentResolver method, 274
getCount method, SQLite, 234
getDefaultSharedPreferences method, 213,

214

getExternalStorageDirectory method, 244
getlnputStream method

accessing binary data, 264
getLastKnownPosition method, 296
getLastNonConfigurationinstance method

handling screen rotation, 189, 191
getlLatitude method, 255
getlListView method, 62
getLongitude method, 255
getMapController method, 303
getMenulnfo method, 127
getNetworkType method, 312
getOutputStream method

accessing binary data, 264
getOverlays method, MapView, 305
getParent method, 38
getPhoneType method, 312
getPreferences method, 213
getProgress method

ProgressBar, 101

SeekBar, 102
getProviders method, LocationManager, 296

getReadableDatabase method, 230
getRequiredColumns method, 270
getResources method
static application reference data, 237
xml resources, 204
getService method, Binder, 281
getSettings method, WebView, 143, 147
getSharedPreferences method, 213
getSpeed method, Location object, 297
getString method, 198, 199
getStringArray method, 208
getSubscriberld method, 312
getSystemService method
identifying location, 296
notifications, 289
getTag method, View objects
combining RatingBar with ListView, 86
ListView with icons and text, 82
wrapping API, 362, 363, 364, 366
getType method, ContentProvider, 271
getView method
combining RatingBar with ListView, 86,
89
creating views, 68
CursorAdapter, 94
ListView with icons and text, 77, 78, 80
getWriteableDatabase method, 230
getXml method, 204
GIF format
Android support for images, 202
automatically scaling Ul to screen size,
334
glEsVersion attribute, 354
glyphs, 140
goBack method, WebView, 144
goBackOrForward method, 145
goForward method, WebView, 145
Google
Android Market, 355
“with Google” branding, 359
Google Code Search, 368
Google Maps, 301, 302
map overlays, 305-306
Google/HTC Nexus One, 357
GPS (global positioning system), 4
GPS services, 295
gravity, LinearLayout, 41
grid model, TableLayout, 39
GridView widget, 66-69
group element, menus, 134, 135
group identifier, menus, 126

GUI definition

using XML layout file, 24

handleMessage method, 156, 157
Handler class, 155-158
background threads communicating
with, 155
handleMessage method, 156, 157
Message objects communicating with,
156-158
obtainMessage method, 156
passing Runnable objects to, 158
postXyz methods, 158
sending Message to Handler, 156-158
sendMessage method, 156
sendMessageXyz methods, 156
updating ProgressBar via, 156, 157
HandlerDemo application, 158
handlers
threads, 155-158
handles
getting Uri handles, 260
SlidingDrawer container, 115
Handmade Typewriter font, 140
handsets
handling screen rotation, 185
hardware
buttons, 354
explicitly specifying requirements, 353—
354
hasAltitude method, 297
hasBearing method, 297
HashMap class
wrapping API, 363
hasSpeed method, 297
help, 367
Hierarchy Viewer tool, 315-320
emulators, 317
Keyguard window, 317
Launcher window, 317
launching, 315
Layout view, 317, 318, 361
Load View Hierarchy window, 317
Loupe view, 320
Pixel Perfect view, 319, 320
view hierarchies, 360
view properties, 319
windows, 317
hierarchyviewer program, 315

holder pattern
ListView with icons and text, 81-84
horizontal orientation, LinearLayout, 40
horizontalSpacing property, GridView, 66
hours
TimePicker/TimePickerDialog, 95
HTC Dream see T-Mobile G1
HTC Magic, 354
emulating, 12
keyboards, 117
rotating, 195
HTC Nexus One, 357
htmlEncode method
styled string formats, 201
HTTP (Hypertext Transfer Protocol), 171
operations via Apache HttpClient, 254—
255
HTTP requests
accessing REST-style web services, 253
Apache HttpClient handling, 254
HttpClient, Apache
HTTP operations via, 254-255
Secure Sockets Layer, 257
threading, 257
HttpComponents library, Apache, 253
HVGA screens
EU4You application, 345, 347
screen sizes, 331

icon attribute, item element, 134

icon mode, options menu, 125

icons
Android operating system changes, 361
EU4You application, 348
ListView with icons and text, 75-84
notifications, 290, 292

findViewByld method, 26, 27
R.id, 26, 27
id attribute
@+id, 25, 47
@id, 48
describing menus via XML files, 134
SlidingDrawer container, 115
XML layout file, 25
identifiers, 47, 48
ImageButton widget, 31
additional properties/methods, 37-38
images, 202-204

accessing binary data, 264
Android support for, 202
automatically scaling Ul to screen size,
334
Gallery widget, 73
res/drawable/ folder, 8
setimageURI method, 31
types of resources, 197
ImagesDemo application, 204
ImageView widget, 31
accessing binary data, 264
additional properties/methods, 37-38
ListView with icons and text, 79
SlidingDrawer container, 115
IME (input method editor)
creating an IME, 124
entering e-mail addresses, 120
entering signed decimal numbers, 121
entering text, 120
keyboards, 117
shrunken, scrollable layout, 124
imeOptions attribute, EditText, 121
IMF (input method framework), 117
see also soft keyboard
implicit routing, intents, 173
inches (in)
automatically scaling Ul to screen size,
333
resource dimensions, 207
indexes, creating, SQLite, 230
input method editor see IME
input method framework see IMF
InputStream class, 237, 239, 240
inputType attribute, 32, 118-120, 121
insert method
content providers, 263, 269
SQLite, 231
instance identifier, 266
instance Uri, 259, 260, 268, 269, 271
instrumentation elements, 9
intent-filter element, 10, 173
intent filters, declaring, 173
Intent objects
other criteria placed inside intents, 172
registering/unregistering receivers, 175
intent receivers, 174-175
permissions, 277, 278
intents, 109, 171-175, 178
ACTION_DIAL, 312
ACTION_XYZ, 172
actions, 172

Android application components, 3
Android Ul architecture, 177
broadcast intents, 174, 283-284, 287—-
288
communicating with services, 286
components of, 172
creating, 178
data, 172
declaring intent filters, 173
handling clicks on links, 145
implicit routing, 173
notifications, 290
other criteria placed inside, 172
Pendingintent, 290, 292, 298
routing, 172
starting activities, 178-181
starting, 178
tabbed browsing, 182, 183
using as message bus, 175
IntentTabDemo application, 184
interfaces
using Java third-party libraries, 246
international deployment, 140
internationalization (I118N), 208
Internet access
Android development features, 3
Android devices, 253
HttpComponents library, 253
moving to background thread, 283
operations via HttpClient, 254-255
parsing responses, 255-257
requesting permission, 142
web browsers, 143
INTERNET permission, 276
getting map into application, 303
Internet/Weather project, 254
Interpreter class, BeanShell, 247
I/0
writeable application data files, 240-244
IPC (interprocess communication)
exposing service API through binding,
281
starting services, 279
iPhone
handling screen rotation, 195-196
isChecked method, CheckBox, 34
isCollectionUri method, 270, 271
isEnabled method, 38
isFocused method, 38
isRouteDisplayed method, 303
item element

describing menus via XML files, 134
ItemizedOverlay class, 305
onTap method, 307

=J

JARs
using Java third-party libraries, 246
jarsigner utility, 8
generating API keys, 309
Java
attaching XML layout file, 25
Dalvik virtual machine, 245, 246
not working on Android and Dalvik, 250
using different fonts, 139
Java SE classes, 19
Java third-party libraries, 245
Java Virtual Machine (JVM), 245
Java/Swing, 39
JavaScript, 143
setdavaScriptEnabled method, 143, 147
JButton click, Swing, 19
joins, SQLite, 227
JPEG format, 202
JPG format, 334
JSON parser, 255
just-in-time (JIT) compilation, 249

7K

key/value pairs
preferences, 213
keyboardHidden configuration
handling screen rotation, 192
keyboards
Motorola BACKFLIP, 357
scenarios requiring different resources,
209
soft keyboard, 117-124
specifying hardware requirements, 353,
354
Keyguard window, Hierarchy Viewer, 317
keytool utility, Java, 309

oL

labels see TextView widget
landscape layout
EU4You application, 348, 350
handling screen rotation, 186

languages
international deployment, 140
scenarios requiring different resources,
209
largeScreens attribute, 335
Launch Options dialog
AVD Manager, 338
building/running activities, 20
LaunchDemo application, 181
launcher
activity element, 10
Android Ul architecture, 177
AndroidManifest.xml file, 8, 10
launching activities, 177-181
LAUNCHER category
intent-filter element, 173
intents, 172
Launcher window, Hierarchy Viewer, 317
layers
map overlays, 305-306
layout containers
AbsoluteLayout, 116
automatically scaling Ul to screen size,
333
FrameLayout, 103, 104, 114
LinearLayout, 39-45
RelativeLayout, 46-51
ScrollView, 123
TableLayout, 51-54, 119
layout folder (res/layout/), 8
referencing string resource, 198
XML layout file, 23
attaching to Java, 25
layout management
see also containers
embedding second activity in main
activity Ul, 351
layout properties (android:)
collapseColumns, TableLayout, 53
layout_above, RelativeLayout, 48
layout_alignParentXyz, RelativeLayout,
47
layout_alignXyz, RelativeLayout, 48, 50
layout_below, RelativeLayout, 48
layout_centerXyz, RelativeLayout, 47
layout_column, TableLayout, 52
layout_gravity, LinearLayout, 41
layout_height, Button, 25
layout_height, LinearLayout, 40
layout_height, RelativeLayout, 332
layout_marginXyz, LinearLayout, 42

layout_span, TableLayout, 52
layout_toXyzOf, RelativeLayout, 48, 50
layout_weight, LinearLayout, 40
layout_width, Button, 25
layout_width, LinearLayout, 40
layout_width, RelativeLayout, 50, 332
shrinkColumns, TableLayout, 53
stretchColumns, TableLayout, 53
Layout view, Hierarchy Viewer, 317, 318
Layoutinflater class
combining RatingBar with ListView, 92
ListView with icons and text, 78, 79
layouts
BoxLayout, Java/Swing, 39
FlowLayout, Java/Swing, 39
Hierarchy Viewer tool, 315-320
R.layout.main file, 7
res folder, 7
libs folder, 7
licenses
Apache Software License 2.0, 355
life cycle, activities, 167
transitions between states, 168-169
LinearLayout container, 39-45
containing SlidingDrawer, 114
example, 42-45
fill model, 40
gravity, 41
layout_gravity property, 41
layout_height property, 40
layout_marginXyz properties, 42
layout_weight property, 40
layout_width property, 40
margins, 42
orientation property, 40
padding property, 41
setGravity method, 41
setOrientation method, 40
setPadding method, 41
weight, 40
with AutoCompleteTextView, 70
with GridView, 67
with ImageView, 75, 76, 79
with ListView, 61
with RatingBar, 87, 92
with Spinner, 64
with ViewFlipper, 109
links, handling clicks on, 145
ListActivity class, 60, 61, 62, 302
ListAdapter interface

combining RatingBar with ListView, 89,
90, 93
listeners
callbacks, services alerting activities,
283
LocationListener object, 297
OnCheckedChangelListener, 34
OnClickListener, 97
OnDateChangedListener, 95
OnDateSetListener, 95, 97
OnTimeChangedListener, 95
OnTimeSetListener, 95, 97
setOnEditorActionListener method, 123
setOnltemSelectedListener method, 60,
64, 65, 67
setOnSeekBarChangeListener method,
102
ListPreference element, pop-up dialogs, 222
ListView widget, 60-63
combining RatingBar with, 84-94
controlling appearance of rows, 62
enhancing, 75-94
with icons and text, 75-84
with ratings and text, 84-94
with rows contain interactive child
widgets, 84
getCheckedltemPositions method, 62
getting ListView from ListActivity, 62
setChoiceMode method, 62
tracking (multiple) selections, 62
Load View Hierarchy window, 317
loadData method, WebView, 143-144
loadTime method, 146
loadUrl method, WebView, 142, 143
local services, 284, 285
local.properties file, 7
localization (L10N), 209
location, 295
Location object
methods, 297
location providers, 295-297
location service, 296
location updates
Dalvik Debug Monitor Service, 325
LocationListener class, 297
removeUpdates method, 298
LocationManager class
addProximityAlert method, 298
creating services, 280
getBestProvider method, 296
getProviders method, 296

identifying location, 296
removeProximityAlert method, 298
requestLocationUpdates method, 297
LocationProvider class
getLastKnownPosition method, 296
identifying location, 296
location updates using DDMS, 325
lock method, SlidingDrawer, 115
logcat command, adb, 322
logging
Dalvik Debug Monitor Service, 322
Loupe view, Hierarchy Viewer, 320

makeText method, Toast class, 150, 152
managedQuery method, 260, 261
manifest element, 9, 10
manifest file see AndroidManifest.xml file
manifest typing, SQLite, 227
manual flipping, 110-111
map activity, Android, 181
MapActivity class, 302, 303
MapController, 304
maps
centering, 304
generating API keys, 308
getting map into application, 302
Google Maps, 301
MyLocationOverlay instance, 308
NooYawk application, 302
OpenStreetMap, 301
overlays, 305-306
zooming in on, 304
MapView widget
finding, 303
getMapController method, 303
getOverlays method, 305
getting map into application, 302
toggleSatellite method, 304
margins
LinearLayout container, 42
MDS5 digest of debug certificate, 309
MD5 signature
generating API keys, 309
measurement, units of
resource dimensions, 207
media players
handling platform changes, 359-366
memory
dead state, 168

using Java third-party libraries, 245
menu element
describing menus via XML files, 134
menu folder (res/menu/), 8
Menu object
describing menus via XML files, 134
setGroupCheckable method, 126
setGroupEnabled method, 134
setGroupVisible method, 135
menuCategory attribute, 134
MenuDemo application, 130
context menu, 130, 132
options menu, 130, 131
Menultem class
describing menus via XML files, 134
getMenulnfo method, 127
setCheckable method, 126
setEnabled method, 134
setVisible method, 135
menus
add method, 126
addMenu method, 127
addSubMenu method, 127
applyMenuChoice method, 130
choice identifier, 126
context menus, 125, 127
describing menus via XML files, 133-135
getMenulnfo method, 127
group identifier, 126
onContextltemSelected method, 127,
130
onCreate method, 125, 130
onCreateContextMenu method, 127, 130
onCreateOptionsMenu method, 125,
127,130
onCreatePanelMenu method, 127
onOptionsltemSelected method, 126,
127,130
onPrepareOptionsMenu method, 126
options menu, 125-127
order identifier, 126
populateMenu method, 130
registerForContextMenu method, 127
setAlphabeticShortcut method, 126
setCheckable method, 126
setGroupCheckable method, 126
setNumericShortcut method, 126
setQwertyMode method, 126
taking advantage of larger screens, 339
message bus
using Intent framework as, 175

Message objects
communicating with Handler, 156-158
MessageDemo example, 151-153
messages
advisory messages, 149
alerts, 150
handleMessage method, 156, 157
intents, 171
obtainMessage method, 156
pop-up messages, 149-150
sending Message to Handler, 156-158
sendMessage method, 156
sendMessageXyz methods, 156
toasts, 149-150
validation message, 150
Method-based reflection, 366
Milestone see Motorola DROID/Milestone
millimeters (mm)
automatically scaling Ul to screen size,
333
resource dimensions, 207
MIME types
building content provider, 266
getType method, 271
getting content into WebView, 144
Intent objects, 172
declaring intent filters, 174
intent routing, 172, 173
minutes
TimePicker/TimePickerDialog, 95
minSdkVersion attribute, 11
mksdcard utility, 329
mobile phones
smartphone programming, 1
modal dialogs, 150
months
DatePicker/DatePickerDialog, 95
MOTOBLUR, 356
Motorola BACKFLIP, 357
Motorola CLIQ/DEXT, 356
Motorola DROID/Milestone, 356
bugs, 351
Droid fonts, 137, 139
emulating, 337
moveToXyz methods, SQLite, 234
multimedia
Android development features, 4
multiple resource directories, 209
MyLocationOverlay instance, 308

name property, 273, 354
National Weather Service XML format, 256
navigation
specifying hardware requirements, 353
WebView widget, 144
netbooks, Android
handling platform changes, 359-366
networks
Android development features, 3
getNetworkType method, 312
newCursor method, SQLite, 235
newView method, CursorAdapter, 94
nextFocusXyz properties, 37
Nexus One see Google/HTC Nexus One
nine-patch bitmaps
automatically scaling Ul to screen size,
334
NooYawk application, 302
normalScreens attribute, 335
NotificationManager class, 289, 292
notifications, 289-294
see also alerts
contentintent, 290
encountering error during background
processing, 165
hardware notifications, 290
icons, 290
notify method, 290
paused state, 167
Pendingintent, 290
raising notifications, 289
services alerting activities, 282
setLatestEventinfo method, 290
status bar icons, 289
stopped state, 168
tickerText, 290
notify method, notifications, 290
Notify1 project, 290
notifyChange method, 274
NotifyDemo activity, 292
notifyMe method, 292
notify-on-change support, 273, 274
Now.java file, 17,18
NowRedux project, 24, 26
numColumns property, GridView, 66

numericShortcut attribute, item element, 135

wo

obtainMessage method, 156
onActivityResult callback, intents, 179
onBind method, services, 280
communicating with services, 286
exposing API through binding, 281
OnCheckedChangelListener, 34
LinearLayout example, 44
onClick attribute, buttons, 30
onClick method, 19
OnClickListener, 30
alert example, 152
date and time, 97
trapping button clicks within activity, 19
onConfigurationChanged method, 191, 193
onContextltemSelected method, menus,
127,130
onCreate method
ConstantsBrowser, 262
ContentProvider, 267
handling screen rotation, 185, 189, 193
invoking loadUrl() on WebView, 142
invoking, activities, 19
LinearLayout example, 44
menus, 125, 130
services, 280
SQLite, 228, 230
transitions between states, 168
onCreateContextMenu method, 127, 130
onCreateOptionsMenu method, 125, 127,
130
onCreatePanelMenu method, 127
OnDateChangedListener, 95
OnDateSetListener, 95, 97
onDestroy method
services, 280
transitions between states, 168
OnltemSelectedListener, 65
online help, 367
onListltemClick method
changes to list selection, 61
combining RatingBar with ListView, 86
onOptionsltemSelected method, 126, 127,
130
onPause method
activity receiving/using broadcast, 288
transitions between states, 169
unregistering receivers, 175
updating locations/directions, 308
writeable application data files, 243

onPostExecute method, AsyncTask, 161,
164
onPreExecute method, AsyncTask, 161
onPrepareOptionsMenu method, 126
onProgressUpdate method, AsyncTask,
161, 163
onRatingBarChanged method, 92
onRatingChanged method, 86
onReceive method, intents, 174
onRestart method, 169
onRestorelnstanceState method
handling screen rotation, 185
reapplying application-instance state,
170
onResume method
activity receiving/using broadcast, 288
HttpClient handling HTTP requests, 254
registering receivers, 175
transitions between states, 169
updating locations/directions, 308
writeable application data files, 243
onRetainNonConfigurationinstance method,
189, 191
onSavelnstanceState method
handling screen rotation, 185, 187, 188,
189
saving application-instance state, 170
unregistering receivers, 175
onServiceConnected method, 286
onStart method, 158
services, 280
setting up background thread, 157
transitions between states, 169
onStop method, 169
onTap method, Overlay class, 307
onTextChanged method, 71
OnTimeChangedListener, 95
OnTimeSetListener, 95, 97
onUpgrade method, SQLite, 228
open method, SlidingDrawer, 115
Open Mob for Android wiki, 367
open source, 353
Apache Software License 2.0, 355
openFilelnput/Output methods
accessing application-specific data files,
244
writeable application data files, 240, 243
OpenGL
specifying device requirements, 354
openRawResource method, 237
OpenStreetMap, 301

operating system changes, 360-361
options menu, 125-127
adding menu choices and submenus,
126-127
creating, 125
describing menus via XML files, 134
expanded mode, 125
icon mode, 125
MenuDemo application, 130, 131
Oracle, SQLite and, 227
order identifier, menus, 126
orderInCategory attribute, item element, 134
orientation
see also rotation
custom handling of screen rotation, 191-
193
handling screen rotation, 185-191
not rotating activities, 193-195
scenarios requiring different resources,
209
orientation configuration changes, 192
orientation property, LinearLayout, 40
OQutputStream class, 240
Overlay class, 305
onTap method, 307
Overlayltem instances, 305
overlays, maps, 305-306
getOverlays method, MapView, 305
ltemizedQOverlay class, 305
MyLocationOverlay instance, 308
updating locations/directions, 307

P

package attribute, 9
package declaration, 18
padding
LinearLayout, 43
RelativeLayout, 49, 50
padding property, LinearLayout, 41
parse method, Uri object, 260
parsing
parsing responses, 255-257
resources, 197
XML parsers, 255
XmlPullParser object, 204, 206
paused state, activities, 167
handling screen rotation, 185
pausing activities see onPause method
peer activities, 178
starting intents, 179

Pendingintent
identifying location, 298
notifications, 290, 292
performance
scripting languages, 250
using Java third-party libraries, 245
permission attribute, 277
permission elements, 9, 277
permissions, 5, 9, 10
ACCESS_COARSE_LOCATION, 303
accessing Internet, 142
applications, 275
confirming, 276
declaring, 277
documenting for public APIs, 278
enforcing, 277-278
checkCallingPermission method, 278
sendBroadcast method, 278
via manifest, 277-278
INTERNET, 276, 303
location providers, 296
READ_CALENDAR, 276
READ_CONTACTS, 250, 276
requesting to access Internet, 142
requesting to use application data, 275
scripting languages, 250
securing application using, 277
security and privacy, 276
starting/binding to services, 282
system permissions, 276
VIBRATE, 290
working with external storage, 244
WRITE_CALENDAR, 276
WRITE_CONTACTS, 276
phone calls
Dalvik Debug Monitor Service, 326-327
handling, 311
making phone call, 312-314
phone services, 4
phone type, finding, 312
phones
Android devices, 311
Dialer application, 312
TelephonyManager class, 311
Pixel Perfect view, Hierarchy Viewer, 319,

320
pixels
automatically scaling Ul to screen size,
333

density-independent pixels, 333
device-independent pixels, 207

resource dimensions, 207
scaled pixels, 334
scale-independent pixels, 207
scenarios requiring different resources,
209
placeholders, strings, 198
Planet Android, 368
platform APIs
using Java third-party libraries, 245
platform changes, handling, 359-366
PNG format, 202, 334
points (pt)
resource dimensions, 207
populateDefaultValues method, 270
populateMenu method, 130
pop-ups
alerts, 150
preferences, 221-224
toasts, 149-150
portrait layout
handling screen rotation, 186
positioning widgets
automatically scaling Ul to screen size,
332
LinearLayout, 39-45
RelativeLayout, 46-51
TableLayout, 51-54
POST requests, HTTP, 254
postXyz methods, Handler, 158, 159
preferences, 213-224
accessing, 213
activity-specific preferences, 213
allowing users to set preferences, 215-
218
application-level preferences, 213
editing, 214
key/value pairs, 213
pop-up dialogs, 221-224
web browsers, 147
preferences framework, 214-215, 219-220
PreferenceCategory element, 219
PreferenceScreen element, 215, 219
PreferencesManager
getDefaultSharedPreferences method,
213
primary key column, SQLite, 230
privacy
security and permissions, 276
programming, 1, 19
ProgressBar widget, 101
creating, 156

thread safety, 158
updating via Handler, 156, 157
projects, 6-8
see also applications
android create project command, 6, 17
AndroidManifest.xml file, 6
assets folder, 7
bin folder, 7, 8
build.xml file, 6
building Android applications, 5
creating project from command line, 6
activity element, 10
default.properties file, 7
developing using Eclipse, 6
gen folder, 7
libs folder, 7
local.properties file, 7
manifest file, 5, 6
project structure, 6-8
res folder, 7
root directory, 6-7
src folder, 7
supplying fully qualified class name of
main activity, 7
tests folder, 7
projects, list of
see also applications, list of
Eclipse, 5, 6
EU4You, 340, 346, 348, 349
FontSampler, 137, 139
Notify1, 290
NowRedux, 24, 26
Weather, 254
properties
declaring for content provider, 272
Hierarchy Viewer tool, 319
querying content provider, 261
provider class
creating for content provider, 267-272
provider elements, 10
publishProgress method, AsyncTask, 161,
163, 164
pull command, adb, 235, 323
push command, adb, 236, 323

=aQ

queries, content providers
accessing query results, 261
querying base Uri, 260
queries, SQLite

buildQuery method, 234

Cursor object, 234

query method, 232

rawQuery method, 232

SQLiteQueryBuilder class, 233-234
query method, ContentProvider

building content provider, 267-269
query method, SQLite

retrieving data, 232
queryWithFactory method, SQLite, 235
QVGA screens

EU4You application, 345, 346, 348

ignoring screen sizes and resolutions,

332

screen sizes, 331
qwerty keyboard

see also keyboards

scenarios requiring different resources,

209, 212
setQwertyMode method, 126

R class, 25
R.array
resource arrays, 208
R.id, 26, 27
R.java file
aapt tool, 23
Android build system creating, 7
modifying, 7
XML layout file, 27
R.layout

ListView with icons and text, 76, 79
R.layout.main file, 7

XML layout file, 26
RadioButton widget, 35-37

additional properties/methods, 37-38

disabling widgets based on, 38

LinearLayout example, 43

methods, 36

preset radio button to checked, 37

properties, 36
RadioGroup class, 36

LinearLayout example, 43, 44, 45
RateableWrapper class, 90, 92, 93
RatelListDemo class, 84, 92, 93
RateListView class, 89, 93, 94
RatingBar widget, 84-94
ratings

ListView with ratings and text, 84-94

raw folder (res/raw/), 8
static application reference data, 237
types of resources, 197
rawQuery method, SQLite, 232
rawQueryWithFactory method, SQLite, 235
READ_CALENDAR permission, 276
READ_CONTACTS permission, 276
readPermission attribute, 278
ReadWrite application, 241, 315
ReadWriteFileDemo application, 243
receivers, intents, 174-175
RecyclingDemo class, 80
reference data, static application, 237-240
reflection
wrapping API, 362, 364, 366
registerContentObserver method, 274
registerForContextMenu method, 127
registerReceiver method, intents, 175
RelativeLayout container, 46-51
automatically scaling Ul to screen size,
332
containing SlidingDrawer, 114
evaluation order, 49
example, 49-51
layout_above property, 48
layout_alignParentXyz properties, 47
layout_alignXyz properties, 48
layout_below property, 48
layout_centerXyz properties, 47
layout_toXyzOf properties, 48
with AnalogClock/DigitalClock, 99
reload method, WebView, 144
remote services, 284
remove method, preferences, 214
removeProximityAlert method, 298
removeUpdates method, 298
reqFiveWayNav property, 353
reqHardKeyboard property, 354
reqKeyboardType property, 354
reqNavigation property, 354
reqTouchScreen property, 354
requery method, cursors
content providers, 264
SQLite, 234
requestFocus method, 38
requestLocationUpdates method, 297
res folder, 7
attaching XML layout file to Java, 25
subdirectories, 7, 197
XML layout file, 23
resolutions

ignoring screen sizes and, 331
resource sets

density-based, 335

size-based, 336

version-based, 336
resources

Android operating system changes, 361

arrays, 208

colors, 206, 207-208

description, 197

dimensions, 206, 207

drawable, 197

images, 197, 202-204

multiple criteria for, 209

multiple resource directories, 209

parsing, 197

raw, 197

scenarios requiring different, 208-212

strings, 198-202

values folder (res/values/), 197, 206-208

XML, 197, 204-206

XML layout file, 23
resources.arsc file, 8
resources element, strings.xml, 198
Resources object

static application reference data, 237
ResponseHandler class

HttpClient handling HTTP requests, 254
responses, parsing, 255-257
restarting activities see onRestart method
restoreMe method, 188, 191
REST-style web services, accessing, 253
RESULT_XYZ codes, intents, 179
resuming activities see onResume method
RGB values, colors, 207
ringtone preference, setting, 216
RingtonePreference element, 215
root directory, 6-7, 8

getRootView method, 38
rotation

see also orientation

blocking rotation of activities, 193

custom handling of screen rotation, 191-

193

handling iPhone rotation, 195-196

handling screen rotation, 185-191

not rotating activities, 193-195
RotationFour application, 193, 194
RotationOne application, 186, 188, 189
RotationThree application, 191
RotationTwo application, 190

routing, intents, 172
RowModel objects, 86
rows, TableLayout, 52
rule-based model, RelativeLayout, 39
rules
automatically scaling Ul to screen size,
332, 333
Runnable objects, 158, 159
runOnUiThread method, 159

WS

SAX parser, 255
scaled pixels, 334
scale-independent pixels, 207
scheme, content Uri, 266
Schroedinger’s Activity, 167
screen capture
Dalvik Debug Monitor Service, 324
screen density
adjusting, 337
anyDensity attribute, 335
density-based resource sets, 335
emulators testing, 337
EU4You application, 346
finding, 336
Google/HTC Nexus One, 357
Motorola DROID/Milestone, 356
screen density-independence, 334-337
resource sets, 335-336
supports-screens element, 334-335
screen orientation
scenarios requiring different resources,
209
screen rotation
custom handling of, 191-193
handling, 185-191
iPhone, 195-196
not rotating activities, 193-195
screen size-independence, 334-337
resource sets, 335-336
supports-screens element, 334-335
screen sizes
automatically scaling Ul, 332-334
embedding second activity in main
activity Ul, 351
emulators testing, 337
EU4You application, 346
finding screen density, 336
finding screen size class, 336
handling multiple screen sizes, 331-351

HVGA screens, 331
ignoring, 331
QVGA screens, 331
scenarios requiring different resources,
209
size-based resource sets, 336
taking advantage of larger screens, 339
consolidating multiple activities, 340
replacing menus with buttons, 339
replacing tabs with activity, 340
testing on actual devices, 338
WVGA screens, 331
screen tapping
onTap method, 307
screenQOrientation, android
blocking rotation of activities, 193
handling iPhone rotation, 195
screenshots
Dalvik Debug Monitor Service, 324
ScreenSizes/EU4You application, 340
scripting languages
Android Scripting Environment, 251
Android with Java using Dalvik VM, 246—
250
just-in-time (JIT) compilation, 249
performance, 250
ScrollView container, 54-57, 123
SD cards
Android devices, 328-329
creating card image, 328-329
emulator using SD card image, 329
seconds
TimePicker/TimePickerDialog, 95
security
enforcing permissions, 277-278
privacy and permissions, 276
SecurityException
permissions, 276
SeekBar widget, 101
SELECT statement, SQLite
clauses of SELECT, 232
retrieving data, 232-233
selection widgets
adapters, 59-60
AutoCompleteTextView, 69-72
finding out when list selection changes,
61
Gallery, 72
GridView, 66-69
ListView, 60-63
setAdapter method, 60, 64, 67, 70

setOnltemSelectedListener method, 60,
64, 65, 67

Spinner, 63-66
sendBroadcast method

broadcast intents, 284

enforcing permissions, 278
sendMessage method, 156
sendMessageAtFrontOfQueue method, 156
sendMessageAtTime method, 156
sendMessageDelayed method, 156
Service class, 279
service elements, 11
ServiceConnection instance, 286
services

accessing location-based services, 295

accessing service object, 280

adding to AndroidManifest.xml, 281

Android application components, 3

asynchronously alerting activities, 282

binding to, 286

broadcast intents, 283-284

callbacks, 283

creating, 279-282

description, 279

exposing API through binding, 281

exposing service object, 281

GPS services, 295

implementation of singleton pattern, 281

invoking, 285

life-cycle methods, 279

local services, 284, 285

location service, 296

permissions, 277

remote services, 284

running costs, 279

starting, 279, 286

stopping, 286
setAccuracy method, LocationProvider, 296
setAdapter method

AutoCompleteTextView widget, 70

combining RatingBar with ListView, 93

GridView widget, 67

ListView widget, 60

Spinner widget, 64
setAlphabeticShortcut method, menus, 126
setAltitudeRequired method, 296
setBuiltinZoomControls method, 304
setCenter method, MapController, 304
setCheckable method, Menultem, 126
setChecked method

CheckBox, 34

RadioButton, 37
setChoiceMode method, ListView, 62
setColumnXyz method, TableLayout, 53
setContent method, TabSpec, 104, 105, 106
setContentView method

attaching XML layout file to Java, 25

creating skeleton application, 19

XML layout file, 26
setCostAllowed method, 296
setCurrentTab method, 105
setDefaultFontSize method, 147
setDropDownViewResource method, 64, 65
setEnabled method, 38

Menultem class, 134
setFantasyFontFamily method, 147
setFlipinterval method, 113
setGravity method, LinearLayout, 41
setGroupCheckable method, 126
setGroupEnabled method, 134
setGroupVisible method, Menu, 135
setlcon method, Builder, 150
setimageURI method, 31
setIndeterminate method, ProgressBar, 101
setIndicator method, TabSpec, 104, 105
setdavaScriptEnabled method, 143, 147
setLatestEventinfo method, 290, 292
setListAdapter method, 61
setMessage method, Builder, 150
setNegativeButton method, Builder, 150
setNeutralButton method, Builder, 150, 152
setNumericShortcut method, menus, 126
setOnCheckedChangelListener method, 44
setOnClickListener

adding tabs during runtime, 107

writeable application data files, 243
setOnEditorActionListener, 123
setOnltemSelectedListener method, 64, 65

GridView widget, 67

ListView widget, 60
setOnSeekBarChangelListener, 102
setOrientation method, 40
setPadding method, 41
setPositiveButton method, Builder, 150
setProgress method, 101
setQwertyMode method, menus, 126
setResult method, intents, 179
setTag method, View objects

combining RatingBar with ListView, 87

ListView with icons and text, 82, 83

wrapping API, 362, 363, 364, 366
setTitle method, Builder, 150, 152

setTypeface method, TextView, 139
setup method, TabHost, 104, 105
setupViews method, 193
setUserAgent method, 147
setVisible method, Menultem, 135
setWebViewClient method, 145
setZoom method, MapController, 304
SharedPreferences object, 214
pop-up dialogs, 222
shell command, adb, 235, 324
shortcuts
setAlphabeticShortcut method, 126
setNumericShortcut method, 126
shouldOverrideUrlLoading method, 145, 146
show method, 150
showNext method, ViewFlipper, 110
shrinkColumns property, TableLayout, 53
SIM ID (IMSI), 312
SimpleAdapter class, 60
SimpleCursorAdapter class, 261, 262
SimplePrefsDemo activity, 216, 217
singleLine property, EditText, 32
SitesOverlay class, 307
size-based resource sets, 336
skeleton application, creating, 17
SlidingDrawer container, 114-116
smallScreens attribute, 335
smartphone programming, 1
SMS messages
Dalvik Debug Monitor Service, 327-328
SOAP, 253
soft keyboard, 117-124
accommodating changes to layout, 123
changing purpose of soft keys, 121
determining keys available on, 118
entering date on, 120
entering e-mail addresses on, 119, 120
entering numbers on, 119, 121
entering text on, 117
autocorrection, 120
multiline input, 120
plain text-entry, 119, 120
shrunken, scrollable layout, 124
input method editor (IME), 117
input method framework (IMF), 117
scrolling, 123
sound
hardware notifications, 290
source code, 368
spacing property, Gallery, 73

spacingWidth value, stretchMode, GridView,
66, 67
Spinner widget, 63-66
drawSelectorOnTop property, 64
spinnerSelector property, Gallery, 73
SQLite, 225, 227-236
creating database, 227-230
creating tables and indexes, 230
Cursor object, 232, 234-235
data typing, 227
manifest typing, 227
manipulating database, 235
putting data into tables, 230-231
query method, 232
rawQuery method, 232
retrieving data, 232-235
SQLite Manager extension, 236
sqlite3 program, 235
SQLiteOpenHelper class, 227, 230
SQLiteQueryBuilder class
building content provider, 268, 269
retrieving data, 233-234
src attribute, images, 31
src folder, 7
creating skeleton application, 17
SSL (Secure Sockets Layer)
HttpClient, Apache, 257
StackOverflowException, 360
startActivity method, intents, 179
making phone call, 312
startActivityForResult method, 179
startFlipping method, 113
starting activities see onStart method
startService method, 286
states, activities, 167
active state, 167
dead state, 168
handling screen rotation, 185
paused state, 167
saving application-instance state, 169
stopped state, 168
transitions between, 168-169
static application reference data, 237-240
StaticDemo class, 76
StaticFileDemo application, 240
status bar icons, notifications, 289, 292, 293
status panels
automatic flipping, 114
stopped state, activities, 168
stopping activities see onStop method
stopSelf method

binding to services, 287
stopService method, 286, 287
storage, Android, 3, 237
reading/writing files on external storage,
244
stretchColumns property, TableLayout, 53
stretchMode property, GridView, 66
string element, 198
string formats, 198
styled string formats, 199-202
string-array element, 208
strings, 198-202
arrays, 208
placeholders, 198
referencing from layout file, 198
styled text, 199
strings.xml file, 198, 200, 337
StringsDemo application, 201
styled text, 198, 199
styled string formats, 199-202
sub activities, 177
supports-screens element
EU4You application, 341, 348
screen size/density independence, 334-
335
Swing
JButton click, 19
using Java third-party libraries, 245

=T

TabActivity class, 103, 182, 183
tabbed browsing, 182-184
TabHost container, 102, 103, 104, 105
table of contents
Android applications, 5
TableLayout container, 51-54, 119
collapseColumns property, 53
determining number of columns, 52
example, 53-54
layout_column property, 52
layout_span property, 52
other child elements of, 53
putting cells in rows, 52
setColumnXyz methods, 53
shrinkColumns property, 53
stretchColumns property, 53
TableRow container, 52
tables, SQLite, 230-231
tablets, Android
handling platform changes, 359-366

tabs, 102-108
adding tabs during runtime, 106
replacing tabs with activity, 340
using tabs to hold information, 102
TabSpec class, 104, 105
TabWidget container, 103, 104, 106
tapping screen
onTap method, 307
target ID system, 353
targets, 12-15
finding out available API targets, 13
intent routing, 172
telephone calls
making phone call, 312-314
Telephony Actions group, DDMS
incoming calls or SMS messages, 326
TelephonyManager class, 311
getXyz methods, 311, 312
testing applications with emulator, 5
tests folder, 7
text
ellipsize attribute, 140
entering on soft keyboard, 119, 120
entering text on soft keyboard, 117
makeText method, Toast, 150
styled text, 198, 199
text attribute, XML layout file, 25
text messages
Dalvik Debug Monitor Service, 327-328
text property, TextView, 29
textColor attribute, widgets, 38
textColor property, TextView, 29
textStyle property, TextView, 29
TextView widget, 29-30
additional properties/method, 37-38
changing color of, 38
creating views, 68
ellipsize attribute, 140
ListView with icons and text, 76
properties, 29
setTypeface method, 139
XML layout file, 25
TextWatcher class, 70, 71
third-party libraries, Java, 245
thread safety
ProgressBar widget, 158
threads
see also background threads; Ul threads
handlers, 155-158
HttpClient, Apache, 257
ProgressBar widget, 101

where is current code execution, 159
tickerText, 290

time
displaying, 99
inputting, 95

loadTime method, 146
TimePicker widget, 95
TimePickerDialog, 95, 97
title attr bute, item element, 134
T-Mobile G1

buttons, 354

emulating, 12

keyboards, 117

rotating, 185, 191, 196

SD card, 328
T-Mobile myTouch 3G, 354
Toast class, 150

makeText method, 150, 152

show method, 150
toasts, 149-150

MessageDemo example, 151-153
toggle method

CheckBox, 34

SlidingDrawer, 115
toggleSatellite method, MapView, 304
touchpads

Motorola BACKFLIP, 357
touchscreens

resistive or capacitive, 356

scenarios requiring different resources,

209, 212

specifying hardware requirements, 354
transactions, SQLite, 227
tutorials, Android, 367
typeface attribute, fonts, 138
Typeface class

createFromAsset method, 139

createFromFile method, 140
typeface property, TextView, 29

Ul (user interface)

automatically scaling to screen size,
332-334

embedding second activity in main
activity Ul, 351

handling multiple screen sizes, 331-351

modifying from background threads, 155

screen size/density independence, 334-
337

resource sets, 335-336
supports-screens element, 334-335
Ul architecture, Android, 177
Ul threads, 155
background threads interacting with Ul
on, 155
handling work on, 159-165
onPostExecute method, AsyncTask, 164
passing Runnables to Handler, 158
runOnUiThread method, Activity, 159
where is current code execution, 159
unbindService method, 287
Unicode
ZERO WIDTH NO-BREAK SPACE
character, 140
units of measurement
automatically scaling Ul to screen size,
333
resource dimensions, 207
unlock method, SlidingDrawer, 115
unregisterReceiver method, intents, 175
unsigned apk file, 8
update method
ContentProvider, 270
SQLite, 231
updateForecast method
HttpClient handling HTTP requests, 254,
255
identifying location, 298
updateLabel method, 97
updateTime method, 19
Uri object
addld method, 260
base Uri, 259, 260
content providers, 259, 260, 261, 263,
264
building, 265-274
content Uri, 259, 264, 265-266
getting Uri handles, 260
handling rotation, 188, 191
instance Uri, 259, 260, 268, 269, 271
intents, 172, 174, 178
parse method, 260
setimageURI method, 31
tabbed browsing, 182
user agents
setUserAgent method, 147
user interface see Ul
user interface elements see widgets
users
allowing to set preferences, 215-218

handling clicks on links, 145
uses-configuration element, manifest, 353
uses-feature element, manifest, 354
uses-library element, manifest, 9
uses-permission element, manifest, 9, 10,

275
uses-sdk element, manifest, 9, 11
Android Market bug, 12

=V

validation message
AlertDialog, 150
valueOf method, ColorStateList, 38
values folder (res/values/), 8, 206-208
languages requiring different resources,
209
strings.xml file, 198
types of resources, 197
varargs, AsyncTask, 160
dolnBackground method, 160, 163
onProgressUpdate method, 161, 164
VerifyError, 364
version-based resource sets, 336
versionCode attribute, manifest, 12
versionName attribute, manifest, 12
versions
handling API changes, 362
vertical orientation, LinearLayout, 40
verticalSpacing property, GridView, 66
v bration
hardware notifications, 290
View class
additional properties/methods for
widgets, 37-38
Android widgets, 19
creating widgets as subclasses of, 24
findViewByld method, 38
getParent method, 38
getRootView method, 38
getTag method, 82
hierarchy, XML layout file, 23
isEnabled method, 38
isFocused method, 38
nextFocusXyz properties, 37
OnClickListener interface, 30
postXyz methods, 159
requestFocus method, 38
setEnabled method, 38
setTag method, 82
visibility property, 37

view definition
using XML layout file, 24
view hierarchies, 360
view methods
bindView, 94
findViewByld, 26, 27
getListView, 62
getView, 68
newView, 94
setContentView, 19, 25, 26
setDropDownViewResource, 64, 65
setupViews, 193
setWebViewClient, 145
view objects
AutoCompleteTextView, 69-72
ExpandableListView, 116
GridView, 66-69
ImageView, 31
ListView, 60-63
MapView, 302, 303, 304, 305
RateListView, 89, 93, 94
ScrollView, 54-57, 123
TextView, 29-30
WebView, 141-147
WebViewClient, 145, 146
view properties
Hierarchy Viewer tool, 319
ViewFlipper container, 109-114
adding contents at runtime, 112-113
automatic flipping, 113-114
setFlipInterval method, 113
showNext method, 110
startFlipping method, 113
view-flipping see flipping
views
convertView parameter, 80-81, 84, 86
flipping, 109-114
intents, 109
tabs, 102-108
ViewWrapper class
combining RatingBar with ListView, 86,
87,92
ListView with icons and text, 82, 83, 84
ViewWrapperDemo class, 83
visibility property, 37
visible attribute, items/groups, 135
VM see Dalvik virtual machine

W

W3C DOM parser, 255

Weather project, 254
WeatherDemo application, 257
parsing responses, 255
WeatherPlus application, 285
WeatherPlus class, 286
WeatherPlusService class, 279, 286
web browsers
Android browser, 143
Internet access, 143
settings/preferences, 147
tabbed browsing, 182-184
WebKit browser, 141
WebView widget, 141
getting content into, 143
web page, loading, 142
web services
accessing REST-style web services, 253
WebKit, 141
Browser1 app, 141, 143
Browser2 app, 144
Browser3 app, 145, 146
HTTP operations via Apache HttpClient,
254, 255
styled text, 199
WebSettings class
adjusting settings of WebView, 147
persistence of settings, 147
setDefaultFontSize method, 147
setdavaScriptEnabled method, 143, 147
setUserAgent method, 147
WebView widget, 141-147
adjusting settings of, 147
canGoBack method, 145
canGoBackOrForward method, 145
canGoForward method, 145
clearCache method, 145
clearHistory method, 145
enabling JavaScript, 143
getSettings method, 143, 147
getting content into, 143
goBack method, 144
goBackOrForward method, 145
goForward method, 145
handling clicks on links, 145
JavaScript default setting, 143
loadData method, 143-144
loadUrl method, 142, 143
navigation, 144
permission to access the Internet, 276
persistence of settings, 147
reload method, 144

setWebViewClient method, 145
tabbed browsing, 182

WebViewClient class

shouldOverrideUrlLoading method, 145,
146

weight, LinearLayout container, 40
widgets

@-+id/widgetname notation, 47
@id/widgetname notation, 48
adapters, 59-60
additional properties/methods, 37-38
alignment, 47, 48
AnalogClock, 99
attaching to activity, 23
AutoCompleteTextView, 69-72
Button, 30-31
CheckBox, 33-35
color attributes, 38
containers, 39
creating, 24
DatePicker, 95
DigitalClock, 99
EditText, 32-33
Gallery, 72
GridView, 66-69
handling clicks on links, 145
Hierarchy Viewer tool, 319
ImageButton, 31
ImageView, 31
LinearLayout container, 39-45
ListView, 60-63, 75-94

with icons and text, 75-84

with ratings and text, 84-94
positioning relative to container, 47
positioning relative to other widgets, 48
ProgressBar, 101
RadioButton, 35-37
RatingBar, 84-94
RelativeLayout container, 46-51
ScrollView container, 54-57
SeekBar, 101
Spinner, 63-66
TableLayout container, 51-54
TabWidget, 103, 106
TextView, 29-30
TimePicker, 95
using different fonts, 139
value for limited-input devices, 95
View class, 19
WebView, 141
XML layout file, 23

attaching to Java, 25
Wi-Fi hotspots
identifying location, 295
wikis
Open Mob for Android wiki, 367
windows
automatically scaling Ul to screen size,
332
Hierarchy Viewer tool, 317
wrap_content rule
automatically scaling Ul to screen size,
332
LinearLayout container, 40, 43
wrapping API, 362-366
WRITE_CALENDAR permission, 276
WRITE_CONTACTS permission, 276
writePermission attribute, content providers,
278
WVGA screens
Archos 5 Android Internet Tablet, 355
EU4You application, 345, 347, 349, 350
Google/HTC Nexus One, 357
ignoring screen sizes and resolutions,
332
Motorola DROID/Milestone, 356
reading font, EU4You, 346
screen sizes, 331

=X

XML files
describing menus via, 133-135
xml folder (res/xml/), 8, 204-206
framework for managing preferences,
214

types of resources, 197
XML layout file
@ signs, 25, 27
aapt tool, 23
attaching to Java, 25
attaching widgets to activity, 23
attributes as widget properties, 23
creating labels in, 29
description, 23
ImageView with icons and text, 76
Layouts/NowRedux project, 24
NowRedux project, 26
R.layout, 76
reasons for using, 24
XML parsers, Android, 255
XML pull parser, 255
XML-defined drawables
automatically scaling Ul to screen size,
334
XmlPullParser object, 204, 206
XMLResourceDemo application, 206
XML-RPC client APIs, 253

)

years
DatePicker/DatePickerDialog, 95

4

ZERO WIDTH NO-BREAK SPACE character,
140
zooming, 304

	Prelim
	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Preface
	The Big Picture
	Challenges of Smartphone Programming
	What Androids Are Made Of
	Stuff at Your Disposal

	Projects and Targets
	Pieces and Parts
	Creating a Project
	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, the Rest of the Story
	What You Get Out of It

	Inside the Manifest
	In the Beginning, There Was the Root, And It Was Good
	Permissions, Instrumentations, and Applications (Oh My!)
	Your Application Does Something, Right?
	Achieving the Minimum
	Version=Control

	Emulators and Targets
	Virtually There
	Aiming at a Target

	Creating a Skeleton Application
	Begin at the Beginning
	Dissecting the Activity
	Building and Running the Activity

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What’s with the @ Signs?
	And How Do We Attach These to the Java?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who’s Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It’s Quite a View
	Useful Properties
	Useful Methods
	Colors

	Working with Containers
	Thinking Linearly
	LinearLayout Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity
	Padding

	LinearLayout Example

	All Things Are Relative
	RelativeLayout Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	RelativeLayout Example

	Tabula Rasa
	TableLayout Concepts and Properties
	Putting Cells in Rows
	Other Children of TableLayout
	Stretch, Shrink, and Collapse

	TableLayout Example

	Scrollwork

	Using Selection Widgets
	Adapting to the Circumstances
	Lists of Naughty and Nice
	Spin Control
	Grid Your Lions (or Something Like That...)
	Fields: Now with 35% Less Typing!
	Galleries, Give or Take the Art

	Getting Fancy with Lists
	Getting to First Base
	A Dynamic Presentation
	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern

	Making a List...
	...And Checking It Twice
	Adapting Other Adapters

	Employing Fancy Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Making Progress
	Seeking Resolution
	Put It on My Tab
	The Pieces
	The Idiosyncrasies
	Wiring It Together
	Adding Them Up
	Intents and Views

	Flipping Them Off
	Manual Flipping
	Adding Contents on the Fly
	Automatic Flipping

	Getting in Someone’s Drawer
	Other Good Stuff

	The Input Method Framework
	Keyboards, Hard and Soft
	Tailored to Your Needs
	Tell Android Where It Can Go
	Fitting In
	Unleash Your Inner Dvorak

	Applying Menus
	Menus of Options
	Creating an Options Menu
	Adding Menu Choices and Submenus

	Menus in Context
	Taking a Peek
	Yet More Inflation
	Menu XML Structure
	Menu Options and XML
	Inflating the Menu

	Fonts
	Love the One You’re With
	More Fonts
	Here a Glyph, There a Glyph

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh My!)

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Dealing with Threads
	Getting Through the Handlers
	Messages
	Runnables

	Running in Place
	Where Oh Where Has My UI Thread Gone?
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task
	The AddStringTask Declaration
	The doInBackground() Method
	The onProgressUpdate() Method
	The onPostExecute() Method
	The Activity

	And Now, the Caveats

	Handling Activity Life Cycle Events
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Creating Intent Filters
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Subactivities
	Peers and Subs
	Start ’Em Up
	Make an Intent
	Make the Call

	Tabbed Browsing, Sort Of

	Handling Rotation
	A Philosophy of Destruction
	It’s All the Same, Just Different
	Now with More Savings!
	DIY Rotation
	Forcing the Issue
	Making Sense of It All

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled String Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks

	Using Preferences
	Getting What You Want
	Stating Your Preference
	And Now, a Word from Our Framework
	Letting Users Have Their Say
	Adding a Wee Bit o' Structure
	The Kind of Pop-Ups You Like

	Managing and Accessing Local Databases
	The Database Example
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin’ Data
	What Goes Around Comes Around
	Raw Queries
	Regular Queries
	Building with Builders
	Using Cursors

	Data, Data, Everywhere

	Accessing Files
	You and the Horse You Rode in On
	Readin’ ’n Writin’

	Leveraging Java Libraries
	The Outer Limits
	Ants and JARs
	Following the Script
	...And Not a Drop to Drink
	Reviewing the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpClient
	Parsing Responses
	Stuff to Consider

	Using a Content Provider
	Pieces of Me
	Getting a Handle
	Makin’ Queries
	Adapting to the Circumstances
	Give and Take
	Beware of the BLOB!

	Building a Content Provider
	First, Some Dissection
	Next, Some Typing
	Creating Your Content Provider
	Step 1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step 2: Supply a Uri
	Step 3: Declare the Properties
	Step 4: Update the Manifest

	Notify-on-Change Support

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?

	Creating a Service
	Service with Class
	There Can Only Be One
	Manifest Destiny
	Lobbing One Over the Fence
	Callbacks
	Broadcast Intents

	Where’s the Remote? And the Rest of the Code?

	Invoking a Service
	The Ties That Bind
	Catching the Lob

	Alerting Users via Notifications
	Types of Pestering
	Hardware Notifications
	Icons

	Seeing Pestering in Action

	Accessing Location-Based Services
	Location Providers: They Know Where You’re Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	Terms, Not of Endearment
	Piling On
	The Bare Bones
	Exercising Your Control
	Zoom
	Center

	Rugged Terrain
	Layers upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	The Key to It All

	Handling Telephone Calls
	Report to the Manager
	You Make the Call!

	Development Tools
	Hierarchical Management
	Delightful Dalvik Debugging Detailed, Demoed
	Logging
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages

	Put It on My Card
	Creating a Card Image
	Inserting the Card

	Handling Multiple Screen Sizes
	Taking the Default
	Whole in One
	Think About Rules, Rather Than Positions
	Consider Physical Dimensions
	Avoid Real Pixels
	Choose Scalable Drawables

	Tailor-Made, Just for You (and You, and You, and...)
	Add <supports-screens>
	Resources and Resource Sets
	Default Scaling
	Density-Based Sets
	Size-Based Sets
	Version-Based Sets

	Finding Your Size

	Ain’t Nothing Like the Real Thing
	Density Differs
	Adjusting the Density
	Accessing Actual Devices

	Ruthlessly Exploiting the Situation
	Replace Menus with Buttons
	Replace Tabs with a Simple Activity
	Consolidate Multiple Activities

	Example: EU4You
	The First Cut
	Fixing the Fonts
	Fixing the Icons
	Using the Space
	What If It’s Not a Browser?

	What Are a Few Bugs Among Friends?

	Dealing with Devices
	This App Contains Explicit Instructions
	Button, Button, Who’s Got the Button?
	A Guaranteed Market
	The Down and Dirty Details
	Archos 5 Android Internet Tablet
	Motorola CLIQ/DEXT
	Motorola DROID/Milestone
	Google/HTC Nexus One
	Motorola BACKFLIP

	Handling Platform Changes
	Brand Management
	More Things That Make You Go Boom
	View Hierarchy
	Changing Resources

	Handling API Changes
	Detecting the Version
	Wrapping the API

	Where Do We Go from Here?
	Questions—Sometimes with Answers
	Heading to the Source
	Getting Your News Fix

	Index
	¦ Symbols and
	Numerics
	¦ A
	B
	¦
	¦ C
	D
	¦
	¦ E
	¦ F
	G
	¦
	H
	¦
	¦ I
	J
	¦
	¦K
	¦ L
	M
	¦
	¦ N ¦ O
	P
	¦
	R
	¦
	¦ Q
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	Y
	¦
	¦ X ¦
	Z

