

Beginning
Android 2

Begin the journey toward your own
successful Android 2 applications

Mark L. Murphy
	 	

    

 
 

 
 
 

 

Beginning Android 2

■ ■ ■

Mark L. Murphy

Beginning Android 2

Copyright © 2010 by Mark L. Murphy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2629-1

ISBN-13 (electronic): 978-1-4302-2630-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc., in the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and
this book was written without endorsement from Sun Microsystems, Inc.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Matthew Moodie
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Fran Parnell
Copy Editor: Marilyn S. Smith
Compositor: MacPS, LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

iv

Contents at a Glance
■Contents at a Glance ... iv
■Contents... v
■About the Author... xiii
■Acknowledgments ...xiv
■Preface..xv
■Chapter 1: The Big Picture ... 1
■Chapter 2: Projects and Targets .. 5
■Chapter 3: Creating a Skeleton Application ... 17
■Chapter 4: Using XML-Based Layouts.. 23
■Chapter 5: Employing Basic Widgets ... 29
■Chapter 6: Working with Containers.. 39
■Chapter 7: Using Selection Widgets... 59
■Chapter 8: Getting Fancy with Lists... 75
■Chapter 9: Employing Fancy Widgets and Containers ... 95
■Chapter 10: The Input Method Framework .. 117
■Chapter 11: Applying Menus.. 125
■Chapter 12: Fonts... 137
■Chapter 13: Embedding the WebKit Browser... 141
■Chapter 14: Showing Pop-Up Messages.. 149
■Chapter 15: Dealing with Threads ... 155
■Chapter 16: Handling Activity Life Cycle Events .. 167
■Chapter 17: Creating Intent Filters .. 171
■Chapter 18: Launching Activities and Subactivities .. 177
■Chapter 19: Handling Rotation... 185
■Chapter 20: Working with Resources .. 197
■Chapter 21: Using Preferences .. 213
■Chapter 22: Managing and Accessing Local Databases .. 225
■Chapter 23: Accessing Files... 237
■Chapter 24: Leveraging Java Libraries.. 245
■Chapter 25: Communicating via the Internet... 253
■Chapter 26: Using a Content Provider.. 259
■Chapter 27: Building a Content Provider ... 265
■Chapter 28: Requesting and Requiring Permissions ... 275
■Chapter 29: Creating a Service .. 279
■Chapter 30: Invoking a Service.. 285
■Chapter 31: Alerting Users via Notifications.. 289
■Chapter 32: Accessing Location-Based Services... 295
■Chapter 33: Mapping with MapView and MapActivity... 301
■Chapter 34: Handling Telephone Calls ... 311
■Chapter 35: Development Tools ... 315
■Chapter 36: Handling Multiple Screen Sizes.. 331
■Chapter 37: Dealing with Devices.. 353
■Chapter 38: Handling Platform Changes.. 359
■Chapter 39: Where Do We Go from Here? .. 367
■Index .. 369

 v

Contents

■Contents at a Glance... iv
■Contents .. v
■About the Author .. xiii
■Acknowledgments...xiv
■Preface ...xv

■Chapter 1: The Big Picture... 1

Challenges of Smartphone Programming ...1
What Androids Are Made Of..2
Stuff at Your Disposal ...3

■Chapter 2: Projects and Targets.. 5
Pieces and Parts ...5
Creating a Project ...6
Project Structure...6

Root Contents ..6
The Sweat Off Your Brow...7
And Now, the Rest of the Story..7
What You Get Out of It..8

Inside the Manifest ...8
In the Beginning, There Was the Root, And It Was Good ...9
Permissions, Instrumentations, and Applications (Oh My!) ...9
Your Application Does Something, Right? ...10
Achieving the Minimum ...11
Version=Control ...12

Emulators and Targets..12
Virtually There..12
Aiming at a Target ...14

■ CONTENTS

vi

■Chapter 3: Creating a Skeleton Application... 17
Begin at the Beginning..17
Dissecting the Activity ..18
Building and Running the Activity...20

■Chapter 4: Using XML-Based Layouts ... 23
What Is an XML-Based Layout? ..23
Why Use XML-Based Layouts? ...24
OK, So What Does It Look Like?..24
What’s with the @ Signs?...25
And How Do We Attach These to the Java?..25
The Rest of the Story ..26

■Chapter 5: Employing Basic Widgets... 29
Assigning Labels...29
Button, Button, Who’s Got the Button? ...30
Fleeting Images ..31
Fields of Green. Or Other Colors. ..32
Just Another Box to Check..33
Turn the Radio Up ...35
It’s Quite a View ..37

Useful Properties ...37
Useful Methods ..38
Colors...38

■Chapter 6: Working with Containers ... 39
Thinking Linearly ..39

LinearLayout Concepts and Properties ..40
LinearLayout Example..42

All Things Are Relative ..46
RelativeLayout Concepts and Properties ...47
RelativeLayout Example...49

Tabula Rasa ..51
TableLayout Concepts and Properties ...52
TableLayout Example...53

Scrollwork...54

■Chapter 7: Using Selection Widgets .. 59
Adapting to the Circumstances...59
Lists of Naughty and Nice ...60
Spin Control ..63
Grid Your Lions (or Something Like That...) ..66
Fields: Now with 35% Less Typing! ..69
Galleries, Give or Take the Art ..72

■Chapter 8: Getting Fancy with Lists .. 75
Getting to First Base ...75
A Dynamic Presentation..77
Better. Stronger. Faster. ...80

Using convertView ...80
Using the Holder Pattern..81

■ CONTENTS

 vii

Making a List... ...84
...And Checking It Twice ...89
Adapting Other Adapters...94

■Chapter 9: Employing Fancy Widgets and Containers................................... 95
Pick and Choose ...95
Time Keeps Flowing Like a River..99
Making Progress...101
Seeking Resolution ...101
Put It on My Tab..102

The Pieces ...103
The Idiosyncrasies ...103
Wiring It Together ..104
Adding Them Up...106
Intents and Views ..109

Flipping Them Off..109
Manual Flipping ...110
Adding Contents on the Fly ..112
Automatic Flipping...113

Getting in Someone’s Drawer ...114
Other Good Stuff ...116

■Chapter 10: The Input Method Framework.. 117
Keyboards, Hard and Soft ...117
Tailored to Your Needs..118
Tell Android Where It Can Go ..121
Fitting In..123
Unleash Your Inner Dvorak ...124

■Chapter 11: Applying Menus ... 125
Menus of Options..125

Creating an Options Menu ...125
Adding Menu Choices and Submenus ...126

Menus in Context ..127
Taking a Peek ...128
Yet More Inflation..133

Menu XML Structure ..133
Menu Options and XML..134
Inflating the Menu..135

■Chapter 12: Fonts .. 137
Love the One You’re With..137
More Fonts..138
Here a Glyph, There a Glyph ...140

■Chapter 13: Embedding the WebKit Browser .. 141
A Browser, Writ Small...141
Loading It Up...143
Navigating the Waters...144
Entertaining the Client ..145
Settings, Preferences, and Options (Oh My!) ..147

■ CONTENTS

viii

■Chapter 14: Showing Pop-Up Messages.. 149
Raising Toasts...149
Alert! Alert!..150
Checking Them Out...151

■Chapter 15: Dealing with Threads ... 155
Getting Through the Handlers ...155

Messages...156
Runnables ..158

Running in Place ...159
Where Oh Where Has My UI Thread Gone?...159
Asyncing Feeling...159

The Theory ...159
AsyncTask, Generics, and Varargs...160
The Stages of AsyncTask...160
A Sample Task ...161

And Now, the Caveats...164

■Chapter 16: Handling Activity Life Cycle Events.. 167
Schroedinger’s Activity ...167
Life, Death, and Your Activity..168

onCreate() and onDestroy() ..168
onStart(), onRestart(), and onStop() ...169
onPause() and onResume() ..169

The Grace of State ..169

■Chapter 17: Creating Intent Filters .. 171
What’s Your Intent?...171

Pieces of Intents ..172
Intent Routing ..172

Stating Your Intent(ions) ...173
Narrow Receivers ...174
The Pause Caveat ...175

■Chapter 18: Launching Activities and Subactivities.................................... 177
Peers and Subs...177
Start ’Em Up..178

Make an Intent ...178
Make the Call ...178

Tabbed Browsing, Sort Of ...182

■Chapter 19: Handling Rotation .. 185
A Philosophy of Destruction..185
It’s All the Same, Just Different ..185
Now with More Savings!...189
DIY Rotation ..191
Forcing the Issue ..193
Making Sense of It All ...195

■Chapter 20: Working with Resources.. 197
The Resource Lineup ..197
String Theory ..198

■ CONTENTS

 ix

Plain Strings...198
String Formats ...198
Styled Text ...199
Styled String Formats ..199

Got the Picture? ..202
XML: The Resource Way ...204
Miscellaneous Values ...206

Dimensions ..207
Colors...207
Arrays...208

Different Strokes for Different Folks ...208

■Chapter 21: Using Preferences.. 213
Getting What You Want ...213
Stating Your Preference..214
And Now, a Word from Our Framework..214
Letting Users Have Their Say..215
Adding a Wee Bit o' Structure...219
The Kind of Pop-Ups You Like...221

■Chapter 22: Managing and Accessing Local Databases.............................. 225
The Database Example ...225
A Quick SQLite Primer...227
Start at the Beginning...227
Setting the Table...230
Makin’ Data...230
What Goes Around Comes Around ..232

Raw Queries...232
Regular Queries ...232
Building with Builders..233
Using Cursors...234

Data, Data, Everywhere ..235

■Chapter 23: Accessing Files .. 237
You and the Horse You Rode in On ...237
Readin’ ’n Writin’ ..240

■Chapter 24: Leveraging Java Libraries ... 245
The Outer Limits..245
Ants and JARs...246
Following the Script ..246
...And Not a Drop to Drink ...250
Reviewing the Script...251

■Chapter 25: Communicating via the Internet .. 253
REST and Relaxation...253
HTTP Operations via Apache HttpClient ..254
Parsing Responses ...255
Stuff to Consider ...257

■Chapter 26: Using a Content Provider ... 259
Pieces of Me ...259

■ CONTENTS

x

Getting a Handle ...260
Makin’ Queries..260
Adapting to the Circumstances...261
Give and Take ...263
Beware of the BLOB!...264

■Chapter 27: Building a Content Provider ... 265
First, Some Dissection ..265
Next, Some Typing..266
Creating Your Content Provider...267

Step 1: Create a Provider Class ...267
Step 2: Supply a Uri ...272
Step 3: Declare the Properties ...272
Step 4: Update the Manifest ..273

Notify-on-Change Support ..273

■Chapter 28: Requesting and Requiring Permissions 275
Mother, May I? ..275
Halt! Who Goes There? ...276

Enforcing Permissions via the Manifest...277
Enforcing Permissions Elsewhere ...278

May I See Your Documents? ...278

■Chapter 29: Creating a Service.. 279
Service with Class ..279
There Can Only Be One ...280
Manifest Destiny ...281
Lobbing One Over the Fence...282

Callbacks ...283
Broadcast Intents...283

Where’s the Remote? And the Rest of the Code? ...284

■Chapter 30: Invoking a Service ... 285
The Ties That Bind ..286
Catching the Lob...287

■Chapter 31: Alerting Users via Notifications ... 289
Types of Pestering ..289

Hardware Notifications ..290
Icons ..290

Seeing Pestering in Action..290

■Chapter 32: Accessing Location-Based Services .. 295
Location Providers: They Know Where You’re Hiding ...295
Finding Yourself ..296
On the Move..297
Are We There Yet? Are We There Yet? Are We There Yet? ...298
Testing...Testing... ..299

■Chapter 33: Mapping with MapView and MapActivity 301
Terms, Not of Endearment..301
Piling On..302
The Bare Bones...302

■ CONTENTS

 xi

Exercising Your Control...303
Zoom..304
Center ..304

Rugged Terrain ...304
Layers upon Layers...305

Overlay Classes..305
Drawing the ItemizedOverlay...305
Handling Screen Taps..307

My, Myself, and MyLocationOverlay ...307
The Key to It All ...308

■Chapter 34: Handling Telephone Calls... 311
Report to the Manager ..311
You Make the Call! ..312

■Chapter 35: Development Tools... 315
Hierarchical Management...315
Delightful Dalvik Debugging Detailed, Demoed ..321

Logging ..322
File Push and Pull ..323
Screenshots ...324
Location Updates ...325
Placing Calls and Messages ..326

Put It on My Card ..328
Creating a Card Image ...328
Inserting the Card ..329

■Chapter 36: Handling Multiple Screen Sizes ... 331
Taking the Default...331
Whole in One...332

Think About Rules, Rather Than Positions ...332
Consider Physical Dimensions...333
Avoid Real Pixels..333
Choose Scalable Drawables ..334

Tailor-Made, Just for You (and You, and You, and...)..334
Add <supports-screens>...334
Resources and Resource Sets ...335
Finding Your Size ...336

Ain’t Nothing Like the Real Thing..337
Density Differs ...337
Adjusting the Density ...337
Accessing Actual Devices ..338

Ruthlessly Exploiting the Situation ...339
Replace Menus with Buttons ...339
Replace Tabs with a Simple Activity..340
Consolidate Multiple Activities...340

Example: EU4You ..340
The First Cut...340
Fixing the Fonts ...346
Fixing the Icons..348

■ CONTENTS

xii

Using the Space...348
What If It’s Not a Browser? ..350

What Are a Few Bugs Among Friends?...351

■Chapter 37: Dealing with Devices.. 353
This App Contains Explicit Instructions...353
Button, Button, Who’s Got the Button? ...354
A Guaranteed Market ..355
The Down and Dirty Details ..355

Archos 5 Android Internet Tablet ...355
Motorola CLIQ/DEXT...356
Motorola DROID/Milestone...356
Google/HTC Nexus One ..357
Motorola BACKFLIP ..357

■Chapter 38: Handling Platform Changes ... 359
Brand Management ..359
More Things That Make You Go Boom..360

View Hierarchy...360
Changing Resources ..361

Handling API Changes...362
Detecting the Version...362
Wrapping the API ...362

■Chapter 39: Where Do We Go from Here? .. 367
Questions—Sometimes with Answers ...367
Heading to the Source ..368
Getting Your News Fix...368

■Index.. 369

 xiii

About the Author

Mark Murphy is the founder of CommonsWare and the author of the Busy
Coder’s Guide to Android Development. A three-time entrepreneur, his
experience ranges from consulting on open source and collaborative
development for the Fortune 500 to application development on just about
anything smaller than a mainframe. He has been a software developer for
more than 25 years, from the TRS-80 to the latest crop of mobile devices. A
polished speaker, Mark has delivered conference presentations and training
sessions on a wide array of topics internationally.

Mark writes the Building ‘Droids column for AndroidGuys and the Android
Angle column for NetworkWorld.

Outside of CommonsWare, Mark has an avid interest in how the Internet will
play a role in citizen involvement with politics and government. He is also a contributor to the
Rebooting America essay collection.

xiv

Acknowledgments

I would like to thank the Android team, not only for putting out a good product, but for
invaluable assistance on the Android Google Groups. In particular, I would like to thank Romain
Guy, Justin Mattson, Dianne Hackborn, Jean-Baptiste Queru, Jeff Sharkey, and Xavier Ducrohet.

Icons used in the sample code were provided by the Nuvola icon set: www.icon-king.com/?p=15.

 xv

Preface

Welcome to the Book!
Thanks for your interest in developing applications for Android! Increasingly, people will access
Internet-based services using so-called "nontraditional" means, such as mobile devices. The
more we do in that space now, the more that people will help invest in that space to make it
easier to build more powerful mobile applications in the future. Android is new—Android-
powered devices first appeared on the scene in late 2008—but it likely will rapidly grow in
importance due to the size and scope of the Open Handset Alliance.

And, most of all, thanks for your interest in this book! I sincerely hope you find it useful
and at least occasionally entertaining.

Prerequisites
If you are interested in programming for Android, you will need at least a basic understanding of
how to program in Java. Android programming is done using Java syntax, plus a class library that
resembles a subset of the Java SE library (plus Android-specific extensions). If you have not
programmed in Java before, you probably should learn how that works before attempting to dive
into programming for Android.

The book does not cover in any detail how to download or install the Android
development tools, either the Eclipse IDE flavor or the stand-alone flavor. The Android web site
covers this quite nicely. The material in the book should be relevant whether or not you use the
IDE. You should download, install, and test the Android development tools from the Android web
site before trying any of the examples presented in this book.

Some chapters may reference material in previous chapters. Also, not every sample shown
has the complete source code in the book, lest this book get too large. If you wish to compile the
samples, download the source code from the Apress web site (www.apress.com).

Editions of This Book
This book is being produced via a partnership between Apress and CommonsWare. You are
reading the Apress edition, which is available in print and in digital form from various digital
book services, such as Safari.

CommonsWare continually updates the original material and makes it available to
members of its Warescription program, under the title The Busy Coder's Guide to Android
Development.

CommonsWare maintains a FAQ about this partnership at
http://commonsware.com/apress.

■ PREFACE

xvi

Source Code and Its License
The source code for this book is available to readers at www.apress.com. All of the Android
projects are licensed under the Apache 2.0 License at www.apache.org/licenses/LICENSE-
2.0.html, in case you have the desire to reuse any of it.

1

 Chapter

The Big Picture
Android devices, by and large, will be mobile phones. While the Android technology is

being discussed for use in other areas (e.g., car dashboard “PCs”), for now, the focus is

on phone applications. For developers, this has benefits and drawbacks.

Challenges of Smartphone Programming
On the plus side, Android-style smartphones are sexy. Offering Internet services over

mobile devices dates back to the mid-1990s and the Handheld Device Markup

Language (HDML). However, only in recent years have phones capable of Internet

access taken off. Now, thanks to trends like text messaging and products like Apple's

iPhone, phones that can serve as Internet-access devices are rapidly gaining popularity.

So, working on Android applications gives you experience with an interesting technology

(Android) in a fast-moving market segment (Internet-enabled phones), which is always a

good thing.

The problem comes when you actually have to program the darn things.

Anyone with experience in programming for PDAs or phones has felt the pain of phones

simply being small in all sorts of dimensions, such as the following:

 Screens are small (you won’t get comments like, “Is that a 24-inch

LCD in your pocket, or...?”).

 Keyboards, if they exist, are small.

 Pointing devices, if they exist, are annoying (as anyone who has lost a

stylus will tell you) or inexact (large fingers and “multitouch” LCDs are

not a good mix).

 CPU speed and memory are limited compared with what are available

on desktops and servers.

 You can have any programming language and development

framework you want, as long as it was what the device manufacturer

chose and burned into the phone’s silicon.

1

CHAPTER 1: The Big Picture 2

Moreover, applications running on a phone must deal with the fact that they are on a
phone.

People with mobile phones tend to get very irritated when those phones don’t work,

which is why the “Can you hear me now?” ad campaign from Verizon Wireless has been

popular for the past few years. Similarly, those same people will get angry with you if

your program “breaks” their phone:

 By tying up the CPU so that calls can’t be received

 By not quietly fading into the background when a call comes in or

needs to be placed, because it does not work properly with the rest of

the phone’s operating system

 By crashing the phone’s operating system, such as by leaking memory

like a sieve

Hence, developing programs for a phone is a different experience than developing

desktop applications, web sites, or back-end server processes. The tools look different,

the frameworks behave differently, and there are more limitations on what you can do

with your programs.

What Android tries to do is meet you halfway:

 You get a commonly used programming language (Java) with some

commonly used libraries (e.g., some Apache Commons APIs), with

support for tools you may be used to using (Eclipse).

 You get a fairly rigid and separate framework in which your programs

need to run so they can be “good citizens” on the phone and not

interfere with other programs or the operation of the phone itself.

As you might expect, much of this book deals with that framework and how to write

programs that work within its confines and take advantage of its capabilities.

What Androids Are Made Of
When you write a desktop application, you are “master of your own domain.” You

launch your main window and any child windows—like dialog boxes—that are needed.

From your standpoint, you are your own world, leveraging features supported by the

operating system, but largely ignorant of any other program that may be running on the

computer at the same time. If you do interact with other programs, it is typically through

an API, such as Java Database Connectivity (JDBC), or frameworks atop it, to

communicate with MySQL or another database.

Android has similar concepts, but packaged differently and structured to make phones

more crash-resistant. Here are the main components used in an Android application:

CHAPTER 1: The Big Picture 3

 Activities: The building block of the user interface is the activity. You

can think of an activity as being the Android analogue for the window

or dialog box in a desktop application. While it is possible for activities

to not have a user interface, most likely your “headless” code will be

packaged in the form of content providers or services.

 Content providers: Content providers provide a level of abstraction for

any data stored on the device that is accessible by multiple

applications. The Android development model encourages you to

make your own data available to other applications, as well as your

own. Building a content provider lets you do that, while maintaining

complete control over how your data is accessed.

 Services: Activities and content providers are short-lived and can be

shut down at any time. Services, on the other hand, are designed to

keep running, if needed, independent of any activity. You might use a

service for checking for updates to an RSS feed or to play back music

even if the controlling activity is no longer operating.

 Intents: Intents are system messages, running around the inside of the

device, notifying applications of various events, from hardware state

changes (e.g., an SD card was inserted), to incoming data (e.g., an

SMS message arrived), to application events (e.g., your activity was

launched from the device’s main menu). Not only can you respond to

intents, but you can create your own to launch other activities or to let

you know when specific situations arise (e.g., raise such-and-so intent

when the user gets within 100 meters of this-and-such location).

Stuff at Your Disposal
Android comes with a number of features to help you develop applications:

 Storage: You can package data files with your application, for things

that do not change, such as icons or help files. You also can carve out

a bit of space on the device itself, for databases or files containing

user-entered or retrieved data needed by your application. And, if the

user supplies bulk storage, like an SD card, you can read and write

files there as needed.

 Network: Android devices will generally be Internet-ready, through one

communications medium or another. You can take advantage of the

Internet access at any level you wish, from raw Java sockets all the

way up to a built-in WebKit-based web browser widget you can

embed in your application.

CHAPTER 1: The Big Picture 4

 Multimedia: Android devices have the ability to play back and record

audio and video. While the specifics may vary from device to device,

you can query the device to learn its capabilities, and then take

advantage of the multimedia capabilities as you see fit—whether that

is to play back music, take pictures with the camera, or use the

microphone for audio note-taking.

 Global positioning system (GPS): Android devices will frequently have

access to location providers, such as a GPS, which can tell your

applications where the device is on the face of the Earth. In turn, you

can display maps or otherwise take advantage of the location data,

such as tracking a device’s movements if the device has been stolen.

 Phone services: Of course, since Android devices are typically phones,

your software can initiate calls, send and receive Short Message

Service (SMS) messages, and everything else you expect from a

modern bit of telephony technology.

5

 Chapter

Projects and Targets
After you have downloaded and installed the latest Android Software Development Kit

(SDK), and perhaps the Android Developer Tools (ADT) plugin for Eclipse (both available

from the Android Developers web site), you’re ready to get started. This chapter covers

what is involved in building an Android application.

Pieces and Parts
To create an Android application, you will need to create a corresponding Android

project. This could be an Eclipse project, if you are using Eclipse for Android

development. The project will hold all of your source code, resources (e.g.,

internationalized strings), third-party JARs, and related materials. The Android build

tools—whether Eclipse-integrated or stand-alone—will turn the contents of your project

into an Android package (APK) file, which is the Android application. Those tools will

also help you get your APK file onto an Android emulator or an actual Android device for

testing purposes.

One key element of a project is the manifest (). This file contains the

“table of contents” for your application, listing all of the major application components,

permissions, and so on. The manifest is used by Android at runtime to tie your

application into the operating system. The manifest contents are also used by the

Android Market (and perhaps other independent “app stores”), so applications that need

Android 2.0 will not be presented to people with Android 1.5 devices, for example.

To test your application with the emulator, you will need to create an Android Virtual

Device, or AVD. Most likely, you will create several of these, as each AVD emulates an

Android device with a particular set of hardware. You might have AVDs for different

screen sizes, Android versions, and so on.

When creating projects and creating AVDs, you will need to indicate to Android the API

level with which you are working. The API level is a simple integer that maps to an

Android version; for example, API level means Android 1.5. When creating a project,

you will be able to tell Android the minimum and maximum API levels your application

supports. When creating an AVD, you will tell Android which API level the AVD should

2

CHAPTER 2: Projects and Targets 6

emulate, so you can see how your application runs on various (fake) devices

implementing different versions of Android.

All of these concepts are described in greater detail in this chapter.

Creating a Project
To create a project from the command line, for use with the command-line build tools

(e.g.,), you will need to run the command. This command

takes a number of switches to indicate the Java package in which the application’s code

will reside, the API level the application is targeting, and so on. The result of running this

command will be a directory containing all of the files necessary to build a “Hello,

World!” Android application.

Here is an example of running :

android create project --target 2 --path ./FirstApp --activity FirstApp --package
apt.tutorial

If you intend to develop for Android using Eclipse, rather than ,

you will use the Eclipse new-project wizard to create a new Android application.

NOTE: The source code that accompanies this book was set up to be built using the command-
line build tools. If you prefer to use Eclipse, you can create empty Eclipse Android projects and
import the code into those projects.

Project Structure
The Android build system is organized around a specific directory tree structure for your

Android project, much like any other Java project. The specifics, though, are fairly

unique to Android. Here’s a quick primer on the project structure, to help you make

sense of it all, particularly for the sample code referenced in this book.

Root Contents
When you create a new Android project (e.g., via), you get

several items in the project’s root directory, including the following:

 : An XML file describing the application being

built and which components—activities, services, and so on—are

being supplied by that application.

 : An Ant script for compiling the application and installing it

on the device.

CHAPTER 2: Projects and Targets

 and : Property files used by the

Ant build script.

 : A folder that holds other static files you wish packaged with

the application for deployment onto the device.

 : A folder that holds the application once it is compiled.

 : Where Android’s build tools will place source code that they

generate.

 : A folder that holds any third-party JARs your application

requires.

 : A folder that holds the Java source code for the application.

 : A folder that holds resources—such as icons, graphic user

interface (GUI) layouts, and the like—that are packaged with the

compiled Java in the application.

 : A folder that holds an entirely separate Android project used

for testing the one you created.

The Sweat Off Your Brow
When you create an Android project (e.g., via), you supply the

fully qualified class name of the main activity for the application (e.g.,

). You will then find that your project’s tree

already has the namespace directory tree in place, plus a stub subclass

representing your main activity (e.g.,). You

are welcome to modify this file and add others to the tree as needed to implement

your application.

The first time you compile the project (e.g., via), out in the main activity’s namespace

directory, the Android build chain will create . This contains a number of

constants tied to the various resources you placed in the directory tree. Throughout

this book, you will see that many of the examples reference things in (e.g.,

referring to a layout’s identifier via).

NOTE: You should not modify yourself, but instead let the Android tools handle this for you.

And Now, the Rest of the Story
The directory tree holds resources—static files that are packaged along with your

application, either in their original form or, occasionally, in a preprocessed form. These

are some of the subdirectories you will find or create under :

CHAPTER 2: Projects and Targets 8

 : For images (PNG, JPEG, etc.).

 : For XML-based UI layout specifications.

 : For XML-based menu specifications.

 : For general-purpose files (e.g., a CSV file of account

information).

 : For strings, dimensions, and the like.

 : For other general-purpose XML files you wish to ship.

All of these, as well as other resources, are covered in this book.

What You Get Out of It
When you compile your project (via or the IDE), the results go into the directory

under your project root, as follows:

 : Holds the compiled Java classes.

 : Holds the executable created from those compiled

Java classes.

 : Holds your application’s resources, packaged as a

ZIP file (where is the name of your application).

 or : The actual

Android application (where is the name of your application).

The file is a ZIP archive containing the file, the compiled edition of your

resources (), any uncompiled resources (such as what you put in

), and the file. It is also digitally signed, with the

portion of the filename indicating it has been signed using a debug key that works with

the emulator, or indicating that you built your application for release (

), but the APK still needs to be signed using and an official key.

Inside the Manifest
The foundation for any Android application is the manifest file, in

the root of your project. Here is where you declare what is inside your application—the

activities, the services, and so on. You also indicate how these pieces attach themselves

to the overall Android system; for example, you indicate which activity (or activities)

should appear on the device’s main menu (a.k.a. the launcher).

When you create your application, a starter manifest will be generated for you

automatically. For a simple application, offering a single activity and nothing else, the

autogenerated manifest will probably work out fine, or perhaps require a few minor

modifications. On the other end of the spectrum, the manifest file for the Android API

CHAPTER 2: Projects and Targets

demo suite is more than 1,000 lines long. Your production Android applications will

probably fall somewhere in the middle.

Most of the interesting bits of the manifest will be described in greater detail in the

chapters on their associated Android features. For example, the element will be

described in greater detail in Chapter 29, which covers creating services. For now, you

just need to understand the role of the manifest and its general overall construction.

In the Beginning, There Was the Root, And It Was Good
The root of all manifest files is, not surprisingly, a element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
...
</manifest>

Note the namespace declaration. Curiously, the generated manifests apply it only on the

attributes, not the elements (e.g., it’s , not). Since this pattern

works, unless Android changes, you should stick with it.

The biggest piece of information you need to supply on the element is the

 attribute (also curiously not namespaced). Here, you can provide the name of

the Java package that will be considered the “base” of your application. Then,

everywhere else in the manifest file that needs a class name, you can just substitute a

leading dot as shorthand for the package. For example, if you needed to refer to

 in this preceding manifest, you could

just use , since is defined as the

application’s package.

Permissions, Instrumentations, and Applications (Oh My!)
Underneath the element, you may find the following:

 elements: Indicate the permissions your application

will need in order to function properly.

 elements: Declare permissions that activities or services

might require other applications to hold in order to use your

application’s data or logic.

 elements: Indicate code that should be invoked on

key system events, such as starting up activities, for the purposes of

logging or monitoring.

 elements: Hook in optional Android components, such

as mapping services.

 element: Indicates for which version of the Android SDK the

application was built.

CHAPTER 2: Projects and Targets 10

 element: Defines the guts of the application that the

manifest describes.

Here’s an example:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android">
 <uses-permission
 android:name="android.permission.ACCESS_LOCATION" />
 <uses-permission
 android:name="android.permission.ACCESS_GPS" />
 <uses-permission
 android:name="android.permission.ACCESS_ASSISTED_GPS" />
 <uses-permission
 android:name="android.permission.ACCESS_CELL_ID" />
 <application>
...
 </application>
</manifest>

In this example, the manifest has elements to indicate some device

capabilities the application will need—in this case, permissions to allow the application

to determine its current location. The contents of the element will describe

the activities, services, and whatnot that make up the bulk of the application itself.

Permissions will be covered in greater detail in Chapter 28.

Your Application Does Something, Right?
The children of the element represent the core of the manifest file.

By default, when you create a new Android project, you get a single element:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

This element supplies for the class implementing the activity,

 for the display name of the activity, and (frequently) an

child element describing under which conditions this activity will be displayed. The stock

 element sets up your activity to appear in the launcher, so users can choose to

run it. As you’ll see later in this book, you can have several activities in one project, if

you so choose.

You may have one or more elements, indicating content providers, which are

the components that supply data to your activities and, with your permission, other

CHAPTER 2: Projects and Targets 11

activities in other applications on the device. These wrap up databases or other data

stores into a single API that any application can use. Later, you’ll see how to create

content providers and how to use content providers that you or others create.

Finally, you may have one or more elements, describing services, which are

long-running pieces of code that can operate independently of any activity. The

quintessential example is the MP3 player, where you want the music to keep playing

even if the user pops open other activities and the MP3 player’s user interface is

“misplaced.” Chapters 29 and 30 cover how to create and use services.

Achieving the Minimum
Android, like most operating systems, goes through various revisions, versions, and

changes. Some of these affect the Android SDK, meaning there are new classes,

methods, or parameters you can use that you could not in previous versions of the SDK.

If you want to ensure your application is run only on devices that have a certain version

(or higher) of the Android environment, you will add a element, as a child of the

root element in your file. The element has

one attribute, , indicating which SDK version your application requires:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.search">
 <uses-sdk minSdkVersion="2" />
 ...
</manifest>

At the time of this writing, there are five possible values:

 : Android 1.0 SDK

 : Android 1.1 SDK

 : Android 1.5 SDK

 : Android 1.6 SDK

 : Android 2.0 SDK

If you omit the element, your application will behave as though

 is set to .

CAUTION: The Android Market seems to insist that you specifically state your ,
so be certain to have a proper element if you are going to distribute via that
channel.

If you set , the application will install only on compatible devices. You do not

need to specify the latest SDK, but if you choose an older one, it is up to you to ensure

your application works on every SDK version you claim is compatible. For example, if

you leave out , in effect, you are stipulating that your application works on

CHAPTER 2: Projects and Targets 12

every Android SDK version ever released, and you will need to test your application to

determine if this is indeed the case.

Also note that a bug in the Android Market means you should make the

element be the first child of your element.

Version=Control
Particularly if you are going to distribute your application, via the Android Market or

other means, you probably should add a pair of other attributes to the root

element: and . These assist in the process of

upgrading applications.

The attribute is some human-readable label for the version name

or number of your application. So, you can use or or or

as you see fit.

The attribute is a pure integer indication of the version of the

application. This is used by the system to determine if one version of your application is

newer than another. Newer is defined as “has a higher value.”

Whether you attempt to convert your actual version (as found in) to

a number or simply increment this value by one for each release is up to you.

Emulators and Targets
Let’s take a moment to discuss the notion of targets in Android, since they can be a bit

confusing. Targets are important for your long-term application development,

particularly when you use the Android emulator for testing your applications.

Virtually There
To use the emulator, you will need to create one or more AVDs. These virtual devices are

designed to mimic real Android devices like the T-Mobile G1 or the HTC Magic. You tell

the emulator which AVD to use, and the emulator will pretend it is the device described

by that AVD.

When you create an AVD, you need to specify a target. The target indicates which class

of device the AVD will pretend to be. At the time of this writing, there are five targets:

 : An Android 1.1 device, such as a nonupgraded T-Mobile G1.

 : An Android 1.5 device that lacks Google Maps support. This is what

you might get from a home-brew port of Android onto a device.

 : An Android 1.5 device that has Google Maps support.

 : An Android 1.6 device that has Google Maps support.

 : An Android 2.0 device that has Google Maps support.

CHAPTER 2: Projects and Targets

TIP: You can find out the available API targets via the command.

If you are building applications that may use Google Maps, you will want to use an AVD

that has a target of or higher.

You can create as many AVDs as you need and for which you have disk space. Each

AVD behaves as a totally distinct device, so installing your app on one AVD does not

affect any other AVDs that you have created.

AVDs can be created through the command, via Eclipse, or via the

AVD Manager, a GUI added in Android 1.6. To use the AVD Manager, simply run the

 command without any arguments. As shown in Figure 2-1, you will be

presented with a list of prebuilt AVDs, New and Delete buttons to add and remove

AVDs, a Start button to launch an emulator using a selected AVD, and so on.

Figure 2-1. The AVD Manager GUI, showing a list of available AVDs

When you add an AVD through the GUI (via the New button in the main window), you will

be prompted for a name, target API/Google Maps combination, details about an SD

card image, and the size of screen you wish to emulate (called the skin). Figure 2-2

shows the Create New AVD dialog box.

CHAPTER 2: Projects and Targets

Figure 2-2. Adding an AVD

Aiming at a Target
When you create a new project (via or Eclipse), you will need to

indicate which class of device this project targets. The same values shown in the

previous section apply. For example, creating a project with a target of indicates

Android 1.5. Your resulting application will not install on devices that do not meet the

specified target.

Here are some rules of thumb for dealing with targets:

 Ask for only what you really need. If you are sticking with Android 1.5

APIs, you may as well ask to build with Android 1.5 APIs and maximize

the number of devices on which your program can run.

 Test on as many targets as you can and that are possible. For

example, you may be tempted to target , to reach the maximum

possible range of Android devices. That is fine, but you will need to

test on a target AVD, and a target AVD, and so on.

CHAPTER 2: Projects and Targets 15

 Check out the new target levels with each Android release. There

should be a new values with every Android point-release update (e.g.,

2.0 or 1.6), and possibly even for SDK patch levels (e.g., 1.5r1 versus

1.5r2). Be sure to test your application on those new targets whenever

you can, as some people may start getting devices with the new

Android release soon.

 Testing on AVDs, regardless of target, is no substitute for testing on

hardware. AVDs are designed to give you disposable environments

that let you test a wide range of environments, even those that may

not yet exist in hardware. However, you really need to test your

application on at least one actual Android device. If nothing else, the

speed of your emulator may not match the speed of the device; the

emulator may be faster or slower depending on your system.

17

 Chapter

Creating a Skeleton
Application
Every programming language or environment book starts off with the popular “Hello,

World!” demonstration. This is just enough of a program to prove you can build things.

However, the typical Hello, World! program has no interactivity (e.g., it just dumps the

words to a console), and so it’s really boring.

This chapter demonstrates a simple project, but one using Advanced Push-Button

Technology and the current time, making it a bit more interesting than the typical Hello,

World! demo.

Begin at the Beginning
As described in the previous chapter, to work with anything in Android, you need a

project. If you are using tools that are not Android-enabled, you can use the android
create project script, found in the tools/ directory in your SDK installation. You will

need to pass to android create project the API target, the directory where you want

the skeleton generated, the name of the default activity, and the Java package where all

of this should reside:

android create project --target 2 \
 --path /path/to/my/project/dir --activity Now \
 --package com.commonsware.android.Now

You can also download the project directories of the samples shown in this book in a

ZIP file on the Apress web site. These projects are ready for use; you do not need to run

android create project on those unpacked samples.

Your project’s src/ directory contains the standard Java-style tree of directories based

on the Java package you used when you created the project (e.g., com.commonsware.android
results in src/com/commonsware/android/). Inside the innermost directory, you should

find a pregenerated source file named Now.java, which is where your first activity will go.

3

CHAPTER 3: Creating a Skeleton Application 18

This activity will contain a single button that displays the time that the button was last

pushed (or the time the application was started if the button has not been pushed).

NOTE: If you downloaded the source files from the Apress web site, you can just use the
Skeleton/Now project directly, rather than entering the code.

Open Now.java in your editor and paste in the following code:

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class Now extends Activity implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

Let’s examine this piece by piece.

Dissecting the Activity
The package declaration needs to be the same as the one you used when creating the

project. And, as with any other Java project, you need to import any classes you

reference. Most of the Android-specific classes are in the android package.

package com.commonsware.android.skeleton;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

CHAPTER 3: Creating a Skeleton Application 19

It’s worth noting that not every Java SE class is available to Android programs. Visit the

Android class reference to see what is and is not available.

public class Now extends Activity implements View.OnClickListener {
 Button btn;

Activities are public classes, inheriting from the android.app.Activity base class. In this

case, the activity holds a button (btn).

NOTE: A button, as you can see from the package name, is an Android widget, and widgets are
the user interface elements that you use in your application.

Since, for simplicity, we want to trap all button clicks just within the activity itself, we

also have the activity class implement OnClickListener:

@Override
public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 btn=new Button(this);
 btn.setOnClickListener(this);
 updateTime();
 setContentView(btn);
}

The onCreate() method is invoked when the activity is started. The first thing you should

do is chain upward to the superclass, so the stock Android activity initialization can be

done.

In our implementation, we then create the button instance (new Button(this)), tell it to

send all button clicks to the activity instance itself (via setOnClickListener()), call a

private updateTime() method (shown shortly), and then set the activity’s content view to

be the button itself (via setContentView()).

NOTE: All widgets extend the View base class. You usually build the user interface out of a
hierarchy of views, but in this example, we are using a single view.

We will discuss that magical Bundle icicle in Chapter 16. For the moment, consider it

an opaque handle that all activities receive upon creation.

public void onClick(View view) {
 updateTime();
}

In Swing, a JButton click raises an ActionEvent, which is passed to the ActionListener

configured for the button. In Android, a button click causes onClick() to be invoked in

the OnClickListener instance configured for the button. The listener is provided to the

view that triggered the click (in this case, the button). All we do here is call that private

updateTime() method:

CHAPTER 3: Creating a Skeleton Application 20

private void updateTime() {
 btn.setText(new Date().toString());
}

When we open the activity (onCreate()), or when the button is clicked (onClick()), we

update the button’s label to be the current time via setText(), which functions much the

same as the JButton equivalent.

Building and Running the Activity
To build the activity, use your integrated development environment’s (IDE’s) built-in

Android packaging tool or run ant in the base directory of your project. Then do the

following to run the activity:

1. Launch the emulator by running the android command, choosing an

AVD in the AVD Manager, and clicking the Start button. You should be

able to accept the defaults in the Launch Options dialog. Figure 3–1

shows the Android home screen.

NOTE: The first time you use an AVD with the emulator, it will take substantially longer to start
than it will subsequent times.

Figure 3–1. The Android home screen

2. Install the package (e.g., run ant install).

CHAPTER 3: Creating a Skeleton Application 21

3. View the list of installed applications in the emulator and find the Now

application. In Figure 3–2, it’s on the bottom row.

Figure 3–2. The Android application launcher

4. Open that application. You should see an activity screen similar to the

one shown in Figure 3–3.

Figure 3–3. The Now demonstration activity

CHAPTER 3: Creating a Skeleton Application 22

Clicking the button—in other words, clicking pretty much anywhere on the phone’s

screen—will update the time shown in the button’s label.

Note that the label is centered horizontally and vertically, as those are the default styles

applied to button captions. You can control that formatting, as described in Chapter 5.

After you are finished gazing at the awesomeness of Advanced Push-Button

Technology, you can click the back button on the emulator to return to the launcher.

23

 Chapter

Using XML-Based Layouts
While it is technically possible to create and attach widgets to your activity purely

through Java code, as we did in the preceding chapter, the more common approach is

to use an XML-based layout file. Dynamic instantiation of widgets is reserved for more

complicated scenarios, where the widgets are not known at compile time (e.g.,

populating a column of radio buttons based on data retrieved from the Internet).

With that in mind, it’s time to break out the XML and learn how to lay out Android

activities that way.

What Is an XML-Based Layout?
As the name suggests, an XML-based layout is a specification of widgets’ relationships

to each other—and to their containers (which are covered in Chapter 6)—encoded in

XML format. Specifically, Android considers XML-based layouts to be resources, and as

such, layout files are stored in the res/layout directory inside your Android project.

Each XML file contains a tree of elements specifying a layout of widgets and containers

that make up one View hierarchy. The attributes of the XML elements are properties,

describing how a widget should look or how a container should behave. For example, if

a Button element has an attribute value of android:textStyle = "bold", that means that

the text appearing on the face of the button should be rendered in a boldface font style.

Android’s SDK ships with a tool (aapt) that uses the layouts. This tool should be

automatically invoked by your Android toolchain (e.g., Eclipse or Ant’s build.xml). Of

particular importance to you as a developer is that aapt generates the R.java source file

within your project, allowing you to access layouts and widgets within those layouts

directly from your Java code, as will be demonstrated in this chapter.

4

CHAPTER 4: Using XML-Based Layouts 24

Why Use XML-Based Layouts?
Most everything you do using XML layout files can be achieved through Java code. For

example, you could use setTypeface() to have a button render its text in bold, instead

of using a property in an XML layout. Since XML layouts are yet another file for you to

keep track of, we need good reasons for using such files.

Perhaps the biggest reason is to assist in the creation of tools for view definition, such

as a GUI builder in an IDE like Eclipse or a dedicated Android GUI designer like

DroidDraw. Such GUI builders could, in principle, generate Java code instead of XML.

The challenge is rereading the UI definition to support edits, which is far simpler when

the data is in a structured format like XML rather than in a programming language.

Moreover, keeping generated XML definitions separated from handwritten Java code

makes it less likely that someone’s custom-crafted source will get clobbered by

accident when the generated bits are regenerated. XML forms a nice middle ground

between something that is convenient for tool writers to use and easy for programmers

to work with by hand as needed.

Also, XML as a GUI definition format is becoming more commonplace. Microsoft’s

Extensible Application Markup Language (XAML), Adobe’s Flex, and Mozilla’s XML User

Interface Language (XUL) all take a similar approach to that of Android: put layout details

in an XML file and put programming smarts in source files (e.g., JavaScript for XUL).

Many less well-known GUI frameworks, such as ZK, also use XML for view definition.

While following the herd is not necessarily the best policy, it does have the advantage of

helping to ease the transition to Android from any other XML-centered view description

language.

OK, So What Does It Look Like?
Here is the Button from the previous chapter’s sample application, converted into an

XML layout file, found in the Layouts/NowRedux sample project:

<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/button"
 android:text=""
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"/>

The class name of the widget, Button, forms the name of the XML element. Since Button

is an Android-supplied widget, we can just use the bare class name. If you create your

own widgets as subclasses of android.view.View, you will need to provide a full

package declaration as well (e.g., com.commonsware.android.MyWidget).

The root element needs to declare the Android XML namespace:

xmlns:android="http://schemas.android.com/apk/res/android"

All other elements will be children of the root and will inherit that namespace declaration.

CHAPTER 4: Using XML-Based Layouts 25

Because we want to reference this button from our Java code, we need to give it an

identifier via the android:id attribute. We will cover this concept in greater detail in the

next section.

The remaining attributes are properties of this Button instance:

 android:text: Indicates the initial text to be displayed on the button

face (in this case, an empty string).

 android:layout_width and android:layout_height: Tell Android to

have the button's width and height fill the parent—in this case, the

entire screen.

These attributes will be covered in greater detail in Chapter 6.

Since this single widget is the only content in our activity, we need just this single

element. Complex UIs will require a whole tree of elements, representing the widgets

and containers that control their positioning. All the remaining chapters of this book will

use the XML layout form whenever practical, so there are dozens of other examples of

more complex layouts for you to peruse.

What’s with the @ Signs?
Many widgets and containers need to appear only in the XML layout file and do not

need to be referenced in your Java code. For example, a static label (TextView)

frequently needs to be in the layout file just to indicate where it should appear. These

sorts of elements in the XML file do not need to have the android:id attribute to give

them a name.

Anything you do want to use in your Java source, though, needs an android:id.

The convention is to use @+id/... as the id value, where the ... represents your locally

unique name for the widget in question. In the XML layout example in the preceding

section, @+id/button is the identifier for the Button widget.

Android provides a few special android:id values, of the form @android:id/.... You will

see some of these in various examples throughout this book.

And How Do We Attach These to the Java?
Given that you have painstakingly set up the widgets and containers in an XML layout

file named main.xml stored in res/layout, all you need is one statement in your activity’s

onCreate() callback to use that layout:

setContentView(R.layout.main);

This is the same setContentView() we used earlier, passing it an instance of a View

subclass (in that case, a Button). The Android-built View, constructed from our layout, is

accessed from that code-generated R class. All of the layouts are accessible under

CHAPTER 4: Using XML-Based Layouts 26

R.layout, keyed by the base name of the layout file; for example, res/layout/main.xml

results in R.layout.main.

To access your identified widgets, use findViewById(), passing in the numeric identifier

of the widget in question. That numeric identifier was generated by Android in the R

class as R.id.something (where something is the specific widget you are seeking). Those

widgets are simply subclasses of View, just like the Button instance we created in the

previous chapter.

The Rest of the Story
In the original Now demo, the button’s face would show the current time, which would

reflect when the button was last pushed (or when the activity was first shown, if the

button had not yet been pushed). Most of that logic still works, even in this revised

demo (NowRedux). However, rather than instantiating the Button in our activity’s

onCreate() callback, we can reference the one from the XML layout:

package com.commonsware.android.layouts;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Date;

public class NowRedux extends Activity
 implements View.OnClickListener {
 Button btn;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 btn=(Button)findViewById(R.id.button);
 btn.setOnClickListener(this);
 updateTime();
 }

 public void onClick(View view) {
 updateTime();
 }

 private void updateTime() {
 btn.setText(new Date().toString());
 }
}

The first difference is that, rather than setting the content view to be a view we created

in Java code, we set it to reference the XML layout (setContentView(R.layout.main)).

CHAPTER 4: Using XML-Based Layouts 27

The R.java source file will be updated when we rebuild this project to include a

reference to our layout file (stored as main.xml in our project’s res/layout directory).

The other difference is that we need to get our hands on our Button instance, for which

we use the findViewById() call. Since we identified our button as @+id/button, we can

reference the button’s identifier as R.id.button. Now, with the Button instance in hand,

we can set the callback and set the label as needed.

The results look the same as with the original Now demo, as shown in Figure 4–1.

Figure 4–1. The NowRedux sample activity

29

 Chapter

Employing Basic Widgets
Every GUI toolkit has some basic widgets: fields, labels, buttons, and so on. Android’s

toolkit is no different in scope, and the basic widgets will provide a good introduction to

how widgets work in Android activities.

Assigning Labels
The simplest widget is the label, referred to in Android as a TextView. As in most GUI

toolkits, labels are bits of text that cannot be edited directly by users. Typically, they are

used to identify adjacent widgets (e.g., a “Name:” label next to a field where you fill in a

name).

In Java, you can create a label by creating a TextView instance. More commonly,

though, you will create labels in XML layout files by adding a TextView element to the

layout, with an android:text property to set the value of the label itself. If you need to

swap labels based on certain criteria, such as internationalization, you may wish to use a

resource reference in the XML instead, as will be described in Chapter 20.

TextView has numerous other properties of relevance for labels, such as the following:

 android:typeface: Sets the typeface to use for the label (e.g.,

monospace).

 android:textStyle: Indicates that the typeface should be made bold

(bold), italic (italic), or bold and italic (bold_italic).

 android:textColor: Sets the color of the label’s text, in RGB hex

format (e.g., #FF0000 for red).

For example, in the Basic/Label project, you will find the following layout file:

<?xml version="1.0" encoding="utf-8"?>
<TextView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="You were expecting something profound?"
 />

5

CHAPTER 5: Employing Basic Widgets 30

Just that layout alone, with the stub Java source provided by Android’s project builder

(e.g., android create project), gives you the demo shown in Figure 5–1.

Figure 5–1. The LabelDemo sample application

Button, Button, Who’s Got the Button?
You have already seen the use of the Button widget in the previous two chapters. As it

turns out, Button is a subclass of TextView, so everything discussed in the preceding

section also applies to formatting the face of the button.

However, Android 1.6 adds a new feature for the declaration of the “on-click” listener for

a Button. In addition to the classic approach of defining some object (such as the

activity) as implementing the View.OnClickListener interface, you can now take a

somewhat simpler approach:

 Define some method on your Activity that holds the button that takes

a single View parameter, has a void return value, and is public.

 In your layout XML, on the Button element, include the

android:onClick attribute with the name of the method you defined in

the previous step.

For example, you might have a method on your Activity that looks like this:

public void someMethod(View theButton) {
 // do something useful here
}

Then you could use this XML declaration for the Button itself, including

android:onClick:

CHAPTER 5: Employing Basic Widgets 31

<Button
 android:onClick="someMethod"
 ...
/>

This is enough for Android to wire together the Button with the click handler.

Fleeting Images
Android has two widgets to help you embed images in your activities: ImageView and

ImageButton. As the names suggest, they are image-based analogues to TextView and

Button, respectively.

Each widget takes an android:src attribute (in an XML layout) to specify which picture

to use. These usually reference a drawable resource, described in greater detail in

Chapter 20. You can also set the image content based on a Uri from a content provider

via setImageURI().

ImageButton, a subclass of ImageView, mixes in the standard Button behaviors, for

responding to clicks and whatnot. For example, take a peek at the main.xml layout from

the Basic/ImageView sample project:

<?xml version="1.0" encoding="utf-8"?>
<ImageView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/icon"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:adjustViewBounds="true"
 android:src="@drawable/molecule"
 />

The result, just using the code-generated activity, is simply the image shown in Figure 5–2.

Figure 5–2. The ImageViewDemo sample application

CHAPTER 5: Employing Basic Widgets 32

Fields of Green. Or Other Colors.
Along with buttons and labels, fields are the third anchor of most GUI toolkits. In

Android, they are implemented via the EditText widget, which is a subclass of the

TextView used for labels.

Along with the standard TextView properties (e.g., android:textStyle), EditText has

many other properties that will be useful to you in constructing fields, including the

following:

 android:autoText: Controls if the field should provide automatic

spelling assistance.

 android:capitalize: Controls if the field should automatically

capitalize the first letter of entered text (useful for name or city fields,

for example).

 android:digits: Configures the field to accept only certain digits.

 android:singleLine: Controls if the field is for single-line input or

multiple-line input (e.g., does pressing Enter move you to the next

widget or add a newline?).

Most of these properties are also available from the new android:inputType attribute,

introduced in Android 1.5 as part of adding “soft keyboards” to Android (discussed in

Chapter 10).

For example, from the Basic/Field project, here is an XML layout file showing an

EditText widget:

<?xml version="1.0" encoding="utf-8"?>
<EditText xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/field"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 />

Note that android:singleLine is set to "false", so users will be able to enter in several

lines of text.

For this project, the FieldDemo.java file populates the input field with some prose:

package com.commonsware.android.field;

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class FieldDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

CHAPTER 5: Employing Basic Widgets 33

 EditText fld=(EditText)findViewById(R.id.field);
 fld.setText("Licensed under the Apache License, Version 2.0 " +
 "(the \"License\"); you may not use this file " +
 "except in compliance with the License. You may " +
 "obtain a copy of the License at " +
 "http://www.apache.org/licenses/LICENSE-2.0");
 }
}

The result, once built and installed into the emulator, is shown in Figure 5–3.

Figure 5–3. The FieldDemo sample application

Another flavor of field is one that offers autocompletion, to help users supply a value

without typing in the whole entry. That is provided in Android as the

AutoCompleteTextView widget, discussed in greater detail in Chapter 9.

Just Another Box to Check
The classic check box has two states: checked and unchecked. Clicking the check box

toggles between those states to indicate a choice (e.g., “Add rush delivery to my order”).

In Android, there is a CheckBox widget to meet this need. It has TextView as an ancestor,

so you can use TextView properties like android:textColor to format the widget.

Within Java, you can invoke the following:

CHAPTER 5: Employing Basic Widgets 34

 isChecked(): Determines if the check box has been checked.

 setChecked(): Forces the check box into a checked or unchecked

state.

 toggle(): Toggles the check box as if the user checked it.

Also, you can register a listener object (in this case, an instance of

OnCheckedChangeListener) to be notified when the state of the check box changes.

For example, from the Basic/CheckBox project, here is a simple check box layout:

<?xml version="1.0" encoding="utf-8"?>
<CheckBox xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/check"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="This checkbox is: unchecked" />

The corresponding CheckBoxDemo.java retrieves and configures the behavior of the

check box:

public class CheckBoxDemo extends Activity
 implements CompoundButton.OnCheckedChangeListener {
 CheckBox cb;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 cb=(CheckBox)findViewById(R.id.check);
 cb.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(CompoundButton buttonView,
 boolean isChecked) {
 if (isChecked) {
 cb.setText("This checkbox is: checked");
 }
 else {
 cb.setText("This checkbox is: unchecked");
 }
 }
}

Note that the activity serves as its own listener for check box state changes, since it

implements the OnCheckedChangeListener interface (via

cb.setOnCheckedChangeListener(this)). The callback for the listener is

onCheckedChanged(), which receives the check box whose state has changed and the

new state. In this case, we update the text of the check box to reflect what the actual

box contains.

What’s the result? Clicking the check box immediately updates its text, as shown in

Figures 5–4 and 5–5.

CHAPTER 5: Employing Basic Widgets 35

Figure 5–4. The CheckBoxDemo sample application, with the check box unchecked

Figure 5–5. The same application, with the check box checked

Turn the Radio Up
As with other implementations of radio buttons in other toolkits, Android’s radio buttons

are two-state, like check boxes, but can be grouped such that only one radio button in

the group can be checked at any time.

CHAPTER 5: Employing Basic Widgets 36

Like CheckBox, RadioButton inherits from CompoundButton, which in turn inherits from

TextView. Hence, all the standard TextView properties for font face, style, color, and so

on are available for controlling the look of radio buttons. Similarly, you can call

isChecked() on a RadioButton to see if it is selected, toggle() to select it, and so on, as

you can with a CheckBox.

Most times, you will want to put your RadioButton widgets inside a RadioGroup. The

RadioGroup indicates a set of radio buttons whose state is tied, meaning only one button

in that group can be selected at any time. If you assign an android:id to your

RadioGroup in your XML layout, you can access the group from your Java code and

invoke the following:

 check(): Checks a specific radio button via its ID (e.g.,

group.check(R.id.radio1)).

 clearCheck(): Clears all radio buttons, so none in the group are

checked.

 getCheckedRadioButtonId(): Gets the ID of the currently checked

radio button (or -1 if none are checked).

For example, from the Basic/RadioButton sample application, here is an XML layout

showing a RadioGroup wrapping a set of RadioButton widgets:

<?xml version="1.0" encoding="utf-8"?>
<RadioGroup
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioButton android:id="@+id/radio1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Rock" />

 <RadioButton android:id="@+id/radio2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Scissors" />

 <RadioButton android:id="@+id/radio3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Paper" />
</RadioGroup>

Using the stock Android-generated Java for the project and this layout, you get the

result shown in Figure 5–6.

CHAPTER 5: Employing Basic Widgets 37

Figure 5–6. The RadioButtonDemo sample application

Note that the radio button group is initially set so that none of the buttons are checked

at the outset. To preset one of the radio buttons to be checked, use either setChecked()

on the RadioButton or check() on the RadioGroup from within your onCreate() callback

in your activity.

It’s Quite a View
All widgets, including the ones shown in the preceding sections, extend View, and as

such, give all widgets an array of useful properties and methods beyond those already

described.

Useful Properties
Some of the properties on View most likely to be used include the following, which

control the focus sequence:

 android:nextFocusDown

 android:nextFocusLeft

 android:nextFocusRight

 android:nextFocusUp

Another useful property is android:visibility, which controls whether the widget is

initially visible.

CHAPTER 5: Employing Basic Widgets 38

Useful Methods
You can toggle whether or not a widget is enabled via setEnabled() and see if it is

enabled via isEnabled(). One common use pattern for this is to disable some widgets

based on a CheckBox or RadioButton selection.

You can give a widget focus via requestFocus() and see if it is focused via isFocused().

You might use this in concert with disabling widgets, to ensure the proper widget has

the focus once your disabling operation is complete.

To help navigate the tree of widgets and containers that make up an activity’s overall

view, you can use the following:

 getParent(): Finds the parent widget or container.

 findViewById(): Finds a child widget with a certain ID.

 getRootView(): Gets the root of the tree (e.g., what you provided to the

activity via setContentView()).

Colors
There are two types of color attributes in Android widgets. Some, like

android:background, take a single color (or a graphic image to serve as the

background). Others, like android:textColor on TextView (and subclasses), can take a

ColorStateList, including via the Java accessor (in this case, setTextColor()).

A ColorStateList allows you to specify different colors for different conditions. For

example, a TextView can have one text color when it is the selected item in a list and

another color when it is not selected (selection widgets are discussed in Chapter 7). This

is handled via the default ColorStateList associated with TextView.

If you wish to change the color of a TextView widget in Java code, you have two main

choices:

 Use ColorStateList.valueOf(), which returns a ColorStateList in

which all states are considered to have the same color, which you

supply as the parameter to the valueOf() method. This is the Java

equivalent of the android:textColor approach, to make the TextView

always a specific color, regardless of circumstances.

 Create a ColorStateList with different values for different states,

either via the constructor or via an XML document.

39

 Chapter

Working with Containers
Containers pour a collection of widgets (and possibly child containers) into specific

structures. If you want a form with labels on the left and fields on the right, you need a

container. If you want OK and Cancel buttons to be beneath the rest of the form, next

to one another, and flush to the right side of the screen, you need a container. Just

from a pure XML perspective, if you have multiple widgets (beyond RadioButton

widgets in a RadioGroup), you need a container just to have a root element to place the

widgets inside.

Most GUI toolkits have some notion of layout management, frequently organized into

containers. In Java/Swing, for example, you have layout managers like BoxLayout and

containers that use them (e.g., Box). Some toolkits, such as XUL and Flex, stick strictly

to the box model, figuring that any desired layout can be achieved through the correct

combination of nested boxes. Android, through LinearLayout, also offers a box model.

In addition, Android supports a range of containers that provide different layout rules.

In this chapter, we will look at several commonly used containers: LinearLayout (the box

model), RelativeLayout (a rule-based model), TableLayout (the grid model), and

ScrollView, a container designed to assist with implementing scrolling containers.

Thinking Linearly
LinearLayout is a box model, in which widgets or child containers are lined up in a

column or row, one after the next. This works in a similar manner to FlowLayout in

Java/Swing, and vbox and hbox in Flex and XUL.

Flex and XUL use the box as their primary unit of layout. If you want, you can use

LinearLayout in much the same way, eschewing some of the other containers. Getting

the visual representation you want is mostly a matter of identifying where boxes should

nest and which properties those boxes should have, such as their alignment in relation

to other boxes.

6

CHAPTER 6: Working with Containers 40

LinearLayout Concepts and Properties
To configure a LinearLayout, you have five main areas of control: the orientation, the fill

model, the weight, the gravity, and the padding.

Orientation
Orientation indicates whether the LinearLayout represents a row or a column. Just add

the android:orientation property to your LinearLayout element in your XML layout,

setting the value to be horizontal for a row or vertical for a column.

The orientation can be modified at runtime by invoking setOrientation() on the

LinearLayout, supplying it either HORIZONTAL or VERTICAL.

Fill Model
Let’s imagine a row of widgets, such as a pair of radio buttons. These widgets have a

“natural” size based on their text. Their combined sizes probably do not exactly match

the width of the Android device’s screen, particularly since screens come in various

sizes. You then have the issue of what to do with the remaining space.

All widgets inside a LinearLayout must supply android:layout_width and

android:layout_height properties to help address this issue. These properties’ values

have three flavors:

 You can provide a specific dimension, such as 125px to indicate the

widget should take up exactly 125 pixels.

 You can provide wrap_content, which means the widget should fill up

its natural space, unless that is too big, in which case Android can use

word-wrap as needed to make it fit.

 You can provide fill_parent, which means the widget should fill up

all available space in its enclosing container, after all other widgets are

handled.

The latter two flavors are the most common, as they are independent of screen size,

allowing Android to adjust your view to fit the available space.

Weight
But what happens if you have two widgets that should split the available free space? For

example, suppose you have two multiline fields in a column, and you want them to take

up the remaining space in the column after all other widgets have been allocated their

space. To make this work, in addition to setting android:layout_width (for rows) or

android:layout_height (for columns) to fill_parent, you must also set

android:layout_weight.

CHAPTER 6: Working with Containers 41

The android:layout_weight property indicates the proportion of the free space that

should go to that widget. For example, if you set android:layout_weight to be the same

nonzero value for a pair of widgets (e.g., 1), the free space will be split evenly between

them. If you set it to be 1 for one widget and 2 for the other widget, the second widget

will use up twice the free space that the first widget does. The weight for a widget is

zero by default.

Another pattern for using weights is if you want to allocate sizes on a percentage basis.

To use this technique for, say, a horizontal layout:

 Set all the android:layout_width values to be 0 for the widgets in the

layout.

 Set the android:layout_weight values to be the desired percentage

size for each widget in the layout.

 Make sure all those weights add up to 100.

Gravity
By default, everything in a LinearLayout is left- and top-aligned. So, if you create a row

of widgets via a horizontal LinearLayout, the row will start flush on the left side of the

screen. If that is not what you want, you need to specify a gravity value. Using

android:layout_gravity on a widget (or calling setGravity() at runtime on the widget’s

Java object), you can tell the widget and its container how to align it in on the screen.

For a column of widgets, common gravity values are left, center_horizontal, and

right for left-aligned, centered, and right-aligned widgets, respectively.

For a row of widgets, the default is for them to be aligned so their text is aligned on the

baseline (the invisible line that letters seem to “sit on”). You can specify a gravity of

center_vertical to center the widgets along the row’s vertical midpoint.

Padding
By default, widgets are tightly packed next to each other. If you want to increase the

whitespace between widgets, you will want to use the android:padding property (or call

setPadding() at runtime on the widget’s Java object). The padding specifies how much

space there is between the boundaries of the widget’s “cell” and the actual widget

contents, as shown in Figure 6-1.

CHAPTER 6: Working with Containers 42

Figure 6-1. The relationship between a widget, its cell, and the padding values

The android:padding property allows you to set the same padding on all four sides of

the widget, with the widget’s contents centered within that padded-out area. If you want

the padding to vary on different sides, use android:paddingLeft, android:paddingRight,

android:paddingTop, and android:paddingBottom. The value of the padding is a

dimension, such as 5px for 5 pixels’ worth of padding.

If you apply a custom background to a widget (e.g., via the android:background

attribute), the background will be behind both the widget and the padding area. To avoid

this, rather than using padding, you can establish margins, which add whitespace

without extending the intrinsic size of the widget. You can set margins via

android:layout_marginTop and related attributes.

LinearLayout Example
Let’s look at an example (Containers/Linear) that shows LinearLayout properties set

both in the XML layout file and at runtime. Here is the layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <RadioGroup android:id="@+id/orientation"
 android:orientation="horizontal"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="5px">
 <RadioButton

CHAPTER 6: Working with Containers 43

 android:id="@+id/horizontal"
 android:text="horizontal" />
 <RadioButton
 android:id="@+id/vertical"
 android:text="vertical" />
 </RadioGroup>
 <RadioGroup android:id="@+id/gravity"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5px">
 <RadioButton
 android:id="@+id/left"
 android:text="left" />
 <RadioButton
 android:id="@+id/center"
 android:text="center" />
 <RadioButton
 android:id="@+id/right"
 android:text="right" />
 </RadioGroup>
</LinearLayout>

Note that we have a LinearLayout wrapping two RadioGroup sets. RadioGroup is a

subclass of LinearLayout, so our example demonstrates nested boxes as if they were all

LinearLayout containers.

The top RadioGroup sets up a row (android:orientation = "horizontal") of

RadioButton widgets. The RadioGroup has 5px of padding on all sides, separating it from

the other RadioGroup. The width and height are both set to wrap_content, so the radio

buttons will take up only the space that they need.

The bottom RadioGroup is a column (android:orientation = "vertical") of three

RadioButton widgets. Again, we have 5px of padding on all sides and a natural height

(android:layout_height = "wrap_content"). However, we have set

android:layout_width to be fill_parent, meaning the column of radio buttons claims

the entire width of the screen.

To adjust these settings at runtime based on user input, we need some Java code:

package com.commonsware.android.linear;

import android.app.Activity;
import android.os.Bundle;
import android.view.Gravity;
import android.text.TextWatcher;
import android.widget.LinearLayout;
import android.widget.RadioGroup;
import android.widget.EditText;

public class LinearLayoutDemo extends Activity
 implements RadioGroup.OnCheckedChangeListener {
 RadioGroup orientation;
 RadioGroup gravity;

 @Override

CHAPTER 6: Working with Containers 44

 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 orientation=(RadioGroup)findViewById(R.id.orientation);
 orientation.setOnCheckedChangeListener(this);
 gravity=(RadioGroup)findViewById(R.id.gravity);
 gravity.setOnCheckedChangeListener(this);
 }

 public void onCheckedChanged(RadioGroup group, int checkedId) {
 switch (checkedId) {
 case R.id.horizontal:
 orientation.setOrientation(LinearLayout.HORIZONTAL);
 break;

 case R.id.vertical:
 orientation.setOrientation(LinearLayout.VERTICAL);
 break;

 case R.id.left:
 gravity.setGravity(Gravity.LEFT);
 break;

 case R.id.center:
 gravity.setGravity(Gravity.CENTER_HORIZONTAL);
 break;

 case R.id.right:
 gravity.setGravity(Gravity.RIGHT);
 break;
 }
 }
}

In onCreate(), we look up our two RadioGroup containers and register a listener on each,

so we are notified when the radio buttons change state

(setOnCheckedChangeListener(this)). Since the activity implements

OnCheckedChangeListener, the activity itself is the listener.

In onCheckedChanged() (the callback for the listener), we see which RadioGroup had a

state change. If it was the orientation group, we adjust the orientation based on the

user’s selection. If it was the gravity group, we adjust the gravity based on the user’s

selection.

Figure 6-2 shows the result when the layout demo is first launched inside the emulator.

CHAPTER 6: Working with Containers 45

Figure 6-2. The LinearLayoutDemo sample application, as initially launched

If we toggle on the vertical radio button, the top RadioGroup adjusts to match, as shown

in Figure 6-3.

Figure 6-3. The same application, with the vertical radio button selected

If we toggle the center or right radio button, the bottom RadioGroup adjusts to match, as

shown in Figures 6-4 and 6-5.

CHAPTER 6: Working with Containers 46

Figure 6-4. The same application, with the vertical and center radio buttons selected

Figure 6-5. The same application, with the vertical and right radio buttons selected

All Things Are Relative
RelativeLayout, as the name suggests, lays out widgets based on their relationship to

other widgets in the container and the parent container. You can place widget X below

and to the left of widget Y, have widget Z’s bottom edge align with the bottom of the

CHAPTER 6: Working with Containers 47

container, and so on. This is reminiscent of James Elliot’s RelativeLayout for use with

Java/Swing.

RelativeLayout Concepts and Properties
To make your RelativeLayout work, you need ways to reference other widgets within an

XML layout file, plus ways to indicate the relative positions of those widgets.

Positions Relative to Container
The easiest relationships to set up are those that tie a widget’s position to that of its

container:

 android:layout_alignParentTop: Aligns the widget’s top with the top

of the container.

 android:layout_alignParentBottom: Aligns the widget’s bottom with

the bottom of the container.

 android:layout_alignParentLeft: Aligns the widget’s left side with the

left side of the container.

 android:layout_alignParentRight: Aligns the widget’s right side with

the right side of the container.

 android:layout_centerHorizontal: Positions the widget horizontally at

the center of the container.

 android:layout_centerVertical: Positions the widget vertically at the

center of the container.

 android:layout_centerInParent: Positions the widget both

horizontally and vertically at the center of the container.

All of these properties take a simple Boolean value (true or false).

NOTE: The padding of the widget is taken into account when performing the various alignments.
The alignments are based on the widget’s overall cell (combination of its natural space plus the
padding).

Relative Notation in Properties
The remaining properties of relevance to RelativeLayout take as a value the identity of a

widget in the container. To do this:

 Put identifiers (android:id attributes) on all elements that you will need

to address, of the form @+id/....

CHAPTER 6: Working with Containers 48

 Reference other widgets using the same identifier value without the

plus sign (@id/...).

For example, if widget A is identified as @+id/widget_a, widget B can refer to widget A in

one of its own properties via the identifier @id/widget_a.

Positions Relative to Other Widgets
Four properties control the position of a widget in relation to other widgets:

 android:layout_above: Indicates that the widget should be placed

above the widget referenced in the property.

 android:layout_below: Indicates that the widget should be placed

below the widget referenced in the property.

 android:layout_toLeftOf: Indicates that the widget should be placed

to the left of the widget referenced in the property.

 android:layout_toRightOf: Indicates that the widget should be placed

to the right of the widget referenced in the property.

Beyond those four, five additional properties can control one widget’s alignment relative

to another:

 android:layout_alignTop: Indicates that the widget’s top should be

aligned with the top of the widget referenced in the property.

 android:layout_alignBottom: Indicates that the widget’s bottom

should be aligned with the bottom of the widget referenced in the

property.

 android:layout_alignLeft: Indicates that the widget’s left should be

aligned with the left of the widget referenced in the property.

 android:layout_alignRight: Indicates that the widget’s right should

be aligned with the right of the widget referenced in the property.

 android:layout_alignBaseline: Indicates that the baselines of the two

widgets should be aligned (where the baseline is the invisible line that

text appears to sit on).

The android:layout_alignBaseline property is useful for aligning labels and fields so

that the text appears natural. Since fields have a box around them and labels do not,

android:layout_alignTop would align the top of the field’s box with the top of the label,

which will cause the text of the label to be higher on the screen than the text entered

into the field.

So, if you want widget B to be positioned to the right of widget A, in the XML element for

widget B, you need to include android:layout_toRightOf = "@id/widget_a" (assuming

@id/widget_a is the identity of widget A).

CHAPTER 6: Working with Containers 49

Order of Evaluation
It used to be that Android would use a single pass to process RelativeLayout-defined

rules. That meant you could not reference a widget (e.g., via android:layout_above) until

it had been declared in the XML. This made defining some layouts a bit complicated.

Starting in Android 1.6, Android uses two passes to process the rules, so you can now

safely have forward references to as-yet-undefined widgets.

RelativeLayout Example
Now let’s examine a typical “form” with a field, a label, and a pair of buttons labeled OK

and Cancel. Here is the XML layout, pulled from the Containers/Relative sample

project:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5px">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:paddingTop="15px"/>
 <EditText
 android:id="@+id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_toRightOf="@id/label"
 android:layout_alignBaseline="@id/label"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

First, we open the RelativeLayout. In this case, we want to use the full width of the

screen (android:layout_width = "fill_parent"), only as much height as we need

(android:layout_height = "wrap_content"), and have 5 pixels of padding between the

boundaries of the container and its contents (android:padding = "5px").

Next, we define the label, which is fairly basic, except for its own 15-pixel padding

(android:padding = "15px"). More on that in a moment.

CHAPTER 6: Working with Containers 50

After that, we add in the field. We want the field to be to the right of the label and have

the text aligned along the baseline. Also, the field should take up the rest of this “row” in

the layout. These requirements are handled by three properties:

 android:layout_toRightOf = "@id/label"

 android:layout_alignBaseline = "@id/label"

 android:layout_width = "fill_parent"

If we skipped the 15-pixel padding on the label, we would find that the top of the field

was clipped off. That’s because of the 5-pixel padding on the container itself. The

android:layout_alignBaseline = "@id/label" simply aligns the baselines of the label

and field. The label, by default, has its top aligned with the top of the parent. But the

label is shorter than the field because of the field’s box. Since the field is dependent on

the label’s position, and the label’s position is already defined (because it appeared first

in the XML), the field winds up being too high and has the top of its box clipped off by

the container’s padding.

You may find yourself running into these sorts of problems as you try to get your

RelativeLayout to behave the way you want it to.

The solution to this conundrum, used in the XML layout shown above, is to give the label

15 pixels’ worth of padding on the top This pushes the label down far enough that the

field will not get clipped.

The OK button is set to be below the field (android:layout_below = "@id/entry") and

have its right side align with the right side of the field (android:layout_alignRight =
"@id/entry"). The Cancel button is set to be to the left of the OK button

(android:layout_toLeft = "@id/ok") and have its top aligned with the OK button

(android:layout_alignTop = "@id/ok").

Of course, that 15px of padding is a bit of a hack. A better solution, for Android 1.6 and

beyond, is to anchor the EditText to the top of the screen and have the TextView say it

is aligned with the EditText widget’s baseline, as shown in the following example. (In

Android 1.5 and earlier, this was not possible, because of the single-pass rule

interpretation mentioned earlier.)

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="5px">
 <TextView android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="URL:"
 android:layout_alignBaseline="@+id/entry"
 android:layout_alignParentLeft="true"/>
 <EditText
 android:id="@id/entry"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

CHAPTER 6: Working with Containers 51

 android:layout_toRightOf="@id/label"
 android:layout_alignParentTop="true"/>
 <Button
 android:id="@+id/ok"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_below="@id/entry"
 android:layout_alignRight="@id/entry"
 android:text="OK" />
 <Button
 android:id="@+id/cancel"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_toLeftOf="@id/ok"
 android:layout_alignTop="@id/ok"
 android:text="Cancel" />
</RelativeLayout>

With no changes to the autogenerated Java code, the emulator gives us the result

shown in Figure 6-6.

Figure 6-6. The RelativeLayoutDemo sample application

Tabula Rasa
If you like HTML tables, spreadsheet grids, and the like, you will appreciate Android’s

TableLayout, which allows you to position your widgets in a grid to your specifications.

You control the number of rows and columns, which columns might shrink or stretch to

accommodate their contents, and so on.

CHAPTER 6: Working with Containers 52

TableLayout works in conjunction with TableRow. TableLayout controls the overall

behavior of the container, with the widgets themselves poured into one or more

TableRow containers, one per row in the grid.

TableLayout Concepts and Properties
For your table layout, you need to figure out how widgets work with rows and columns,

plus how to handle widgets that reside outside rows.

Putting Cells in Rows
Rows are declared by you, the developer, by putting widgets as children of a TableRow

inside the overall TableLayout. You, therefore, control directly how many rows appear in

the table.

The number of columns is determined by Android; you control the number of columns in

an indirect fashion. First, there will be at least one column per widget in your longest

row. So if you have three rows—one with two widgets, one with three widgets, and one

with four widgets—there will be at least four columns. However, a widget can take up

more than one column by including the android:layout_span property, indicating the

number of columns the widget spans. This is akin to the colspan attribute one finds in

table cells in HTML. In this XML layout fragment, the field spans three columns:

<TableRow>
 <TextView android:text="URL:" />
 <EditText
 android:id="@+id/entry"
 android:layout_span="3"/>
</TableRow>

Ordinarily, widgets are put into the first available column. In the preceding fragment, the

label would go in the first column (column 0, as columns are counted starting from 0),

and the field would go into a spanned set of three columns (columns 1 through 3).

However, you can put a widget into a different column via the android:layout_column

property, specifying the 0-based column the widget belongs to:

<TableRow>
 <Button
 android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok" android:text="OK" />
</TableRow>

In the preceding XML layout fragment, the Cancel button goes in the third column

(column 2). The OK button then goes into the next available column, which is the

fourth column.

CHAPTER 6: Working with Containers 53

Other Children of TableLayout
Normally, TableLayout contains only TableRow elements as immediate children.

However, it is possible to put other widgets in between rows. For those widgets,

TableLayout behaves a bit like LinearLayout with vertical orientation. The widgets

automatically have their width set to fill_parent, so they will fill the same space that

the longest row does.

One pattern for this is to use a plain View as a divider. For example, you could use <View
android:layout_height = "2px" android:background = "#0000FF" /> for a 2-pixel-high

blue bar across the width of the table.

Stretch, Shrink, and Collapse
By default, each column will be sized according to the natural size of the widest widget

in that column (taking spanned columns into account). Sometimes, though, that does

not work out very well, and you need more control over column behavior.

You can place an android:stretchColumns property on the TableLayout. The value

should be a single column number (again, 0-based) or a comma-delimited list of column

numbers. Those columns will be stretched to take up any available space on the row.

This helps if your content is narrower than the available space.

Conversely, you can place a android:shrinkColumns property on the TableLayout.

Again, this should be a single column number or a comma-delimited list of column

numbers. The columns listed in this property will try to word-wrap their contents to

reduce the effective width of the column. By default, widgets are not word-wrapped.

This helps if you have columns with potentially wordy content that might cause some

columns to be pushed off the right side of the screen.

You can also leverage an android:collapseColumns property on the TableLayout, again

with a column number or comma-delimited list of column numbers. These columns will

start out collapsed, meaning that they will be part of the table information but will be

invisible. Programmatically, you can collapse and uncollapse columns by calling

setColumnCollapsed() on the TableLayout. You might use this to allow users to control

which columns are of importance to them and should be shown versus which ones are

less important and can be hidden.

You can also control stretching and shrinking at runtime via setColumnStretchable()

and setColumnShrinkable().

TableLayout Example
The XML layout fragments shown earlier, when combined, give us a TableLayout

rendition of the form we created for RelativeLayout, with the addition of a divider line

between the label/field and the two buttons (found in the Containers/Table demo):

CHAPTER 6: Working with Containers 54

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>
 <TextView
 android:text="URL:" />
 <EditText android:id="@+id/entry"
 android:layout_span="3"/>
 </TableRow>
 <View
 android:layout_height="2px"
 android:background="#0000FF" />
 <TableRow>
 <Button android:id="@+id/cancel"
 android:layout_column="2"
 android:text="Cancel" />
 <Button android:id="@+id/ok"
 android:text="OK" />
 </TableRow>
</TableLayout>

When compiled against the generated Java code and run on the emulator, we get the

result shown in Figure 6-7.

Figure 6-7. The TableLayoutDemo sample application

Scrollwork
Phone screens tend to be small, which requires developers to use some tricks to

present a lot of information in the limited available space. One trick for doing this is to

CHAPTER 6: Working with Containers 55

use scrolling, so only part of the information is visible at one time, and the rest is

available via scrolling up or down.

ScrollView is a container that provides scrolling for its contents. You can take a layout

that might be too big for some screens, wrap it in a ScrollView, and still use your

existing layout logic. It just so happens that the user can see only part of your layout at

one time.

For example, here is a ScrollView used in an XML layout file (from the

Containers/Scroll demo):

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="0">
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#000000"/>
 <TextView android:text="#000000"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#440000" />
 <TextView android:text="#440000"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#884400" />
 <TextView android:text="#884400"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#aa8844" />
 <TextView android:text="#aa8844"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#ffaa88" />
 <TextView android:text="#ffaa88"

CHAPTER 6: Working with Containers 56

 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#ffffaa" />
 <TextView android:text="#ffffaa"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 <TableRow>
 <View
 android:layout_height="80px"
 android:background="#ffffff" />
 <TextView android:text="#ffffff"
 android:paddingLeft="4px"
 android:layout_gravity="center_vertical" />
 </TableRow>
 </TableLayout>
</ScrollView>

Without the ScrollView, the table would take up at least 560 pixels (seven rows at 80

pixels each, based on the View declarations). There may be some devices with screens

capable of showing that much information, but many will be smaller. The ScrollView lets

us keep the table as is, but present only part of it at a time.

On the stock Android emulator, when the activity is first viewed, you see the result

shown in Figure 6-8.

Figure 6-8. The ScrollViewDemo sample application

CHAPTER 6: Working with Containers 57

Notice how only five rows and part of the sixth are visible. By pressing the up/down

buttons on the D-pad, you can scroll up and down to see the remaining rows. Also note

how the right side of the content is clipped by the scrollbar. Be sure to put some

padding on that side or otherwise ensure your content does not get clipped in this

fashion.

Android 1.5 introduced HorizontalScrollView, which works like ScrollView, but

horizontally. This can be useful for forms that might be too wide rather than too tall. Note

that neither ScrollView nor HorizontalScrollView will give you bidirectional scrolling;

you need to choose vertical or horizontal.

59

 Chapter

Using Selection Widgets
Back in Chapter 5, you saw how fields could have constraints placed on them to limit

possible input, such as only digits. These sorts of constraints help users “get it right”

when entering information, particularly on mobile devices with cramped keyboards.

Of course, the ultimate in constrained input is to allow selection only from a set of items,

such as a radio button group (also discussed in Chapter 5). Classic UI toolkits have list

boxes, combo boxes, drop-down lists, and the like for that very purpose. Android

provides many of the same sorts of widgets, plus others of particular interest for mobile

devices (e.g., the Gallery for examining saved photos).

Moreover, Android offers a flexible framework for determining which choices are

available in these widgets. Specifically, Android offers a framework of data adapters that

provide a common interface for selection lists, ranging from static arrays to database

contents. Selection views—widgets for presenting lists of choices—are handed an

adapter to supply the actual choices.

This chapter begins with a look at Android’s adapters, and then introduces its selection

widgets.

Adapting to the Circumstances
In the abstract, adapters provide a common interface to multiple disparate APIs. More

specifically, in Android’s case, adapters provide a common interface to the data model

behind a selection-style widget, such as a list box. This use of Java interfaces is fairly

common (e.g., Java/Swing’s model adapters for JTable), and Java is far from the only

environment offering this sort of abstraction (e.g., Flex’s XML data-binding framework

accepts XML inlined as static data or retrieved from the Internet).

Android’s adapters are responsible for providing the roster of data for a selection

widget, as well as for converting individual elements of data into specific views to be

displayed inside the selection widget. The latter facet of the adapter system may sound

a little odd, but in reality, it is not that different from other GUI toolkits’ ways of

overriding default display behavior. For example, in Java/Swing, if you want a JList-

backed list box to actually be a checklist (where individual rows are a check box plus

7

CHAPTER 7: Using Selection Widgets 60

label, and clicks adjust the state of the check box), you inevitably wind up calling

setCellRenderer() to supply your own ListCellRenderer, which in turn converts strings

for the list into JCheckBox-plus-JLabel composite widgets.

The easiest adapter to use is ArrayAdapter. All you need to do is wrap one of these

around a Java array or java.util.List instance, and you have a fully functioning

adapter:

String[] items={"this", "is", "a",
 "really", "silly", "list"};
new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, items);

The ArrayAdapter constructor takes three parameters:

 The Context to use (typically this will be your activity instance)

 The resource ID of a view to use (such as a built-in system resource

ID, as shown in the preceding example)

 The actual array or list of items to show

By default, the ArrayAdapter will invoke toString() on the objects in the list and wrap

each of those strings in the view designated by the supplied resource.

android.R.layout.simple_list_item_1 simply turns those strings into TextView objects.

Those TextView widgets, in turn, will be shown in the list, spinner, or whatever widget

uses this ArrayAdapter. In Chapter 8, you’ll see how to subclass Adapter and override

row creation, to give you greater control over how rows appear.

Here are two other adapters in Android that you may want to use:

 CursorAdapter: Converts a Cursor, typically from a content provider,

into something that can be displayed in a selection view. (We’ll look at

CursorAdapter in greater detail in Chapter 22, which covers

databases.)

 SimpleAdapter: Converts data found in XML resources.

Lists of Naughty and Nice
The classic list box widget in Android is known as ListView. Include one of these in your

layout, invoke setAdapter() to supply your data and child views, and attach a listener

via setOnItemSelectedListener() to find out when the selection has changed. With that,

you have a fully functioning list box.

However, if your activity is dominated by a single list, you might consider creating your

activity as a subclass of ListActivity, rather than the regular Activity base class. If

your main view is just the list, you do not even need to supply a layout; ListActivity will

construct a full-screen list for you. If you do want to customize the layout, you can, as

long as you identify your ListView as @android:id/list, so ListActivity knows which

widget is the main list for the activity.

CHAPTER 7: Using Selection Widgets 61

For example, here is a layout pulled from the Selection/List sample project, which is

simply a list with a label on top to show the current selection:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

The Java code to configure the list and connect the list with the label is as follows:

public class ListViewDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items[position]);
 }
}

With ListActivity, you can set the list adapter via setListAdapter()—in this case,

providing an ArrayAdapter wrapping an array of nonsense strings. To find out when the

list selection changes, override onListItemClick() and take appropriate steps based on

the supplied child view and position—in this case, updating the label with the text for

that position. The results are shown in Figure 7–1.

CHAPTER 7: Using Selection Widgets 62

Figure 7–1. The ListViewDemo sample application

The second parameter to our ArrayAdapter, android.R.layout.simple_list_item_1,

controls the appearance of the rows. The value used in the preceding example provides

the standard Android list row: big font, a lot of padding, and white text.

By default, ListView is set up to simply collect clicks on list entries. If you want a list that

tracks a user’s selection, or possibly multiple selections, ListView can handle that as

well, but it requires a few changes:

 Call setChoiceMode() on the ListView in Java code to set the choice

mode, supplying either CHOICE_MODE_SINGLE or CHOICE_MODE_MULTIPLE

as the value. You can get your ListView from a ListActivity via

getListView().

 Rather than using android.R.layout.simple_list_item_1 as the layout

for the list rows in your ArrayAdapter constructor, use either

android.R.layout.simple_list_item_single_choice or

android.R.layout.simple_list_item_multiple_choice for single-

choice (see Figure 7–2) or multiple-choice (see Figure 7–3) lists.

 To determine which ones the user checked, call

getCheckedItemPositions() on your ListView.

CHAPTER 7: Using Selection Widgets 63

Figure 7–2. Single-select mode

Figure 7–3. Multiple-select mode

Spin Control
In Android, the Spinner is the equivalent of the drop-down selector you might find in

other toolkits (e.g., JComboBox in Java/Swing). Pressing the center button on the D-pad

pops up a selection dialog box from which the user can choose an item. You basically

CHAPTER 7: Using Selection Widgets 64

get the ability to select from a list without taking up all the screen space of a ListView,

at the cost of an extra click or screen tap to make a change.

As with ListView, you provide the adapter for data and child views via setAdapter(),

and hook in a listener object for selections via setOnItemSelectedListener().

If you want to tailor the view used when displaying the drop-down perspective, you need

to configure the adapter, not the Spinner widget. Use the setDropDownViewResource()

method to supply the resource ID of the view to use.

For example, culled from the Selection/Spinner sample project, here is an XML layout

for a simple view with a Spinner:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Spinner android:id="@+id/spinner"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:drawSelectorOnTop="true"
 />
</LinearLayout>

This is the same view as shown in the previous section, but with a Spinner instead of a

ListView. The Spinner property android:drawSelectorOnTop controls whether the arrow

is drawn on the selector button on the right side of the Spinner UI.

To populate and use the Spinner, we need some Java code:

public class SpinnerDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 Spinner spin=(Spinner)findViewById(R.id.spinner);
 spin.setOnItemSelectedListener(this);

CHAPTER 7: Using Selection Widgets 65

 ArrayAdapter<String> aa=new ArrayAdapter<String>(this,
 android.R.layout.simple_spinner_item,
 items);

 aa.setDropDownViewResource(
 android.R.layout.simple_spinner_dropdown_item);
 spin.setAdapter(aa);
 }

 public void onItemSelected(AdapterView<?> parent,
 View v, int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }
}

Here, we attach the activity itself as the selection listener

(spin.setOnItemSelectedListener(this)). This works because the activity implements

the OnItemSelectedListener interface. We configure the adapter not only with the list of

fake words, but also with a specific resource to use for the drop-down view (via

aa.setDropDownViewResource()). Also notice the use of

android.R.layout.simple_spinner_item as the built-in View for showing items in the

spinner itself.

Finally, we implement the callbacks required by OnItemSelectedListener to adjust the

selection label based on user input. Figures 7–4 and 7–5 show the results.

Figure 7–4. The SpinnerDemo sample application, as initially launched

CHAPTER 7: Using Selection Widgets 66

Figure 7–5. The same application, with the spinner drop-down list displayed

Grid Your Lions (or Something Like That...)
As the name suggests, GridView gives you a two-dimensional grid of items from which

to choose. You have moderate control over the number and size of the columns; the

number of rows is dynamically determined based on the number of items the supplied

adapter says are available for viewing.

When combined, a few properties determine the number of columns and their sizes:

 android:numColumns: Specifies how many columns there are, or, if you

supply a value of auto_fit, Android will compute the number of

columns based on the available space and the following properties.

 android:verticalSpacing and android:horizontalSpacing: Indicate

how much whitespace there should be between items in the grid.

 android:columnWidth: Indicates how many pixels wide each column

should be.

 android:stretchMode: Indicates, for grids with auto_fit for

android:numColumns, what should happen for any available space not

taken up by columns or spacing. This can be columnWidth, to have the

columns take up available space, or spacingWidth, to have the

whitespace between columns absorb extra space.

For example, suppose the screen is 320 pixels wide, and you have android:columnWidth

set to 100px and android:horizontalSpacing set to 5px. Three columns would use 310

pixels (three columns of 100 pixels and two whitespace areas of 5 pixels). With

CHAPTER 7: Using Selection Widgets 67

android:stretchMode set to columnWidth, the three columns will each expand by 3 to 4

pixels to use up the remaining 10 pixels. With android:stretchMode set to spacingWidth,

the two whitespace areas will each grow by 5 pixels to consume the remaining 10

pixels.

Otherwise, the GridView works much like any other selection widget: use setAdapter()

to provide the data and child views, invoke setOnItemSelectedListener() to register a

selection listener, and so on.

For example, here is a XML layout from the Selection/Grid sample project, showing a

GridView configuration:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <GridView
 android:id="@+id/grid"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:verticalSpacing="35px"
 android:horizontalSpacing="5px"
 android:numColumns="auto_fit"
 android:columnWidth="100px"
 android:stretchMode="columnWidth"
 android:gravity="center"
 />
</LinearLayout>

For this grid, we take up the entire screen except for what our selection label requires.

The number of columns is computed by Android (android:numColumns = "auto_fit")

based on 5-pixel horizontal spacing (android:horizontalSpacing = "5px") and 100-

pixel columns (android:columnWidth = "100px"), with the columns absorbing any “slop”

width left over (android:stretchMode = "columnWidth").

The Java code to configure the GridView is as follows:

public class GridDemo extends Activity
 implements AdapterView.OnItemSelectedListener {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {

CHAPTER 7: Using Selection Widgets 68

 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 GridView g=(GridView) findViewById(R.id.grid);
 g.setAdapter(new FunnyLookingAdapter(this,
 android.R.layout.simple_list_item_1,
 items));
 g.setOnItemSelectedListener(this);
 }

 public void onItemSelected(AdapterView<?> parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 public void onNothingSelected(AdapterView<?> parent) {
 selection.setText("");
 }

 private class FunnyLookingAdapter extends ArrayAdapter {
 Context ctxt;

 FunnyLookingAdapter(Context ctxt, int resource,
 String[] items) {
 super(ctxt, resource, items);

 this.ctxt=ctxt;
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 TextView label=(TextView)convertView;

 if (convertView==null) {
 convertView=new TextView(ctxt);
 label=(TextView)convertView;
 }

 label.setText(items[position]);

 return(convertView);
 }
 }
}

For the grid cells, rather than using autogenerated TextView widgets as in the previous

sections, we create our own views, by subclassing ArrayAdapter and overriding

getView(). In this case, we wrap the funny-looking strings in our own TextView widgets,

just to be different. If getView() receives a TextView, we just reset its text; otherwise, we

create a new TextView instance and populate it.

With the 35-pixel vertical spacing from the XML layout (android:verticalSpacing =
"35"), the grid overflows the boundaries of the emulator’s screen, as shown in Figures

7–6 and 7–7.

CHAPTER 7: Using Selection Widgets 69

Figure 7–6. The GridDemo sample application, as initially launched

Figure 7–7. The same application, scrolled to the bottom of the grid

Fields: Now with 35% Less Typing!
The AutoCompleteTextView is sort of a hybrid between the EditText (field) and the

Spinner. With autocompletion, as the user types, the text is treated as a prefix filter,

comparing the entered text as a prefix against a list of candidates. Matches are shown

CHAPTER 7: Using Selection Widgets 70

in a selection list that, as with Spinner, drops down from the field. The user can either

type the full entry (e.g., something not in the list) or choose an item from the list to be the

value of the field.

AutoCompleteTextView subclasses EditText, so you can configure all the standard look-

and-feel aspects, such as font face and color. In addition, AutoCompleteTextView has an

android:completionThreshold property, to indicate the minimum number of characters a

user must enter before the list filtering begins.

You can give AutoCompleteTextView an adapter containing the list of candidate values

via setAdapter(). However, since the user could type something that is not in the list,

AutoCompleteTextView does not support selection listeners. Instead, you can register a

TextWatcher, as you can with any EditText widget, to be notified when the text changes.

These events will occur either because of manual typing or from a selection from the

drop-down list.

The following is a familiar XML layout, this time containing an AutoCompleteTextView

(pulled from the Selection/AutoComplete sample application):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <AutoCompleteTextView android:id="@+id/edit"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:completionThreshold="3"/>
</LinearLayout>

The corresponding Java code is as follows:

public class AutoCompleteDemo extends Activity
 implements TextWatcher {
 TextView selection;
 AutoCompleteTextView edit;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);
 edit=(AutoCompleteTextView)findViewById(R.id.edit);

CHAPTER 7: Using Selection Widgets 71

 edit.addTextChangedListener(this);

 edit.setAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_dropdown_item_1line,
 items));
 }

 public void onTextChanged(CharSequence s, int start, int before,
 int count) {
 selection.setText(edit.getText());
 }

 public void beforeTextChanged(CharSequence s, int start,
 int count, int after) {
 // needed for interface, but not used
 }

 public void afterTextChanged(Editable s) {
 // needed for interface, but not used
 }
}

This time, our activity implements TextWatcher, which means our callbacks are

onTextChanged() and beforeTextChanged(). In this case, we are interested in only the

former, and we update the selection label to match the AutoCompleteTextView’s current

contents.

Figures 7–8, 7–9, and 7–10 show the results.

Figure 7–8. The AutoCompleteDemo sample application, as initially launched

CHAPTER 7: Using Selection Widgets 72

Figure 7–9. The same application, after a few matching letters were entered, showing the autocomplete drop-
down

Figure 7–10. The same application, after the autocomplete value was selected

Galleries, Give or Take the Art
The Gallery widget is not one ordinarily found in GUI toolkits. It is, in effect, a list box

that is horizontally laid out. One choice follows the next across the horizontal plane, with

CHAPTER 7: Using Selection Widgets 73

the currently selected item highlighted. On an Android device, the user rotates through

the options via the left and right D-pad buttons.

Compared to the ListView, the Gallery takes up less screen space, while still showing

multiple choices at one time (assuming they are short enough). Compared to the

Spinner, the Gallery always shows more than one choice at a time.

The quintessential example use for the Gallery is image preview. Given a collection of

photos or icons, the Gallery lets people preview the pictures in the process of choosing

one.

Code-wise, the Gallery works much like a Spinner or GridView. In your XML layout, you

have a few properties at your disposal:

 android:spacing: Controls the number of pixels between entries in the

list.

 android:spinnerSelector: Controls what is used to indicate a

selection. This can either be a reference to a Drawable (see Chapter

20) or an RGB value in #AARRGGBB or similar notation.

 android:drawSelectorOnTop: Indicates if the selection bar (or Drawable)

should be drawn before (false) or after (true) drawing the selected

child. If you choose true, be sure that your selector has sufficient

transparency to show the child through the selector; otherwise, users

will not be able to read the selection.

75

 Chapter

Getting Fancy with Lists
The humble ListView is one of the most important widgets in all of Android, simply

because it is used so frequently. Whether choosing a contact to call, an e-mail message

to forward, or an e-book to read, ListView widgets are employed in a wide range of

activities. Of course, it would be nice if they were more than just plain text. The good

news is that Android lists can be as fancy as you want (within the limitations of a mobile

device’s screen, obviously). However, making them fancy takes some work, as you will

learn in this chapter.

Getting to First Base
The classic Android ListView is a plain list of text—solid but uninspiring. We hand the

ListView a bunch of words in an array, and then tell Android to use a simple built-in

layout for pouring those words into a list.

However, you can have a list whose rows are made up of icons, icons and text, check

boxes and text, or whatever you want. It is merely a matter of supplying enough data to

the adapter and helping the adapter to create a richer set of View objects for each row.

For example, suppose we want a ListView whose entries are made up of an icon,

followed by some text. We could construct a layout for the row that looks like this, found

in the FancyLists/Static sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <ImageView
 android:id="@+id/icon"
 android:layout_width="22px"
 android:paddingLeft="2px"
 android:paddingRight="2px"
 android:paddingTop="2px"
 android:layout_height="wrap_content"
 android:src="@drawable/ok"

8

CHAPTER 8: Getting Fancy with Lists 76

 />
 <TextView
 android:id="@+id/label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="44sp"
 />
</LinearLayout>

This layout uses a LinearLayout to set up a row, with the icon on the left and the text (in

a nice big font) on the right.

However, by default, Android has no idea that we want to use this layout with our

ListView. To make the connection, we need to supply our Adapter with the resource ID

of our custom layout:

public class StaticDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 R.layout.row, R.id.label,
 items));
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }
}

This follows the general structure for the previous ListView sample. The key difference

is that we have told ArrayAdapter that we want to use our custom layout (R.layout.row)

and that the TextView where the word should go is known as R.id.label within that

custom layout.

NOTE: Remember that to reference a layout (row.xml), use R.layout as a prefix on the base
name of the layout XML file (R.layout.row).

The result is a ListView with icons down the left side. In this case, all the icons are the

same, as shown in Figure 8–1.

CHAPTER 8: Getting Fancy with Lists 77

Figure 8–1. The StaticDemo application

A Dynamic Presentation
Supplying an alternate layout to use for rows, as in the preceding example, handles

simple cases very nicely. However, it falls down when you have more complicated

scenarios for your rows, such as the following:

 Not every row uses the same layout (e.g., some rows one line of text

and others have two).

 You need to configure the widgets in the rows (e.g., use different icons

for different cases).

In those cases, the better option is to create your own subclass of your desired Adapter,

override getView(), and construct your rows yourself. The getView() method is

responsible for returning a View, representing the row for the supplied position in the

adapter data.

As an example, let’s rework the code shown in the previous section to use getView(), so

we can show different icons for rows. We’ll use one icon for short words and one for

long words (from the FancyLists/Dynamic sample project).

public class DynamicDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

CHAPTER 8: Getting Fancy with Lists 78

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 class IconicAdapter extends ArrayAdapter {
 IconicAdapter() {
 super(DynamicDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 LayoutInflater inflater=getLayoutInflater();
 View row=inflater.inflate(R.layout.row, parent, false);
 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

The theory is that we override getView() and return rows based on which object is being

displayed, where the object is indicated by a position index into the Adapter. However, if

you look at the preceding implementation, you will see a reference to a LayoutInflater

class, which requires a bit of an explanation.

In this case, “inflation” means the act of converting an XML layout specification into

the actual tree of View objects the XML represents. This is undoubtedly a tedious bit of

code: take an element, create an instance of the specified View class, walk the

attributes, convert those into property setter calls, iterate over all child elements,

lather, rinse, and repeat. The good news is that the fine folks on the Android team

wrapped up all that into a class called LayoutInflater, which we can use ourselves.

For our fancy list, we want to inflate a View for each row shown in the list, so we can

CHAPTER 8: Getting Fancy with Lists 79

use the convenient shorthand of the XML layout to describe what the rows are

supposed to look like.

In our example, we inflate the R.layout.row layout we created. This gives us a View

object, which, in reality, is our LinearLayout with an ImageView and a TextView, just as

R.layout.row specifies. However, rather than needing to create all those objects

ourselves and wire them together, the XML and LayoutInflater handle the “heavy

lifting” for us.

So, we have used LayoutInflater to give us a View representing the row. This row is

“empty,” since the static layout file has no idea what actual data goes into the row. It is

our job to customize and populate the row as we see fit before returning it, as follows:

 Fill in the text label for our label widget, using the word at the supplied

position.

 See if the word is longer than four characters and, if so, find our

ImageView icon widget and replace the stock resource with a different

one.

Now, we have a ListView with different icons based on the context of the specific entry

in the list, as shown in Figure 8–2.

Figure 8–2. The DynamicDemo application

Obviously, this was a fairly contrived example, but you can see where this technique

could be used to customize rows based on any sort of criteria, such as other columns in

a returned Cursor.

CHAPTER 8: Getting Fancy with Lists 80

Better. Stronger. Faster.
The getView() implementation shown in the preceding section works, but it’s inefficient.

Every time the user scrolls, we must create a bunch of new View objects to

accommodate the newly shown rows. This is bad.

It might be bad for the immediate user experience, if the list appears to be sluggish.

More likely, though, it will be bad due to battery usage—every bit of CPU that is used

eats up the battery. This is compounded by the extra work the garbage collector needs

to do to get rid of all those extra objects we create. So the less efficient our code, the

more quickly the phone’s battery will be drained, and the less happy the user will be.

And we want happy users, right?

So, let’s take a look at a few tricks to make your fancy ListView widgets more efficient.

Using convertView
The getView() method receives, as one of its parameters, a View named, by convention,

convertView. Sometimes, convertView will be null. In those cases, you need to create a

new row View from scratch (e.g., via inflation), just as in the previous example. However,

if convertView is not null, then it is actually one of your previously created View objects.

This will happen primarily when the user scrolls the ListView. As new rows appear,

Android will attempt to recycle the views of the rows that scrolled off the other end of

the list, to save you from needing to rebuild them from scratch.

Assuming that each of your rows has the same basic structure, you can use

findViewById() to get at the individual widgets that make up your row and change their

contents, and then return convertView from getView(), rather than create a whole new

row. For example, here is the getView() implementation from the previous example, now

optimized via convertView (from the FancyLists/Recycling project):

public class RecyclingDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);

CHAPTER 8: Getting Fancy with Lists 81

 }

 class IconicAdapter extends ArrayAdapter {
 IconicAdapter() {
 super(RecyclingDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 }

 TextView label=(TextView)row.findViewById(R.id.label);

 label.setText(items[position]);

 ImageView icon=(ImageView)row.findViewById(R.id.icon);

 if (items[position].length()>4) {
 icon.setImageResource(R.drawable.delete);
 }
 else {
 icon.setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Here, we check to see if the convertView is null. If so, we inflate our row; otherwise, we

just reuse it. The work to fill in the contents (icon image and text) is the same in either

case. The advantage is that we avoid the potentially expensive inflation step.

Using the Holder Pattern
Another somewhat expensive operation commonly done with fancy views is calling

findViewById(). This dives into your inflated row and pulls out widgets by their assigned

identifiers, so you can customize the widget contents (e.g., to change the text of a

TextView or change the icon in an ImageView). Since findViewById() can find widgets

anywhere in the tree of children of the row’s root View, this could take a fair number of

instructions to execute, particularly if you need to find the same widgets repeatedly.

In some GUI toolkits, this problem is avoided by having the composite View objects, like

rows, be declared totally in program code (in this case, Java). Then accessing individual

widgets is merely a matter of calling a getter or accessing a field. And you can certainly

do that with Android, but the code gets rather verbose.

CHAPTER 8: Getting Fancy with Lists 82

What would be nice is a way where you can still use the layout XML, yet cache your

row’s key child widgets so you need to find them only once. That’s where the holder

pattern comes into play. All View objects have getTag() and setTag() methods. These

allow you to associate an arbitrary object with the widget. The holder pattern uses that

“tag” to hold an object that, in turn, holds each of the child widgets of interest. By

attaching that holder to the row View, every time you use the row, you already have

access to the child widgets you care about, without needing to call findViewById()

again.

So, let’s take a look at one of these holder classes (taken from the

FancyLists/ViewWrapper sample project):

class ViewWrapper {
 View base;
 TextView label=null;
 ImageView icon=null;

 ViewWrapper(View base) {
 this.base=base;
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)base.findViewById(R.id.label);
 }

 return(label);
 }

 ImageView getIcon() {
 if (icon==null) {
 icon=(ImageView)base.findViewById(R.id.icon);
 }

 return(icon);
 }
}

ViewWrapper not only holds onto the child widgets, but it also lazy-finds the child

widgets. If you create a wrapper and don’t need a specific child, you never go through

the findViewById() operation for it, and never have to pay for those CPU cycles.

The holder pattern has some other advantages:

 It allows you to consolidate all your per-widget type casting in one

place, rather than needing to cast everywhere you call

findViewById().

 You could use it to track other information about the row, such as

state information you are not yet ready to flush to the underlying

model.

CHAPTER 8: Getting Fancy with Lists 83

Using ViewWrapper is a matter of creating an instance whenever we inflate a row and

attaching said instance to the row View via setTag(), as shown in this rewrite of

getView():

public class ViewWrapperDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new IconicAdapter());
 selection=(TextView)findViewById(R.id.selection);
 }

 private String getModel(int position) {
 return(((IconicAdapter)getListAdapter()).getItem(position));
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(getModel(position));
 }

 class IconicAdapter extends ArrayAdapter<String> {
 IconicAdapter() {
 super(ViewWrapperDemo.this, R.layout.row, items);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 ViewWrapper wrapper=null;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 wrapper=new ViewWrapper(row);
 row.setTag(wrapper);
 }
 else {
 wrapper=(ViewWrapper)row.getTag();
 }

 wrapper.getLabel().setText(getModel(position));

 if (getModel(position).length()>4) {
 wrapper.getIcon().setImageResource(R.drawable.delete);

CHAPTER 8: Getting Fancy with Lists 84

 }
 else {
 wrapper.getIcon().setImageResource(R.drawable.ok);
 }

 return(row);
 }
 }
}

Just as we check convertView to see if it is null in order to create the row View objects

as needed, we also pull out (or create) the corresponding row’s ViewWrapper. Then

accessing the child widgets is merely a matter of calling their associated methods on the

wrapper.

Making a List...
Lists with pretty icons next to them are all fine and well. But can we create ListView

widgets whose rows contain interactive child widgets instead of just passive widgets like

TextView and ImageView? For example, there is a RatingBar widget that allows users to

assign a rating by clicking on a set of star icons. Could we combine the RatingBar with

text in order to allow people to scroll a list of, say, songs and rate them directly inside

the list?

There is good news and bad news.

The good news is that interactive widgets in rows work just fine. The bad news is that it

is a little tricky, specifically when it comes to taking action when the interactive widget’s

state changes (e.g., a value is typed into a field). You need to store that state

somewhere, since your RatingBar widget will be recycled when the ListView is scrolled.

You need to be able to set the RatingBar state based on the actual word you are

viewing as the RatingBar is recycled, and you need to save the state when it changes so

it can be restored when this particular row is scrolled back into view.

What makes this interesting is that, by default, the RatingBar has absolutely no idea

which model in the ArrayAdapter it is looking at. After all, the RatingBar is just a widget,

used in a row of a ListView. You need to teach the rows which model they are currently

displaying, so when their rating bar is checked, they know which model’s state to

modify.

So, let’s see how this is done, using the activity in the FancyLists/RateList sample

project. We’ll use the same basic classes as our previous demo, showing a list of

nonsense words that you can rate. In addition, words given a top rating are put in all

uppercase.

public class RateListDemo extends ListActivity {
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

CHAPTER 8: Getting Fancy with Lists 85

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 ArrayList<RowModel> list=new ArrayList<RowModel>();

 for (String s : items) {
 list.add(new RowModel(s));
 }

 setListAdapter(new RatingAdapter(list));
 }

 private RowModel getModel(int position) {
 return(((RatingAdapter)getListAdapter()).getItem(position));
 }

 class RatingAdapter extends ArrayAdapter<RowModel> {
 RatingAdapter(ArrayList<RowModel> list) {
 super(RateListDemo.this, R.layout.row, list);
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 View row=convertView;
 ViewWrapper wrapper;
 RatingBar rate;

 if (row==null) {
 LayoutInflater inflater=getLayoutInflater();

 row=inflater.inflate(R.layout.row, parent, false);
 wrapper=new ViewWrapper(row);
 row.setTag(wrapper);
 rate=wrapper.getRatingBar();

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 Integer myPosition=(Integer)ratingBar.getTag();
 RowModel model=getModel(myPosition);

 model.rating=rating;

 LinearLayout parent=(LinearLayout)ratingBar.getParent();
 TextView label=(TextView)parent.findViewById(R.id.label);

 label.setText(model.toString());
 }
 };

 rate.setOnRatingBarChangeListener(l);
 }
 else {
 wrapper=(ViewWrapper)row.getTag();

CHAPTER 8: Getting Fancy with Lists 86

 rate=wrapper.getRatingBar();
 }

 RowModel model=getModel(position);

 wrapper.getLabel().setText(model.toString());
 rate.setTag(new Integer(position));
 rate.setRating(model.rating);

 return(row);
 }
 }

 class RowModel {
 String label;
 float rating=2.0f;

 RowModel(String label) {
 this.label=label;
 }

 public String toString() {
 if (rating>=3.0) {
 return(label.toUpperCase());
 }

 return(label);
 }
 }
}

Here are the differences in this activity and getView() implementation compared with

the previous examples:

 While we are still using String[] items as the list of nonsense words,

rather than pour that String array straight into an ArrayAdapter, we

turn it into a list of RowModel objects. RowModel is the mutable model. It

holds the nonsense word plus the current checked state. In a real

system, these might be objects populated from a Cursor, and the

properties would have more business meaning.

 Utility methods like onListItemClick() needed to be updated to

reflect the change from a pure String model to use a RowModel.

 The ArrayAdapter subclass (RatingAdapter), in getView(), looks to see

if convertView is null. If so, we create a new row by inflating a simple

layout and also attach a ViewWrapper. For the row’s RatingBar, we add

an anonymous onRatingChanged() listener that looks at the row’s tag

(getTag()) and converts that into an Integer, representing the position

within the ArrayAdapter that this row is displaying. Using that, the

rating bar can get the actual RowModel for the row and update the

model based on the new state of the rating bar. It also updates the

text adjacent to the RatingBar when checked to match the rating bar

state.

CHAPTER 8: Getting Fancy with Lists 87

 We make sure that the RatingBar has the proper contents and has a

tag (via setTag()) pointing to the position in the adapter the row is

displaying.

The row layout is just a RatingBar and a TextView inside a LinearLayout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:orientation="horizontal"
>
 <RatingBar
 android:id="@+id/rate"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:numStars="3"
 android:stepSize="1"
 android:rating="2" />
 <TextView
 android:id="@+id/label"
 android:paddingLeft="2px"
 android:paddingRight="2px"
 android:paddingTop="2px"
 android:textSize="40sp"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

The ViewWrapper simply extracts the RatingBar and the TextView from the row View:

class ViewWrapper {
 View base;
 RatingBar rate=null;
 TextView label=null;

 ViewWrapper(View base) {
 this.base=base;
 }

 RatingBar getRatingBar() {
 if (rate==null) {
 rate=(RatingBar)base.findViewById(R.id.rate);
 }

 return(rate);
 }

 TextView getLabel() {
 if (label==null) {
 label=(TextView)base.findViewById(R.id.label);
 }

 return(label);
 }
}

CHAPTER 8: Getting Fancy with Lists 88

And the visual result is what you would expect, as shown in Figure 8–3. This includes

the toggled rating bars turning their words into all uppercase, as shown in Figure 8–4.

Figure 8–3. The RateListDemo application, as initially launched

Figure 8–4. The same application, showing a top-rated word

CHAPTER 8: Getting Fancy with Lists 89

...And Checking It Twice
The rating list in the previous section works, but implementing it was very tedious.

Worse, much of that tedium would not be reusable, except in very limited

circumstances. We can do better.

What we would really like is to be able to create a layout like this:

<?xml version="1.0" encoding="utf-8"?>
<com.commonsware.android.fancylists.seven.RateListView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
/>

In our code, almost all of the logic that might have referred to a ListView before “just

works” with the RateListView we put in the layout:

 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue",
 "purus"};

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }
}

Where things get a wee bit challenging is when you stop and realize that, in everything

up to this point in this chapter, we never actually changed the ListView itself. All our

work was with the adapters, overriding getView() and inflating our own rows.

So, if we want RateListView to take in any ordinary ListAdapter and just work—putting

rating bars on the rows as needed—we are going to need to do some fancy footwork.

Specifically, we need to wrap the “raw” ListAdapter in some other ListAdapter that

knows how to put the rating bars on the rows and track the state of those rating bars.

First, we need to establish the pattern of one ListAdapter augmenting another. Here is

the code for AdapterWrapper, which takes a ListAdapter and delegates all of the

interface’s methods to the delegate (from the FancyLists/RateListView sample project):

public class AdapterWrapper implements ListAdapter {
 ListAdapter delegate=null;

 public AdapterWrapper(ListAdapter delegate) {
 this.delegate=delegate;

CHAPTER 8: Getting Fancy with Lists 90

 }

 public int getCount() {
 return(delegate.getCount());
 }

 public Object getItem(int position) {
 return(delegate.getItem(position));
 }

 public long getItemId(int position) {
 return(delegate.getItemId(position));
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 return(delegate.getView(position, convertView, parent));
 }

 public void registerDataSetObserver(DataSetObserver observer) {
 delegate.registerDataSetObserver(observer);
 }

 public boolean hasStableIds() {
 return(delegate.hasStableIds());
 }

 public boolean isEmpty() {
 return(delegate.isEmpty());
 }

 public int getViewTypeCount() {
 return(delegate.getViewTypeCount());
 }

 public int getItemViewType(int position) {
 return(delegate.getItemViewType(position));
 }

 public void unregisterDataSetObserver(DataSetObserver observer) {
 delegate.unregisterDataSetObserver(observer);
 }

 public boolean areAllItemsEnabled() {
 return(delegate.areAllItemsEnabled());
 }

 public boolean isEnabled(int position) {
 return(delegate.isEnabled(position));
 }
}

We can then subclass AdapterWrapper to create RateableWrapper, overriding the default

getView() but otherwise allowing the delegated ListAdapter to do the real work:

public class RateableWrapper extends AdapterWrapper {
 Context ctxt=null;
 float[] rates=null;

CHAPTER 8: Getting Fancy with Lists 91

 public RateableWrapper(Context ctxt, ListAdapter delegate) {
 super(delegate);

 this.ctxt=ctxt;
 this.rates=new float[delegate.getCount()];

 for (int i=0;i<delegate.getCount();i++) {
 this.rates[i]=2.0f;
 }
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 ViewWrapper wrap=null;
 View row=convertView;

 if (convertView==null) {
 LinearLayout layout=new LinearLayout(ctxt);
 RatingBar rate=new RatingBar(ctxt);

 rate.setNumStars(3);
 rate.setStepSize(1.0f);

 View guts=delegate.getView(position, null, parent);

 layout.setOrientation(LinearLayout.HORIZONTAL);

 rate.setLayoutParams(new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.WRAP_CONTENT,
 LinearLayout.LayoutParams.FILL_PARENT));
 guts.setLayoutParams(new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.FILL_PARENT,
 LinearLayout.LayoutParams.FILL_PARENT));

 RatingBar.OnRatingBarChangeListener l=
 new RatingBar.OnRatingBarChangeListener() {
 public void onRatingChanged(RatingBar ratingBar,
 float rating,
 boolean fromTouch) {
 rates[(Integer)ratingBar.getTag()]=rating;
 }
 };

 rate.setOnRatingBarChangeListener(l);

 layout.addView(rate);
 layout.addView(guts);

 wrap=new ViewWrapper(layout);
 wrap.setGuts(guts);
 layout.setTag(wrap);

 rate.setTag(new Integer(position));
 rate.setRating(rates[position]);

CHAPTER 8: Getting Fancy with Lists 92

 row=layout;
 }
 else {
 wrap=(ViewWrapper)convertView.getTag();
 wrap.setGuts(delegate.getView(position, wrap.getGuts(),
 parent));
 wrap.getRatingBar().setTag(new Integer(position));
 wrap.getRatingBar().setRating(rates[position]);
 }

 return(row);
 }
}

The idea is that RateableWrapper is where most of our rate-list logic resides. It puts the

rating bars on the rows, and it tracks the rating bars’ states as they are adjusted by the

user. For the states, it has a float[] sized to fit the number of rows that the delegate

says are in the list.

RateableWrapper’s implementation of getView() is reminiscent of the one from

RateListDemo, except that rather than use LayoutInflater, we need to manually

construct a LinearLayout to hold our RatingBar and the “guts” (a.k.a., whatever view the

delegate created that we are decorating with the rating bar). LayoutInflater is designed

to construct a View from raw widgets. In our case, we don’t know in advance what the

rows will look like, other than that we need to add a rating bar to them. However, the

rest is similar to the one from RateListDemo, including using a ViewWrapper, hooking up

onRatingBarChanged() to have the rating bar update the state, and so forth:

class ViewWrapper {
 ViewGroup base;
 View guts=null;
 RatingBar rate=null;

 ViewWrapper(ViewGroup base) {
 this.base=base;
 }

 RatingBar getRatingBar() {
 if (rate==null) {
 rate=(RatingBar)base.getChildAt(0);
 }

 return(rate);
 }

 void setRatingBar(RatingBar rate) {
 this.rate=rate;
 }

 View getGuts() {
 if (guts==null) {
 guts=base.getChildAt(1);
 }

 return(guts);

CHAPTER 8: Getting Fancy with Lists 93

 }

 void setGuts(View guts) {
 this.guts=guts;
 }
}

With all that in place, RateListView is comparatively simple:

public class RateListView extends ListView {
 public RateListView(Context context) {
 super(context);
 }

 public RateListView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 public RateListView(Context context, AttributeSet attrs,
 int defStyle) {
 super(context, attrs, defStyle);
 }

 public void setAdapter(ListAdapter adapter) {
 super.setAdapter(new RateableWrapper(getContext(), adapter));
 }
}

We simply subclass ListView and override setAdapter() so we can wrap the supplied

ListAdapter in our own RateableWrapper.

Visually, the results are similar to the RateListDemo, albeit without top-rated words

appearing in all uppercase, as shown in Figure 8–5.

Figure 8–5. The RateListViewDemo sample application

CHAPTER 8: Getting Fancy with Lists 94

The difference is in reusability. We could package RateListView in its own JAR and plop

it into any Android project where we need it. So while RateListView is somewhat

complicated to write, we need to write it only once, and the rest of the application code

is blissfully simple.

NOTE: Of course, the sample RateListView could use some more features, such as
programmatically changing states (updating both the float[] and the actual RatingBar itself)
and allowing other application logic to be invoked when a RatingBar state is toggled (via some
sort of callback). These and other enhancements are left as exercises for the reader.

Adapting Other Adapters
All adapter classes can follow the ArrayAdapter pattern of overriding getView() to define

the rows. However, CursorAdapter and its subclasses have a default implementation of

getView().

The getView() method inspects the supplied View to recycle. If it is null, getView() calls

newView(), then bindView(). If it is not null, getView() just calls bindView().

If you are extending CursorAdapter, which is used for displaying results of a database or

content provider query, you should override newView() and bindView(), instead of

getView(). All this does is remove your if() test you would have in getView() and put

each branch of that test in an independent method, akin to the following:

public View newView(Context context, Cursor cursor,
 ViewGroup parent) {
 LayoutInflater inflater=context.getLayoutInflater();
 View row=inflater.inflate(R.layout.row, null);
 ViewWrapper wrapper=new ViewWrapper(row);

 row.setTag(wrapper);

 return(row);
}

public void bindView(View row, Context context, Cursor cursor) {
 ViewWrapper wrapper=(ViewWrapper)row.getTag();

 // actual logic to populate row from Cursor goes here
}

Chapter 22 provides details about using a Cursor.

95

 Chapter

Employing Fancy Widgets
and Containers
The widgets and containers covered so far are not only found in many GUI toolkits (in

one form or fashion), but also are widely used in building GUI applications—whether

web-based, desktop, or mobile. The widgets and containers described in this chapter

are a little less widely used, though you will likely find many to be quite useful.

Pick and Choose
With limited-input devices like phones, having widgets and dialogs that are aware of the

type of stuff someone is supposed to be entering is very helpful. These elements

minimize keystrokes and screen taps, as well as reduce the chance of making some sort

of error (e.g., entering a letter somewhere only numbers are expected).

As shown in Chapter 5, EditText has content-aware flavors for entering numbers and

text. Android also supports widgets (DatePicker and TimePicker) and dialogs

(DatePickerDialog and TimePickerDialog) for helping users enter dates and times.

DatePicker and DatePickerDialog allow you to set the starting date for the selection, in

the form of a year, month, and day of month value. Note that the month runs from 0 for

January through 11 for December. Each lets you provide a callback object

(OnDateChangedListener or OnDateSetListener) where you are informed of a new date

selected by the user. It is up to you to store that date someplace, particularly if you are

using the dialog, since there is no other way for you to get at the chosen date later.

Similarly, TimePicker and TimePickerDialog let you set the initial time the user can

adjust, in the form of an hour (0 through 23) and a minute (0 through 59). You can

indicate if the selection should be in 12-hour mode with an AM/PM toggle or in 24-hour

mode (what in the United States is thought of as “military time” and in the rest of the

world as “the way times are supposed to be”). You can also provide a callback object

(OnTimeChangedListener or OnTimeSetListener) to be notified of when the user has

chosen a new time, which is supplied to you in the form of an hour and minute.

9

CHAPTER 9: Employing Fancy Widgets and Containers 96

For example, from the Fancy/Chrono sample project, here’s a trivial layout containing a

label and two buttons, which will pop up the dialog flavors of the date and time pickers:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView android:id="@+id/dateAndTime"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <Button android:id="@+id/dateBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Date"
 />
 <Button android:id="@+id/timeBtn"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Set the Time"
 />
</LinearLayout>

The more interesting stuff comes in the Java source:

public class ChronoDemo extends Activity {
 DateFormat fmtDateAndTime=DateFormat.getDateTimeInstance();
 TextView dateAndTimeLabel;
 Calendar dateAndTime=Calendar.getInstance();
 DatePickerDialog.OnDateSetListener d=new DatePickerDialog.OnDateSetListener() {
 public void onDateSet(DatePicker view, int year, int monthOfYear,
 int dayOfMonth) {
 dateAndTime.set(Calendar.YEAR, year);
 dateAndTime.set(Calendar.MONTH, monthOfYear);
 dateAndTime.set(Calendar.DAY_OF_MONTH, dayOfMonth);
 updateLabel();
 }
 };
 TimePickerDialog.OnTimeSetListener t=new TimePickerDialog.OnTimeSetListener() {
 public void onTimeSet(TimePicker view, int hourOfDay,
 int minute) {
 dateAndTime.set(Calendar.HOUR_OF_DAY, hourOfDay);
 dateAndTime.set(Calendar.MINUTE, minute);
 updateLabel();
 }
 };

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.dateBtn);

CHAPTER 9: Employing Fancy Widgets and Containers 97

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 new DatePickerDialog(ChronoDemo.this,
 d,
 dateAndTime.get(Calendar.YEAR),
 dateAndTime.get(Calendar.MONTH),
 dateAndTime.get(Calendar.DAY_OF_MONTH)).show();
 }
 });

 btn=(Button)findViewById(R.id.timeBtn);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 new TimePickerDialog(ChronoDemo.this,
 t,
 dateAndTime.get(Calendar.HOUR_OF_DAY),
 dateAndTime.get(Calendar.MINUTE),
 true).show();
 }
 });

 dateAndTimeLabel=(TextView)findViewById(R.id.dateAndTime);

 updateLabel();
 }

 private void updateLabel() {
 dateAndTimeLabel.setText(fmtDateAndTime
 .format(dateAndTime.getTime()));
 }
}

The model for this activity is just a Calendar instance, initially set to be the current date

and time. We pour it into the view via a DateFormat formatter. In the updateLabel()

method, we take the current Calendar, format it, and put it in the TextView.

Each button is given an OnClickListener callback object. When the button is clicked,

either a DatePickerDialog or a TimePickerDialog is shown. In the case of the

DatePickerDialog, we give it an OnDateSetListener callback that updates the Calendar

with the new date (year, month, and day of month). We also give the dialog the last-

selected date, getting the values from the Calendar. In the case of the

TimePickerDialog, it gets an OnTimeSetListener callback to update the time portion of

the Calendar, the last-selected time, and a true indicating we want 24-hour mode on the

time selector.

With all this wired together, the resulting activity looks like Figures 9–1, 9–2, and 9–3.

CHAPTER 9: Employing Fancy Widgets and Containers 98

Figure 9–1. The ChronoDemo sample application, as initially launched

Figure 9–2. The same application, showing the date picker dialog

CHAPTER 9: Employing Fancy Widgets and Containers 99

Figure 9–3. The same application, showing the time picker dialog

Time Keeps Flowing Like a River
If you want to display the time, rather than have users enter it, you may wish to use the

DigitalClock or AnalogClock widgets. These are extremely easy to use, as they

automatically update with the passage of time. All you need to do is put them in your

layout and let them do their thing.

For example, from the Fancy/Clocks sample application, here is an XML layout

containing both DigitalClock and AnalogClock widgets:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <AnalogClock android:id="@+id/analog"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_alignParentTop="true"
 />
 <DigitalClock android:id="@+id/digital"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_below="@id/analog"
 />
</RelativeLayout>

CHAPTER 9: Employing Fancy Widgets and Containers 100

Without any Java code other than the generated stub, we can build this project and get

the activity shown in Figure 9–4.

Figure 9–4. The ClocksDemo sample application

If you are looking for more of a timer, Chronometer may be of interest. With a

Chronometer, you can track elapsed time from a starting point. You simply tell it when to

start() and stop(), and possibly override the format string that displays the text. Figure

9–5 shows an example.

Figure 9–5. The Views/Chronometer API demo from the Android 2.0 SDK

CHAPTER 9: Employing Fancy Widgets and Containers 101

Making Progress
If you need to be doing something for a long period of time, you owe it to your users to

do two things:

 Use a background thread.

 Keep them apprised of your progress, lest they think your activity has

wandered away and will never come back.

The typical approach to keeping users informed of progress is to display some form of

progress bar, or “throbber” (like the animated graphic that appears near the upper-right

corner of many web browsers). Android supports this through the ProgressBar widget.

A ProgressBar widget keeps track of progress, defined as an integer, with 0 indicating no progress

has been made. You can define the maximum end of the range—the value that indicates progress

is complete—via setMax(). By default, ProgressBar starts with a progress of 0, though you can

start from some other position via setProgress().

If you prefer your progress bar to be indeterminate, use setIndeterminate(), setting it to

true.

In your Java code, you can either positively set the amount of progress that has been

made (via setProgress()) or increment the progress from its current amount (via

incrementProgressBy()). You can find out how much progress has been made via

getProgress().

Since the ProgressBar is tied closely to the use of threads—a background thread doing

work, updating the UI thread with new progress information—its use is demonstrated in

Chapter 15.

Seeking Resolution
A subclass of ProgressBar is SeekBar. A ProgressBar is an output widget, telling the

user how much progress has been made. Conversely, the SeekBar is an input widget,

allowing the user to select a value along a range of possible values, as shown in

Figure 9–6.

CHAPTER 9: Employing Fancy Widgets and Containers 102

Figure 9–6. The Views/SeekBar API demo from the Android 2.0 SDK

The user can drag the thumb or click either side of it to reposition the thumb. The thumb

then points to a particular value along a range. That range will be 0 to some maximum

value, 100 by default, which you control via a call to setMax(). You can determine the

current position via getProgress(), or find out when the user makes a change to the

thumb’s position by registering a listener via setOnSeekBarChangeListener().

You saw a variation on this theme with the RatingBar example in Chapter 8.

Put It on My Tab
The general Android philosophy is to keep activities short and sweet. If there is more

information than can reasonably fit on one screen, albeit perhaps with scrolling, then it

perhaps belongs in another activity kicked off via an Intent, as will be described in

Chapter 18. However, that can be complicated to set up. Moreover, sometimes there

legitimately is a lot of information that needs to be collected to be processed as an

atomic operation.

In a traditional UI, you might use tabs to hold the information, such as a JTabbedPane in

Java/Swing. In Android, you now have the option of using a TabHost container in much

the same way. In this setup, a portion of your activity’s screen is taken up with tabs,

which, when clicked, swap out part of the view and replace it with something else. For

example, you might have an activity with a tab for entering a location and a second tab

for showing a map of that location.

Some GUI toolkits refer to tabs as just the things a user clicks to toggle from one view to

another. Others refer to tabs as the combination of the clickable buttonlike element and

CHAPTER 9: Employing Fancy Widgets and Containers 103

the content that appears when it is chosen. Android treats the tab buttons and contents

as discrete entities, which I’ll refer to as “tab buttons” and “tab contents” in this section.

The Pieces
You need to use the following items to set up a tabbed portion of a view:

 TabHost is the overarching container for the tab buttons and tab

contents.

 TabWidget implements the row of tab buttons, which contain text

labels and, optionally, icons.

 FrameLayout is the container for the tab contents. Each tab content is

a child of the FrameLayout.

This is similar to the approach that Mozilla’s XUL takes. In XUL’s case, the tabbox

element corresponds to Android’s TabHost, the tabs element corresponds to TabWidget,

and tabpanels corresponds to FrameLayout.

The Idiosyncrasies
There are a few rules to follow, at least in this milestone edition of the Android toolkit, in

order to make the three tab pieces work together:

 You must give the TabWidget an android:id of @android:id/tabs.

 If you wish to use the TabActivity, you must give the TabHost an

android:id of @android:id/tabhost.

TabActivity, like ListActivity, wraps a common UI pattern (an activity made up

entirely of tabs) into a pattern-aware activity subclass. You do not necessarily have to

use TabActivity—a plain activity can use tabs as well.

For example, here is a layout definition for a tabbed activity, from Fancy/Tab:

<?xml version="1.0" encoding="utf-8"?>
<TabHost xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <AnalogClock android:id="@+id/tab1"

CHAPTER 9: Employing Fancy Widgets and Containers 104

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_centerHorizontal="true"
 />
 <Button android:id="@+id/tab2"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </LinearLayout>
</TabHost>

Note that the TabWidget and FrameLayout are immediate children of the TabHost, and the

FrameLayout itself has children representing the various tabs. In this case, there are two

tabs: a clock and a button. In a more complicated scenario, the tabs could be some

form of container (e.g., LinearLayout) with their own contents.

Wiring It Together
The Java code needs to tell the TabHost which views represent the tab contents and

what the tab buttons should look like. This is all wrapped up in TabSpec objects. You get

a TabSpec instance from the host via newTabSpec(), fill it out, and then add it to the host

in the proper sequence.

TabSpec has two key methods:

 setContent(): Indicates what goes in the tab content for this tab,

typically the android:id of the view you want shown when this tab is

selected.

 setIndicator(): Sets the caption for the tab button and, in some

flavors of this method, supplies a Drawable to represent the icon for

the tab.

Note that tab “indicators” can actually be views in their own right, if you need more

control than a simple label and optional icon.

Also note that you must call setup() on the TabHost before configuring any of these

TabSpec objects. The call to setup() is not needed if you are using the TabActivity base

class for your activity.

For example, here is the Java code to wire together the tabs from the preceding layout

example:

package com.commonsware.android.fancy;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TabHost;

public class TabDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {

CHAPTER 9: Employing Fancy Widgets and Containers 105

 super.onCreate(icicle);
 setContentView(R.layout.main);

 TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(R.id.tab1);
 spec.setIndicator("Clock");
 tabs.addTab(spec);

 spec=tabs.newTabSpec("tag2");
 spec.setContent(R.id.tab2);
 spec.setIndicator("Button");
 tabs.addTab(spec);
 }
}

We find our TabHost via the familiar findViewById() method, and then have it setup().

After that, we get a TabSpec via newTabSpec(), supplying a tag whose purpose is

unknown at this time. Given the spec, we call setContent() and setIndicator(), and

then call addTab() back on the TabHost to register the tab as available for use. Finally,

we can choose which tab is the one to show via setCurrentTab(), providing the 0-based

index of the tab.

The results are shown in Figures 9–7 and 9–8.

Figure 9–7. The TabDemo sample application, showing the first tab

CHAPTER 9: Employing Fancy Widgets and Containers 106

Figure 9–8. The same application, showing the second tab

Adding Them Up
TabWidget is set up to allow you to easily define tabs at compile time. However,

sometimes, you want to add tabs to your activity during runtime. For example, imagine

an e-mail client where individual messages are opened in their own tab, for easy

toggling between messages. In this case, you don’t know how many tabs you will need

or what their contents will be until runtime, when the user chooses to open a message.

Fortunately, Android also supports adding tabs dynamically at runtime.

Adding tabs dynamically at runtime works much like the compile-time tabs described in

the previous section, except you use a different flavor of setContent()—one that takes a

TabHost.TabContentFactory instance. This is just a callback that will be invoked. You

provide an implementation of createTabContent(), and use it to build and return the

View that becomes the content of the tab.

Let’s take a look at an example (Fancy/DynamicTab). First, here is some layout XML for

an activity that sets up the tabs and defines one tab, containing a single button:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabHost android:id="@+id/tabhost"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <TabWidget android:id="@android:id/tabs"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"

CHAPTER 9: Employing Fancy Widgets and Containers 107

 />
 <FrameLayout android:id="@android:id/tabcontent"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingTop="62px">
 <Button android:id="@+id/buttontab"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="A semi-random button"
 />
 </FrameLayout>
 </TabHost>
</LinearLayout>

Now we want to add new tabs whenever the button is clicked. That can be

accomplished with the following code:

public class DynamicTabDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 final TabHost tabs=(TabHost)findViewById(R.id.tabhost);

 tabs.setup();

 TabHost.TabSpec spec=tabs.newTabSpec("buttontab");
 spec.setContent(R.id.buttontab);
 spec.setIndicator("Button");
 tabs.addTab(spec);

 Button btn=(Button)tabs.getCurrentView().findViewById(R.id.buttontab);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 TabHost.TabSpec spec=tabs.newTabSpec("tag1");

 spec.setContent(new TabHost.TabContentFactory() {
 public View createTabContent(String tag) {
 return(new AnalogClock(DynamicTabDemo.this));
 }
 });
 spec.setIndicator("Clock");
 tabs.addTab(spec);
 }
 });
 }
}

In our button’s setOnClickListener() callback, we create a TabHost.TabSpec object and

give it an anonymous TabHost.TabContentFactory. The factory, in turn, returns the View

to be used for the tab—in this case, just an AnalogClock. The logic for constructing the

tab’s View could be much more elaborate, such as using LayoutInflater to construct a

view from layout XML.

CHAPTER 9: Employing Fancy Widgets and Containers 108

Initially, when the activity is launched, we have just the one tab, as shown in Figure 9–9.

Figure 9–10 shows all three tabs.

Figure 9–9. The DynamicTab application, with the single initial tab

Figure 9–10. The DynamicTab application, with three dynamically created tabs

CHAPTER 9: Employing Fancy Widgets and Containers 109

Intents and Views
In the preceding examples, the contents of each tab were set to be a View, such as a

Button. This is easy and straightforward, but it is not the only option. You can also

integrate another activity from your application via an Intent.

Intents are ways of specifying something you want accomplished, and then telling

Android to go find something to accomplish it. Frequently, these are used to cause

activities to spawn. For example, whenever you launch an application from the main

Android application launcher, the launcher creates an Intent and has Android open the

activity associated with that Intent. This whole concept, and how activities can be

placed in tabs, is described in Chapter 18.

Flipping Them Off
Sometimes, you want the overall effect of tabs (only some Views visible at a time), but

you do not want the actual UI implementation of tabs. Maybe the tabs take up too much

screen space. Maybe you want to switch between perspectives based on a gesture or a

device shake. Or maybe you just like being different.

The good news is that the guts of the view-flipping logic from tabs can be found in the

ViewFlipper container, which can be used in other ways than the traditional tab.

ViewFlipper inherits from FrameLayout, in the same way you use it to describe the

innards of a TabWidget. However, initially, the ViewFlipper container just shows the first

child view. It is up to you to arrange for the views to flip, either manually by user

interaction or automatically via a timer.

For example, here is a layout for a simple activity (Fancy/Flipper1) using a Button and a

ViewFlipper:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/flip_me"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Flip Me!"
 />
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FF00FF00"
 android:text="This is the first panel"

CHAPTER 9: Employing Fancy Widgets and Containers 110

 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFF0000"
 android:text="This is the second panel"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textStyle="bold"
 android:textColor="#FFFFFF00"
 android:text="This is the third panel"
 />
 </ViewFlipper>
</LinearLayout>

Notice that the layout defines three child views for the ViewFlipper, each a TextView

with a simple message. Of course, you could have very complicated child views, if you

so chose.

Manual Flipping
To manually flip the views, we need to hook into the Button and flip them ourselves

when the button is clicked:

public class FlipperDemo extends Activity {
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 Button btn=(Button)findViewById(R.id.flip_me);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 flipper.showNext();
 }
 });
 }
}

This is just a matter of calling showNext() on the ViewFlipper, as you can on any

ViewAnimator class.

The result is a trivial activity: click the button, and the next TextView in sequence is

displayed, wrapping around to the first after viewing the last, as shown in Figures 9–11

and 9–12.

CHAPTER 9: Employing Fancy Widgets and Containers 111

Figure 9–11. The Flipper1 application, showing the first panel

Figure 9–12. The same application, after switching to the second panel

Of course, this could be handled more simply by having a single TextView and changing

the text and color on each click. However, you can imagine that the ViewFlipper

contents could be much more complicated, like the contents you might put into a

TabView.

CHAPTER 9: Employing Fancy Widgets and Containers 112

Adding Contents on the Fly
As with the TabWidget, sometimes, your ViewFlipper contents may not be known at

compile time. And as with TabWidget, you can add new contents on the fly with ease.

For example, let’s look at another sample activity (Fancy/Flipper2), using this layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ViewFlipper android:id="@+id/details"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 </ViewFlipper>
</LinearLayout>

Notice that the ViewFlipper has no contents at compile time. Also notice that there is no

Button for flipping between the contents—more on this in the next section.

For the ViewFlipper contents, we will create large Button widgets, each containing one

of the random words used in many chapters in this book. Then we will set up the

ViewFlipper to automatically rotate between the Button widgets, using an animation for

transition.

public class FlipperDemo2 extends Activity {
 static String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit",
 "morbi", "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis", "etiam",
 "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque",
 "augue", "purus"};
 ViewFlipper flipper;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 flipper=(ViewFlipper)findViewById(R.id.details);

 flipper.setInAnimation(AnimationUtils.loadAnimation(this,
 R.anim.push_left_in));
 flipper.setOutAnimation(AnimationUtils.loadAnimation(this,
 R.anim.push_left_out));

 for (String item : items) {
 Button btn=new Button(this);

 btn.setText(item);

 flipper.addView(btn,

CHAPTER 9: Employing Fancy Widgets and Containers 113

 new ViewGroup.LayoutParams(
 ViewGroup.LayoutParams.FILL_PARENT,
 ViewGroup.LayoutParams.FILL_PARENT));
 }

 flipper.setFlipInterval(2000);
 flipper.startFlipping();
 }
}

After getting our ViewFlipper widget from the layout, we first set up the “in” and “out”

animations. In Android terms, an animation is a description of how a widget leaves (out)

or enters (in) the viewable area. Animations are resources, stored in res/anim/ in your

project. For this example, we are using a pair of animations supplied by the SDK

samples, available under the Apache 2.0 license. As their names suggest, widgets are

“pushed” to the left, either to enter or leave the viewable area.

NOTE: Animation is a complex beast. I cover it in my book The Busy Coder’s Guide to Advanced
Android Development (CommonsWare LLC, 2009).

Automatic Flipping
After iterating over the funky words, turning each into a Button, and adding the Button

as a child of the ViewFlipper, we set up the flipper to automatically flip between children

(flipper.setFlipInterval(2000);) and to start flipping (flipper.startFlipping();).

The result is an endless series of buttons. Each appears and then slides out to the left

after 2 seconds, being replaced by the next button in sequence, wrapping around to the

first after the last has been shown. Figure 9–13 shows an example.

Figure 9–13. The Flipper2 application, showing an animated transition

CHAPTER 9: Employing Fancy Widgets and Containers 114

The auto-flipping ViewFlipper is useful for status panels or other situations where you

have a lot of information to display, but not much room. The caveat is that, since it

automatically flips between views, expecting users to interact with individual views is

dicey, because the view might switch away partway through their interaction.

Getting in Someone’s Drawer
For a long time, Android developers yearned for a sliding-drawer container that worked

like the one on the home screen, containing the icons for launching applications. The

official implementation was in the open source code but was not part of the SDK, until

Android 1.5, when the developers released SlidingDrawer for others to use.

Unlike most other Android containers, SlidingDrawer moves, switching from a closed to

an open position. This puts some restrictions on which container holds the

SlidingDrawer. It needs to be in a container that allows multiple widgets to sit atop each

other. RelativeLayout and FrameLayout satisfy this requirement; FrameLayout is a

container purely for stacking widgets atop one another. On the flip side, LinearLayout

does not allow widgets to stack (they fall one after another in a row or column), and so

you should not have a SlidingDrawer as an immediate child of a LinearLayout.

Here is a layout showing a SlidingDrawer in a FrameLayout, from the Fancy/DrawerDemo

project:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF4444CC"
 >
 <SlidingDrawer
 android:id="@+id/drawer"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:handle="@+id/handle"
 android:content="@+id/content">
 <ImageView
 android:id="@id/handle"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/tray_handle_normal"
 />
 <Button
 android:id="@id/content"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="I'm in here!"
 />
 </SlidingDrawer>
</FrameLayout>

The SlidingDrawer should contain two things:

CHAPTER 9: Employing Fancy Widgets and Containers 115

 A handle, frequently an ImageView or something along those lines,

such as the one used here, pulled from the Android open source

project

 The contents of the drawer itself, usually some sort of container, but a

Button in this case

Moreover, SlidingDrawer needs to know the android:id values of the handle and

contents, via the android:handle and android:content attributes, respectively. This tells

the drawer how to animate itself as it slides open and closed.

Figure 9–14 shows what the SlidingDrawer looks like closed, using the supplied handle,

and Figure 9–15 shows it open.

Figure 9–14. A SlidingDrawer, closed Figure 9–15. A SlidingDrawer, open

As you might expect, you can open and close the drawer from Java code, as well as via

user touch events (which are handled by the widget, so that’s not something you need

to worry about). However, you have two sets of these methods: ones that take place

instantaneously (open(), close(), and toggle()) and ones that use the animation

(animateOpen(), animateClose(), animateToggle()).

You can lock() and unlock() the drawer; while locked, the drawer will not respond to

touch events.

You can also register three types of callbacks if you wish:

 A listener to be invoked when the drawer is opened

 A listener to be invoked when the drawer is closed

CHAPTER 9: Employing Fancy Widgets and Containers 116

 A listener to be invoked when the drawer is “scrolled” (i.e., the user

drags or flings the handle)

For example, the launcher’s SlidingDrawer toggles the icon on the handle from open to

closed to “delete” (if you long-tap something on the desktop). It accomplishes this, in

part, through callbacks like these.

SlidingDrawer can be vertical or horizontal. Note, though, that it keeps its orientation

despite the screen orientation. In other words, if you rotate the Android device or

emulator running DrawerDemo, the drawer always opens from the bottom—it does not

always stick to the original side from which it opened. This means that if you want the

drawer to always open from the same side, as the launcher does, you will need separate

layouts for portrait versus landscape, a topic discussed in Chapter 20.

Other Good Stuff
Android offers AbsoluteLayout, where the contents are laid out based on specific

coordinate positions. You tell AbsoluteLayout where to place a child in precise x and y

coordinates, and Android puts it that location, no questions asked.

On the plus side, AbsoluteLayout gives you precise positioning. On the minus side, it

means your views will look right only on screens of a certain dimension, or you will need

to write a bunch of code to adjust the coordinates based on screen size. Since Android

screens might run the gamut of sizes, and new sizes crop up periodically, using

AbsoluteLayout could get quite annoying.

NOTE: AbsoluteLayout is officially deprecated, meaning that while it is available to you, its
use is discouraged.

Android also has the ExpandableListView. This provides a simplified tree representation,

supporting two levels of depth: groups and children. Groups contain children; children

are “leaves” of the tree. This requires a new set of adapters, since the ListAdapter

family does not provide any sort of group information for the items in the list.

117

 Chapter

The Input Method
Framework
Android 1.5 introduced the input method framework (IMF), which is commonly referred

to as soft keyboards. However, the soft keyboard term is not necessarily accurate, as

IMF could be used for handwriting recognition or other means of accepting text input via

the screen.

This chapter describes how to use the IMF to tailor software keyboards to your

application’s needs.

Keyboards, Hard and Soft
Some Android devices, like the HTC Magic, do not have a hardware keyboard. Other

Android devices, like the T-Mobile G1, have a hardware keyboard that is visible some of

the time (when it is slid out). It is likely that in the future, there will be Android devices

that always have a hardware keyboard available (such as netbooks and phones with an

always-available QWERTY keyboard beneath the screen). The IMF handles all of these

scenarios. In short, if there is no hardware keyboard, an input method editor (IME) will be

available to users when they tap an enabled EditText.

This does not require any code changes to your application, as long as the default

functionality of the IME is what you want. Fortunately, Android is fairly smart about

guessing what you want, so it may be you can just test with the IME, but otherwise

make no specific code changes.

But the keyboard may not quite behave how you would like to work for your application.

For example, in the Basic/Field sample project, the FieldDemo activity has the IME

overlaying the multiple-line EditText, as shown in Figure 10–1. It would be nice to have

more control over how this appears, as well as to specify other behavior of the IME.

Fortunately, the framework as a whole gives you many options for this, as is described

in this chapter.

10

CHAPTER 10: The Input Method Framework 118

Figure 10–1. The input method editor, as seen in the FieldDemo sample application

Tailored to Your Needs
Android 1.1 and earlier offered many attributes on EditText widgets to control their style

of input, such as android:password to indicate a field should be for password entry

(shrouding the password keystrokes from prying eyes). In Android 1.5, with the IMF,

many of these attributes have been combined into a single android:inputType attribute.

The android:inputType attribute takes a class plus modifiers, in a pipe-delimited format

(where | is the pipe character). The class generally describes what the user is allowed to

input, and this determines the basic set of keys available on the soft keyboard. The

following classes are available:

 text (the default)

 number

 phone

 datetime

 date

 time

Many of these classes offer one or more modifiers to further refine what the user will be

entering. To help understand these modifiers, take a look at the res/layout/main.xml file

from the InputMethod/IMEDemo1 project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"

CHAPTER 10: The Input Method Framework 119

 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
</TableLayout>

Here, you will see a TableLayout containing five rows, each demonstrating a slightly

different flavor of EditText:

 The first row does not have any attributes at all on the EditText,

meaning you get a plain text-entry field.

 The second row has android:inputType = "text|textEmailAddress",

meaning it is text entry, but specifically seeks an e-mail address.

 The third row allows for signed decimal numeric input, via

android:inputType = "number|numberSigned|numberDecimal".

CHAPTER 10: The Input Method Framework 120

 The fourth row is set up to allow for data entry of a date

(android:inputType = "date").

 The last row allows for multiline input with autocorrection of probable

spelling errors (android:inputType =
"text|textMultiLine|textAutoCorrect").

The class and modifiers tailor the keyboard. So, a plain text-entry field results in a plain

soft keyboard, as shown in Figure 10–2.

Figure 10–2. A standard input method editor (a.k.a., soft keyboard)

An e-mail address field puts the @ symbol on the soft keyboard, at the cost of a smaller

spacebar, as shown in Figure 10–3.

Figure 10–3. The input method editor for e-mail addresses

CHAPTER 10: The Input Method Framework 121

Number and date fields restrict the keys to numeric keys, plus a set of symbols that may

or may not be valid on a given field, as shown in Figure 10–4.

Figure 10–4. The input method editor for signed decimal numbers

These are just a few examples. By choosing the appropriate android:inputType, you

can give users a soft keyboard that best suits the data they should be entering.

Tell Android Where It Can Go
You may have noticed a subtle difference between the IME shown in Figure 10–2 and

the one shown in Figure 10–4, beyond the addition of the @ key. If you look in the lower-

right corner of the soft keyboard, the second field’s editor has a Next button, while the

first field’s editor has a newline button. This points out two things:

 EditText widgets are multiline by default if you do not specify

android:inputType.

 You can control what goes on with that lower-right button, called the

accessory button.

By default, on an EditText widget where you have specified android:inputType, the

accessory button will be Next, moving you to the next EditText in sequence, or Done, if

you are on the last EditText on the screen. You can manually stipulate what the

accessory button will be labeled via the android:imeOptions attribute. For example, in

the res/layout/main.xml from InputMethod/IMEDemo2, you will see an augmented

version of the previous example, where two input fields specify the appearance of the

accessory button:

CHAPTER 10: The Input Method Framework 122

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1"
 >
 <TableRow>
 <TextView
 android:text="No special rules:"
 />
 <EditText
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Email address:"
 />
 <EditText
 android:inputType="text|textEmailAddress"
 android:imeOptions="actionSend"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Signed decimal number:"
 />
 <EditText
 android:inputType="number|numberSigned|numberDecimal"
 android:imeOptions="actionDone"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Date:"
 />
 <EditText
 android:inputType="date"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Multi-line text:"
 />
 <EditText
 android:inputType="text|textMultiLine|textAutoCorrect"
 android:minLines="3"
 android:gravity="top"
 />
 </TableRow>
 </TableLayout>
</ScrollView>

CHAPTER 10: The Input Method Framework 123

Here, we attach a Send action to the accessory button for the e-mail address

(android:imeOptions = "actionSend"), and the Done action on the middle field

(android:imeOptions = "actionDone").

By default, Next will move the focus to the next EditText, and Done will close the IME.

However, for those actions, or for any other ones like Send, you can use

setOnEditorActionListener() on EditText (technically, on the TextView superclass) to

get control when the accessory button is clicked or the user presses the Enter key. You

are provided with a flag indicating the desired action (e.g., IME_ACTION_SEND), and you

can then do something to handle that request (e.g., send an e-mail to the supplied e-

mail address).

Fitting In
You will notice that the IMEDemo2 layout shown in the preceding section has another

difference from its IMEDemo1 predecessor: the use of a ScrollView container wrapping

the TableLayout. This ties into another level of control you have over IMEs: what

happens to your activity’s own layout when the soft keyboard appears? There are three

possibilities, depending on the circumstances:

 Android can “pan” your activity, effectively sliding the whole layout up

to accommodate the IME, or overlaying your layout, depending on

whether the EditText being edited is at the top or bottom. This has the

effect of hiding some portion of your UI.

 Android can resize your activity, effectively causing it to shrink to a

smaller screen dimension, allowing the IME to sit below the activity

itself. This is great when the layout can readily be shrunk (e.g., it is

dominated by a list or multiline input field that does not need the whole

screen to be functional).

 In landscape mode, Android may display the IME full-screen,

obscuring your entire activity. This allows for a bigger keyboard and

generally easier data entry.

Android controls the full-screen option purely on its own. And, by default, Android will

choose between pan and resize modes depending on what your layout looks like. If you

want to specifically choose between pan and resize, you can do so via an

android:windowSoftInputMode attribute on the <activity> element in your

AndroidManifest.xml file. For example, here is the manifest from IMEDemo2:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.imf.two"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".IMEDemo2"
 android:label="@string/app_name"
 android:windowSoftInputMode="adjustResize">

CHAPTER 10: The Input Method Framework 124

 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Because we specified resize, Android will shrink our layout to accommodate the IME.

With the ScrollView in place, this means the scroll bar will appear as needed, as shown

in Figure 10–5.

Figure 10–5. The shrunken, scrollable layout

Unleash Your Inner Dvorak
You are also welcome to make and distribute your own IME. Perhaps you want to create

a Dvorak soft keyboard, a keyboard for another language, or one that echoes pressed

keys verbally.

An IME is packaged in the form of a service, an Android component described in

Chapters 29 and 30. If you are interested in creating such an editor, you should take a

look at the SoftKeyboard sample application distributed with the Android 1.5 SDK and,

of course, the Android source code (search for the LatinIME class).

125

 Chapter

Applying Menus
Like applications for the desktop and some mobile operating systems, such as Windows

Mobile, Android supports activities with application menus. In Android, this is called an

options menu. Some Android phones will have a dedicated key for popping up the

options menu; others will offer alternate means for triggering the menu to appear, such

as the on-screen button used by the Archos 5 Android tablet.

Also, as with many GUI toolkits, you can create context menus for your Android

applications. On mobile devices, context menus typically appear when the user taps and

holds over a particular widget. For example, if a TextView had a context menu, and the

device was designed for finger-based touch input, you could push the TextView with

your finger, hold it for a second or two, and a pop-up menu would appear.

This chapter describes how to work with Android options and context menus.

Menus of Options
The options menu is triggered by pressing the hardware Menu button on the device.

This menu operates in one of two modes: icon and expanded. When the user first

presses the Menu button, the icon mode will appear, showing up to the first six menu

choices as large, finger-friendly buttons in a grid at the bottom of the screen. If the

menu has more than six choices, the sixth button will be labeled More. Choosing the

More option will bring up the expanded mode, showing the remaining choices not

visible in the regular menu. The menu is scrollable, so the user can get to any of the

menu choices.

Creating an Options Menu
Rather than building your activity’s options menu during onCreate(), the way you wire

up the rest of your UI, you instead need to implement onCreateOptionsMenu(). This

callback receives an instance of Menu.

11

CHAPTER 11: Applying Menus 126

The first thing you should do is chain upward to the superclass

(super.onCreateOptionsMenu(menu)), so the Android framework can add in any menu

choices it feels are necessary. Then you can go about adding your own options, as

described in the next section.

If you will need to adjust the menu during your activity’s use (e.g., disable a now-invalid

menu choice), just hold onto the Menu instance you receive in onCreateOptionsMenu().

Alternatively, you can implement onPrepareOptionsMenu(), which is called just before

displaying the menu each time it is requested.

Adding Menu Choices and Submenus
Given that you have received a Menu object via onCreateOptionsMenu(), you add menu

choices by calling add(). There are many flavors of this method, which require some

combination of the following parameters:

 A group identifier (int), which should be NONE unless you are creating a

specific grouped set of menu choices for use with

setGroupCheckable() (described shortly)

 A choice identifier (also an int), for use in identifying this choice in the

onOptionsItemSelected() callback when a menu choice is chosen

 An order identifier (yet another int), for indicating where this menu

choice should be slotted if the menu has Android-supplied choices

alongside your own; for now, just use NONE

 The text of the menu choice, as a String or a resource ID

The add() family of methods all return an instance of MenuItem, where you can adjust

any of the menu item settings you have already set (e.g., the text of the menu choice).

You can also set the shortcuts for the menu choice, which are single-character

mnemonics that choose that menu item when the menu is visible. Android supports both

an alphabetic (or QWERTY) set of shortcuts and a numeric set of shortcuts. These are

set individually by calling setAlphabeticShortcut() and setNumericShortcut(),

respectively. The menu is placed into alphabetic shortcut mode by calling

setQwertyMode() on the menu with a true parameter.

The choice and group identifiers are keys used to unlock additional menu features, such

as the following:

 Calling MenuItem#setCheckable() with a choice identifier, to control if

the menu choice has a two-state check box alongside the title, where

the check box value is toggled when the user chooses that item

 Calling Menu#setGroupCheckable() with a group identifier, to turn a set

of menu choices into ones with a mutual-exclusion radio button

between them, so only one choice in the group can be in the checked

state at any time

CHAPTER 11: Applying Menus 127

Finally, you can create fly-out submenus by calling addSubMenu(), supplying the same

parameters as addMenu(). Android will eventually call onCreatePanelMenu(), passing it

the choice identifier of your submenu, along with another Menu instance representing the

submenu itself. As with onCreateOptionsMenu(), you should chain upward to the

superclass, and then add menu choices to the submenu. One limitation is that you

cannot indefinitely nest submenus. A menu can have a submenu, but a submenu cannot

have a sub-submenu.

If the user makes a menu choice, your activity will be notified that a menu choice was

selected via the onOptionsItemSelected() callback. You are given the MenuItem object

corresponding to the selected menu choice. A typical pattern is to switch() on the

menu ID (item.getItemId()) and take appropriate behavior. Note that

onOptionsItemSelected() is used regardless of whether the chosen menu item was in

the base menu or a submenu.

Menus in Context
The context menu is raised by a tap-and-hold action on the widget sporting the menu.

By and large, context menus use the same guts as option menus. The two main

differences are how you populate the menu and how you are informed of menu choices.

First, you need to indicate which widget(s) on your activity have context menus. To do

this, call registerForContextMenu() from your activity, supplying the View that is the

widget needing a context menu.

Next, you need to implement onCreateContextMenu(), which, among other things, is

passed the View you supplied in registerForContextMenu(). You can use that to

determine which menu to build, assuming your activity has more than one.

The onCreateContextMenu() method gets the ContextMenu itself, the View the context

menu is associated with, and a ContextMenu.ContextMenuInfo, which tells you which

item in the list the user did the tap-and-hold over, in case you want to customize the

context menu based on that information. For example, you could toggle a checkable

menu choice based on the current state of the item.

It is also important to note that onCreateContextMenu() is called for each time the

context menu is requested. Unlike the options menu (which is built only once per

activity), context menus are discarded after they are used or dismissed. Hence, you do

not want to hold onto the supplied ContextMenu object; just rely on getting the chance to

rebuild the menu to suit your activity’s needs on an on-demand basis based on user

actions.

To find out when a context menu choice was chosen, implement

onContextItemSelected() on the activity. Note that you get only the MenuItem instance

that was chosen in this callback. As a result, if your activity has two or more context

menus, you may want to ensure they have unique menu item identifiers for all their

choices, so you can distinguish between them in this callback. Also, you can call

getMenuInfo() on the MenuItem to get the ContextMenu.ContextMenuInfo you received in

CHAPTER 11: Applying Menus 128

onCreateContextMenu(). Otherwise, this callback behaves the same as

onOptionsItemSelected(), as described in the previous section.

Taking a Peek
In the sample project Menus/Menus, you will find an amended version of the ListView

sample (List) from Chapter 7 with an associated menu. Since the menus are defined in

Java code, the XML layout does not need to change from the one shown in that chapter.

However, the Java code has a few new behaviors:

public class MenuDemo extends ListActivity {
 TextView selection;
 String[] items={"lorem", "ipsum", "dolor", "sit", "amet",
 "consectetuer", "adipiscing", "elit", "morbi", "vel",
 "ligula", "vitae", "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat", "placerat", "ante",
 "porttitor", "sodales", "pellentesque", "augue", "purus"};
 public static final int EIGHT_ID = Menu.FIRST+1;
 public static final int SIXTEEN_ID = Menu.FIRST+2;
 public static final int TWENTY_FOUR_ID = Menu.FIRST+3;
 public static final int TWO_ID = Menu.FIRST+4;
 public static final int THIRTY_TWO_ID = Menu.FIRST+5;
 public static final int FORTY_ID = Menu.FIRST+6;
 public static final int ONE_ID = Menu.FIRST+7;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1, items));
 selection=(TextView)findViewById(R.id.selection);

 registerForContextMenu(getListView());
 }

 public void onListItemClick(ListView parent, View v,
 int position, long id) {
 selection.setText(items[position]);
 }

 @Override
 public void onCreateContextMenu(ContextMenu menu, View v,
 ContextMenu.ContextMenuInfo menuInfo) {
 populateMenu(menu);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 populateMenu(menu);

 return(super.onCreateOptionsMenu(menu));
 }

CHAPTER 11: Applying Menus 129

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 return(applyMenuChoice(item) ||
 super.onOptionsItemSelected(item));
 }

 @Override
 public boolean onContextItemSelected(MenuItem item) {
 return(applyMenuChoice(item) ||
 super.onContextItemSelected(item));
 }

 private void populateMenu(Menu menu) {
 menu.add(Menu.NONE, ONE_ID, Menu.NONE, "1 Pixel");
 menu.add(Menu.NONE, TWO_ID, Menu.NONE, "2 Pixels");
 menu.add(Menu.NONE, EIGHT_ID, Menu.NONE, "8 Pixels");
 menu.add(Menu.NONE, SIXTEEN_ID, Menu.NONE, "16 Pixels");
 menu.add(Menu.NONE, TWENTY_FOUR_ID, Menu.NONE, "24 Pixels");
 menu.add(Menu.NONE, THIRTY_TWO_ID, Menu.NONE, "32 Pixels");
 menu.add(Menu.NONE, FORTY_ID, Menu.NONE, "40 Pixels");
 }

 private boolean applyMenuChoice(MenuItem item) {
 switch (item.getItemId()) {
 case ONE_ID:
 getListView().setDividerHeight(1);
 return(true);

 case EIGHT_ID:
 getListView().setDividerHeight(8);
 return(true);

 case SIXTEEN_ID:
 getListView().setDividerHeight(16);
 return(true);

 case TWENTY_FOUR_ID:
 getListView().setDividerHeight(24);
 return(true);

 case TWO_ID:
 getListView().setDividerHeight(2);
 return(true);

 case THIRTY_TWO_ID:
 getListView().setDividerHeight(32);
 return(true);

 case FORTY_ID:
 getListView().setDividerHeight(40);
 return(true);
 }

 return(false);
 }
}

CHAPTER 11: Applying Menus 130

In onCreate(), we register our list widget as having a context menu, which we fill in via

our populateMenu() private method, by way of onCreateContextMenu().

We also implement the onCreateOptionsMenu() callback, indicating that our activity also

has an options menu. Once again, we delegate to populateMenu() to fill in the menu.

Our implementations of onOptionsItemSelected() (for options menu selections) and

onContextItemSelected() (for context menu selections) both delegate to a private

applyMenuChoice() method, plus chaining upward to the superclass if none of our menu

choices was the one selected by the user.

In populateMenu(), we add seven menu choices, each with a unique identifier. Being

lazy, we eschew the icons.

In applyMenuChoice(), we see if any of our menu choices were chosen. If so, we set the

list’s divider size to be the user-selected width.

Initially, the activity looks the same in the emulator as it did for ListDemo, as shown in

Figure 11–1.

Figure 11–1. The MenuDemo sample application, as initially launched

When you press the Menu button, you will get our options menu, as shown in Figure 11–2.

CHAPTER 11: Applying Menus 131

Figure 11–2. The same application, showing the options menu

Choosing the More button shows the remaining two menu choices, as shown in

Figure 11–3.

Figure 11–3. The same application, showing the remaining menu choices

Choosing a height (say, 16 pixels) from the menu changes the divider height of the list to

something garish, as shown in Figure 11–4.

CHAPTER 11: Applying Menus 132

Figure 11–4. The same application, made ugly

You can trigger the context menu, shown in Figure 11–5, by tapping and holding on any

item in the list. Once again, choosing an option sets the divider height.

Figure 11–5. The same application, showing a context menu

CHAPTER 11: Applying Menus 133

Yet More Inflation
Chapter 8 explained how you can describe Views via XML files and “inflate” them into

actual View objects at runtime. Android also allows you to describe menus via XML files

and inflate them when a menu is needed. This helps you keep your menu structure

separate from the implementation of menu-handling logic, and it provides easier ways to

develop menu-authoring tools.

Menu XML Structure
Menu XML goes in res/menu/ in your project tree, alongside the other types of resources

that your project might employ. As with layouts, you can have several menu XML files in

your project, each with its own filename and the .xml extension.

For example, from the Menus/Inflation sample project, here is a menu called

sample.xml:

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/close"
 android:title="Close"
 android:orderInCategory="3"
 android:icon="@drawable/eject" />
 <item android:id="@+id/no_icon"
 android:orderInCategory="2"
 android:title="Sans Icon" />
 <item android:id="@+id/disabled"
 android:orderInCategory="4"
 android:enabled="false"
 android:title="Disabled" />
 <group android:id="@+id/other_stuff"
 android:menuCategory="secondary"
 android:visible="false">
 <item android:id="@+id/later"
 android:orderInCategory="0"
 android:title="2nd-To-Last" />
 <item android:id="@+id/last"
 android:orderInCategory="1"
 android:title="Last" />
 </group>
 <item android:id="@+id/submenu"
 android:orderInCategory="3"
 android:title="A Submenu">
 <menu>
 <item android:id="@+id/non_ghost"
 android:title="Non-Ghost"
 android:visible="true"
 android:alphabeticShortcut="n" />
 <item android:id="@+id/ghost"
 android:title="A Ghost"
 android:visible="false"
 android:alphabeticShortcut="g" />
 </menu>
 </item>
</menu>

CHAPTER 11: Applying Menus 134

Note the following about the XML for menus:

 You must start with a menu root element.

 Inside a menu element are item elements and group elements. The

latter represents a collection of menu items that can be operated upon

as a group.

 Submenus are specified by adding a menu element as a child of an

item element, using this new menu element to describe the contents of

the submenu.

 If you want to detect when an item is chosen, or to reference an item

or group from your Java code, be sure to apply an android:id, just as

you do with View layout XML.

Menu Options and XML
Inside the item and group elements, you can specify various options, matching up with

corresponding methods on Menu or MenuItem, as follows:

 Title: The title of a menu item is provided via the android:title

attribute on an item element. This can be either a literal string or a

reference to a string resource (e.g., @string/foo).

 Icon: Menu items optionally have icons. To provide an icon, in the form

of a reference to a drawable resource (e.g., @drawable/eject), use the

android:icon attribute on the item element.

 Order: By default, the order of the items in the menu is determined by

the order in which they appear in the menu XML. You can change that

by specifying the android:orderInCategory attribute on the item

element. This is a 0-based index of the order for the items associated

with the current category. There is an implicit default category. Groups

can provide an android:menuCategory attribute to specify a different

category to use for items in that group. Generally, it is simplest just to

put the items in the XML in the order you want them to appear.

 Enabled: Items and groups can be enabled or disabled, controlled in

the XML via the android:enabled attribute on the item or group

element. By default, items and groups are enabled. Disabled items and

groups appear in the menu but cannot be selected. You can change

an item’s status at runtime via the setEnabled() method on MenuItem,

or change a group’s status via setGroupEnabled() on Menu.

CHAPTER 11: Applying Menus 135

 Visible: Items and groups can be visible or invisible, controlled in the

XML via the android:visible attribute on the item or group element.

By default, items and groups are visible. Invisible items and groups do

not appear in the menu. You can change an item’s status at runtime

via the setVisible() method on MenuItem, or change a group’s status

via setGroupVisible() on Menu. In the layout XML shown in the

previous section, the other_stuff group is initially invisible. If we make

it visible in our Java code, the two menu items in the group will

“magically” appear.

 Shortcut: Items can have shortcuts—single letters

(android:alphabeticShortcut) or numbers (android:numericShortcut)

that can be pressed to choose the item without needing to use the

touchscreen, D-pad, or trackball to navigate the full menu.

Inflating the Menu
Actually using the menu, once it’s defined in XML, is easy. Just create a MenuInflater

and tell it to inflate your menu:

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 theMenu=menu;

 new MenuInflater(getApplication())
 .inflate(R.menu.sample, menu);

 return(super.onCreateOptionsMenu(menu));
}

137

 Chapter

Fonts
When you’re developing any types of applications, inevitably, you’ll get the question,

“Hey, can we change this font?” The answer depends on which fonts come with the

platform, whether you can add other fonts, and how to apply them to the widget or

whatever needs the font change.

Fonts in Android applications are no different. Android comes with some fonts, plus a

means for adding new fonts. But, as with any new environment, there are a few

idiosyncrasies to deal with, as you’ll learn in this chapter.

Love the One You’re With
Android natively knows three fonts, by the shorthand names of "sans", "serif", and

"monospace". These fonts are actually the Droid series of fonts, created for the Open

Handset Alliance by Ascender (http://www.ascendercorp.com/oha.html). To use these

fonts, you can just reference them in your layout XML, such as the following layout from

the Fonts/FontSampler sample project:

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:stretchColumns="1">
 <TableRow>
 <TextView
 android:text="sans:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/sans"
 android:text="Hello, world!"
 android:typeface="sans"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>

12

CHAPTER 12: Fonts 138

 <TextView
 android:text="serif:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/serif"
 android:text="Hello, world!"
 android:typeface="serif"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="monospace:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/monospace"
 android:text="Hello, world!"
 android:typeface="monospace"
 android:textSize="20sp"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Custom:"
 android:layout_marginRight="4px"
 android:textSize="20sp"
 />
 <TextView
 android:id="@+id/custom"
 android:text="Hello, world!"
 android:textSize="20sp"
 />
 </TableRow>
</TableLayout>

This layout builds a table showing short samples of the four fonts. Notice how the first

three have the android:typeface attribute, whose value is one of the three built-in font

faces (e.g., "sans").

More Fonts
The three built-in fonts are very nice. However, it may be that a designer, a manager, or

a customer wants to use a different font, or perhaps you want to use a font for

specialized purposes, such as a dingbats font instead of a series of PNG graphics. The

easiest way to accomplish this is to package the desired font(s) with your application.

Simply create an assets/ folder in the project root, and put your TrueType (TTF) fonts in

that folder. You might, for example, create assets/fonts/ and put your TTF files there.

CHAPTER 12: Fonts 139

Then you need to tell your widgets to use that font. Unfortunately, you can no longer use

layout XML for this, since the XML does not know about any fonts you may have tucked

away as an application asset. Instead, you need to make the change in Java code:

public class FontSampler extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 TextView tv=(TextView)findViewById(R.id.custom);
 Typeface face=Typeface.createFromAsset(getAssets(),
 "fonts/HandmadeTypewriter.ttf");

 tv.setTypeface(face);
 }
}

Here, we grab the TextView for our custom sample, and then create a Typeface object via

the static createFromAsset() builder method. This takes the application’s AssetManager

(from getAssets()) and a path within your assets/ directory to the font you want.

Then it is just a matter of telling the TextView to setTypeface(), providing the Typeface

you just created. In this case, we are using the Handmade Typewriter font

(http://moorstation.org/typoasis/designers/klein07/text01/handmade.htm). Figure

12–1 shows the results.

Figure 12–1. The FontSampler application

Note that Android does not seem to like all TrueType fonts. When Android dislikes a

custom font, rather than raise an Exception, it seems to substitute Droid Sans ("sans")

CHAPTER 12: Fonts 140

quietly. So, if you try to use a different font and it does not appear to be working, the

font in question may be incompatible with Android.

Also, you are probably best served by changing the case of your font filenames to be all

lowercase, to match the naming convention used in the rest of your resources.

Android 1.6 added the ability to create Typeface objects based on TrueType files in

the filesystem, such as on the user’s SD card, via the createFromFile() static method

on Typeface.

Here a Glyph, There a Glyph
TrueType fonts can be rather pudgy, particularly if they support an extensive subset of

the available Unicode characters. The Handmade Typewriter font used in the previous

example runs over 70KB. The DejaVu free fonts can run upwards of 500KB apiece. Even

compressed, these add bulk to your application, so be careful not to go overboard with

custom fonts, lest your application take up too much room on your users’ phones.

Conversely, bear in mind that fonts may not have all of the glyphs that you need. As an

example, let’s talk about the ellipsis.

Android’s TextView class has the built-in ability to “ellipsize” text, truncating it and adding

an ellipsis if the text is longer than the available space. You can use this via the

android:ellipsize attribute, for example. This works fairly well, at least for single-line text.

The ellipsis that Android uses is not three periods. Rather, it is an actual ellipsis

character, where the three dots are contained in a single glyph. Hence, if you use the

ellipsizing feature, any font that you display will need the ellipsis glyph.

Beyond that, though, Android pads out the string that is rendered on the screen, such

that the length (in characters) is the same before and after ellipsizing. To make this work,

Android replaces one character with the ellipsis, and replaces all other removed

characters with the Unicode character ‘ZERO WIDTH NO-BREAK SPACE’ (U+FEFF). This

way, the extra characters after the ellipsis do not take up any visible space on the

screen, yet they can be part of the string. However, this means any custom fonts you

use for TextView widgets that you use with android:ellipsize must also support this

special Unicode character. Not all fonts do, and you will get artifacts in the on-screen

representation of your shortened strings if your font lacks this character (e.g., rogue Xs

appear at the end of the line).

And, of course, Android’s international deployment means your font must handle any

language your users might want to enter, perhaps through a language-specific input

method editor.

Hence, while using custom fonts in Android is very possible, there are many potential

problems. For your applications, you should weigh carefully the benefits of the custom

fonts versus their potential costs.

141

 Chapter

Embedding the WebKit
Browser
Other GUI toolkits let you use HTML for presenting information, from limited HTML

renderers (e.g., Java/Swing and wxWidgets) to embedding Internet Explorer into .NET

applications. Android is much the same, in that you can embed the built-in web

browser as a widget in your own activities, for displaying HTML or full-fledged

browsing. The Android browser is based on WebKit, the same engine that powers

Apple’s Safari web browser.

The Android browser is sufficiently complex that it gets its own Java package

(android.webkit). Using the WebView widget itself can be simple or powerful, based on

your requirements, as you’ll learn in this chapter.

A Browser, Writ Small
For simple stuff, WebView is not significantly different than any other widget in Android.

You pop it into a layout, tell it which URL to navigate to via Java code, and you’re

finished.

For example (WebKit/Browser1), here is a simple layout with a WebView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <WebView android:id="@+id/webkit"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />
</LinearLayout>

As with any other widget, you need to tell it how it should fill up the space in the layout.

In this case, it fills all remaining space.

13

CHAPTER 13: Embedding the WebKit Browser 142

The Java code is equally simple:

package com.commonsware.android.browser1;

import android.app.Activity;
import android.os.Bundle;
import android.webkit.WebView;

public class BrowserDemo1 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);

 browser.loadUrl("http://commonsware.com");
 }
}

The only unusual bit with this edition of onCreate() is that we invoke loadUrl() on the

WebView widget, to tell it to load a web page (in this case, the home page of some

random firm).

However, we also need to make one change to AndroidManifest.xml, requesting

permission to access the Internet:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.browser1">
 <uses-permission android:name="android.permission.INTERNET" />
 <application android:icon="@drawable/cw">
 <activity android:name=".BrowserDemo1" android:label="BrowserDemo1">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

If we fail to add this permission, the browser will refuse to load pages. Permissions are

covered in greater detail in Chapter 28.

The resulting activity looks like a web browser, but with hidden scrollbars, as shown in

Figure 13–1.

CHAPTER 13: Embedding the WebKit Browser 143

Figure 13–1. The Browser1 sample application

As with the regular Android browser, you can pan around the page by dragging it. The

D-pad moves you around all the focusable elements on the page.

What is missing is all the extra stuff that makes up a web browser, such as a

navigational toolbar.

Now, you may be tempted to replace the URL in that source code with something that

relies on JavaScript, such as Google’s home page. By default, JavaScript is turned off in

WebView widgets. If you want to enable JavaScript, call

getSettings().setJavaScriptEnabled(true); on the WebView instance.

Loading It Up
There are two main ways to get content into the WebView. One is to provide the browser

with a URL and have the browser display that page via loadUrl(), as described in the

previous section. The browser will access the Internet through whatever means are

available to that specific device at the present time (Wi-Fi, cellular network, Bluetooth-

tethered phone, well-trained tiny carrier pigeons, etc.).

The alternative is to use loadData(). Here, you supply the HTML for the browser to view.

You might use this to do the following:

 Display a manual that was installed as a file with your application

package.

 Display snippets of HTML you retrieved as part of other processing,

such as the description of an entry in an Atom feed.

CHAPTER 13: Embedding the WebKit Browser 144

 Generate a whole UI using HTML, instead of using the Android widget

set.

There are two flavors of loadData(). The simpler one allows you to provide the content,

the MIME type, and the encoding, all as strings. Typically, your MIME type will be

text/html and your encoding will be UTF-8 for ordinary HTML.

For example, you could replace the loadUrl() invocation in the previous example with

the following:

browser.loadData("<html><body>Hello, world!</body></html>",
 "text/html", "UTF-8");

The result would be as shown in Figure 13–2.

Figure 13–2. The Browser2 sample application

This is also available as a fully buildable sample, as WebKit/Browser2.

Navigating the Waters
As you’ve seen, the WebView widget doesn’t come with a navigation toolbar. This allows

you to use it in places where such a toolbar would be pointless and a waste of screen

real estate. That being said, if you want to offer navigational capabilities, you can, but

you need to supply the UI.

WebView offers ways to perform garden-variety browser navigation, including the

following methods:

 reload(): Refreshes the currently viewed web page.

 goBack(): Goes back one step in the browser history.

CHAPTER 13: Embedding the WebKit Browser 145

 canGoBack(): Determines if there is any history to go back to.

 goForward(): Goes forward one step in the browser history.

 canGoForward(): Determines if there is any history to go forward to.

 goBackOrForward(): Goes backward or forward in the browser history.

A negative number as an argument represents a count of steps to go

backward. A positive number represents how many steps to go

forward.

 canGoBackOrForward(): Determines if the browser can go backward or

forward the stated number of steps (following the same

positive/negative convention as goBackOrForward()).

 clearCache(): Clears the browser resource cache.

 clearHistory(): Clears the browsing history.

Entertaining the Client
If you are going to use the WebView as a local UI (versus browsing the Web), you will

want to be able to get control at key times, particularly when users click links. You will

want to make sure those links are handled properly, by loading your own content back

into the WebView, by submitting an Intent to Android to open the URL in a full browser,

or by some other means (see Chapter 18).

Your hook into the WebView activity is via setWebViewClient(), which takes an instance

of a WebViewClient implementation as a parameter. The supplied callback object will be

notified of a wide range of activities. For example, it will be notified when parts of a page

have been retrieved (e.g., onPageStarted()), as well as when you, as the host

application, need to handle certain user- or circumstance-initiated events (e.g.,

onTooManyRedirects() or onReceivedHttpAuthRequest()).

A common hook will be shouldOverrideUrlLoading(), where your callback is passed a

URL (plus the WebView itself), and you return true if you will handle the request or false if

you want default handling (e.g., actually fetch the web page referenced by the URL). In

the case of a feed reader application, for example, you will probably not have a full

browser with navigation built into your reader. In this case, if the user clicks a URL, you

probably want to use an Intent to ask Android to load that page in a full browser. But if

you have inserted a “fake” URL into the HTML, representing a link to some activity-

provided content, you can update the WebView yourself.

As an example, let’s amend the first browser demo to make it an application that, upon

a click, shows the current time. From WebKit/Browser3, here is the revised Java:

public class BrowserDemo3 extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

CHAPTER 13: Embedding the WebKit Browser 146

 setContentView(R.layout.main);
 browser=(WebView)findViewById(R.id.webkit);
 browser.setWebViewClient(new Callback());

 loadTime();
 }

 void loadTime() {
 String page="<html><body>"
 +new Date().toString()
 +"</body></html>";

 browser.loadDataWithBaseURL("x-data://base", page,
 "text/html", "UTF-8",
 null);
 }

 private class Callback extends WebViewClient {
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 loadTime();

 return(true);
 }
 }
}

Here, we load a simple web page into the browser (loadTime()) that consists of the

current time, made into a hyperlink to the /clock URL. We also attach an instance of a

WebViewClient subclass, providing our implementation of shouldOverrideUrlLoading().

In this case, no matter what the URL, we want to just reload the WebView via loadTime().

Running this activity gives the result shown in Figure 13–3.

Figure 13–3. The Browser3 sample application

CHAPTER 13: Embedding the WebKit Browser 147

Selecting the link and clicking the D-pad center button will select the link, causing the

page to be rebuilt with the new time.

Settings, Preferences, and Options (Oh My!)
With your favorite desktop web browser, you have some sort of settings, preferences, or

options window. Between that and the toolbar controls, you can tweak and twiddle the

behavior of your browser, from preferred fonts to the behavior of JavaScript.

Similarly, you can adjust the settings of your WebView widget as you see fit, via the

WebSettings instance returned from calling the widget’s getSettings() method.

There are a lot of options on WebSettings to play with. Most appear fairly esoteric (e.g.,

setFantasyFontFamily()). However, here are some that you may find more useful:

 Control the font sizing via setDefaultFontSize() (to use a point size)

or setTextSize() (to use constants indicating relative sizes like LARGER

and SMALLEST).

 Control JavaScript via setJavaScriptEnabled() (to disable it outright)

and setJavaScriptCanOpenWindowsAutomatically() (to merely stop it

from opening pop-up windows).

 Control web site rendering via setUserAgent(). A value of 0 means the

WebView gives the web site a user-agent string that indicates it is a

mobile browser. A value of 1 results in a user-agent string that

suggests it is a desktop browser.

The settings you change are not persistent, so you should store them somewhere (such

as via the Android preferences engine, discussed in Chapter 21) if you are allowing your

users to determine the settings, rather than hard-wiring the settings in your application.

149

 Chapter

Showing Pop-Up
Messages
Sometimes, your activity (or other piece of Android code) will need to speak up.

Not every interaction with Android users will be tidy and containable in activities

composed of views. Errors will crop up. Background tasks may take much longer than

expected. Something asynchronous may occur, such as an incoming message. In these

and other cases, you may need to communicate with the user outside the bounds of the

traditional UI.

Of course, this is nothing new. Error messages in the form of dialog boxes have been

around for a very long time. More subtle indicators also exist—from task tray icons to

bouncing dock icons to vibrating cell phones.

Android has quite a few systems for letting you alert your users outside the bounds of an

Activity-based UI. One, notifications, is tied heavily into intents and services and, as

such, is covered in Chapter 31. In this chapter, you will learn about two means of raising

pop-up messages: toasts and alerts.

Raising Toasts
A Toast is a transient message, meaning that it displays and disappears on its own

without user interaction. Moreover, it does not take focus away from the currently active

Activity, so if the user is busy writing the next Great Programming Guide, his

keystrokes will not be “eaten” by the message.

Since a Toast is transient, you have no way of knowing if the user even notices it. You

get no acknowledgment, nor does the message stick around for a long time to pester

the user. Hence, the Toast is mostly for advisory messages, such as indicating a long-

running background task is completed, the battery has dropped to a low (but not too

low) level, and so on.

14

CHAPTER 14: Showing Pop-Up Messages 150

Making a Toast is fairly easy. The Toast class offers a static makeText() that accepts a

String (or string resource ID) and returns a Toast instance. The makeText() method also

needs the Activity (or other Context) plus a duration. The duration is expressed in the

form of the LENGTH_SHORT or LENGTH_LONG constants to indicate, on a relative basis, how

long the message should remain visible.

If you would prefer your Toast be made out of some other View, rather than be a boring

old piece of text, simply create a new Toast instance via the constructor (which takes a

Context), and then call setView() to supply it with the view to use and setDuration() to

set the duration.

Once your Toast is configured, call its show() method, and the message will be

displayed.

Alert! Alert!
If you would prefer something in the more classic dialog box style, what you want is an

AlertDialog. As with any other modal dialog box, an AlertDialog pops up, grabs the

focus, and stays there until closed by the user. You might use this for a critical error, a

validation message that cannot be effectively displayed in the base activity UI, or some

other situation where you are sure that the user needs to see the message and needs to

see it now.

The simplest way to construct an AlertDialog is to use the Builder class. Following in

true builder style, Builder offers a series of methods to configure an AlertDialog, each

method returning the Builder for easy chaining. At the end, you call show() on the

builder to display the dialog.

Commonly used configuration methods on Builder include the following:

 setMessage(): Sets the “body” of the dialog to be a simple textual

message, from either a supplied String or a supplied string

resource ID.

 setTitle() and setIcon(): Configure the text and/or icon to appear in

the title bar of the dialog.

 setPositiveButton(), setNeutralButton(), and setNegativeButton():

Indicate which button(s) should appear across the bottom of the

dialog, where they should be positioned (left, center, or right,

respectively), what their captions should be, and what logic should be

invoked when the button is clicked (besides dismissing the dialog).

If you need to configure the AlertDialog beyond what the builder allows, instead of

calling show(), call create() to get the partially built AlertDialog instance, configure it

the rest of the way, and then call one of the flavors of show() on the AlertDialog itself.

Once show() is called, the dialog will appear and await user input.

CHAPTER 14: Showing Pop-Up Messages 151

Checking Them Out
To see how these work in practice, take a peek at Messages/Message, containing the

following layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <Button
 android:id="@+id/alert"
 android:text="Raise an alert"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
 <Button
 android:id="@+id/toast"
 android:text="Make a toast"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"/>
</LinearLayout>

Here’s the Java code:

public class MessageDemo extends Activity implements View.OnClickListener {
 Button alert;
 Button toast;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 setContentView(R.layout.main);

 alert=(Button)findViewById(R.id.alert);
 alert.setOnClickListener(this);
 toast=(Button)findViewById(R.id.toast);
 toast.setOnClickListener(this);
 }

 public void onClick(View view) {
 if (view==alert) {
 new AlertDialog.Builder(this)
 .setTitle("MessageDemo")
 .setMessage("eek!")
 .setNeutralButton("Close", new DialogInterface.OnClickListener() {
 public void onClick(DialogInterface dlg, int sumthin) {
 // do nothing – it will close on its own
 }
 })
 .show();
 }
 else {
 Toast
 .makeText(this, "<clink, clink>", Toast.LENGTH_SHORT)

CHAPTER 14: Showing Pop-Up Messages 152

 .show();
 }
 }
}

The layout is unremarkable—just a pair of buttons to trigger the alert and the toast.

When the Raise an alert button is clicked, we use a builder (new Builder(this)) to set

the title (setTitle("MessageDemo")), message (setMessage("eek!")), and neutral button

(setNeutralButton("Close", new OnClickListener() ...) before showing the dialog.

When the Close button is clicked, the OnClickListener callback does nothing; the mere

fact that the button was pressed causes the dialog to be dismissed. However, you could

update information in your activity based on the user action, particularly if you have

multiple buttons for the user to choose from. The result is a typical dialog, as shown in

Figure 14–1.

Figure 14–1. The MessageDemo sample application, after clicking the Raise an alert button

When the Make a toast button is clicked, the Toast class makes us a text-based toast

(makeText(this, "<clink, clink>", LENGTH_SHORT)), which we then show(). The result

is a short-lived, noninterrupting message, as shown in Figure 14–2.

CHAPTER 14: Showing Pop-Up Messages 153

Figure 14–2. The same application, after clicking the Make a toast button

155

 Chapter

Dealing with Threads
Ideally, you want your activities to be downright snappy, so your users don’t feel that

your application is sluggish. Responding to user input quickly (e.g., within in 200

milliseconds) is a fine goal. At minimum, though, you need to make sure you respond

within 5 seconds, lest the ActivityManager decide to play the role of the Grim Reaper

and kill off your activity as being nonresponsive.

Of course, your activity might have real work to do, which takes nonnegligible amount of

time. This invariably involves the use of a background thread. Android provides a

veritable cornucopia of means to set up background threads, yet allow them to safely

interact with the UI on the UI thread.

The “safely interact” concept is crucial. You cannot modify any part of the UI from a

background thread. That must be done on the UI thread. This generally means that there

will need to be some coordination between background threads doing the work and the

UI thread showing the results of that work.

This chapter covers how to work with background and UI threads in your Android

applications.

Getting Through the Handlers
The most flexible means of making an Android-friendly background thread is to create

an instance of a Handler subclass. You need only one Handler object per activity, and

you do not need to manually register it. Merely creating the instance is sufficient to

register it with the Android threading subsystem.

Your background thread can communicate with the Handler, which will do all of its work

on the activity’s UI thread. This is important, as UI changes, such as updating widgets,

should occur only on the activity’s UI thread.

You have two options for communicating with the Handler: messages and Runnable

objects.

15

CHAPTER 15: Dealing with Threads 156

Messages
To send a Message to a Handler, first invoke obtainMessage() to get the Message object

out of the pool. There are a few flavors of obtainMessage(), allowing you to create empty

Message objects or ones populated with message identifiers and arguments. The more

complicated your Handler processing needs to be, the more likely it is you will need to

put data into the Message to help the Handler distinguish different events.

Then you send the Message to the Handler via its message queue, using one of the

sendMessage...() family of methods, such as the following:

 sendMessage(): Puts the message on the queue immediately.

 sendMessageAtFrontOfQueue(): Puts the message on the queue

immediately, placing it at the front of the message queue, so your

message takes priority over all others.

 sendMessageAtTime(): Puts the message on the queue at the stated

time, expressed in the form of milliseconds based on system uptime

(SystemClock.uptimeMillis()).

 sendMessageDelayed(): Puts the message on the queue after a delay,

expressed in milliseconds.

To process these messages, your Handler needs to implement handleMessage(), which

will be called with each message that appears on the message queue. There, the

handler can update the UI as needed. However, it should still do that work quickly, as

other UI work is suspended until the Handler is finished.

For example, let’s create a ProgressBar and update it via a Handler. Here is the layout

from the Threads/Handler sample project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <ProgressBar android:id="@+id/progress"
 style="?android:attr/progressBarStyleHorizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

The ProgressBar, in addition to setting the width and height as normal, also employs the

style property. This particular style indicates the ProgressBar should be drawn as the

traditional horizontal bar showing the amount of work that has been completed.

And here is the Java:

package com.commonsware.android.threads;

import android.app.Activity;
import android.os.Bundle;
import android.os.Handler;

CHAPTER 15: Dealing with Threads 157

import android.os.Message;
import android.widget.ProgressBar;

public class HandlerDemo extends Activity {
 ProgressBar bar;
 Handler handler=new Handler() {
 @Override
 public void handleMessage(Message msg) {
 bar.incrementProgressBy(5);
 }
 };
 boolean isRunning=false;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 bar=(ProgressBar)findViewById(R.id.progress);
 }

 public void onStart() {
 super.onStart();
 bar.setProgress(0);

 Thread background=new Thread(new Runnable() {
 public void run() {
 try {
 for (int i=0;i<20 && isRunning;i++) {
 Thread.sleep(1000);
 handler.sendMessage(handler.obtainMessage());
 }
 }
 catch (Throwable t) {
 // just end the background thread
 }
 }
 });

 isRunning=true;
 background.start();
 }

 public void onStop() {
 super.onStop();
 isRunning=false;
 }
}

As part of constructing the Activity, we create an instance of Handler, with our

implementation of handleMessage(). Basically, for any message received, we update the

ProgressBar by 5 points, and then exit the message handler.

In onStart(), we set up a background thread. In a real system, this thread would do

something meaningful. Here, we just sleep 1 second, post a Message to the Handler, and

repeat for a total of 20 passes. This, combined with the 5-point increase in the

CHAPTER 15: Dealing with Threads 158

ProgressBar position, will march the bar clear across the screen, as the default

maximum value for ProgressBar is 100. You can adjust that maximum via setMax(). For

example, you might set the maximum to be the number of database rows you are

processing, and update once per row.

Note that we then leave onStart(). This is crucial. The onStart() method is invoked on

the activity UI thread, so it can update widgets and such. However, that means we need

to get out of onStart(), both to let the Handler get its work done and also so Android

does not think our activity is stuck.

The resulting activity is simply a horizontal progress bar, as shown in Figure 15–1.

Figure 15–1. The HandlerDemo sample application

Note, though, that while ProgressBar samples like this one show your code arranging to

update the progress on the UI thread, for this specific widget, that is not necessary. At

least as of Android 1.5, ProgressBar is now UI thread-safe, in that you can update it

from any thread, and it will handle the details of performing the actual UI update on the

UI thread.

Runnables
If you would rather not fuss with Message objects, you can also pass Runnable objects to

the Handler, which will run those Runnable objects on the activity UI thread. Handler

offers a set of post...() methods for passing Runnable objects in for eventual

processing.

CHAPTER 15: Dealing with Threads 159

Running in Place
Just as Handler supports post() and postDelayed() to add Runnable objects to the

event queue, you can use those same methods on View. This slightly simplifies your

code, in that you can then skip the Handler object. However, you lose a bit of flexibility.

Also, the Handler has been in the Android toolkit longer, and it may be more tested.

Where Oh Where Has My UI Thread Gone?
Sometimes, you may not know if you are currently executing on the UI thread of your

application. For example, if you package some of your code in a JAR file for others to

reuse, you might not know whether your code is being executed on the UI thread or

from a background thread.

To help combat this problem, Activity offers runOnUiThread(). This works similar to the

post() methods on Handler and View, in that it queues up a Runnable to run on the UI

thread, if you are not on the UI thread right now. If you are already on the UI thread, it

invokes the Runnable immediately. This gives you the best of both worlds: no delay if

you are on the UI thread, yet safety in case you are not.

Asyncing Feeling
Android 1.5 introduced a new way of thinking about background operations: AsyncTask.

In one (reasonably) convenient class, Android will handle all of the chores of doing work

on the UI thread versus on a background thread. Moreover, Android itself allocates and

removes that background thread. And it maintains a small work queue, further

accentuating the fire-and-forget feel to AsyncTask.

The Theory
There is a saying, popular in marketing circles: “When a man buys a 1/4-inch drill bit at a

hardware store, he does not want a 1/4-inch drill bit—he wants 1/4-inch holes.”

Hardware stores cannot sell holes, so they sell the next-best thing: devices (drills and

drill bits) that make creating holes easy.

Similarly, Android developers who have struggled with background thread management

do not strictly want background threads. Rather, they want work to be done off the UI

thread, so users are not stuck waiting and activities do not get the dreaded “application

not responding” (ANR) error. And while Android cannot magically cause work to not

consume UI thread time, it can offer things that make such background operations

easier and more transparent. AsyncTask is one such example.

To use AsyncTask, you must:

 Create a subclass of AsyncTask, commonly as a private inner class of

something that uses the task (e.g., an activity).

CHAPTER 15: Dealing with Threads 160

 Override one or more AsyncTask methods to accomplish the

background work, plus whatever work associated with the task that

needs to be done on the UI thread (e.g., update progress).

 When needed, create an instance of the AsyncTask subclass and call

execute() to have it begin doing its work.

What you do not need to do is:

 Create your own background thread.

 Terminate that background thread at an appropriate time.

 Call all sorts of methods to arrange for bits of processing to be done

on the UI thread.

AsyncTask, Generics, and Varargs
Creating a subclass of AsyncTask is not quite as easy as, say, implementing the

Runnable interface. AsyncTask uses generics, and so you need to specify three data

types:

 The type of information that is needed to process the task (e.g., URLs

to download)

 The type of information that is passed within the task to indicate

progress

 The type of information that is passed when the task is completed to

the post-task code

What makes this all the more confusing is that the first two data types are actually used

as varargs, meaning that an array of these types is used within your AsyncTask subclass.

This should become clearer as we work our way toward an example.

The Stages of AsyncTask
There are four methods you can override in AsyncTask to accomplish your ends.

The one you must override, for the task class to be useful, is doInBackground(). This will

be called by AsyncTask on a background thread. It can run as long as necessary in order

to accomplish whatever work needs to be done for this specific task. Note, though, that

tasks are meant to be finite; using AsyncTask for an infinite loop is not recommended.

The doInBackground() method will receive, as parameters, a varargs array of the first of

the three data types listed in the preceding section—the data needed to process the

task. So, if your task’s mission is to download a collection of URLs, doInBackground()

will receive those URLs to process. The doInBackground() method must return a value

of the third data type listed—the result of the background work.

CHAPTER 15: Dealing with Threads 161

You may wish to override onPreExecute(). This method is called, from the UI thread,

before the background thread executes doInBackground(). Here, you might initialize a

ProgressBar or otherwise indicate that background work is commencing.

Also, you may wish to override onPostExecute(). This method is called, from the UI

thread, after doInBackground() completes. It receives, as a parameter, the value

returned by doInBackground() (e.g., success or failure flag). Here, you might dismiss the

ProgressBar and make use of the work done in the background, such as updating the

contents of a list.

In addition, you may wish to override onProgressUpdate(). If doInBackground() calls the

task’s publishProgress() method, the object(s) passed to that method are provided to

onProgressUpdate(), but in the UI thread. That way, onProgressUpdate() can alert the

user as to the progress that has been made on the background work, such as updating

a ProgressBar or continuing an animation. The onProgressUpdate() method will receive

a varargs of the second data type from the list in the preceding section—the data

published by doInBackground() via publishProgress().

A Sample Task
As mentioned earlier, implementing an AsyncTask is not quite as easy as implementing a

Runnable. However, once you get past the generics and varargs, it is not too bad.

For example, the following is an implementation of a ListActivity that uses an

AsyncTask, from the Threads/Asyncer sample project:

package com.commonsware.android.async;

import android.app.ListActivity;
import android.os.AsyncTask;
import android.os.Bundle;
import android.os.SystemClock;
import android.widget.ArrayAdapter;
import android.widget.Toast;
import java.util.ArrayList;

public class AsyncDemo extends ListActivity {
 private static String[] items={"lorem", "ipsum", "dolor",
 "sit", "amet", "consectetuer",
 "adipiscing", "elit", "morbi",
 "vel", "ligula", "vitae",
 "arcu", "aliquet", "mollis",
 "etiam", "vel", "erat",
 "placerat", "ante",
 "porttitor", "sodales",
 "pellentesque", "augue",
 "purus"};
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,

CHAPTER 15: Dealing with Threads 162

 new ArrayList()));

 new AddStringTask().execute();
 }

 class AddStringTask extends AsyncTask<Void, String, Void> {
 @Override
 protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
 }

 @Override
 protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
 }
 }
}

This is another variation on the lorem ipsum list of words, used frequently throughout

this book. This time, rather than simply hand the list of words to an ArrayAdapter, we

simulate needing to work to create these words in the background using AddStringTask,

our AsyncTask implementation.

If you build, install, and run this project, you will see the list being populated in real time

over a few seconds, followed by a Toast indicating completion, as shown in Figure 15–2.

Figure 15–2. The AsyncDemo, partway through loading the list of words

CHAPTER 15: Dealing with Threads 163

Let’s examine this project’s code piece by piece.

The AddStringTask Declaration
First, let’s look at the AddStringTask declaration:

class AddStringTask extends AsyncTask<Void, String, Void> {

Here, we use the generics to set up the specific types of data we are going to leverage

in AddStringTask, as follows:

 We do not need any configuration information in this case, so our first

type is Void.

 We want to pass each string generated by our background task to

onProgressUpdate(), to allow us to add it to our list, so our second

type is String.

 We do not have any results, strictly speaking (beyond the updates), so

our third type is Void.

The doInBackground() Method
Next up is the doInBackground() method:

@Override
protected Void doInBackground(Void... unused) {
 for (String item : items) {
 publishProgress(item);
 SystemClock.sleep(200);
 }

 return(null);
}

The doInBackground() method is invoked in a background thread. Hence, we can take

as long as we like. In a production application, we might be doing something like

iterating over a list of URLs and downloading each. Here, we iterate over our static list of

lorem ipsum words, call publishProgress() for each, and then sleep 1/4 second to

simulate real work being done.

Since we elected to have no configuration information, we should not need parameters

to doInBackground(). However, the contract with AsyncTask says we need to accept a

varargs of the first data type, which is why our method parameter is Void... unused.

Since we elected to have no results, we should not need to return anything. Again,

though, the contract with AsyncTask says we must return an object of the third data type.

Since that data type is Void, our returned object is null.

The onProgressUpdate() Method
The onProgressUpdate() method looks like this:

CHAPTER 15: Dealing with Threads 164

@Override
protected void onProgressUpdate(String... item) {
 ((ArrayAdapter)getListAdapter()).add(item[0]);
}

The onProgressUpdate() method is called on the UI thread, and we want to do something

to let the user know we are making progress on loading these strings. In this case, we

simply add the string to the ArrayAdapter, so it is appended to the end of the list.

The onProgressUpdate() method receives a String... varargs because that is the

second data type in our class declaration. Since we are passing only one string per call

to publishProgress(), we need to examine just the first entry in the varargs array.

The onPostExecute() Method
Here’s the onPostExecute() method:

@Override
protected void onPostExecute(Void unused) {
 Toast
 .makeText(AsyncDemo.this, "Done!", Toast.LENGTH_SHORT)
 .show();
}

The onPostExecute() method is called on the UI thread, and we want to do something to

indicate that the background work is complete. In a real system, there may be some

ProgressBar to dismiss or some animation to stop. Here, we simply raise a Toast.

Since we elected to have no results, we should not need any parameters. The contract

with AsyncTask says we must accept a parameter of the third data type. Since that data

type is Void, our method parameter is Void unused.

The Activity
Finally, let’s look at the activity:

new AddStringTask().execute();

To use AddStringsTask, we simply create an instance and call execute() on it. That

starts the chain of events eventually leading to the background thread doing its work.

If AddStringsTask required configuration parameters, we would not have used Void as

our first data type, and the constructor would accept zero or more parameters of the

defined type. Those values would eventually be passed to doInBackground().

And Now, the Caveats
Background threads, while eminently possible using the Android Handler system, are

not all happiness and warm puppies. Background threads not only add complexity, but

they also have real-world costs in terms of available memory, CPU, and battery life.

CHAPTER 15: Dealing with Threads 165

Hence, there are a wide range of scenarios you need to account for with your

background thread, including the following:

 The possibility that users will interact with your activity’s UI while the

background thread is chugging along. If the work that the background

thread is doing is altered or invalidated by the user input, you will need

to communicate this to the background thread. Android includes many

classes in the java.util.concurrent package that will help you

communicate safely with your background thread.

 The possibility that the activity will be killed off while background work

is occurring. For example, after starting your activity, the user might

have a call come in, followed by a text message, followed by a need to

look up a contact—all of which might be sufficient to kick your activity

out of memory. Chapter 16 will cover the various events Android will

take your activity through. Hook to the proper ones, and be sure to

shut down your background thread cleanly when you have the chance.

 The possibility that your user will get irritated if you chew up a lot of

CPU time and battery life without giving any payback. Tactically, this

means using ProgressBar or other means of letting the user know that

something is happening. Strategically, this means you still need to be

efficient at what you do—background threads are no panacea for

sluggish or pointless code.

 The possibility that you will encounter an error during background

processing. For example, if you are gathering information from the

Internet, the device might lose connectivity. Alerting the user of the

problem via a notification (discussed in Chapter 31) and shutting down

the background thread may be your best option.

167

 Chapter

Handling Activity Life
Cycle Events
As you know, Android devices, by and large, are phones. As such, some activities are

more important that others—taking a call is probably more important to users than

playing Sudoku. And, since it is a phone, it probably has less RAM than your current

desktop or notebook possesses.

As a result of the device’s limited RAM, your activity may find itself being killed off

because other activities are going on and the system needs your activity’s memory.

Think of it as the Android equivalent of the circle of life: Your activity dies so others may

live, and so on.

You cannot assume that your activity will run until you think it is complete, or even until

the user thinks it is complete. This is one example—perhaps the most important

example—of how an activity’s life cycle will affect your own application logic.

This chapter covers the various states and callbacks that make up an activity’s life cycle,

and how you can hook into them appropriately.

Schroedinger’s Activity
An activity, generally speaking, is in one of four states at any point in time:

 Active: The activity was started by the user, is running, and is in the

foreground. This is what you’re used to thinking of in terms of your

activity’s operation.

 Paused: The activity was started by the user, is running, and is visible,

but a notification or something is overlaying part of the screen. During

this time, the user can see your activity but may not be able to interact

with it. For example, if a call comes in, the user will get the opportunity

to take the call or ignore it.

16

CHAPTER 16: Handling Activity Life Cycle Events 168

 Stopped: The activity was started by the user, is running, but is hidden

by other activities that have been launched or switched to. Your

application will not be able to present anything meaningful to the user

directly, but may communicate by way of a notification (discussed in

Chapter 31).

 Dead: Either the activity was never started (e.g., just after a phone

reset) or the activity was terminated, perhaps due to lack of available

memory.

Life, Death, and Your Activity
Android will call into your activity as the activity transitions between the four states listed

in the previous section, using the methods described in this section. Some transitions

may result in multiple calls to your activity, and sometimes Android will kill your

application without calling it. This whole area is rather murky and probably subject to

change, so pay close attention to the official Android documentation as well as the

information here when deciding which events deserve attention and which you can

safely ignore.

Note that for all of these methods, you should chain upward and invoke the superclass’s

edition of the method, or Android may raise an exception.

onCreate() and onDestroy()
We have been implementing onCreate() in all of our Activity subclasses in all the

examples. This method will be called in three situations:

 When the activity is first started (e.g., since a system restart),

onCreate() will be invoked with a null parameter.

 If the activity had been running, then sometime later was killed off,

onCreate() will be invoked with the Bundle from

onSaveInstanceState() as a parameter.

 If the activity had been running and you have set up your activity to

have different resources based on different device states (e.g.,

landscape versus portrait), your activity will be re-created and

onCreate() will be called. Resources are covered in Chapter 20.

Here is where you initialize your UI and set up anything that needs to be done once,

regardless of how the activity is used.

On the other end of the life cycle, onDestroy() may be called when the activity is

shutting down, either because the activity called finish() (which “finishes” the activity)

or because Android needs RAM and is closing the activity prematurely. Note that

onDestroy() may not be called if the need for RAM is urgent (e.g., an incoming phone

call), and that the activity will still be shut down. Hence, onDestroy() is mostly for cleanly

releasing resources you obtained in onCreate() (if any).

CHAPTER 16: Handling Activity Life Cycle Events 169

onStart(), onRestart(), and onStop()
An activity can come to the foreground because it is first being launched, or because it

is being brought back to the foreground after having been hidden (e.g., by another

activity or by an incoming phone call). The onStart() method is called in either of those

cases.

The onRestart() method is called in the case where the activity had been stopped and

is now restarting.

Conversely, onStop() is called when the activity is about to be stopped.

onPause() and onResume()
The onResume() method is called just before your activity comes to the foreground, after

being initially launched, being restarted from a stopped state, or a pop-up dialog (e.g.,

an incoming call) is cleared. This is a great place to refresh the UI based on things that

may have occurred since the user was last looking at your activity. For example, if you

are polling a service for changes to some information (e.g., new entries for a feed),

onResume() is a fine time to both refresh the current view and, if applicable, kick off a

background thread to update the view (e.g., via a Handler).

Conversely, anything that steals your user away from your activity—usually, the

activation of another activity—will result in your onPause() being called. Here, you

should undo anything you did in onResume(), such as stopping background threads,

releasing any exclusive-access resources you may have acquired (e.g., a camera), and

the like.

Once onPause() is called, Android reserves the right to kill off your activity’s process at

any point. Hence, you should not be relying on receiving any further events.

The Grace of State
Mostly, the aforementioned methods are for dealing with things at the application-

general level (e.g., wiring together the last pieces of your UI in onCreate() or closing

down background threads in onPause()).

However, a large part of the goal of Android is to have a patina of seamlessness.

Activities may come and go as dictated by memory requirements, but ideally, users are

unaware that this is occurring. If, for example, a user was working with a calculator, and

came back to that calculator after an absence, he should see whatever number he was

working on originally, unless he actually took some action to close down the calculator.

To make all this work, activities need to be able to save their application-instance state,

and to do so quickly and cheaply. Since activities could be killed off at any time,

activities may need to save their state more frequently than you might expect. Then,

when the activity restarts, the activity should get its former state back, so it can restore

the activity to the way it appeared previously.

CHAPTER 16: Handling Activity Life Cycle Events 170

Saving instance state is handled by onSaveInstanceState(). This supplies a Bundle, into

which activities can pour whatever data they need (e.g., the number showing on the

calculator’s display). This method implementation needs to be speedy, so do not try to

be fancy—just put your data in the Bundle and exit the method.

That instance state is provided to you again in two places: in onCreate() and in

onRestoreInstanceState(). It is your choice when you wish to reapply the state data to

your activity; either callback is a reasonable option.

171

 Chapter

Creating Intent Filters
Up to now, the focus of this book has been on activities opened directly by the user

from the device’s launcher. This is the most obvious case for getting your activity up

and visible to the user. And, in many cases, it is the primary way the user will start

using your application.

However, the Android system is based on many loosely coupled components. The

things that you might accomplish in a desktop GUI via dialog boxes, child windows,

and the like are mostly supposed to be independent activities. While one activity will

be “special,” in that it shows up in the launcher, the other activities all need to be

reached somehow.

The “somehow” is via intents.

An intent is basically a message that you pass to Android saying, “Yo! I want to

do...er...something! Yeah!” How specific the “something” is depends on the situation.

Sometimes you know exactly what you want to do (e.g., open one of your other

activities), and sometimes you don’t.

In the abstract, Android is all about intents and receivers of those intents. So, now let’s

dive into intents, so we can create more complex applications while simultaneously

being “good Android citizens.”

What’s Your Intent?
When Sir Tim Berners-Lee cooked up the Hypertext Transfer Protocol (HTTP), he set up

a system of verbs plus addresses in the form of URLs. The address indicates a resource,

such as a web page, graphic, or server-side program. The verb indicates what should be

done: GET to retrieve it, POST to send form data to it for processing, and so on.

Intents are similar, in that they represent an action plus context. There are more actions

and more components to the context with Android intents than there are with HTTP

verbs and resources, but the concept is the same. Just as a web browser knows how to

process a verb+URL pair, Android knows how to find activities or other application logic

that will handle a given intent.

17

CHAPTER 17: Creating Intent Filters 172

Pieces of Intents
The two most important pieces of an intent are the action and what Android refers to as

the data. These are almost exactly analogous to HTTP verbs and URLs: the action is the

verb, and the data is a Uri, such as content://contacts/people/1, representing a

contact in the contacts database. Actions are constants, such as ACTION_VIEW (to bring

up a viewer for the resource), ACTION_EDIT (to edit the resource), or ACTION_PICK (to

choose an available item given a Uri representing a collection, such as

content://contacts/people).

If you were to create an intent combining ACTION_VIEW with a content Uri of

content://contacts/people/1, and pass that intent to Android, Android would know to

find and open an activity capable of viewing that resource.

You can place other criteria inside an intent (represented as an Intent object), besides

the action and data Uri, such as the following:

 Category: Your “main” activity will be in the LAUNCHER category,

indicating it should show up on the launcher menu. Other activities will

probably be in the DEFAULT or ALTERNATIVE categories.

 MIME type: This indicates the type of resource on which you want to

operate, if you don’t know a collection Uri.

 Component: This is the class of the activity that is supposed to receive

this intent. Using components this way obviates the need for the other

properties of the intent. However, it does make the intent more fragile,

as it assumes specific implementations.

 Extras: A Bundle of other information you want to pass along to the

receiver with the intent, that the receiver might want to take advantage

of. Which pieces of information a given receiver can use is up to the

receiver and (hopefully) is well-documented.

You will find rosters of the standard actions and categories in the Android SDK

documentation for the Intent class.

Intent Routing
As noted in the previous section, if you specify the target component in your intent,

Android has no doubt where the intent is supposed to be routed to, and it will launch the

named activity. This might be appropriate if the target intent is in your application. It

definitely is not recommended for sending intents to other applications.

Component names, by and large, are considered private to the application and are

subject to change. Content Uri templates and MIME types are the preferred ways of

identifying services you wish third-party code to supply.

If you do not specify the target component, Android must figure out which activities (or

other intent receivers) are eligible to receive the intent. Note the use of the plural

CHAPTER 17: Creating Intent Filters 173

activities, as a broadly written intent might well resolve to several activities. That is

the...ummm...intent (pardon the pun), as you will see later in this chapter. This routing

approach is referred to as implicit routing.

Basically, there are three rules, all of which must be true for a given activity to be eligible

for a given intent:

 The activity must support the specified action.

 The activity must support the stated MIME type (if supplied).

 The activity must support all of the categories named in the intent.

The upshot is that you want to make your intents specific enough to find the correct

receiver(s), and no more specific than that. This will become clearer as we work through

some examples later in this chapter.

Stating Your Intent(ions)
All Android components that wish to be notified via intents must declare intent filters, so

Android knows which intents should go to that component. To do this, you need to add

intent-filter elements to your AndroidManifest.xml file.

All of the example projects have intent filters defined, courtesy of the Android

application-building script (activityCreator or the IDE equivalent). They look something

like this:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.skeleton">
 <application>
 <activity android:name=".Now" android:label="Now">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Note the intent-filter element under the activity element. Here, we declare that this

activity:

 Is the main activity for this application

 Is in the LAUNCHER category, meaning it gets an icon in the Android

main menu

Because this activity is the main one for the application, Android knows this is the

component it should launch when someone chooses the application from the main

menu.

You are welcome to have more than one action or more than one category in your intent

filters. That indicates that the associated component (e.g., activity) handles multiple

different sorts of intents.

CHAPTER 17: Creating Intent Filters 174

More than likely, you will also want to have your secondary (non-MAIN) activities specify

the MIME type of data on which they work. Then, if an intent is targeted for that MIME

type—either directly, or indirectly by the Uri referencing something of that type—

Android will know that the component handles such data.

For example, you could have an activity declared like this:

<activity android:name=".TourViewActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.item/vnd.commonsware.tour" />
 </intent-filter>
</activity>

This activity will be launched by an intent requesting to view a Uri representing a

vnd.android.cursor.item/vnd.commonsware.tour piece of content. That Intent could

come from another activity in the same application (e.g., the MAIN activity for this

application) or from another activity in another Android application that happens to know

a Uri that this activity handles.

Narrow Receivers
In the preceding examples, the intent filters were set up on activities. Sometimes, tying

intents to activities is not exactly what you want, as in these cases:

 Some system events might cause you to want to trigger something in

a service rather than an activity.

 Some events might need to launch different activities in different

circumstances, where the criteria are not solely based on the intent

itself, but some other state (e.g., if you get intent X and the database

has a Y, then launch activity M; if the database does not have a Y,

then launch activity N).

For these cases, Android offers the intent receiver, defined as a class implementing the

BroadcastReceiver interface. Intent receivers are disposable objects designed to receive

intents—particularly broadcast intents—and take action. The action typically involves

launching other intents to trigger logic in an activity, service, or other component.

The BroadcastReceiver interface has only one method: onReceive(). Intent receivers

implement that method, where they do whatever it is they wish to do upon an incoming

intent. To declare an intent receiver, add a receiver element to your

AndroidManifest.xml file:

<receiver android:name=".MyIntentReceiverClassName" />

An intent receiver is alive for only as long as it takes to process onReceive(). As soon as

that method returns, the receiver instance is subject to garbage collection and will not

be reused. This means intent receivers are somewhat limited in what they can do,

mostly to avoid anything that involves any sort of callback. For example, they cannot

bind to a service, and they cannot open a dialog.

CHAPTER 17: Creating Intent Filters 175

The exception is if the BroadcastReceiver is implemented on some longer-lived

component, such as an activity or service. In that case, the intent receiver lives as long

as its “host” does (e.g., until the activity is frozen). However, in this case, you cannot

declare the intent receiver via AndroidManifest.xml. Instead, you need to call

registerReceiver() on your Activity’s onResume() callback to declare interest in an

intent, and then call unregisterReceiver() from your Activity’s onPause() when you no

longer need those intents.

The Pause Caveat
There is one hiccup with using Intent objects to pass arbitrary messages around: It

works only when the receiver is active. To quote from the documentation for

BroadcastReceiver:

If registering a receiver in your Activity.onResume() implementation, you
should unregister it in Activity.onPause(). (You won’t receive intents
when paused, and this will cut down on unnecessary system overhead).
Do not unregister in Activity.onSaveInstanceState(), because this won’t
be called if the user moves back in the history stack.

Hence, you can use the Intent framework as an arbitrary message bus only in the

following situations:

 Your receiver does not care if it misses messages because it was not

active.

 You provide some means of getting the receiver “caught up” on

messages it missed while it was inactive.

In Chapters 29 and 30, you will see an example of the former condition, where the

receiver (service client) will use Intent-based messages when they are available, but

does not need them if the client is not active.

177

 Chapter

Launching Activities
and Subactivities
As you’ve learned, the theory behind the Android UI architecture is that developers

should decompose their application into distinct activities Each activity is implemented

as an Activity, and each is reachable via intents, with a “main” activity being the one

launched by the Android launcher. For example, a calendar application could have

activities for viewing the calendar, viewing a single event, editing an event (including

adding a new one), and so forth.

This implies that one of your activities has the means to start up another activity. For

example, if someone selects an event from the view-calendar activity, you might want to

show the view-event activity for that event. So, you need to be able to cause the view-

event activity to launch and show a specific event (the one the user chose). This chapter

describes how to do that.

NOTE: This chapter assumes that you know which activity you want to launch, probably because
it is another activity in your own application. It’s also possible that you have a content Uri to do
something, and you want your users to be able to do something with it, but you do not know up
front what the options are. This situation requires more advanced handling, which I cover in my
book The Busy Coders Guide to Advanced Android Development (CommonsWare, 2009).

Peers and Subs
One key question you need to answer when you decide to launch an activity is this:

Does your activity need to know when the launched activity ends?

For example, suppose you want to spawn an activity to collect authentication

information for some web service you are connecting to—maybe you need to

authenticate with OpenID (http://openid.net/) in order to use an OAuth service

18

CHAPTER 18: Launching Activities and Subactivities 178

(http://oauth.net/). In this case, your main activity will need to know when the

authentication is complete so it can start to use the web service.

On the other hand, imagine an e-mail application in Android. When the user elects to

view an attachment, neither you nor the user necessarily expect the main activity to

know when the user is finished viewing that attachment.

In the first scenario, the launched activity is clearly subordinate to the launching activity.

In that case, you probably want to launch the child as a subactivity, which means your

activity will be notified when the child activity is complete.

In the second scenario, the launched activity is more a peer of your activity, so you

probably want to launch the child just as a regular activity. Your activity will not be

informed when the child is done, but, then again, your activity really doesn’t need to

know.

Start ’Em Up
The two pieces for starting an activity are an intent and your choice of how to start it up.

Make an Intent
As discussed in the previous chapter, intents encapsulate a request, made to Android,

for some activity or other intent receiver to do something.

If the activity you intend to launch is one of your own, you may find it simplest to create

an explicit intent, naming the component you wish to launch. For example, from within

your activity, you could create an intent like this:

new Intent(this, HelpActivity.class);

This stipulates that you want to launch the HelpActivity. This activity would need to be

named in your AndroidManifest.xml file, though not necessarily with any intent filter,

since you are trying to request it directly.

Or you could put together an intent for some Uri, requesting a particular action:

Uri uri=Uri.parse("geo:"+lat.toString()+","+lon.toString());
Intent i=new Intent(Intent.ACTION_VIEW, uri);

Here, given that you have the latitude and longitude of some position (lat and lon,

respectively) of type Double, you construct a geo scheme Uri and create an intent

requesting to view this Uri (ACTION_VIEW).

Make the Call
Once you have your intent, you need to pass it to Android and get the child activity to

launch. You have two choices:

CHAPTER 18: Launching Activities and Subactivities 179

 The simplest option is to call startActivity() with the Intent. This

will cause Android to find the best-match activity and pass the intent

to it for handling. Your activity will not be informed when the child

activity is complete.

 You can call startActivityForResult(), passing it the Intent and a

number (unique to the calling activity). Android will find the best-match

activity and pass the intent over to it. Your activity will be notified when

the child activity is complete via the onActivityResult() callback.

With startActivityForResult(), as noted, you can implement the onActivityResult()

callback to be notified when the child activity has completed its work. The callback

receives the unique number supplied to startActivityForResult(), so you can

determine which child activity is the one that has completed. You also get the following:

 A result code, from the child activity calling setResult(). Typically, this

is RESULT_OK or RESULT_CANCELLED, though you can create your own

return codes (pick a number starting with RESULT_FIRST_USER).

 An optional String containing some result data, possibly a URL to

some internal or external resource. For example, an ACTION_PICK intent

typically returns the selected bit of content via this data string.

 An optional Bundle containing additional information beyond the result

code and data string.

To demonstrate launching a peer activity, take a peek at the Activities/Launch sample

application. The XML layout is fairly straightforward: two fields for the latitude and

longitude, plus a button.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <TableLayout
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:stretchColumns="1,2"
 >
 <TableRow>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:paddingLeft="2dip"
 android:paddingRight="4dip"
 android:text="Location:"
 />
 <EditText android:id="@+id/lat"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"

CHAPTER 18: Launching Activities and Subactivities 180

 android:layout_weight="1"
 />
 <EditText android:id="@+id/lon"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 android:layout_weight="1"
 />
 </TableRow>
 </TableLayout>
 <Button android:id="@+id/map"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Show Me!"
 />
</LinearLayout>

The button’s OnClickListener simply takes the latitude and longitude, pours them into a

geo scheme Uri, and then starts the activity.

package com.commonsware.android.activities;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class LaunchDemo extends Activity {
 private EditText lat;
 private EditText lon;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.map);
 lat=(EditText)findViewById(R.id.lat);
 lon=(EditText)findViewById(R.id.lon);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String _lat=lat.getText().toString();
 String _lon=lon.getText().toString();
 Uri uri=Uri.parse("geo:"+_lat+","+_lon);

 startActivity(new Intent(Intent.ACTION_VIEW, uri));
 }
 });
 }
}

CHAPTER 18: Launching Activities and Subactivities 181

The activity is not much to look at, as you can see in Figure 18–1.

Figure 18–1. The LaunchDemo sample application, with a location filled in

If you fill in a location (e.g., 38.8891 latitude and -77.0492 longitude) and click the

button, the resulting map is more interesting, as shown in Figure 18–2.

Figure 18–2. The map launched by LaunchDemo, showing the Lincoln Memorial in Washington DC

Note that this is the built-in Android map activity; we did not create our own activity to

display this map. In Chapter 33, you will see how you can create maps in your own

activities, in case you need greater control over how the map is displayed.

CHAPTER 18: Launching Activities and Subactivities 182

NOTE: This sample application may not work on an Android 2.0 AVD in the emulator, as the AVD
appears to lack the Maps application.

Tabbed Browsing, Sort Of
One of the main features of the modern desktop web browser is tabbed browsing,

where a single browser window can show several pages split across a series of tabs. On

a mobile device, this may not make a lot of sense, given that you lose screen real estate

for the tabs themselves. In this book, however, we do not let little things like sensibility

stop us, so let’s demonstrate a tabbed browser, using TabActivity and Intent objects.

As you may recall from Chapter 9, a tab can have either a View or an Activity as its

contents. If you want to use an Activity as the content of a tab, you provide an Intent

that will launch the desired Activity; Android’s tab-management framework will then

pour the Activity’s UI into the tab.

Your natural instinct might be to use an http: Uri the way we used a geo: Uri in the

previous example:

Intent i=new Intent(Intent.ACTION_VIEW);
i.setData(Uri.parse("http://commonsware.com"));

That way, you could use the built-in browser application and get all of the features that it

offers.

Alas, this does not work. You cannot host other applications’ activities in your tabs; only

your own activities are allowed, for security reasons.

So, we dust off our WebView demos from Chapter 13 and use those instead, repackaged

as Activities/IntentTab.

Here is the source to the main activity, the one hosting the TabView:

public class IntentTabDemo extends TabActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 TabHost host=getTabHost();

 host.addTab(host.newTabSpec("one")
 .setIndicator("CW")
 .setContent(new Intent(this, CWBrowser.class)));
 host.addTab(host.newTabSpec("two")
 .setIndicator("Android")
 .setContent(new Intent(this, AndroidBrowser.class)));
 }
}

CHAPTER 18: Launching Activities and Subactivities 183

As you can see, we are using TabActivity as the base class, and so we do not need our

own layout XML, since TabActivity supplies it for us. All we do is get access to the

TabHost and add two tabs, each specifying an Intent that directly refers to another

class. In this case, our two tabs will host a CWBrowser and an AndroidBrowser,

respectively.

Those activities are simple modifications to the earlier browser demos:

public class CWBrowser extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 browser=new WebView(this);
 setContentView(browser);
 browser.loadUrl("http://commonsware.com");
 }
}
public class AndroidBrowser extends Activity {
 WebView browser;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);

 browser=new WebView(this);
 setContentView(browser);
 browser.loadUrl("http://www.android.com/");
 }
}

They simply load a different URL into the browser: the CommonsWare home page in

one and the Android home page in the other.

TIP: Using distinct subclasses for each targeted page is rather wasteful. Instead, you could
package the URL to open as an “extra” in an Intent and used that Intent to spawn a general-
purpose BrowserTab activity, which would read the URL out of the Intent extra and use that.

The resulting UI shows what tabbed browsing could look like on Android, as shown in

Figures 18–3 and 18–4.

CHAPTER 18: Launching Activities and Subactivities 184

Figure 18–3. The IntentTabDemo sample application, showing the first tab

Figure 18–4. The IntentTabDemo sample application, showing the second tab

185

 Chapter

Handling Rotation
Some Android handsets, like the T-Mobile G1, offer a slide-out keyboard that triggers

rotating the screen from portrait to landscape orientation. Other handsets might use

accelerometers to determine screen rotation, as the iPhone does. As a result, it is

reasonable to assume that switching from portrait to landscape orientation and back

again may be something your users will want to do.

As you’ll learn in this chapter, Android has a number of ways for you to handle screen

rotation, so your application can properly handle either orientation. But realize that these

facilities just help you detect and manage the rotation process. You are still required to

make sure you have layouts that look decent in each orientation.

A Philosophy of Destruction
By default, when there is a change in the phone configuration that might affect resource

selection, Android will destroy and re-create any running or paused activities the next

time they are to be viewed. While this could happen for a variety of different

configuration changes (e.g., change of language selection), it is most likely to trip you up

for rotations, since a change in orientation can cause you to load a different set of

resources (e.g., layouts).

The key here is that this is the default behavior. It may even be the behavior that is best for

one or more of your activities. You do have some control over the matter, though, and can

tailor how your activities respond to orientation changes or similar configuration switches.

It’s All the Same, Just Different
Since, by default, Android destroys and re-creates your activity on a rotation, you may

only need to hook into the same onSaveInstanceState() that you would if your activity

were destroyed for any other reason (e.g., low memory). Implement that method in your

activity and fill in the supplied Bundle with enough information to get you back to your

current state. Then, in onCreate() (or onRestoreInstanceState(), if you prefer), pick the

data out of the Bundle and use it to bring your activity back to the way it was.

19

CHAPTER 19: Handling Rotation 186

To demonstrate this, let’s take a look at the Rotation/RotationOne project. This and the

other sample projects in this chapter use a pair of main.xml layouts: one in res/layout/

and one in res/layout-land/ for use in landscape mode. Here is the portrait layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 />
</LinearLayout>

Here is the similar landscape layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <Button android:id="@+id/pick"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="Pick"
 android:enabled="true"
 />
 <Button android:id="@+id/view"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 android:text="View"
 android:enabled="false"
 />
</LinearLayout>

Basically, the layout contains a pair of buttons, each taking up half the screen. In portrait

mode, the buttons are stacked; in landscape mode, they are side by side.

If you were to simply create a project, put in those two layouts, and compile it, the

application would appear to work just fine—a rotation (pressing Ctrl+F12 in the

emulator) will cause the layout to change. And while buttons lack state, if you were using

CHAPTER 19: Handling Rotation 187

other widgets (e.g., EditText), you would even find that Android hangs onto some of the

widget state for you (e.g., the text entered in the EditText).

What Android cannot help you with automatically is anything held outside the widgets.

This application lets you pick a contact, and then view the contact, via separate buttons.

The View button is enabled only after a contact has been selected.

Let’s see how we handle this, using onSaveInstanceState():

public class RotationOneDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });

 viewButton=(Button)findViewById(R.id.view);

 viewButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
 });

 restoreMe(savedInstanceState);

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 @Override

CHAPTER 19: Handling Rotation 188

 protected void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);

 if (contact!=null) {
 outState.putString("contact", contact.toString());
 }
 }

 private void restoreMe(Bundle state) {
 contact=null;

 if (state!=null) {
 String contactUri=state.getString("contact");

 if (contactUri!=null) {
 contact=Uri.parse(contactUri);
 }
 }
 }
}

By and large, it looks like a normal activity (because it is). Initially, the “model”—a Uri

named contact—is null. It is set as the result of spawning the ACTION_PICK subactivity.

Its string representation is saved in onSaveInstanceState() and restored in restoreMe()

(called from onCreate()). If the contact is not null, the View button is enabled and can

be used to view the chosen contact.

Visually, it looks pretty much as you would expect, as shown in Figures 19–1 and 19–2.

Figure 19–1. The RotationOne application, in portrait mode

CHAPTER 19: Handling Rotation 189

Figure 19–2. The RotationOne application, in landscape mode

The benefit to this implementation is that it handles a number of system events beyond

mere rotation, such as being closed by Android due to low memory.

For fun, comment out the restoreMe() call in onCreate() and try running the application.

You will see that the application “forgets” a contact selected in one orientation when you

rotate the emulator or device.

NOTE: All the samples for this chapter work only on Android 2.0 and higher, as they use the
newer means of picking a contact from the Contacts content provider (discussed in Chapter 26).

Now with More Savings!
The problem with onSaveInstanceState() is that you are limited to a Bundle. That’s

because this callback is also used in cases where your whole process might be

terminated (e.g., low memory), so the data to be saved must be something that can be

serialized and does not have any dependencies on your running process.

For some activities, that limitation is not a problem. For others, it is more annoying. Take

an online chat, for example. You have no means of storing a socket in a Bundle, so by

default, you will need to drop your connection to the chat server and reestablish it. That

not only may be a performance hit, but it might also affect the chat itself, such as

appearing in the chat logs as disconnecting and reconnecting.

One way to get past this is to use onRetainNonConfigurationInstance() instead of

onSaveInstanceState() for “light” changes like a rotation. Your activity’s

onRetainNonConfigurationInstance() callback can return an Object, which you can

retrieve later via getLastNonConfigurationInstance(). The Object can be just about

anything you want. Typically, it will be some kind of “context” object holding activity

state, such as running threads, open sockets, and the like. Your activity’s onCreate()

can call getLastNonConfigurationInstance(). Then if you get a non-null response, you

now have your sockets and threads and whatnot. The biggest limitation is that you do

CHAPTER 19: Handling Rotation 190

not want to put in the saved context anything that might reference a resource that will

get swapped out, such as a Drawable loaded from a resource.

Let’s take a look at the Rotation/RotationTwo sample project, which uses this approach

to handling rotations. The layouts, and hence the visual appearance, is the same as with

Rotation/RotationOne. Where things differ slightly is in the Java code:

public class RotationTwoDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });

 viewButton=(Button)findViewById(R.id.view);

 viewButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
 });

 restoreMe();

 viewButton.setEnabled(contact!=null);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 @Override
 public Object onRetainNonConfigurationInstance() {
 return(contact);

CHAPTER 19: Handling Rotation 191

 }

 private void restoreMe() {
 contact=null;

 if (getLastNonConfigurationInstance()!=null) {
 contact=(Uri)getLastNonConfigurationInstance();
 }
 }
}

In this case, we override onRetainNonConfigurationInstance(), returning the actual Uri

for our contact, rather than a string representation of it. In turn, restoreMe() calls

getLastNonConfigurationInstance(), and if it is not null, we hold onto it as our contact

and enable the View button.

The advantage here is that we are passing around the Uri rather than a string

representation. In this case, that is not a big saving. But our state could be much more

complicated, including threads, sockets, and other things we cannot pack into a Bundle.

However, even this approach may be too intrusive to your application. Suppose, for

example, you are creating a real-time game, such as a first-person shooter. The

“hiccup” your users experience as your activity is destroyed and re-created might be

enough to get them shot, which they may not appreciate. While this would be less of an

issue on the T-Mobile G1, since a rotation requires sliding open the keyboard and

therefore is unlikely to be done mid-game, other devices might rotate based solely on

the device’s position as determined by accelerometers. For these situations, you may

want to tell Android that you will rotations yourself, and you do not want any assistance

from the framework, as described next.

DIY Rotation
To handle rotations on your own, do this:

1. Put an android:configChanges entry in your AndroidManifest.xml file,

listing the configuration changes you want to handle yourself versus

allowing Android to handle for you.

2. Implement onConfigurationChanged() in your Activity, which will be

called when one of the configuration changes you listed in

android:configChanges occurs.

Now, for any configuration change you want, you can bypass the whole activity-

destruction process and simply get a callback letting you know of the change.

To see this in action, turn to the Rotation/RotationThree sample application. Once

again, our layouts are the same, so the application looks just like the preceding two

samples. However, the Java code is significantly different, because we are no longer

concerned with saving our state, but rather with updating our UI to deal with the layout.

CHAPTER 19: Handling Rotation 192

But first, we need to make a small change to our manifest:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.three"
 android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="6"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".RotationThreeDemo"
 android:label="@string/app_name"
 android:configChanges="keyboardHidden|orientation">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Here, we state that we will handle keyboardHidden and orientation configuration

changes ourselves. This covers us for any cause of the rotation, whether it is a sliding

keyboard or a physical rotation. Note that this is set on the activity, not the application. If

you have several activities, you will need to decide for each which of the tactics outlined

in this chapter you wish to use.

The Java code for this project is as follows:

public class RotationThreeDemo extends Activity {
 static final int PICK_REQUEST=1337;
 Button viewButton=null;
 Uri contact=null;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setupViews();
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode==PICK_REQUEST) {
 if (resultCode==RESULT_OK) {
 contact=data.getData();
 viewButton.setEnabled(true);
 }
 }
 }

 public void onConfigurationChanged(Configuration newConfig) {

CHAPTER 19: Handling Rotation 193

 super.onConfigurationChanged(newConfig);

 setupViews();
 }

 private void setupViews() {
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.pick);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 Intent i=new Intent(Intent.ACTION_PICK,
 Contacts.CONTENT_URI);

 startActivityForResult(i, PICK_REQUEST);
 }
 });

 viewButton=(Button)findViewById(R.id.view);

 viewButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 startActivity(new Intent(Intent.ACTION_VIEW, contact));
 }
 });

 viewButton.setEnabled(contact!=null);
 }
}

The onCreate() implementation delegates most of its logic to a setupViews() method,

which loads the layout and sets up the buttons. This logic was broken out into its own

method because it is also called from onConfigurationChanged().

Forcing the Issue
In the previous three sections, we covered ways to deal with rotational events. There is,

of course, a radical alternative: tell Android not to rotate your activity at all. If the activity

does not rotate, you do not need to worry about writing code to deal with rotations.

To block Android from rotating your activity, all you need to do is add

android:screenOrientation = "portrait" (or "landscape", as you prefer) to your

AndroidManifest.xml file, as follows (from the Rotation/RotationFour sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.four"
 android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="6"

CHAPTER 19: Handling Rotation

 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".RotationFourDemo"
 android:screenOrientation="portrait"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Since this is applied on a per-activity basis, you will need to decide which of your

activities may need it turned on.

At this point, your activity is locked into whatever orientation you specified, regardless of

what you do. Figures 19–3 and 19–4 show the same activity as in the previous three

sections, but using the preceding manifest and with the emulator set for both portrait

and landscape orientation. Notice that the UI does not move a bit, but remains in portrait

mode.

Figure 19–3. The RotationFour application, in portrait mode

CHAPTER 19: Handling Rotation

Figure 19–4. The RotationFour application, in landscape mode

Note that Android will still destroy and re-create your activity, even if you have the

orientation set to a specific value as shown here. If you wish to avoid that, you will also

need to set android:configChanges in the manifest, as described earlier in this chapter.

Making Sense of It All
All of the scenarios presented in this chapter assume that you rotate the screen by

opening the keyboard on the device (or by pressing Ctrl+F12 in the emulator).

Certainly, this is the norm for Android applications. However, we haven’t covered the

iPhone scenario.

You may have seen one (or several) commercials for the iPhone, showing how the

screen rotates just by turning the device. Some Android devices, such as the HTC

Magic, will behave the same way. With other devices, though, you do not get this

behavior; instead, the screen rotates based on whether the keyboard is open or closed.

However, even for those devices, it is easy for you to change this behavior, so your

screen will rotate based on the position of the phone. Just add

android:screenOrientation = "sensor" to your AndroidManifest.xml file (from the

Rotation/RotationFive sample project):

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.rotation.five"

CHAPTER 19: Handling Rotation 196

 android:versionCode="1"
 android:versionName="1.0.0">
 <uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="6"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".RotationFiveDemo"
 android:screenOrientation="sensor"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The sensor, in this case, tells Android you want the accelerometers to control the screen

orientation, so the physical shift in the device orientation controls the screen orientation.

At least on the T-Mobile G1, this appears to work only when going from the traditional

upright portrait position to the traditional landscape position—rotating 90 degrees

counterclockwise. Rotating the device 90 degrees clockwise results in no change in

the screen.

Also note that this setting disables having the keyboard trigger a rotation event. Leaving

the device in the portrait position, if you slide out the keyboard, in a normal Android

activity, the screen will rotate; in an android:screenOrientation = "sensor" activity, the

screen will not rotate.

197

 Chapter

Working with Resources
Resources are static bits of information held outside the Java source code. You have

seen one type of resource—the layout—frequently in the examples in this book. As you’ll

learn in this chapter, there are many other types of resources, such as images and

strings, that you can take advantage of in your Android applications.

The Resource Lineup
Resources are stored as files under the res/ directory in your Android project layout.

With the exception of raw resources (res/raw/), all the other types of resources are

parsed for you, either by the Android packaging system or by the Android system on the

device or emulator. So, for example, when you lay out an activity’s UI via a layout

resource (res/layout/), you do not need to parse the layout XML yourself; Android

handles that for you.

In addition to layout resources (introduced in Chapter 4) and animation resources

(introduced in Chapter 9), several other types of resources are available, including the

following:

 Images (res/drawable/), for putting static icons or other pictures in a

user interface

 Raw (res/raw/), for arbitrary files that have meaning to your

application but not necessarily to Android frameworks

 Strings, colors, arrays, and dimensions (res/values/), to both give

these sorts of constants symbolic names and to keep them separate

from the rest of the code (e.g., for internationalization and localization)

 XML (res/xml/), for static XML files containing your own data and

structure

20

CHAPTER 20: Working with Resources 198

String Theory
Keeping your labels and other bits of text outside the main source code of your

application is generally considered to be a very good idea. In particular, it helps with

internationalization and localization, covered in the “Different Strokes for Different Folks”

section later in this chapter. Even if you are not going to translate your strings to other

languages, it is easier to make corrections if all the strings are in one spot, instead of

scattered throughout your source code.

Android supports regular externalized strings, along with string formats, where the string

has placeholders for dynamically inserted information. On top of that, Android supports

simple text formatting, called styled text, so you can make your words be bold or italic

intermingled with normal text.

Plain Strings
Generally speaking, all you need for plain strings is an XML file in the res/values

directory (typically named res/values/strings.xml), with a resources root element, and

one child string element for each string you wish to encode as a resource. The string

element takes a name attribute, which is the unique name for this string, and a single text

element containing the text of the string.

<resources>
 <string name="quick">The quick brown fox...</string>
 <string name="laughs">He who laughs last...</string>
</resources>

The only tricky part is if the string value contains a quotation mark (") or an apostrophe

('). In those cases, you will want to escape those values, by preceding them with a

backslash (e.g., These are the times that try men\'s souls). Or, if it is just an

apostrophe, you could enclose the value in quotation marks (e.g., "These are the times
that try men's souls.").

You can then reference this string from a layout file (as @string/..., where the ellipsis is

the unique name, such as @string/laughs). Or you can get the string from your Java

code by calling getString() with the resource ID of the string resource, which is the

unique name prefixed with R.string. (e.g., getString(R.string.quick)).

String Formats
As with other implementations of the Java language, Android’s Dalvik virtual machine

supports string formats. Here, the string contains placeholders representing data to be

replaced at runtime by variable information (e.g., My name is %1$s). Plain strings stored

as resources can be used as string formats:

String strFormat=getString(R.string.my_name);
String strResult=String.format(strFormat, "Tim");
((TextView)findViewById(R.id.some_label)).setText(strResult);

CHAPTER 20: Working with Resources 199

Styled Text
If you want really rich text, you should have raw resources containing HTML, and then

pour those into a WebKit widget. However, for light HTML formatting, using , <i>,

and <u>, you can just use a string resource. The catch is that you must escape the

HTML tags, rather than treating them normally:

<resources>
 <string name="b">This has bold in it.</string>
 <string name="i">Whereas this has <i>italics</i>!</string>
</resources>

You can access these the same way as you get plain strings, with the exception that the

result of the getString() call is really an object supporting the android.text.Spanned

interface:

((TextView)findViewById(R.id.another_label))
 .setText(getString(R.string.b));

Styled String Formats
Where styled text gets tricky is with styled string formats, as String.format() works on

String objects, not Spanned objects with formatting instructions. If you really want to

have styled string formats, here is the work-around:

1. Entity-escape the angle brackets in the string resource (e.g., this is
%1$s).

2. Retrieve the string resource as normal, though it will not be styled at this

point (e.g., getString(R.string.funky_format)).

3. Generate the format results, being sure to escape any string values you

substitute, in case they contain angle brackets or ampersands.

String.format(getString(R.string.funky_format),
 TextUtils.htmlEncode(strName));

4. Convert the entity-escaped HTML into a Spanned object via

Html.fromHtml().

someTextView.setText(Html
 .fromHtml(resultFromStringFormat));

To see this in action, let’s look at the Resources/Strings demo. Here is the layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"

CHAPTER 20: Working with Resources 200

 android:layout_height="wrap_content"
 >
 <Button android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_name"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

As you can see, it is just a button, a field, and a label. The idea is for users to enter their

name in the field, and then click the button to cause the label to be updated with a

formatted message containing their name.

The Button in the layout file references a string resource (@string/btn_name), so we need

a string resource file (res/values/strings.xml):

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">StringsDemo</string>
 <string name="btn_name">Name:</string>
 <string name="funky_format">My name is %1$s</string>
</resources>

The app_name resource is automatically created by the activityCreator script. The

btn_name string is the caption of the Button, while our styled string format is in

funky_format.

Finally, to hook all this together, we need a pinch of Java:

package com.commonsware.android.strings;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class StringsDemo extends Activity {
 EditText name;
 TextView result;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

CHAPTER 20: Working with Resources 201

 name=(EditText)findViewById(R.id.name);
 result=(TextView)findViewById(R.id.result);

 Button btn=(Button)findViewById(R.id.format);

 btn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 applyFormat();
 }
 });
 }

 private void applyFormat() {
 String format=getString(R.string.funky_format);
 String simpleResult=String.format(format,
 TextUtils.htmlEncode(name.getText().toString()));
 result.setText(Html.fromHtml(simpleResult));
 }
}

The string resource manipulation can be found in applyFormat(), which is called when

the button is clicked. First, we get our format via getString() (something we could have

done at onCreate() time for efficiency). Next, we format the value in the field using this

format, getting a String back, since the string resource is in entity-encoded HTML. Note

the use of TextUtils.htmlEncode() to entity-encode the entered name, in case someone

decides to use an ampersand or something. Finally, we convert the simple HTML into a

styled text object via Html.fromHtml() and update our label.

When the activity is first launched, we have an empty label, as shown in Figure 20–1.

Figure 20–1. The StringsDemo sample application, as initially launched

CHAPTER 20: Working with Resources 202

When you fill in a name and click the button, you get the result shown in Figure 20–2.

Figure 20–2. The same application, after filling in some heroic figure's name

Got the Picture?
Android supports images in the PNG, JPEG, and GIF formats. GIF is officially

discouraged, however. PNG is the overall preferred format. Images can be used

anywhere you require a Drawable, such as the image and background of an ImageView.

Using images is simply a matter of putting your image files in res/drawable/ and then

referencing them as a resource. Within layout files, images are referenced as

@drawable/... where the ellipsis is the base name of the file (e.g., for

res/drawable/foo.png, the resource name is @drawable/foo). In Java, where you need

an image resource ID, use R.drawable. plus the base name (e.g., R.drawable.foo).

To demonstrate, let’s update the previous example to use an icon for the button instead

of the string resource. This can be found as Resources/Images. First, we slightly adjust

the layout file, using an ImageButton and referencing a Drawable named @drawable/icon:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <ImageButton android:id="@+id/format"

CHAPTER 20: Working with Resources 203

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/icon"
 />
 <EditText android:id="@+id/name"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 </LinearLayout>
 <TextView android:id="@+id/result"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

Next, we need to put an image file in res/drawable with a base name of icon. In this

case, we use a 32-by-32 PNG file from the Nuvola icon set (http://www.icon-

king.com/projects/nuvola/). Finally, we twiddle the Java source, replacing our Button

with an ImageButton:

package com.commonsware.android.images;

import android.app.Activity;
import android.os.Bundle;
import android.text.TextUtils;
import android.text.Html;
import android.view.View;
import android.widget.Button;
import android.widget.ImageButton;
import android.widget.EditText;
import android.widget.TextView;

public class ImagesDemo extends Activity {
 EditText name;
 TextView result;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 name=(EditText)findViewById(R.id.name);
 result=(TextView)findViewById(R.id.result);

 ImageButton btn=(ImageButton)findViewById(R.id.format);

 btn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 applyFormat();
 }
 });
 }

 private void applyFormat() {
 String format=getString(R.string.funky_format);
 String simpleResult=String.format(format,

CHAPTER 20: Working with Resources 204

 TextUtils.htmlEncode(name.getText().toString()));
 result.setText(Html.fromHtml(simpleResult));
 }
}

Now, our button has the desired icon, as shown in Figure 20–3.

Figure 20–3. The ImagesDemo sample application

XML: The Resource Way
If you wish to package static XML with your application, you can use an XML resource.

Simply put the XML file in res/xml/. Then you can access it by getXml() on a Resources

object, supplying it a resource ID of R.xml. plus the base name of your XML file. For

example, in an activity, with an XML file of words.xml, you could call

getResources().getXml(R.xml.words).

This returns an instance of an XmlPullParser, found in the org.xmlpull.v1 Java

namespace. An XML pull parser is event-driven: you keep calling next() on the parser to

get the next event, which could be START_TAG, END_TAG, END_DOCUMENT, and so on. On a

START_TAG event, you can access the tag’s name and attributes; a single TEXT event

represents the concatenation of all text nodes that are direct children of this element. By

looping, testing, and invoking per-element logic, you parse the file.

To see this in action, let’s rewrite the Java code for the Files/Static sample project to

use an XML resource. This new project, Resources/XML, requires that you place the

words.xml file from Static not in res/raw/, but in res/xml/. The layout stays the same,

so all that needs to be replaced is the Java source:

CHAPTER 20: Working with Resources 205

package com.commonsware.android.resources;

import android.app.Activity;
import android.os.Bundle;
import android.app.ListActivity;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.ListView;
import android.widget.TextView;
import android.widget.Toast;
import java.io.InputStream;
import java.util.ArrayList;
import org.xmlpull.v1.XmlPullParser;
import org.xmlpull.v1.XmlPullParserException;

public class XMLResourceDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 XmlPullParser xpp=getResources().getXml(R.xml.words);

 while (xpp.getEventType()!=XmlPullParser.END_DOCUMENT) {
 if (xpp.getEventType()==XmlPullParser.START_TAG) {
 if (xpp.getName().equals("word")) {
 items.add(xpp.getAttributeValue(0));
 }
 }

 xpp.next();
 }
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), 4000)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

CHAPTER 20: Working with Resources 206

Now, inside our try...catch block, we get our XmlPullParser and loop until the end of

the document. If the current event is START_TAG and the name of the element is word

(xpp.getName().equals("word")), then we get the one and only attribute, and pop that

into our list of items for the selection widget. Since we have complete control over the

XML file, it is safe enough to assume there is exactly one attribute. If you are not sure

that the XML is properly defined, you might consider checking the attribute count

(getAttributeCount()) and the name of the attribute (getAttributeName()) before blindly

assuming the 0-index attribute is what you think it is.

The result looks the same as before, albeit with a different name in the title bar, as

shown in Figure 20–4.

Figure 20–4. The XMLResourceDemo sample application

Miscellaneous Values
In the res/values/ directory, in addition to string resources, you can place one (or more)

XML files describing other simple resources, such as dimensions, colors, and arrays.

You have already seen uses of dimensions and colors in previous examples, where they

were passed as simple strings (e.g., "10px") as parameters to calls. You could set these

up as Java static final objects and use their symbolic names, but that works only inside

Java source, not in layout XML files. By putting these values in resource XML files, you

can reference them from both Java and layouts, plus have them centrally located for

easy editing.

Resource XML files have a root element of resources; everything else is a child of that root.

CHAPTER 20: Working with Resources 207

Dimensions
Dimensions are used in several places in Android to describe distances, such a widget’s

padding. Most of this book’s examples use pixels (e.g., 10px for 10 pixels). Several

different units of measurement are also available:

 in and mm for inches and millimeters, respectively. These are based on

the actual size of the screen.

 pt for points. In publishing terms, a point is 1/72 inch (again, based on

the actual physical size of the screen).

 dip and sp for device-independent pixels and scale-independent

pixels, respectively. One pixel equals one dip for a 160-dpi resolution

screen, with the ratio scaling based on the actual screen pixel density.

Scale-independent pixels also take into account the user’s preferred

font size.

To encode a dimension as a resource, add a dimen element, with a name attribute for

your unique name for this resource, and a single child text element representing the

value:

<resources>
 <dimen name="thin">10px</dimen>
 <dimen name="fat">1in</dimen>
</resources>

In a layout, you can reference dimensions as @dimen/..., where the ellipsis is a

placeholder for your unique name for the resource (e.g., thin and fat from the

preceding sample). In Java, you reference dimension resources by the unique name

prefixed with R.dimen. (e.g., Resources.getDimen(R.dimen.thin)).

Colors
Colors in Android are hexadecimal RGB values, also optionally specifying an alpha

channel. You have your choice of single-character hex values or double-character hex

values, providing four styles:

 #RGB

 #ARGB

 #RRGGBB

 #AARRGGBB

These work similarly to their counterparts in Cascading Style Sheets (CSS).

You can, of course, put these RGB values as string literals in Java source or layout

resources. If you wish to turn them into resources, though, all you need to do is add

color elements to the resource file, with a name attribute for your unique name for this

color, and a single text element containing the RGB value itself:

<resources>

CHAPTER 20: Working with Resources 208

 <color name="yellow_orange">#FFD555</color>
 <color name="forest_green">#005500</color>
 <color name="burnt_umber">#8A3324</color>
</resources>

In a layout, you can reference colors as @color/..., replacing the ellipsis with your

unique name for the color (e.g., burnt_umber). In Java, you reference color resources by

the unique name prefixed with R.color. (e.g.,

Resources.getColor(R.color.forest_green)).

Arrays
Array resources are designed to hold lists of simple strings, such as a list of honorifics

(Mr., Mrs., Ms., Dr., etc.).

In the resource file, you need one string-array element per array, with a name attribute

for the unique name you are giving the array. Then add one or more child item elements,

each with a single text element containing the value for that entry in the array:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>
 <item>MDT</item>
 </string-array>
</resources>

From your Java code, you can then use Resources.getStringArray() to get a String[]

of the items in the list. The parameter to getStringArray() is your unique name for the

array, prefixed with R.array. (e.g., Resources.getStringArray(R.array.honorifics)).

Different Strokes for Different Folks
One set of resources may not fit all situations where your application may be used. One

obvious area comes with string resources and dealing with internationalization (I18N)

CHAPTER 20: Working with Resources 209

and localization (L10N). Putting strings all in one language works fine—at least, for the

developer—but covers only one language.

That is not the only scenario where resources might need to differ, though. Here are others:

 Screen orientation: Is the screen in a portrait or landscape orientation?

Or is the screen square and, therefore, without an orientation?

 Screen size: How many pixels does the screen have, so you can size

your resources accordingly (e.g., large versus small icons)?

 Touchscreen: does the device have a touchscreen? If so, is the

touchscreen set up to be used with a stylus or a finger?

 Keyboard: Which keyboard does the user have (QWERTY, numeric,

neither), either now or as an option?

 Other input: Does the device have some other form of input, like a D-

pad or click-wheel?

The way Android currently handles this is by having multiple resource directories, with

the criteria for each embedded in their names.

Suppose, for example, you want to support strings in both English and Spanish.

Normally, for a single-language setup, you would put your strings in a file named

res/values/strings.xml. To support both English and Spanish, you would create two

folders, named res/values-en/ and res/values-es/, where the value after the hyphen is

the ISO 639-1 two-letter code for the language. Your English strings would go in

res/values-en/strings.xml, and the Spanish ones would go in res/values-
es/strings.xml. Android will choose the proper file based on the user’s device settings.

An even better approach is for you to consider some language to be your default, and

put those strings in res/values/strings.xml. Then create other resource directories for

your translations (e.g., res/values-es/strings.xml for Spanish). Android will try to

match a specific language set of resources; failing that, it will fall back to the default of

res/values/strings.xml.

Seems easy, right?

Where things start to get complicated is when you need to use multiple disparate criteria

for your resources. For example, suppose you want to develop both for the T-Mobile G1

and two currently fictitious devices. One device (Fictional One) has a VGA (“large”)

screen normally in a landscape orientation, an always-open QWERTY keyboard, a D-

pad, but no touchscreen. The other device (Fictional Two) has a G1-sized screen

(normal), a numeric keyboard but no QWERTY, a D-pad, and no touchscreen.

You may want to have somewhat different layouts for these devices, to take advantage

of different screen real estate and different input options, as follows:

 For each combination of resolution and orientation

 For touchscreen devices versus ones without touchscreens

 For QWERTY versus non-QWERTY devices

CHAPTER 20: Working with Resources 210

Once you get into these sorts of situations, all sorts of rules come into play, such as these:

 The configuration options (e.g., -en) have a particular order of

precedence, and they must appear in the directory name in that order.

The Android documentation outlines the specific order in which these

options can appear. For the purposes of this example, screen

orientation must precede touchscreen type, which must precede

screen size.

 There can be only one value of each configuration option category per

directory.

 Options are case-sensitive.

So, for the sample scenario, in theory, we would need the following directories:

 res/layout-large-port-notouch-qwerty

 res/layout-normal-port-notouch-qwerty

 res/layout-large-port-notouch-12key

 res/layout-normal-port-notouch-12key

 res/layout-large-port-notouch-nokeys

 res/layout-normal-port-notouch-nokeys

 res/layout-large-port-stylus-qwerty

 res/layout-normal-port-stylus-qwerty

 res/layout-large-port-stylus-12key

 res/layout-normal-port-stylus-12key

 res/layout-large-port-stylus-nokeys

 res/layout-normal-port-stylus-nokeys

 res/layout-large-port-finger-qwerty

 res/layout-normal-port-finger-qwerty

 res/layout-large-port-finger-12key

 res/layout-normal-port-finger-12key

 res/layout-large-port-finger-nokeys

 res/layout-normal-port-finger-nokeys

 res/layout-large-land-notouch-qwerty

 res/layout-normal-land-notouch-qwerty

 res/layout-large-land-notouch-12key

 res/layout-normal-land-notouch-12key

 res/layout-large-land-notouch-nokeys

CHAPTER 20: Working with Resources 211

 res/layout-normal-land-notouch-nokeys

 res/layout-large-land-stylus-qwerty

 res/layout-normal-land-stylus-qwerty

 res/layout-large-land-stylus-12key

 res/layout-normal-land-stylus-12key

 res/layout-large-land-stylus-nokeys

 res/layout-normal-land-stylus-nokeys

 res/layout-large-land-finger-qwerty

 res/layout-normal-land-finger-qwerty

 res/layout-large-land-finger-12key

 res/layout-normal-land-finger-12key

 res/layout-large-land-finger-nokeys

 res/layout-normal-land-finger-nokeys

Don’t panic! We will shorten this list in just a moment.

Note that for many of these, the actual layout files will be identical. For example, we only

care about touchscreen layouts being different from the other two layouts, but since we

cannot combine those two, we would theoretically need separate directories with

identical contents for finger and stylus.

Also note that there is nothing preventing you from having another directory with the

unadorned base name (res/layout). In fact, this is probably a good idea, in case future

editions of the Android runtime introduce other configuration options you did not

consider. Having a default layout might make the difference between your application

working or failing on that new device.

Now, we can cheat a bit, by decoding the rules Android uses for determining which,

among a set of candidates, is the correct resource directory to use:

 First up, Android tosses out ones that are specifically invalid. So, for

example, if the screen size of the device is normal, the -large

directories would be dropped as candidates, since they call for some

other size.

 Next, Android counts the number of matches for each folder, and pays

attention to only those with the most matches.

 Finally, Android goes in the order of precedence of the options; in

other words, it goes from left to right in the directory name.

So, we could skate by with only the following configurations:

 res/layout-large-port-notouch-qwerty

 res/layout-port-notouch-qwerty

CHAPTER 20: Working with Resources 212

 res/layout-large-port-notouch

 res/layout-port-notouch

 res/layout-large-port-qwerty

 res/layout-port-qwerty

 res/layout-large-port

 res/layout-port

 res/layout-large-land-notouch-qwerty

 res/layout-land-notouch-qwerty

 res/layout-large-land-notouch

 res/layout-land-notouch

 res/layout-large-land-qwerty

 res/layout-land-qwerty

 res/layout-large-land

 res/layout-land

Here, we take advantage of the fact that specific matches take precedence over

unspecified values. So, a device with a QWERTY keyboard will choose a resource with

qwerty in the directory over a resource that does not specify its keyboard type.

Combining that with the “most matches wins” rule, we see that res/layout-port will

match only devices with normal-sized screens, no QWERTY keyboard, and a

touchscreen in portrait orientation.

We could refine this even further, to cover only the specific devices we are targeting (T-

Mobile G1, Fictional One, and Fictional Two), plus take advantage of res/layout being

the overall default:

 res/layout-large-port-notouch

 res/layout-port-notouch

 res/layout-large-land-notouch

 res/layout-land-notouch

 res/layout-large-land

 res/layout

Here, -large differentiates Fictional One from the other two devices, while notouch

differentiates Fictional Two from the T-Mobile G1.

You will see these resource sets again in Chapter 36, which describes how to support

multiple screen sizes.

213

 Chapter

Using Preferences
Android has many different ways for you to store data for long-term use by your activity.

The simplest to use is the preferences system, which is the topic of this chapter.

Android allows activities and applications to keep preferences, in the form of key/value

pairs (akin to a Map), which will hang around between invocations of an activity. As the

name suggests, the primary purpose is for you to store user-specified configuration

details, such as the last feed the user looked at in your feed reader, the sort order to use

by default on a list, or whatever. Of course, you can store in the preferences whatever you

like, as long as it is keyed by a String and has a primitive value (boolean, String, etc.)

Preferences can be for a single activity or shared among all activities in an application.

(Eventually, preferences might be shareable across applications, but that is not

supported as of the time of this writing.)

Getting What You Want
To get access to the preferences, you can use the following APIs:

 getPreferences() from within your Activity, to access activity-

specific preferences

 getSharedPreferences() from within your Activity (or other

application Context), to access application-level preferences

 getDefaultSharedPreferences(), on PreferencesManager, to get the

shared preferences that work in concert with Android’s overall

preference framework

The first two take a security mode parameter; for now, pass in 0. The

getSharedPreferences() method also takes a name of a set of preferences.

getPreferences() effectively calls getSharedPreferences() with the activity’s class

name as the preference set name. The getDefaultSharedPreferences() method takes

the Context for the preferences (e.g., your Activity).

21

CHAPTER 21: Using Preferences 214

All of these methods return an instance of SharedPreferences, which offers a series of

getters to access named preferences, returning a suitably typed result (e.g.,

getBoolean() to return a Boolean preference). The getters also take a default value,

which is returned if there is no preference set under the specified key.

Stating Your Preference
Given the appropriate SharedPreferences object, you can use edit() to get an editor for

the preferences. This object has a set of setters that mirror the getters on the parent

SharedPreferences object. It also has the following methods:

 remove(): Deletes a single named preference.

 clear(): Deletes all preferences.

 commit(): Persists your changes made via the editor.

The commit() method is important. If you modify preferences via the editor and fail to

commit() the changes, those changes will evaporate once the editor goes out of scope.

Conversely, since the preferences object supports live changes, if one part of your

application (say, an activity) modifies shared preferences, another part of your

application (say, a service) will have access to the changed value immediately.

And Now, a Word from Our Framework
Beginning with the 0.9 SDK, Android has introduced a framework for managing

preferences. Ironically, this framework does not change anything shown so far. Instead,

the framework is more for presenting a consistent set of preference-setting options for

users, so different applications do not need to reinvent the wheel.

The linchpin to the preferences framework is yet another XML data structure. You can

describe your application’s preferences in an XML file stored in your project’s res/xml/

directory. Given that, Android can present a pleasant UI for manipulating those

preferences, which are then stored in the SharedPreferences you get back from

getDefaultSharedPreferences().

The following is the preference XML for the Prefs/Simple preferences sample project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off" />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"

CHAPTER 21: Using Preferences 215

 android:summary="Pick a tone, any tone" />
</PreferenceScreen>

The root of the preference XML is a PreferenceScreen element. You will see why it is

named that later in this chapter. For now, take it on faith that it is a sensible name.

Some of the things you can have inside a PreferenceScreen element, not surprisingly,

are preference definitions. These are subclasses of Preference, such as

CheckBoxPreference or RingtonePreference, as shown in the preceding XML. As you

might expect, these allow you to check a check box or choose a ringtone, respectively.

In the case of RingtonePreference, you have the option of allowing users to choose the

system default ringtone or to choose “silence” as a ringtone.

Letting Users Have Their Say
Given that you have set up the preference XML, you can use a nearly built-in activity for

allowing your users to set their preferences. The activity is “nearly built-in” because you

merely need to subclass it and point it to your preference XML, plus hook the activity

into the rest of your application.

For example, here is the EditPreferences activity of the Prefs/Simple project:

package com.commonsware.android.simple;

import android.app.Activity;
import android.os.Bundle;
import android.preference.PreferenceActivity;

public class EditPreferences extends PreferenceActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 addPreferencesFromResource(R.xml.preferences);
 }
}

As you can see, there is not much to see. All you need to do is call

addPreferencesFromResource() and specify the XML resource containing your

preferences.

You will also need to add this as an activity to your AndroidManifest.xml file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.simple">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity
 android:name=".SimplePrefsDemo"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

CHAPTER 21: Using Preferences 216

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".EditPreferences"
 android:label="@string/app_name">
 </activity>
 </application>
</manifest>

And you will need to arrange to invoke the activity, such as from a menu option, here

pulled from SimplePrefsDemo:

 public boolean onCreateOptionsMenu(Menu menu) {
 menu.add(Menu.NONE, EDIT_ID, Menu.NONE, "Edit Prefs")
 .setIcon(R.drawable.misc)
 .setAlphabeticShortcut('e');

 return(super.onCreateOptionsMenu(menu));
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case EDIT_ID:
 startActivity(new Intent(this, EditPreferences.class));
 return(true);
 }

 return(super.onOptionsItemSelected(item));
 }
}

That is all that is required, and it really is not that much code outside the preferences

XML. What you get for your effort is an Android-supplied preference UI, as shown in

Figure 21–1.

The check box can be directly checked or unchecked. To change the ringtone

preference, just select the entry in the preference list to bring up a selection dialog, as

shown in Figure 21–2.

CHAPTER 21: Using Preferences 217

Figure 21–1. The Simple project's preference UI

Figure 21–2. Choosing a ringtone preference

Notice that there is no explicit save or commit button or menu. Any changes are

persisted as soon as they are made.

The SimplePrefsDemo activity, beyond having the aforementioned menu, also displays

the current preferences via a TableLayout:

CHAPTER 21: Using Preferences 218

<?xml version="1.0" encoding="utf-8"?>
<TableLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <TableRow>
 <TextView
 android:text="Checkbox:"
 android:paddingRight="5px"
 />
 <TextView android:id="@+id/checkbox"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:text="Ringtone:"
 android:paddingRight="5px"
 />
 <TextView android:id="@+id/ringtone"
 />
 </TableRow>
</TableLayout>

The fields for the table are found in onCreate():

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 checkbox=(TextView)findViewById(R.id.checkbox);
 ringtone=(TextView)findViewById(R.id.ringtone);
}

The fields are updated on each onResume():

public void onResume() {
 super.onResume();

 SharedPreferences prefs=PreferenceManager
 .getDefaultSharedPreferences(this);

 checkbox.setText(new Boolean(prefs
 .getBoolean("checkbox", false))
 .toString());
 ringtone.setText(prefs.getString("ringtone", "<unset>"));
}

This means that the fields will be updated when the activity is opened and after the

preferences activity is left (e.g., via the back button), as shown in Figure 21–3.

CHAPTER 21: Using Preferences 219

Figure 21–3. The Simple project's list of saved preferences

Adding a Wee Bit o' Structure
If you have a lot of preferences for users to set, putting them all in one big list may not

be the best idea. Android’s preference framework gives you a few ways to impose a bit

of structure on your bag of preferences, including categories and screens.

Categories are added via a PreferenceCategory element in your preference XML and are

used to group together related preferences. Rather than have your preferences all as

children of the root PreferenceScreen, you can place a few PreferenceCategory

elements in the PreferenceScreen, and then put your preferences in their appropriate

categories. Visually, this adds a divider with the category title between groups of

preferences.

If you have a whole lot of preferences—more than are convenient for users to scroll

through—you can also put them on separate “screens” by introducing the

PreferenceScreen element. Yes, that PreferenceScreen element.

Any children of PreferenceScreen go on their own screen. If you nest

PreferenceScreens, the parent screen displays the screen as a placeholder entry, and

tapping that entry brings up the child screen.

For example, from the Prefs/Structured sample project, here is a preference XML file

that contains both PreferenceCategory and nested PreferenceScreen elements:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"

CHAPTER 21: Using Preferences 220

 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"
 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
</PreferenceScreen>

The result, when you use this preference XML with your PreferenceActivity

implementation, is a categorized list of elements, as shown in Figure 21–4.

Figure 21–4. The Structured project's preference UI, showing categories and a screen placeholder

If you tap the Detail Screen entry, you are taken to the child preference screen, as

shown in Figure 21–5.

CHAPTER 21: Using Preferences 221

Figure 21–5. The child preference screen of the Structured project's preference UI

The Kind of Pop-Ups You Like
Of course, not all preferences are check boxes and ringtones. For others, like entry

fields and lists, Android uses pop-up dialogs. Users do not enter their preference

directly in the preference UI activity, but rather tap a preference, fill in a value, and click

OK to commit the change.

Structurally, in the preference XML, fields and lists are not significantly different from

other preference types, as seen in this preference XML from the Prefs/Dialogs

sample project:

<PreferenceScreen
 xmlns:android="http://schemas.android.com/apk/res/android">
 <PreferenceCategory android:title="Simple Preferences">
 <CheckBoxPreference
 android:key="checkbox"
 android:title="Checkbox Preference"
 android:summary="Check it on, check it off"
 />
 <RingtonePreference
 android:key="ringtone"
 android:title="Ringtone Preference"
 android:showDefault="true"
 android:showSilent="true"
 android:summary="Pick a tone, any tone"
 />
 </PreferenceCategory>
 <PreferenceCategory android:title="Detail Screens">
 <PreferenceScreen
 android:key="detail"

CHAPTER 21: Using Preferences 222

 android:title="Detail Screen"
 android:summary="Additional preferences held in another page">
 <CheckBoxPreference
 android:key="checkbox2"
 android:title="Another Checkbox"
 android:summary="On. Off. It really doesn't matter."
 />
 </PreferenceScreen>
 </PreferenceCategory>
 <PreferenceCategory android:title="Simple Preferences">
 <EditTextPreference
 android:key="text"
 android:title="Text Entry Dialog"
 android:summary="Click to pop up a field for entry"
 android:dialogTitle="Enter something useful"
 />
 <ListPreference
 android:key="list"
 android:title="Selection Dialog"
 android:summary="Click to pop up a list to choose from"
 android:entries="@array/cities"
 android:entryValues="@array/airport_codes"
 android:dialogTitle="Choose a Pennsylvania city" />
 </PreferenceCategory>
</PreferenceScreen>

With the field (EditTextPreference), in addition to the title and summary you put on the

preference itself, you can also supply the title to use for the dialog.

With the list (ListPreference), you supply both a dialog title and two string-array

resources: one for the display names and one for the values. These need to be in the

same order, because the index of the chosen display name determines which value is

stored as the preference in the SharedPreferences. For example, here are the arrays for

use by the ListPreference shown in the preceding example:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string-array name="cities">
 <item>Philadelphia</item>
 <item>Pittsburgh</item>
 <item>Allentown/Bethlehem</item>
 <item>Erie</item>
 <item>Reading</item>
 <item>Scranton</item>
 <item>Lancaster</item>
 <item>Altoona</item>
 <item>Harrisburg</item>
 </string-array>
 <string-array name="airport_codes">
 <item>PHL</item>
 <item>PIT</item>
 <item>ABE</item>
 <item>ERI</item>
 <item>RDG</item>
 <item>AVP</item>
 <item>LNS</item>
 <item>AOO</item>

CHAPTER 21: Using Preferences 223

 <item>MDT</item>
 </string-array>
</resources>

When you bring up the preference UI, you start with another category with another pair

of preference entries, as shown in Figure 21–6.

Figure 21–6. The preference screen of the Dialogs project's preference UI

Tapping the Text Entry Dialog entry brings up a text-entry dialog with the prior

preference entry already filled in, as shown in Figure 21–7.

Figure 21–7. Editing a text preference

CHAPTER 21: Using Preferences 224

Tapping Selection Dialog brings up a selection dialog showing the display names from

the one array, as shown in Figure 21–8.

Figure 21–8. Editing a list preference

225

 Chapter

Managing and Accessing
Local Databases
SQLite is a very popular embedded database, as it combines a clean SQL interface with

a very small memory footprint and decent speed. Moreover, it is public domain, so

everyone can use it. Many firms (e.g., Adobe, Apple, Google, Sun, and Symbian) and

open source projects (e.g., Mozilla, PHP, and Python) ship products with SQLite.

For Android, SQLite is “baked into” the Android runtime, so every Android application

can create SQLite databases. Since SQLite uses a SQL interface, it is fairly

straightforward to use for people with experience in other SQL-based databases.

However, its native API is not JDBC, and JDBC might be too much overhead for a

memory-limited device like a phone, anyway. Hence, Android programmers have a

different API to learn. The good news is that it is not that difficult.

This chapter will cover the basics of SQLite use in the context of working on Android. It

by no means is a thorough coverage of SQLite as a whole. If you want to learn more

about SQLite and how to use it in environments other than Android, a fine book is The
Definitive Guide to SQLite by Michael Owens (Apress, 2006).

The Database Example
Much of the sample code shown in this chapter comes from the Database/Constants

application. This application presents a list of physical constants, with names and values

culled from Android’s SensorManager, as shown in Figure 22–1.

22

CHAPTER 22: Managing and Accessing Local Databases 226

Figure 22–1. The Constants sample application, as initially launched

You can pop up a menu to add a new constant, which brings up a dialog to fill in the

name and value of the constant, as shown in Figure 22–2.

Figure 22–2. The Constants sample application's Add Constant dialog

The constant is then added to the list. A long-tap on an existing constant will bring up a

context menu with a Delete option, which, after confirmation, will delete the constant.

CHAPTER 22: Managing and Accessing Local Databases 227

And, of course, all of this is stored in a SQLite database.

A Quick SQLite Primer
SQLite, as the name suggests, uses a dialect of SQL for queries (SELECT), data

manipulation (INSERT, et. al.), and data definition (CREATE TABLE, et. al.). SQLite has a few

places where it deviates from the SQL-92 standard, as is common for most SQL

databases. The good news is that SQLite is so space-efficient that the Android runtime

can include all of SQLite, not some arbitrary subset to trim it down to size.

A big difference between SQLite and other SQL databases is the data typing. While you

can specify the data types for columns in a CREATE TABLE statement, and SQLite will use

those as a hint, that is as far as it goes. You can put whatever data you want in whatever

column you want. Put a string in an INTEGER column? Sure, no problem! Vice versa?

That works, too! SQLite refers to this as manifest typing, as described in the

documentation:

In manifest typing, the datatype is a property of the value itself, not of
the column in which the value is stored. SQLite thus allows the user to
store any value of any datatype into any column regardless of the
declared type of that column.

In addition, a handful of standard SQL features are not supported in SQLite, notably

FOREIGN KEY constraints, nested transactions, RIGHT OUTER JOIN, FULL OUTER JOIN, and

some flavors of ALTER TABLE.

Beyond that, though, you get a full SQL system, complete with triggers, transactions,

and the like. Stock SQL statements, like SELECT, work pretty much as you might expect.

NOTE: If you are used to working with a major database, like Oracle, you may look upon SQLite
as being a “toy” database. Please bear in mind that Oracle and SQLite are meant to solve
different problems, and that you will not be seeing a full copy of Oracle on a phone any time
soon, in all likelihood.

Start at the Beginning
No databases are automatically supplied to you by Android. If you want to use SQLite,

you will need to create your own database, and then populate it with your own tables,

indexes, and data.

To create and open a database, your best option is to craft a subclass of

SQLiteOpenHelper. This class wraps up the logic to create and upgrade a database, per

your specifications, as needed by your application. Your subclass of SQLiteOpenHelper

will need three methods:

CHAPTER 22: Managing and Accessing Local Databases 228

 The constructor, chaining upward to the SQLiteOpenHelper

constructor. This takes the Context (e.g., an Activity), the name of the

database, an optional cursor factory (typically, just pass null), and an

integer representing the version of the database schema you are

using.

 onCreate(), which passes you a SQLiteDatabase object that you need

to populate with tables and initial data, as appropriate.

 onUpgrade(), which passes you a SQLiteDatabase object and the old

and new version numbers, so you can figure out how best to convert

the database from the old schema to the new one. The simplest, albeit

least friendly, approach is to drop the old tables and create new ones.

For example, here is a DatabaseHelper class from Database/Constants that, in

onCreate(), creates a table and adds a number of rows, and in onUpgrade() cheats by

dropping the existing table and executing onCreate():

package com.commonsware.android.constants;

import android.content.ContentValues;
import android.content.Context;
import android.database.Cursor;
import android.database.SQLException;
import android.database.sqlite.SQLiteOpenHelper;
import android.database.sqlite.SQLiteDatabase;
import android.hardware.SensorManager;

public class DatabaseHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME="db";
 public static final String TITLE="title";
 public static final String VALUE="value";

 public DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, 1);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT,
 title TEXT, value REAL);");

 ContentValues cv=new ContentValues();

 cv.put(TITLE, "Gravity, Death Star I");
 cv.put(VALUE, SensorManager.GRAVITY_DEATH_STAR_I);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Earth");
 cv.put(VALUE, SensorManager.GRAVITY_EARTH);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Jupiter");
 cv.put(VALUE, SensorManager.GRAVITY_JUPITER);

CHAPTER 22: Managing and Accessing Local Databases 229

 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mars");
 cv.put(VALUE, SensorManager.GRAVITY_MARS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Mercury");
 cv.put(VALUE, SensorManager.GRAVITY_MERCURY);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Moon");
 cv.put(VALUE, SensorManager.GRAVITY_MOON);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Neptune");
 cv.put(VALUE, SensorManager.GRAVITY_NEPTUNE);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Pluto");
 cv.put(VALUE, SensorManager.GRAVITY_PLUTO);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Saturn");
 cv.put(VALUE, SensorManager.GRAVITY_SATURN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Sun");
 cv.put(VALUE, SensorManager.GRAVITY_SUN);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, The Island");
 cv.put(VALUE, SensorManager.GRAVITY_THE_ISLAND);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Uranus");
 cv.put(VALUE, SensorManager.GRAVITY_URANUS);
 db.insert("constants", TITLE, cv);

 cv.put(TITLE, "Gravity, Venus");
 cv.put(VALUE, SensorManager.GRAVITY_VENUS);
 db.insert("constants", TITLE, cv);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 android.util.Log.w("Constants", "Upgrading database, which will destroy all old
data");
 db.execSQL("DROP TABLE IF EXISTS constants");
 onCreate(db);
 }
}

CHAPTER 22: Managing and Accessing Local Databases 230

To use your SQLiteOpenHelper subclass, create an instance and ask it to

getReadableDatabase() or getWriteableDatabase(), depending on whether or not you

will be changing its contents. For example, our ConstantsBrowser activity opens the

database in onCreate():

db=(new DatabaseHelper(this)).getWritableDatabase();

This will return a SQLiteDatabase instance, which you can then use to query the

database or modify its data.

When you are finished with the database (e.g., your activity is being closed), simply call

close() on the SQLiteDatabase to release your connection.

Setting the Table
For creating your tables and indexes, you will need to call execSQL() on your

SQLiteDatabase, providing the Data Definition Language (DDL) statement you wish to

apply against the database. Barring a database error, this method returns nothing.

So, for example, you can call execSQL() to create the constants table, as shown in the

DatabaseHelper onCreate() method:

db.execSQL("CREATE TABLE constants (_id INTEGER PRIMARY KEY AUTOINCREMENT, title
TEXT,
 value REAL);");

This will create a table, named constants, with a primary key column named _id that is

an autoincremented integer (i.e., SQLite will assign the value for you when you insert

rows), plus two data columns: title (text) and value (a float, or real in SQLite terms).

SQLite will automatically create an index for you on your primary key column. You could

add other indexes here via some CREATE INDEX statements.

Most likely, you will create tables and indexes when you first create the database, or

possibly when the database needs upgrading to accommodate a new release of your

application. If you do not change your table schemas, you might never drop your tables

or indexes, but if you do, just use execSQL() to invoke DROP INDEX and DROP TABLE

statements as needed.

Makin’ Data
Given that you have a database and one or more tables, you probably want to put some

data in them. You have two major approaches for doing this.

 Use execSQL(), just as you did for creating the tables. The execSQL()

method works for any SQL that does not return results, so it can

handle INSERT, UPDATE, DELETE, and so on just fine.

CHAPTER 22: Managing and Accessing Local Databases 231

 Use the insert(), update(), and delete() methods on the

SQLiteDatabase object. These are “builder” sorts of methods, in that

they break down the SQL statements into discrete chunks, then take

those chunks as parameters.

For example, here we insert() a new row into our constants table:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put("title", wrapper.getTitle());
 values.put("value", wrapper.getValue());

 db.insert("constants", "title", values);
 constantsCursor.requery();
}

These methods make use of ContentValues objects, which implement a Map-esque

interface, albeit one that has additional methods for working with SQLite types. For

example, in addition to get() to retrieve a value by its key, you have getAsInteger(),

getAsString(), and so forth.

The insert() method takes the name of the table, the name of one column as the “null

column hack,” and a ContentValues with the initial values you want put into this row. The

null column hack is for the case where the ContentValues instance is empty. The column

named as the null column hack will be explicitly assigned the value NULL in the SQL

INSERT statement generated by insert().

The update() method takes the name of the table, a ContentValues representing the

columns and replacement values to use, an optional WHERE clause, and an optional list of

parameters to fill into the WHERE clause, to replace any embedded question marks (?).

Since update() replaces only columns with fixed values, versus ones computed based

on other information, you may need to use execSQL() to accomplish some ends. The

WHERE clause and parameter list work akin to the positional SQL parameters you may be

used to from other SQL APIs.

The delete() method works similar to update(), taking the name of the table, the

optional WHERE clause, and the corresponding parameters to fill into the WHERE clause. For

example, here we delete a row from our constants table, given its _ID:

private void processDelete(long rowId) {
 String[] args={String.valueOf(rowId)};

 db.delete("constants", "_ID=?", args);
 constantsCursor.requery();
}

CHAPTER 22: Managing and Accessing Local Databases 232

What Goes Around Comes Around
As with INSERT, UPDATE, and DELETE, you have two main options for retrieving data from a

SQLite database using SELECT:

 Use rawQuery() to invoke a SELECT statement directly.

 Use query() to build up a query from its component parts.

Confounding matters further is the SQLiteQueryBuilder class and the issue of cursors

and cursor factories. Let’s take this one piece at a time.

Raw Queries
The simplest solution, at least in terms of the API, is rawQuery(). Just call it with your

SQL SELECT statement. The SELECT statement can include positional parameters; the

array of these forms your second parameter to rawQuery(). So, we wind up with this:

constantsCursor=db.rawQuery("SELECT _ID, title, value "+
 "FROM constants ORDER BY title",
 null);

The return value is a Cursor, which contains methods for iterating over results

(discussed in the “Using Cursors” section a little later in the chapter).

If your queries are pretty much baked into your application, this is a very straightforward

way to use them. However, it gets complicated if parts of the query are dynamic,

beyond what positional parameters can really handle. For example, if the set of columns

you need to retrieve is not known at compile time, puttering around concatenating

column names into a comma-delimited list can be annoying, which is where query()

comes in.

Regular Queries
The query() method takes the discrete pieces of a SELECT statement and builds the

query from them. The pieces, in the order they appear as parameters to query(), are as

follows:

 The name of the table to query against

 The list of columns to retrieve

 The WHERE clause, optionally including positional parameters

 The list of values to substitute in for those positional parameters

 The GROUP BY clause, if any

 The ORDER BY clause, if any

 The HAVING clause, if any

CHAPTER 22: Managing and Accessing Local Databases 233

These can be null when they are not needed (except the table name, of course):

String[] columns={"ID", "inventory"};
String[] parms={"snicklefritz"};
Cursor result=db.query("widgets", columns, "name=?",
 parms, null, null, null);

Building with Builders
Yet another option is to use SQLiteQueryBuilder, which offers much richer query-

building options, particularly for nasty queries involving things like the union of multiple

subquery results.

The SQLiteQueryBuilder interface dovetails nicely with the ContentProvider interface for

executing queries. Hence, a common pattern for your content provider’s query()

implementation is to create a SQLiteQueryBuilder, fill in some defaults, and then allow it

to build up (and optionally execute) the full query combining the defaults with what is

provided to the content provider on the query request.

For example, here is a snippet of code from a content provider using

SQLiteQueryBuilder:

@Override
public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

 qb.setTables(getTableName());

 if (isCollectionUri(url)) {
 qb.setProjectionMap(getDefaultProjection());
 }
 else {
 qb.appendWhere(getIdColumnName()+"="+url.getPathSegments().get(1));
 }

 String orderBy;

 if (TextUtils.isEmpty(sort)) {
 orderBy=getDefaultSortOrder();
 } else {
 orderBy=sort;
 }

 Cursor c=qb.query(db, projection, selection, selectionArgs,
 null, null, orderBy);
 c.setNotificationUri(getContext().getContentResolver(), url);
 return c;
}

CHAPTER 22: Managing and Accessing Local Databases 234

Content providers are explained in greater detail in Chapters 26 and 27, so some of this

you will have to take on faith until then. Here, you see the following:

 A SQLiteQueryBuilder is constructed.

 It is told the table to use for the query (setTables(getTableName())).

 It is told the default set of columns to return (setProjectionMap()), or it

is given a piece of a WHERE clause to identify a particular row in the

table by an identifier extracted from the Uri supplied to the query()

call (appendWhere()).

 Finally, it is told to execute the query, blending the preset values with

those supplied on the call to query() (qb.query(db, projection,
selection, selectionArgs, null, null, orderBy)).

Instead of having the SQLiteQueryBuilder execute the query directly, we could have

called buildQuery() to have it generate and return the SQL SELECT statement we

needed, which we could then execute ourselves.

Using Cursors
No matter how you execute the query, you get a Cursor back. This is the Android/SQLite

edition of the database cursor, a concept used in many database systems. With the

cursor, you can do the following:

 Find out how many rows are in the result set via getCount().

 Iterate over the rows via moveToFirst(), moveToNext(), and

isAfterLast().

 Find out the names of the columns via getColumnNames(), convert

those into column numbers via getColumnIndex(), and get values for

the current row for a given column via methods like getString(),

getInt(), and so on.

 Reexecute the query that created the cursor via requery().

 Release the cursor’s resources via close().

For example, here we iterate over a widgets table entries:

Cursor result=
 db.rawQuery("SELECT ID, name, inventory FROM widgets");

result.moveToFirst();

while (!result.isAfterLast()) {
 int id=result.getInt(0);
 String name=result.getString(1);
 int inventory=result.getInt(2);

 // do something useful with these

CHAPTER 22: Managing and Accessing Local Databases 235

 result.moveToNext();
}

result.close();

You can also wrap a Cursor in a SimpleCursorAdapter or other implementation, and then

hand the resulting adapter to a ListView or other selection widget. For example, after

retrieving the sorted list of constants, we pop those into the ListView for the

ConstantsBrowser activity in just a few lines of code:

ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,
 new String[] {"title", "value"},
 new int[] {R.id.title, R.id.value});

setListAdapter(adapter);

TIP: There may be circumstances in which you want to use your own Cursor subclass, rather
than the stock implementation provided by Android. In those cases, you can use
queryWithFactory() and rawQueryWithFactory(), which take a
SQLiteDatabase.CursorFactory instance as a parameter. The factory is responsible for
creating new cursors via its newCursor() implementation.

Data, Data, Everywhere
If you are used to developing for other databases, you are also probably used to having

tools to inspect and manipulate the contents of the database, beyond merely the

database’s API. With Android’s emulator, you have two main options for this.

First, the emulator is supposed to bundle in the sqlite3 console program and make it

available from the adb shell command. Once you are in the emulator’s shell, just

execute sqlite3, providing it the path to your database file. Your database file can be

found at the following location:

/data/data/your.app.package/databases/your-db-name

Here, your.app.package is the Java package for your application (e.g.,

com.commonsware.android), and your-db-name is the name of your database, as supplied

to createDatabase().

The sqlite3 program works, and if you are used to poking around your tables using a

console interface, you are welcome to use it. If you prefer something a little friendlier,

you can always copy the SQLite database off the device onto your development

machine, and then use a SQLite-aware client program to putter around. Note, though,

that you are working off a copy of the database; if you want your changes to go back to

the device, you will need to transfer the database back over.

To get the database off the device, you can use the adb pull command (or the

equivalent in your IDE, or File Manager in the Dalvik Debug Monitor Service, discussed

CHAPTER 22: Managing and Accessing Local Databases

in Chapter 35), which takes the path to the on-device database and the local destination

as parameters. To store a modified database on the device, use adb push, which takes

the local path to the database and the on-device destination as parameters.

One of the most accessible SQLite clients is the SQLite Manager extension for Firefox,

shown in Figure 22–2, as it works across all platforms.

Figure 22–3. SQLite Manager Firefox extension

You can find other client tools on the SQLite web site.

237

 Chapter

Accessing Files
While Android offers structured storage, via preferences and databases, sometimes a

simple file will suffice. Android offers two models for accessing files: one for files

prepackaged with your application and one for files created on-device by your

application. Both of these models are covered in this chapter.

You and the Horse You Rode in On
Let’s suppose you have some static data you want to ship with the application, such as

a list of words for a spell checker. The easiest way to deploy that is to place the file in

the res/raw directory, so it will be put in the Android application APK file as part of the

packaging process as a raw resource.

To access this file, you need to get yourself a Resources object. From an activity, that is

as simple as calling getResources(). A Resources object offers openRawResource() to get

an InputStream on the file you specify. Rather than a path, openRawResource() expects

an integer identifier for the file as packaged. This works just like accessing widgets via

findViewById(). For example, if you put a file named words.xml in res/raw, the identifier

is accessible in Java as R.raw.words.

Since you can get only an InputStream, you have no means of modifying this file. Hence,

it is really useful just for static reference data. Moreover, since it is unchanging until the

user installs an updated version of your application package, either the reference data

must be valid for the foreseeable future or you will need to provide some means of

updating the data. The simplest way to handle that is to use the reference data to

bootstrap some other modifiable form of storage (e.g., a database), but you end up with

two copies of the data in storage.

An alternative is to keep the reference data as is but keep modifications in a file or

database, and merge them together when you need a complete picture of the

information. For example, if your application ships a file of URLs, you could have a

second file that tracks URLs added by the user or reference URLs that were deleted by

the user.

23

CHAPTER 23: Accessing Files 238

In the Files/Static sample project, you will find a reworking of the list box example

from Chapter 7, this time using a static XML file instead of a hardwired array in Java. The

layout is the same:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >
 <TextView
 android:id="@+id/selection"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:drawSelectorOnTop="false"
 />
</LinearLayout>

In addition to that XML file, you also need an XML file with the words to show in the list:

<words>
 <word value="lorem" />
 <word value="ipsum" />
 <word value="dolor" />
 <word value="sit" />
 <word value="amet" />
 <word value="consectetuer" />
 <word value="adipiscing" />
 <word value="elit" />
 <word value="morbi" />
 <word value="vel" />
 <word value="ligula" />
 <word value="vitae" />
 <word value="arcu" />
 <word value="aliquet" />
 <word value="mollis" />
 <word value="etiam" />
 <word value="vel" />
 <word value="erat" />
 <word value="placerat" />
 <word value="ante" />
 <word value="porttitor" />
 <word value="sodales" />
 <word value="pellentesque" />
 <word value="augue" />
 <word value="purus" />
</words>

While this XML structure is not exactly a model of space efficiency, it will suffice for a

demo.

The Java code now must read in that XML file, parse out the words, and put them

someplace for the list to pick up:

CHAPTER 23: Accessing Files 239

public class StaticFileDemo extends ListActivity {
 TextView selection;
 ArrayList<String> items=new ArrayList<String>();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 selection=(TextView)findViewById(R.id.selection);

 try {
 InputStream in=getResources().openRawResource(R.raw.words);
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(in, null);
 NodeList words=doc.getElementsByTagName("word");

 for (int i=0;i<words.getLength();i++) {
 items.add(((Element)words.item(i)).getAttribute("value"));
 }

 in.close();
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), 2000)
 .show();
 }

 setListAdapter(new ArrayAdapter<String>(this,
 android.R.layout.simple_list_item_1,
 items));
 }

 public void onListItemClick(ListView parent, View v, int position,
 long id) {
 selection.setText(items.get(position).toString());
 }
}

The differences mostly lie within onCreate(). We get an InputStream for the XML file

(getResources().openRawResource(R.raw.words)), then use the built-in XML parsing

logic to parse the file into a DOM Document, pick out the word elements, and then pour

the value attributes into an ArrayList for use by the ArrayAdapter.

The resulting activity looks the same as before, as shown in Figure 23–1, since the list of

words is the same, just relocated.

CHAPTER 23: Accessing Files 240

Figure 23–1. The StaticFileDemo sample application

Of course, there are even easier ways to have XML files available to you as prepackaged

files, such as by using an XML resource, as discussed in Chapter 20. However, while

this example used XML, the file could just as easily have been a simple one-word-per-

line list or in some other format not handled natively by the Android resource system.

Readin’ ’n Writin’
Reading or writing your own, application-specific data files is nearly identical to what

you might do in a desktop Java application. The key is to use openFileInput() or

openFileOutput() on your Activity or other Context to get an InputStream or

OutputStream, respectively. From that point forward, it is not much different from regular

Java I/O logic:

 Wrap those streams as needed, such as using an InputStreamReader

or OutputStreamWriter for text-based I/O.

 Read or write the data.

 Use close() to release the stream when done.

If two applications both try reading a notes.txt file via openFileInput(), each will

access its own edition of the file. If you need to have one file accessible from many

places, you probably want to create a content provider, as described in Chapter 27.

Note that openFileInput() and openFileOutput() do not accept file paths (e.g.,

path/to/file.txt), just simple filenames.

CHAPTER 23: Accessing Files 241

Here is the layout for the world’s most trivial text editor, pulled from the Files/ReadWrite

sample application:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical">
 <Button android:id="@+id/close"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Close" />
 <EditText
 android:id="@+id/editor"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />
</LinearLayout>

All we have here is a large text-editing widget, with a Close button above it.

The Java is only slightly more complicated:

package com.commonsware.android.readwrite;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import java.io.BufferedReader;
import java.io.File;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStream;
import java.io.OutputStreamWriter;

public class ReadWriteFileDemo extends Activity {
 private final static String NOTES="notes.txt";
 private EditText editor;

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);
 editor=(EditText)findViewById(R.id.editor);

 Button btn=(Button)findViewById(R.id.close);

 btn.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 finish();
 }
 });

CHAPTER 23: Accessing Files 242

 }

 public void onResume() {
 super.onResume();

 try {
 InputStream in=openFileInput(NOTES);

 if (in!=null) {
 InputStreamReader tmp=new InputStreamReader(in);
 BufferedReader reader=new BufferedReader(tmp);
 String str;
 StringBuffer buf=new StringBuffer();

 while ((str = reader.readLine()) != null) {
 buf.append(str+"\n");
 }

 in.close();
 editor.setText(buf.toString());
 }
 }
 catch (java.io.FileNotFoundException e) {
 // that's OK, we probably haven't created it yet
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), 2000)
 .show();
 }
 }

 public void onPause() {
 super.onPause();

 try {
 OutputStreamWriter out=
 new OutputStreamWriter(openFileOutput(NOTES, 0));

 out.write(editor.getText().toString());
 out.close();
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Exception: "+t.toString(), 2000)
 .show();
 }
 }
}

CHAPTER 23: Accessing Files 243

First, we wire up the button to close our activity when clicked by using

setOnClickListener() to invoke finish() on the activity.

Next, we hook into onResume(), so we get control when our editor is coming back to life,

from a fresh launch or after having been frozen. We use openFileInput() to read in

notes.txt and pour the contents into the text editor. If the file is not found, we assume

this is the first time the activity was run (or the file was deleted by other means), and we

just leave the editor empty.

Finally, we hook into onPause(), so we get control as our activity is hidden by another

activity or closed, such as via our Close button. Here, we use openFileOutput() to open

notes.txt, into which we pour the contents of the text editor.

The net result is that we have a persistent notepad, as shown in Figures 23–2 and 23–3.

Whatever is typed in will remain until deleted, surviving our activity being closed, the

phone being turned off, or similar situations.

Figure 23–2. The ReadWriteFileDemo sample application, as initially launched

CHAPTER 23: Accessing Files 244

Figure 23–3. The same application, after entering some text

You are also welcome to read and write files on external storage (a.k.a., the SD card).

Use Environment.getExternalStorageDirectory() to obtain a File object at the root of

the SD card. Starting with Android 1.6, you will also need to hold permissions to work

with external storage (e.g., WRITE_EXTERNAL_STORAGE). Permissions are covered in

Chapter 28.

Bear in mind that external storage is accessible by all applications, whereas

openFileInput() and openFileOutput() are in an application-private area.

245

 Chapter

Leveraging Java Libraries
Java has as many, if not more, third-party libraries than any other modern programming

language. The third-party libraries I’m referring to here are the innumerable JAR files that

you can include in a server or desktop Java application—the things that the Java SDKs

themselves do not provide.

In the case of Android, the Dalvik virtual machine (VM) at its heart is not precisely Java,

and what it provides in its SDK is not precisely the same as any traditional Java SDK.

That being said, many Java third-party libraries still provide capabilities that Android

lacks natively, and therefore may be of use to you in your project (if you can get them to

work with Android’s flavor of Java).

This chapter explains what it will take for you to leverage such libraries and the

limitations on Android’s support for arbitrary third-party code.

The Outer Limits
Not all available Java code will work well with Android. There are a number of factors to

consider, including the following:

 Expected platform APIs: Does the code assume a newer Java Virtual

Machine (JVM) than the one Android is based on? Or, does the code

assume the existence of Java APIs that ship with Java SE but not with

Android, such as Swing?

 Size: Existing Java code designed for use on desktops or servers does

not need to be concerned much with on-disk size, or, to some extent,

even in-RAM size. Android, of course, is short on both. Using third-

party Java code, particularly when prepackaged as JARs, may balloon

the size of your application.

 Performance: Does the Java code effectively assume a much more

powerful CPU than what you may find on many Android devices? Just

because a desktop can run it without issue doesn’t mean your average

mobile phone will handle it well.

24

CHAPTER 24: Leveraging Java Libraries 246

 Interface: Does the Java code assume a console interface? Or is it a

pure API that you can wrap your own interface around?

One trick for addressing some of these concerns is to use open source Java code, and

actually work with the code to make it more Android-friendly. For example, if you’re using

just 10% of the third-party library, maybe it’s worthwhile to recompile the subset of the

project to be only what you need, or at least to remove the unnecessary classes from the

JAR. The former approach is safer, in that you get compiler help to make sure you’re not

discarding some essential piece of code, although it may be quite tedious to do.

Ants and JARs
You have two choices for integrating third-party code into your project: use source code

or use prepackaged JARs.

If you choose to use source code, all you need to do is copy it into your own source tree

(under src/ in your project), so it can sit alongside your existing code, and then let the

compiler perform its magic.

If you choose to use an existing JAR, perhaps one for which you do not have the source

code, you will need to teach your build chain how to use the JAR. First, place the JAR in

the libs/ directory in your Android project. Then, if you are using an IDE, you probably

need to add the JAR to your build path. (Ant will automatically pick up all JARs found in

libs/.)

Following the Script
Unlike other mobile device operating systems, Android has no restrictions on what you

can run on it, so long as you can do it in Java using the Dalvik VM. This includes

incorporating your own scripting language into your application, something that is

expressly prohibited on some other devices.

One possible Java scripting language is BeanShell (http://beanshell.org). BeanShell

gives you Java-compatible syntax with implicit typing and no compilation required.

To add BeanShell scripting, you need to put the BeanShell interpreter’s JAR file in your

libs/ directory. Unfortunately, the 2.0b4 JAR available for download from the BeanShell

site does not work out of the box with the Android 0.9 and newer SDKs (perhaps due to

the compiler that was used to build it). Instead, you should probably check out the

source code from Subversion and execute ant jarcore to build it, and then copy the

resulting JAR (in BeanShell’s dist/ directory) to your own project’s libs/. Or, just use

the BeanShell JAR that accompanies the source code for this book, up in the

Java/AndShell project.

CHAPTER 24: Leveraging Java Libraries 247

From there, using BeanShell on Android is no different than using BeanShell in any other

Java environment:

1. Create an instance of the BeanShell Interpreter class.

2. Set any globals for the script’s use via Interpreter#set().

3. Call Interpreter#eval() to run the script and, optionally, get the result

of the last statement of the script.

For example, here is the XML layout for the world’s smallest BeanShell IDE:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<Button
 android:id="@+id/eval"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Go!"
 />
<EditText
 android:id="@+id/script"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:singleLine="false"
 android:gravity="top"
 />
</LinearLayout>

Couple that with the following activity implementation:

package com.commonsware.android.andshell;

import android.app.Activity;
import android.app.AlertDialog;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;
import bsh.Interpreter;

public class MainActivity extends Activity {
 private Interpreter i=new Interpreter();

 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.eval);
 final EditText script=(EditText)findViewById(R.id.script);

CHAPTER 24: Leveraging Java Libraries 248

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 String src=script.getText().toString();

 try {
 i.set("context", MainActivity.this);
 i.eval(src);
 }
 catch (bsh.EvalError e) {
 AlertDialog.Builder builder=
 new AlertDialog.Builder(MainActivity.this);

 builder
 .setTitle("Exception!")
 .setMessage(e.toString())
 .setPositiveButton("OK", null)
 .show();
 }
 }
 });
 }
}

Compile and run it (including incorporating the BeanShell JAR as mentioned earlier), and

install it on the emulator. Fire it up, and you get a trivial IDE, with a large text area for

your script and a big Go! button to execute it, as shown in Figure 24–1.

Figure 24–1. The AndShell BeanShell IDE

CHAPTER 24: Leveraging Java Libraries 249

import android.widget.Toast;

Toast.makeText(context, "Hello, world!", 5000).show();

Note the use of context to refer to the activity when making the Toast. That is the global

set by the activity to reference back to itself. You could call this global variable anything

you want, as long as the set() call and the script code use the same name.

Click the Go! button, and you get the result shown in Figure 24–2.

Figure 24–2. The AndShell BeanShell IDE, executing some code

And now, some caveats:

 Not all scripting languages will work. For example, those that

implement their own form of just-in-time (JIT) compilation, generating

Java bytecodes on the fly, would probably need to be augmented to

generate Dalvik VM bytecodes instead of those for stock Java

implementations. Simpler languages that execute from parsed

scripts, calling Java reflection APIs to call back into compiled

classes, will likely work better. Even there, though, not every feature

of the language may work, if it relies on some facility in a traditional

Java API that does not exist in Dalvik. For example, there could be

stuff hidden inside BeanShell or the add-on JARs that does not work

on today’s Android.

CHAPTER 24: Leveraging Java Libraries 250

 Scripting languages without JIT will inevitably be slower than compiled

Dalvik applications. Slower may mean users experience sluggishness.

Slower definitely means more battery life is consumed for the same

amount of work. So, building a whole Android application in

BeanShell, simply because you feel it is easier to program in, may

cause your users to be unhappy.

 Scripting languages that expose the whole Java API, like BeanShell,

can pretty much do anything the underlying Android security model

allows. So, if your application has the READ_CONTACTS permission,

expect any BeanShell scripts your application runs to have the same

permission. (Permissions are covered in Chapter 28.)

 Last, but certainly not least, is that language interpreter JARs tend to

be rather portly. The BeanShell JAR used in this example is 200KB.

That is not ridiculous, considering what it does, but it will make

applications that use BeanShell that much bigger to download, take

up that much more space on the device, and so on.

...And Not a Drop to Drink
As noted earlier, not all Java code will work on Android and Dalvik. Here are some

examples:

 If the Java code assumes it runs on Java SE, Java ME, or Java EE, it

may be missing some APIs that Android does not provide. For

example, some charting libraries assume the existence of Swing or

AWT drawing primitives, which are generally unavailable on Android.

 The Java code might have a dependency on other Java code that, in

turn, might have problems running on Android. For example, you might

want to use a JAR that relies on an earlier (or newer) version of the

Apache HttpComponents than the one that is bundled with Android.

 The Java code may use language capabilities beyond what the Dalvik

engine is capable of using.

In all these cases, if you have a compiled JAR to work with, you may not encounter

problems at compile time, but only when running the application. Hence, where

possible, it is best to use open source code with Android, so you can build the third-

party code alongside your own and find out about difficulties sooner.

CHAPTER 24: Leveraging Java Libraries 251

Reviewing the Script
Since this chapter covers scripting in Android, you may be interested to know that you

have options beyond embedding BeanShell directly in your project.

Some experiments have been conducted with other JVM-based programming

languages, such as JRuby and Jython. At present, their support for Android is

incomplete, but progress is being made.

Additionally, the Android Scripting Environment (ASE), available from the Android

Market, allows you to write scripts in Python and Lua, to go along with BeanShell. These

scripts are not full-fledged applications and, at the time of this writing, are not really

distributable to others. Also note that ASE is not precisely designed to extend other

applications, though it can be used that way. But if you want to do on-device

programming, ASE is probably the best answer. For more information about ASE, see its

project page at http://code.google.com/p/android-scripting/.

253

 Chapter

Communicating via the
Internet
The expectation is that most, if not all, Android devices will have built-in Internet access.

That could be Wi-Fi, cellular data services (EDGE, 3G, etc.), or possibly something else

entirely. Regardless, most people—or at least those with a data plan or Wi-Fi access—

will be able to get to the Internet from their Android phone.

Not surprisingly, the Android platform gives developers a wide range of ways to make

use of this Internet access. Some offer high-level access, such as the integrated WebKit

browser component. If you want, you can drop all the way down to using raw sockets. In

between, you can leverage APIs—both on-device and from third-party JARs—that give

you access to specific protocols: HTTP, XMPP, SMTP, and so on.

The emphasis of this book is on the higher-level forms of access: the WebKit

component (discussed in Chapter 13) and Internet-access APIs (discussed in this

chapter). As busy coders, we should be trying to reuse existing components versus

rolling our own on-the-wire protocol wherever possible.

REST and Relaxation
Android does not have built-in SOAP or XML-RPC client APIs. However, it does have the

Apache HttpComponents library baked in. You can either layer a SOAP/XML-RPC layer

atop this library or use it “straight” for accessing REST-style web services. For the

purposes of this book, REST-style web services are considered simple HTTP requests

for ordinary URLs over the full range of HTTP verbs, with formatted payloads (XML,

JSON, etc.) as responses.

More expansive tutorials, FAQs, and HOWTOs can be found at the HttpClient web site

(http://hc.apache.org/). Here, we’ll cover the basics, while checking the weather.

25

CHAPTER 25: Communicating via the Internet 254

HTTP Operations via Apache HttpClient
The HttpClient component of HttpComponents handles all HTTP requests on your

behalf. The first step to using HttpClient is, not surprisingly, to create an HttpClient

object. Since HttpClient is an interface, you will need to actually instantiate some

implementation of that interface, such as DefaultHttpClient.

Those requests are bundled up into HttpRequest instances, with different HttpRequest

implementations for each different HTTP verb (e.g., HttpGet for HTTP GET requests). You

create an HttpRequest implementation instance, fill in the URL to retrieve and other

configuration data (e.g., form values if you are doing an HTTP POST via HttpPost), and

then pass the method to the client to actually make the HTTP request via execute().

What happens at this point can be as simple or as complicated as you want. You can

get an HttpResponse object back, with a response code (e.g., 200 for OK), HTTP

headers, and the like. Or, you can use a flavor of execute() that takes a

ResponseHandler<String> as a parameter, with the net result being that execute()

returns just the String representation of the response body. In practice, this is not a

recommended approach, because you really should be checking your HTTP response

codes for errors. However, for trivial applications, like book examples, the

ResponseHandler<String> approach works just fine.

For example, let’s take a look at the Internet/Weather sample project. This implements

an activity that retrieves weather data for your current location from the National

Weather Service. (Note that this probably only works only for geographic locations in the

United States.) That data is converted into an HTML page, which is poured into a

WebKit widget for display. Rebuilding this demo using a ListView is left as an exercise

for the reader. Also, since this sample is relatively long, we will only show relevant

pieces of the Java code here in this chapter, though you can always download the full

source code from the Apress web site.

To make this a bit more interesting, we use the Android location services to figure out

where we are—well, sort of. The full details of how that works are left until Chapter 32.

In the onResume() method, we toggle on location updates, so we will be informed where

we are now and when we move a significant distance (10 kilometers). When a location is

available—either at the start or based on movement—we retrieve the National Weather

Service data via our updateForecast() method:

private void updateForecast(Location loc) {
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);

 try {
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod,
 responseHandler);

 buildForecasts(responseBody);

CHAPTER 25: Communicating via the Internet 255

 String page=generatePage();

 browser.loadDataWithBaseURL(null, page, "text/html",
 "UTF-8", null);
 }
 catch (Throwable t) {
 Toast
 .makeText(this, "Request failed: "+t.toString(), 4000)
 .show();
 }
}

The updateForecast() method takes a Location as a parameter, obtained from the

location update process. For now, all you need to know is that Location sports

getLatitude() and getLongitude() methods, which return the latitude and longitude of

the device’s position, respectively.

We hold the URL to the National Weather Service XML in a string resource, and pour in

the latitude and longitude at runtime. Given our HttpClient object created in

onCreate(), we populate an HttpGet with that customized URL, and then execute that

method. Given the resulting XML from the REST service, we build the forecast HTML

page, as described next, and pour that into the WebKit widget. If the HttpClient blows

up with an exception, we provide that error as a Toast.

Parsing Responses
The response you get will be formatted using some system—HTML, XML, JSON, or

whatever. It is up to you, of course, to pick out the information you need and do

something useful with it. In the case of the WeatherDemo, we need to extract the forecast

time, temperature, and icon (indicating sky conditions and precipitation), and generate

an HTML page from it.

Android includes three XML parsers: the traditional W3C DOM parser (org.w3c.dom), a

SAX parser (org.xml.sax), and the XML pull parser (discussed in Chapter 20). It also has

a JSON parser (org.json).

You are also welcome to use third-party Java code, where possible, to handle other

formats, such as a dedicated RSS/Atom parser for a feed reader. The use of third-party

Java code is discussed in Chapter 24.

For WeatherDemo, we use the W3C DOM parser in our buildForecasts() method:

void buildForecasts(String raw) throws Exception {
 DocumentBuilder builder=DocumentBuilderFactory
 .newInstance()
 .newDocumentBuilder();
 Document doc=builder.parse(new InputSource(new StringReader(raw)));
 NodeList times=doc.getElementsByTagName("start-valid-time");

 for (int i=0;i<times.getLength();i++) {
 Element time=(Element)times.item(i);
 Forecast forecast=new Forecast();

CHAPTER 25: Communicating via the Internet 256

 forecasts.add(forecast);
 forecast.setTime(time.getFirstChild().getNodeValue());
 }

 NodeList temps=doc.getElementsByTagName("value");

 for (int i=0;i<temps.getLength();i++) {
 Element temp=(Element)temps.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setTemp(new Integer(temp.getFirstChild().getNodeValue()));
 }

 NodeList icons=doc.getElementsByTagName("icon-link");

 for (int i=0;i<icons.getLength();i++) {
 Element icon=(Element)icons.item(i);
 Forecast forecast=forecasts.get(i);

 forecast.setIcon(icon.getFirstChild().getNodeValue());
 }
}

The National Weather Service XML format is curiously structured, relying heavily on

sequential position in lists versus the more object-oriented style you find in formats like

RSS or Atom. That being said, we can take a few liberties and simplify the parsing

somewhat, taking advantage of the fact that the elements we want (start-valid-time

for the forecast time, value for the temperature, and icon-link for the icon URL) are

unique within the document.

The HTML comes in as an InputStream and is fed into the DOM parser. From there, we

scan for the start-valid-time elements and populate a set of Forecast models using

those start times. Then we find the temperature value elements and icon-link URLs

and fill those in to the Forecast objects.

In turn, the generatePage() method creates a rudimentary HTML table with the

forecasts:

String generatePage() {
 StringBuffer bufResult=new StringBuffer("<html><body><table>");

 bufResult.append("<tr><th width=\"50%\">Time</th>"+
 "<th>Temperature</th><th>Forecast</th></tr>");

 for (Forecast forecast : forecasts) {
 bufResult.append("<tr><td align=\"center\">");
 bufResult.append(forecast.getTime());
 bufResult.append("</td><td align=\"center\">");
 bufResult.append(forecast.getTemp());
 bufResult.append("</td><td><img src=\"");
 bufResult.append(forecast.getIcon());
 bufResult.append("\"></td></tr>");
 }

CHAPTER 25: Communicating via the Internet 257

 bufResult.append("</table></body></html>");

 return(bufResult.toString());
}

The result looks like Figure 25–1.

Figure 25–1. The WeatherDemo sample application

Stuff to Consider
If you need to use Secure Sockets Layer (SSL) protocol, bear in mind that the default

HttpClient setup does not include SSL support. Mostly, this is because you need to

decide how to handle SSL certificate presentation. Do you blindly accept all certificates,

even self-signed or expired ones? Or do you want to ask the users if they really want to

use some strange certificates?

Similarly, the HttpClient component, by default, is designed for single-threaded use. If

you will be using HttpClient from a service or some other place where multiple threads

might be an issue, you can readily set up HttpClient to support multiple threads.

For these sorts of topics, you are best served by checking out the HttpClient web site

for documentation and support.

259

 Chapter

Using a Content Provider
Any Uri in Android that begins with the content:// scheme represents a resource

served up by a content provider. Content providers offer data encapsulation using Uri

instances as handles. You neither know nor care where the data represented by the Uri

comes from, as long as it is available to you when needed. The data could be stored in a

SQLite database, in flat files, or on some far-off server accessed over the Internet.

Given a Uri, you can perform basic CRUD (create, read, update, delete) operations

using a content provider. Uri instances can represent either collections or individual

pieces of content. Given a collection Uri, you can create new pieces of content via

insert operations. Given an instance Uri, you can read data represented by the Uri,

update that data, or delete the instance outright.

Android lets you use existing content providers or create your own. This chapter covers

using content providers. Chapter 27 explains how you can serve up your own data using

the content provider framework.

Pieces of Me
The simplified model of the construction of a content Uri is the scheme, the namespace

of data, and, optionally, the instance identifier—all separated by slashes in URL-style

notation. The scheme of a content Uri is always content://.

So, a content Uri of content://constants/5 represents the constants instance with an

identifier of 5.

The combination of the scheme and the namespace is known as the base Uri of a

content provider, or a set of data supported by a content provider. In the preceding

example, content://constants is the base Uri for a content provider that serves up

information about “constants” (in this case, physical constants).

The base Uri can be more complicated. For example, if the base Uri for contacts were

content://contacts/people, the Contacts content provider may serve up other data

using other base Uri values.

26

CHAPTER 26: Using a Content Provider 260

The base Uri represents a collection of instances. The base Uri combined with an

instance identifier (e.g., 5) represents a single instance.

Most of the Android APIs expect these to be Uri objects, though in common discussion,

it is simpler to think of them as strings. The Uri.parse() static method creates a Uri

from the string representation.

Getting a Handle
So, where do these Uri instances come from?

The most popular starting point, if you know the type of data you want to work with, is to

get the base Uri from the content provider itself in code. For example, CONTENT_URI is

the base Uri for contacts represented as people; this maps to

content://contacts/people. If you just need the collection, this Uri works as is. If you

need an instance and know its identifier, you can call addId() on the Uri to inject it, so

you have a Uri for the instance.

You might also get Uri instances handed to you from other sources, such as getting Uri

handles for contacts via subactivities responding to ACTION_PICK intents. In this case,

the Uri is truly an opaque handle, unless you decide to pick it apart using the various

getters on the Uri class.

You can also hardwire literal String objects (e.g., "content://contacts/people") and

convert them into Uri instances via Uri.parse(). This is not an ideal solution, as the

base Uri values could conceivably change over time. For example, the Contacts content

provider’s base Uri is no longer content://contacts/people due to an overhaul of that

subsystem.

Makin’ Queries
Given a base Uri, you can run a query to return data from the content provider related to

that Uri. This has much of the feel of SQL—you specify the “columns” to return, the

constraints to determine which “rows” to return, a sort order, and so on. The difference

is that this request is being made of a content provider, not directly of some database

(e.g., SQLite).

The nexus of this is the managedQuery() method available to your activity. This method

takes five parameters:

 The base Uri of the content provider to query, or the instance Uri of a

specific object to query

 An array of properties of instances from that content provider that you

want returned by the query

 A constraint statement, functioning like a SQL WHERE clause

CHAPTER 26: Using a Content Provider 261

 An optional set of parameters to bind into the constraint clause,

replacing any ? characters that appear there

 An optional sort statement, functioning like a SQL ORDER BY clause

This method returns a Cursor object, which you can use to retrieve the data returned by

the query.

Properties are to content providers as columns are to databases. In other words, each

instance (row) returned by a query consists of a set of properties (columns), each

representing some piece of data.

This should make more sense given an example.

Our content provider examples come from the ContentProvider/ConstantsPlus sample

application, specifically the ConstantsBrowser class:

constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

In the call to managedQuery(), we provide the following:

 The Uri passed into the activity by the caller (CONTENT_URI); in this

case, representing the collection of physical constants managed by

the content provider

 A list of properties to retrieve

 Three null values, indicating that we do not need a constraint clause

(the Uri represents the instance we need), nor parameters for the

constraint, nor a sort order (we should get only one entry back)

private static final String[] PROJECTION = new String[] {
 Provider.Constants._ID, Provider.Constants.TITLE,
 Provider.Constants.VALUE};

The biggest “magic” here is the list of properties. The lineup of what properties are

possible for a given content provider should be provided by the documentation (or

source code) for the content provider itself. In this case, we define logical values on the

Provider content provider implementation class that represent the various properties

(namely, the unique identifier, the display name or title, and the value of the constant).

Adapting to the Circumstances
Now that we have a Cursor via managedQuery(), we have access to the query results and

can do whatever we want with them. We might, for example, manually extract data from

the Cursor to populate widgets or other objects.

However, if the goal of your query is to return a list from which the user should choose

an item, you probably should consider using SimpleCursorAdapter. This class bridges

between the Cursor and a selection widget, such as a ListView or Spinner. Pour the

Cursor into a SimpleCursorAdapter, hand the adapter off to the widget, and you’re set—

your widget will show the available options.

CHAPTER 26: Using a Content Provider 262

For example, here is the onCreate() method from ConstantsBrowser, which gives the

user a list of physical constants:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 constantsCursor=managedQuery(Provider.Constants.CONTENT_URI,
 PROJECTION, null, null, null);

 ListAdapter adapter=new SimpleCursorAdapter(this,
 R.layout.row, constantsCursor,
 new String[] {Provider.Constants.TITLE,
 Provider.Constants.VALUE},
 new int[] {R.id.title, R.id.value});

 setListAdapter(adapter);
 registerForContextMenu(getListView());
}

After executing the managedQuery() and getting the Cursor, ConstantsBrowser creates a

SimpleCursorAdapter with the following parameters:

 The activity (or other Context) creating the adapter; in this case, the

ConstantsBrowser itself

 The identifier for a layout to be used for rendering the list entries

(R.layout.row)

 The cursor (constantsCursor)

 The properties to pull out of the cursor and use for configuring the list

entry View instances (TITLE and VALUE)

 The corresponding identifiers of TextView widgets in the list entry

layout that those properties should go into (R.id.title and

R.id.value)

After that, we put the adapter into the ListView, and we get the result shown in Figure 26–1.

If you need more control over the views than you can reasonably achieve with the stock

view construction logic, subclass SimpleCursorAdapter and override getView() to create

your own widgets to go into the list, as demonstrated earlier in this book.

And, of course, you can manually manipulate the Cursor (e.g., moveToFirst(),

getString()), as demonstrated in Chapter 22.

CHAPTER 26: Using a Content Provider 263

Figure 26–1. ConstantsBrowser, showing a list of physical constants

Give and Take
Of course, content providers would be astonishingly weak if you couldn’t add or remove

data from them, as well as update what is there. Fortunately, content providers offer

these abilities.

To insert data into a content provider, you have two options available on the

ContentProvider interface (available through getContentProvider() to your activity):

 Use insert() with a collection Uri and a ContentValues structure

describing the initial set of data to put in the row.

 Use bulkInsert() with a collection Uri and an array of ContentValues

structures to populate several rows at once.

The insert() method returns a Uri for you to use for future operations on that new

object. The bulkInsert() method returns the number of created rows; you would need

to do a query to retrieve the data you just inserted.

For example, here is a snippet of code from ConstantsBrowser to insert a new constant

into the content provider, given a DialogWrapper that can provide access to the title and

value of the constant:

private void processAdd(DialogWrapper wrapper) {
 ContentValues values=new ContentValues(2);

 values.put(Provider.Constants.TITLE, wrapper.getTitle());
 values.put(Provider.Constants.VALUE, wrapper.getValue());

CHAPTER 26: Using a Content Provider 264

 getContentResolver().insert(Provider.Constants.CONTENT_URI,
 values);
 constantsCursor.requery();
}

Since we already have an outstanding Cursor for the content provider’s contents, we

call requery() on that to update the Cursor’s contents. This, in turn, will update any

SimpleCursorAdapter you may have wrapping the Cursor, and that will update any

selection widgets (e.g., ListView) you have using the adapter.

To delete one or more rows from the content provider, use the delete() method on

ContentResolver. This works akin to a SQL DELETE statement and takes three

parameters:

 A Uri representing the collection (or instance) you wish to update

 A constraint statement, functioning like a SQL WHERE clause, to

determine which rows should be updated

 An optional set of parameters to bind into the constraint clause,

replacing any ? characters that appear there

Beware of the BLOB!
Binary large objects (BLOBs) are supported in many databases, including SQLite.

However, the Android model is more aimed at supporting such hunks of data via their

own separate content Uri values. A content provider, therefore, does not provide direct

access to binary data, like photos, via a Cursor. Rather, a property in the content

provider will give you the content Uri for that particular BLOB. You can use

getInputStream() and getOutputStream() on your ContentProvider to read and write

the binary data.

Quite possibly, the rationale is to minimize unnecessary data copying. For example, the

primary use of a photo in Android is to display it to the user. The ImageView widget can

do just that, via a content Uri to a JPEG file. By storing the photo in a manner that has

its own Uri, you do not need to copy data out of the content provider into some

temporary holding area just to be able to display it—just use the Uri. The expectation,

presumably, is that few Android applications will do much more than upload binary data

and use widgets or built-in activities to display that data.

265

 Chapter

Building a Content
Provider
Building a content provider is probably the most complicated and tedious task in all of

Android development. There are many requirements of a content provider, in terms of

methods to implement and public data members to supply. And, until you try using your

content provider, you have no great way of telling if you did it correctly (versus, say,

building an activity and getting validation errors from the resource compiler).

That being said, building a content provider is of huge importance if your application

wishes to make data available to other applications. If your application is keeping its

data solely to itself, you may be able to avoid creating a content provider, and just

access the data directly from your activities. But if you want your data to possibly be

used by others—for example, you are building a feed reader and you want other

programs to be able to access the feeds you are downloading and caching—then a

content provider is right for you.

This chapter shows some sample bits of code from the ContentProvider/ConstantsPlus

application. This is the same basic application as was first shown back in Chapter 22,

but rewritten to pull the database logic into a content provider, which is then used by the

activity.

First, Some Dissection
As discussed in the previous chapter, the content Uri is the linchpin behind accessing

data inside a content provider. When using a content provider, all you really need to

know is the provider’s base Uri. From there, you can run queries as needed, or

construct a Uri to a specific instance if you know the instance identifier.

However, when building a content provider, you need to know a bit more about the

innards of the content Uri.

27

CHAPTER 27: Building a Content Provider 266

A content Uri has two to four pieces, depending on the situation:

 It always has a scheme (content://), indicating it is a content Uri

instead of a Uri to a web resource (http://).

 It always has an authority, which is the first path segment after the

scheme. The authority is a unique string identifying the content

provider that handles the content associated with this Uri.

 It may have a data type path, which is the list of path segments after

the authority and before the instance identifier (if any). The data type

path can be empty, if the content provider handles only one type of

content. It can be a single path segment (foo) or a chain of path

segments (foo/bar/goo) as needed to handle whatever data access

scenarios the content provider requires.

 It may have an instance identifier, which is an integer identifying a

specific piece of content. A content Uri without an instance identifier

refers to the collection of content represented by the authority (and,

where provided, the data path).

For example, a content Uri could be as simple as content://sekrits, which would refer

to the collection of content held by whatever content provider was tied to the sekrits

authority (e.g., SecretsProvider). Or it could be as complex as

content://sekrits/card/pin/17, which would refer to a piece of content (identified as

17) managed by the Sekrits content provider that is of the data type card/pin.

Next, Some Typing
Next, you need to come up with some MIME types corresponding with the content your

content provider will provide.

Android uses both the content Uri and the MIME type as ways to identify content on the

device. A collection content Uri—or, more accurately, the combination authority and

data type path—should map to a pair of MIME types. One MIME type will represent the

collection; the other will represent an instance. These map to the Uri patterns listed in

the previous section for no-identifier and identifier, respectively. As you saw earlier in

this book, you can fill a MIME type into an Intent to route the Intent to the proper

activity (e.g., ACTION_PICK on a collection MIME type to call up a selection activity to pick

an instance out of that collection).

The collection MIME type should be of the form vnd.X.cursor.dir/Y, where X is the

name of your firm, organization, or project, and Y is a dot-delimited type name. So, for

example, you might use vnd.tlagency.cursor.dir/sekrits.card.pin as the MIME type

for your collection of secrets.

The instance MIME type should be of the form vnd.X.cursor.item/Y, usually for the

same values of X and Y as you used for the collection MIME type (though that is not

strictly required).

CHAPTER 27: Building a Content Provider 267

Creating Your Content Provider
Creating a content provider involves four basic steps: create a provider class, supply a

Uri, declare the properties, and update the manifest.

Step 1: Create a Provider Class
Just as an activity and intent receiver are both Java classes, so is a content provider.

So, the big step in creating a content provider is crafting its Java class, with a base

class of ContentProvider.

In your subclass of ContentProvider, you are responsible for implementing six methods

that, when combined, perform the services that a content provider is supposed to offer

to activities wishing to create, read, update, or delete content.

onCreate()
As with an activity, the main entry point to a content provider is onCreate(). Here, you

can do whatever initialization you want. In particular, here is where you should lazy-

initialize your data store. For example, if you plan on storing your data in such-and-so

directory on an SD card, with an XML file serving as a table of contents, you should

check and see if that directory and XML file are there; if not, create them so the rest of

your content provider knows they are out there and available for use.

Similarly, if you have rewritten your content provider sufficiently to cause the data store

to shift structure, you should check to see what structure you have now and adjust it if

what you have is out of date. You don’t write your own “installer” program. This means

that you have no great way of determining if, when onCreate() is called, this is the first

time ever for the content provider, the first time for a new release of a content provider

that was upgraded in place, or just a normal startup.

For example, here is the onCreate() method for Provider, from the

ContentProvider/ConstantsPlus sample application:

@Override
public boolean onCreate() {
 db=(new DatabaseHelper(getContext())).getWritableDatabase();

 return (db == null) ? false : true;
}

While that doesn’t seem all that special, the “magic” is in the private DatabaseHelper

object, described in Chapter 22.

query()
As you might expect, the query() method is where your content provider gets details on

a query some activity wants to perform. It is up to you to actually process said query.

CHAPTER 27: Building a Content Provider 268

The query method gets the following as parameters:

 A Uri representing the collection or instance being queried

 A String[] representing the list of properties that should be returned

 A String representing what amounts to a SQL WHERE clause,

constraining which instances should be considered for the query

results

 A String[] representing values to go in the WHERE clause, replacing

any ? character found there

 A String representing what amounts to a SQL ORDER BY clause

You are responsible for interpreting these parameters however they make sense, and

returning a Cursor that can be used to iterate over and access the data.

As you can imagine, these parameters are aimed toward people using a SQLite

database for storage. You are welcome to ignore some of these parameters (e.g., you

can elect not to try to roll your own SQL WHERE clause parser), but you need to document

that fact so activities attempt to query you only by instance Uri, and not by using

parameters you choose not to handle.

For SQLite-backed storage providers, however, the query() method implementation

should be largely boilerplate. Use a SQLiteQueryBuilder to convert the various

parameters into a single SQL statement, and then use query() on the builder to actually

invoke the query and give you back a Cursor. The Cursor is what your query() method

returns.

For example, here is query() from Provider:

@Override
public Cursor query(Uri url, String[] projection, String selection,
 String[] selectionArgs, String sort) {
 SQLiteQueryBuilder qb=new SQLiteQueryBuilder();

 qb.setTables(getTableName());

 if (isCollectionUri(url)) {
 qb.setProjectionMap(getDefaultProjection());
 }
 else {
 qb.appendWhere(getIdColumnName()+"="+url.getPathSegments().get(1));
 }

 String orderBy;

 if (TextUtils.isEmpty(sort)) {
 orderBy=getDefaultSortOrder();
 } else {
 orderBy=sort;
 }

 Cursor c=qb.query(db, projection, selection, selectionArgs,

CHAPTER 27: Building a Content Provider 269

 null, null, orderBy);
 c.setNotificationUri(getContext().getContentResolver(), url);
 return c;
}

We create a SQLiteQueryBuilder and pour the query details into the builder. Note that

the query could be based around either a collection or an instance Uri. In the latter

case, we need to add the instance ID to the query. When done, we use the query()

method on the builder to get a Cursor for the results.

insert()
Your insert() method will receive a Uri representing the collection and a ContentValues

structure with the initial data for the new instance. You are responsible for creating the

new instance, filling in the supplied data, and returning a Uri to the new instance.

If this is a SQLite-backed content provider, once again, the implementation is mostly

boilerplate. You just need to validate that all required values were supplied by the

activity, merge your own notion of default values with the supplied data, and call

insert() on the database to actually create the instance.

For example, here is insert() from Provider:

@Override
public Uri insert(Uri url, ContentValues initialValues) {
 long rowID;
 ContentValues values;

 if (initialValues!=null) {
 values=new ContentValues(initialValues);
 } else {
 values=new ContentValues();
 }

 if (!isCollectionUri(url)) {
 throw new IllegalArgumentException("Unknown URL " + url);
 }

 for (String colName : getRequiredColumns()) {
 if (values.containsKey(colName) == false) {
 throw new IllegalArgumentException("Missing column: "+colName);
 }
 }

 populateDefaultValues(values);

 rowID=db.insert(getTableName(), getNullColumnHack(), values);
 if (rowID > 0) {
 Uri uri=ContentUris.withAppendedId(getContentUri(), rowID);
 getContext().getContentResolver().notifyChange(uri, null);
 return uri;
 }

CHAPTER 27: Building a Content Provider 270

 throw new SQLException("Failed to insert row into " + url);
}

The pattern is the same as before: use the provider particulars plus the data to be

inserted to actually do the insertion. Note the following regarding the example:

 You can insert only into a collection Uri, so we validate that by calling

isCollectionUri().

 The provider also knows which columns are required

(getRequiredColumns()), so we iterate over those and confirm our

supplied values cover the requirements.

 The provider is also responsible for filling in any default values

(populateDefaultValues()) for columns not supplied in the insert()

call and not automatically handled by the SQLite table definition.

update()
Your update() method gets the Uri of the instance or collection to change, a

ContentValues structure with the new values to apply, a String for a SQL WHERE clause,

and a String[] with parameters to use to replace ? characters found in the WHERE

clause. Your responsibility is to identify the instance(s) to be modified (based on the Uri

and WHERE clause), and then replace those instances’ current property values with the

ones supplied.

This will be annoying, unless you’re using SQLite for storage. Then you can pretty much

pass all the parameters you received to the update() call to the database, although the

update() call will vary slightly depending on whether you are updating one instance or

several instances.

For example, here is update() from Provider:

@Override
public int update(Uri url, ContentValues values, String where, String[] whereArgs) {
 int count;

 if (isCollectionUri(url)) {
 count=db.update(getTableName(), values, where, whereArgs);
 }
 else {
 String segment=url.getPathSegments().get(1);
 count=db
 .update(getTableName(), values, getIdColumnName()+"="
 + segment
 + (!TextUtils.isEmpty(where) ? " AND (" + where
 + ')' : ""), whereArgs);
 }

 getContext().getContentResolver().notifyChange(url, null);
 return count;
}

CHAPTER 27: Building a Content Provider 271

In this case, updates can either be to a specific instance or applied across the entire

collection, so we check the Uri (isCollectionUri()) and, if it is an update for the

collection, just perform the update. If we are updating a single instance, we need to add

a constraint to the WHERE clause to update only for the requested row.

delete()
As with update(), delete() receives a Uri representing the instance or collection to

work with and a WHERE clause and parameters. If the activity is deleting a single instance,

the Uri should represent that instance and the WHERE clause may be null. But the

activity might be requesting to delete an open-ended set of instances, using the WHERE

clause to constrain which ones to delete.

As with update(), this is simple if you are using SQLite for database storage (sense a

theme?). You can let it handle the idiosyncrasies of parsing and applying the WHERE

clause. All you need to do is call delete() on the database.

For example, here is delete() from Provider:

@Override
public int delete(Uri url, String where, String[] whereArgs) {
 int count;
 long rowId=0;

 if (isCollectionUri(url)) {
 count=db.delete(getTableName(), where, whereArgs);
 }
 else {
 String segment=url.getPathSegments().get(1);
 rowId=Long.parseLong(segment);
 count=db
 .delete(getTableName(), getIdColumnName()+"="
 + segment
 + (!TextUtils.isEmpty(where) ? " AND (" + where
 + ')' : ""), whereArgs);
 }

 getContext().getContentResolver().notifyChange(url, null);
 return count;
}

This is almost a clone of the update() implementation described in the preceding

section, It either deletes a subset of the entire collection or deletes a single instance (if it

also satisfies the supplied WHERE clause).

getType()
The last method you need to implement is getType(). This takes a Uri and returns the

MIME type associated with that Uri. The Uri could be a collection or an instance Uri;

you need to determine which was provided and return the corresponding MIME type.

CHAPTER 27: Building a Content Provider 272

For example, here is getType() from Provider:

@Override
public String getType(Uri url) {
 if (isCollectionUri(url)) {
 return(getCollectionType());
 }

 return(getSingleType());
}

As you can see, most of the logic delegates to private getCollectionType() and

getSingleType() methods:

private String getCollectionType() {
 return("vnd.android.cursor.dir/vnd.commonsware.constant");
}

private String getSingleType() {
 return("vnd.android.cursor.item/vnd.commonsware.constant");
}

Step 2: Supply a Uri
You also need to add a public static member—somewhere—containing the Uri for each

collection your content provider supports. Typically, this is a public static final Uri put on

the content provider class itself:

public static final Uri CONTENT_URI
 =Uri.parse("content://com.commonsware.android.constants.Provider/constants");

You may wish to use the same namespace for the content Uri that you use for your

Java classes, to reduce the chance of collision with others.

Step 3: Declare the Properties
Remember those properties you referenced when you were using a content provider, in

the previous chapter? Well, you also need to have those for your own content provider.

Specifically, you want a public static class implementing BaseColumns that contains your

property names, such as this example from Provider:

public static final class Constants implements BaseColumns {
 public static final Uri CONTENT_URI
 =Uri.parse("content://com.commonsware.android.constants.Provider/constants");
 public static final String DEFAULT_SORT_ORDER="title";
 public static final String TITLE="title";
 public static final String VALUE="value";
}

If you are using SQLite as a data store, the values for the property name constants

should be the corresponding column names in the table, so you can just pass the

CHAPTER 27: Building a Content Provider 273

projection (array of properties) to SQLite on a query(), or pass the ContentValues on an

insert() or update().

Note that nothing in here stipulates the types of the properties. They could be strings,

integers, or whatever. The biggest limitation is what a Cursor can provide access to via

its property getters. The fact that there is nothing in code that enforces type safety

means you should document the property types well, so people attempting to use your

content provider know what they can expect.

Step 4: Update the Manifest
The glue tying the content provider implementation to the rest of your application

resides in your AndroidManifest.xml file. Simply add a <provider> element as a child of

the <application> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.constants">
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <provider android:name=".Provider"
 android:authorities="com.commonsware.android.constants.Provider" />
 <activity android:name=".ConstantsBrowser" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

The android:name property is the name of the content provider class, with a leading dot

to indicate it is in the stock namespace for this application’s classes (just like you use

with activities).

The android:authorities property should be a semicolon-delimited list of the authority

values supported by the content provider. As discussed earlier in this chapter, each

content Uri is made up of a scheme, authority, data type path, and instance identifier.

Each authority from each CONTENT_URI value should be included in the

android:authorities list.

Now, when Android encounters a content Uri, it can sift through the providers

registered through manifests to find a matching authority. That tells Android which

application and class implement the content provider, and from there, Android can

bridge between the calling activity and the content provider being called.

Notify-on-Change Support
An optional feature your content provider can offer to its clients is notify-on-change

support. This means that your content provider will let clients know if the data for a

given content Uri changes.

CHAPTER 27: Building a Content Provider 274

For example, suppose you have created a content provider that retrieves RSS and Atom

feeds from the Internet based on the user’s feed subscriptions (via OPML, perhaps). The

content provider offers read-only access to the contents of the feeds, with an eye

toward several applications on the phone using those feeds versus everyone

implementing their own feed poll-fetch-and-cache system. You have also implemented

a service that will get updates to those feeds asynchronously, updating the underlying

data store. Your content provider could alert applications using the feeds that such-and-

so feed was updated, so applications using that specific feed can refresh and get the

latest data.

On the content provider side, to do this, call notifyChange() on your ContentResolver

instance (available in your content provider via getContext().getContentResolver()).

This takes two parameters: the Uri of the piece of content that changed and the

ContentObserver that initiated the change. In many cases, the latter will be null; a non-

null value simply means that the observer that initiated the change will not be notified of

its own changes.

On the content consumer side, an activity can call registerContentObserver() on its

ContentResolver (via getContentResolver()). This ties a ContentObserver instance to a

supplied Uri, and the observer will be notified whenever notifyChange() is called for

that specific Uri. When the consumer is done with the Uri,

unregisterContentObserver() releases the connection.

275

 Chapter

Requesting and Requiring
Permissions
In the late 1990s, a wave of viruses spread through the Internet, delivered via e-mail,

using contact information culled from Microsoft Outlook. A virus would simply e-mail

copies of itself to each of the Outlook contacts that had an e-mail address. This was

possible because, at the time, Outlook did not take any steps to protect data from

programs using the Outlook API, since that API was designed for ordinary developers,

not virus authors.

Nowadays, many applications that hold onto contact data secure that data by requiring

that a user explicitly grant rights for other programs to access the contact information.

Those rights could be granted on a case-by-case basis or a once at install time.

Android is no different, in that it requires permissions for applications to read or write

contact data. Android’s permission system is useful well beyond contact data, and for

content providers and services other than those supplied by the Android framework.

You, as an Android developer, will frequently need to ensure your applications have the

appropriate permissions to do what you want to do with other applications’ data. You

may also elect to require permissions for other applications to use your data or services,

if you make those available to other Android components. This chapter covers how to

accomplish both these ends.

Mother, May I?
Requesting the use of other applications’ data or services requires the uses-permission

element to be added to your AndroidManifest.xml file. Your manifest may have zero or

more uses-permission elements, all as direct children of the root manifest element.

28

CHAPTER 28: Requesting and Requiring Permissions 276

The uses-permission element takes a single attribute, android:name, which is the name

of the permission your application requires:

<uses-permission
 android:name="android.permission.ACCESS_LOCATION" />

All of the stock system permissions begin with android.permission and are listed in the

Android SDK documentation for Manifest.permission. Third-party applications may

have their own permissions, which hopefully they have documented for you. Here are

some of the more important built-in permissions:

 INTERNET, if your application wishes to access the Internet through any

means, from raw Java sockets through the WebView widget

 READ_CALENDAR, READ_CONTACTS, and the like for reading data from the

built-in content providers

 WRITE_CALENDAR, WRITE_CONTACTS, and the like for modifying data in the

built-in content providers

Permissions are confirmed at the time the application is installed. The user will be

prompted to confirm it is acceptable for your application to do what the permission calls

for. Hence, it is important for you to ask for as few permissions as possible and to justify

those you request, so users do not elect to skip installing your application because you

ask for too many unnecessary permissions. This prompt is not available in the current

emulator, however.

If you do not have the desired permission and try to do something that needs it, you

may get a SecurityException informing you of the missing permission, but this is not a

guarantee. Failures may come in other forms, depending on if something else is

catching and trying to handle that exception. Note that you will fail on a permission

check only if you forgot to ask for the permission; it is impossible for your application to

be running and not have been granted your requested permissions.

Halt! Who Goes There?
The other side of the coin is to secure your own application. If your application is merely

activities and intent receivers, security may be just an “outbound” thing, where you

request the right to use resources of other applications. If, on the other hand, you put

content providers or services in your application, you will want to implement “inbound”

security to control which applications can do what with the data.

Note that the issue here is less about whether other applications might mess up your

data, but rather about privacy of the user’s information or use of services that might

incur expense. That is where the stock permissions for built-in Android applications are

focused: whether you can read or modify contacts, send messages, and so on. If your

application does not store information that might be considered private, security is less

of an issue. If, on the other hand, your application stores private data, such as medical

information, security is much more important.

CHAPTER 28: Requesting and Requiring Permissions 277

The first step to securing your own application using permissions is to declare said

permissions, once again in the AndroidManifest.xml file. In this case, instead of uses-
permission, you add permission elements. Once again, you can have zero or more

permission elements, all as direct children of the root manifest element.

Declaring a permission is slightly more complicated than using a permission. You need

to supply three pieces of information:

 The symbolic name of the permission: To keep your permissions from

colliding with those from other applications, you should use your

application’s Java namespace as a prefix.

 A label for the permission: Something short that would be

understandable by users.

 A description for the permission: Something a wee bit longer that is

understandable by your users.

<permission
 android:name="vnd.tlagency.sekrits.SEE_SEKRITS"
 android:label="@string/see_sekrits_label"
 android:description="@string/see_sekrits_description" />

This does not enforce the permission. Rather, it indicates that it is a possible permission.

Your application must still flag security violations as they occur.

There are two ways for your application to enforce permissions, dictating where and

under which circumstances they are required. You can enforce permissions in your

code, but the easier option is to indicate in the manifest where permissions are required.

Enforcing Permissions via the Manifest
Activities, services, and intent receivers can declare an attribute named

android:permission, whose value is the name of the permission that is required to

access those items:

<activity
 android:name=".SekritApp"
 android:label="Top Sekrit"
 android:permission="vnd.tlagency.sekrits.SEE_SEKRITS">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category
 android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
</activity>

Only applications that have requested your indicated permission will be able to access

the secured component. In this case, “access” means:

 Activities cannot be started without the permission.

 Services cannot be started, stopped, or bound to an activity without

the permission.

CHAPTER 28: Requesting and Requiring Permissions 278

 Intent receivers ignore messages sent via sendBroadcast() unless the

sender has the permission.

Content providers offer two distinct attributes: readPermission and writePermission.

<provider
 android:name=".SekritProvider"
 android:authorities="vnd.tla.sekrits.SekritProvider"
 android:readPermission="vnd.tla.sekrits.SEE_SEKRITS"
 android:writePermission="vnd.tla.sekrits.MOD_SEKRITS" />

In this case, readPermission controls access to querying the content provider, and

writePermission controls access to insert, update, or delete data in the content

provider.

Enforcing Permissions Elsewhere
In your code, you have two additional ways to enforce permissions:

 Your services can check permissions on a per-call basis via

checkCallingPermission(). This returns PERMISSION_GRANTED or

PERMISSION_DENIED, depending on whether the caller has the

permission you specified. For example, if your service implements

separate read and write methods, you could get the effect of

readPermission and writePermission in code by checking those

methods for the permissions you need from Java.

 You can include a permission when you call sendBroadcast(). This

means that eligible receivers must hold that permission; those without

the permission are ineligible to receive it. For example, the Android

subsystem presumably includes the RECEIVE_SMS permission when it

broadcasts that an SMS message has arrived. This will restrict the

receivers of that intent to be only those authorized to receive SMS

messages.

May I See Your Documents?
There is no automatic discovery of permissions at compile time; all permission failures

occur at runtime. Hence, it is important that you document the permissions required for

your public APIs, including content providers, services, and activities intended for

launching from other activities. Otherwise, the programmers attempting to interface with

your application will need to find out the permission rules by trial and error.

Furthermore, you should expect that users of your application will be prompted to

confirm any permissions your application says it needs. Hence, you need to document

for your users what they should expect, lest they get confused by the question posed by

the phone and elect to not install or use your application.

279

 Chapter

Creating a Service
As noted previously, Android services are for long-running processes that may need to

keep running even when decoupled from any activity. Examples include playing music

even if the player activity gets garbage-collected, polling the Internet for RSS/Atom feed

updates, and maintaining an online chat connection even if the chat client loses focus

due to an incoming phone call.

Services are created when manually started (via an API call) or when some activity tries

connecting to the service via interprocess communication (IPC). Services will live until no

longer needed and if RAM needs to be reclaimed, or until shut down (on their own

volition or because no one is using them anymore). Running for a long time isn’t without

its costs, though, so services need to be careful not to use too much CPU or keep

radios active too much of the time, lest the service cause the device’s battery to get

used up too quickly.

This chapter covers how you can create your own services. The next chapter covers

how you can use such services from your activities or other contexts. Both chapters will

analyze the Service/WeatherPlus sample application. This chapter focuses mostly on

the WeatherPlusService implementation. WeatherPlusService extends the weather-

fetching logic of the original Internet/Weather sample, by bundling it in a service that

monitors changes in location, so the weather is updated as the emulator is “moved.”

Service with Class
Creating a service implementation shares many characteristics with building an activity.

You inherit from an Android-supplied base class, override some life-cycle methods, and

hook the service into the system via the manifest.

So, the first step in creating a service is to extend the Service class—in our case, with

our own WeatherPlusService subclass.

Just as activities have onCreate(), onResume(), onPause(), and the like, Service

implementations have their own life-cycle methods, such as the following:

29

CHAPTER 29: Creating a Service 280

 onCreate(): As with activities, called when the service process is

created, by any means.

 onStart(): Called each time the service is started via startService().

 onDestroy(): Called as the service is being shut down.

For example, here is the onCreate() method for WeatherPlusService:

@Override
public void onCreate() {
 super.onCreate();

 client=new DefaultHttpClient();
 format=getString(R.string.url);

 mgr=(LocationManager)getSystemService(Context.LOCATION_SERVICE);
 mgr.requestLocationUpdates(LocationManager.GPS_PROVIDER,
 10000, 10000.0f, onLocationChange);
}

First, we chain upward to the superclass, so Android can do any setup work it needs to

have done. Then we initialize our HttpClient component and format string as we did in

the Weather demo. We then get the LocationManager instance for our application and

request to get updates as our location changes, via the GPS LocationProvider, which

will be discussed in greater detail in Chapter 32.

The onDestroy() method is much simpler:

@Override
public void onDestroy() {
 super.onDestroy();

 mgr.removeUpdates(onLocationChange);
}

Here, we just shut down the location-monitoring logic, in addition to chaining upward to

the superclass for any Android internal bookkeeping that might be needed.

In addition to those life-cycle methods, your service also needs to implement onBind().

This method returns an IBinder, which is the linchpin behind the IPC mechanism. We

will examine onBind() a bit more closely in the next section.

There Can Only Be One
Services, by default, run in the same process as all other components of the application,

such as its activities. Hence, you can call API methods on the service object—if you can

get your hands on it. Ideally, there would be some means, perhaps even type-safe, to

ask Android to give you the local service object. Unfortunately, at the time of this writing,

there is no such API. Hence, we are forced to cheat.

Any given service can, at most, have one copy running in memory. There might be zero

copies in memory, if the service has not been started. But even if multiple activities try

CHAPTER 29: Creating a Service 281

using the service, only one will actually be running. This is a fine implementation of the

singleton pattern—all we need to do is expose the singleton itself, so other components

can access the object.

We could expose the singleton via a public static data member or a public static getter

method. However, then we run into some memory-management risks. Since everything

referenced from a static context is immune to garbage collection, we would need to be

very careful to set the static reference to null in our service’s onDestroy(). Otherwise,

our service, while disconnected from Android, would remain in memory indefinitely, until

Android elected to shut down our process.

Fortunately, there is an alternative, and that is using onBind().

Binding allows a service to expose an API to activities (or other services) that bind to it.

Much of this infrastructure is set up to support remote services, where the bound-to API

is available via IPC, so one service can expose its API to other applications. However,

the simple act of binding itself can be useful in situations where the service and its

clients are all in the same application—the local service scenario.

To expose the service itself to activities via local binding, you must first create a public

inner class that extends the android.os.Binder class:

public class LocalBinder extends Binder {
 WeatherPlusService getService() {
 return(WeatherPlusService.this);
 }
}

Here, our binder exposes one method: getService(), which returns the service itself. In

a remote service scenario, this would not work, because the limitations of IPC prevent

us from passing services between processes. However, for local services, this is a

perfectly fine binder.

Next, we need to return that binder object in our onBind() method:

@Override
public IBinder onBind(Intent intent) {
 return(binder);
}

At this point, any client that binds to our service will be able to access the service object

itself and call methods on it. We will go into this in greater detail in the next chapter.

Manifest Destiny
Finally, you need to add the service to your AndroidManifest.xml file, for it to be

recognized as an available service for use. That is simply a matter of adding a service

element as a child of the application element, providing android:name to reference your

service class.

CHAPTER 29: Creating a Service 282

For example, here is the AndroidManifest.xml file for WeatherPlus:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.service">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".WeatherPlus" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <service android:name=".WeatherPlusService" />
 </application>
</manifest>

Since the service class is in the same Java namespace as everything else in this

application, we can use the shorthand dot notation (".WeatherPlusService") to

reference our class.

If you want to require some permission of those who wish to start or bind to the service,

add an android:permission attribute naming the permission you are mandating. See

Chapter 28 for more details.

Lobbing One Over the Fence
Sometimes, the service needs to asynchronously alert an activity of some occurrence.

For example, the theory behind the WeatherPlusService implementation is that the

service gets “tickled” when the device (or emulator) position changes. At that point, the

service calls out to the web service and generates a new forecast web page for the

activity to display. Then the service needs to let the activity know that a new forecast is

available, so the activity can load and display it.

To interoperate with components this way, there are two major alternatives: callbacks

and broadcast Intents.

Note that if all your service needs to do is alert the user of some event, you may wish to

consider using a notification (described in Chapter 31), as that is the more normal way to

handle that requirement.

CHAPTER 29: Creating a Service 283

Callbacks
Since an activity can work with a local service directly, an activity could provide some

sort of listener object to the service, which the service could then call when needed. To

make this work, you would need to:

1. Define a Java interface for that listener object.

2. Give the service a public API to register and retract listeners.

3. Have the service use those listeners at appropriate times, to notify those

who registered the listener of some event.

4. Have the activity register and retract a listener as needed.

5. Have the activity respond to the listener-based events in some suitable

fashion.

The biggest catch is to make sure that the activity retracts the listeners when it is done.

Listener objects generally know their activity, explicitly (via a data member) or implicitly

(by being implemented as an inner class). If the service is holding onto defunct listener

objects, the corresponding activities will linger in memory, even if the activities are no

longer being used by Android. This represents a big memory leak. You may wish to use

WeakReferences, SoftReferences, or similar constructs to ensure that if an activity is

destroyed, any listeners it registers with your service will not keep that activity in

memory.

Broadcast Intents
An alternative approach, first mentioned in Chapter 17, is to have the service send a

broadcast Intent that can be picked up by the activity—assuming the activity is still

around and is not paused. We will look at the client side of this exchange in Chapter 30.

Here, let’s examine how the service can send a broadcast.

The high-level implementation of the flow is packaged in FetchForecastTask, an

AsyncTask implementation that allows us to move the Internet access to a background

thread:

class FetchForecastTask extends AsyncTask<Location, Void, Void> {
 @Override
 protected Void doInBackground(Location... locs) {
 Location loc=locs[0];
 String url=String.format(format, loc.getLatitude(),
 loc.getLongitude());
 HttpGet getMethod=new HttpGet(url);

 try {
 ResponseHandler<String> responseHandler=new BasicResponseHandler();
 String responseBody=client.execute(getMethod, responseHandler);
 String page=generatePage(buildForecasts(responseBody));

CHAPTER 29: Creating a Service 284

 synchronized(this) {
 forecast=page;
 }

 sendBroadcast(broadcast);
 }
 catch (Throwable t) {
 android.util.Log.e("WeatherPlus",
 "Exception in updateForecast()", t);
 }

 return(null);
 }

 @Override
 protected void onProgressUpdate(Void... unused) {
 // not needed here
 }

 @Override
 protected void onPostExecute(Void unused) {
 // not needed here
 }
}

Much of this is similar to the equivalent piece of the original Weather demo. It performs

the HTTP request, converts that into a set of Forecast objects, and turn those into a web

page. The first difference, besides the introduction of the AsyncTask, is that the web

page is simply cached in the service, since the service cannot put the page directly into

the activity’s WebView. The second difference is that we call sendBroadcast(), which

takes an Intent and sends it out to all interested parties. That Intent is declared up

front in the class prologue:

private Intent broadcast=new Intent(BROADCAST_ACTION);

Here, BROADCAST_ACTION is simply a static String with a value that will distinguish this

Intent from all others:

public static final String BROADCAST_ACTION=
 "com.commonsware.android.service.ForecastUpdateEvent";

Where’s the Remote? And the Rest of the Code?
In Android, services can either be local or remote. Local services run in the same

process as the launching activity. Remote services run in their own process. A detailed

discussion of remote services can be found in The Busy Coder’s Guide to Advanced
Android Development (CommonsWare, 2009).

We will return to this service in Chapter 32, at which point we will flesh out how locations

are tracked (and, in this case, mocked up).

285

 Chapter

Invoking a Service
Services can be used by any application component that hangs around for a reasonable

period of time. This includes activities, content providers, and other services. Notably, it

does not include pure broadcast receivers (i.e., intent receivers that are not part of an

activity), since those will get garbage collected immediately after each instance

processes one incoming Intent.

To use a local service, you need to start the service, get access to the service object,

and then call methods on that service. You can then stop the service when you are

finished with it, or perhaps let the service stop itself. In this chapter, we will look at the

client side of the Service/WeatherPlus sample application. The WeatherPlus activity

looks a lot like the original Weather application. It’s just a web page showing a weather

forecast, as shown in Figure 30–1.

Figure 30–1. The WeatherPlus service client

30

CHAPTER 30: Invoking a Service 286

The Ties That Bind
To start a service, one approach is to simply call startService(), providing the Intent

specifying the service to start (again, the easiest way is probably to specify the service

class, if it’s your own service). Conversely, to stop a service started via startService(),

call stopService() with the Intent you used in the corresponding startService() call.

Once the service is started, you need to communicate with it. It could be that all the

communication you need can be via the extras you package in the Intent. Or, if it is a

local service that offers a singleton, you can reference the singleton.

However, if you implemented onBind() as shown in the previous chapter, there is a

different way to get at the service: through bindService().

When an activity binds to a service, it primarily is requesting to be able to access the

public API exposed by that service via the service’s binder, as returned by the service’s

onBind() method. When doing this, the activity can also indicate, via the

BIND_AUTO_CREATE flag, to have Android automatically start up the service if it is not

already running.

To use this technique with our WeatherPlus and WeatherPlusService classes, we first

need to make a call to bindService() from onCreate():

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.webkit);
 bindService(new Intent(this, WeatherPlusService.class),
 onService, Context.BIND_AUTO_CREATE);
}

This bindService() call refers to an onService callback object, an instance of

ServiceConnection:

private ServiceConnection onService=new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder rawBinder) {
 appService=((WeatherPlusService.LocalBinder)rawBinder).getService();
 }

 public void onServiceDisconnected(ComponentName className) {
 appService=null;
 }
};

Our onService object will be called with onServiceConnected() as soon as the

WeatherPlusService is up and running. We are given an IBinder object, which is an

opaque handle representing the service. We can use that to obtain the LocalBinder

exposed by the WeatherPlusService, and from there to get the actual

WeatherPlusService object itself, held as a private data member:

private WeatherPlusService appService=null;

CHAPTER 30: Invoking a Service 287

We can then call methods on the WeatherPlusService, such as a call to get the forecast

page when needed:

private void updateForecast() {
 try {
 String page=appService.getForecastPage();

 browser.loadDataWithBaseURL(null, page, "text/html",
 "UTF-8", null);
 }
 catch (final Throwable t) {
 goBlooey(t);
 }
}

We also need to call unbindService() from onDestroy(), to release our binding to

WeatherPlusService:

@Override
public void onDestroy() {
 super.onDestroy();

 unbindService(onService);
}

If there are no other bound clients to the service, Android will shut down the service as

well, releasing its memory. Hence, we do not need to call stopService() ourselves,

because Android handles that, if needed, as a side effect of unbinding.

This is a fair bit more code than simply using a public static singleton for the service

object. However, this approach is less likely to result in memory leaks.

So to recap:

 To have a service start running, use bindService() with

BIND_AUTO_CREATE (if you wish to communicate via the binding

mechanism) or startService().

 To have a service stop running, do the inverse of what you did to start

it: unbindService() or stopService().

Another possibility for stopping a service is to have the service call stopSelf() on itself.

You might do this if you use startService() to have a service begin running and do

some work on a background thread, so the service will stop itself when that background

work is completed.

Catching the Lob
In the preceding chapter, you saw how the service sends a broadcast to let the

WeatherPlus activity know a change was made to the forecast based on movement.

Now, you’ll see how the activity receives and uses that broadcast.

CHAPTER 30: Invoking a Service 288

Here are the implementations of onResume() and onPause() for WeatherPlus:

@Override
public void onResume() {
 super.onResume();

 registerReceiver(receiver,
 new IntentFilter(WeatherPlusService.BROADCAST_ACTION));
}

@Override
public void onPause() {
 super.onPause();

 unregisterReceiver(receiver);
}

In onResume(), we register a static BroadcastReceiver to receive Intents matching the

action declared by the service. In onPause(), we disable that BroadcastReceiver, since

we will not be receiving any such Intents while paused.

The BroadcastReceiver, in turn, simply arranges to update the forecast:

private BroadcastReceiver receiver=new BroadcastReceiver() {
 public void onReceive(Context context, Intent intent) {
 updateForecast();
 }
};

289

 Chapter

Alerting Users via
Notifications
Pop-up messages, tray icons with their associated “bubble” messages, bouncing dock

icons, and so on—you are no doubt used to programs trying to get your attention,

sometimes for good reason. Your phone also probably chirps at you for more than just

incoming calls: low battery, alarm clocks, appointment notifications, incoming text

messages, and so on.

Not surprisingly, Android has a whole framework for dealing with these sorts of alerts,

collectively called notifications, which is the subject of this chapter.

Types of Pestering
A service, running in the background, needs a way to let users know something of

interest has occurred, such as when e-mail has been received. Moreover, the service

may need some way to steer users to an activity where they can act on the event, such

as reading a received message. For this, Android supplies status bar icons, flashing

lights, and other indicators collectively known as “notifications”.

Your current phone may already have such icons, to indicate battery life, signal strength,

whether Bluetooth is enabled, and the like. With Android, applications can add their own

status bar icons, with an eye toward having them appear only when needed (e.g., a

message has arrived).

In Android, you can raise notifications via the NotificationManager. The

NotificationManager is a system service. To use it, you need to get the service object

via getSystemService(NOTIFICATION_SERVICE) from your activity.

The NotificationManager gives you three methods: one to pester (notify()) and two to

stop pestering (cancel() and cancelAll()).

31

CHAPTER 31: Alerting Users via Notifications 290

The notify() method takes a Notification, which is a data structure that spells out the

form your pestering should take. The capabilities of this object are described in the

following sections.

Hardware Notifications
You can flash LEDs on the device by setting lights to true, also specifying the color (as

an #ARGB value in ledARGB) and the pattern in which the light should blink (by providing

off/on durations in milliseconds for the light via ledOnMS and ledOffMS). Note, however,

that Android devices will apply best efforts to meet your color request, meaning that

different devices may give you different colors, or perhaps no control over color at all.

For example, the Motorola CLIQ reportedly has only a white LED, so you can ask for any

color you want, and you will still get white.

You can play a sound, using a Uri to a piece of content held, perhaps, by a

ContentManager (sound). Think of this as a “ringtone” for your application.

You can vibrate the device, controlled via a long[] indicating the on/off patterns (in

milliseconds) for the vibration (vibrate). You might do this by default, or you might make

it an option the user can choose when circumstances require a more subtle notification

than a ringtone. To use this approach, you will need to request the VIBRATE permission

(see Chapter 28 for more on permissions).

Icons
While the flashing lights, sounds, and vibrations are aimed at getting users to look at the

device, icons are designed to take them the next step and tell them what’s so important.

To set up an icon for a Notification, you need to set two public fields: icon, where you

provide the identifier of a Drawable resource representing the icon, and contentIntent,

where you supply an PendingIntent to be raised when the icon is clicked. You should

make sure the PendingIntent will be caught by something—perhaps your own

application code—to take appropriate steps to let the user deal with the event triggering

the notification. You can also supply a text blurb to appear when the icon is put on the

status bar (tickerText).

If you want all three, the simpler approach is to call setLatestEventInfo(), which wraps

an icon, contentIntent, and tickerText in a single call.

Seeing Pestering in Action
Let’s now take a peek at the Notifications/Notify1 sample project, in particular the

NotifyDemo class:

package com.commonsware.android.notify;

import android.app.Activity;
import android.app.Notification;

CHAPTER 31: Alerting Users via Notifications 291

import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import java.util.Timer;
import java.util.TimerTask;

public class NotifyDemo extends Activity {
 private static final int NOTIFY_ME_ID=1337;
 private Timer timer=new Timer();
 private int count=0;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 Button btn=(Button)findViewById(R.id.notify);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 TimerTask task=new TimerTask() {
 public void run() {
 notifyMe();
 }
 };

 timer.schedule(task, 5000);
 }
 });

 btn=(Button)findViewById(R.id.cancel);

 btn.setOnClickListener(new View.OnClickListener() {
 public void onClick(View view) {
 NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);

 mgr.cancel(NOTIFY_ME_ID);
 }
 });
 }

 private void notifyMe() {
 final NotificationManager mgr=
 (NotificationManager)getSystemService(NOTIFICATION_SERVICE);
 Notification note=new Notification(R.drawable.red_ball,
 "Status message!",
 System.currentTimeMillis());
 PendingIntent i=PendingIntent.getActivity(this, 0,
 new Intent(this, NotifyMessage.class),
 0);

CHAPTER 31: Alerting Users via Notifications 292

 note.setLatestEventInfo(this, "Notification Title",
 "This is the notification message", i);
 note.number=++count;

 mgr.notify(NOTIFY_ME_ID, note);
 }
}

As shown in Figure 31–1, this activity sports two large buttons: one to kick off a

notification after a 5-second delay and one to cancel that notification (if it is active).

Figure 31–1. The NotifyDemo activity main view

Creating the notification, in notifyMe(), is accomplished in six steps:

1. Get access to the NotificationManager instance.

2. Create a Notification object with our icon (red ball), a message to flash

on the status bar as the notification is raised, and the time associated

with this event.

3. Create a PendingIntent that will trigger the display of another activity

(NotifyMessage).

4. Use setLatestEventInfo() to specify that, when the notification is

clicked, we are to display a certain title and message, and if that is

clicked, we launch the PendingIntent.

5. Update the number associated with the notification.

6. Tell the NotificationManager to display the notification.

CHAPTER 31: Alerting Users via Notifications 293

Hence, if we click the top button, after 5 seconds, our red ball icon will appear in the

status bar, along with a brief display of our status message, as shown in Figure 31–2.

The red ball will have our number (initially 1) superimposed on the lower-right corner

(you might use this to signify the number of unread messages, for example).

Figure 32-2. Our notification as it appears on the status bar, with our status message

If you click the red ball, a drawer will appear beneath the status bar. Drag that drawer all

the way to the bottom of the screen to see the outstanding notifications, including our

own, as shown in Figure 32-3.

Figure 32-3. The notifications drawer, fully expanded, with our notification

CHAPTER 31: Alerting Users via Notifications 294

If you click the notification entry in the drawer, you’ll be taken to a trivial activity

displaying a message. In a real application, this activity would do something useful

based on the event that occurred (e.g., take users to the newly arrived mail messages).

Clicking the button to clear the notification will remove the red ball from the status bar.

295

 Chapter

Accessing Location-Based
Services
A popular feature on current mobile devices is GPS capability, so the device can tell you

where you are at any point in time. While the most common uses of GPS services are for

mapping and getting directions, there are other things you can do if you know your

location. For example, you might set up a dynamic chat application based on physical

location, so you’re chatting with those people who are nearest to you. Or you could

automatically geo-tag posts to Twitter or similar services.

GPS is not the only way a mobile device can identify your location. Alternatives include

the following:

 The European equivalent to GPS, called Galileo, which is still under

development at the time of this writing

 Cell tower triangulation, where your position is determined based on

signal strength to nearby cell towers

 Proximity to public Wi-Fi hotspots that have known geographic

locations

Android devices may have one or more of these services available to them. You, as a

developer, can ask the device for your location, plus details on which providers are

available. There are even ways for you to simulate your location in the emulator, for use

in testing your location-enabled applications.

Location Providers: They Know Where You’re Hiding
Android devices can have access to several different means of determining your

location. Some will have better accuracy than others. Some may be free, while others

may have a cost associated with them. Some may be able to tell you more than just

your current position, such as your elevation over sea level or your current speed.

32

CHAPTER 32: Accessing Location-Based Services 296

Android has abstracted all this out into a set of LocationProvider objects. Your Android

environment will have zero or more LocationProvider instances: one for each distinct

locating service that is available on the device. Providers know not only your location,

but also are aware of their own characteristics, in terms of accuracy, cost, and so on.

You, as a developer, will use a LocationManager, which holds the LocationProvider set,

to figure out which LocationProvider is right for your particular circumstance. You will

also need a permission in your application, or the various location APIs will fail due to a

security violation. Depending on which location providers you wish to use, you may

need ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION, or both. (Permissions are

discussed in Chapter 28.)

Finding Yourself
The obvious thing to do with a location service is to figure out where you are right now.

To determine your current location, first you need to get a LocationManager—call

getSystemService(LOCATION_SERVICE) from your activity or service and cast it to be a

LocationManager.

The next step is to get the name of the LocationProvider you want to use. Here, you

have two main options:

 Ask the user to pick a provider.

 Find the best-match provider based on a set of criteria.

If you want the user to pick a provider, calling getProviders() on the LocationManager

will give you a List of providers, which you can then present to the user for selection.

Alternatively, you can create and populate a Criteria object, stating the particulars of

what you want out of a LocationProvider. Here are some of the criteria you can specify:

 setAltitudeRequired(): Indicates whether or not you need the current

altitude.

 setAccuracy(): Sets a minimum level of accuracy, in meters, for the

position.

 setCostAllowed(): Controls if the provider must be free or if it can

incur a cost on behalf of the device user.

Given a filled-in Critieria object, call getBestProvider() on your LocationManager.

Android will sift through the criteria and give you the best answer. Note that not all of

your criteria may be met. All but the monetary cost criterion might be relaxed if nothing

matches.

You are also welcome to hardwire in a LocationProvider name (e.g., GPS_PROVIDER),

perhaps just for testing purposes.

Once you know the name of the LocationProvider, you can call

getLastKnownPosition() to find out where you were recently. Note that “recently”

CHAPTER 32: Accessing Location-Based Services 297

might be fairly out of date (e.g., the phone was turned off) or even null if there has

been no location recorded for that provider yet. Calling getLastKnownPosition() incurs

no monetary or power cost, since the provider does not need to be activated to get

the value.

This method returns a Location object, which can give you the latitude and longitude of

the device in degrees as a Java double. If the particular location provider offers other

data, you can get at that as well:

 For altitude, hasAltitude() will tell you if there is an altitude value, and

getAltitude() will return the altitude in meters.

 For bearing (i.e., compass-style direction), hasBearing() will tell you if

there is a bearing available, and getBearing() will return it as degrees

east of true north.

 For speed, hasSpeed() will tell you if the speed is known and

getSpeed() will return the speed in meters per second.

A more likely approach to getting the Location from a LocationProvider, though, is to

register for updates, as described in the next section.

On the Move
Not all location providers are necessarily immediately responsive. GPS, for example,

requires activating a radio and getting a fix from the satellites before you get a location.

That is why Android does not offer a getMeMyCurrentLocationNow() method. Combine

that with the fact that your users may want their movements to be reflected in your

application, and you are probably best off registering for location updates and using that

as your means of getting the current location.

The Weather and WeatherPlus sample applications show how to register for updates: call

requestLocationUpdates() on your LocationManager instance. This method takes four

parameters:

 The name of the location provider you wish to use

 How long, in milliseconds, must have elapsed before you might get a

location update

 How far, in meters, the device must have moved before you might get

a location update

 A LocationListener that will be notified of key location-related events

Here’s an example of a LocationListener:

LocationListener onLocationChange=new LocationListener() {
 public void onLocationChanged(Location location) {
 updateForecast(location);
 }

CHAPTER 32: Accessing Location-Based Services 298

 public void onProviderDisabled(String provider) {
 // required for interface, not used
 }

 public void onProviderEnabled(String provider) {
 // required for interface, not used
 }

 public void onStatusChanged(String provider, int status,
 Bundle extras) {
 // required for interface, not used
 }
};

Here, all we do is call updateForecast() with the Location supplied to the

onLocationChanged() callback method. The updateForecast() implementation, as

shown in Chapter 29, builds a web page with the current forecast for the location, and

sends a broadcast so the activity knows an update is available.

When you no longer need the updates, call removeUpdates() with the LocationListener

you registered. If you fail to do this, your application will continue receiving location

updates even after all activities and such are closed up, which will also prevent Android

from reclaiming your application’s memory.

Are We There Yet? Are We There Yet? Are We There
Yet?
Sometimes, you are not interested in where you are now, or even when you move, but

want to know when you get to where you’re going. This could be an end destination, or

it could be getting to the next step on a set of directions, so you can give the user the

next instruction.

To accomplish this, LocationManager offers addProximityAlert(). This registers an

PendingIntent, which will be fired off when the device gets within a certain distance of a

certain location. The addProximityAlert() method takes the following as parameters:

 The latitude and longitude of the position of interest

 A radius, specifying how close you should be to that position for the

Intent to be raised

 A duration for the registration, in milliseconds (after this period, the

registration automatically lapses); a value of -1 means the registration

lasts until you manually remove it via removeProximityAlert()

 The PendingIntent to be raised when the device is within the target

zone expressed by the position and radius

Note that it is not guaranteed that you will actually receive an Intent. There may be in

an interruption in location services, or the device may not be in the target zone during

the period of time the proximity alert is active. For example, if the position is off by a

CHAPTER 32: Accessing Location-Based Services 299

bit, and the radius is a little too tight, the device might only skirt the edge of the target

zone, or it may go by the target zone so quickly that the device’s location isn’t

sampled during that time.

It is up to you to arrange for an activity or intent receiver to respond to the Intent you

register with the proximity alert. What you do when the Intent arrives is up to you. For

example, you might set up a notification (e.g., vibrate the device), log the information to

a content provider, or post a message to a web site.

Note that you will receive the Intent whenever the position is sampled and you are

within the target zone, not just upon entering the zone. Hence, you will get the Intent

several times—perhaps quite a few times, depending on the size of the target zone and

the speed of the device’s movement.

Testing...Testing...
The Android emulator does not have the ability to get a fix from GPS, triangulate your

position from cell towers, or identify your location by some nearby Wi-Fi signal. So, if

you want to simulate a moving device, you will need to have some means of providing

mock location data to the emulator.

For whatever reason, this particular area has undergone significant changes as Android

itself has evolved. It used to be that you could provide mock location data within your

application, which was very handy for demonstration purposes. Alas, those options were

removed in Android 1.0.

One likely option for supplying mock location data is the Dalvik Debug Monitor Service

(DDMS). This is an external program, separate from the emulator, which can feed the

emulator single location points or full routes to traverse, in a few different formats.

DDMS is described in greater detail in Chapter 35.

301

 Chapter

Mapping with MapView
and MapActivity
One of Google’s most popular services—after search, of course—is Google Maps,

which lets you find everything from the nearest pizza parlor to directions from New

York City to San Francisco (only 2,905 miles!), along with supplying street views and

satellite imagery.

Most Android devices, not surprisingly, integrate Google Maps. For those that do, there

is a mapping activity available to users directly from the main Android launcher. More

relevant to you, as a developer, are MapView and MapActivity, which allow you to

integrate maps into your own applications. Not only can you display maps, control the

zoom level, and allow people to pan around, but you can tie in Android’s location-based

services (covered in Chapter 32) to show where the device is and where it is going.

Fortunately, integrating basic mapping features into your Android project is fairly easy.

And there is also a fair bit of power available to you, if you want to get fancy.

Terms, Not of Endearment
Integrating Google Maps into your own application requires agreeing to a fairly lengthy

set of legal terms. These terms include clauses that you may find unpalatable.

If you are considering Google Maps, please review these terms closely to determine if

your intended use will not run afoul of any clauses. You are strongly recommended to

seek professional legal counsel if there are any potential areas of conflict.

Also, keep your eyes peeled for other mapping options, based on other sources of map

data, such as OpenStreetMap (http://www.openstreetmap.org/).

33

CHAPTER 33: Mapping with MapView and MapActivity 302

Piling On
As of Android 1.5, Google Maps is not strictly part of the Android SDK. Instead, it is part

of the Google APIs add-on, an extension of the stock SDK. The Android add-on system

provides hooks for other subsystems that may be part of some devices but not others.

NOTE: Google Maps is not part of the Android open source project, and undoubtedly there will
be some devices that lack Google Maps due to licensing issues. For example, at the time of this
writing, the Archos 5 Android tablet does not have Google Maps.

By and large, the fact that Google Maps is in an add-on does not affect your day-to-day

development. However, bear in mind the following:

 You will need to create your project with a suitable target to ensure the

Google Maps APIs will be available.

 To test your Google Maps integration, you will also need an AVD that

supports the Google Maps API.

The Bare Bones
Far and away the simplest way to get a map into your application is to create your own

subclass of MapActivity. Like ListActivity, which wraps up some of the smarts behind

having an activity dominated by a ListView, MapActivity handles some of the nuances

of setting up an activity dominated by a MapView.

In your layout for the MapActivity subclass, you need to add an element named, at the

time of this writing, com.google.android.maps.MapView. This is the “longhand” way to

spell out the names of widget classes, by including the full package name along with the

class name. This is necessary because MapView is not in the com.google.android.widget

namespace. You can give the MapView widget whatever android:id attribute value you

want, plus handle all the layout details to have it render properly alongside your other

widgets.

However, you do need to have these two items:

 android:apiKey, which in production will need to be a Google Maps

API key

 android:clickable = "true", if you want users to be able to click and

pan through your map

For example, from the Maps/NooYawk sample application, here is the main layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 <com.google.android.maps.MapView android:id="@+id/map"

CHAPTER 33: Mapping with MapView and MapActivity 303

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:apiKey="<YOUR_API_KEY>"
 android:clickable="true" />
</RelativeLayout>

We’ll cover that mysterious apiKey later in this chapter, in the “The Key to It All” section.

In addition, you will need a couple of extra things in your AndroidManifest.xml file:

 The INTERNET and ACCESS_COARSE_LOCATION permissions (the latter for

use with the MyLocationOverlay class, described later in this chapter)

 Inside your <application>, a <uses-library> element with

android:name = "com.google.android.maps", to indicate you are using

one of the optional Android APIs

Here is the AndroidManifest.xml file for NooYawk:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.maps">
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <uses-library android:name="com.google.android.maps" />
 <activity android:name=".NooYawk" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

That is pretty much all you need for starters, plus to subclass your activity from

MapActivity. If you were to do nothing else, and built that project and tossed it in the

emulator, you would get a nice map of the world. Note, however, that MapActivity is

abstract. You need to implement isRouteDisplayed() to indicate if you are supplying

some sort of driving directions.

In theory, users could pan around the map using the D-pad. However, that’s not terribly

useful when they have the whole world in their hands.

Since a map of the world is not much good by itself, we need to add a few things, as

described next.

Exercising Your Control
You can find your MapView widget by findViewById(), just as with any other widget. The

widget itself offers a getMapController() method. Between the MapView and

MapController, you have a fair bit of capability to determine what the map shows and

CHAPTER 33: Mapping with MapView and MapActivity 304

how it behaves. The following sections cover zoom and center, the features you will

most likely want to use.

Zoom
The map of the world you start with is rather broad. Usually, people looking at a map on

a phone will be expecting something a bit narrower in scope, such as a few city blocks.

You can control the zoom level directly via the setZoom() method on the MapController.

This takes an integer representing the level of zoom, where 1 is the world view and 21 is

the tightest zoom you can get. Each level is a doubling of the effective resolution: 1 has

the equator measuring 256 pixels wide, while 21 has the equator measuring 268,435,456

pixels wide. Since the phone’s display probably doesn’t have 268,435,456 pixels in

either dimension, the user sees a small map focused on one tiny corner of the globe. A

level of 16 will show several city blocks in each dimension, which is probably a

reasonable starting point for experimentation.

If you wish to allow users to change the zoom level, call

setBuiltInZoomControls(true);, and the user will be able to zoom in and out of the

map via zoom controls found at the bottom center of the map.

Center
Typically, you will need to control what the map is showing, beyond the zoom level,

such as the user’s current location or a location saved with some data in your activity.

To change the map’s position, call setCenter() on the MapController.

The setCenter() method takes a GeoPoint as a parameter. A GeoPoint represents a

location, via latitude and longitude. The catch is that the GeoPoint stores latitude and

longitude as integers representing the actual latitude and longitude multiplied by 1E6.

This saves a bit of memory versus storing a float or double, and it greatly speeds up

some internal calculations Android needs to do to convert the GeoPoint into a map

position. However, it does mean you must remember to multiply the real-world latitude

and longitude by 1E6.

Rugged Terrain
Just as the Google Maps service you use on your full-size computer can display satellite

imagery, so can Android maps.

MapView offers toggleSatellite(), which, as the name suggests, toggles on and off the

satellite perspective on the area being viewed. You can have the user trigger these via

an options menu or, in the case of NooYawk, via key presses:

 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_S) {
 map.setSatellite(!map.isSatellite());

CHAPTER 33: Mapping with MapView and MapActivity 305

 return(true);
 }
 else if (keyCode == KeyEvent.KEYCODE_Z) {
 map.displayZoomControls(true);
 return(true);
 }

 return(super.onKeyDown(keyCode, event));
 }

Layers upon Layers
If you have ever used the full-size edition of Google Maps, you are probably used to

seeing things overlaid atop the map itself, such as pushpins indicating businesses near

the location being searched. In map parlance (and, for that matter, in many serious

graphic editors), the pushpins are on a layer separate from than the map itself, and what

you are seeing is the composition of the pushpin layer atop the map layer.

Android’s mapping allows you to create layers as well, so you can mark up the maps as

you need to based on user input and your application’s purpose. For example, NooYawk

uses a layer to show where select buildings are located in the island of Manhattan.

Overlay Classes
Any overlay you want to add to your map needs to be implemented as a subclass of

Overlay. There is an ItemizedOverlay subclass available if you are looking to add

pushpins or the like; ItemizedOverlay simplifies this process.

To attach an overlay class to your map, just call getOverlays() on your MapView and

add() your Overlay instance to it, as we do here with a custom SitesOverlay:

marker.setBounds(0, 0, marker.getIntrinsicWidth(),
 marker.getIntrinsicHeight());

map.getOverlays().add(new SitesOverlay(marker));

We will take a closer look at that marker in the next section.

Drawing the ItemizedOverlay
As the name suggests, ItemizedOverlay allows you to supply a list of points of interest

to be displayed on the map—specifically, instances of OverlayItem. The overlay handles

much of the drawing logic for you. Here are the minimum steps to make this work:

1. Override ItemizedOverlay<OverlayItem> as your own subclass (in this

example, SitesOverlay).

2. In the constructor, build your roster of OverlayItem instances, and call

populate() when they are ready for use by the overlay.

CHAPTER 33: Mapping with MapView and MapActivity 306

3. Implement size() to return the number of items to be handled by the

overlay.

4. Override createItem() to return OverlayItem instances given an index.

5. When you instantiate your ItemizedOverlay subclass, provide it with a

Drawable that represents the default icon (e.g., a pushpin) to display for

each item.

The marker from the NooYawk constructor is the Drawable used for step 5. It shows a

pushpin.

You may also wish to override draw() to do a better job of handling the shadow for your

markers. While the map will handle casting a shadow for you, it appears you need to

provide a bit of assistance for it to know where the bottom of your icon is, so it can draw

the shadow appropriately.

For example, here is SitesOverlay:

private class SitesOverlay extends ItemizedOverlay<OverlayItem> {
 private List<OverlayItem> items=new ArrayList<OverlayItem>();
 private Drawable marker=null;

 public SitesOverlay(Drawable marker) {
 super(marker);
 this.marker=marker;

 items.add(new OverlayItem(getPoint(40.748963847316034,
 -73.96807193756104),
 "UN", "United Nations"));
 items.add(new OverlayItem(getPoint(40.76866299974387,
 -73.98268461227417),
 "Lincoln Center",
 "Home of Jazz at Lincoln Center"));
 items.add(new OverlayItem(getPoint(40.765136435316755,
 -73.97989511489868),
 "Carnegie Hall",
 "Where you go with practice, practice, practice"));
 items.add(new OverlayItem(getPoint(40.70686417491799,
 -74.01572942733765),
 "The Downtown Club",
 "Original home of the Heisman Trophy"));

 populate();
 }

 @Override
 protected OverlayItem createItem(int i) {
 return(items.get(i));
 }

 @Override
 public void draw(Canvas canvas, MapView mapView,
 boolean shadow) {
 super.draw(canvas, mapView, shadow);

CHAPTER 33: Mapping with MapView and MapActivity 307

 boundCenterBottom(marker);
 }

 @Override
 protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
 }

 @Override
 public int size() {
 return(items.size());
 }
}

Handling Screen Taps
An Overlay subclass can also implement onTap(), to be notified when the user taps the

map, so the overlay can adjust what it draws. For example, in full-size Google Maps,

clicking a pushpin pops up a bubble with information about the business at that pin’s

location. With onTap(), you can do much the same in Android.

The onTap() method for ItemizedOverlay receives the index of the OverlayItem that was

clicked. It is up to you to do something worthwhile with this event.

In the case of SitesOverlay, as shown in the preceding section, onTap() looks like this:

@Override
protected boolean onTap(int i) {
 Toast.makeText(NooYawk.this,
 items.get(i).getSnippet(),
 Toast.LENGTH_SHORT).show();

 return(true);
}

Here, we just toss up a short Toast with the snippet from the OverlayItem, returning

true to indicate we handled the tap.

My, Myself, and MyLocationOverlay
Android has a built-in overlay to handle two common scenarios:

 Showing where you are on the map, based on GPS or other location-

providing logic

 Showing where you are pointed, based on the built-in compass

sensor, where available

CHAPTER 33: Mapping with MapView and MapActivity 308

All you need to do is create a MyLocationOverlay instance, add it to your MapView’s list of

overlays, and enable and disable the desired features at appropriate times.

The “at appropriate times” notion is for maximizing battery life. There is no sense in

updating locations or directions when the activity is paused, so it is recommended that

you enable these features in onResume() and disable them in onPause().

For example, NooYawk will display a compass rose using MyLocationOverlay. To do this,

we first need to create the overlay and add it to the list of overlays:

me=new MyLocationOverlay(this, map);
map.getOverlays().add(me);

Then we enable and disable the compass rose as appropriate:

@Override
public void onResume() {
 super.onResume();

 me.enableCompass();
}

@Override
public void onPause() {
 super.onPause();

 me.disableCompass();
}

The Key to It All
If you actually download the source code for the book, compile the NooYawk project,

install it in your emulator, and run it, you will probably see a screen with a grid and a

couple of pushpins, but no actual maps.

That’s because the API key in the source code is invalid for your development machine.

Instead, you will need to generate your own API key(s) for use with your application.

Full instructions for generating API keys for development and production use can be

found on the Android web site (http://code.google.com/android/add-ons/google-

apis/mapkey.html). In the interest of brevity, let’s focus on the narrow case of getting

NooYawk running in your emulator. Doing this requires the following steps:

1. Visit the API key signup page and review the terms of service.

2. Reread those terms of service and make really sure you want to agree to

them.

3. Find the MD5 digest of the certificate used for signing your debug-mode

applications.

4. On the API key signup page, paste in that MD5 signature and submit the

form.

CHAPTER 33: Mapping with MapView and MapActivity 309

5. On the resulting page, copy the API key and paste it as the value of

apiKey in your MapView-using layout.

The trickiest part is finding the MD5 signature of the certificate used for signing your

debug-mode applications. Actually, much of the complexity is merely in making sense of

the concept.

All Android applications are signed using a digital signature generated from a certificate.

You are automatically given a debug certificate when you set up the SDK, and there is a

separate process for creating a self-signed certificate for use in your production

applications. This signature process involves the use of the Java keytool and jarsigner

utilities. For the purposes of getting your API key, you only need to worry about keytool.

To get your MD5 digest of your debug certificate, if you are on Mac OS X or Linux, use

the following command:

keytool -list -alias androiddebugkey -keystore ~/.android/debug.keystore -storepass

 android -keypass android

On other development platforms, you will need to replace the value of the -keystore

switch with the location for your platform and user account:

 On Windows XP, use C:\Documents and
Settings\<user>\.android\debug.keystore.

 On Windows Vista/Windows 7, use

C:\Users\<user>\.android\debug.keystore (where <user> is your

account name).

The second line of the output contains your MD5 digest, as a series of pairs of hex digits

separated by colons.

311

 Chapter

Handling Telephone Calls
Many, if not most, Android devices will be phones. As such, not only will users be

expecting to place and receive calls using Android, but you will have the opportunity to

help them place calls, if you wish.

Why might you want to?

 Maybe you are writing an Android interface to a sales management

application (a la Salesforce.com) and you want to offer users the ability

to call prospects with a single button click, and without them needing

to keep those contacts both in your application and in the phone’s

contacts application.

 Maybe you are writing a social networking application, and the roster

of phone numbers that you can access shifts constantly, so rather

than try to synchronize the social network contacts with the phone’s

contact database, you let people place calls directly from your

application.

 Maybe you are creating an alternative interface to the existing contacts

system, perhaps for users with reduced motor control (e.g., the

elderly), sporting big buttons and the like to make it easier for them to

place calls.

Whatever the reason, Android has the means to let you manipulate the phone just like

any other piece of the Android system.

Report to the Manager
To get at much of the phone API, you use the TelephonyManager. That class lets you do

things like the following:

 Determine if the phone is in use via getCallState(), with return values

of CALL_STATE_IDLE (phone not in use), CALL_STATE_RINGING (call

requested but still being connected), and CALL_STATE_OFFHOOK (call in

progress).

34

CHAPTER 34: Handling Telephone Calls 312

 Find out the SIM ID (IMSI) via getSubscriberId().

 Find out the phone type (e.g., GSM) via getPhoneType(), or find out the

data connection type (e.g., GPRS or EDGE) via getNetworkType().

You Make the Call!
You can also initiate a call from your application, such as from a phone number you

obtained through your own web service. To do this, simply craft an ACTION_DIAL Intent

with a Uri of the form tel:NNNNN (where NNNNN is the phone number to dial) and use that

Intent with startActivity(). This will not actually dial the phone; rather, it activates the

dialer activity, from which the user can press a button to place the call.

For example, let’s look at the Phone/Dialer sample application. Here’s the crude (but

effective) layout:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 >
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Number to dial:"
 />
 <EditText android:id="@+id/number"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:cursorVisible="true"
 android:editable="true"
 android:singleLine="true"
 />
 </LinearLayout>
 <Button android:id="@+id/dial"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="Dial It!"
 />
</LinearLayout>

We have a labeled field for typing in a phone number, plus a button for dialing that

number.

The Java code simply launches the dialer using the phone number from the field:

CHAPTER 34: Handling Telephone Calls 313

package com.commonsware.android.dialer;

import android.app.Activity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class DialerDemo extends Activity {
 @Override
 public void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setContentView(R.layout.main);

 final EditText number=(EditText)findViewById(R.id.number);
 Button dial=(Button)findViewById(R.id.dial);

 dial.setOnClickListener(new Button.OnClickListener() {
 public void onClick(View v) {
 String toDial="tel:"+number.getText().toString();

 startActivity(new Intent(Intent.ACTION_DIAL,
 Uri.parse(toDial)));
 }
 });
 }
}

The activity’s own UI is not that impressive, as you can see in Figure 34–1.

Figure 34–1. The DialerDemo sample application, as initially launched

CHAPTER 34: Handling Telephone Calls 314

However, the dialer you get from clicking the dial button is better, showing you the

number you are about to dial, as shown in Figure 34–2.

Figure 34–2. The Android Dialer activity, as launched from DialerDemo

315

 Chapter

Development Tools
The Android SDK is more than a library of Java classes and API calls. It also includes a

number of tools to assist in application development.

Much of the focus has been on the Eclipse plug-in, to integrate Android development

with that IDE. Secondary emphasis has been placed on the plug-in’s equivalents for use

in other IDEs or without an IDE, such as adb for communicating with a running emulator.

This chapter will cover other tools beyond those two groups.

Hierarchical Management
Android comes with a Hierarchy Viewer tool, designed to help you visualize your layouts

as they are seen in a running activity in a running emulator. So, for example, you can

determine how much space a certain widget is taking up, or try to find where a widget

that does not appear on the screen is hiding.

To use Hierarchy Viewer, you first need to fire up your emulator, install your application,

launch your activity, and navigate to spot you wish to examine. Note that you cannot

use Hierarchy Viewer with a production Android device (e.g., T-Mobile G1). For

illustration purposes, we’ll use the ReadWrite demo application introduced back in

Chapter 23, as shown in Figure 35–1.

You can launch Hierarchy Viewer via the hierarchyviewer program, found in the tools/

directory in your Android SDK installation. This brings up the main Hierarchy Viewer

window, as shown in Figure 35–2.

35

CHAPTER 35: Development Tools

Figure 35–1. ReadWrite demo application

Figure 35–2. Hierarchy Viewer main window

CHAPTER 35: Development Tools

The list on the left shows the various emulators you have opened. The number after the

hyphen should line up with the number in parentheses in your emulator’s title bar.

When you click an emulator, the list of windows available for examination appears on

the right, as shown in Figure 35–3.

Figure 35–3. Hierarchy Viewer list of available windows

Notice how there are many other windows besides our open activity, including the

Launcher window (i.e., the home screen), the Keyguard window (i.e., the “Press Menu to

Unlock” black screen you get when first opening the emulator), and so on. Your activity

will be identified by application package and class (e.g.,

com.commonsware.android.files/...).

Things get interesting when you choose a window and click Load View Hierarchy. After

a few seconds, the details spring into view, in a perspective called the Layout view, as

shown in Figure 35–4.

CHAPTER 35: Development Tools

Figure 35–4. Hierarchy Viewer Layout view

The main area of the Layout view shows a tree of the various views that make up your

activity, starting from the overall system window and driving down into the individual UI

widgets. You will see, on the lower-right branch of the tree, the LinearLayout, Button,

and EditText shown in the preceding code listing. All of the remaining views, including

the title bar, are supplied by the system.

Clicking one of the views adds more information to this perspective, as shown in

Figure 35–5.

CHAPTER 35: Development Tools

Figure 35–5. Hierarchy Viewer view properties

Now, in the upper-right region of the viewer, you see properties of the selected widget—

in this case, the Button. Alas, these properties do not appear to be editable.

Also, the widget is highlighted in red in the wireframe of the activity, shown beneath the

properties (by default, views are shown as white outlines on a black background). This

can help you ensure you have selected the correct widget, if, say, you have several

buttons and cannot readily tell from the tree what is what.

If you double-click a view in the tree, you will see a pop-up pane showing just that view

(and its children), isolated from the rest of your activity.

Down in the lower-left corner, you will see two toggle buttons, with the tree button

initially selected. Clicking the grid button puts the viewer in a whole new perspective,

called the Pixel Perfect view, as shown in Figure 35–6.

CHAPTER 35: Development Tools

Figure 35–6. Hierarchy Viewer Pixel Perfect view

On the left, you see a tree representing the widgets and other views in your activity. In

the middle, you see your activity (the Normal view), and on the right, you see a zoomed

edition of your activity (the Loupe view).

What may not be initially obvious is that this imagery is live. Your activity is polled every

so often, controlled by the Refresh Rate slider. Anything you do in the activity will then

be reflected in the Pixel Perfect view’s Normal and Loupe views.

The hairlines (cyan) overlaying the activity show the position being zoomed. Just click a

new area to change where the Loupe view is inspecting. And, of course, there is another

slider to adjust how much the Loupe view is zoomed.

CHAPTER 35: Development Tools

Delightful Dalvik Debugging Detailed, Demoed
Another tool in the Android developer’s arsenal is the Dalvik Debug Monitor Service

(DDMS). This is like a Swiss army knife, allowing you to do everything from browse log

files, update the GPS location provided by emulator, simulate incoming calls and

messages, and browse the on-emulator storage to push and pull files.

DDMS has a wide range of uses. Here, I will introduce some of the most useful features.

To launch DDMS, run the ddms program inside the tools/ directory in your Android SDK

distribution. It will initially display just a tree of emulators and running programs on the

left, as shown in Figure 35–7.

Figure 35–7. DDMS initial view

Clicking an emulator allows you to browse the event log on the bottom and manipulate

the emulator via the tabs on the right, as shown in Figure 35–8.

CHAPTER 35: Development Tools

Figure 35–8. DDMS, with emulator selected

Logging
Rather than use adb logcat, DDMS lets you view your logging information in a scrollable

table. Just highlight the emulator or device you want to monitor, and the bottom half of

the screen shows the logs.

In addition, you can do the following:

 Filter the Log tab by any of the five logging levels, shown as the V

through E toolbar buttons.

 Create a custom filter, so you can view only those entries tagged with

your application’s tag, by pressing the + toolbar button and

completing the form (see Figure 35–9). The name you enter in the form

will be used as the name of another logging output tab in the bottom

portion of the DDMS main window.

 Save the log information to a text file for later perusal, or for searching.

CHAPTER 35: Development Tools

Figure 35–9. DDMS logging filter

File Push and Pull
While you can use adb pull and adb push to get files to and from an emulator or device,

DDMS lets you do that visually. Just highlight the emulator or device you wish to work

with, and then choose Device ➤ File Explorer from the main menu. That will bring up

your typical directory browser, as shown in Figure 35–10.

Figure 35–10. DDMS File Explorer

Just browse to the file you want and click either the pull (leftmost) or push (middle)

toolbar button to transfer the file to or from your development machine. To delete a file,

click the delete (rightmost) toolbar button.

CHAPTER 35: Development Tools

There are a few caveats to using File Explorer:

 You cannot create directories through this tool. You will either need to

use adb shell or create them from within your application.

 While you can putter through most of the files on an emulator, you can

access very little outside /sdcard on an actual device, due to Android

security restrictions.

Screenshots
To take a screenshot of the Android emulator or device, simply press Ctrl+S or choose

Device ➤ Screen Capture from the main menu. This will bring up a dialog box containing

an image of the current screen, as shown in Figure 35–11.

Figure 35–11. DDMS screen capture

From here, you can do the following:

 Click Save to save the image as a PNG file somewhere on your

development machine.

 Click Refresh to update the image based on the current state of the

emulator or device.

 Click Done to close the dialog box.

CHAPTER 35: Development Tools

Location Updates
To use DDMS to supply location updates to your application, the first thing you must do

is have your application use the gps LocationProvider, as that is the one that DDMS is

set to update.

Next, click the Emulator Control tab and scroll down to the Location Controls section.

Here, you will find a smaller tabbed pane with three options for specifying locations:

Manual, GPX, and KML, as shown in Figure 35–12.

Figure 35–12. DDMS location controls

To use the Manual tab, provide a latitude and longitude and click the Send button to

submit that location to the emulator. The emulator will notify any location listeners of the

new position.

The other tabs allow you to specify locations using GPS Exchange (GPX) format or

Keyhole Markup Language (KML) format.

CHAPTER 35: Development Tools

Placing Calls and Messages
If you want to simulate incoming calls or SMS messages to the Android emulator, DDMS

can handle that as well.

On the Emulator Control tab, above the Location Controls group, is the Telephony

Actions group, as shown in Figure 35–13.

Figure 35–13. DDMS telephony controls

To simulate an incoming call, fill in a phone number, choose the Voice radio button, and

click Call. At that point, the emulator will show the incoming call, allowing you to accept

it (via the green phone button) or reject it (via the red phone button), as shown in Figure

35–14.

CHAPTER 35: Development Tools 327

Figure 35–14. Simulated incoming call

To simulate an incoming text message, fill in a phone number, choose the SMS radio

button, enter a message in the provided text area, and click Send. The text message will

then appear as a notification, as shown in Figure 35–15.

Figure 35–15. Simulated text message

And, of course, you can click the notification to view the message in the full-fledged

messaging application, as shown in Figure 35–16.

CHAPTER 35: Development Tools 328

Figure 35–16. Simulated text message, in messaging application

Put It on My Card
The T-Mobile G1 has a microSD card slot. Many other Android devices are likely to have

similar forms of removable storage, which the Android platform refers to generically as

an SD card.

It’s strongly recommended that developers use SD cards as the holding pen for large

data sets: images, movie clips, audio files, and so on. The T-Mobile G1, in particular,

has a relatively paltry amount of on-board flash memory, so the more you can store on

an SD card, the better.

Of course, the challenge is that, while the G1 has an SD card by default, the emulator

does not. To make the emulator work like the G1, you need to create and “insert” an SD

card into the emulator.

Creating a Card Image
Rather than require emulators to somehow have access to an actual SD card reader and

use actual SD cards, Android is set up to use card images. A card image is simply a file

that the emulator will treat as if it were an SD card volume. If you are used to disk

images used with virtualization tools (e.g., VirtualBox), the concept is the same. Android

uses a disk image representing the SD card contents.

CHAPTER 35: Development Tools 329

To create such an image, use the mksdcard utility, provided in the tools/ directory of

your SDK installation. This takes two main parameters:

 The size of the image, and hence the size of the resulting “card.” If you

just supply a number, it is interpreted as a size in bytes. Alternatively,

you can append K or M to the number to indicate a size in kilobytes or

megabytes, respectively.

 The filename under which to store the image.

So, for example, to create a 1GB SD card image, to simulate the G1’s SD card in the

emulator, you could run the following:

mksdcard 1024M sdcard.img

Inserting the Card
To have your emulator use this SD card image, start the emulator with the -sdcard

switch, containing a fully qualified path to the image file you created using mksdcard.

While there will be no visible impact—you won’t see an icon or anything else in Android

showing that you have a card mounted—the /sdcard path will now be available for

reading and writing.

To put files on the /sdcard, either use File Explorer in DDMS or adb push and adb pull

from the console.

331

 Chapter

Handling Multiple Screen
Sizes
For the first year or so since Android 1.0 was released, all production Android devices

had the same screen resolution (HVGA, 320 by 480) and size (around 3.5 inches, or 9

centimeters). Starting in the fall of 2009, though, devices have been arriving with widely

disparate screen sizes and resolutions, from tiny QVGA (240 by 320) screens to much

larger WVGA (480 by 800) screens.

Of course, users will be expecting your application to be functional on all of these

screens, and perhaps take advantage of larger screen sizes to add greater value. To that

end, Android 1.6 added new capabilities to help better support these different screen

sizes and resolutions.

The Android documentation has extensive coverage of the mechanics of handling multiple

screen sizes (http://d.android.com/guide/practices/screens_support.html). You are

encouraged to read that information along with this chapter, to get the best understanding

of how to cope with, and perhaps take advantage of, multiple screen sizes.

After a number of sections discussing the screen size options and theory, the chapter

wraps with an in-depth look at making a fairly simple application that handles multiple

screen sizes well.

Taking the Default
Let’s suppose that you start off by totally ignoring the issue of screen sizes and

resolutions. What happens?

If your application is compiled for Android 1.5 or lower, Android will assume your

application was designed to look good on the classic screen size and resolution. If

your application is installed on a device with a larger screen, Android automatically will

run your application in compatibility mode, scaling everything based on the actual

screen size.

36

CHAPTER 36: Handling Multiple Screen Sizes 332

For example, suppose you have a 24-pixel square PNG file, and Android installs and

runs your application on a device with the standard physical size but a WVGA resolution

(a so-called high-density screen). Android might scale your PNG file to be 36 pixels, so it

will take up the same visible space on the screen. On the plus side, Android handles this

automatically. On the minus side, bitmap-scaling algorithms tend to make the images a

bit fuzzy.

Additionally, Android will block your application from running on a device with a smaller

screen. Hence, QVGA devices, like the HTC Tattoo, will be unable to get your

application, even if it is available on the Android Market.

If your application is compiled for Android 1.6 or higher, Android assumes that you are

properly handling all screen sizes, and therefore will not run your application in

compatibility mode. You will see how to tailor this in a later section.

Whole in One
The simplest approach to handling multiple screen sizes in Android is to design your UIs

so that they automatically scale for the screen size, without any size-specific code or

resources. In other words, “it just works.”

This implies, though, that everything you use in your UI can be gracefully scaled by

Android and that everything will fit, even on a QVGA screen.

The following sections contain some tips for achieving this all in one solution.

Think About Rules, Rather Than Positions
Some developers, perhaps those coming from the drag-and-drop school of UI

development, think first and foremost about the positions of widgets. They think that

they want particular widgets to be certain fixed sizes at certain fixed locations. They get

frustrated with Android layout managers (containers) and may gravitate to the

deprecated AbsoluteLayout as a way to design UIs in a familiar way.

That approach rarely works well—even on desktops—as can be seen by applications

that do a poor job of window resizing. Similarly, it will not work on mobile devices,

particularly Android, with their wide range of screen sizes and resolutions.

Instead of thinking about positions, think about rules. You need to teach Android the

business rules about where widgets should be sized and placed, and then Android will

interpret those rules based on what the device’s screen actually supports in terms of

resolution.

The simplest rules are the fill_parent and wrap_content values for

android:layout_width and android:layout_height. Those do not specify specific sizes,

but rather adapt to the space available.

The richest environment for easily specifying rules is to use RelativeLayout (discussed

in Chapter 6). While complicated on the surface, RelativeLayout does an excellent job

CHAPTER 36: Handling Multiple Screen Sizes 333

of letting you control your layout while still adapting it to other screen sizes. For

example, you can do the following:

 Explicitly anchor widgets to the bottom or right side of the screen,

rather than hoping they will wind up there courtesy of some other

layout.

 Control the distances between widgets that are connected (e.g., a

label for a field that should be to the left of the field) without needing to

rely on padding or margins.

The greatest control for specifying rules is to create your own layout class. For example,

suppose you are creating a series of applications that implement card games. You may

want to have a layout class that knows about playing cards—how they overlap, which

are face up versus face down, how big to be to handle varying number of cards, and so

on. While you could achieve the desired look with, say, a RelativeLayout, you may be

better served implementing a PlayingCardLayout or something that is more explicitly

tailored for your application. Unfortunately, creating custom layout classes is

underdocumented at this point in time.

Consider Physical Dimensions
Android offers a wide range of available units of measure for dimensions. The most

popular has been the pixel (px), because it is easy to wrap your head around the

concept. After all, each Android device will have a screen with a certain number of pixels

in each direction.

However, pixels start to become troublesome as screen density changes. As the number

of pixels in a given screen size increases, the pixels effectively shrink. A 32-pixel icon on

a traditional Android device might be finger-friendly, but on a high-density device (say,

WVGA in a mobile phone form factor), 32 pixels may be a bit small for use with a finger.

If you have something intrinsically scalable (e.g., a Button) where you had been

specifying a size in pixels, you might consider switching to using millimeters (mm) or

inches (in) as the unit of measure—10 millimeters are 10 millimeters, regardless of the

screen resolution or the screen size. This way, you can ensure that your widget is sized

to be finger-friendly, regardless of the number of pixels that might take.

Avoid Real Pixels
In some circumstances, using millimeters for dimensions will not make sense. Then you

may wish to consider using other units of measure while still avoiding real pixels.

Android offers dimensions measured in density-independent pixels (dip). These map 1:1

to pixels for a 160-dpi screen (e.g., a classic HVGA Android device) and scale from

there. For example, on a 240-dpi device (e.g., a phone-sized WVGA device), the ratio is

2:3, so 50dip = 50px at 160 dpi = 75px at 240 dpi. The advantage to the user of going

CHAPTER 36: Handling Multiple Screen Sizes 334

with dip is that the actual size of the dimension stays the same, so visibly there is no

difference between 50dip at 160 dpi and 50dip at 240 dpi.

Android also offers dimensions measured in scaled pixels (sp). Scaled pixels, in theory,

are scaled based on the user’s choice of font size (FONT_SCALE value in

System.Settings).

Choose Scalable Drawables
Classic bitmaps—PNG, JPG, and GIF—are not intrinsically scalable. If you are not

running in compatibility mode, Android will not even try to scale them for you based on

screen resolution and size. Whatever size of bitmap you supply is the size it will be, even

if that makes the image too large or too small on some screens.

One way to address this is to try to avoid static bitmaps, using nine-patch bitmaps and

XML-defined drawables (e.g., GradientDrawable) as alternatives. A nine-patch bitmap is

a PNG file specially encoded to have rules indicating how that image can be stretched

to take up more space. XML-defined drawables use a quasi-SVG XML language to

define shapes, their strokes and fills, and so on.

Tailor-Made, Just for You (and You, and You, and...)
There will be times when you want to have different looks or behaviors based on screen

size or density. Android has ways for you to switch out resources or code blocks based

on the environment in which your application runs. When properly used in combination

with the techniques discussed in the previous section, achieving screen size- and

density-independence is eminently possible, at least for devices running Android 1.6

and newer.

Add <supports-screens>
The first step to proactively supporting screen sizes is to add the <supports-screens>

element to your AndroidManifest.xml file. This specifies which screen sizes you

explicitly support and which you do not. Those that you do not explicitly support will be

handled by the automatic compatibility mode described previously.

Here is a manifest containing a <supports-screens> element:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"
 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />

CHAPTER 36: Handling Multiple Screen Sizes 335

 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Each of the attributes android:smallScreens, android:normalScreens, and

android:largeScreens takes a Boolean value indicating if your application explicitly

supports those screens (true) or requires compatibility mode assistance (false).

The android:anyDensity attribute indicates whether you are taking density into account

in your calculations (true) or not (false). If false, Android will behave as though all of

your dimensions (e.g., 4px) were for a normal-density (160-dpi) screen. If your

application is running on a screen with lower or higher density, Android will scale your

dimensions accordingly. If you indicate that android:anyDensity = "true", you are

telling Android not to do that, putting the onus on you to use density-independent units,

such as dip, mm, or in.

Resources and Resource Sets
The primary way to toggle different things based on screen size or density is to create

resource sets. By creating resource sets that are specific to different device

characteristics, you teach Android how to render each, with Android switching among

those sets automatically.

Default Scaling
By default, Android will scale all drawable resources. Those that are intrinsically scalable

will scale nicely. Ordinary bitmaps will be scaled using a normal scaling algorithm, which

may or may not give you great results. It also may slow things down a bit. If you wish to

avoid this, you will need to set up separate resource sets containing your nonscalable

bitmaps.

Density-Based Sets
If you wish to have different layouts, dimensions, or the like based on different screen

densities, you can use the -ldpi, -mdpi, and -hdpi resource set labels. For example,

res/values-hdpi/dimens.xml would contain dimensions used in high-density devices.

CHAPTER 36: Handling Multiple Screen Sizes 336

Size-Based Sets
Similarly, if you wish to have different resource sets based on screen size, Android offers

-small, -normal, and -large resource set labels. Creating res/layout-large-land/

would indicate layouts to use on large screens (e.g., WVGA) in landscape orientation.

Version-Based Sets
There may be times when earlier versions of Android get confused by newer resource

set labels. To help with that, you can include a version label to your resource set, of the

form -vN, where N is an API level. Hence, res/drawable-large-v4/ indicates these

drawables should be used on large screens at API level 4 (Android 1.6) and newer.

Android has had the ability to filter on version from early on, and so this technique will

work going back to Android 1.5 (and perhaps earlier).

So, if you find that Android 1.5 emulators or devices are grabbing the wrong resource

sets, consider adding -v4 to their resource set names to filter them out.

Finding Your Size
If you need to take different actions in your Java code based on screen size or density,

you have a few options.

If there is something distinctive in your resource sets, you can sniff on that and branch

accordingly in your code. For example, as will be seen in the code sample later in this

chapter, you can have extra widgets in some layouts (e.g., res/layout-large/main.xml);

simply seeing if an extra widget exists will tell you if you are running a large screen.

You can also find out your screen size class via a Configuration object, typically

obtained by an Activity via getResources().getConfiguration(). A Configuration

object has a public field named screenLayout that is a bitmask indicating the type of

screen on which the application is running. You can test to see if your screen is small,

normal, or large, or if it is long (where long indicates a 16:9 or similar aspect ratio,

compared to 4:3). For example, here we test to see if we are running on a large screen:

if (getResources().getConfiguration().screenLayout
 & Configuration.SCREENLAYOUT_SIZE_LARGE)
 ==Configuration.SCREENLAYOUT_SIZE_LARGE) {
 // yes, we are large
}
else {
 // no, we are not
}

There does not appear to be an easy way to find out your screen density in a similar

fashion. If you absolutely need to know that, a hack would be to create res/values-
ldpi/, res/values-mdpi/, and res/values-hdpi/ directories in your project, and add a

strings.xml file to each. Put a string resource in strings.xml that has a common name

across all three resource sets and has a distinctive value (e.g., name it density, with

CHAPTER 36: Handling Multiple Screen Sizes 337

values of ldpi, mdpi, and hdpi, respectively). Then test the value of the string resource at

runtime. This is inelegant but should work.

Ain’t Nothing Like the Real Thing
The Android emulators will help you test your application on different screen sizes.

However, that will get you only so far, because mobile device LCDs have different

characteristics than your desktop or notebook, such as the following:

 Mobile device LCDs may have a much higher density than that of your

development machine.

 A mouse allows for much more precise touchscreen input than does

an actual fingertip.

Where possible, you are going to need to either use the emulator in new and exciting

ways or try to get your hands on actual devices with alternative screen resolutions.

Density Differs
The Motorola DROID has a 240-dpi, 3.7-inch, 480-by-854 pixel screen (an FWVGA

display). To emulate a DROID screen, based on pixel count, takes up one third of a 19-

inch, 1280-by-1024 LCD monitor, because the LCD monitor’s density is much lower

than that of the DROID—around 96 dpi. So, when you fire up your Android emulator for

an FWVGA display like that of the DROID, you will get a massive emulator window.

This is still perfectly fine for determining the overall look of your application in an FWVGA

environment. Regardless of density, widgets will still align the same, sizes will have the

same relationships (e.g., widget A might be twice as tall as widget B, and that will be

true regardless of density), and so on.

However, these issues may come up:

 Things that might appear to be a suitable size when viewed on a 19-

inch LCD may be entirely too small on a mobile device screen of the

same resolution.

 Things that you can easily click with a mouse in the emulator may be

much too small to pick out on a physically smaller and denser screen

when used with a finger.

Adjusting the Density
By default, the emulator will keep the pixel count accurate at the expense of density,

which is why you get the really big emulator window. You do have an option of keeping

the density accurate at the expense of pixel count.

CHAPTER 36: Handling Multiple Screen Sizes

The easiest way to do this is to use the Android AVD Manager, introduced in Android

1.6. The Android 2.0 edition of this tool has a Launch Options dialog that pops up when

you go to start an emulator instance via the Start button, as shown in Figure 36–1.

Figure 36–1. The Launch Options dialog

By default, the “Scale display to real size” check box is unchecked, and Android will

open the emulator window normally. You can check that check box, and then provide

two bits of scaling information:

 The screen size of the device you wish to emulate, in inches (e.g., 3.7

for the Motorola DROID)

 The dots-per-inch resolution of your monitor (click the ? button to

bring up a calculator to help you determine that value)

This will give you an emulator window that more accurately depicts what your UI will

look like on a physical device, at least in terms of sizes. However, since the emulator is

using far fewer pixels than will a device, fonts may be difficult to read, images may be

blocky, and so forth.

Accessing Actual Devices
Of course, the best possible way to see what your application looks like on different

devices is to actually test it on different devices. You do not necessarily need to get

every Android device ever made, but you may want to have access to ones with

distinctive hardware that impacts your application, and screen size impacts just about

everyone. Here are some suggestions:

 Virtually test devices using services like DeviceAnywhere

(http://www.deviceanywhere.com/). This is an improvement over the

emulator, but it is not free and certainly cannot test everything (e.g.,

changes in location).

CHAPTER 36: Handling Multiple Screen Sizes 339

 Purchase devices, perhaps through back channels like eBay.

Unlocked GSM phones can readily share a SIM when you need to test

telephony operations or go SIM-less otherwise.

 If you live in or near a city, you may be able to set up some form of a

user group, and use that group for testing applications on your

collective set of hardware.

 Take the user-testing route, releasing your application as a free beta or

something, and then letting user feedback guide adjustments. You

may wish to distribute this outside the Android Market, lest beta test

feedback harm your application’s market rating.

Ruthlessly Exploiting the Situation
So far, we have focused on how you can ensure your layouts look decent on other

screen sizes. And, for smaller screens than the norm (e.g., QVGA), that is perhaps all you

can achieve.

Once we get into larger screens, though, another possibility emerges: using different

layouts designed to take advantage of the extra screen space. This is particularly useful

when the physical screen size is larger (e.g., a 5-inch LCD like on the Archos 5 Android

tablet), rather than simply having more pixels in the same physical space.

The following sections describe some ways you might take advantage of additional space.

Replace Menus with Buttons
An option menu selection requires two physical actions: press the Menu button, and

then tap on the appropriate menu choice. A context menu selection requires two

physical actions as well: long-tap on the widget, and then tap on the menu choice.

Context menus have the additional problem of being effectively invisible; for example,

users may not realize that your ListView has a context menu.

You might consider augmenting your UI to provide direct on-screen ways of

accomplishing things that might otherwise be hidden away on a menu. Not only does

this reduce the number of steps a user needs to take to do things, but it also makes

those options more obvious.

For example, suppose you are creating a media player application, and you want to offer

manual playlist management. You have an activity that displays the songs in a playlist in

a ListView. On an option menu, you have an Add choice, to add a new song from the

ones on the device to the playlist. On a context menu on the ListView, you have a

Remove choice, plus Move Up and Move Down choices to reorder the songs in the list.

On a large screen, you might consider adding four ImageButton widgets to your UI for

these four options, with the three from the context menu enabled only when a row is

selected by the D-pad or trackball. On regular or small screens, you would stick with just

using the menus.

CHAPTER 36: Handling Multiple Screen Sizes 340

Replace Tabs with a Simple Activity
You may have introduced a TabHost into your UI to allow you to display more widgets in

the available screen space. As long as the widget space you save by moving them to a

separate tab is more than the space taken up by the tabs themselves, you win.

However, having multiple tabs means more user steps to navigate your UI, particularly if

the user needs to flip back and forth between tabs frequently.

If you have only two tabs, consider changing your UI to offer a large-screen layout that

removes the tabs and puts all the widgets on one screen. This places everything in front

of the user, without needing to switch tabs all the time.

If you have three or more tabs, you probably will lack screen space to put all those tabs’

contents on one activity. However, you might consider going half and half: have popular

widgets be on the activity all of the time, leaving your TabHost to handle the rest on

(roughly) half of the screen.

Consolidate Multiple Activities
The most powerful technique is to use a larger screen to get rid of activity transitions

outright. For example, if you have a ListActivity where clicking an item brings up that

item’s details in a separate activity, consider supporting a large-screen layout where the

details are on the same activity as the ListView (e.g., ListView on the left, details on the

right, in a landscape layout). This eliminates the user having to constantly press the

Back button to leave one set of details before viewing another.

You will see this technique applied in the sample code presented in the following section.

Example: EU4You
To examine how to use some of the techniques discussed so far, let’s look at the

ScreenSizes/EU4You sample application. This application has one activity (EU4You) that

contains a ListView with the roster of European Union (EU) members and their

respective flags (http://www.wpclipart.com/flags/Countries/index.html). Clicking one of

the countries brings up the mobile Wikipedia page for that country.

In the source code to this book, you will find four versions of this application. We start

with an application that is ignorant of screen size and slowly add in more screen-

related features.

The First Cut
First, here is our AndroidManifest.xml file, which looks distinctly like one shown earlier

in this chapter:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.commonsware.android.eu4you"

CHAPTER 36: Handling Multiple Screen Sizes 341

 android:versionCode="1"
 android:versionName="1.0">
 <supports-screens
 android:largeScreens="true"
 android:normalScreens="true"
 android:smallScreens="true"
 android:anyDensity="true"
 />
 <application android:label="@string/app_name"
 android:icon="@drawable/cw">
 <activity android:name=".EU4You"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Notice we have the <supports-screens> element, saying that we do indeed support all

screen sizes. This blocks most of the automatic scaling that Android would do if we said

we did not support certain screen sizes.

Our main layout is size-independent, as it is just a full-screen ListView:

<?xml version="1.0" encoding="utf-8"?>
<ListView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
/>

Our row, though, will eventually need some tweaking:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4px"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="20px"
 />
</LinearLayout>

CHAPTER 36: Handling Multiple Screen Sizes 342

For example, right now, our font size is set to 20px, which will not vary by screen size or

density.

Our EU4You activity is a bit verbose, mostly because there are a lot of EU members, and

we need to have the smarts to display the flag and the text in the row:

package com.commonsware.android.eu4you;

import android.app.ListActivity;
import android.content.Intent;
import android.net.Uri;
import android.os.Bundle;
import android.view.View;
import android.view.ViewGroup;
import android.widget.ArrayAdapter;
import android.widget.ImageView;
import android.widget.ListView;
import android.widget.TextView;
import java.util.ArrayList;

public class EU4You extends ListActivity {
 static private ArrayList<Country> EU=new ArrayList<Country>();

 static {
 EU.add(new Country(R.string.austria, R.drawable.austria,
 R.string.austria_url));
 EU.add(new Country(R.string.belgium, R.drawable.belgium,
 R.string.belgium_url));
 EU.add(new Country(R.string.bulgaria, R.drawable.bulgaria,
 R.string.bulgaria_url));
 EU.add(new Country(R.string.cyprus, R.drawable.cyprus,
 R.string.cyprus_url));
 EU.add(new Country(R.string.czech_republic,
 R.drawable.czech_republic,
 R.string.czech_republic_url));
 EU.add(new Country(R.string.denmark, R.drawable.denmark,
 R.string.denmark_url));
 EU.add(new Country(R.string.estonia, R.drawable.estonia,
 R.string.estonia_url));
 EU.add(new Country(R.string.finland, R.drawable.finland,
 R.string.finland_url));
 EU.add(new Country(R.string.france, R.drawable.france,
 R.string.france_url));
 EU.add(new Country(R.string.germany, R.drawable.germany,
 R.string.germany_url));
 EU.add(new Country(R.string.greece, R.drawable.greece,
 R.string.greece_url));
 EU.add(new Country(R.string.hungary, R.drawable.hungary,
 R.string.hungary_url));
 EU.add(new Country(R.string.ireland, R.drawable.ireland,
 R.string.ireland_url));
 EU.add(new Country(R.string.italy, R.drawable.italy,
 R.string.italy_url));
 EU.add(new Country(R.string.latvia, R.drawable.latvia,
 R.string.latvia_url));

CHAPTER 36: Handling Multiple Screen Sizes 343

 EU.add(new Country(R.string.lithuania, R.drawable.lithuania,
 R.string.lithuania_url));
 EU.add(new Country(R.string.luxembourg, R.drawable.luxembourg,
 R.string.luxembourg_url));
 EU.add(new Country(R.string.malta, R.drawable.malta,
 R.string.malta_url));
 EU.add(new Country(R.string.netherlands, R.drawable.netherlands,
 R.string.netherlands_url));
 EU.add(new Country(R.string.poland, R.drawable.poland,
 R.string.poland_url));
 EU.add(new Country(R.string.portugal, R.drawable.portugal,
 R.string.portugal_url));
 EU.add(new Country(R.string.romania, R.drawable.romania,
 R.string.romania_url));
 EU.add(new Country(R.string.slovakia, R.drawable.slovakia,
 R.string.slovakia_url));
 EU.add(new Country(R.string.slovenia, R.drawable.slovenia,
 R.string.slovenia_url));
 EU.add(new Country(R.string.spain, R.drawable.spain,
 R.string.spain_url));
 EU.add(new Country(R.string.sweden, R.drawable.sweden,
 R.string.sweden_url));
 EU.add(new Country(R.string.united_kingdom,
 R.drawable.united_kingdom,
 R.string.united_kingdom_url));
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 setListAdapter(new CountryAdapter());
 }

 @Override
 protected void onListItemClick(ListView l, View v,
 int position, long id) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(getString(EU.get(position).url))));
 }

 static class Country {
 int name;
 int flag;
 int url;

 Country(int name, int flag, int url) {
 this.name=name;
 this.flag=flag;
 this.url=url;
 }
 }

 class CountryAdapter extends ArrayAdapter<Country> {
 CountryAdapter() {

CHAPTER 36: Handling Multiple Screen Sizes 344

 super(EU4You.this, R.layout.row, R.id.name, EU);
 }

 @Override
 public View getView(int position, View convertView,
 ViewGroup parent) {
 CountryWrapper wrapper=null;

 if (convertView==null) {
 convertView=getLayoutInflater().inflate(R.layout.row, null);
 wrapper=new CountryWrapper(convertView);
 convertView.setTag(wrapper);
 }
 else {
 wrapper=(CountryWrapper)convertView.getTag();
 }

 wrapper.populateFrom(getItem(position));

 return(convertView);
 }
 }

 class CountryWrapper {
 private TextView name=null;
 private ImageView flag=null;
 private View row=null;

 CountryWrapper(View row) {
 this.row=row;
 }

 TextView getName() {
 if (name==null) {
 name=(TextView)row.findViewById(R.id.name);
 }

 return(name);
 }

 ImageView getFlag() {
 if (flag==null) {
 flag=(ImageView)row.findViewById(R.id.flag);
 }

 return(flag);
 }

 void populateFrom(Country nation) {
 getName().setText(nation.name);
 getFlag().setImageResource(nation.flag);
 }
 }
}

CHAPTER 36: Handling Multiple Screen Sizes 345

Figures 36–2, 36–3, and 36–4 show what the activity looks like in an ordinary HVGA

emulator, a WVGA emulator, and a QVGA screen.

Figure 36–2. EU4You, original version, HVGA

Figure 36–3. EU4You, original version, WVGA (800x480 pixels)

CHAPTER 36: Handling Multiple Screen Sizes 346

Figure 36–44. EU4You, original version, QVGA

Fixing the Fonts
The first problem that should be fixed is the font size. As you can see, with a fixed 20-

pixel size, the font ranges from big to tiny, depending on screen size and density. For a

WVGA screen, the font may be rather difficult to read.

We could put the dimension as a resource (res/values/dimens.xml) and have different

versions of that resource based on screen size or density. However, it is simpler to just

specify a density-independent size, such as 5mm, as seen in the ScreenSizes/EU4You_2

project:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="2dip"
 android:minHeight="?android:attr/listPreferredItemHeight"
>
 <ImageView android:id="@+id/flag"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|left"
 android:paddingRight="4px"
 />
 <TextView android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|right"
 android:textSize="5mm"
 />
</LinearLayout>

CHAPTER 36: Handling Multiple Screen Sizes 347

Figures 36–5, 36–6, and 36–7 shows the results on HVGA, WVGA, and QVGA screens.

Figure 36–5. EU4You, 5mm font version, HVGA

Figure 36–6. EU4You, 5mm font version, WVGA (800x480 pixels)

CHAPTER 36: Handling Multiple Screen Sizes 348

Figure 36–7. EU4You, 5mm font version, QVGA

Now our font is a consistent size and large enough to match the flags.

Fixing the Icons
So, what about those icons? They should be varying in size as well, since they are the

same for all three emulators.

However, Android automatically scales bitmap resources, even with <supports-screens>

and its attributes set to true. On the plus side, this means you may not need to do

anything with these bitmaps. However, you are relying on a device to do the scaling,

which definitely costs CPU time (and, hence, battery life). Also, the scaling algorithms

that the device uses may not be optimal, compared to what you can do with graphics

tools on your development machine.

The ScreenSizes/EU4You_3 project creates res/drawable-ldpi and res/drawable-hdpi,

putting in smaller and larger renditions of the flags, respectively. This project also

renames res/drawable to res/drawable-mdpi. Android will use the flags for the

appropriate screen density, depending on what the device or emulator needs.

Using the Space
While the activity looks fine on WVGA in portrait mode, it really wastes a lot of space in

landscape mode, as shown in Figure 36–8.

CHAPTER 36: Handling Multiple Screen Sizes 349

Figure 36–8. EU4You, landscape WVGA (800x480 pixels)

We can put that to better use by having the Wikipedia content appear directly on the

main activity when in large-screen landscape mode, instead of needing to spawn a

separate browser activity.

To do this, we first must clone the main.xml layout into a res/layout-large-land

rendition that incorporates a WebView widget, as seen in ScreenSizes/EU4You_4:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
 <ListView
 android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
 <WebView
 android:id="@+id/browser"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_weight="1"
 />
</LinearLayout>

Then we need to adjust our activity to look for that WebView and use it when found;

otherwise, it will default to launching a browser activity:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 browser=(WebView)findViewById(R.id.browser);

 setListAdapter(new CountryAdapter());
}

@Override

CHAPTER 36: Handling Multiple Screen Sizes 350

protected void onListItemClick(ListView l, View v,
 int position, long id) {
 String url=getString(EU.get(position).url);

 if (browser==null) {
 startActivity(new Intent(Intent.ACTION_VIEW,
 Uri.parse(url)));
 }
 else {
 browser.loadUrl(url);
 }
}

This gives us a more space-efficient edition of the activity, as shown in Figure 36–9.

Figure 36–9. EU4You, landscape WVGA (800x480 pixels), set for normal density, and showing the embedded
WebView

When the user clicks a link in the Wikipedia page, a full browser opens, for easier surfing.

Note that to test this version of the activity, and see this behavior, requires a bit of extra

emulator work. By default, Android sets up WVGA devices as being high-density,

meaning WVGA is not large in terms of resource sets, but rather normal. You will need to

create a different emulator AVD that is set for normal (medium) density, which will result in

a large screen size.

What If It’s Not a Browser?
Of course, EU4You does cheat a bit. The second activity is a browser (or WebView in the

embedded form), not some activity of your own creation. Things get slightly more

complicated if the second activity is some activity of yours, with many widgets in a

CHAPTER 36: Handling Multiple Screen Sizes 351

layout, and you want to use it both as an activity (for smaller screens) and have it

embedded in your main activity UI (for larger screens).

Here is one pattern to deal with this scenario:

1. Initially develop and test the second activity as an activity.

2. Have all of the second activity’s life-cycle methods delegate their logic

to an inner class. Move all data members of the activity that are needed

by only the inner class to that inner class, and ensure that still works.

3. Pull the inner class out into a separate public class, and ensure that still

works.

4. For your first (or main) activity, create a separate layout for large screens

and use the <include> directive to blend in the contents of your second

activity’s layout into the proper spot in the large-screen first activity’s

layout.

5. In the first activity, if it finds the second activity’s layout has been

inflated as part of its own (e.g., by checking for the existence of some

widget via findViewById()), create an instance of the public class you

created in step 3 and have it deal with all of those widgets. Adjust your

code to reference that class directly, rather than start the second activity

as shown in the previous section.

In short, use a public class and reusable layout to keep your code and resources in one

place, yet use them from both a stand-alone activity and as part of a large-screen

version of the main activity.

What Are a Few Bugs Among Friends?
The Motorola DROID, which shipped with Android 2.0, had two bugs of relevance for

screen sizes:

 It had incorrect values for the screen density, both horizontal and

vertical. This means it incorrectly scaled dimensions based on physical

sizes: pt, mm, and in.

 It had Android 2.0 as API level 6 instead of level 5, so version-specific

resource directories need to use the -v6 suffix instead of -v5

Both of these bugs are fixed in Android 2.0.1 and later, and no other devices should ship

with Android 2.0 or be affected by these bugs.

353

 Chapter

Dealing with Devices
Android is “free as in beer” for device manufacturers, as it is an open source project.

Hence, device manufacturers have carte blanche to do what they want with Android as

they put it on their devices. This means a breadth of choices for device users, who will

be able to have Android devices in all shapes, sizes, and colors. This also means

developers will have some device differences and idiosyncrasies to take into account.

This chapter will give you some tips and advice for dealing with these device-specific

issues, to go along with the screen size material in Chapter 36.

This App Contains Explicit Instructions
Originally, the only Android device was the T-Mobile G1. Hence, if you were writing an

Android application, you could assume the existence of a hardware QWERTY keyboard,

a trackball for navigation, and so on. Now, other devices (e.g., HTC Magic) exist with

different hardware capabilities (e.g., no keyboard).

Ideally, your application can work regardless of the existence of various types of hardware.

Some applications, though, will be unusable without certain hardware characteristics. For

example, a full-screen game may rely on a hardware keyboard or trackball to indicate

player actions—soft keyboards and touchscreens may be insufficient.

Fortunately, starting with Android 1.5, you can add explicit instructions telling Android

what you need, so your application is not installed on devices lacking such hardware.

In addition to using the target ID system to indicate the level of device that your project

is targeting, you can use a new AndroidManifest.xml element to specify hardware that is

required for your application to run properly. You can add one or more <uses-
configuration> elements inside the <manifest> element. Each <uses-configuration>

element specifies one valid configuration of hardware with which your application will

work. At the present time, there are five possible hardware requirements you can specify

this way:

 android:reqFiveWayNav: Indicates you need a five-way navigation

pointing device of some form (e.g., android:reqFiveWayNav = "true").

37

CHAPTER 37: Dealing with Devices 354

 android:reqNavigation: Restricts the five-way navigation pointing

device to a specific type (e.g., android:reqNavigation = "trackball").

 android:reqHardKeyboard: Specifies if a hardware (physical) keyboard

is required (e.g., android:reqHardKeyboard = "true").

 android:reqKeyboardType: Used in conjunction with

android:reqHardKeyboard, indicates a specific type of hardware

keyboard is required (e.g., android:reqKeyboardType = "qwerty").

 android:reqTouchScreen: Indicates what type of touchscreen is

required, if any (e.g., android:reqTouchScreen = "finger").

Starting in Android 1.6, there is a similar manifest element, <uses-feature>, which is

designed to document requirements an application has for other optional features on

Android devices. Specifically, the following attributes can be placed in a <uses-feature>

element:

 android:glEsVersion: Indicates that your application requires

OpenGL, where the value of the attribute indicates the level of OpenGL

support (e.g., 0x00010002 for OpenGL 1.2 or higher).

 android:name = "android.hardware.camera": Indicates that your

application needs a camera.

 android:name = "android.hardware.camera.autofocus": Indicates that

your application specifically needs an autofocus camera.

Button, Button, Who’s Got the Button?
There are few, if any, requirements on device manufacturers as to what buttons are

available as physical buttons, versus on-screen soft keys, versus simply not being

available on a given Android device.

For example, the HTC Dream (a.k.a., T-Mobile G1) has call, end call, home, back, menu,

and camera buttons, along with a volume control and a dedicated search button on its

QWERTY keyboard. The HTC Magic (a.k.a., T-Mobile myTouch 3G) lacks the camera

button, putting the search button in its place. The Archos 5 Android Internet Tablet has

no hardware buttons at all beyond the volume control, with soft keys for home, back,

and menu.

Therefore, you should be careful about assuming the existence or placement of

hardware buttons. Provide alternative means of performing operations that you tie to

buttons. For example, if you override the volume control to serve as page-up/page-

down keys, make sure there is some other way for the user to move between pages.

CHAPTER 37: Dealing with Devices 355

A Guaranteed Market
As mentioned in the introduction to the chapter, Android is open source. Specifically, it

is mostly available under the Apache Software License 2.0. This license places few

restrictions on device manufacturers. Therefore, it is very possible for a device

manufacturer to create a device that, frankly, does not run Android very well. It might

work fine for standard applications shipped on the device but do a poor job of handling

third-party applications, like the ones you might write.

To help address this, Google has some applications, such as the Android Market, that it

has not released as open source. While these applications are available to device

manufacturers, the devices that run the Android Market are tested first, to help ensure

that a user’s experience with the device will be reasonable.

A Google engineer cited one case where a device manufacturer was readying a phone

that had a QVGA screen, before the release of Android 1.6 where QVGA support was

officially added to the platform. While that manufacturer had arranged for the built-in

applications to work acceptably on the smaller-resolution screen, third-party

applications were a mess. Google apparently declined to provide the Android Market to

the manufacturer for this device.

Hence, the existence of the Android Market on a device, beyond providing a distribution

means for your applications, also serves as a bit of a seal of approval that the device

should support well-written third-party applications.

The Down and Dirty Details
Unfortunately, the Android Market does not guarantee problem-free deployment on

Market-enabled devices, nor does it prevent manufacturers from shipping Android

devices without going through the Market. Inevitably, devices will have some quirks or

idiosyncrasies that might have a negative impact on your applications. The following is a

selection of some Android devices, in the order of their public availability, and ways that

they differ from more standard devices.

Archos 5 Android Internet Tablet
The Archos 5 Android Internet Tablet is the first mainstream device to be based purely

on the Android open source project. Unlike the phones from HTC, Motorola, and others,

the Archos 5 is not a Google Experience device and does not have the Android Market,

Google Maps, or other proprietary Google applications.

The Archos 5 is a WVGA device, but shipped with Android 1.5. Hence, an original

Archos 5 will not honor the new -large resource set designation as documented in

Chapter 36. Given that this device is not selling in major quantities, you may wind up

with it simply having an unoptimized UI until the Archos 5 has Android 1.6 support.

CHAPTER 37: Dealing with Devices 356

The Archos 5’s touchscreen is resistive, not capacitive. This means users will be using

fingernails or styli to manipulate the screen, more so than fingertips. Bear this in mind

when designing finger-friendly UIs.

The Archos 5, as of firmware 1.1.01, returned a somewhat invalid value for ANDROID_ID (a

unique ID assigned to each Android device). ANDROID_ID is null in the emulator and is

supposed to be a hex string in devices. On the Archos 5, ANRDROID_ID is a non-null but

non-hex string. If all you care about is null versus non-null, then the Archos 5 is fine; if

you need a hex value for ANDROID_ID, you will experience some problems.

Since the Archos 5 is not a phone, all telephony-related features, such as dialing via

ACTION_DIAL, are unavailable. Similarly, since the Archos 5 lacks a camera, all camera-

related features are unavailable. As noted earlier, the Archos 5 lacks Google Maps, the

Android Market, and other proprietary Google applications.

Also, the Archos IMEI value is fake, since it is not a phone.

Motorola CLIQ/DEXT
The Motorola CLIQ (or DEXT, as it is known outside the United States) is an HVGA

device, originally shipping with Android 1.5.

The CLIQ has a D-pad for non-touchscreen navigation. However, the D-pad is on a side-

slider QWERTY keyboard, and as such, the D-pad is not available to users when the

device is in portrait mode, unless you force portrait mode for your activity via the

manifest and force users to use their CLIQ with the keyboard slid out. Do not write

applications that assume the D-pad is always available.

The CLIQ also ships with MOTOBLUR, Motorola’s social media presentation layer. This

means that the home application, contacts, and select other features that Android

normally ships with have been replaced by MOTOBLUR-specific features. This should

not cause too many problems if you stick to the SDK. The one area that does get a bit

interesting is that not all MOTOBLUR contacts will be available to you via the Android

Contacts content provider. For example, Facebook contacts are available to

MOTOBLUR, but not to third-party applications, perhaps for licensing reasons. This

situation may change when the CLIQ is updated to the new ContactsContract system

with Android 2.0.1 and beyond.

Motorola DROID/Milestone
The Motorola DROID (or Milestone, as it is known outside the United States) is a

WVGA854 device, originally shipping with Android 2.0, though most of these devices will

now be running Android 2.0.1.

The DROID, like the CLIQ, has a D-pad on the side-slider keyboard, meaning the D-pad is

not readily available to users when the device is in portrait mode.

Because the DROID has a WVGA854 screen on a normal phone-sized device, Android will

consider the DROID to have a high-density screen, so -hdpi resource sets will be used.

CHAPTER 37: Dealing with Devices 357

Google/HTC Nexus One
The Nexus One—built by HTC and sold by Google—is a WVGA800 device, originally

shipping with Android 2.1.

Like the DROID, the Nexus One will be a high-density (-hdpi) device.

Motorola BACKFLIP
The Motorola BACKFLIP has yet another take on pointing devices. Rather than a

trackball or a D-pad, the BACKFLIP has two non-touchscreen navigation options:

 The QWERTY keyboard has PC-style arrow keys, which should

generate standard DPAD key events.

 The BACKFLIP touchpad on the reverse side of the touchscreen will

generate trackball events (or DPAD key events, if the trackball events

are not consumed).

359

 Chapter

Handling Platform
Changes
Android will continue to rapidly evolve over the next few years. Perhaps, in time, the rate

of change will decline some. However, for the here and now, you should assume that

there will be significant Android releases every 6 to 12 months, and changes to the

lineup of possible Android hardware on an ongoing basis. So, while right now, the focus

of Android is phones, soon you will see Android netbooks, Android tablets, Android

media players, and so on.

Many of these changes will have little impact on your existing code. However, some will

necessitate at least new rounds of testing for your applications, and perhaps changes to

those applications based on the test results.

This chapter covers a number of the areas that may cause you trouble in the future as

Android evolves, with some suggestions on how to deal with them.

Brand Management
As of the time of this writing, the Android devices that have been released have been

Google Experience phones. This means they get the standard Android interface—the

things you find in the emulator—along with the standard roster of add-on applications

like Google Maps and Gmail. In turn, manufacturers are allowed to put the “with Google”

brand on the device. But not all devices will be this way.

Some manufacturers will take Android as a base and change what is included, adding

some of their own applications and perhaps even changing the look and feel (menu

icons, home screen structure, etc.).

Others may use Android solely from the open source repository, and while they may

ship with the standard look and feel, they will lack the commercial add-on applications.

38

CHAPTER 38: Handling Platform Changes 360

Even today, some devices have a different mix of applications based on where they are

distributed. US recipients of the T-Mobile G1 have an Amazon MP3 store application;

not all international recipients do.

If your application is independent of all of this, then it should run anywhere. However, if

your application code or documentation assumes the existence of Google Maps, Gmail,

Amazon MP3 store, and the like, you may run into trouble. Be certain to test your

application thoroughly in environments where these applications are not available.

More Things That Make You Go Boom
Most of the items noted in the previous section focused on hardware changes. Now,

let’s examine some ways in which Android can cause difficulty to you when the

operating system itself changes.

View Hierarchy
Android is not designed to handle arbitrarily complicated view hierarchies. Here, view
hierarchy means containers holding containers holding containers holding widgets.

The Hierarchy Viewer program, described in Chapter 35, depicts such view hierarchies

well, as shown in Figure 38–1. In this example, you see a five-layer-deep hierarchy,

because the longest chain of containers and widgets is five (from

PhoneWindow$DecorView through to Button).

Android has always had limits as to how deep the view hierarchy can be. In Android 1.5,

though, the limit was reduced, so some applications that worked fine on Android 1.1

would crash with a StackOverflowException in the newer Android. This, of course, was

frustrating to developers who never realized there was an issue with view hierarchy

depth and then got caught by this change.

The lessons to take from this are as follows:

 Keep your view hierarchies shallow. Once you drift into double-digit

depth, you are increasingly likely to run out of stack space.

 If you encounter a StackOverflowException, and the stack trace looks

like it is somewhere in the middle of drawing your widgets, your view

hierarchy is probably too complex.

CHAPTER 38: Handling Platform Changes

Figure 38–1. Hierarchy Viewer Layout view

Changing Resources
The core Android team may change resources with an Android upgrade, and those may

have unexpected effects in your application. For example, in Android 1.5, they changed

the stock Button background, to allow for smaller buttons. However, applications that

implicitly relied on the former larger minimum size wound up breaking and needing

some UI adjustment.

Similarly, applications can reuse public resources, such as icons, available inside of

Android proper. While doing so saves some storage space, many of these resources are

public by necessity and are not considered part of the SDK. For example, hardware

manufacturers may change the icons to fit some alternative UI look and feel. Relying on

the existing ones to always look as they do is a bit dangerous. You are better served

copying those resources out of the Android open source project

(http://source.android.com/) into your own code base.

CHAPTER 38: Handling Platform Changes 362

Handling API Changes
The core Android team has generally done a good job of keeping APIs stable, and

supporting a deprecation model when they change APIs. In Android, being deprecated

does not mean it is going away—just that its continued use is discouraged. And, of

course, new APIs are released with every new Android update. Changes to the APIs are

well documented with each release via an API differences report.

Unfortunately, the Android Market (the primary distribution channel for Android

applications) allows you to upload only one APK file for each application. Hence, you

need that one APK file to deal with as many Android versions as possible. Many times,

your code will “just work” and not require changing. Other times, though, you will need

to make adjustments, particularly if you want to support new APIs on new versions while

not breaking old versions. Let’s examine some techniques for handling these cases.

Detecting the Version
If you just want to take different branches in your code based on version, the easiest

thing to do is inspect android.os.VERSION.SDK_INT. This public static integer value will

reflect the same API level as you use when creating AVDs and specifying API levels in

the manifest. So, you can compare that value to, say, android.os.VERSION_CODES.DONUT

to see whether you are running on Android 1.6 or newer.

Wrapping the API
So long as the APIs you try to use exist across all Android versions you are supporting,

just branching may be sufficient. Where things get troublesome is when the APIs

change, such as when there are new parameters to methods, new methods, or even

new classes. You need code that will work regardless of Android version, yet lets you

take advantage of new APIs where available.

There is a recommended trick for dealing with this: reflection, plus a wee bit of caching.

For example, back in Chapter 8, we used getTag() and setTag() to associate an

arbitrary object with a View. Specifically, we used this to associate a wrapper object that

would lazy-find all necessary widgets. You also learned that about the new versions of

getTag() and setTag() that are indexed, taking a resource ID as a parameter.

However, these new indexed methods do not exist on Android 1.5. If you want to use

this new technique, you need to wait until you are willing to support only Android 1.6

and beyond, or you will need to use reflection. Specifically, on Android 1.5, you could

associate an ArrayList<Object> as the tag, and have your own getTag()/setTag() pair

that takes the index.

This seems straightforward enough, so let’s look at APIVersions/Tagger. Our activity has

a simple layout, with just a TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

CHAPTER 38: Handling Platform Changes 363

 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
<TextView android:id="@+id/test"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
</LinearLayout>

The source code to our Tagger activity looks at the API version we are running, and

routes our getTag() and setTag() operations to either the native indexed one (for

Android 1.6 and above) or to the original nonindexed getTag() and setTag(), where we

use a HashMap to track all of the individual indexed objects:

package com.commonsware.android.api.tag;

import android.app.Activity;
import android.os.Build;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import java.util.HashMap;
import java.util.Date;

public class Tagger extends Activity {
 private static final String LOG_KEY="Tagger";

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView view=(TextView)findViewById(R.id.test);

 setTag(view, R.id.test, new Date());

 view.setText(getTag(view, R.id.test).toString());
 }

 public void setTag(View v, int key, Object value) {
 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.DONUT) {
 v.setTag(key, value);
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 }

 meta.put(key, value);
 }
 }

CHAPTER 38: Handling Platform Changes 364

 public Object getTag(View v, int key) {
 Object result=null;

 if (Build.VERSION.SDK_INT>=Build.VERSION_CODES.DONUT) {
 result=v.getTag(key);
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 }

 result=meta.get(key);
 }

 return(result);
 }
}

This looks great, and if we build it and deploy it on a Android 1.6 or greater emulator or

device, it runs like a champ, showing the current time in the activity.

If we build it and deploy it on an Android 1.5 emulator or device, and try to run it, it

blows up with a VerifyError. VerifyError, in this case, basically means we are referring

to things that do not exist in our version of Android, specifically:

 We are referring to SDK_INT, which was not introduced until Android

1.6.

 We are referring to the indexed versions of getTag() and setTag().

Even though we will not execute that code, the classloader still wants

to resolve those methods and fails.

So, we need to use some reflection.

Take a look at APIVersions/Tagger2. This is the same project with the same layout, but

we have a more elaborate version of the Java source:

package com.commonsware.android.api.tag;

import android.app.Activity;
import android.os.Build;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.TextView;
import java.lang.reflect.Method;
import java.util.HashMap;
import java.util.Date;

public class Tagger extends Activity {
 private static final String LOG_KEY="Tagger";
 private static Method _setTag=null;
 private static Method _getTag=null;

CHAPTER 38: Handling Platform Changes 365

 static {
 int sdk=new Integer(Build.VERSION.SDK).intValue();

 if (sdk>=4) {
 try {
 _setTag=View.class.getMethod("setTag",
 new Class[] {Integer.TYPE,
 Object.class});
 _getTag=View.class.getMethod("getTag",
 new Class[] {Integer.TYPE});
 }
 catch (Throwable t) {
 Log.e(LOG_KEY, "Could not initialize 1.6 accessors", t);
 }
 }
 };

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TextView view=(TextView)findViewById(R.id.test);

 setTag(view, R.id.test, new Date());

 view.setText(getTag(view, R.id.test).toString());
 }

 public void setTag(View v, int key, Object value) {
 if (_setTag!=null) {
 try {
 _setTag.invoke(v, key, value);
 }
 catch (Throwable t) {
 Log.e(LOG_KEY, "Could not use 1.6 setTag()", t);
 }
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 v.setTag(meta);
 }

 meta.put(key, value);
 }
 }

 public Object getTag(View v, int key) {
 Object result=null;

 if (_getTag!=null) {
 try {

CHAPTER 38: Handling Platform Changes 366

 result=_getTag.invoke(v, key);
 }
 catch (Throwable t) {
 Log.e(LOG_KEY, "Could not use 1.6 getTag()", t);
 }
 }
 else {
 HashMap<Integer, Object> meta=(HashMap<Integer, Object>)v.getTag();

 if (meta==null) {
 meta=new HashMap<Integer, Object>();
 v.setTag(meta);
 }

 result=meta.get(key);
 }

 return(result);
 }
}

First, when the class is initially loaded, the static initialization routines run. Here, we see

what version of Android we are running, using the old SDK String instead of the new

SDK_INT integer. If we are on Android 1.6 or newer, we use reflection to attempt to find

the indexed getTag() and setTag() methods, and we cache those results. Since those

methods should not change during the lifetime of our application, it is safe to cache

them in static variables.

Then, when it comes time to actually use getTag() or setTag(), we look to see if the

cached Method objects exist or are null. If they are null, we assume we need to use the

old versions of those methods. If the Method objects exist, we use them instead, to take

advantage of the native indexed versions.

This version of the application works fine on Android 1.5 and above. Android 1.6 and

above uses the built-in indexed methods, and Android 1.5 uses our fake version of the

indexed methods.

There is a little extra overhead for going through the Method-based reflection, but it may

be worth it in some cases, to access APIs that exist in newer versions of Android, rather

than restricting ourselves to only the older APIs.. There are even ways to use this

technique for cases where entire classes are new to newer Android versions (see

http://android-developers.blogspot.com/2009/04/backward-compatibility-for-

android.html).

367

 Chapter

Where Do We Go from
Here?
Obviously, this book does not cover everything. And while your main resource (besides

the book) is the Android SDK documentation, you are likely to need more information.

Searching online for “android” and a class name is a good way to turn up tutorials that

reference a given Android class. However, bear in mind that tutorials written before late

August 2008 are probably written for the M5 SDK and, as such, will require considerable

adjustment to work properly in current SDKs.

Beyond randomly hunting around for tutorials, you can use some of the resources

outlined in this chapter.

Questions—Sometimes with Answers
The official places to get assistance with Android are the Android Google Groups. With

respect to the SDK, there are three to consider:

 android-beginners, a great place to ask entry-level questions

 android-developers, best suited for more complicated questions or

ones that delve into less-used portions of the SDK

 android-discuss, designed for free-form discussion of anything

Android-related, not necessarily for programming questions and

answers

You might also consider these resources:

 The Android tutorials and programming forums over at
http://anddev.org

 The Open Mob for Android wiki (http://wiki.andmob.org/)

 The #android IRC channel on freenode

39

CHAPTER 39: Where Do We Go from Here? 368

 StackOverflow’s android and android-sdk tags

 The Android board on JavaRanch

Heading to the Source
The source code to Android is now available. Mostly, this is for people looking to

enhance, improve, or otherwise fuss with the insides of the Android operating system.

But it is possible that you will find the answers you seek in that code, particularly if you

want to see how some built-in Android component does its thing.

The source code and related resources can be found at http://source.android.com.

Here, you can do the following:

 Download or browse the source code.

 File bug reports against the operating system itself.

 Submit patches and learn about the process for how such patches are

evaluated and approved.

 Join a separate set of Google Groups for Android platform

development.

Rather than download the multigigabyte Android source code snapshot, you may wish

to use Google Code Search instead (http://www.google.com/codesearch). Just add the

android:package constraint to your search query, and it will search only in Android and

related projects.

Getting Your News Fix
Ed Burnette, a nice guy who happened to write his own Android book, is also the

manager of Planet Android (http://www.planetandroid.com/), a feed aggregator for a

number of Android-related blogs. Subscribing to the planet’s feed will let you monitor

Android-related blog posts, though not exclusively related to programming.

To try to focus more on programming-related, Android-referencing blog posts, you can

search DZone for “android” and subscribe to a feed based on that search.

 369

Index

■ Symbols and
Numerics

@ symbol

entering e-mail address, 120

XML layout file, 25, 27

@+id notation, 47

@id notation, 48

12- and 24-hour modes, 95

■ A
aapt tool, 23

AbsoluteLayout container, 116, 332

accelerometers

handling iPhone rotation, 196

ACCESS_COARSE_LOCATION, 303

accessing files see file access

accessory button, EditText, 121

ACTION_DIAL

making phone call, 312

ACTION_EDIT, 172

ACTION_PICK

handling screen rotation, 188

intents, 172

getting Uri handles, 260

starting intents, 179

ACTION_VIEW, 172, 178

actions, intents, 172

active state, activities, 167

handling screen rotation, 185

activities, 3, 19, 177

attaching widgets to, 23

binding to services, 286

blocking rotation of, 193

building and running, 20–22

custom handling of screen rotation, 191

embedding second activity in main

activity UI, 351

getPreferences method, 213

getSharedPreferences method, 213

handling screen rotation, 185

invoking onCreate method, 19

killing off activity as nonresponsive, 155

knowing, or not, when launched activity

ends, 177

launching, 177–181

life cycle, 167

not rotating activities, 193–195

peer activities, 178, 179

permissions, 277

preferences, 213

relative importance of, 167

replacing tabs with, 340

Schroedinger’s Activity, 167

starting, 178–181

states, 167

saving application-instance state,

169

transitions between, 168–169

subactivities, 177

supplying fully qualified class name of

main activity, 7

TabActivity, 103

trapping button clicks within, 19

Activity class

creating Android projects, 7

runOnUiThread method, 159

tabbed browsing, 182

activity classes

ListActivity, 60, 61

TabActivity, 103

MapActivity, 302, 303

activity element, 10, 173

activityCreator script, 173

ActivityManager, 155

adapters, 59–60

ArrayAdapter, 60, 76, 84

controlling appearance of rows, 62

CursorAdapter, 60, 94

ListAdapter, 89, 90, 93

Index 370

ListView with icons and text, 76, 77, 78

setAdapter method, 60, 64, 67, 70

setListAdapter method, 61

setting list adapter, 61

SimpleAdapter, 60

SimpleCursorAdapter, 261, 262

AdapterWrapper class, 90

adb logcat command, 322

adb pull command, 235, 323

adb push command, 236, 323

adb shell command, 235, 324

Add Constant dialog, 226

add method, options menu, 126

addId method, Uri class, 260

addMenu method, 127

addPreferencesFromResource method, 215

addProximityAlert method, 298

AddStringTask class, 161–164

class declaration, 163

doInBackground method, 163

execute method, 164

onPostExecute method, 164

onProgressUpdate method, 163

addSubMenu method, 127

addTab method, 105

AlertDialog, 150

alerts, 150

see also notifications

MessageDemo example, 151–153

alignment

widgets, 47

alignment, RelativeLayout container

layout_alignParentXyz properties, 47

layout_alignXyz properties, 48

alphabeticShortcut attribute, item element

describing menus via XML files, 135

AnalogClock widget, 99

Android

accessing binary data, 264

accessing REST-style web services, 253

building content provider, 265–274

creating card image, 328–329

file access, 237

Google Maps, 302

handling API changes, 362–366

handling multiple screen sizes, 331–351

handling platform changes, 359–366

handling work on UI/background

threads, 159–165

indicating API level to, 5

international deployment, 140

invoking onClick method, 19

Java using Dalvik VM, 246

making friendly background threads, 155

objective of, 2

online help, 367

operating system changes, 360–361

permission system, 275

preferences framework, 214–215, 219–

220

source code, 368

SQLite in runtime, 227

states, transitions between, 168–169

storage, 237

targets, 12–15

using BeanShell on, 247

using Java third-party libraries, 245

WebKit browser, 141

when Android dislikes font, 139

Android adapters see adapters

Android applications see applications

Android AVD Manager see AVD Manager

Android browser, 143

Android build system, 6

creating R.java, 7

android command

building and running activities, 20

using AVD Manager, 13

android create avd command, 13

android create project command, 6, 17

Android devices see devices

Android emulator see emulators

Android Google Groups, 367

Android handsets

handling screen rotation, 185

Android help, 367

Android launcher see launcher

android list targets command, 13

Android map activity, 181

Android Market, 355

APK files, 362

avoiding for user testing, 339

first child of manifest bug, 12

minSdkVersion attribute, 11

versions of Android affecting, 5

Android package files see APK files

Android packaging tool, 20–22

Android programming, 1, 19

Android projects see projects

Android Scripting Environment (ASE), 251

Android SDK, 315

documentation, 367

Index 371

Android technology, future uses of, 1

Android UI architecture, 177

Android Virtual Device see AVD

Android widgets see widgets

ANDROID_ID

Archos 5 Android Internet Tablet, 356

android:id attribute, XML, 25

android:layout see layout properties

android:text attribute, XML, 25

AndroidManifest.xml file, 5, 6, 8–12

adding service to, 281

allowing users to set preferences, 215

blocking rotation of activities, 193

creating intents, 178

custom handling of screen rotation, 191

declaring intent receivers, 174

enforcing permissions via, 277–278

EU4You application, 340

getting map into application, 303

intent-filter elements, adding, 173

minSdkVersion attribute, 11

permission element, 277

requesting permission to access

Internet, 142

requesting permission to use data, 275

securing application using permissions,

277

specifying hardware requirements, 353

supports-screens element, 334

updating for content provider, 273

uses-configuration element, 353

uses-feature element, 354

uses-permission element, 275

uses-sdk element, 11

versionCode attribute, 12

versionName attribute, 12

animateXyz methods, SlidingDrawer, 115

ant build tool, 6, 20–22

Ants

using Java third-party libraries, 246

anyDensity attribute, supports-screens, 335

ap file, bin folder, 8

Apache HttpClient, 254–255

Apache HttpComponents, 253

Apache Software License 2.0, 355

API keys, generating, 308, 309

API level, indicating, 5

apiKey attribute, 302, 309

APIs

deprecated API, 362

handling API changes, 362–366

wrapping API, 362–366

APK (Android package) files, 5

Android Market, 362

static application reference data, 237

apk file, bin folder, 8

application element, 10

updating manifest for content provider,

273

application menus see options menu

application-level preferences, 213

applications

see also projects

access to external storage, 244

building, 5–15

components used in, 2

enforcing permissions via manifest, 277–

278

explicitly specifying hardware

requirements, 353–354

generating API keys, 308

getting map into, 302

handling platform changes, 359–366

making data available, 265

manifest file, 8

permissions, 275

preferences, 213

requesting permission to use data, 275

saving instance state, 169

securing application using permissions,

277

skeleton application, creating, 17

starter manifest, 8

static reference data, 237–240

table of contents, 5

testing with emulator, 5

writeable data files, 240–244

applications, list of

see also projects, list of

AsyncDemo, 162

Browser1, 141, 143

Browser2, 144

Browser3, 145, 146

Constants, 226

ConstantsPlus, 261, 265

Dialer, 312

DialerDemo, 313

EU4You, 340, 346, 348, 349

FontSampler, 137, 139

HandlerDemo, 158

ImagesDemo, 204

IntentTabDemo, 184

Index 372

LaunchDemo, 181

MenuDemo, 130

NooYawk, 302

ReadWrite, 315

ReadWriteFileDemo, 243

RotationFour, 193, 194

RotationOne, 186, 188, 189

RotationThree, 191

RotationTwo, 190

StaticFileDemo, 240

StringsDemo, 201

WeatherDemo, 257

WeatherPlus, 285

XMLResourceDemo, 206

applyFormat method, string, 201

applyMenuChoice method, 130

Archos 5 Android Internet Tablet, 355

ANDROID_ID, 356

buttons, 354

ArrayAdapter class, 60

combining RatingBar with ListView, 84,

86

controlling appearance of rows, 62

creating views, 68

ListView with icons and text, 76

arrays, resources, 208

assets folder

Android project root directory, 7

using different fonts, 138

AsyncDemo application, 162

AsyncTask class, 159–161

see also AddStringTask class

broadcast intents, 283, 284

creating subclass of, 160

doInBackground method, 160, 163

generics, 160

handling work on UI/background

threads, 159–165

onPostExecute method, 161, 164

onPreExecute method, 161

onProgressUpdate method, 161, 163

overrideable methods, 160

publishProgress method, 161, 163, 164

varargs, 160

authentication

launching activities, 177

authorities property

updating manifest for content provider,

273

authority, content Uri, 266

auto_fit value, numColumns, GridView, 66

AutoCompleteTextView widget, 69–72

autocorrection

entering text on soft keyboard, 120

automatic flipping, 113–114

autoText property, EditText, 32

AVD (Android Virtual Device)

adding AVD through GUI, 13

Google Maps API, 302

showing list of available AVDs, 13

testing applications with emulator, 5

using Android emulator, 12–15

AVD Manager

adjusting density, 338

building and running activities, 20

Launch Options dialog, 338

showing list of available AVDs, 13

using, 13

■ B
BACKFLIP see Motorola BACKFLIP

background attribute, widgets, 38, 42

background threads, 155

avoiding sluggish/pointless code, 165

communicating safely with, 165

communicating with Handler, 155

doInBackground method, 160

encountering error during processing,

165

handling work on, 159–165

interacting with UI on UI thread, 155

making Android-friendly, 155

modifying UI from, 155

ProgressBar widget, 101

risk that activity is killed off, 165

users interacting with activity’s UI, 165

base Uri, content providers, 259, 260

BaseColumns class, 272

BeanShell scripting, 246–250

beforeTextChanged method, 71

bin folder

Android project root directory, 7

subdirectories, 8

binary large objects (BLOBs), 264

BIND_AUTO_CREATE flag, 286

Binder class, 281

binding

communicating with services, 286

service exposing API, 281

bindService method, 286, 287

bindView method, CursorAdapter, 94

Index 373

bitmaps, 334

blinking light

hardware notifications, 290

BLOBs (binary large objects), 264

box model, 39

BoxLayout, Java/Swing, 39

broadcast intents

activity receiving/using broadcast, 287–

288

BroadcastReceiver interface, 174

enforcing permissions, 278

services alerting activities, 283–284

BROADCAST_ACTION, intents, 284

BroadcastReceiver interface

activity receiving/using broadcast, 288

intents, 174, 175

onReceive method, 174

Browser1 application, 141, 143

Browser2 application, 144

Browser3 application, 145, 146

browsers see web browsers

BrowserTab activity, 183

browsing

tabbed browsing, 182–184

build system, Android, 6

build.xml file, 6

Builder class, 150

MessageDemo example, 152

builders, SQLite

SQLiteQueryBuilder class, 233–234

buildForecasts method

W3C DOM parser, 255

buildQuery method, SQLite, 234

bulkInsert method, content providers, 263

bundles

handling screen rotation, 185, 191

saving application-instance state, 170

starting intents, 179

button clicks

invoking onClick method, 19

Button widget, 30–31

additional properties/methods, 37–38

XML layout file, 24

buttons

Android operating system changes, 361

hardware devices, 354

taking advantage of larger screens, 339

■ C
Calendar object, updating, 97

calendars

READ_CALENDAR permission, 276

WRITE_CALENDAR permission, 276

CALL_STATE_XYZ values,

TelephonyManager, 311

callbacks

binding to services, 286

services alerting activities, 283

transitions between states, 168–169

calls see phone calls

camera

specifying device requirements, 354

canGoBack method, WebView, 145

canGoBackOrForward method, 145

canGoForward method, WebView, 145

capitalize property, EditText, 32

card image

creating, 328–329

emulator using SD card image, 329

category, Intent objects, 172

cell tower triangulation, 295

cells, TableLayout container, 52

check method, RadioGroup, 36, 37

CheckBox widget, 33–35

additional properties/methods, 37–38

disabling widgets based on, 38

checkCallingPermission method, 278

choice identifier, menus, 126

Chronometer, 100

classes

Activity, 7

AddStringTask, 161–164

AnalogClock, 99

ArrayAdapter, 60

AsyncTask, 159–161

AutoCompleteTextView, 69–72

Button, 30–31

CheckBox, 33–35

ColorStateList, 38

CompoundButton, 36

ConstantsBrowser, 261

CursorAdapter, 60

DatabaseHelper, 228

DatePicker, 95

DigitalClock, 99

EditText, 32–33

Gallery, 72

GridView, 66–69

Handler, 155–158

HashMap, 363

ImageButton, 31

Index 374

ImageView, 31

InputStream, 237, 239, 240

ListActivity, 60, 61

ListView, 60–63, 75–94

MapActivity, 302, 303

NotificationManager, 289, 292

OutputStream, 240

Overlay, 305, 307

ProgressBar, 101

R class, 25

RadioButton, 35–37

RadioGroup, 36

RatingBar, 84–94

SeekBar, 101

SimpleAdapter, 60

Spinner, 63–66

supplying fully qualified class name for

main activity, 7

TabActivity, 103

TabSpec, 104, 105

TabWidget, 103, 106

TextView, 29–30

TimePicker, 95

Toast, 150

WebSettings, 147

WebView, 141

classes folder (bin/classes/), 8

classes.dex file (bin/classes.dex), 8

clear method, preferences, 214

clearCache method, WebView, 145

clearCheck method, RadioGroup, 36

clearHistory method, WebView, 145

clickable attribute

getting map into application, 302

CLIQ see Motorola CLIQ/DEXT

clocks

AnalogClock/DigitalClock widgets, 99

close method, cursors, SQLite, 234

close method, SlidingDrawer, 115

collapseColumns property, TableLayout, 53

collection Uri, content providers, 259

color attributes, widgets, 38

colors

hardware notifications, 290

resources, 206, 207–208

textColor property, TextView, 29

ColorStateList class, 38

columns, TableLayout container

collapseColumns property, 53

determining number of columns, 52

layout_column property, 52

layout_span property, 52

shrinkColumns property, 53

stretchColumns property, 53

columnWidth property, GridView, 66, 67

command line

creating projects from, 6

commit method, preferences, 214

compatibility mode

automatically scaling UI to screen size,

334

screen sizes and resolutions, 331, 332

completionThreshold property,

AutoCompleteTextView, 70

components, Intent objects, 172

CompoundButton class, 36

configChanges entry, android

blocking rotation of activities, 195

custom handling of screen rotation, 191

Configuration object

finding screen size class, 336

console interfaces

using Java third-party libraries, 246

Constants application, 226

ConstantsBrowser

creating SimpleCursorAdapter, 262

inserting constant into content providers,

263

onCreate method, 262

querying content provider, 261

showing list of physical constants, 263

ConstantsPlus application, 265

querying content provider, 261

constraints, SQLite, 227

contacts

handling phone calls, 311

MOTOBLUR, 356

READ_CONTACTS permission, 276

WRITE_CONTACTS permission, 276

containers, 39

AbsoluteLayout, 116

adding tabs during runtime, 106

containing SlidingDrawer, 114

FrameLayout, 103, 104

LinearLayout, 39–45

positioning widgets relative to, 47

RelativeLayout, 46–51

ScrollView, 54–57, 123

SlidingDrawer, 114–116

TabHost, 102, 103, 104

TableLayout, 51–54, 119

TabWidget, 103, 104, 106

Index 375

ViewFlipper, 109–114

content

setContentView method, 25, 26

content providers

accessing binary data, 264

accessing data inside, 265

accessing query results, 261

Android application components, 3

AndroidManifest.xml file, 10

base Uri of, 259

building, 265–274

content Uri, 265–266

creating provider class, 267–272

declaring properties, 272

delete method, 271

getType method, 271

insert method, 269

MIME types, 266

notify-on-change support, 273

onCreate method, 267

query method, 267–269

supplying Uri, 272

update method, 270

updating manifest, 273

ConstantsPlus application, 261, 265

construction of content Uri, 259

data encapsulation, 259

deleting data from, 264

description, 259

getting Uri handles, 260

inserting data into, 263

permissions, 276, 278

properties for, 261

querying base Uri, 260

using SQLiteQueryBuilder, 233

content Uri, 265–266

accessing binary data, 264

construction of, 259

Content Uri templates

intent routing, 172

contentIntent field, notifications, 290

ContentProvider class, 267

context menus, 125, 127

MenuDemo application, 130, 132

convertView

combining RatingBar with ListView, 86

ListView with icons and text, 80–81, 84

CREATE INDEX statement, SQLite, 230

create method, AlertDialog, 150

Create New AVD dialog, 13

CREATE TABLE statement, SQLite, 230

createFromAsset method, Typeface class,

139

createFromFile method, Typeface class, 140

createTabContent method, 106

creating activities see onCreate method

Criteria object

requirements for LocationProvider, 296

CRUD (create, read, update, delete)

operations, 259

Cursor object

managedQuery method returning, 261

SimpleCursorAdapter class, 261, 262

Cursor object, SQLite, 234–235

creating custom Cursor subclass, 235

rawQuery method returning, 232

CursorAdapter class, 60

methods, 94

■ D
Dalvik Debug Monitor Service see DDMS

Dalvik virtual machine (VM), 245

Android with Java using, 246

just-in-time (JIT) compilation, 249

string formats, 198

using Java third-party libraries, 245

data

content provider abstraction of, 3

intents, 172

making available to other applications,

265

requesting permission to use, 275

using tabs to hold information, 102

data connection type, finding, 312

data encapsulation, content providers, 259

data type path, content Uri, 266

data typing, SQLite, 227

DatabaseHelper class, 228

onCreate method, 230

databases

Constants application, 226

getting database off device, 235

inspecting and manipulating contents,

235

SQLite, 225, 227–236

creating database, 227–230

storing modified database on device,

236

date

entering on soft keyboard, 120

inputting, 95

Index 376

DateFormat formatter, 97

DatePicker widget, 95

DatePickerDialog, 95, 97

days of month

DatePicker/DatePickerDialog, 95

DDMS (Dalvik Debug Monitor Service), 299,

321–327

File Explorer, 323

File Manager, 235

incoming SMS messages, 327–328

launching, 321

location updates, 325

logging, 322

screen capture, 324

screenshots, 324

simulating incoming calls, 326–327

Telephony Actions group, 326

with emulator selected, 322

ddms program, 321

dead state, activities, 168

debug certificate, MD5 digest of, 309

debug key, apk file, 8

decimal numeric input

entering on soft keyboard, 119, 121

default.properties file, 7

DejaVu free fonts, 140

delete method, ContentProvider, 264

building content provider, 271

delete method, SQLite

managing data in tables, 231

density see screen density

density-based resource sets

screen size/density independence, 335

density-independent pixels, 333

deprecated API, 362

destroying activities see onDestroy method

development features, Android devices, 3

development tools

Android SDK, 315

Dalvik Debug Monitor Service, 321–327

Hierarchy Viewer tool, 315–320

DeviceAnywhere

testing on actual devices, 338

device-independent pixels, 207

devices

button requirements, 354

development features, 3

device-specific issues, 353–357

explicitly specifying hardware

requirements, 353–354

getting database from, 235

Google Maps, 301

Hierarchy Viewer tool, 315

identifying location, 295

Internet access, 253

phones, 311

SD cards, 328–329

smartphone programming, 1

storing modified database on, 236

testing on, 338

“with Google” branding, 359

dex file (bin/classes.dex), 8

DEXT see Motorola CLIQ/DEXT

Dialer application, 312

DialerDemo application, 313

dialogs

AlertDialog, 150

DatePickerDialog, 95, 97

TimePickerDialog, 95, 97

value for limited-input devices, 95

dialogs

Add Constant, 226

AlertDialog, 150

Create New AVD, 13

DatePickerDialog, 95, 97

Launch Options, 20, 338

modal dialogs, 150

pop-up dialogs, 221–224

TimePickerDialog, 95, 97

value for limited-input devices, 95

DigitalClock widget, 99

digits property, EditText, 32

dimen element, 207

dimensions

automatically scaling UI to screen size,

333

Motorola DROID bugs, 351

resources, 206, 207

documentation, Android SDK, 367

doInBackground method, AsyncTask, 160

background work with AddStringTask,

163

dot notation

referencing classes, 282

D-pad

Motorola CLIQ/DEXT, 356

Motorola DROID/Milestone, 356

moving around focusable elements, 143

rotating through options, 73

scrolling, 57

drawable folder (res/drawable/), 8

referencing images, 202, 203

Index 377

types of resources, 197

drawable resources

EU4You_3 project, 348

screen size/density independence, 335

drawers

SlidingDrawer container, 114–116

drawSelectorOnTop property

Gallery, 73

Spinner, 64

DROID see Motorola DROID/Milestone

Droid fonts, 137

when Android dislikes font, 139

drop-down selector

setDropDownViewResource method, 64,

65

Spinner widget, 63

DynamicDemo class, 77

■ E
Eclipse projects, 5, 6

edit method, preferences, 214

EditPreferences activity, 215

EditText widget, 32–33

accessory button, 121

additional properties/methods, 37–38

attributes to control style of input, 118

default settings, 121

imeOptions attribute, 121

input method editor (IME), 117, 118

inputType attribute, 118–120

properties, 32

setOnEditorActionListener, 123

EditTextPreference element, 222

ellipsis, substituting text with, 140

ellipsize attr bute, TextView, 140

e-mail addresses

entering on soft keyboard, 119, 120

emulators

adjusting density, 337

Android targets, 12

Dalvik Debug Monitor Service, 322

EU4You application, 345

Hierarchy Viewer tool, 317

identifying location, 299

simulating incoming calls, 326–327

simulating incoming SMS messages,

327, 328

testing applications with emulator, 5

testing screen size and density, 337

using, 12–15

using SD card image, 329

enabled attribute, items/groups

describing menus via XML files, 134

Enter key

changing purpose of soft keys, 121

Environment object

getExternalStorageDirectory method,

244

errors

AlertDialog, 150

“application not responding”, 159

background processing, 165

VerifyError, 364

escaping values, strings.xml file, 198

EU4You application, 340

fonts, 346

icons, 348

EU4You_2 project, 346

EU4You_3 project, 348

EU4You_4 project, 349

exceptions

SecurityException, 276

StackOverflowException, 360

execSQL method, SQLite, 230

execute method

AddStringTask class, 164

HttpClient handling HTTP requests, 254

ExpandableListView, 116

expanded mode, options menu, 125

external storage, 244

extras, Intent objects, 172

■ F
fancy lists

ListView with icons and text, 75–84

ListView with ratings and text, 84–94

feeds

making data available to other

applications, 265

notify-on-change support, 274

Planet Android, 368

FetchForecastTask class, 283

fields see EditText widget

file access, 237

static application reference data, 237–

240

writeable application data files, 240–244

File Explorer

Dalvik Debug Monitor Service, 323

fill model, LinearLayout container, 40

Index 378

fill_parent rule

automatically scaling UI to screen size,

332

LinearLayout container, 40, 43

filters

declaring intent filters, 173

findViewById method

accessing widgets, 26

additional methods for widgets, 38

finding MapView, 303

finding TabHost, 105

ListView with icons and text, 80, 81, 82

XML layout file, 27

finger-friendly screens

Archos 5 Android Internet Tablet, 356

automatically scaling UI to screen size,

333

emulating screens, 337

resistive or capacitive, 356

Firefox

SQLite Manager extension, 236

five-way navigation pointing device

specifying hardware requirements, 353

FlipperDemo class, 110

flipping, 109–114

adding contents at runtime, 112–113

automatic flipping, 113–114

manual flipping, 110–111

ViewFlipper container, 109–114

FlowLayout, Java/Swing, 39

focus

isFocused method, 38

requestFocus method, 38

fonts, 137

custom fonts, 140

Droid series of fonts, 137

EU4You application, 346

glyphs, 140

setDefaultFontSize method, 147

setFantasyFontFamily method, 147

typeface attribute, 138

using different fonts, 138–140

when Android dislikes font, 139

FontSampler application, 137, 139

formats

string formats, 198

styled string formats, 199–202

FrameLayout container, 103, 104

containing SlidingDrawer, 114

fromHtml method

styled string formats, 201

fully qualified class name

supplying for main activity, 7

FWVGA screens, emulating, 337

■ G
Galileo, 295

Gallery widget, 72

gen folder, 7

generatePage method, 256

generics, 160, 163

GeoPoint, 304

GET requests, 254

getAltitude method, 297

getAttributeCount method, 206

getAttributeName method, 206

getBearing method, 297

getBestProvider method, 296

getCallState method, 311

getCheckedItemPositions method, 62

getCheckedRadioButtonId method, 36

getColumnIndex method, 234

getColumnNames method, 234

getConfiguration method

finding screen size class, 336

getContentResolver method, 274

getCount method, SQLite, 234

getDefaultSharedPreferences method, 213,

214

getExternalStorageDirectory method, 244

getInputStream method

accessing binary data, 264

getLastKnownPosition method, 296

getLastNonConfigurationInstance method

handling screen rotation, 189, 191

getLatitude method, 255

getListView method, 62

getLongitude method, 255

getMapController method, 303

getMenuInfo method, 127

getNetworkType method, 312

getOutputStream method

accessing binary data, 264

getOverlays method, MapView, 305

getParent method, 38

getPhoneType method, 312

getPreferences method, 213

getProgress method

ProgressBar, 101

SeekBar, 102

getProviders method, LocationManager, 296

Index 379

getReadableDatabase method, 230

getRequiredColumns method, 270

getResources method

static application reference data, 237

xml resources, 204

getService method, Binder, 281

getSettings method, WebView, 143, 147

getSharedPreferences method, 213

getSpeed method, Location object, 297

getString method, 198, 199

getStringArray method, 208

getSubscriberId method, 312

getSystemService method

identifying location, 296

notifications, 289

getTag method, View objects

combining RatingBar with ListView, 86

ListView with icons and text, 82

wrapping API, 362, 363, 364, 366

getType method, ContentProvider, 271

getView method

combining RatingBar with ListView, 86,

89

creating views, 68

CursorAdapter, 94

ListView with icons and text, 77, 78, 80

getWriteableDatabase method, 230

getXml method, 204

GIF format

Android support for images, 202

automatically scaling UI to screen size,

334

glEsVersion attribute, 354

glyphs, 140

goBack method, WebView, 144

goBackOrForward method, 145

goForward method, WebView, 145

Google

Android Market, 355

“with Google” branding, 359

Google Code Search, 368

Google Maps, 301, 302

map overlays, 305–306

Google/HTC Nexus One, 357

GPS (global positioning system), 4

GPS services, 295

gravity, LinearLayout, 41

grid model, TableLayout, 39

GridView widget, 66–69

group element, menus, 134, 135

group identifier, menus, 126

GUI definition

using XML layout file, 24

■ H
handleMessage method, 156, 157

Handler class, 155–158

background threads communicating

with, 155

handleMessage method, 156, 157

Message objects communicating with,

156–158

obtainMessage method, 156

passing Runnable objects to, 158

postXyz methods, 158

sending Message to Handler, 156–158

sendMessage method, 156

sendMessageXyz methods, 156

updating ProgressBar via, 156, 157

HandlerDemo application, 158

handlers

threads, 155–158

handles

getting Uri handles, 260

SlidingDrawer container, 115

Handmade Typewriter font, 140

handsets

handling screen rotation, 185

hardware

buttons, 354

explicitly specifying requirements, 353–

354

hasAltitude method, 297

hasBearing method, 297

HashMap class

wrapping API, 363

hasSpeed method, 297

help, 367

Hierarchy Viewer tool, 315–320

emulators, 317

Keyguard window, 317

Launcher window, 317

launching, 315

Layout view, 317, 318, 361

Load View Hierarchy window, 317

Loupe view, 320

Pixel Perfect view, 319, 320

view hierarchies, 360

view properties, 319

windows, 317

hierarchyviewer program, 315

Index 380

holder pattern

ListView with icons and text, 81–84

horizontal orientation, LinearLayout, 40

horizontalSpacing property, GridView, 66

hours

TimePicker/TimePickerDialog, 95

HTC Dream see T-Mobile G1

HTC Magic, 354

emulating, 12

keyboards, 117

rotating, 195

HTC Nexus One, 357

htmlEncode method

styled string formats, 201

HTTP (Hypertext Transfer Protocol), 171

operations via Apache HttpClient, 254–

255

HTTP requests

accessing REST-style web services, 253

Apache HttpClient handling, 254

HttpClient, Apache

HTTP operations via, 254–255

Secure Sockets Layer, 257

threading, 257

HttpComponents library, Apache, 253

HVGA screens

EU4You application, 345, 347

screen sizes, 331

■ I
icon attribute, item element, 134

icon mode, options menu, 125

icons

Android operating system changes, 361

EU4You application, 348

ListView with icons and text, 75–84

notifications, 290, 292

id

findViewById method, 26, 27

R.id, 26, 27

id attribute

@+id, 25, 47

@id, 48

describing menus via XML files, 134

SlidingDrawer container, 115

XML layout file, 25

identifiers, 47, 48

ImageButton widget, 31

additional properties/methods, 37–38

images, 202–204

accessing binary data, 264

Android support for, 202

automatically scaling UI to screen size,

334

Gallery widget, 73

res/drawable/ folder, 8

setImageURI method, 31

types of resources, 197

ImagesDemo application, 204

ImageView widget, 31

accessing binary data, 264

additional properties/methods, 37–38

ListView with icons and text, 79

SlidingDrawer container, 115

IME (input method editor)

creating an IME, 124

entering e-mail addresses, 120

entering signed decimal numbers, 121

entering text, 120

keyboards, 117

shrunken, scrollable layout, 124

imeOptions attribute, EditText, 121

IMF (input method framework), 117

see also soft keyboard

implicit routing, intents, 173

inches (in)

automatically scaling UI to screen size,

333

resource dimensions, 207

indexes, creating, SQLite, 230

input method editor see IME

input method framework see IMF

InputStream class, 237, 239, 240

inputType attribute, 32, 118–120, 121

insert method

content providers, 263, 269

SQLite, 231

instance identifier, 266

instance Uri, 259, 260, 268, 269, 271

instrumentation elements, 9

intent-filter element, 10, 173

intent filters, declaring, 173

Intent objects

other criteria placed inside intents, 172

registering/unregistering receivers, 175

intent receivers, 174–175

permissions, 277, 278

intents, 109, 171–175, 178

ACTION_DIAL, 312

ACTION_XYZ, 172

actions, 172

Index 381

Android application components, 3

Android UI architecture, 177

broadcast intents, 174, 283–284, 287–

288

communicating with services, 286

components of, 172

creating, 178

data, 172

declaring intent filters, 173

handling clicks on links, 145

implicit routing, 173

notifications, 290

other criteria placed inside, 172

PendingIntent, 290, 292, 298

routing, 172

starting activities, 178–181

starting, 178

tabbed browsing, 182, 183

using as message bus, 175

IntentTabDemo application, 184

interfaces

using Java third-party libraries, 246

international deployment, 140

internationalization (I18N), 208

Internet access

Android development features, 3

Android devices, 253

HttpComponents library, 253

moving to background thread, 283

operations via HttpClient, 254–255

parsing responses, 255–257

requesting permission, 142

web browsers, 143

INTERNET permission, 276

getting map into application, 303

Internet/Weather project, 254

Interpreter class, BeanShell, 247

I/O

writeable application data files, 240–244

IPC (interprocess communication)

exposing service API through binding,

281

starting services, 279

iPhone

handling screen rotation, 195–196

isChecked method, CheckBox, 34

isCollectionUri method, 270, 271

isEnabled method, 38

isFocused method, 38

isRouteDisplayed method, 303

item element

describing menus via XML files, 134

ItemizedOverlay class, 305

onTap method, 307

■ J
JARs

using Java third-party libraries, 246

jarsigner utility, 8

generating API keys, 309

Java

attaching XML layout file, 25

Dalvik virtual machine, 245, 246

not working on Android and Dalvik, 250

using different fonts, 139

Java SE classes, 19

Java third-party libraries, 245

Java Virtual Machine (JVM), 245

Java/Swing, 39

JavaScript, 143

setJavaScriptEnabled method, 143, 147

JButton click, Swing, 19

joins, SQLite, 227

JPEG format, 202

JPG format, 334

JSON parser, 255

just-in-time (JIT) compilation, 249

■ K
key/value pairs

preferences, 213

keyboardHidden configuration

handling screen rotation, 192

keyboards

Motorola BACKFLIP, 357

scenarios requiring different resources,

209

soft keyboard, 117–124

specifying hardware requirements, 353,

354

Keyguard window, Hierarchy Viewer, 317

keytool utility, Java, 309

■ L
labels see TextView widget

landscape layout

EU4You application, 348, 350

handling screen rotation, 186

Index 382

languages

international deployment, 140

scenarios requiring different resources,

209

largeScreens attribute, 335

Launch Options dialog

AVD Manager, 338

building/running activities, 20

LaunchDemo application, 181

launcher

activity element, 10

Android UI architecture, 177

AndroidManifest.xml file, 8, 10

launching activities, 177–181

LAUNCHER category

intent-filter element, 173

intents, 172

Launcher window, Hierarchy Viewer, 317

layers

map overlays, 305–306

layout containers

AbsoluteLayout, 116

automatically scaling UI to screen size,

333

FrameLayout, 103, 104, 114

LinearLayout, 39–45

RelativeLayout, 46–51

ScrollView, 123

TableLayout, 51–54, 119

layout folder (res/layout/), 8

referencing string resource, 198

XML layout file, 23

attaching to Java, 25

layout management

see also containers

embedding second activity in main

activity UI, 351

layout properties (android:)

collapseColumns, TableLayout, 53

layout_above, RelativeLayout, 48

layout_alignParentXyz, RelativeLayout,

47

layout_alignXyz, RelativeLayout, 48, 50

layout_below, RelativeLayout, 48

layout_centerXyz, RelativeLayout, 47

layout_column, TableLayout, 52

layout_gravity, LinearLayout, 41

layout_height, Button, 25

layout_height, LinearLayout, 40

layout_height, RelativeLayout, 332

layout_marginXyz, LinearLayout, 42

layout_span, TableLayout, 52

layout_toXyzOf, RelativeLayout, 48, 50

layout_weight, LinearLayout, 40

layout_width, Button, 25

layout_width, LinearLayout, 40

layout_width, RelativeLayout, 50, 332

shrinkColumns, TableLayout, 53

stretchColumns, TableLayout, 53

Layout view, Hierarchy Viewer, 317, 318

LayoutInflater class

combining RatingBar with ListView, 92

ListView with icons and text, 78, 79

layouts

BoxLayout, Java/Swing, 39

FlowLayout, Java/Swing, 39

Hierarchy Viewer tool, 315–320

R.layout.main file, 7

res folder, 7

libs folder, 7

licenses

Apache Software License 2.0, 355

life cycle, activities, 167

transitions between states, 168–169

LinearLayout container, 39–45

containing SlidingDrawer, 114

example, 42–45

fill model, 40

gravity, 41

layout_gravity property, 41

layout_height property, 40

layout_marginXyz properties, 42

layout_weight property, 40

layout_width property, 40

margins, 42

orientation property, 40

padding property, 41

setGravity method, 41

setOrientation method, 40

setPadding method, 41

weight, 40

with AutoCompleteTextView, 70

with GridView, 67

with ImageView, 75, 76, 79

with ListView, 61

with RatingBar, 87, 92

with Spinner, 64

with ViewFlipper, 109

links, handling clicks on, 145

ListActivity class, 60, 61, 62, 302

ListAdapter interface

Index 383

combining RatingBar with ListView, 89,

90, 93

listeners

callbacks, services alerting activities,

283

LocationListener object, 297

OnCheckedChangeListener, 34

OnClickListener, 97

OnDateChangedListener, 95

OnDateSetListener, 95, 97

OnTimeChangedListener, 95

OnTimeSetListener, 95, 97

setOnEditorActionListener method, 123

setOnItemSelectedListener method, 60,

64, 65, 67

setOnSeekBarChangeListener method,

102

ListPreference element, pop-up dialogs, 222

ListView widget, 60–63

combining RatingBar with, 84–94

controlling appearance of rows, 62

enhancing, 75–94

with icons and text, 75–84

with ratings and text, 84–94

with rows contain interactive child

widgets, 84

getCheckedItemPositions method, 62

getting ListView from ListActivity, 62

setChoiceMode method, 62

tracking (multiple) selections, 62

Load View Hierarchy window, 317

loadData method, WebView, 143–144

loadTime method, 146

loadUrl method, WebView, 142, 143

local services, 284, 285

local.properties file, 7

localization (L10N), 209

location, 295

Location object

methods, 297

location providers, 295–297

location service, 296

location updates

Dalvik Debug Monitor Service, 325

LocationListener class, 297

removeUpdates method, 298

LocationManager class

addProximityAlert method, 298

creating services, 280

getBestProvider method, 296

getProviders method, 296

identifying location, 296

removeProximityAlert method, 298

requestLocationUpdates method, 297

LocationProvider class

getLastKnownPosition method, 296

identifying location, 296

location updates using DDMS, 325

lock method, SlidingDrawer, 115

logcat command, adb, 322

logging

Dalvik Debug Monitor Service, 322

Loupe view, Hierarchy Viewer, 320

■ M
makeText method, Toast class, 150, 152

managedQuery method, 260, 261

manifest element, 9, 10

manifest file see AndroidManifest.xml file

manifest typing, SQLite, 227

manual flipping, 110–111

map activity, Android, 181

MapActivity class, 302, 303

MapController, 304

maps

centering, 304

generating API keys, 308

getting map into application, 302

Google Maps, 301

MyLocationOverlay instance, 308

NooYawk application, 302

OpenStreetMap, 301

overlays, 305–306

zooming in on, 304

MapView widget

finding, 303

getMapController method, 303

getOverlays method, 305

getting map into application, 302

toggleSatellite method, 304

margins

LinearLayout container, 42

MD5 digest of debug certificate, 309

MD5 signature

generating API keys, 309

measurement, units of

resource dimensions, 207

media players

handling platform changes, 359–366

memory

dead state, 168

Index 384

using Java third-party libraries, 245

menu element

describing menus via XML files, 134

menu folder (res/menu/), 8

Menu object

describing menus via XML files, 134

setGroupCheckable method, 126

setGroupEnabled method, 134

setGroupVisible method, 135

menuCategory attribute, 134

MenuDemo application, 130

context menu, 130, 132

options menu, 130, 131

MenuItem class

describing menus via XML files, 134

getMenuInfo method, 127

setCheckable method, 126

setEnabled method, 134

setVisible method, 135

menus

add method, 126

addMenu method, 127

addSubMenu method, 127

applyMenuChoice method, 130

choice identifier, 126

context menus, 125, 127

describing menus via XML files, 133–135

getMenuInfo method, 127

group identifier, 126

onContextItemSelected method, 127,

130

onCreate method, 125, 130

onCreateContextMenu method, 127, 130

onCreateOptionsMenu method, 125,

127, 130

onCreatePanelMenu method, 127

onOptionsItemSelected method, 126,

127, 130

onPrepareOptionsMenu method, 126

options menu, 125–127

order identifier, 126

populateMenu method, 130

registerForContextMenu method, 127

setAlphabeticShortcut method, 126

setCheckable method, 126

setGroupCheckable method, 126

setNumericShortcut method, 126

setQwertyMode method, 126

taking advantage of larger screens, 339

message bus

using Intent framework as, 175

Message objects

communicating with Handler, 156–158

MessageDemo example, 151–153

messages

advisory messages, 149

alerts, 150

handleMessage method, 156, 157

intents, 171

obtainMessage method, 156

pop-up messages, 149–150

sending Message to Handler, 156–158

sendMessage method, 156

sendMessageXyz methods, 156

toasts, 149–150

validation message, 150

Method-based reflection, 366

Milestone see Motorola DROID/Milestone

millimeters (mm)

automatically scaling UI to screen size,

333

resource dimensions, 207

MIME types

building content provider, 266

getType method, 271

getting content into WebView, 144

Intent objects, 172

declaring intent filters, 174

intent routing, 172, 173

minutes

TimePicker/TimePickerDialog, 95

minSdkVersion attribute, 11

mksdcard utility, 329

mobile phones

smartphone programming, 1

modal dialogs, 150

months

DatePicker/DatePickerDialog, 95

MOTOBLUR, 356

Motorola BACKFLIP, 357

Motorola CLIQ/DEXT, 356

Motorola DROID/Milestone, 356

bugs, 351

Droid fonts, 137, 139

emulating, 337

moveToXyz methods, SQLite, 234

multimedia

Android development features, 4

multiple resource directories, 209

MyLocationOverlay instance, 308

Index 385

■ N
name property, 273, 354

National Weather Service XML format, 256

navigation

specifying hardware requirements, 353

WebView widget, 144

netbooks, Android

handling platform changes, 359–366

networks

Android development features, 3

getNetworkType method, 312

newCursor method, SQLite, 235

newView method, CursorAdapter, 94

nextFocusXyz properties, 37

Nexus One see Google/HTC Nexus One

nine-patch bitmaps

automatically scaling UI to screen size,

334

NooYawk application, 302

normalScreens attribute, 335

NotificationManager class, 289, 292

notifications, 289–294

see also alerts

contentIntent, 290

encountering error during background

processing, 165

hardware notifications, 290

icons, 290

notify method, 290

paused state, 167

PendingIntent, 290

raising notifications, 289

services alerting activities, 282

setLatestEventInfo method, 290

status bar icons, 289

stopped state, 168

tickerText, 290

notify method, notifications, 290

Notify1 project, 290

notifyChange method, 274

NotifyDemo activity, 292

notifyMe method, 292

notify-on-change support, 273, 274

Now.java file, 17, 18

NowRedux project, 24, 26

numColumns property, GridView, 66

numericShortcut attribute, item element, 135

■ O
obtainMessage method, 156

onActivityResult callback, intents, 179

onBind method, services, 280

communicating with services, 286

exposing API through binding, 281

OnCheckedChangeListener, 34

LinearLayout example, 44

onClick attribute, buttons, 30

onClick method, 19

OnClickListener, 30

alert example, 152

date and time, 97

trapping button clicks within activity, 19

onConfigurationChanged method, 191, 193

onContextItemSelected method, menus,

127, 130

onCreate method

ConstantsBrowser, 262

ContentProvider, 267

handling screen rotation, 185, 189, 193

invoking loadUrl() on WebView, 142

invoking, activities, 19

LinearLayout example, 44

menus, 125, 130

services, 280

SQLite, 228, 230

transitions between states, 168

onCreateContextMenu method, 127, 130

onCreateOptionsMenu method, 125, 127,

130

onCreatePanelMenu method, 127

OnDateChangedListener, 95

OnDateSetListener, 95, 97

onDestroy method

services, 280

transitions between states, 168

OnItemSelectedListener, 65

online help, 367

onListItemClick method

changes to list selection, 61

combining RatingBar with ListView, 86

onOptionsItemSelected method, 126, 127,

130

onPause method

activity receiving/using broadcast, 288

transitions between states, 169

unregistering receivers, 175

updating locations/directions, 308

writeable application data files, 243

Index 386

onPostExecute method, AsyncTask, 161,

164

onPreExecute method, AsyncTask, 161

onPrepareOptionsMenu method, 126

onProgressUpdate method, AsyncTask,

161, 163

onRatingBarChanged method, 92

onRatingChanged method, 86

onReceive method, intents, 174

onRestart method, 169

onRestoreInstanceState method

handling screen rotation, 185

reapplying application-instance state,

170

onResume method

activity receiving/using broadcast, 288

HttpClient handling HTTP requests, 254

registering receivers, 175

transitions between states, 169

updating locations/directions, 308

writeable application data files, 243

onRetainNonConfigurationInstance method,

189, 191

onSaveInstanceState method

handling screen rotation, 185, 187, 188,

189

saving application-instance state, 170

unregistering receivers, 175

onServiceConnected method, 286

onStart method, 158

services, 280

setting up background thread, 157

transitions between states, 169

onStop method, 169

onTap method, Overlay class, 307

onTextChanged method, 71

OnTimeChangedListener, 95

OnTimeSetListener, 95, 97

onUpgrade method, SQLite, 228

open method, SlidingDrawer, 115

Open Mob for Android wiki, 367

open source, 353

Apache Software License 2.0, 355

openFileInput/Output methods

accessing application-specific data files,

244

writeable application data files, 240, 243

OpenGL

specifying device requirements, 354

openRawResource method, 237

OpenStreetMap, 301

operating system changes, 360–361

options menu, 125–127

adding menu choices and submenus,

126–127

creating, 125

describing menus via XML files, 134

expanded mode, 125

icon mode, 125

MenuDemo application, 130, 131

Oracle, SQLite and, 227

order identifier, menus, 126

orderInCategory attribute, item element, 134

orientation

see also rotation

custom handling of screen rotation, 191–

193

handling screen rotation, 185–191

not rotating activities, 193–195

scenarios requiring different resources,

209

orientation configuration changes, 192

orientation property, LinearLayout, 40

OutputStream class, 240

Overlay class, 305

onTap method, 307

OverlayItem instances, 305

overlays, maps, 305–306

getOverlays method, MapView, 305

ItemizedOverlay class, 305

MyLocationOverlay instance, 308

updating locations/directions, 307

■ P
package attribute, 9

package declaration, 18

padding

LinearLayout, 43

RelativeLayout, 49, 50

padding property, LinearLayout, 41

parse method, Uri object, 260

parsing

parsing responses, 255–257

resources, 197

XML parsers, 255

XmlPullParser object, 204, 206

paused state, activities, 167

handling screen rotation, 185

pausing activities see onPause method

peer activities, 178

starting intents, 179

Index 387

PendingIntent

identifying location, 298

notifications, 290, 292

performance

scripting languages, 250

using Java third-party libraries, 245

permission attribute, 277

permission elements, 9, 277

permissions, 5, 9, 10

ACCESS_COARSE_LOCATION, 303

accessing Internet, 142

applications, 275

confirming, 276

declaring, 277

documenting for public APIs, 278

enforcing, 277–278

checkCallingPermission method, 278

sendBroadcast method, 278

via manifest, 277–278

INTERNET, 276, 303

location providers, 296

READ_CALENDAR, 276

READ_CONTACTS, 250, 276

requesting to access Internet, 142

requesting to use application data, 275

scripting languages, 250

securing application using, 277

security and privacy, 276

starting/binding to services, 282

system permissions, 276

VIBRATE, 290

working with external storage, 244

WRITE_CALENDAR, 276

WRITE_CONTACTS, 276

phone calls

Dalvik Debug Monitor Service, 326–327

handling, 311

making phone call, 312–314

phone services, 4

phone type, finding, 312

phones

Android devices, 311

Dialer application, 312

TelephonyManager class, 311

Pixel Perfect view, Hierarchy Viewer, 319,

320

pixels

automatically scaling UI to screen size,

333

density-independent pixels, 333

device-independent pixels, 207

resource dimensions, 207

scaled pixels, 334

scale-independent pixels, 207

scenarios requiring different resources,

209

placeholders, strings, 198

Planet Android, 368

platform APIs

using Java third-party libraries, 245

platform changes, handling, 359–366

PNG format, 202, 334

points (pt)

resource dimensions, 207

populateDefaultValues method, 270

populateMenu method, 130

pop-ups

alerts, 150

preferences, 221–224

toasts, 149–150

portrait layout

handling screen rotation, 186

positioning widgets

automatically scaling UI to screen size,

332

LinearLayout, 39–45

RelativeLayout, 46–51

TableLayout, 51–54

POST requests, HTTP, 254

postXyz methods, Handler, 158, 159

preferences, 213–224

accessing, 213

activity-specific preferences, 213

allowing users to set preferences, 215–

218

application-level preferences, 213

editing, 214

key/value pairs, 213

pop-up dialogs, 221–224

web browsers, 147

preferences framework, 214–215, 219–220

PreferenceCategory element, 219

PreferenceScreen element, 215, 219

PreferencesManager

getDefaultSharedPreferences method,

213

primary key column, SQLite, 230

privacy

security and permissions, 276

programming, 1, 19

ProgressBar widget, 101

creating, 156

Index 388

thread safety, 158

updating via Handler, 156, 157

projects, 6–8

see also applications

android create project command, 6, 17

AndroidManifest.xml file, 6

assets folder, 7

bin folder, 7, 8

build.xml file, 6

building Android applications, 5

creating project from command line, 6

activity element, 10

default.properties file, 7

developing using Eclipse, 6

gen folder, 7

libs folder, 7

local.properties file, 7

manifest file, 5, 6

project structure, 6–8

res folder, 7

root directory, 6–7

src folder, 7

supplying fully qualified class name of

main activity, 7

tests folder, 7

projects, list of

see also applications, list of

Eclipse, 5, 6

EU4You, 340, 346, 348, 349

FontSampler, 137, 139

Notify1, 290

NowRedux, 24, 26

Weather, 254

properties

declaring for content provider, 272

Hierarchy Viewer tool, 319

querying content provider, 261

provider class

creating for content provider, 267–272

provider elements, 10

publishProgress method, AsyncTask, 161,

163, 164

pull command, adb, 235, 323

push command, adb, 236, 323

■ Q
queries, content providers

accessing query results, 261

querying base Uri, 260

queries, SQLite

buildQuery method, 234

Cursor object, 234

query method, 232

rawQuery method, 232

SQLiteQueryBuilder class, 233–234

query method, ContentProvider

building content provider, 267–269

query method, SQLite

retrieving data, 232

queryWithFactory method, SQLite, 235

QVGA screens

EU4You application, 345, 346, 348

ignoring screen sizes and resolutions,

332

screen sizes, 331

qwerty keyboard

see also keyboards

scenarios requiring different resources,

209, 212

setQwertyMode method, 126

■ R
R class, 25

R.array

resource arrays, 208

R.id, 26, 27

R.java file

aapt tool, 23

Android build system creating, 7

modifying, 7

XML layout file, 27

R.layout

ListView with icons and text, 76, 79

R.layout.main file, 7

XML layout file, 26

RadioButton widget, 35–37

additional properties/methods, 37–38

disabling widgets based on, 38

LinearLayout example, 43

methods, 36

preset radio button to checked, 37

properties, 36

RadioGroup class, 36

LinearLayout example, 43, 44, 45

RateableWrapper class, 90, 92, 93

RateListDemo class, 84, 92, 93

RateListView class, 89, 93, 94

RatingBar widget, 84–94

ratings

ListView with ratings and text, 84–94

Index 389

raw folder (res/raw/), 8

static application reference data, 237

types of resources, 197

rawQuery method, SQLite, 232

rawQueryWithFactory method, SQLite, 235

READ_CALENDAR permission, 276

READ_CONTACTS permission, 276

readPermission attribute, 278

ReadWrite application, 241, 315

ReadWriteFileDemo application, 243

receivers, intents, 174–175

RecyclingDemo class, 80

reference data, static application, 237–240

reflection

wrapping API, 362, 364, 366

registerContentObserver method, 274

registerForContextMenu method, 127

registerReceiver method, intents, 175

RelativeLayout container, 46–51

automatically scaling UI to screen size,

332

containing SlidingDrawer, 114

evaluation order, 49

example, 49–51

layout_above property, 48

layout_alignParentXyz properties, 47

layout_alignXyz properties, 48

layout_below property, 48

layout_centerXyz properties, 47

layout_toXyzOf properties, 48

with AnalogClock/DigitalClock, 99

reload method, WebView, 144

remote services, 284

remove method, preferences, 214

removeProximityAlert method, 298

removeUpdates method, 298

reqFiveWayNav property, 353

reqHardKeyboard property, 354

reqKeyboardType property, 354

reqNavigation property, 354

reqTouchScreen property, 354

requery method, cursors

content providers, 264

SQLite, 234

requestFocus method, 38

requestLocationUpdates method, 297

res folder, 7

attaching XML layout file to Java, 25

subdirectories, 7, 197

XML layout file, 23

resolutions

ignoring screen sizes and, 331

resource sets

density-based, 335

size-based, 336

version-based, 336

resources

Android operating system changes, 361

arrays, 208

colors, 206, 207–208

description, 197

dimensions, 206, 207

drawable, 197

images, 197, 202–204

multiple criteria for, 209

multiple resource directories, 209

parsing, 197

raw, 197

scenarios requiring different, 208–212

strings, 198–202

values folder (res/values/), 197, 206–208

XML, 197, 204–206

XML layout file, 23

resources.arsc file, 8

resources element, strings.xml, 198

Resources object

static application reference data, 237

ResponseHandler class

HttpClient handling HTTP requests, 254

responses, parsing, 255–257

restarting activities see onRestart method

restoreMe method, 188, 191

REST-style web services, accessing, 253

RESULT_XYZ codes, intents, 179

resuming activities see onResume method

RGB values, colors, 207

ringtone preference, setting, 216

RingtonePreference element, 215

root directory, 6–7, 8

getRootView method, 38

rotation

see also orientation

blocking rotation of activities, 193

custom handling of screen rotation, 191–

193

handling iPhone rotation, 195–196

handling screen rotation, 185–191

not rotating activities, 193–195

RotationFour application, 193, 194

RotationOne application, 186, 188, 189

RotationThree application, 191

RotationTwo application, 190

Index 390

routing, intents, 172

RowModel objects, 86

rows, TableLayout, 52

rule-based model, RelativeLayout, 39

rules

automatically scaling UI to screen size,

332, 333

Runnable objects, 158, 159

runOnUiThread method, 159

■ S
SAX parser, 255

scaled pixels, 334

scale-independent pixels, 207

scheme, content Uri, 266

Schroedinger’s Activity, 167

screen capture

Dalvik Debug Monitor Service, 324

screen density

adjusting, 337

anyDensity attribute, 335

density-based resource sets, 335

emulators testing, 337

EU4You application, 346

finding, 336

Google/HTC Nexus One, 357

Motorola DROID/Milestone, 356

screen density-independence, 334–337

resource sets, 335–336

supports-screens element, 334–335

screen orientation

scenarios requiring different resources,

209

screen rotation

custom handling of, 191–193

handling, 185–191

iPhone, 195–196

not rotating activities, 193–195

screen size-independence, 334–337

resource sets, 335–336

supports-screens element, 334–335

screen sizes

automatically scaling UI, 332–334

embedding second activity in main

activity UI, 351

emulators testing, 337

EU4You application, 346

finding screen density, 336

finding screen size class, 336

handling multiple screen sizes, 331–351

HVGA screens, 331

ignoring, 331

QVGA screens, 331

scenarios requiring different resources,

209

size-based resource sets, 336

taking advantage of larger screens, 339

consolidating multiple activities, 340

replacing menus with buttons, 339

replacing tabs with activity, 340

testing on actual devices, 338

WVGA screens, 331

screen tapping

onTap method, 307

screenOrientation, android

blocking rotation of activities, 193

handling iPhone rotation, 195

screenshots

Dalvik Debug Monitor Service, 324

ScreenSizes/EU4You application, 340

scripting languages

Android Scripting Environment, 251

Android with Java using Dalvik VM, 246–

250

just-in-time (JIT) compilation, 249

performance, 250

ScrollView container, 54–57, 123

SD cards

Android devices, 328–329

creating card image, 328–329

emulator using SD card image, 329

seconds

TimePicker/TimePickerDialog, 95

security

enforcing permissions, 277–278

privacy and permissions, 276

SecurityException

permissions, 276

SeekBar widget, 101

SELECT statement, SQLite

clauses of SELECT, 232

retrieving data, 232–233

selection widgets

adapters, 59–60

AutoCompleteTextView, 69–72

finding out when list selection changes,

61

Gallery, 72

GridView, 66–69

ListView, 60–63

setAdapter method, 60, 64, 67, 70

Index 391

setOnItemSelectedListener method, 60,

64, 65, 67

Spinner, 63–66

sendBroadcast method

broadcast intents, 284

enforcing permissions, 278

sendMessage method, 156

sendMessageAtFrontOfQueue method, 156

sendMessageAtTime method, 156

sendMessageDelayed method, 156

Service class, 279

service elements, 11

ServiceConnection instance, 286

services

accessing location-based services, 295

accessing service object, 280

adding to AndroidManifest.xml, 281

Android application components, 3

asynchronously alerting activities, 282

binding to, 286

broadcast intents, 283–284

callbacks, 283

creating, 279–282

description, 279

exposing API through binding, 281

exposing service object, 281

GPS services, 295

implementation of singleton pattern, 281

invoking, 285

life-cycle methods, 279

local services, 284, 285

location service, 296

permissions, 277

remote services, 284

running costs, 279

starting, 279, 286

stopping, 286

setAccuracy method, LocationProvider, 296

setAdapter method

AutoCompleteTextView widget, 70

combining RatingBar with ListView, 93

GridView widget, 67

ListView widget, 60

Spinner widget, 64

setAlphabeticShortcut method, menus, 126

setAltitudeRequired method, 296

setBuiltInZoomControls method, 304

setCenter method, MapController, 304

setCheckable method, MenuItem, 126

setChecked method

CheckBox, 34

RadioButton, 37

setChoiceMode method, ListView, 62

setColumnXyz method, TableLayout, 53

setContent method, TabSpec, 104, 105, 106

setContentView method

attaching XML layout file to Java, 25

creating skeleton application, 19

XML layout file, 26

setCostAllowed method, 296

setCurrentTab method, 105

setDefaultFontSize method, 147

setDropDownViewResource method, 64, 65

setEnabled method, 38

MenuItem class, 134

setFantasyFontFamily method, 147

setFlipInterval method, 113

setGravity method, LinearLayout, 41

setGroupCheckable method, 126

setGroupEnabled method, 134

setGroupVisible method, Menu, 135

setIcon method, Builder, 150

setImageURI method, 31

setIndeterminate method, ProgressBar, 101

setIndicator method, TabSpec, 104, 105

setJavaScriptEnabled method, 143, 147

setLatestEventInfo method, 290, 292

setListAdapter method, 61

setMessage method, Builder, 150

setNegativeButton method, Builder, 150

setNeutralButton method, Builder, 150, 152

setNumericShortcut method, menus, 126

setOnCheckedChangeListener method, 44

setOnClickListener

adding tabs during runtime, 107

writeable application data files, 243

setOnEditorActionListener, 123

setOnItemSelectedListener method, 64, 65

GridView widget, 67

ListView widget, 60

setOnSeekBarChangeListener, 102

setOrientation method, 40

setPadding method, 41

setPositiveButton method, Builder, 150

setProgress method, 101

setQwertyMode method, menus, 126

setResult method, intents, 179

setTag method, View objects

combining RatingBar with ListView, 87

ListView with icons and text, 82, 83

wrapping API, 362, 363, 364, 366

setTitle method, Builder, 150, 152

Index 392

setTypeface method, TextView, 139

setup method, TabHost, 104, 105

setupViews method, 193

setUserAgent method, 147

setVisible method, MenuItem, 135

setWebViewClient method, 145

setZoom method, MapController, 304

SharedPreferences object, 214

pop-up dialogs, 222

shell command, adb, 235, 324

shortcuts

setAlphabeticShortcut method, 126

setNumericShortcut method, 126

shouldOverrideUrlLoading method, 145, 146

show method, 150

showNext method, ViewFlipper, 110

shrinkColumns property, TableLayout, 53

SIM ID (IMSI), 312

SimpleAdapter class, 60

SimpleCursorAdapter class, 261, 262

SimplePrefsDemo activity, 216, 217

singleLine property, EditText, 32

SitesOverlay class, 307

size-based resource sets, 336

skeleton application, creating, 17

SlidingDrawer container, 114–116

smallScreens attribute, 335

smartphone programming, 1

SMS messages

Dalvik Debug Monitor Service, 327–328

SOAP, 253

soft keyboard, 117–124

accommodating changes to layout, 123

changing purpose of soft keys, 121

determining keys available on, 118

entering date on, 120

entering e-mail addresses on, 119, 120

entering numbers on, 119, 121

entering text on, 117

autocorrection, 120

multiline input, 120

plain text-entry, 119, 120

shrunken, scrollable layout, 124

input method editor (IME), 117

input method framework (IMF), 117

scrolling, 123

sound

hardware notifications, 290

source code, 368

spacing property, Gallery, 73

spacingWidth value, stretchMode, GridView,

66, 67

Spinner widget, 63–66

drawSelectorOnTop property, 64

spinnerSelector property, Gallery, 73

SQLite, 225, 227–236

creating database, 227–230

creating tables and indexes, 230

Cursor object, 232, 234–235

data typing, 227

manifest typing, 227

manipulating database, 235

putting data into tables, 230–231

query method, 232

rawQuery method, 232

retrieving data, 232–235

SQLite Manager extension, 236

sqlite3 program, 235

SQLiteOpenHelper class, 227, 230

SQLiteQueryBuilder class

building content provider, 268, 269

retrieving data, 233–234

src attribute, images, 31

src folder, 7

creating skeleton application, 17

SSL (Secure Sockets Layer)

HttpClient, Apache, 257

StackOverflowException, 360

startActivity method, intents, 179

making phone call, 312

startActivityForResult method, 179

startFlipping method, 113

starting activities see onStart method

startService method, 286

states, activities, 167

active state, 167

dead state, 168

handling screen rotation, 185

paused state, 167

saving application-instance state, 169

stopped state, 168

transitions between, 168–169

static application reference data, 237–240

StaticDemo class, 76

StaticFileDemo application, 240

status bar icons, notifications, 289, 292, 293

status panels

automatic flipping, 114

stopped state, activities, 168

stopping activities see onStop method

stopSelf method

Index 393

binding to services, 287

stopService method, 286, 287

storage, Android, 3, 237

reading/writing files on external storage,

244

stretchColumns property, TableLayout, 53

stretchMode property, GridView, 66

string element, 198

string formats, 198

styled string formats, 199–202

string-array element, 208

strings, 198–202

arrays, 208

placeholders, 198

referencing from layout file, 198

styled text, 199

strings.xml file, 198, 200, 337

StringsDemo application, 201

styled text, 198, 199

styled string formats, 199–202

sub activities, 177

supports-screens element

EU4You application, 341, 348

screen size/density independence, 334–

335

Swing

JButton click, 19

using Java third-party libraries, 245

■ T
TabActivity class, 103, 182, 183

tabbed browsing, 182–184

TabHost container, 102, 103, 104, 105

table of contents

Android applications, 5

TableLayout container, 51–54, 119

collapseColumns property, 53

determining number of columns, 52

example, 53–54

layout_column property, 52

layout_span property, 52

other child elements of, 53

putting cells in rows, 52

setColumnXyz methods, 53

shrinkColumns property, 53

stretchColumns property, 53

TableRow container, 52

tables, SQLite, 230–231

tablets, Android

handling platform changes, 359–366

tabs, 102–108

adding tabs during runtime, 106

replacing tabs with activity, 340

using tabs to hold information, 102

TabSpec class, 104, 105

TabWidget container, 103, 104, 106

tapping screen

onTap method, 307

target ID system, 353

targets, 12–15

finding out available API targets, 13

intent routing, 172

telephone calls

making phone call, 312–314

Telephony Actions group, DDMS

incoming calls or SMS messages, 326

TelephonyManager class, 311

getXyz methods, 311, 312

testing applications with emulator, 5

tests folder, 7

text

ellipsize attribute, 140

entering on soft keyboard, 119, 120

entering text on soft keyboard, 117

makeText method, Toast, 150

styled text, 198, 199

text attribute, XML layout file, 25

text messages

Dalvik Debug Monitor Service, 327–328

text property, TextView, 29

textColor attribute, widgets, 38

textColor property, TextView, 29

textStyle property, TextView, 29

TextView widget, 29–30

additional properties/method, 37–38

changing color of, 38

creating views, 68

ellipsize attribute, 140

ListView with icons and text, 76

properties, 29

setTypeface method, 139

XML layout file, 25

TextWatcher class, 70, 71

third-party libraries, Java, 245

thread safety

ProgressBar widget, 158

threads

see also background threads; UI threads

handlers, 155–158

HttpClient, Apache, 257

ProgressBar widget, 101

Index 394

where is current code execution, 159

tickerText, 290

time

displaying, 99

inputting, 95

loadTime method, 146

TimePicker widget, 95

TimePickerDialog, 95, 97

title attr bute, item element, 134

T-Mobile G1

buttons, 354

emulating, 12

keyboards, 117

rotating, 185, 191, 196

SD card, 328

T-Mobile myTouch 3G, 354

Toast class, 150

makeText method, 150, 152

show method, 150

toasts, 149–150

MessageDemo example, 151–153

toggle method

CheckBox, 34

SlidingDrawer, 115

toggleSatellite method, MapView, 304

touchpads

Motorola BACKFLIP, 357

touchscreens

resistive or capacitive, 356

scenarios requiring different resources,

209, 212

specifying hardware requirements, 354

transactions, SQLite, 227

tutorials, Android, 367

typeface attribute, fonts, 138

Typeface class

createFromAsset method, 139

createFromFile method, 140

typeface property, TextView, 29

■ U
UI (user interface)

automatically scaling to screen size,

332–334

embedding second activity in main

activity UI, 351

handling multiple screen sizes, 331–351

modifying from background threads, 155

screen size/density independence, 334–

337

resource sets, 335–336

supports-screens element, 334–335

UI architecture, Android, 177

UI threads, 155

background threads interacting with UI

on, 155

handling work on, 159–165

onPostExecute method, AsyncTask, 164

passing Runnables to Handler, 158

runOnUiThread method, Activity, 159

where is current code execution, 159

unbindService method, 287

Unicode

ZERO WIDTH NO-BREAK SPACE

character, 140

units of measurement

automatically scaling UI to screen size,

333

resource dimensions, 207

unlock method, SlidingDrawer, 115

unregisterReceiver method, intents, 175

unsigned apk file, 8

update method

ContentProvider, 270

SQLite, 231

updateForecast method

HttpClient handling HTTP requests, 254,

255

identifying location, 298

updateLabel method, 97

updateTime method, 19

Uri object

addId method, 260

base Uri, 259, 260

content providers, 259, 260, 261, 263,

264

building, 265–274

content Uri, 259, 264, 265–266

getting Uri handles, 260

handling rotation, 188, 191

instance Uri, 259, 260, 268, 269, 271

intents, 172, 174, 178

parse method, 260

setImageURI method, 31

tabbed browsing, 182

user agents

setUserAgent method, 147

user interface see UI

user interface elements see widgets

users

allowing to set preferences, 215–218

Index 395

handling clicks on links, 145

uses-configuration element, manifest, 353

uses-feature element, manifest, 354

uses-library element, manifest, 9

uses-permission element, manifest, 9, 10,

275

uses-sdk element, manifest, 9, 11

Android Market bug, 12

■ V
validation message

AlertDialog, 150

valueOf method, ColorStateList, 38

values folder (res/values/), 8, 206–208

languages requiring different resources,

209

strings.xml file, 198

types of resources, 197

varargs, AsyncTask, 160

doInBackground method, 160, 163

onProgressUpdate method, 161, 164

VerifyError, 364

version-based resource sets, 336

versionCode attribute, manifest, 12

versionName attribute, manifest, 12

versions

handling API changes, 362

vertical orientation, LinearLayout, 40

verticalSpacing property, GridView, 66

v bration

hardware notifications, 290

View class

additional properties/methods for

widgets, 37–38

Android widgets, 19

creating widgets as subclasses of, 24

findViewById method, 38

getParent method, 38

getRootView method, 38

getTag method, 82

hierarchy, XML layout file, 23

isEnabled method, 38

isFocused method, 38

nextFocusXyz properties, 37

OnClickListener interface, 30

postXyz methods, 159

requestFocus method, 38

setEnabled method, 38

setTag method, 82

visibility property, 37

view definition

using XML layout file, 24

view hierarchies, 360

view methods

bindView, 94

findViewById, 26, 27

getListView, 62

getView, 68

newView, 94

setContentView, 19, 25, 26

setDropDownViewResource, 64, 65

setupViews, 193

setWebViewClient, 145

view objects

AutoCompleteTextView, 69–72

ExpandableListView, 116

GridView, 66–69

ImageView, 31

ListView, 60–63

MapView, 302, 303, 304, 305

RateListView, 89, 93, 94

ScrollView, 54–57, 123

TextView, 29–30

WebView, 141–147

WebViewClient, 145, 146

view properties

Hierarchy Viewer tool, 319

ViewFlipper container, 109–114

adding contents at runtime, 112–113

automatic flipping, 113–114

setFlipInterval method, 113

showNext method, 110

startFlipping method, 113

view-flipping see flipping

views

convertView parameter, 80–81, 84, 86

flipping, 109–114

intents, 109

tabs, 102–108

ViewWrapper class

combining RatingBar with ListView, 86,

87, 92

ListView with icons and text, 82, 83, 84

ViewWrapperDemo class, 83

visibility property, 37

visible attribute, items/groups, 135

VM see Dalvik virtual machine

■ W
W3C DOM parser, 255

Index 396

Weather project, 254

WeatherDemo application, 257

parsing responses, 255

WeatherPlus application, 285

WeatherPlus class, 286

WeatherPlusService class, 279, 286

web browsers

Android browser, 143

Internet access, 143

settings/preferences, 147

tabbed browsing, 182–184

WebKit browser, 141

WebView widget, 141

getting content into, 143

web page, loading, 142

web services

accessing REST-style web services, 253

WebKit, 141

Browser1 app, 141, 143

Browser2 app, 144

Browser3 app, 145, 146

HTTP operations via Apache HttpClient,

254, 255

styled text, 199

WebSettings class

adjusting settings of WebView, 147

persistence of settings, 147

setDefaultFontSize method, 147

setJavaScriptEnabled method, 143, 147

setUserAgent method, 147

WebView widget, 141–147

adjusting settings of, 147

canGoBack method, 145

canGoBackOrForward method, 145

canGoForward method, 145

clearCache method, 145

clearHistory method, 145

enabling JavaScript, 143

getSettings method, 143, 147

getting content into, 143

goBack method, 144

goBackOrForward method, 145

goForward method, 145

handling clicks on links, 145

JavaScript default setting, 143

loadData method, 143–144

loadUrl method, 142, 143

navigation, 144

permission to access the Internet, 276

persistence of settings, 147

reload method, 144

setWebViewClient method, 145

tabbed browsing, 182

WebViewClient class

shouldOverrideUrlLoading method, 145,

146

weight, LinearLayout container, 40

widgets

@+id/widgetname notation, 47

@id/widgetname notation, 48

adapters, 59–60

additional properties/methods, 37–38

alignment, 47, 48

AnalogClock, 99

attaching to activity, 23

AutoCompleteTextView, 69–72

Button, 30–31

CheckBox, 33–35

color attributes, 38

containers, 39

creating, 24

DatePicker, 95

DigitalClock, 99

EditText, 32–33

Gallery, 72

GridView, 66–69

handling clicks on links, 145

Hierarchy Viewer tool, 319

ImageButton, 31

ImageView, 31

LinearLayout container, 39–45

ListView, 60–63, 75–94

with icons and text, 75–84

with ratings and text, 84–94

positioning relative to container, 47

positioning relative to other widgets, 48

ProgressBar, 101

RadioButton, 35–37

RatingBar, 84–94

RelativeLayout container, 46–51

ScrollView container, 54–57

SeekBar, 101

Spinner, 63–66

TableLayout container, 51–54

TabWidget, 103, 106

TextView, 29–30

TimePicker, 95

using different fonts, 139

value for limited-input devices, 95

View class, 19

WebView, 141

XML layout file, 23

Index 397

attaching to Java, 25

Wi-Fi hotspots

identifying location, 295

wikis

Open Mob for Android wiki, 367

windows

automatically scaling UI to screen size,

332

Hierarchy Viewer tool, 317

wrap_content rule

automatically scaling UI to screen size,

332

LinearLayout container, 40, 43

wrapping API, 362–366

WRITE_CALENDAR permission, 276

WRITE_CONTACTS permission, 276

writePermission attribute, content providers,

278

WVGA screens

Archos 5 Android Internet Tablet, 355

EU4You application, 345, 347, 349, 350

Google/HTC Nexus One, 357

ignoring screen sizes and resolutions,

332

Motorola DROID/Milestone, 356

reading font, EU4You, 346

screen sizes, 331

■ X
XML files

describing menus via, 133–135

xml folder (res/xml/), 8, 204–206

framework for managing preferences,

214

types of resources, 197

XML layout file

@ signs, 25, 27

aapt tool, 23

attaching to Java, 25

attaching widgets to activity, 23

attributes as widget properties, 23

creating labels in, 29

description, 23

ImageView with icons and text, 76

Layouts/NowRedux project, 24

NowRedux project, 26

R.layout, 76

reasons for using, 24

XML parsers, Android, 255

XML pull parser, 255

XML-defined drawables

automatically scaling UI to screen size,

334

XmlPullParser object, 204, 206

XMLResourceDemo application, 206

XML-RPC client APIs, 253

■ Y
years

DatePicker/DatePickerDialog, 95

■ Z
ZERO WIDTH NO-BREAK SPACE character,

140

zooming, 304

	Prelim
	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Preface
	The Big Picture
	Challenges of Smartphone Programming
	What Androids Are Made Of
	Stuff at Your Disposal

	Projects and Targets
	Pieces and Parts
	Creating a Project
	Project Structure
	Root Contents
	The Sweat Off Your Brow
	And Now, the Rest of the Story
	What You Get Out of It

	Inside the Manifest
	In the Beginning, There Was the Root, And It Was Good
	Permissions, Instrumentations, and Applications (Oh My!)
	Your Application Does Something, Right?
	Achieving the Minimum
	Version=Control

	Emulators and Targets
	Virtually There
	Aiming at a Target

	Creating a Skeleton Application
	Begin at the Beginning
	Dissecting the Activity
	Building and Running the Activity

	Using XML-Based Layouts
	What Is an XML-Based Layout?
	Why Use XML-Based Layouts?
	OK, So What Does It Look Like?
	What’s with the @ Signs?
	And How Do We Attach These to the Java?
	The Rest of the Story

	Employing Basic Widgets
	Assigning Labels
	Button, Button, Who’s Got the Button?
	Fleeting Images
	Fields of Green. Or Other Colors.
	Just Another Box to Check
	Turn the Radio Up
	It’s Quite a View
	Useful Properties
	Useful Methods
	Colors

	Working with Containers
	Thinking Linearly
	LinearLayout Concepts and Properties
	Orientation
	Fill Model
	Weight
	Gravity
	Padding

	LinearLayout Example

	All Things Are Relative
	RelativeLayout Concepts and Properties
	Positions Relative to Container
	Relative Notation in Properties
	Positions Relative to Other Widgets
	Order of Evaluation

	RelativeLayout Example

	Tabula Rasa
	TableLayout Concepts and Properties
	Putting Cells in Rows
	Other Children of TableLayout
	Stretch, Shrink, and Collapse

	TableLayout Example

	Scrollwork

	Using Selection Widgets
	Adapting to the Circumstances
	Lists of Naughty and Nice
	Spin Control
	Grid Your Lions (or Something Like That...)
	Fields: Now with 35% Less Typing!
	Galleries, Give or Take the Art

	Getting Fancy with Lists
	Getting to First Base
	A Dynamic Presentation
	Better. Stronger. Faster.
	Using convertView
	Using the Holder Pattern

	Making a List...
	...And Checking It Twice
	Adapting Other Adapters

	Employing Fancy Widgets and Containers
	Pick and Choose
	Time Keeps Flowing Like a River
	Making Progress
	Seeking Resolution
	Put It on My Tab
	The Pieces
	The Idiosyncrasies
	Wiring It Together
	Adding Them Up
	Intents and Views

	Flipping Them Off
	Manual Flipping
	Adding Contents on the Fly
	Automatic Flipping

	Getting in Someone’s Drawer
	Other Good Stuff

	The Input Method Framework
	Keyboards, Hard and Soft
	Tailored to Your Needs
	Tell Android Where It Can Go
	Fitting In
	Unleash Your Inner Dvorak

	Applying Menus
	Menus of Options
	Creating an Options Menu
	Adding Menu Choices and Submenus

	Menus in Context
	Taking a Peek
	Yet More Inflation
	Menu XML Structure
	Menu Options and XML
	Inflating the Menu

	Fonts
	Love the One You’re With
	More Fonts
	Here a Glyph, There a Glyph

	Embedding the WebKit Browser
	A Browser, Writ Small
	Loading It Up
	Navigating the Waters
	Entertaining the Client
	Settings, Preferences, and Options (Oh My!)

	Showing Pop-Up Messages
	Raising Toasts
	Alert! Alert!
	Checking Them Out

	Dealing with Threads
	Getting Through the Handlers
	Messages
	Runnables

	Running in Place
	Where Oh Where Has My UI Thread Gone?
	Asyncing Feeling
	The Theory
	AsyncTask, Generics, and Varargs
	The Stages of AsyncTask
	A Sample Task
	The AddStringTask Declaration
	The doInBackground() Method
	The onProgressUpdate() Method
	The onPostExecute() Method
	The Activity

	And Now, the Caveats

	Handling Activity Life Cycle Events
	Schroedinger’s Activity
	Life, Death, and Your Activity
	onCreate() and onDestroy()
	onStart(), onRestart(), and onStop()
	onPause() and onResume()

	The Grace of State

	Creating Intent Filters
	What’s Your Intent?
	Pieces of Intents
	Intent Routing

	Stating Your Intent(ions)
	Narrow Receivers
	The Pause Caveat

	Launching Activities and Subactivities
	Peers and Subs
	Start ’Em Up
	Make an Intent
	Make the Call

	Tabbed Browsing, Sort Of

	Handling Rotation
	A Philosophy of Destruction
	It’s All the Same, Just Different
	Now with More Savings!
	DIY Rotation
	Forcing the Issue
	Making Sense of It All

	Working with Resources
	The Resource Lineup
	String Theory
	Plain Strings
	String Formats
	Styled Text
	Styled String Formats

	Got the Picture?
	XML: The Resource Way
	Miscellaneous Values
	Dimensions
	Colors
	Arrays

	Different Strokes for Different Folks

	Using Preferences
	Getting What You Want
	Stating Your Preference
	And Now, a Word from Our Framework
	Letting Users Have Their Say
	Adding a Wee Bit o' Structure
	The Kind of Pop-Ups You Like

	Managing and Accessing Local Databases
	The Database Example
	A Quick SQLite Primer
	Start at the Beginning
	Setting the Table
	Makin’ Data
	What Goes Around Comes Around
	Raw Queries
	Regular Queries
	Building with Builders
	Using Cursors

	Data, Data, Everywhere

	Accessing Files
	You and the Horse You Rode in On
	Readin’ ’n Writin’

	Leveraging Java Libraries
	The Outer Limits
	Ants and JARs
	Following the Script
	...And Not a Drop to Drink
	Reviewing the Script

	Communicating via the Internet
	REST and Relaxation
	HTTP Operations via Apache HttpClient
	Parsing Responses
	Stuff to Consider

	Using a Content Provider
	Pieces of Me
	Getting a Handle
	Makin’ Queries
	Adapting to the Circumstances
	Give and Take
	Beware of the BLOB!

	Building a Content Provider
	First, Some Dissection
	Next, Some Typing
	Creating Your Content Provider
	Step 1: Create a Provider Class
	onCreate()
	query()
	insert()
	update()
	delete()
	getType()

	Step 2: Supply a Uri
	Step 3: Declare the Properties
	Step 4: Update the Manifest

	Notify-on-Change Support

	Requesting and Requiring Permissions
	Mother, May I?
	Halt! Who Goes There?
	Enforcing Permissions via the Manifest
	Enforcing Permissions Elsewhere

	May I See Your Documents?

	Creating a Service
	Service with Class
	There Can Only Be One
	Manifest Destiny
	Lobbing One Over the Fence
	Callbacks
	Broadcast Intents

	Where’s the Remote? And the Rest of the Code?

	Invoking a Service
	The Ties That Bind
	Catching the Lob

	Alerting Users via Notifications
	Types of Pestering
	Hardware Notifications
	Icons

	Seeing Pestering in Action

	Accessing Location-Based Services
	Location Providers: They Know Where You’re Hiding
	Finding Yourself
	On the Move
	Are We There Yet? Are We There Yet? Are We There Yet?
	Testing...Testing...

	Mapping with MapView and MapActivity
	Terms, Not of Endearment
	Piling On
	The Bare Bones
	Exercising Your Control
	Zoom
	Center

	Rugged Terrain
	Layers upon Layers
	Overlay Classes
	Drawing the ItemizedOverlay
	Handling Screen Taps

	My, Myself, and MyLocationOverlay
	The Key to It All

	Handling Telephone Calls
	Report to the Manager
	You Make the Call!

	Development Tools
	Hierarchical Management
	Delightful Dalvik Debugging Detailed, Demoed
	Logging
	File Push and Pull
	Screenshots
	Location Updates
	Placing Calls and Messages

	Put It on My Card
	Creating a Card Image
	Inserting the Card

	Handling Multiple Screen Sizes
	Taking the Default
	Whole in One
	Think About Rules, Rather Than Positions
	Consider Physical Dimensions
	Avoid Real Pixels
	Choose Scalable Drawables

	Tailor-Made, Just for You (and You, and You, and...)
	Add <supports-screens>
	Resources and Resource Sets
	Default Scaling
	Density-Based Sets
	Size-Based Sets
	Version-Based Sets

	Finding Your Size

	Ain’t Nothing Like the Real Thing
	Density Differs
	Adjusting the Density
	Accessing Actual Devices

	Ruthlessly Exploiting the Situation
	Replace Menus with Buttons
	Replace Tabs with a Simple Activity
	Consolidate Multiple Activities

	Example: EU4You
	The First Cut
	Fixing the Fonts
	Fixing the Icons
	Using the Space
	What If It’s Not a Browser?

	What Are a Few Bugs Among Friends?

	Dealing with Devices
	This App Contains Explicit Instructions
	Button, Button, Who’s Got the Button?
	A Guaranteed Market
	The Down and Dirty Details
	Archos 5 Android Internet Tablet
	Motorola CLIQ/DEXT
	Motorola DROID/Milestone
	Google/HTC Nexus One
	Motorola BACKFLIP

	Handling Platform Changes
	Brand Management
	More Things That Make You Go Boom
	View Hierarchy
	Changing Resources

	Handling API Changes
	Detecting the Version
	Wrapping the API

	Where Do We Go from Here?
	Questions—Sometimes with Answers
	Heading to the Source
	Getting Your News Fix

	Index
	¦ Symbols and
	Numerics
	¦ A
	B
	¦
	¦ C
	D
	¦
	¦ E
	¦ F
	G
	¦
	H
	¦
	¦ I
	J
	¦
	¦K
	¦ L
	M
	¦
	¦ N ¦ O
	P
	¦
	R
	¦
	¦ Q
	¦ S
	¦ T
	¦ U
	¦ V
	¦ W
	Y
	¦
	¦ X ¦
	Z

