Intel® Architecture

Instruction Set Extensions Programming
Reference

319433-014
AUGUST 2012

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL
OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTIC-
ULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "MISSION CRITICAL APPLICATION" IS ANY APPLICATION IN WHICH FAILURE OF THE INTEL PRODUCT COULD RESULT, DIRECTLY OR INDIRECT-
LY, IN PERSONAL INJURY OR DEATH. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU
SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EM-
PLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRIT-
ICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or char-
acteristics of any features or instructions marked "reserved” or "undefined”. Intel reserves these for future definition and shall have no respon-
sibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice.
Do not finalize a design with this information.

The Intel® 64 architecture processors may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

Intel® Hyper-Threading Technology (Intel® HT Technology) is available on select Intel® Core™ processors. Requires an Intel® HT Technology-
enabled system. Consult your PC manufacturer. Performance will vary depending on the specific hardware and software used. For more infor-
mation including details on which processors support HT Technology, visit http://www.intel.com/info/hyperthreading.

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, and virtual machine monitor (VMM). Func-
tionality, performance or other benefits will vary depending on hardware and software configurations. Software applications may not be compatible
with all operating systems. Consult your PC manufacturer. For more information, visit http://www.intel.com/go/virtualization.

Intel® 64 architecture requires a system with a 64-bit enabled processor, chipset, BIOS and software. Performance will vary depending on the
specific hardware and software you use. Consult your PC manufacturer for more information. For more information, visit http://www.in-
tel.com/info/em64t.

Intel, Pentium, Intel Atom, Intel Xeon, Intel NetBurst, Intel Core, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2 Extreme, Intel
Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

*QOther names and brands may be claimed as the property of others.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-
800-548-4725, or go to: http://www.intel.com/design/literature.htm

Copyright © 1997-2012 Intel Corporation

ii Ref. # 319433-014

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/info/em64t
http://www.intel.com/info/em64t
http://www.intel.com/go/virtualization
http://www.intel.com/info/hyperthreading

CONTENTS

PAGE

CHAPTER 1
INTEL® ADVANCED VECTOR EXTENSIONS
1.1 LYo o TU) I T ES o Tal N 1 T=T o 1-1
1.2 1Y V1= 1-1
13 Intel® Advanced Vector EXtensions ArchiteCtUre OVEIVIBW v vttt e e e aeees 1-1
1.3.1 256-Bit Wide SIMD REGISTEI SUP PO . . o\ttt ittt ettt ettt e et e et et et 1-2
13.2 INSTrUCtion SYNTaX ENNaNCEMIENTS .. .ottt e e e e e e e 1-2
133 VEX Prefix INStruction ENCOdING SUP POttt t ittt ettt e aaes 1-3
14 O 1Y V1= N 1-3
1.5 LN on T F= I 1= 1-3
1.5.1 256-bit Floating-Point Arithmetic Processing ENhancements.ovvii i i eaes 1-4
1.5.2 256-bit Non-Arithmetic Instruction ENNANCEMENTS vttt i 1-4
153 Arithmetic Primitives for 128-bit Vector and Scalar processing.v.vvvrvtititirr it 1-4
154 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing.c.vvuiiiiiiiiiiii e 1-4
155 AVX2 and 256-bit Vector INteger ProCeSSING .. v vttt ittt e et e e 1-5
1.6 General Purpose INstruction Set ENNanCemeNtSottt e e e 1-5
1.7 Intel® Transactional SYNChroNiZation EXTENSIONSt \ vttt et eas 1-6
CHAPTER 2
APPLICATION PROGRAMMING MODEL
2.1 Detection of PCLMULQDQ and AES INSTTUCTIONS & v\ vttt ittt e et e et e e e e e e r e ey 2-1
2.2 Detection of AVX aNd FMA INSTrUCTIONS . ..t v vttt ettt et e e et e e et et e e a e e et 2-1
2.2.1 =3 =Ton o o) 1 2-2
2.2.2 Detection of VEX-Encoded AES and VPCLMULQDQ vttt ettt et eeas 2-3
2.2.3 DETECTION Of AV X . vttt e e e e e 2-4
224 Detection of VEX-encoded GPR INSITUCTIONS. . ..\ttt t ettt et e et e e e e eaas 2-5
2.3 Fused-Multiply-ADD (FMA) NUMEMC BERaVIOr.t e e 2-5
2.3.1 FMA Instruction Operand Order and Arithmetic BENaVIOr.vu ittt e 2-8
2.4 ACCESSING YMM REGISTOIS . . vttt ettt ettt e e et e e e e e e e 2-8
2.5 [T=T 0 0 T V= a0 T =T 0 2-9
2.6 SIMD Floating-POiNt EXCEPTIONS . . o vttt vttt ettt e ettt e e e e e e 2-11
2.7 INStruction EXCEPLioN SPECITICatiONt e e e 2-11
2.7.1 Exceptions Type 1 (Aligned MEMOrY FEFEMENMCE)\ttt ettt ettt et e eees 2-15
27.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned).ovriiiiiiiiiiiiiii i 2-16
273 Exceptions Type 3 (<16 Byte MemMOrY argUMENT) ... u ettt e aaes 2-17
274 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)c.covvviviiniinns. 2-18
275 Exceptions Type 5 (<16 Byte mem arg and N0 FP eXCEPLIONS).o v vr i it 2-19
2.76 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues) ..o iiiiiieieens 2-20
2.7.7 Exceptions Type 7 (No FP exceptions, NO MEMOTY @IQ) « .« vt rereteteeeeneeeetet et ettt eneeaenenenanns 2-21
278 Exceptions Type 8 (AVX and N0 MEMOTY @rGUIMENT) . . .o v vttt ettt et e te ettt e et et et a e e e e eens 2-21
279 Exception Type 11 (VEX-only, mem arg no AC, floating-point eXceptions).ovvvviviiiiiiii i, 2-22
2.7.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)covvvviiiivinininnnns. 2-23
2.7.11 Exception Conditions for VEX-Encoded GPR INSTIUCTIONS v v e e 2-24
2.8 Programming Considerations with 128-bit SIMD INStrUCtioNSt e i e 2-25
2.8.1 Clearing Upper YMM State Between AVX and Legacy SSE INSTructions.oovviiiii i iiiiiieean 2-26
282 Using AVX 128-bit Instructions Instead of Legacy SSE inStructions. ... 2-26
283 Unaligned Memory Access and Buffer Size Management.o vttt 2-26
29 011 Ty o oo 2-27

CPUID—CPU Nt iCation . . ot vttt ettt e e e e e e e e e e e e 2-27
CHAPTER 3
SYSTEM PROGRAMMING MODEL
3.1 YMM State, VEX Prefix and Supported Operating Modesoviriiiiii i e 3-1
3.2 YMM Sate MaNagemMENt . . ottt ettt e e e e e 3-1
3.2.1 Detection 0f YMM State SUP PO T ...ttt e ettt e ettt e 3-1

iii Ref. # 319433-014

3.2.2 ENADING OF YMM STatEottt e i et e e 3-1

3.2.3 Enabling of SIMD FIoating-EXCEPTION SUPPOM\ttt e e e s 3-2
3.24 THE LayoUt OF XSAVE A8, ..ottt ettt et e e et et e e et 3-2
3.25 XSAVE/XRSTOR Interaction with YMM State and MXCSR ... vt e 3-3
3.26 Processor Extended State Save Optimization and XSAVEOP T i e e e i 3-5
3.2.6.1 XSAVEOPT Usage GUIABIINES . . .o ettt ettt et ettt ettt e e et et e e ettt ea e 3-5
33 BT = A2 =T 3 =1V o 3-6
34 L= LU= o 3-6
35 Writing AVX floating-point exception handIerscoiiiii i e e 3-6
CHAPTER 4
INSTRUCTION FORMAT
4.1 LIS (T o a I o 1=) 3 4-1
411 VEX aNd the LOCK PrafiX. o vttt ettt et e e e e et ettt ettt 4-2
41.2 VEX and the 66H, F2H, and F3H PrefiXeso e e e 4-2
413 VEX ANd The REX Pra iX . o vttt i et e e e e e e e e e e 4-2
414 BTS00 (=1 4-2
41.4.1 VEX BYTE 0, DTS 7:0] + vttt ettt e e e e e e e e e e e 4-3
4142 EX BYTE T, DIt [7] - R ettt ettt et e e e e e 4-3
4143 3-byte VEX DY T, DIt 0] - X ettt e e e 4-3
4144 3-byte VEX DYte T, DIt S - B oottt e e 4-4
4145 3-Dyte VEX DY 2, DIt 7] - W et e e 4-5
4146 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv' the Source or dest Register Specifier...... 4-5
415 Instruction Operand Encoding and VEX.WWUY, MOAR/M ... e 4-6
4.1.51 3-byte VEX byte 1, bits[4:0] - “M-mmmm". . ..o e e e 4-6
4152 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, Dit [2]- L oo v v e 4-7
4153 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- PP .o voe i 4-7
416 THE OPCOOE BYTE .ttt e e e 4-7
41.7 The MODRM, SIB, and Displacement Byesii it i it e e i 4-7
41.8 The Third Source Operand (IMmediate Byte) e 4-8
41.9 AVX Instructions and the Upper 128-bits 0f YMM registersvuvii ittt e e 4-8
4.1.9.1 Vector Length Transition and Programming Considerationso.vuvrvrinin e eaens 4-8
4.1.10 AVX INSTIUCHION LenGtn . o e e e 4-8
4.2 Vector SIB (VSIB) MemMOry AQArESSiNg vttt ettt et e e e e et et e e e e ettt 4-8
421 64-bit Mode VSIB MemMOry AdAreSSiNg v vttt ettt ettt ettt ettt ettt ettt e e e 4-10
43 VEX Encoding Support for GPR INSTIUCTIONS . ..o v v vttt et e e 4-10
CHAPTER 5
INSTRUCTION SET REFERENCE
5.1 Interpreting Instructlon ReferenCe Pageso oot e 5-1
5.1.1 LISy (T T T o 1= 5-1
(V)ADDSD ADD Scalar Double — Precision Floating-Point Values (THISIS AN EXAMPLE).cooviiiiiiinnnnns 5-2
5.1.2 Opcode Column in the INStruction SUMMArY Tableo vttt e 5-2
513 Instruction Column in the Instruction Summary Table. e 5-3
514 Operand Encoding column in the Instruction Summary Table ... i 5-4
515 64/32 bit Mode Support column in the Instruction Summary Table ... 5-4
516 CPUID Support column in the Instruction Summary Tablec.i i e ieaas 5-5
5.2 YN 1 Lo) B =T 5-5
53 LISy 0o T Y = I (=) 1= = Lol 5-5
MPSADBW — Multiple Sum of Absolute DifferenCeS.ov i et 5-6
PABSB/PABSW/PABSD — Packed ADSOIUTE VaIUEttt 5-13
PACKSSWB/PACKSSDW — Pack with Signed Saturationo.vuiiiiiiniiii i 5-16
PACKUSDW — Pack with Unsigned Saturationouiiiiii e 5-20
PACKUSWB — Pack with Unsigned Saturationc.oueiriiiiii i ens 5-23
PADDB/PADDW/PADDD/PADDQ — Add Packed INtEGETSt vv ettt ettt et et 5-26
PADDSB/PADDSW — Add Packed Signed Integers with Signed Saturation............cooiiiii i i 5-30
PADDUSB/PADDUSW — Add Packed Unsigned Integers with Unsigned Saturation..................cooviviienns. 5-32
PALIGNR — BYte AN ettt ettt et et et e et e e e e 5-34
PAND — LOGiCal AN DD . .ttt ittt e e e e e e e e e 5-36

iv Ref. #319433-014

PANDN — LOGical AND NOT ...ttt ittt ettt ettt eas 5-38

PAVGB/PAVGW — Average Packed INtEgers. .. .o .vv ittt ettt e e e 5-40
PBLENDVB — Variable Blend Packed Bytes. vttt et e 5-42
PBLENDW — Blend Packed WOrds ovvuitit ittt ettt e et e e 5-46
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ — Compare Packed Integers for Equalityccovviviiiiiinninnns, 5-49
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ — Compare Packed Integers for Greater Thanoovvvvivvnennnn 5-53
PHADDW/PHADDD — Packed HOMzZontal Add.ttt et e 5-57
PHADDSW — Packed Horizontal Add With Saturationouviriii e 5-60
PHSUBW/PHSUBD — Packed HOrizontal SUDTract.ovuiei e 5-62
PHSUBSW — Packed Horizontal Subtract with Saturation............ouviiiiiiii i i 5-65
PMADDUBSW — Multiply and Add Packed INtegers.ottt e et e 5-67
PMADDWD — Multiply and Add Packed INtegerso vttt i e e e i e 5-69
PMAXSB/PMAXSW/PMAXSD — Maximum of Packed Signed INtegerscoovviiiiiiiiiiiiii i iiiieiennss 5-71
PMAXUB/PMAXUW/PMAXUD — Maximum of Packed Unsigned INtegersovvvviiiiiiiiiiiiiiiiiiiianennn, 5-75
PMINSB/PMINSW/PMINSD — Minimum of Packed Signed INtegers.vviiiii it 5-79
PMINUB/PMINUW/PMINUD — Minimum of Packed Unsigned Integers ... 5-83
PMOVMSKB — MOVE BYTe MasK ...ttt it et e e e et ettt e 5-87
PMOVSX — Packed Move With Sign EXTENAouiiti i i i e et et et i s 5-89
PMOVZX — Packed Move With Zero EXTENAuiui it 5-94
PMULDQ — Multiply Packed Doubleword INTEGENSvti ettt e e e 5-99
PMULHRSW — Multiply Packed Unsigned Integers with Roundand Scale............coooiiii i 5-101
PMULHUW — Multiply Packed Unsigned Integers and Store High Result. ... 5-104
PMULHW — Multiply Packed Integers and Store High Result. i e 5-107
PMULLW/PMULLD — Multiply Packed Integers and Store Low Result ... e 5-110
PMULUDQ — Multiply Packed Unsigned Doubleword INTEGETSvuirii i 5-114
POR — Bitwise LOGICal DR . .. ettt ittt e e et e e e e e e e e e 5-116
PSADBW — Compute Sum of ADSOIUtE DifferenCeS . ..o\ttt e s 5-118
PSHUFB — Packed ShUffle Bytes . ..o v ittt e e e e e 5-120
PSHUFD — Shuffle Packed DOUDIBWOTASttt ettt ettt et et e 5-122
PSHUFHW — Shuffle Packed High WOrds.o in ittt ettt aenanas 5-124
PSHUFLW — Shuffle Packed LOW WOTASttt e e e ettt 5-126
PSIGNB/PSIGNW/PSIGND — Packed SIGNottt et 5-128
PSLLDQ — Byte Shift Lot ..ottt e e e 5-132
PSLLW/PSLLD/PSLLQ — Bit Shift Lot o\ttt e e et 5-134
PSRAW/PSRAD — Bit Shift Arithmetic Right.ou i e i 5-140
PSRLDQ — Byte Shift RIGNT . oottt e e e e e e e 5-144
PSRLW/PSRLD/PSRLQ — Shift Packed Data Right LogGicalvvitii e 5-146
PSUBB/PSUBW/PSUBD/PSUBQ — Packed Integer SUDTract. . .. ovvv vttt it nneiaas 5-151
PSUBSB/PSUBSW — Subtract Packed Signed Integers with Signed Saturation...............cocoiiiiiiiiiiiiinn, 5-156
PSUBUSB/PSUBUSW — Subtract Packed Unsigned Integers with Unsigned Saturation................coovvvvninn, 5-158
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ — Unpack HighData ..o, 5-160
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ — Unpack Low Data.........vvviiii i 5-165
PXOR — EXCIUSIVE O Lttt ettt ettt et et e e et et e e et et e e et e e e e 5-171
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint. ..o i 5-173
VBROADCAST — Broadcast FIoating-Point Dataovii et 5-175
VBROADCASTF128/1128 — Broadcast 128-Bit Data.ovvuiei i ie e 5-177
VPBLENDD — Blend Packed DWOTAS . . . v v v e ettt et e e et e e e e e ettt 5-179
VPBROADCAST — Broadcast Integer Data oottt i ettt et 5-181
VPERMD — Full Doublewords Element Permutation.uurvtnini e 5-185
VPERMPD — Permute Double-Precision Floating-Point ElemMentscvviriiiin i 5-186
VPERMPS — Permute Single-Precision Floating-Point Elementsoviriiiiinii e 5-187
VPERMQ — Qwords Element PermUTatioN.ottt e e 5-188
VPERMZI128 — Permute INteger ValUESot e 5-189
VEXTRACTIT128 — Extract packed Integer Valuest e e et 5-191
VINSERTIT128 — Insert Packed INteger Values. vttt et ettt 5-192
VPMASKMOV — Conditional SIMD Integer Packed Loads and STOreScovuvriiiiiiiii i eennns 5-193
VPSLLVD/VPSLLVQ — Variable Bit Shift Left Logical.ovvuiirr i e 5-196
VPSRAVD — Variable Bit Shift Right Arithmeticcoiii i e 5-199
VPSRLVD/VPSRLVQ — Variable Bit Shift Right Logical...........covviuiii i 5-201

Ref. # 319433-014 v

VGATHERDPD/VGATHERQPD — Gather Packed DP FP Values Using Signed Dword/Qword Indices................. 5-204

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices.................. 5-208
VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword Indices 5-212
VPGATHERDQ/VPGATHERQQ — Gather Packed Qword Values Using Signed Dword/Qword Indices................ 5-216
CHAPTER 6
INSTRUCTION SET REFERENCE - FMA
6.1 FMA INSTTUCTION SET REI B ENCE. L .ottt ittt e e e e e e e e e e 6-1
VFMADD132PD/VFMADD213PD/VFMADD231PD — Fused Multiply-Add of Packed Double-Precision Floating-Point
VBlUBS i e e e e e e 6-2
VFMADD132PS/VFMADD213PS/VFMADD231PS — Fused Multiply-Add of Packed Single-Precision Floating-Point
ValUBS . .ot 6-5
VFMADD132SD/VFMADD213SD/VFMADD231SD — Fused Multiply-Add of Scalar Double-Precision Floating-Point
JBlUBS Lttt e e e e e 6-8
VFMADD132SS/VFMADD213SS/VFMADD231SS — Fused Multiply-Add of Scalar Single-Precision Floating-Point
VBlUBS ottt e e e e e 6-10
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD — Fused Multiply-Alternating Add/Subtract of
Packed Double-Precision FIoating-Point Values . ..ot i e et e 6-12
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS — Fused Multiply-Alternating Add/Subtract of
Packed Single-Precision Floating-Point Values. ... e 6-15
VFMSUBADD132PD/VFMSUBADDZ213PD/VFMSUBADDZ231PD — Fused Multiply-Alternating Subtract/Add of
Packed Double-Precision FlIoating-Point Valuesovvu i e e 6-18
VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS — Fused Multiply-Alternating Subtract/Add of
Packed Single-Precision FIoating-Point Values. e et e 6-21
VFMSUB132PD/VFMSUB213PD/VFMSUB231PD — Fused Multiply-Subtract of Packed Double-Precision Floating-
POINT ValUBS. . ettt ettt e e e e 6-24
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS — Fused Multiply-Subtract of Packed Single-Precision Floating-
POINT ValUBS. . .ottt e e e 6-27
VFMSUB132SD/VFMSUB213SD/VFMSUBZ231SD — Fused Multiply-Subtract of Scalar Double-Precision Floating-
PO Nt M alUBS. . . et e e e e e e 6-30
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS — Fused Multiply-Subtract of Scalar Single-Precision Floating-
a0 Y =1 =T 6-32
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD — Fused Negative Multiply-Add of Packed Double-Precision
FIoating-PoiNt ValUes . . .o e e 6-34
VFNMADD132PS/VFNMADD213PS/VFNMADD231PS — Fused Negative Multiply-Add of Packed Single-Precision
Floating-Point ValUS . . oo i it e e e 6-37
VFNMADD132SD/VFNMADD213SD/VFNMADD231SD — Fused Negative Multiply-Add of Scalar Double-Precision
Floating-PoiNt ValUesot e et e e e 6-40
VFNMADD132SS/VFNMADDZ213SS/VFNMADD231SS — Fused Negative Multiply-Add of Scalar Single-Precision
FIoating-PoiNt Valuesot e e 6-42
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD — Fused Negative Multiply-Subtract of Packed Double-
Precision FIoating-Point Values i e e e e e 6-44
VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS — Fused Negative Multiply-Subtract of Packed Single-
Precision FIoating-Point ValUesS ov ittt ettt e e 6-47
VFNMSUB132SD/VFNMSUB213SD/VFNMSUBZ231SD — Fused Negative Multiply-Subtract of Scalar Double-
Precision FIoating-Point ValUes ou ittt e e e e e 6-50
VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS — Fused Negative Multiply-Subtract of Scalar Single-
Precision FIoating-Point Values i i i e e e 6-52
CHAPTER 7
INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS
7.1 LTSy (o o T n I o 1= P 7-1
7.2 INSTRUCTION SET REFERENCEottt et et e e e e et et e e et e eans 7-1
ANDN — Logical AND NOT . ottt ettt et et e e e e e e e e e e e e 7-2
BEXTR — Bit Field EXIaCt. . v ottt ettt e e e et e e et e e et e e 7-3
BLSI — Extract Lowest Set ISolated Bitvvvr it e 7-5
BLSMSK — Get Mask Up 10 LOWEST SET Bitivi ittt ettt ettt r e aaas 7-6
BLSR — RESET LOWEST SBt Bit ..ttt e e e e 7-7
vi Ref. # 319433-014

BZHI — Zero High Bits Starting with Specified Bit POSITiONo e 7-8

LZCNT— Count the Number of Leading Zero Bitsvvviuiiii it 7-10
MULX — Unsigned Multiply Without Affecting FIagso e 7-12
PDEP — Parallel BitsS DEPOSITttt ettt et e e e 7-14
PEXT — Parallel Bits EXTraCt. .. vttt e e et e e e e et e e e 7-16
RORX — Rotate Right Logical Without Affecting FIagsovir oo e 7-18
SARX/SHLX/SHRX — Shift Without Affecting Flags.ovvriii i e 7-19
TZCNT — Count the Number of Trailing Zero Bits.o.vuiuiriii i e 7-21
INVPCID — Invalidate Processor COMTEXTID vu ettt ettt et 7-23
CHAPTER 8
INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS
8.1 L1 =T 1= 8-1
8.2 Intel® Transactional SYNChroNiZation EXTENSIONS. . ..\ttt ettt et aenes 8-1
8.2.1 HardWare LOCK BlISION.o e ettt e e e e e et e e et et 8-2
8.2.2 Restricted Transactional MemMIOTY. v .ttt ettt et ettt et 8-2
83 Intel® TSX Application Programming Model . ..ottt i e e e e e 8-3
8.3.1 Detection of Transactional SyNChronization SUPPOMT.ttt et 8-3
8.3.1.1 DeteCtion OF HLE SUP DO T . .o\ttt et e e e e e e e e e e s 8-3
83.1.2 Detection OF RTM SUP PO .« ittt ettt e e e et e e e e 8-3
83.1.3 Detection Of XTEST INStrUCHION. . ..ttt e e e e e e e e 8-3
83.2 Querying Transactional EXECULION STatUSt tit ittt e e 8-3
833 ReqUIrEMENTS TOr HLE LOCKS ..\ttt e e e e e e e e 8-3
834 TranSaCtONAl NESTING. . oottt e e e et e e e 8-4
8.34.1 HLE Nesting and Elisiono i i i i e e e e e e e e 8-4
834.2 I N T 8-4
83423 NeStING HLE @nd R M. . i e e e 8-4
835 RTM ADOrt STatus Definition ... v e e e e e e 8-5
83.6 oI 1 =T 0 T Y@ e =T T 8-5
8.3.7 RTM-ENabled DEbUGGET SUP PO . . .\ ittt ettt e ettt e e ettt 8-5
838 Programming ConSIEratioNS . ..\ttt t ettt et e e e s et e e e 8-5
8.3.8.1 Instruction Based ConSIderationsvuei ettt e e e 8-6
8.38.2 LN] =T 0] T (=] o 8-7
84 IS UGN RE O BN, o\ vttt e e e e e e 8-7
XACQUIRE/XRELEASE — Hardware Lock Elision Prefix HINTSovnien e 8-9
XABORT — Transaction ADOrT . ..ottt ettt e et 8-12
XBEGIN — Transaction Beginttt it et et et e e s 8-14
XEND — Transaction BNd.ov ettt ettt e e e e e e e e 8-17
XTEST — Test If In Transactional EXECULION v vttt et aees 8-19
CHAPTER 9
ADDITIONAL NEW INSTRUCTIONS
9.1 Detection Of NEW INStTUCTIONS. . . . vttt e et e e et et 9-1
9.2 RaNdom NUMDET INStrUCTIONS. . . o .ottt ettt e e e e et e e e e r ettt e e e et aaenes 9-1
9.2.1 RO R AN D ..ttt ettt e e e e e e e e e 9-1
9.2.2 DAY = = 9-2
9.23 RDSEED and VMX INTEIaCTIONS. « v vttt ettt ettt et ettt et e et et et et et e et e e 9-2
93 Paging-Mode ACCeSS ENNaNCEMENTttt et e e et et e e s 9-3
9.3.1 Enumeration and ENabliNg. ou i e e 9-3
93.2 SMAP aNd ACCESS RIGNES . ottt e e e e e 9-3
933 SMAP and Page-Fault EXCEPTIONSottt ettt ettt et e e e e e 9-4
934 CR4.SMAP and Cached Translation INformation.ouiiiii e 9-4
94 Instruction EXCepLion SPeCifiCation oo s 9-5
9.5 ISy 8 on o o o 3= 1 9-5
ADCX — Unsigned Integer Addition of Two Operands with Carry Flag (THISISAN EXAMPLE)ccovvvvnvnnn 9-6
96 INSTRUCTION SET REFERENCEttt ettt et ettt et et e e e et e et et e e et et e 9-6
ADCX — Unsigned Integer Addition of Two Operands with Carry FIag.ovvveiii e 9-7
ADOX — Unsigned Integer Addition of Two Operands with Overflow Flag. ...t 9-8
PREFETCHW—Prefetch Data into Caches in Anticipationof a Write. ... i 9-9

Ref. # 319433-014 vii

RDSEED—REAd RANAOM SEED\ttt ittt it ettt e et e 9-11

CLAC—Clear AC FIag in EFLAGS REGISTET .ottt vttt ettt e e e e aes 9-13

STAC—Set AC FIag in EFLAGS RIS Oottt ittt ettt e e e e en e 9-14
APPENDIX A
OPCODE MAP
A1 USING OPCOde Tables. . ottt i it et et e e e e A-1
A2 KBY 10 A BV atiONS ...ttt ettt it e e e e e e A-1
A2.1 Codes for Addressing Methodouiui i e e e e s A-1
A2.2 (00T a = {o 00 =T = o Y7 0= A-2
A23 =05 =T 0o T L= A-3
A24 Opcode Look-up Examples for One, Two, and Three-Byte Opcodesoviiiii i ieeans A-3
A2.4.1 One-Byte OpCOde INStrUCTIONS. . .\ttt ettt ettt et e ettt e e e e ettt e A-3
A24.2 TWO-Byte OpCode INStTUCTIONS ...ttt e e e e e A-4
A243 Three-Byte OpCode IS UG ONSottt i e ettt ettt et ettt A-5
A2.44 VEX PrefiX INStUCTIONS . ottt e e e e e e e e e e e A-5
A25 Superscripts Utilized in Opcode Tables i i e e s A-6
A3 One, Two, and THREE-BY1E OPCOAE MBPSottt tt ettt et e e e e et e et et et e e et e et a s A-6
A4 Opcode Extensions For One-Byte And TWo-bYte OPCOGES. .. .o vttt it e ittt i aaes A-18
A4 Opcode Look-up Examples Using Opcode EXTENSIONS. . .. v vttt ettt ettt et iaeans A-18
A4.2 OPCOdE EXTENSION TabIES ..\ttt ittt e e e e e e e e e A-18
A5 EScape OPCOde INSTIUCTIONS ... v .ttt et e e e e e e e et et et A-21
A51 Opcode Look-up Examples for Escape INStruction OpPCodesvv ittt et ieaas A-21
A5.2 Escape Opcode INSTrUCTION TabIES v ittt et et et et et A-21
A5.2.1 Escape Opcodes With DB @s FirSt BYTe ..o v vvitt st e e e A-21
A5.22 Escape Opcodes With D as FirSt Byteove e e A-22
A5.23 Escape Opcodes With DA @s FirSt By eoi i i e i e e A-23
A5.24 Escape Opcodes With DB @s FirSt Byt ... v v v ittt et A-24
A5.25 Escape Opcodes With DL as FirSt By ..o . vttt e e A-25
A5.26 Escape Opcodes With DD @s FirSt Byt ovi it i e et e et A-26
A5.2.7 Escape Opcodes With DE @S FirST BYTe ... u . v vttt e A-27
A5.28 Escape Opcodes With DF As FIrSt Bytttt e A-28
APPENDIX B
INSTRUCTION SUMMARY
B.1 LY [1 w0 B-1
B.2 Promoted Vector Integer INStructions i AV X 2 ...ttt e e e B-8

viii Ref. #319433-014

TABLES

2-1
2-2
23
2-4
2-5
26
2-7
2-8
29
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2-31
3-1
3-2
33
3-4
35
36
3-7
3-8
41
4-2
4-3
4-4
4-5
4-6
8-1
9-1
A-1
A-2
A-3
A-4
A5
A6
A-7
A-8

Rounding behavior of Zero Result in FMA OpPerationouvriintii e 2-6
FMA NUMIEMIC BENAVIO . .ottt et e e e e e e e et 2-7
Alignment Faulting Conditions when Memory AccessisNot Aligned ... i e 2-10
Instructions Requiring EXplicitly AlIgned MemMOTYvuiri it i ettt 2-10
Instructions Not Requiring Explicit Memory AlIgnment e e 2-10
EXCEPTION Class BT PTiON. .. vttt et et e e e s 2-11
Instructions in @ach EXCEPLION CIasso vttt e e e 2-12
#UD Exception and VEXW=T ENCOINGo v vttt ettt et e 2-13
#UD Exception and VEX.L Field ENCOdING. ov vttt e i e et e 2-14
Type 1 Class EXCePTION CONiTioNS. . ..\ttt ittt ettt s et ettt it aenanas 2-15
Type 2 Class EXCePTION CONiTioNS. . ..\ttt ittt ettt ettt et et ettt et 2-16
Type 3 Class EXCePTION CONiTioNS. . .. v vttt ettt e et e 2-17
Type 4 Class EXCePLioN CONAITIONS. u ittt e ettt 2-18
Type 5 Class EXCePLioN CONAITIONS. v ittt ettt ettt 2-19
Type 6 Class EXCOPTION CONAitioNS.ttt ittt et e et ettt et i a e 2-20
Type 7 Class EXCePTION CoNAiTionS. u ittt ettt e ettt ettt 2-21
Type 8 Class EXCePTION CoONAiTioNS. . ..\ttt ittt e ettt et ettt et et it 2-21
Type 11 Class EXCePTioN CoONAiTiONS v vttt ettt et e e enas 2-22
Type 12 Class EXCeption CONAITIONS v vttt ettt et et e et e et 2-23
Exception Groupings for Instructions Listed in Chapler 7. ... et 2-24
Exception Definition for LZCNT and TZONT ...ttt ettt ittt e eaeas 2-24
Exception Definition (VEX-Encoded GPR INSTIUCTIONS). . v\t v vttt et e e e 2-25
Information Returned by CPUID INSTrUCTION ...\ e et ettt aeas 2-28
Highest CPUID Source Operand for Intel 64 and IA-32 ProCESSOIS ... v v v vtitit ettt enieieieaaans 2-35
ProcessOr TYPE Field. . . oot e e e e s 2-36
Feature Information Returned in the ECX ReGISTer v\t e 2-38
More on Feature Information Returned in the EDX Register.c.viiiiiiii i it i ie et 2-40
Encoding of Cache and TLB DESCIi P OrS . .o\ v ettt ettt et e ettt et n e n et enanns 2-42
Structured Extended Feature Leaf, Function 0, EBX REGISTErovivir it e 2-44
Processor Brand String Returned with Pentium 4 Processorvvvr i it iaaas 2-47
Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings.........ovvviviiiiiiiiiininnns 2-49
XFEATURE_ENABLED_MASK and Processor State COmMPONeNTS.vuvrvie e 3-2
CR4 bits for AVX New Instructions technology SUPPOItovi it e it aeaens 3-2
Layout of XSAVE Area For Processor Supporting YMM State 3-3
XS AV E HEader FOMmMat. . .ottt ittt e e et e e e e e e e e 3-3
XSAVE Save Area Layout for YMM State (EXT_Save_Area_2) ... ovvuiiiiiiiii it ettt 3-3
XRSTOR Action on MXCSR, XMM Registers, YMM RegGiSTErSvuiiriii e 3-4
Processor Supplied Init Values XRSTOR May USe.ttt 3-4
XSAVE Action on MXCSR, XMM, YMM REGIS T, .. oottt it it e e ettt eaaas 3-4
VEX.WVVV 10 Register Name MapDing . ..o vv ettt ittt ettt e ettt et et it 4-5
Instructions with @ VEX.wWWV Destinationov vt 4-6
VX M-MIMMM MBI i ON . . ottt ettt et e e e e e e e 4-7
LV = G B 0 (= = = o P 4-7
LV =] o B p L (=14 0] = = 1o 4-7
32-Bit VSIB Addressing FOrmMS 0f the SIB BYTe vv vttt et et 4-9
RTM AbOrt STatus Definition v e e 8-5
Exception Definition (ADCX and ADOX INSTIUCTIONS) .« ..o vttt ettt et et e 9-5
Superscripts Utilized in Opcode Tablest it e A-6
One-byte Opcode Map: (O0H — F7H) > oo e e A-8
Two-byte Opcode Map: 00H — 77H (First Byte is OFH)o e A-10
Three-byte Opcode Map: 00H — F7H (First Two Bytesare OF 38H) *. ... A-14
Three-byte Opcode Map: 00H — F7H (First two bytesare OF 3AH) * oo A-16
Opcode Extensions for One- and Two-byte Opcodes by Group Number *ot A-19
D8 Opcode Map When ModR/M Byte is Within OOH to BFH *. oo A-21
D8 Opcode Map When ModR/M Byte is Outside OOH to BFH *o A-22

Ref. # 319433-014 ix

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
B-1

B-3
B-4

B-6
B-7

D9 Opcode Map When ModR/M Byte is Within OOH to BFH *.o e A-22
D9 Opcode Map When ModR/M Byte is Outside OOH to BFH *o A-23
DA Opcode Map When ModR/M Byte is Within OOH to BFH *. ... A-23
DA Opcode Map When ModR/M Byte is Outside O0H 1o BFH *ot A-24
DB Opcode Map When ModR/M Byteis Within O0H to BFH *.o s A-24
DB Opcode Map When ModR/M Byte is Outside OOH to BFH *o A-25
DC Opcode Map When ModR/M Byte is Within O0H to BFH *. oo i A-25
DC Opcode Map When ModR/M Byte is Outside O0H to BFH * ... oo A-26
DD Opcode Map When ModR/M Byte is Within OOH to BFH *.o oe i A-26
DD Opcode Map When ModR/M Byte is Outside O0H to BFH *o e A-27
DE Opcode Map When ModR/M Byte is Within O0H to BFH *.t e e A-27
DE Opcode Map When ModR/M Byte is Outside OOH to BFH * oo e e A-28
DF Opcode Map When ModR/M Byte is Within OOH to BFH *. o e A-28
DF Opcode Map When ModR/M Byte is Outside O0H to BFH * ... oo A-29
Promoted SSE/SSE2/SSE3/SSSE3/SSEA INSTructions in AVX. ..o v it B-1
Promoted Vector Integer SIMD INStructions iN AVXZ. e B-8
VEX-Only SIMD Instructions in AVX and AV X2 . ..ot e e e et i B-11
New Primitive in AVX2Z INSTIUCTIONSo e ottt e e e e i aens B-12
L TN 0 Y o 0 B-14
VEX-Encoded and Other General-Purpose INSTruction Setsvvitii i e B-21
New Instructions Introduced in Processors Based on Intel Microarchitecture Code Name Ivy Bridge B-22

Ref. # 319433-014

FIGURES

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 4-1.
Figure 4-2.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.
Figure 5-12.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure A-1.

Xi

General Procedural Flow of Application Detection of AVX. ... i e 2-1
Version Information Returned by CPUID IN EAX. . ..ot e 2-36
Feature Information Returned in the ECX REGISTETv ittt et e i aaas 2-37
Feature Information Returned in the EDX REGISTEIiv ittt i e et e i eaaas 2-39
Determination of Support for the Processor Brand STring..........cocoiiiiiii it iaans 2-46
Algorithm for Extracting Maximum Processor FFEQUENCYvuvtvttttttt ettt i i eaenans 2-48
Instruction Encoding Format with VEX Prefix ... 4-1
LV =3 511121 £ 4-4
RV oYV 21 0 =T or= « o P 5-7
256-bit VPALIGN INStruction Operation .. .o v ettt ettt e ettt n e a e eaaas 5-35
256-bit VPHADDD INStruction Operation.ttt e ettt et 5-58
256-bit VPSHUFD INSTruCtion OPration ... vv vttt et s ettt eeaas 5-122
256-bit VPUNPCKHDQ INSTruction Operationuv' e tet ettt ie et e e e e neaas 5-161
128-bit PUNPCKLBW Instruction Operation using 64-bit Operands ... 5-166
256-bit VPUNPCKLDQ INSTruction Operationvuie ettt ieaea e 5-166
VBROADCASTITZ28 OPEIGLION .ttt ettt et e et et ettt et et et et e et et e et n e e 5-177
VPBROADCASTD Operation (VEX.256 encoded VEISION) vttt in e eineineieenenns 5-182
VPBROADCASTD Operation (128-Dit VErSION) ... v ittt ettt eas 5-182
VPBROADCASTQ OPIation ... v vttt ettt e ettt ettt et e et et et et e et e e e e 5-182
RV P 8 S B 00 T=T i o 5-189
PO EXAMIPIE. . ittt ittt e e e e e 7-14
Lo I = 1 1 7-16
LN L O =T o0 o 7-23
ModR/M Byte nnn Field (BitS 5,4, aNd 3) vuiit it s A-18

Ref. # 319433-014

INTEL® ADVANCED VECTOR EXTENSIONS

CHAPTER 1
INTEL® ADVANCED VECTOR EXTENSIONS

1.1 ABOUT THIS DOCUMENT

This document describes the software programming interfaces of several vector SIMD and general-purpose in-
struction extensions of the Intel® 64 architecture that will be introduced with Intel 64 processors built on 22nm
process technology. The Intel AVX extensions are introduced in the second generation Intel® Core processor
family, and details of Intel AVX are covered in the Intel® 64 and 1A-32 Architectures Software Developer’s Man-
ual. Additionally, details of VCVTPH2PS/VCVTPS2PH, RDRAND, RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE
are also covered there.

The instruction set extensions covered in this document are organized in the following chapters:

® 256-bit vector integer instruction extensions, referred to as Intel® AVX2 (also as AVX2), are described in
Chapter 5.

® FMA instruction extensions are described in Chapter 6.
® VEX-encoded, general-purpose instruction extensions are described in Chapter 7.

® Intel Transactional Synchronization Extensions are described in Chapter 8.

Chapter 1 provides an overview of these new instruction set extensions (with Intel AVX included for base refer-
ence). Chapter 2 describes the common application programming environment. Chapter 3 describes system pro-
gramming requirements needed to support 256-bit registers. Chapter 4 describes the architectural extensions
of Intel 64 instruction encoding format that support 256-bit registers, three and four operand syntax, and ex-
tensions for vector-index memory addressing and general-purpose register encoding.

1.2 OVERVIEW

Intel® Advanced Vector Extensions extend beyond the capabilities and programming environment over those of
multiple generations of Streaming SIMD Extensions. Intel AVX addresses the continued need for vector floating-
point performance in mainstream scientific and engineering numerical applications, visual processing, recogni-
tion, data-mining/synthesis, gaming, physics, cryptography and other areas of applications. Intel AVX is de-
signed to facilitate efficient implementation by wide spectrum of software architectures of varying degrees of
thread parallelism, and data vector lengths. Intel AVX offers the following benefits:

¢ efficient building blocks for applications targeted across all segments of computing platforms.

® significant increase in floating-point performance density with good power efficiency over previous generations
of 128-bit SIMD instruction set extensions,

® scalable performance with multi-core processor capability.

Intel AVX also establishes a foundation for future evolution in both instruction set functionality and vector lengths
by introducing an efficient instruction encoding scheme, three and four operand instruction syntax, supporting
load and store masking, etc.

Intel Advanced Vector Extensions offers comprehensive architectural enhancements and functional enhance-
ments in arithmetic as well as data processing primitives. Section 1.3 summarizes the architectural enhancement
of AVX. Functional overview of AVX and FMA instructions are summarized in Section 1.5. General-purpose en-
cryption and AES instructions follow the existing architecture of 128-bit SIMD instruction sets like SSE4 and its
predecessors, Section 1.6 provides a short summary.

1.3 INTEL®* ADVANCED VECTOR EXTENSIONS ARCHITECTURE OVERVIEW

Intel AVX has many similarities to the SSE and double-precision floating-point portions of SSE2. However, Intel
AVX introduces the following architectural enhancements:

Ref. # 319433-014 1-1

INTEL® ADVANCED VECTOR EXTENSIONS

® Support for 256-bit wide vectors and SIMD register set. 256-bit register state is managed by Operating System
using XSAVE/XRSTOR instructions introduced in 45 nm Intel 64 processors (see 1A-32 Intel® Architecture
Software Developer’s Manual, Volumes 2B and 3A).

® Instruction syntax support for generalized three-operand syntax to improve instruction programming flexibility
and efficient encoding of new instruction extensions.

® Enhancement of legacy 128-bit SIMD instruction extensions to support three-operand syntax and to simplify
compiler vectorization of high-level language expressions.

® Instruction encoding format using a new prefix (referred to as VEX) to provide compact, efficient encoding for
three-operand syntax, vector lengths, compaction of SIMD prefixes and REX functionality.

® FMA extensions and enhanced floating-point compare instructions add support for IEEE-754-2008 standard.

1.3.1 256-Bit Wide SIMD Register Support

Intel AVX introduces support for 256-bit wide SIMD registers (YMMO-YMM?7 in operating modes that are 32-bit or
less, YMMO-YMML15 in 64-bit mode). The lower 128-bits of the YMM registers are aliased to the respective 128-bit
XMM registers.

Bit#
128 127 0

YMMO XMMO

2

r

|

- m - m - - - - -
|

[3

a
1o

YMM1 XMM1

| YMM15 XMM15

1.3.2 Instruction Syntax Enhancements

Intel AVX employs an instruction encoding scheme using a new prefix (known as a “VEX” prefix). Instruction
encoding using the VEX prefix can directly encode a register operand within the VEX prefix. This supports two new
instruction syntax in Intel 64 architecture:

® A non-destructive operand (in a three-operand instruction syntax): The non-destructive source reduces the
number of registers, register-register copies and explicit load operations required in typical SSE loops, reduces
code size, and improves micro-fusion opportunities.

® A third source operand (in a four-operand instruction syntax) via the upper 4 bits in an 8-bit immediate field.
Support for the third source operand is defined for selected instructions (e.g., VBLENDVPD, VBLENDVPS, and
PBLENDVB).

Two-operand instruction syntax previously expressed as
ADDPS xmm1, xmm2/m128

now can be expressed in three-operand syntax as
VADDPS xmm1, xmm2, xmm3/m128

1-2 Ref. #319433-014

INTEL® ADVANCED VECTOR EXTENSIONS

In four-operand syntax, the extra register operand is encoded in the immediate byte.

Note SIMD instructions supporting three-operand syntax but processing only 128-bits of data are considered part
of the 256-bit SIMD instruction set extensions of AVX, because bits 255:128 of the destination register are zeroed
by the processor.

1.3.3 VEX Prefix Instruction Encoding Support

Intel AVX introduces a new prefix, referred to as VEX, in the Intel 64 and 1A-32 instruction encoding format.
Instruction encoding using the VEX prefix provides the following capabilities:

® Direct encoding of a register operand within VEX. This provides instruction syntax support for non-destructive
source operand.

® Efficient encoding of instruction syntax operating on 128-bit and 256-bit register sets.
® Compaction of REX prefix functionality: The equivalent functionality of the REX prefix is encoded within VEX.

® Compaction of SIMD prefix functionality and escape byte encoding: The functionality of SIMD prefix (66H, F2H,
F3H) on opcode is equivalent to an opcode extension field to introduce new processing primitives. This
functionality is replaced by a more compact representation of opcode extension within the VEX prefix.
Similarly, the functionality of the escape opcode byte (OFH) and two-byte escape (OF38H, OF3AH) are also
compacted within the VEX prefix encoding.

® Most VEX-encoded SIMD numeric and data processing instruction semantics with memory operand have
relaxed memory alignment requirements than instructions encoded using SIMD prefixes (see Section 2.5).

VEX prefix encoding applies to SIMD instructions operating on YMM registers, XMM registers, and in some cases
with a general-purpose register as one of the operand. VEX prefix is not supported for instructions operating on
MMX or x87 registers. Details of VEX prefix and instruction encoding are discussed in Chapter 4.

1.4 OVERVIEW AVX2

AVX2 extends Intel AVX by promoting most of the 128-bit SIMD integer instructions with 256-bit numeric
processing capabilities. AVX2 instructions follow the same programming model as AVX instructions.

In addition, AVX2 provide enhanced functionalities for broadcast/permute operations on data elements, vector
shift instructions with variable-shift count per data element, and instructions to fetch non-contiguous data
elements from memory.

1.5 FUNCTIONAL OVERVIEW

Intel AVX and FMA provide comprehensive functional improvements over previous generations of SIMD instruction
extensions. The functional improvements include:

® 256-bit floating-point arithmetic primitives: AVX enhances existing 128-bit floating-point arithmetic instruc-
tions with 256-bit capabilities for floating-point processing. FMA provides additional set of 256-bit floating-
point processing capabilities with a rich set of fused-multiply-add and fused multiply-subtract primitives.

® Enhancements for flexible SIMD data movements: AVX provides a number of new data movement primitives to
enable efficient SIMD programming in relation to loading non-unit-strided data into SIMD registers, intra-
register SIMD data manipulation, conditional expression and branch handling, etc. Enhancements for SIMD
data movement primitives cover 256-bit and 128-bit vector floating-point data, and 128-bit integer SIMD data
processing using VEX-encoded instructions.

Several key categories of functional improvements in AVX and FMA are summarized in the following subsections.

Ref. # 319433-014 1-3

INTEL® ADVANCED VECTOR EXTENSIONS

1.5.1 256-bit Floating-Point Arithmetic Processing Enhancements

Intel AVX provides 35 256-bit floating-point arithmetic instructions. The arithmetic operations cover add, subtract,
multiply, divide, square-root, compare, max, min, round, etc., on single-precision and double-precision floating-
point data.

The enhancement in AVX on floating-point compare operation provides 32 conditional predicates to improve
programming flexibility in evaluating conditional expressions.

FMA provides 36 256-bit floating-point instructions to perform computation on 256-bit vectors. The arithmetic
operations cover fused multiply-add, fused multiply-subtract, fused multiply add/subtract interleave, signed-
reversed multiply on fused multiply-add and multiply-subtract.

1.5.2 256-bit Non-Arithmetic Instruction Enhancements

Intel AVX provides new primitives for handling data movement within 256-bit floating-point vectors and promotes
many 128-bit floating data processing instructions to handle 256-bit floating-point vectors.

AVX includes 39 256-bit data processing instructions that are promoted from previous generations of SIMD instruc-
tion extensions, ranging from logical, blend, convert, test, unpacking, shuffling, load and stores.

AVX introduces 18 new data processing instructions that operate on 256-bit vectors. These new primitives cover
the following operations:

® Non-unit-stride fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching
primitives:
— broadcast of single or multiple data elements into a 256-bit destination,
— masked move primitives to load or store SIMD data elements conditionally,

® Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data
manipulation primitives:

— insert/extract multiple SIMD floating-point data elements to/from 256-bit SIMD registers

— permute primitives to facilitate efficient manipulation of floating-point data elements in 256-bit SIMD
registers

® Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax. This is
more flexible than the equivalent SSE4 instruction syntax which uses the XMMO register as the implied
mask for blend selection.

— Packed TEST instructions for floating-point data.

1.5.3 Arithmetic Primitives for 128-bit Vector and Scalar processing

Intel AVX provides 131 128-bit numeric processing instructions that employ VEX-prefix encoding. These VEX-
encoded instructions generally provide the same functionality over instructions operating on XMM register that are
encoded using SIMD prefixes. The 128-bit numeric processing instructions in AVX cover floating-point and integer
data processing across 128-bit vector and scalar processing.

The enhancement in AVX on 128-bit floating-point compare operation provides 32 conditional predicates to
improve programming flexibility in evaluating conditional expressions. This contrasts with floating-point SIMD
compare instructions in SSE and SSE2 supporting only 8 conditional predicates.

FMA provides 60 128-bit floating-point instructions to process 128-bit vector and scalar data. The arithmetic oper-
ations cover fused multiply-add, fused multiply-subtract, signed-reversed multiply on fused multiply-add and
multiply-subtract.

1.5.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing

Intel AVX provides 126 data processing instructions that employ VEX-prefix encoding. These VEX-encoded instruc-
tions generally provide the same functionality over instructions operating on XMM register that are encoded using

1-4 Ref. #319433-014

INTEL® ADVANCED VECTOR EXTENSIONS

SIMD prefixes. The 128-bit data processing instructions in AVX cover floating-point and integer data movement
primitives.

Additional enhancements in AVX on 128-bit data processing primitives include 16 new instructions with the
following capabilities:

® Non-unit-strided fetching of SIMD data. AVX provides several flexible SIMD floating-point data fetching
primitives:
— broadcast of single data element into a 128-bit destination,

— masked move primitives to load or store SIMD data elements conditionally,

® Intra-register manipulation of SIMD data elements. AVX provides several flexible SIMD floating-point data
manipulation primitives:

— permute primitives to facilitate efficient manipulation of floating-point data elements in 128-bit SIMD
registers

® Branch handling. AVX provides several primitives to enable handling of branches in SIMD programming:

— new variable blend instructions supports four-operand syntax with non-destructive source syntax.
Branching conditions dependent on floating-point data or integer data can benefit from Intel AVX. This is
more flexible than non-VEX encoded instruction syntax that uses the XMMO register as implied mask for
blend selection. While variable blend with implied XMMO syntax is supported in SSE4 using SIMD prefix
encoding, VEX-encoded 128-bit variable blend instructions only support the more flexible four-operand
syntax.

— Packed TEST instructions for floating-point data.

1.5.5 AVX2 and 256-bit Vector Integer Processing

AVX2 promotes the vast majority of 128-bit integer SIMD instruction sets to operate with 256-bit wide YMM regis-
ters. AVX2 instructions are encoded using the VEX prefix and require the same operating system support as AVX.

Generally, most of the promoted 256-bit vector integer instructions follow the 128-bit lane operation, similar to the
promoted 256-bit floating-point SIMD instructions in AVX.

Newer functionalities in AVX2 generally fall into the following categories:

® Fetching non-contiguous data elements from memory using vector-index memory addressing. These “gather”
instructions introduce a new memory-addressing form, consisting of a base register and multiple indices
specified by a vector register (either XMM or YMM). Data elements sizes of 32 and 64-bits are supported, and
data types for floating-point and integer elements are also supported.

® Cross-lane functionalities are provided with several new instructions for broadcast and permute operations.
Some of the 256-bit vector integer instructions promoted from legacy SSE instruction sets also exhibit cross-
lane behavior, e.g. VPMOVZ/VPMOVS family.

® AVX2 complements the AVX instructions that are typed for floating-point operation with a full compliment of
equivalent set for operating with 32/64-bit integer data elements.

® Vector shift instructions with per-element shift count. Data elements sizes of 32 and 64-bits are supported.

1.6 GENERAL PURPOSE INSTRUCTION SET ENHANCEMENTS

Enhancements in the general-purpose instruction set consist of several categories:

® Arrich collection of instructions to manipulate integer data at bit-granularity. Most of the bit-manipulation
instructions employ VEX-prefix encoding to support three-operand syntax with non-destructive source
operands. Two of the bit-manipulating instructions (LZCNT, TZCNT) are not encoded using VEX. The VEX-
encoded bit-manipulation instructions include: ANDN, BEXTR, BLSI, BLSMSK, BLSR, BZHI, PEXT, PDEP, SARX,
SHLX, SHRX, and RORX.

® Enhanced integer multiply instruction (MULX) in conjunctions with some of the bit-manipulation instructions
allow software to accelerate calculation of large integer numerics (wider than 128-bits).

¢ INVPCID instruction targets system software that manages processor context IDs.

Ref. # 319433-014 1-5

INTEL® ADVANCED VECTOR EXTENSIONS

Details of enumerating these instruction enhancements are described in detail in Section 2.2.4.

1.7 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Multithreaded applications take advantage of increasing number of cores to achieve high performance. However,
writing multi-threaded applications requires programmers to implement various software mechanisms to handle
data sharing among multiple threads. Access to shared data typically requires synchronization mechanisms. These
mechanisms ensure multiple threads update shared data by serializing operations on the shared data, often
through the use of a critical section protected by a lock.

Since serialization limits concurrency, programmers try to limit synchronization overheads. They do this either
through minimizing the use of synchronization or through the use of fine-grain locks; where multiple locks protect
different shared data. Unfortunately, this process is difficult and error prone; a missed or incorrect synchronization
can cause an application to fail.

Conservatively adding synchronization and using coarser granularity locks, where a few locks each protect many
items of shared data, helps avoid correctness problems but limits performance due to excessive serialization. While
programmers must use static information to determine when to serialize, the determination as to whether to actu-
ally serialize is best done dynamically.

Intel® Transactional Synchronization Extensions (Intel® TSX) allows the processor to determine dynamically
whether threads need to serialize through critical sections, and to perform serialization only when required. This
lets processors expose and exploit concurrency hidden in an application due to dynamically unnecessary synchro-
nization.

1-6 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

CHAPTER 2
APPLICATION PROGRAMMING MODEL

The application programming model for AVX2 is the same as Intel AVX and FMA. The VEX-encoded general-purpose
instructions generally follows legacy general-purpose instructions. They are summarized as follows:

® Section 2.1 through Section 2.8 apply to AVX2, AVX and FMA. The OS support and detection process is identical
for AVX2, AVX, F16C, and FMA

® The numeric exception behavior of FMA is similar to previous generations of SIMD floating-point instructions.
The specific details are described in Section 2.3.

CPUID instruction details for detecting AVX, FMA, AESNI, PCLMULQDQ, AVX2, BMI1, BMI2, LZCNT and INVPCID are
described in Section 2.9.

2.1 DETECTION OF PCLMULQDQ AND AES INSTRUCTIONS

Before an application attempts to use the following AES instructions: AESDEC/AESDECLAST/AESENC/AESEN-
CLAST/AESIMC/AESKEYGENASSIST, it must check that the processor supports the AES extensions. AES exten-
sions are supported if CPUID.01H:ECX.AES[bit 25] = 1.

Prior to using PCLMULQDQ instruction, application must check if CPUID.01H:ECX.PCLMULQDQ[bit 1] = 1.

Operating systems that support handling SSE state will also support applications that use AES extensions and
PCLMULQDQ instruction. This is the same requirement for SSE2, SSE3, SSSE3, and SSE4.

2.2 DETECTION OF AVX AND FMA INSTRUCTIONS

AVX and FMA operate on the 256-bit YMM register state. System software requirements to support YMM state is
described in Chapter 3.

Application detection of new instruction extensions operating on the YMM state follows the general procedural flow
in Figure 2-1.

Check feature flag
CPUID.1H:ECX.OXSAVE = 1?

OS provides processor
extended state management

Yes Implied HW support for
XSAVE, XRSTOR, XGETBV, XFEATURE_ENABLED_MASK

Check enabled state in > Check feature flag
XFEM via XGETBV State for Instruction set ok to use
enabled Instructions

Figure 2-1. General Procedural Flow of Application Detection of AVX

Ref. # 319433-014 2-1

APPLICATION PROGRAMMING MODEL

Prior to using AVX, the application must identify that the operating system supports the XGETBV instruction, the
YMM register state, in addition to processor’s support for YMM state management using XSAVE/XRSTOR and AVX
instructions. The following simplified sequence accomplishes both and is strongly recommended.

1) Detect CPUID.1:ECX.OSXSAVE[bit 27] = 1 (XGETBV enabled for application usel)

2) Issue XGETBYV and verify that XFEATURE_ENABLED_MASK[2:1] = ‘11b’ (XMM state and YMM state are enabled
by OS).

3) detect CPUID.1:ECX.AVX[bit 28] = 1 (AVX instructions supported).
(Step 3 can be done in any order relative to 1 and 2)

The following pseudocode illustrates this recommended application AVX detection process:

INT supports_AVX()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 018000000H

cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags
jne not_supported

; processor supports AVX instructions and XGETBYV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register
XGETBYV; result in EDX:EAX

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

Note: It is unwise for an application to rely exclusively on CPUID.1:ECX.AVX[bit 28] or at all on
CPUID.1:ECX.XSAVE[bit 26]: These indicate hardware support but not operating system support. If YMM state
management is not enabled by an operating systems, AVX instructions will #UD regardless of
CPUID.1:ECX.AVX][bit 28]. “CPUID.1:ECX.XSAVE[bit 26] = 1” does not guarantee the OS actually uses the XSAVE
process for state management.

These steps above also apply to enhanced 128-bit SIMD floating-pointing instructions in AVX (using VEX prefix-
encoding) that operate on the YMM states. Application detection of VEX-encoded AES is described in Section 2.2.2.

2.2.1 Detection of FMA
Hardware support for FMA is indicated by CPUID.1:ECX.FMA[bit 12]=1.

1. If CPUID.01H:ECX.OSXSAVE reports 1, it also indirectly implies the processor supports XSAVE, XRSTOR, XGETBY, processor
extended state bit vector XFEATURE_ENALBED_MASK register. Thus an application may streamline the checking of CPUID feature
flags for XSAVE and OSXSAVE. XSETBYV isaprivileged instruction.

2-2 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Application Software must identify that hardware supports AVX as explained in Section 2.2, after that it must also
detect support for FMA by CPUID.1:ECX.FMA[bit 12]. The recommended pseudocode sequence for detection of
FMA is:

INT supports_fma()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 018001000H

cmp ecx, 018001000H; check OSXSAVE, AVX, FMA feature flags

jne not_supported

; processor supports AVX,FMA instructions and XGETBYV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, O

done:

Note that FMA comprises 256-bit and 128-bit SIMD instructions operating on YMM states.

2.2.2 Detection of VEX-Encoded AES and VPCLMULQDQ

VAESDEC/VAESDECLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST instructions operate on YMM
states. The detection sequence must combine checking for CPUID.1:ECX.AES[bit 25] = 1 and the sequence for
detection application support for AVX.

Similarly, the detection sequence for VPCLMULQDQ must combine checking for CPUID.1:ECX.PCLMULQDQI[bit 1] =
1 and the sequence for detection application support for AVX.

This is shown in the pseudocode:

INT supports_VAES()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 01A000000H

cmp ecx, 01AOO00000H; check OSXSAVE, AVX and AES feature flags

jne not_supported

; processor supports AVX and VEX.128-encoded AES instructions and XGETBYV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register

XGETBV; result in EDX:EAX

Ref. # 319433-014 2-3

APPLICATION PROGRAMMING MODEL

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

INT supports_VPCLMULQDQ()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 018000002H

cmp ecx, 018000002H; check OSXSAVE, AVX and PCLMULQDQ feature flags
jne not_supported

; processor supports AVX and VPCLMULQDQ instructions and XGETBV is enabled by OS
mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register

XGETBYV; result in EDX:EAX

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support

jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

2.2.3 Detection of AVX2
Hardware support for AVX2 is indicated by CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]=1.

Application Software must identify that hardware supports AVX as explained in Section 2.2, after that it must also
detect support for AVX2 by checking CPUID.(EAX=07H, ECX=0H):EBX.AVX2[bit 5]. The recommended
pseudocode sequence for detection of AVX2 is:

INT supports_avx2()

{ ; result in eax
mov eax, 1
cpuid

and ecx, 018000000H
cmp ecx, 018000000H; check both OSXSAVE and AVX feature flags

2-4 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

jne not_supported

; processor supports AVX instructions and XGETBYV is enabled by OS
mov eax, 7

mov ecx, O

cpuid

and ebx, 20H

cmp ebx, 20H; check AVX2 feature flags

jne not_supported

mov ecx, 0; specify O for XFEATURE_ENABLED_MASK register
XGETBV; result in EDX:EAX

and eax, O6H

cmp eax, 06H; check OS has enabled both XMM and YMM state support
jne not_supported

mov eax, 1

jmp done

NOT_SUPPORTED:

mov eax, 0

done:

2.2.4 Detection of VEX-encoded GPR Instructions
VEX-encoded general-purpose instructions do not operate on YMM registers and are similar to legacy general-

purpose instructions. Checking for OSXSAVE or YMM support is not required.

There are separate feature flags for the following subsets of instructions that operate on general purpose registers,
and the detection requirements for hardware support are:

CPUID.(EAX=07H, ECX=0H):EBX.BMI1[bit 3]: if 1 indicates the processor supports the first group of advanced bit
manipulation extensions (ANDN, BEXTR, BLSI, BLSMK, BLSR, TZCNT);

CPUID.(EAX=07H, ECX=0H):EBX.BMI2[bit 8]: if 1 indicates the processor supports the second group of advanced
bit manipulation extensions (BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX);

CPUID.(EAX=07H, ECX=0H):EBX.INVPCID[bit 10]: if 1 indicates the processor supports the INVPCID instruction
for system software that manages processor context ID.

CPUID.EAX=80000001H:ECX.LZCNT[bit 5]: if 1 indicates the processor supports the LZCNT instruction.

2.3 FUSED-MULTIPLY-ADD (FMA) NUMERIC BEHAVIOR

FMA instructions can perform fused-multiply-add operations (including fused-multiply-subtract, and other vari-
eties) on packed and scalar data elements in the instruction operands. Separate FMA instructions are provided to
handle different types of arithmetic operations on the three source operands.

FMA instruction syntax is defined using three source operands and the first source operand is updated based on the
result of the arithmetic operations of the data elements of 128-bit or 256-bit operands, i.e. The first source
operand is also the destination operand.

The arithmetic FMA operation performed in an FMA instruction takes one of several forms, r=(x*y)+z, r=(x*y)-z,
r=-(x*y)+z, or r=-(x*y)-z. Packed FMA instructions can perform eight single-precision FMA operations or four
double-precision FMA operations with 256-bit vectors.

Ref. # 319433-014 2-5

APPLICATION PROGRAMMING MODEL

Scalar FMA instructions only perform one arithmetic operation on the low order data element. The content of the
rest of the data elements in the lower 128-bits of the destination operand is preserved. the upper 128bits of the
destination operand are filled with zero.

An arithmetic FMA operation of the form, r=(x*y)+z, takes two IEEE-754-2008 single (double) precision values
and multiplies them to form an infinite precision intermediate value. This intermediate value is added to a third
single (double) precision value (also at infinite precision) and rounded to produce a single (double) precision result.

Table 2-2 describes the numerical behavior of the FMA operation, r=(x*y)+z, r=(x*y)-z, r=-(X*y)+z, r=-(x*y)-z
for various input values. The input values can be 0, finite non-zero (F in Table 2-2), infinity of either sign (INF in
Table 2-2), positive infinity (+INF in Table 2-2), negative infinity (-INF in Table 2-2), or NaN (including QNaN or
SNaN). If any one of the input values is a NAN, the result of FMA operation, r, may be a quietized NAN. The result
can be either Q(x), Q(y), or Q(z), see Table 2-2. If x is a NaN, then:

* Q) =xifxis QNaN or
®* Q(x) = the quietized NaN obtained from x if x is SNaN
The notation for the output value in Table 2-2 are:

® “+INF”: positive infinity, “~-INF”: negative infinity. When the result depends on a conditional expression, both
values are listed in the result column and the condition is described in the comment column.

® QNaNIndefinite represents the QNaN which has the sign bit equal to 1, the most significand field equal to 1, and
the remaining significand field bits equal to O.

® The summation or subtraction of Os or identical values in FMA operation can lead to the following situations
shown in Table 2-1

® If the FMA computation represents an invalid operation (e.g. when adding two INF with opposite signs)), the
invalid exception is signaled, and the MXCSR.IE flag is set.

Table 2-1. Rounding behavior of Zero Result in FMA Operation

X*y z (x*y) +z (x*y) -z -(x*y) +z - (x*y) -z
(+0) | (+0) +0 in all rounding modes - 0 when rounding down, - 0 when rounding down, - 0iin all rounding modes
and +0 otherwise and +0 otherwise
+0) | (0) | : 0 when rounding down, +0 in all rounding modes - 0in all rounding modes - 0 when rounding down,
and +0 otherwise and +0 otherwise
0) | (+0) | - 0 when rounding down, - 0in all rounding modes + 0in all rounding modes - 0 when rounding down,
and +0 otherwise and +0 otherwise
-0)) | - 0 in all rounding modes - 0 when rounding down, - 0 when rounding down, + 0in all rounding modes
and +0 otherwise and +0 otherwise
£ F - 0 when rounding down, 2*F -2*F - 0 when rounding down,
and +0 otherwise and +0 otherwise
F £ 2*F - 0 when rounding down, - 0 when rounding down, -2*F
and +0 otherwise and +0 otherwise

2-6

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-2. FMA Numeric Behavior

X V' r=(x*y) | r=(x*y) r= r=
(multiplicand) | (multiplier) z +z -z -(x*y)+z | -(x*y)-z Comment
NaN O,FINF, | O,F | Q) Q(x) Q(x) Q(x) Signal invalid exception if x or y or z is SNaN
NaN INF,
NaN
0, F, INF NaN 0. F | Q(y) Q(y) Q(v) Q(y) Signal invalid exception if y or z is SNaN
INF,
NaN
0, F, INF 0, F, INF NaN | Q(z) Q(2) Q(2) Q(2) Signal invalid exception if z is SNaN
INF F. INF +IN | +INF QNaNIn- | QNaNIn- | -INF if x*y and z have the same sign
F definite | definite
QNaNIn- | -INF +INF QNaNIn- | if x*y and z have opposite signs
definite definite
INF F, INF -INF | -INF QNaNIn- | QNaNIn- | +INF if x*y and z have the same sign
definite | definite
QNaNIn- | +INF -INF QNaNIn- | if x*y and z have opposite signs
definite definite
INF F, INF O,F | +INF +INF -INF -INF if x and y have the same sign
-INF -INF +INF +INF if x and y have opposite signs
INF 0 0,F, | QNaNIn- | QNaNIn- | QNaNIn- | QNaNIn- | Signal invalid exception
INF definite | definite | definite definite
0 INF O0,F, | QNaNIn- | QNaNIn- | QNaNIn- | QNaNIn- | Signal invalid exception
INF definite | definite | definite definite
F INF +IN | +INF QNaNIn- | QNaNIn- | -INF if x*y and z have the same sign
F definite | definite
QNaNIn- | -INF +INF QNaNIn- | if x*y and z have opposite signs
definite definite
F INF -INF | -INF QNaNIn- | QNaNIn- | +INF if x*y and z have the same sign
definite | definite
QNaNIn- | +INF -INF QNaNIn- | if x*y and z have opposite signs
definite definite
F INF OF +INF +INF -INF -INF ifx*y>0
-INF -INF +INF +INF ifx*y<0
O.F 0.F INF +INF -INF +INF -INF ifz>0
-INF +INF -INF +INF ifz<0
0 0 0 0 0 0 0 The sign of the result depends on the sign of
F 0 0 0 0 0 the operands and on the rounding mode. The
=) 0 0 0 0 0 product x*y is +0 or -0, depending on the signs
of x and y. The summation/subtraction of the
zero representing (x*y) and the zero represent-
ing z can lead to one of the four cases shown in
Table 2-1.
0 z 4 z -z
0 F z -Z z -z

Ref. # 319433-014 2-7

APPLICATION PROGRAMMING MODEL

X v r=(x*y) | r=(x*y) r= r=

(multiplicand) | (multiplier) z +z -z -(x*y)+z | -(x*y)-z Comment

F 0 F z -z z -Z

F F 0 xX*y X*y -X*y -X*y Rounded to the destination precision, with
bounded exponent

F F F (x*y)+z | (x*y)-z -(x*y)*+z | -(x*y)-z Rounded to the destination precision, with

bounded exponent; however, if the exact values
of x*y and z are equal in magnitude with signs
resulting in the FMA operation producing O, the
rounding behavior described in Table 2-1.

If unmasked floating-point exceptions are signaled (invalid operation, denormal operand, overflow, underflow, or
inexact result) the result register is left unchanged and a floating-point exception handler is invoked.

2.3.1 FMA Instruction Operand Order and Arithmetic Behavior

FMA instruction mnemonics are defined explicitly with an ordered three digits, e.g. VFMADD132PD. The value of
each digit refers to the ordering of the three source operand as defined by instruction encoding specification:

® ‘1’: The first source operand (also the destination operand) in the syntactical order listed in this specification.
® ‘2': The second source operand in the syntactical order. This is a YMM/XMM register, encoded using VEX prefix.

® ‘3’: The third source operand in the syntactical order. The first and third operand are encoded following ModR/M
encoding rules.

The ordering of each digit within the mnemonic refers to the floating-point data listed on the right-hand side of the
arithmetic equation of each FMA operation (see Table 2-2):

® The first position in the three digits of a FMA mnemonic refers to the operand position of the first FP data
expressed in the arithmetic equation of FMA operation, the multiplicand.

® The second position in the three digits of a FMA mnemonic refers to the operand position of the second FP data
expressed in the arithmetic equation of FMA operation, the multiplier.

® The third position in the three digits of a FMA mnemonic refers to the operand position of the FP data being
added/subtracted to the multiplication result.

Note the non-numerical result of an FMA operation does not resemble the mathematically-defined commutative
property between the multiplicand and the multiplier values (see Table 2-2). Consequently, software tools (such as
an assembler) may support a complementary set of FMA mnemonics for each FMA instruction for ease of program-
ming to take advantage of the mathematical property of commutative multiplications. For example, an assembler
may optionally support the complementary mnemonic “VFMADD312PD" in addition to the true mnemonic
“VYFMADD132PD". The assembler will generate the same instruction opcode sequence corresponding to
VFMADD132PD. The processor executes VFMADD132PD and report any NAN conditions based on the definition of
VFMADD132PD. Similarly, if the complementary mnemonic VFMADD123PD is supported by an assembler at source
level, it must generate the opcode sequence corresponding to VFMADD213PD; the complementary mnemonic
VFMADD321PD must produce the opcode sequence defined by VFMADD231PD. In the absence of FMA operations
reporting a NAN result, the numerical results of using either mnemonic with an assembler supporting both
mnemonics will match the behavior defined in Table 2-2. Support for the complementary FMA mnemonics by soft-
ware tools is optional.

2.4 ACCESSING YMM REGISTERS

The lower 128 bits of a YMM register is aliased to the corresponding XMM register. Legacy SSE instructions (i.e.
SIMD instructions operating on XMM state but not using the VEX prefix, also referred to non-VEX encoded SIMD
instructions) will not access the upper bits (255:128) of the YMM registers. AVX and FMA instructions with a VEX
prefix and vector length of 128-bits zeroes the upper 128 bits of the YMM register. See Chapter 2, “Programming
Considerations with 128-bit SIMD Instructions” for more details.

2-8 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Upper bits of YMM registers (255:128) can be read and written by many instructions with a VEX.256 prefix.

XSAVE and XRSTOR may be used to save and restore the upper bits of the YMM registers.

2.5 MEMORY ALIGNMENT

Memory alignment requirements on VEX-encoded instruction differ from non-VEX-encoded instructions. Memory
alignment applies to non-VEX-encoded SIMD instructions in three categories:

® Explicitly-aligned SIMD load and store instructions accessing 16 bytes of memory (e.g. MOVAPD, MOVAPS,
MOVDQA, etc.). These instructions always require memory address to be aligned on 16-byte boundary.

® Explicitly-unaligned SIMD load and store instructions accessing 16 bytes or less of data from memory (e.g.
MOVUPD, MOVUPS, MOVDQU, MOVQ, MOVD, etc.). These instructions do not require memory address to be
aligned on 16-byte boundary.

® The vast majority of arithmetic and data processing instructions in legacy SSE instructions (non-VEX-encoded
SIMD instructions) support memory access semantics. When these instructions access 16 bytes of data from
memory, the memory address must be aligned on 16-byte boundary.

Most arithmetic and data processing instructions encoded using the VEX prefix and performing memory accesses
have more flexible memory alignment requirements than instructions that are encoded without the VEX prefix.
Specifically,

® With the exception of explicitly aligned 16 or 32 byte SIMD load/store instructions, most VEX-encoded,
arithmetic and data processing instructions operate in a flexible environment regarding memory address
alignment, i.e. VEX-encoded instruction with 32-byte or 16-byte load semantics will support unaligned load
operation by default. Memory arguments for most instructions with VEX prefix operate normally without
causing #GP(0) on any byte-granularity alignment (unlike Legacy SSE instructions). The instructions that
require explicit memory alignment requirements are listed in Table 2-4.

Software may see performance penalties when unaligned accesses cross cacheline boundaries, so reasonable
attempts to align commonly used data sets should continue to be pursued.

Atomic memory operation in Intel 64 and IA-32 architecture is guaranteed only for a subset of memory operand
sizes and alignment scenarios. The list of guaranteed atomic operations are described in Section 7.1.1 of 1A-32
Intel® Architecture Software Developer’s Manual, Volumes 3A. AVX and FMA instructions do not introduce any new
guaranteed atomic memory operations.

AVX and FMA will generate an #AC(0) fault on misaligned 4 or 8-byte memory references in Ring-3 when
CRO.AM=1. 16 and 32-byte memory references will not generate #AC(0) fault. See Table 2-3 for details.

Certain AVX instructions always require 16- or 32-byte alignment (see the complete list of such instructions in
Table 2-4). These instructions will #GP(0) if not aligned to 16-byte boundaries (for 16-byte granularity loads and
stores) or 32-byte boundaries (for 32-byte loads and stores).

Ref. # 319433-014 2-9

APPLICATION PROGRAMMING MODEL

Table 2-3. Alignment Faulting Conditions when Memory Access is Not Aligned

EFLAGS.AC==1 && Ring-3 && CR0O.AM == 0 1

N 16- or 32-byte “explicitly unalignedﬁ loads and stores (see WZ-S) no fault no fault

2 VEX op YMM, m256 no fault no fault

< VEX op XMM, m128 no fault no fault
-Zl-_ “explicitly aligned” loads and stores (see Table 2-4) #GP(0) #GP(0)
2 2 2, 4, or 8-byte loads and stores no fault #AC(0)

'E 16 byte “explicitly unalignedE loads and stores (see Table 2-5) no fault no fault
= op XMM, m128 #GP(0) #GP(0)
% w "explicitly aligned” loads and stores (see Table 2-4) #GP(0) #GP(0)
= 2 2, 4, or 8-byte loads and stores no fault #AC(0)

Table 2-4. Instructions Requiri

ng Explicitly Aligned Memory

Require 16-byte alignment

Require 32-byte alignment

\V)MOVDQA xmm, m128

VMOVDQA ymm, m256

\V)MOVDQA m128, xmm

VMOVDQA m256, ymm

VV)MOVAPS xmm, m128

VMOVAPS ymm, m256

VV)MOVAPS m128, xmm

VMOVAPS m256, ymm

\VV)MOVAPD xmm, m128

VMOVAPD ymm, m256

VMOVAPD m256, ymm

V)MOVNTPS m128, xmm

VMOVNTPS m256, ymm

V)MOVNTPD m128, xmm

VMOVNTPD m256, ymm

V)MOVNTDQ m128, xmm

VMOVNTDQ m256, ymm

(V)
(V)
(V)
(V)
(V)
(V)MOVAPD m128, xmm
(V)
(V)
(V)
(V)

V)MOVNTDQA xmm, m128

VMOVNTDQA ymm, m256

Table 2-5. Instructions Not Requiring Explicit Memory Alignment

V)MOVDQU xmm, m128

\V)MOVDQU m128, m128

V)MOVUPS xmm, m128

V)MOVUPS m128, xmm

V)MOVUPD xmm, m128

—_ e~~~

V)MOVUPD m128, xmm

VMOVDQU ymm, m256

VMOVDQU m256, ymm

VMOVUPS ymm, m256

VMOVUPS m256, ymm

VMOVUPD ymm, m256

VMOVUPD m256, ymm

2-10

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

2.6 SIMD FLOATING-POINT EXCEPTIONS

AVX and FMA instructions can generate SIMD floating-point exceptions (#XM) and respond to exception masks in
the same way as Legacy SSE instructions. When CR4.0SXMMEXCPT=0 any unmasked FP exceptions generate an
Undefined Opcode exception (#UD).

AVX FP exceptions are created in a similar fashion (differing only in number of elements) to Legacy SSE and SSE2
instructions capable of generating SIMD floating-point exceptions.

AVX introduces no new arithmetic operations (AVX floating-point are analogues of existing Legacy SSE instruc-
tions). FMA introduces new arithmetic operations, detailed FMA numeric behavior are described in Section 2.3.

2.7 INSTRUCTION EXCEPTION SPECIFICATION

To use this reference of instruction exceptions, look at each instruction for a description of the particular exception
type of interest. For example, ADDPS contains the entry:

“See Exceptions Type 2”
In this entry, “Type2” can be looked up in Table 2-6.

The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the Instruction
summary table.

Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

Table 2-6. Exception class description

. . Floating-Point
Exception Class Instruction Set Mem Arg Exceptions (XM)

Type 1 AVX, AVX2, 16/32 byte explicitly aligned none

Legacy SSE
Type 2 AVX, FMA, AVX2, 16/32 byte not explicitly aligned yes

Legacy SSE
Type 3 AVX, FMA, <16 byte yes

Legacy SSE
Type 4 AVX, AVX2, 16/32 byte not explicitly aligned no

Legacy SSE
Type 5 AVX, AVX2, < 16 byte no

Legacy SSE
Type 6 AVX, AVX2 (no Legacy SSE) Varies (At present, none do)
Type 7 AVX, AVX2 none none

Legacy SSE
Type 8 AVX none none
Type 11 F16C 8 or 16 byte, Not explicitly yes

aligned, no AC#
Type 12 AVX2 Not explicitly no
aligned, no AC#

See Table 2-7 for lists of instructions in each exception class.

Ref. # 319433-014

APPLICATION PROGRAMMING MODEL

Table 2-7. Instructions in each Exception Class

Exception Class

Instruction

Type 1

(V)MOVAPD, (V)MOVAPS, (V)MOVDQA, (V)MOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

Type 2

(V)ADDPD, (V)ADDPS, (V)ADDSUBPD, (V)ADDSUBPS, (V)CMPPD, (V)CMPPS, (V)CVTDQ2PS, (V)CVTPD2DQ,
(V)CVTPD2PS, (V)CVTPS2DQ, (V)CVTTPD2DQ, (V)CVTTPS2DQ, (V)DIVPD, (V)DIVPS, (V)DPPD*, (V)DPPS*,
VFMADD132PD, VFMADD213PD, VFMADD231PD, VFMADD132PS, VFMADD213PS, VFMADD231PS,
VFMADDSUB132PD, VFMADDSUB213PD, VFMADDSUB231PD, VFMADDSUB132PS, VFMADDSUB213PS,
VFMADDSUB231PS, VFMSUBADD132PD, VFMSUBADD213PD, VFMSUBADD231PD, VFMSUBADD132PS,
VFMSUBADD213PS, VFMSUBADD231PS, VFMSUB132PD, VFMSUB213PD, VFMSUB231PD, VFMSUB132PS,
VFMSUB213PS, VFMSUB231PS, VFNMADD132PD, VFNMADD2 13PD, VFNMADD231PD, VFNMADD132PS,
VFNMADD213PS, VFNMADD231PS, VENMSUB132PD, VFNMSUB213PD, VFNMSUB231PD, VFNMSUB132PS,
VFNMSUB213PS, VFNMSUB231PS, (V)HADDPD, (V)HADDPS, (V)HSUBPD, (V)HSUBPS, (V)MAXPD, (V)MAXPS,
(V)MINPD, (V)MINPS, (V)MULPD, (V)MULPS, (V)ROUNDPS, (V)ROUNDPS, (V)SQRTPD, (V)SQRTPS, (V)SUBPD,
(V)SUBPS

Type 3

(V)ADDSD, (V)ADDSS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)CVTPS2PD, (V)CVTSD2SI, (V)CVTSD2SS,
(V)CVTSI2SD, (V)CVTSI2SS, (V)CVTSS2SD, (V)CVTSS2SI, (V)CVTTSD2SI, (V)CVTTSS2SI, (V)DIVSD, (V)DIVSS,
VFMADD132SD, VFMADD213SD, VFMADD231SD, VFMADD132SS, VFMADD213SS, VFMADD231SS,
VFMSUB132SD, VFMSUB213SD, VEMSUB231SD, VFMSUB132SS, VFMSUB213SS, VFMSUB231SS,
VFNMADD132SD, VFNMADD213SD, VFNMADD231SD, VFNMADD132SS, VFNMADD213SS, VFNMADD231SS,
VFNMSUB132SD, VFNMSUB213SD, VANMSUB231SD, VFNMSUB132SS, VFNMSUB213SS, VFNMSUB23 1SS,
(V)MAXSD, (V)MAXSS, (V)MINSD, (V)MINSS, (V)MULSD, (V)MULSS, (V)ROUNDSD, (V)ROUNDSS, (V)SQRTSD,
SQRTSS, (V)SUBSD, (V)SUBSS, (V)UCOMISD, (V)UCOMISS

Type 4

)

JAESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST, (V)ANDPD,
)ANDPS, (V)ANDNPD, (V)ANDNPS, (V)BLENDPD, (V)BLENDPS, VBLENDVPD, VBLENDVPS, (V)LDDQU,
JMASKMOVDQU, (V)PTEST, VTESTPS, VTESTPD, (V)MOVDQU*, (V)MOVSHDUP, (V)MOVSLDUP, (V)MOVUPD,
JMOVUPS*, (V)MPSADBW, (V)ORPD, (V)ORPS, (V)PABSB, (V)PABSW, (V)PABSD, (V)PACKSSWB, (V)PACKSSDW,
JPACKUSWSB, (V)PACKUSDW, (V/)PADDB, (V)PADDW, (V/)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW,
JPADDUSB, (V)PADDUSW, (V)PALIGNR, (V)PAND, (V)PANDN, (V)PAVGB, (V)PAVGW, (V)PBLENDVB,
JPBLENDW, (V)PCMP(E/STRI/M***, (\)PCMPEQB, (V)PCMPEQW, (V)PCMPEQD, (V)PCMPEQQ, (V)PCMPGTB,
JPCMPGTW, (V)PCMPGTD, (V)PCMPGTQ, (V)PCLMULQDQ, (V)PHADDW, (V)PHADDD, (V)PHADDSW,
JPHMINPOSUW, (V)PHSUBD, (V)PHSUBW, (V)PHSUBSW, (V)PMADDWD, (V)PMADDUBSW, (V)PMAXSB,
JPMAXSW, (V)PMAXSD, (V)PMAXUB, (V)PMAXUW, (V)PMAXUD, (V)PMINSB, (V)PMINSW, (V)PMINSD,

JPMINUB, (V)PMINUW, (V)PMINUD, (V)PMULHUW, (V)PMULHRSW, (V)PMULHW, (V)PMULLW, (V)PMULLD,
JPMULUDQ, (V)PMULDAQ, (V)POR, (V)PSADBW, (V)PSHUFB, (V)PSHUFD, (V)PSHUFHW, (V)PSHUFLW, (V)PSIGNB,
JPSIGNW, (V)PSIGND, (V)PSLLW, (V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ,
JPSUBB, (V)PSUBW, (V)PSUBD, (V)PSUBQ, (V)PSUBSB, (V)PSUBSW, (V)PUNPCKHBW, (V)PUNPCKHWD,
JPUNPCKHDQ, (V)PUNPCKHQDQ, (V)PUNPCKLBW, (V)PUNPCKLWD, (V)PUNPCKLDAQ, (V)PUNPCKLQDQ,
JPXOR, (V)RCPPS, (V)RSQRTPS, (V)SHUFPD, (V)SHUFPS, (V)UNPCKHPD, (V)UNPCKHPS, (V)UNPCKLPD,
JUNPCKLPS, (V)XORPD, (V)XORPS, VPBLENDD, VPERMD, VPERMPS, VPERMPD, VPERMQ, VPSLLVD, VPSLLVQ,
VPSRAVD, VPSRLVD, VPSRLVQ

(v

v
(v
(v
(Vv
(v
(v
(v
(v
(Vv
)
(v
(v
(v
(v
(Vv
(Vv
W

Type 5

(V)CVTDQ2PD, (V)EXTRACTPS, (V)INSERTPS, (V)MOVD, (V)MOVQ, (V)MOVDDUP, (V)MOVLPD, (V)MOVLPS,
(V)MOVHPD, (V)MOVHPS, (V)MOVSD, (V)MOVSS, (V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB,
(V)PINSRD, (V)PINSRW, (V)PINSRQ, (V)RCPSS, (V)RSQRTSS, (V)PMOVSX/ZX, VLDMXCSR*, VSTMXCSR

Type 6

VEXTRACTF128, VPERMILPD, VPERMILPS, VPERM2F128, VBROADCASTSS, VBROADCASTSD,
VBROADCASTF128, VINSERTF128, VMASKMOVPS**, VMASKMOVPD**, VPMASKMOVD, VPMASKMOVQ,
VBROADCASTI128, VPBROADCASTB, VPBROADCASTD, VPBROADCASTW, VPBROADCASTQ, VEXTRACTI128,
VINSERTI128, VPERM2I128

Type 7

(V)MOVLHPS, (V)MOVHLPS, (V)MOVMSKPD, (V)MOVMSKPS, (V)PMOVMSKB, (V)PSLLDQ, (V)PSRLDQ, (V)PSLLW,
(V)PSLLD, (V)PSLLQ, (V)PSRAW, (V)PSRAD, (V)PSRLW, (V)PSRLD, (V)PSRLQ

Type 8

VZEROALL, VZEROUPPER

Type 11

VCVTPHZPS, VCVTPS2PH

Type 12

VGATHERDPS, VGATHERDPD, VGATHERQPS, VGATHERQPD,
VPGATHERDD, VPGATHERDQ, VPGATHERQD, VPGATHERQQ

2-12

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

(*) - Additional exception restrictions are present - see the Instruction description for details
(**) - Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with
mask bits of all 1s, i.e. no alignment checks are performed.

(***) - PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM instructions do not cause #GP if the memory
operand is not aligned to 16-Byte boundary.

Table 2-7 classifies exception behaviors for AVX instructions. Within each class of exception conditions that are
listed in Table 2-10 through Table 2-16, certain subsets of AVX instructions may be subject to #UD exception
depending on the encoded value of the VEX.L field. Table 2-9 provides supplemental information of AVX instruc-
tions that may be subject to #UD exception if encoded with incorrect values in the VEX.W or VEX.L field.

Table 2-8. #UD Exception and VEX.W=1 Encoding

#UD If VEX.W = 1 in non-

Exception Class #UD If VEX.W = 1 in all modes 64-bit modes
Type 1
Type 2
Type 3
Type 4 VBLENDVPD, VBLENDVPS, VPBLENDVB, VTESTPD, VTESTPS, VPBLENDD,

VPERMD, VPERMPS, VPERMZ1128, VPSRAVD

Type 5 VPEXTRQ, VPINSRQ,
Type 6 VEXTRACTF128, VPERMILPD, VPERMILPS, VPERMZ2F 128, VBROADCASTSS,

VBROADCASTSD, VBROADCASTF128, VINSERTF128, VMASKMOVPS,
VMASKMOVPD, VBROADCASTI128, VPBROADCASTB/W/D,
VEXTRACTI128, VINSERTI128

Type 7
Type 8
Type 11 VCVTPH2PS, VCVTPS2PH

Ref. # 319433-014 2-13

APPLICATION PROGRAMMING MODEL

Table 2-9. #UD Exception and VEX.L Field Encoding

Excention #UD If (VEX.L
Clapss #UDIfVEX.L=0 #UD If (VEX.L = 1 && AVX2 not present && AVX present) =1 && AVX2
present)
Type 1 VMOVNTDQA
Type 2 VDPPD VDPPD
Type 3
Type 4 VPERMD, VPERMPD, VMASKMOVDQU, VMPSADBW, VPABSB/W/D, VPACKSSWB/DW, VPCMP(E/)STR
VPERMPS, VPERMQ, VPACKUSWB/DW, VPADDB/W/D, VPADDQ, VPADDSB/W, VPAND, I'M,
VPERMZ21128 VPADDUSB/W, VPALIGNR, VPANDN, VPAVGB/W, VPBLENDVB, PHMINPOSUW,
VPBLENDW, VPCMP(E/I)STRI/M, VPCMPEQB/W/D/Q, VPHADDW!/D,
VPCMPGTB/W/D/Q, VPHADDSW, VPHMINPOSUW, VPHSUBD/W,
VPHSUBSW, VPMADDWD, VPMADDUBSW, VPMAXSB/W/D,
VPMAXUB/W/D, VPMINSB/W/D, VPMINUB/W/D, VPMULHUW,
VPMULHRSW, VPMULHW/LW, VPMULLD, VPMULUDQ, VPMULDQ,
VPOR, VPSADBW, VPSHUFB/D, VPSHUFHW/LW, VPSIGNB/W/D,
VPSLLW/D/Q, VPSRAW/D, VPSRLW/D/Q, VPSUBB/W/D/Q,
VPSUBSB/W, VPUNPCKHQDQ, VPUNPCKHBW/WD/DQ,
VPUNPCKLBW/WD/DQ, VPUNPCKLQDQ, VPXOR
Type 5 VEXTRACTPS, VINSERTPS, VMOVD, VMOVQ, VMOVLPD, VMOVLPS, same as
VMOVHPD, VMOVHPS, VPEXTRB, VPEXTRD, VPEXTRW, VPEXTRQ, column 3
VPINSRB, VPINSRD, VPINSRW, VPINSRQ, VPMOVSX/ZX, VLDMXCSR,
VSTMXCSR
Type 6 VEXTRACTF128,
VPERMZ2F128,
VBROADCASTSD,
VBROADCASTF128,
VINSERTF128,
Type 7 VMOVLHPS, VMOVHLPS, VPMOVMSKB, VPSLLDQ, VPSRLDQ, VMOVLHPS,
VPSLLW, VPSLLD, VPSLLQ, VPSRAW, VPSRAD, VPSRLW, VPSRLD, VMOVHLPS,
VPSRLQ
Type 8
2-14 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

2.7.1 Exceptions Type 1 (Aligned memory reference)

Table 2-10. Type 1 Class Exception Conditions

8 22
X 0 =
- |8 88| 5 -
Exception 2 = §] flro Cause of Exception
g |8 E
= |80
> |av
Invalid Opcode, X X VEX prefix
#UD X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]1!="11Db".
If CR4.0SXSAVE[bit 18]=0.
X X X X Legacy SSE instruction:;
If CRO.EM[bit 2] =1.
If CR4.0SFXSR[bit 9] = 0.
X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X X If any corresponding CPUID feature flag is ‘0’
Device Not Avail- X X X X If CRO.TS[bit 3]=1
able, #NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protec- X X VEX.256: Memory operand is not 32-byte aligned
tion, #GP(0) VEX.128: Memory operand is not 16-byte aligned
X X X X Legacy SSE: Memory operand is not 16-byte aligned
X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to FFFFH
Page Fault X X X For a page fault
#PF(fault-code)

Ref. # 319433-014 2-15

APPLICATION PROGRAMMING MODEL

2.7.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
Table 2-11. Type 2 Class Exception Conditions
©
8 5§
. w 3 b 8|5 .
Exception 2 T E g $ Cause of Exception
S |28
Invalid Opcode, X | X VEX prefix
#UD X | X | X | X | Ifanunmasked SIMD floating-point exception and CR4.0SXMMEXCPTIbit 10] = 0.
X X | VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]!="11Db".
If CR4.0SXSAVE[bit 18]=0.
X | X X X | Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X | X X X | If preceded by a LOCK prefix (FOH)
X X | Ifany REX, F2, F3, or 66 prefixes precede a VEX prefix
X | X X X | If any corresponding CPUID feature flag is ‘0’
Device Not Avail- | X | X X X | If CRO.TS[bit 3]=1
able, #NM
Stack, SS(0) X For an illegal address in the SS segment
X | If amemory address referencing the SS segment is in a non-canonical form
General Protec- X X X X | Legacy SSE: Memory operand is not 16-byte aligned
tion, #GP(0) X For an illegal memory operand effective address in the CS, DS, €S, FS or GS segments.
X | If the memory address is in a non-canonical form.
X | X If any part of the operand lies outside the effective address space from 0 to FFFFH
Page Fault X X X | For a page fault
#PF(fault-code)
SIMD Floating- X | X X X | If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 1

Point Exception,
H#XM

2-16

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

2.7.3 Exceptions Type 3 (<16 Byte memory argument)

Table 2-12. Type 3 Class Exception Conditions

Exception, #XM

g B2
X 0 =
, T | 8 88 5 -
Exception 2 = E B3 Cause of Exception
= - E o
= e o
> v
Invalid Opcode, #UD | X X VEX prefix
X X X If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] = 0.
X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]!="11D".
If CR4.0SXSAVE[bit 18]=0.
X X X X Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X X If any corresponding CPUID feature flag is ‘0’
Device Not Available, | X X X X If CRO.TS[bit 3]=1
#NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH
Page Fault X X X For a page fault
#PF(fault-code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference is made
#AC(0) while the current privilege level is 3.
SIMD Floating-Point X X X X If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] =1

Ref. # 319433-014

2-17

APPLICATION PROGRAMMING MODEL

2.74 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)

Table 2-13. Type 4 Class Exception Conditions

g B2
X 0 =
- T | 8 885 -
Exception 2 = E] flro Cause of Exception
2 |8 E
= |80
> av
Invalid Opcode, #UD | X X VEX prefix
X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]!="11b".
If CR4.0SXSAVE[bit 18]=0.
X X X X Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X X If any corresponding CPUID feature flag is ‘0’
Device Not Avail- X X X X If CRO.TS[bit 3]=1
able, #NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X X X X Legacy SSE: Memory operand is not 16-byte aligned
#GP(0) X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH
Page Fault X X X For a page fault
#PF(fault-code)
2-18 Ref. # 319433-014

APPLICATION PROGRAMMING MODEL

#AC(0)

2.7.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)
Table 2-14. Type 5 Class Exception Conditions
(o] TV >
& &=
- T | 8 88 5 -
Exception 2 = E B3 Cause of Exception
= - E o
= e o
> |av
Invalid Opcode, #UD | X X VEX prefix
X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]!="11b".
If CR4.0SXSAVE[bit 18]=0.
X X X X Legacy SSE instruction:;
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X X If any corresponding CPUID feature flag is ‘0’
Device Not Available, | X X X X If CRO.TS[bit 3]=1
#NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
#GP(0) ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH
Page Fault X X X For a page fault
#PF(fault-code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference is made

while the current privilege level is 3.

Ref. # 319433-014

2-19

APPLICATION PROGRAMMING MODEL

2.7.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)

Note: At present, the AVX instructions in this category do not generate floating-point exceptions.

Table 2-15. Type 6 Class Exception Conditions

#AC(0)

g Tz
X 0=
i 5 8 BE| 5 -
Exception 2 = E ® |3 Cause of Exception
2 |8 °
= |80
S v
Invalid Opcode, #UD X X VEX prefix
X X If XFEATURE_ENABLED_MASK[2:1]!="11D".
If CR4.0SXSAVE[bit 18]=0.
X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X If any corresponding CPUID feature flag is ‘0’
Device Not Avail- X X If CRO.TS[bit 3]=1
able, #NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X If the memory address is in a non-canonical form.
Page Fault X X For a page fault
#PF(fault-code)
Alignment Check X X For 4 or 8 byte memory references if alignment checking is enabled and an

unaligned memory reference is made while the current privilege level is 3.

2-20

Ref. #319433-014

APPLICATION PROGRAMMING MODEL
2.7.7 Exceptions Type 7 (No FP exceptions, no memory arg)

Table 2-16. Type 7 Class Exception Conditions

8 22
X 0 =
, s | © 82 5 ,
Exception 2 = g] flro Cause of Exception

g |8 E
Lt |@o
> av

Invalid Opcode, #UD | X X VEX prefix

X X VEX prefix:

If XFEATURE_ENABLED_MASK[2:1] 1= ‘11,
If CR4.0SXSAVE[bit 18]=0.

X X X X Legacy SSE instruction:
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X X If any corresponding CPUID feature flag is ‘0’
Device Not Available, X X If CRO.TS[bit 3]=1

#NM

2.7.8 Exceptions Type 8 (AVX and no memory argument)

Table 2-17. Type 8 Class Exception Conditions

8 822
X 0 =
. 7 8 F2 3 Cause of Exceptt
- 1
Exception g = g] 5 ause of Exception
2 |8 E
= e o
S |av
Invalid Opcode, #UD | X X Always in Real or Virtual 80x86 mode

>
>

If XFEATURE_ENABLED_MASK[2:1]!="11b",
If CR4.0SXSAVE[bit 18]=0.

If CPUID.OTH.ECX.AVX[bit 28]=0.

If VEX.vvvv 1= 1111B.

X X X X If proceeded by a LOCK prefix (FOH)

Device Not Available, X X If CRO.TS[bit 3]=1.
#NM

Ref. # 319433-014 2-21

APPLICATION PROGRAMMING MODEL

2.7.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)
Table 2-18. Type 11 Class Exception Conditions
(o] TV >
R &=
- T & BE 5 -
Exception g = § B3 Cause of Exception
= - E (Vo)
= e o
> |av
Invalid Opcode, #UD | X X VEX prefix
X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]!="11Db".
If CR4.0SXSAVE[bit 18]=0.
X X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X X If any corresponding CPUID feature flag is ‘0’
Device Not Avail- X X X X If CRO.TS[bit 31=1
able, #NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH
Page Fault #PF X X X For a page fault
(fault-code)
SIMD Floating-Point X X X X If an unmasked SIMD floating-point exception and CR4.0SXMMEXCPT[bit 10] =1

Exception, #XM

2-22

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

2.7.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)

Table 2-19. Type 12 Class Exception Conditions

e B2
X o =
. | ® |BE| 5 .
Exception 2 = E 9| g Cause of Exception
= - E (Vo]
= © o
> a v
Invalid Opcode, #UD | X X VEX prefix
X X VEX prefix:
If XFEATURE_ENABLED_MASK[2:1]1!="11D".
If CR4.0SXSAVE[bit 18]=0.
X X X If preceded by a LOCK prefix (FOH)
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
X X X NA | If address size attribute is 16 bit
X X X X If ModR/M.mod = “11b'
X X X X If ModR/M.rm I= “100b’
X X X X If any corresponding CPUID feature flag is ‘0’
X X X X If any vector register is used more than once between the destination register,
mask register and the index register in VSIB addressing.
Device Not Available, | X X X X If CRO.TS[bit 3]=1
#NM
Stack, SS(0) X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-
#GP(0) ments.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH
Page Fault #PF (fault- X X X For a page fault
code)

Ref. # 319433-014

2-23

APPLICATION PROGRAMMING MODEL

2.7.11 Exception Conditions for VEX-Encoded GPR Instructions

The exception conditions applicable to VEX-encoded GPR instruction differs from those of legacy GPR instructions.
Table 2-20 groups instructions listed in Chapter 7 and lists details of the exception conditions for VEX-encoded GRP
instructions in Table 2-22 for those instructions which have a default operand size of 32 bits and 16-bit operand
size is not encodable. Table 2-21 lists exception conditions for those instructions that support operation on 16-bit
operands.

Table 2-20. Exception Groupings for Instructions Listed in Chapter 7

Exception Class Instruction
See Table 2-21 LZCNT, TZCNT
See Table 2-22 ANDN, BLSI, BLSMSK, BLSR, BZHI, MULX, PDEP, PEXT, RORX, SARX, SHLX, SHRX

(*) - Additional exception restrictions are present - see the Instruction description for details

Table 2-21. Exception Definition for LZCNT and TZCNT

8 |22
X 0=
. 5| & |B2| 5 .
Exception K = E ° g Cause of Exception
2 |8 E
= | 8o
S |av
Stack, SS(0) X X X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, ES, FS or GS seg-

#GP(0) ments.
If the DS, €S, FS, or GS register is used to access memory and it contains a null
segment selector.

X If the memory address is in a non-canonical form.

X X If any part of the operand lies outside the effective address space from 0 to
FFFFH
Page Fault #PF(fault- X X X For a page fault
code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference is made
#AC(0) while the current privilege level is 3.

2-24 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-22. Exception Definition (VEX-Encoded GPR Instructions)

g |22
X o =
. = | & |BL| 5 .
Exception e = E 9 g Cause of Exception
2 |8BE
= © o
> av
Invalid Opcode, #UD X X X If BMI1/BMI2 CPUID feature flag is ‘0’
X X If a VEX prefix is present
X X If any REX, F2, F3, or 66 prefixes precede a VEX prefix
Stack, SS(0) X X For an illegal address in the SS segment
X If a memory address referencing the SS segment is in a non-canonical form
General Protection, X For an illegal memory operand effective address in the CS, DS, €S, FS or GS seg-
#GP(0) ments.
If the DS, €S, FS, or GS register is used to access memory and it contains a null
segment selector.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from O to
FFFFH
Page Fault #PF(fault- X X X For a page fault
code)
Alignment Check X X X If alignment checking is enabled and an unaligned memory reference is made
#AC(0) while the current privilege level is 3.

2.8 PROGRAMMING CONSIDERATIONS WITH 128-BIT SIMD INSTRUCTIONS

VEX-encoded SIMD instructions generally operate on the 256-bit YMM register state. In contrast, non-VEX encoded
instructions (e.g from SSE to AES) operating on XMM registers only access the lower 128-bit of YMM registers.
Processors supporting both 256-bit VEX-encoded instructions and legacy 128-bit SIMD instructions have internal
state to manage the upper and lower halves of the YMM register states. Functionally, VEX-encoded SIMD instruc-
tions can be intermixed with legacy SSE instructions (non-VEX-encoded SIMD instructions operating on XMM regis-
ters). However, there is a performance impact with intermixing VEX-encoded SIMD instructions (AVX, FMA) and
Legacy SSE instructions that only operate on the XMM register state.

The general programming considerations to realize optimal performance are the following:

Minimize transition delays and partial register stalls with YMM registers accesses: Intermixed 256-bit, 128-bit
or scalar SIMD instructions that are encoded with VEX prefixes have no transition delay due to internal state
management.

Sequences of legacy SSE instructions (including SSE2, and subsequent generations non-VEX-encoded SIMD
extensions) that are not intermixed with VEX-encoded SIMD instructions are not subject to transition delays.

When an application must employ AVX and/or FMA, along with legacy SSE code, it should minimize the number
of transitions between VEX-encoded instructions and legacy, non-VEX-encoded SSE code. Section 2.8.1
provides recommendation for software to minimize the impact of transitions between VEX-encoded code and
legacy SSE code.

In addition to performance considerations, programmers should also be cognizant of the implications of VEX-
encoded AVX instructions with the expectations of system software components that manage the processor state
components enabled by XCRO. For additional information see Section 4.1.9.1, “Vector Length Transition and
Programming Considerations”.

Ref. # 319433-014 2-25

APPLICATION PROGRAMMING MODEL

2.8.1 Clearing Upper YMM State Between AVX and Legacy SSE Instructions

There is no transition penalty if an application clears the upper bits of all YMM registers (set to ‘0’) via VZER-
OUPPER, VZEROALL, before transitioning between AVX instructions and legacy SSE instructions. Note: clearing the
upper state via sequences of XORPS or loading ‘0O’ values individually may be useful for breaking dependency, but
will not avoid state transition penalties.

Example 1: an application using 256-bit AVX instructions makes calls to a library written using Legacy SSE instruc-
tions. This would encounter a delay upon executing the first Legacy SSE instruction in that library and then (after
exiting the library) upon executing the first AVX instruction. To eliminate both of these delays, the user should
execute the instruction VZEROUPPER prior to entering the legacy library and (after exiting the library) before
executing in a 256-bit AVX code path.

Example 2: a library using 256-bit AVX instructions is intended to support other applications that use legacy SSE
instructions. Such a library function should execute VZEROUPPER prior to executing other VEX-encoded instruc-
tions. The library function should issue VZEROUPPER at the end of the function before it returns to the calling appli-
cation. This will prevent the calling application to experience delay when it starts to execute legacy SSE code.

2.8.2 Using AVX 128-bit Instructions Instead of Legacy SSE instructions

Applications using AVX and FMA should migrate legacy 128-bit SIMD instructions to their 128-bit AVX equivalents.
AVX supplies the full complement of 128-bit SIMD instructions except for AES and PCLMULQDQ.

2.8.3 Unaligned Memory Access and Buffer Size Management

The majority of AVX instructions support loading 16/32 bytes from memory without alignment restrictions (A
number non-VEX-encoded SIMD instructions also don’t require 16-byte address alignment, e.g. MOVDQU,
MOVUPS, MOVUPD, LDDQU, PCMPESTRI, PCMPESTRM, PCMPISTRI and PCMPISTRM). A buffer size management
issue related to unaligned SIMD memory access is discussed here.

The size requirements for memory buffer allocation should consider unaligned SIMD memory semantics and appli-
cation usage. Frequently a caller function may pass an address pointer in conjunction with a length parameter.
From the caller perspective, the length parameter usually corresponds to the limit of the allocated memory buffer
range, or it may correspond to certain application-specific configuration parameter that have indirect relationship
with valid buffer size.

For certain types of application usage, it may be desirable to make distinctions between valid buffer range limit
versus other application specific parameters related memory access patterns, examples of the latter may be stride
distance, frame dimensions, etc. There may be situations that a callee wishes to load 16-bytes of data with parts
of the 16-bytes lying outside the valid memory buffer region to take advantage of the efficiency of SIMD load band-
width and discard invalid data elements outside the buffer boundary. An example of this may be in video processing
of frames having dimensions that are not modular 16 bytes.

Allocating buffers without regard to the use of the subsequent 16/32 bytes can lead to the rare occurrence of
access rights violation as described below:

® A present page in the linear address space being used by ring 3 code is followed by a page owned by ring O
code,

® A caller routine allocates a memory buffer without adding extra pad space and passes the buffer address to a
callee routine,

® A callee routine implements an iterative processing algorithm by advancing an address pointer relative to the
buffer address using SIMD instructions with unaligned 16/32 load semantics

® The callee routine may choose to load 16/32 bytes near buffer boundary with the intent to discard invalid data
outside the data buffer allocated by the caller.

® If the valid data buffer extends to the end of the present page, unaligned 16/32 byte loads near the end of a
present page may spill over to the subsequent ring-0 page and causing a #GP.

2-26 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

This can be avoided by padding each individual allocation or by padding each area memory is allocated from. As a
general rule, the minimal padding size should be the width the largest SIMD register that might be used in conjunc-
tion with unaligned SIMD memory access.

2.9 CPUID INSTRUCTION

CPUID—CPU Identification

. . Compat/ s
Opcode Instruction 64-Bit Mode Leg Mode Description
OF A2 CPUID Valid Valid Returns processor identification and feature information to the EAX,
EBX, ECX, and EDX registers, as determined by input entered in EAX
(in some cases, ECX as well).
Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction. If a software procedure can
set and clear this flag, the processor executing the procedure supports the CPUID instruction. This instruction
operates the same in non-64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX, and EDX registers.! The
instruction’s output is dependent on the contents of the EAX register upon execution (in some cases, ECX as well).
For example, the following pseudocode loads EAX with OOH and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, O0H
CPUID

Table 2-23 shows information returned, depending on the initial value loaded into the EAX register. Table 2-24
shows the maximum CPUID input value recognized for each family of 1A-32 processors on which CPUID is imple-
mented.

Two types of information are returned: basic and extended function information. If a value is entered for
CPUID.EAX is invalid for a particular processor, the data for the highest basic information leaf is returned. For
example, using the Intel Core 2 Duo E6850 processor, the following is true:

CPUID.EAX = O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = OBH (* INVALID: Returns the same information as CPUID.EAX = OAH. *)

CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)

CPUID.EAX = B0OO0O000AH (* INVALID: Returns same information as CPUID.EAX = OAH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input EAX value, any dependence
on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Serializing instruction execution
guarantees that any modifications to flags, registers, and memory for previous instructions are completed before
the next instruction is fetched and executed.

See also:

“Serializing Instructions” in Chapter 8, “Multiple-Processor Management,” in the Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3A

"Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and I1A-32 Architectures Software Devel-
oper’s Manual, Volume 3A

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

Ref. # 319433-014 2-27

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
Basic CPUID Information
OH EAX Maximum Input Value for Basic CPUID Information (see Table 2-24)
EBX “Genu”
ECX “ntel”
EDX “inel”
O1H EAX Version Information: Type, Family, Model, and Stepping ID (see Figure 2-2)
Bits 7-0: Brand Index
EBX Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)
Bits 23-16: Maximum number of addressable IDs for logical processors in this physical package*.
Bits 31-24: Initial APIC ID
Feature Information (see Figure 2-3 and Table 2-26)
Feature Information (see Figure 2-4 and Table 2-27)
ECX NOTES:
EDX * The nearest power-of-2 integer that is not smaller than EBX[23:16] is the maximum number of
unique initial APIC IDs reserved for addressing different logical processors in a physical package.
02H EAX Cache and TLB Information (see Table 2-28)
EBX Cache and TLB Information
ECX Cache and TLB Information
EDX Cache and TLB Information
03H EAX Reserved.
EBX Reserved.
ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium Ill processor only; otherwise, the
value in this register is reserved.)
EDX Bits 32-63 of 96 bit processor serial number. (Available in Pentium Il processor only; otherwise, the
value in this register is reserved.)
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 processor or later. On all models,
use the PSN flag (returned using CPUID) to check for PSN support before accessing the feature.
See AP-485, Intel Processor Identification and the CPUID Instruction (Order Number 241618) for
more information on PSN.
CPUID leaves > 3 < 80000000 are visible only when IA32_MISC_ENABLES.BOOT_NT4[bit 22] = O (default).
Deterministic Cache Parameters Leaf
04H NOTES:
Leaf 04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for each level on page 2-44.
EAX Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

2-28

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX
EDX

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bits 13-10: Reserved

Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache*, **
Bits 31-26: Maximum number of addressable IDs for processor cores in the physical

package*, ***, *kkk

Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

Bits 31-00: S = Number of Sets*

Bit 0: WBINVD/INVD behavior on lower level caches
Bit 10: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower level caches for threads
sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches of non-originating threads
sharing this cache.
Bit 1: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.
Bit 2: Complex cache indexing
0 = Direct mapped cache
1 = A complex function is used to index the cache, potentially using
all address bits.
Bits 31-03: Reserved = 0

NOTES:

* Add one to the return value to get the result.

**The nearest power-of-2 integer that is not smaller than (1 + EAX[25:14]) is the number of unique
initial APIC IDs reserved for addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 + EAX[31:26]) is the number of
unique Core_IDs reserved for addressing different processor cores in a physical package. Core ID is
a subset of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid ECX values start from O.

MONITOR/MWAIT Leaf

05H

EAX

EBX

ECX

Bits 15-00: Smallest monitor-line size in bytes (default is processor’s monitor granularity)
Bits 31-16: Reserved = 0

Bits 15-00: Largest monitor-line size in bytes (default is processor’s monitor granularity)

Bits 31-16: Reserved = 0

Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and EBX registers) supported
Bits 01: Supports treating interrupts as break-event for MWAIT, even when interrupts disabled
Bits 31 - 02: Reserved

Ref. # 319433-014

2-29

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value

Information Provided about the Processor

EDX

Bits 03 - 00: Number of CO* sub C-states supported using MWait
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0

NOTE:

* The definition of CO through C4 states for MWAIT extension are processor-specific C-states, not
ACPI C-states.

Thermal and Power Management Leaf

06H

EAX

EBX

ECX

EDX

Bits 00: Digital temperature sensor is supported if set

Bits 01: Intel Turbo Boost Technology is available

Bits 31 - 02: Reserved

Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved

Bits 00: Hardware Coordination Feedback Capability (Presence of MCNT and ACNT MSRs). The capa-
bility to provide a measure of delivered processor performance (since last reset of the counters), as a
percentage of expected processor performance at frequency specified in CPUID Brand String

Bits 02 - 01: Reserved =0

Bit 03: The processor supports performance-energy bias preference if

CPUID.O6H:ECX.SETBH][bit 3] is set and it also implies the presence of a

new architectural MSR called IA32_ENERGY_PERF_BIAS (1BOH)

Bits 31 - 04: Reserved = 0

Reserved =0

Structured Extended feature Leaf

07H

EAX
EBX

ECX
EDX

NOTES:
Leaf 07H main leaf (ECX = Q).
IF leaf O7H is not supported, EAX=EBX=ECX=EDX=0

Bits 31-0: Reports the maximum number sub-leaves that are supported in leaf 07H.

Bit 00: FSGSBASE. Supports RDFSBASE/RDGSBASE/WRFSBASE/WRGSBASE if 1.
Bits 02-01: Reserved

Bit 03: BMI1

Bit 04: HLE

Bit 05: AVX2

Bit 07: SMEP. Supports Supervisor Mode Execution Protection if 1.
Bit 06: Reserved

Bit 08: BMI2

Bit 09: ERMS

Bit 10: INVPCID

Bit 11: RTM

Bits 17-12: Reserved

Bit 18: RDSEED

Bit 19: ADX

Bit 20: SMAP

Bits 31-21: Reserved

Bit 31-0: Reserved
Bit 31-0: Reserved.

Structured Extended Feature Enumeration Sub-leaves (EAX = 07H, ECX =n,n > 1)

2-30

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
07H NOTES:
Leaf 07H output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return 0.
EAX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EBX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
ECX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EDX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.
Direct Cache Access Information Leaf
09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
EBX Reserved
ECX Reserved
EDX Reserved
Architectural Performance Monitoring Leaf
OAH EAX Bits 07 - 00: Version ID of architectural performance monitoring

Bits 15- 08: Number of general-purpose performance monitoring counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural performance monitoring events

EBX Bit 00: Core cycle event not available if 1
Bit 01: Instruction retired event not available if 1
Bit 02: Reference cycles event not available if 1
Bit 03: Last-level cache reference event not available if 1
Bit 04: Last-level cache misses event not available if 1
Bit 05: Branch instruction retired event not available if 1
Bit 06: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

ECX Reserved = 0
Bits 04 - 00: Number of fixed-function performance counters (if Version ID > 1)
Bits 12- 05: Bit width of fixed-function performance counters (if Version ID > 1)
EDX Reserved = 0

Extended Topology Enumeration Leaf

0BH NOTES:
Most of Leaf OBH output depends on the initial value in ECX.
EDX output do not vary with initial value in ECX.
ECX[7:0] output always reflect initial value in ECX.
All other output value for an invalid initial value in ECX are O
This leaf exists if EBX[15:0] contain a non-zero value.
EAX Bits 04-00: Number of bits to shift right on x2APIC ID to get a unique topology ID of the next level

type*. All logical processors with the same next level ID share current level.
Bits 31-5: Reserved.

EBX Bits 15 - 00: Number of logical processors at this level type. The number reflects configuration as
shipped by Intel**.
Bits 31- 16: Reserved.

ECX Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***.
Bits 31 - 16: Reserved.

Ref. # 319433-014 2-31

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction(Continued)

2-32

Initial EAX
Value Information Provided about the Processor

EDX Bits 31- 0: x2APIC ID the current logical processor.
NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor topology of the system.
** Software must not use EBX[15:0] to enumerate processor topology of the system. This value in
this field (EBX[15:0]) is only intended for display/diagnostic purposes. The actual number of logical
processors available to BIOS/0OS/Applications may be different from the value of EBX[15:0], depend-
ing on software and platform hardware configurations.
*** The value of the “level type” field is not related to level numbers in any way, higher “level type”
values do not mean higher levels. Level type field has the following encoding:
0: invalid
1: SMT
2: Core
3-255: Reserved

Processor Extended State Enumeration Main Leaf (EAX = ODH, ECX = 0)

ODH NOTES:
Leaf ODH main leaf (ECX = 0).

EAX Bits 31-00: Reports the valid bit fields of the lower 32 bits of the XFEATURE_ENABLED_MASK regis-
ter. If a bit is O, the corresponding bit field in XFEATURE_ENABLED_MASK is reserved.
Bit 00: legacy x87
Bit 01: 128-bit SSE
Bit 02: 256-bit AVX

EBX Bits 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) required by
enabled features in XCRO. May be different than ECX if some features at the end of the XSAVE save
area are not enabled.

ECX Bit 31-00: Maximum size (bytes, from the beginning of the XSAVE/XRSTOR save area) of the
XSAVE/XRSTOR save area required by all supported features in the processor, i.e all the valid bit
fields in XCRO.

EDX Bit 31-0: Reports the valid bit fields of the upper 32 bits of the XFEATURE_ENABLED_MASK register
(XCROQ). If a bit is O, the corresponding bit field in XCRO is reserved

Processor Extended State Enumeration Sub-leaf (EAX = ODH, ECX = 1)

EAX Bit 00: XSAVEOPT is available;

Bits 31-1: Reserved

EBX Reserved

ECX Reserved

EDX Reserved

Processor Extended State Enumeration Sub-leaves (EAX = ODH, ECX =n,n > 1)

ODH NOTES:
Leaf ODH output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return O.
€ach valid sub-leaf index maps to a valid bit in the XCRO register starting at bit position 2

EAX Bits 31-0: The size in bytes (from the offset specified in EBX) of the save area for an extended state
feature associated with a valid sub-leaf index, n. This field reports O if the sub-leaf index, n, is
invalid*.

EBX Bits 31-0: The offset in bytes of this extended state component's save area from the beginning of
the XSAVE/XRSTOR area.

This field reports O if the sub-leaf index, n, is invalid*.

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor
ECX This field reports O if the sub-leaf index, n, is invalid*; otherwise it is reserved.
EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is reserved.
*The highest valid sub-leaf index, n, is
(POPCNT(CPUID.(EAX=0D, ECX=0):EAX) + POPCNT(CPUID.(EAX=0D, ECX=0):eDX) - 1)
Extended Function CPUID Information
80000000H | EAX Maximum Input Value for Extended Function CPUID Information (see
Table 2-24).
EBX Reserved
ECX Reserved
EDX Reserved
80000001H | EAX Extended Processor Signature and Feature Bits.
EBX Reserved
ECX Bit 0: LAHF/SAHF available in 64-bit mode
Bits 4-1: Reserved
Bit 5: LZCNT available
Bits 31-6 Reserved
EDX Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0
80000002H | EAX Processor Brand String
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000003H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000004H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000005H | EAX Reserved = 0
EBX Reserved =0
ECX Reserved =0
EDX Reserved = 0
80000006H | EAX Reserved = 0
EBX Reserved = 0
ECX Bits 7-0: Cache Line size in bytes
Bits 15-12; L2 Associativity field *
Bits 31-16: Cache size in 1K units
EDX Reserved = 0

Ref. # 319433-014 2-33

APPLICATION PROGRAMMING MODEL

Table 2-23. Information Returned by CPUID Instruction(Continued)

Initial EAX
Value Information Provided about the Processor

NOTES:
* |2 associativity field encodings:
OOH - Disabled
O1H - Direct mapped
02H - 2-way
04H - 4-way
0O6H - 8-way
08H - 16-way
OFH - Fully associative

80000007H | EAX Reserved = 0
EBX Reserved = 0
ECX Reserved =0
EDX Reserved =0

80000008H | EAX Virtual/Physical Address size
Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX Reserved =0

ECX Reserved = 0

EDX Reserved = 0
NOTES:

* |f CPUID.BOOO0O0O08H:EAX[7:0] is supported, the maximum physical address number supported
should come from this field.

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the CPUID recognizes for
returning basic processor information. The value is returned in the EAX register (see Table 2-24) and is processor
specific.
A vendor identification string is also returned in EBX, EDX, and ECX. For Intel processors, the string is “Genu-
inelntel” and is expressed:

EBX « 756e6547h (* "Genu”, with G in the low 4 bits of BL *)

EDX < 49656e639h (* “inel”, with i in the low 4 bits of DL *)

ECX « 6c65746eh (* "ntel”, with nin the low 4 bits of CL *)

2-34 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor Information

When CPUID executes with EAX set to 0, the processor returns the highest value the processor recognizes for
returning extended processor information. The value is returned in the EAX register (see Table 2-24) and is
processor specific.

Table 2-24. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Highest Value in EAX
Intel 64 or IA-32 Processors Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented
Later Intel486 Processors and Pentium O01H Not Implemented
Processors
Pent@ium Pro gnd Pentium Il Processors, 02H Not Implemented
Intel Celeron Processors
Pentium Ill Processors O3H Not Implemented
Pentium 4 Processors 02H 80000004H
Intel Xeon Processors 02H 80000004H
Pentium M Processor 02H 80000004H
Pentium 4 Processor supporting Hyper- O5H 80000008H
Threading Technology
Pentium D Processor (8xx) O5H 80000008H
Pentium D Processor (9xx) O6H 80000008H
Intel Core Duo Processor OAH 80000008H
Intel Core 2 Duo Processor OAH 80000008H
Intel Xeon Processor 3000, 5100, 5300 OAH 80000008H
Series
Intel Xeon Processor 3000, 5100, 5200, OAH 80000008H
5300, 5400 Series
Intel Core 2 Duo Processor 8000 Series ODH 80000008H
Intel Xeon Processor 5200, 5400 Series OAH 80000008H

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID MSR is loaded with the update
signature whenever CPUID executes. The sighature is returned in the upper DWORD. For details, see Chapter 10 in
the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A.

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see Figure 2-2). For example:
model, family, and processor type for the Intel Xeon processor 5100 series is as follows:

® Model —1111B
¢ Family — 0101B
® Processor Type — 00B

See Table 2-25 for available processor type values. Stepping IDs are provided as needed.

Ref. # 319433-014 2-35

APPLICATION PROGRAMMING MODEL

31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family ID Model ID ID Model ID

Extended Family ID (0)

Extended Model ID (0)
Processor Type
Family (OFH for the Pentium 4 Processor Family)

Model

D Reserved

OM16525
Figure 2-2. Version Information Returned by CPUID in EAX
Table 2-25. Processor Type Field
Type Encoding
Original OEM Processor 00B
Intel OverDrive” Processor 01B
Dual processor (not applicable to Intel486 processors) 10B
Intel reserved 11B
NOTE

See "Caching Translation Information” in Chapter 4, “Paging,” in the Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 3A, and Chapter 14 in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 1, for information on identifying earlier 1A-32
processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Integrate the fields into a display
using the following rule:

IF Family_ID # OFH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)
FI;
(* Show Display_Family as HEX field. *)
The Extended Model ID needs to be examined only when the Family ID is O6H or OFH. Integrate the field into a
display using the following rule:

IF (Family_ID = 06H or Family_ID = OFH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

FI;

(* Show Display_Model as HEX field. *)

2-36 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the EBX register:

¢ Brand index (low byte of EBX) — this number provides an entry into a brand string table that contains brand
strings for 1A-32 processors. More information about this field is provided later in this section.

® CLFLUSH instruction cache line size (second byte of EBX) — this number indicates the size of the cache line
flushed with CLFLUSH instruction in 8-byte increments. This field was introduced in the Pentium 4 processor.

® Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to the local APIC on the
processor during power up. This field was introduced in the Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and EDX.
® Figure 2-3 and Table 2-26 show encodings for ECX.

® Figure 2-4 and Table 2-27 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly interpret feature flags.

NOTE

Software must confirm that a processor feature is present using feature flags returned by CPUID
prior to using the feature. Software should not depend on future offerings retaining all features.

3130292827 2625242322212019181716151413121110 9 8 7 6 54 3 2 1 0
ECX
0
RDRAND Q
F16C —M
AVX
OSXSAVE
XSAVE
AES
TSC-Deadline
POPCNT
MOVBE
x2APIC
SSE4 2 — SSE4.2
SSE4_1— SSE4.1
DCA — Direct Cache Access
PCID — Process-context Identifiers
PDCM — Perf/Debug Capability MSR
XTPR Update Control

CMPXCHG16B
FMA — Fused Multiply Add
CNXT-ID — L1 Context ID

SSSE3 — SSSE3 Extensions
TM2 — Thermal Monitor 2
EST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT
DTES64 — 64-bit DS Area
PCLMULQDQ — Carryless Multiplication
SSE3 — SSE3 Extensions

OM16524b
D Reserved

Figure 2-3. Feature Information Returned in the ECX Register

Ref. # 319433-014 2-37

APPLICATION PROGRAMMING MODEL

Table 2-26. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the processor supports this technology.

1 PCLMULQDQ A value of 1 indicates the processor supports PCLMULQDQ instruction.

2 DTESE4 64-bit DS Area. A value of 1 indicates the processor supports DS area using 64-bit layout.

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor supports the extensions to the Debug
Store feature to allow for branch message storage qualified by CPL.

5 VMX Virtual Machine Extensions. A value of 1 indicates that the processor supports this technology.

5 SMX Safer Mode Extensions. A value of 1 indicates that the processor supports this technology. See
Chapter 5, “Safer Mode Extensions Reference”.

2 ST Enhanced Intel SpeedStep® technology. A value of 1 indicates that the processor supports this
technology.

8 ™2 Thermal Monitor 2. A value of 1 indicates whether the processor supports this technology.
A value of 1 indicates the presence of the Supplemental Streaming SIMD Extensions 3 (SSSE3). A

9 SSSE3 -) . ; :
value of 0 indicates the instruction extensions are not present in the processor.
L1 Context ID. A value of 1 indicates the L1 data cache mode can be set to either adaptive mode or

10 CNXT-ID shared mode. A value of 0 indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for details.

11 Reserved Reserved

12 FMA A value of 1 indicates the processor supports FMA extensions using YMM state.

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is available.

14 xTPR Update XTPR Update Control. A value of 1 indicates that the processor supports changing

Control IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the processor supports the performance and
debug feature indication MSR 1A32_PERF_CAPABILITIES.

16 Reserved Reserved

17 PCID Process-context identifiers. A value of 1 indicates that the processor supports PCIDs and that
software may set CR4.PCIDE to 1.

18 DCA A value of 1 indicates the processor supports the ability to prefetch data from a memory mapped
device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC feature.

22 MOVBE A value of 1 indicates that the processor supports MOVBE instruction.

23 POPCNT A value of 1 indicates that the processor supports the POPCNT instruction.

24 TSC-Deadline A valge of 1 indicates that the processor’s local APIC timer supports one-shot operation using a TSC
deadline value.

25 AES A value of 1 indicates that the processor supports the AES instruction.

6 XSAVE A value of 1 indicates that the processor supports the XFEATURE_ENABLED_MASK register and
XSAVE/XRSTOR/XSETBV/XGETBYV instructions to manage processor extended states.
A value of 1 indicates that the OS has enabled support for using XGETBV/XSETBV instructions to

27 OSXSAVE
query processor extended states.

o8 AVX A value of 1 indicates that processor supports AVX instructions operating on 256-bit YMM state, and
three-operand encoding of 256-bit and 128-bit SIMD instructions.

29 F16C A value of 1 indicates that processor supports 16-bit floating-point conversion instructions.

30 RDRAND A value of 1 indicates that processor supports RDRAND instruction.

31 Not Used Always return O

2-38

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

313029282726252423222120191817161514131211109 8 7 6 54 3 2 1 O

EDX

PBE—Pend. Brk. EN.J
TM-Therm. Monitor
HTT-Multi-threading ——
SS—Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ———————
ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store
CLFSH-CFLUSH instruction
PSN—-Processor Serial Number
PSE-36 — Page Size Extension
PAT-Page Attribute Table
CMOV-Conditional Move/Compare Instruction
MCA~-Machine Check Architecture
PGE—-PTE Global Bit
MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT
APIC-APIC on Chip
CX8-CMPXCHGSB Inst.
MCE-Machine Check Exception
PAE-Physical Address Extensions
MSR-RDMSR and WRMSR Support
TSC—-Time Stamp Counter
PSE-Page Size Extensions
DE-Debugging Extensions
VME-Virtual-8086 Mode Enhancement
FPU-x87 FPU on Chip

D Reserved

OM16523

Figure 2-4. Feature Information Returned in the EDX Register

Ref. # 319433-014 2-39

APPLICATION PROGRAMMING MODEL

Table 2-27. More on Feature Information Returned in the EDX Register

Bit #

Mnemonic

Description

FPU

floating-point Unit On-Chip. The processor contains an x87 FPU.

VME

Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including CR4.VME for controlling the
feature, CR4.PVI for protected mode virtual interrupts, software interrupt indirection, expansion of the TSS
with the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

DE

Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for controlling the feature, and optional
trapping of accesses to DR4 and DR5.

PSE

Page Size Extension. Large pages of size 4 MByte are supported, including CR4.PSE for controlling the feature,
the defined dirty bit in PDE (Page Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

TSC

Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD for controlling privilege.

MSR

Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and WRMSR instructions are supported.
Some of the MSRs are implementation dependent.

PAE

Physical Address Extension. Physical addresses greater than 32 bits are supported: extended page table entry
formats, an extra level in the page translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, and is implementation
specific.

MCE

Machine Check Exception. Exception 18 is defined for Machine Checks, including CR4.MCE for controlling the
feature. This feature does not define the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may have to depend on processor
version to do model specific processing of the exception, or test for the presence of the Machine Check
feature.

CX8

CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) instruction is supported (implicitly
locked and atomic).

APIC

APIC On-Chip. The processor contains an Advanced Programmable Interrupt Controller (APIC), responding to
memory mapped commands in the physical address range FFFEOOOOH to FFFEOFFFH (by default - some
processors permit the APIC to be relocated).

10

Reserved

Reserved

1

SEP

SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and associated MSRs are supported.

12

MTRR

Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR contains feature bits that describe
what memory types are supported, how many variable MTRRs are supported, and whether fixed MTRRs are
supported.

13

PGE

PTE Global Bit. The global bit in page directory entries (PDEs) and page table entries (PTEs) is supported,
indicating TLB entries that are common to different processes and need not be flushed. The CR4.PGE bit
controls this feature.

14

MCA

Machine Check Architecture. The Machine Check Architecture, which provides a compatible mechanism for
error reporting in P6 family, Pentium 4, Intel Xeon processors, and future processors, is supported. The
MCG_CAP MSR contains feature bits describing how many banks of error reporting MSRs are supported.

15

cMov

Conditional Move Instructions. The conditional move instruction CMQOV is supported. In addition, if x87 FPU is
present as indicated by the CPUID.FPU feature bit, then the FCOMI and FCMOV instructions are supported

16

PAT

Page Attribute Table. Page Attribute Table is supported. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify attributes of memory on a 4K granularity through
a linear address.

17

PSE-36

36-Bit Page Size Extension. Extended 4-MByte pages that are capable of addressing physical memory beyond
4 GBytes are supported. This feature indicates that the upper four bits of the physical address of the 4-MByte
page is encoded by bits 13-16 of the page directory entry.

18

PSN

Processor Serial Number. The processor supports the 96-bit processor identification number feature and the
feature is enabled.

19

CLFSH

CLFLUSH Instruction. CLFLUSH Instruction is supported.

2-40

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-27. More on Feature Information Returned in the EDX Register(Continued)

Bit # | Mnemonic Description
20 Reserved | Reserved
21 Debug Store. The processor supports the ability to write debug information into a memory resident buffer.
DS This feature is used by the branch trace store (BTS) and precise event-based sampling (PEBS) facilities (see
Chapter 17, “Debugging, Branch Profiles and Time-Stamp Counter,” in the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3A).
22 Thermal Monitor and Software Controlled Clock Facilities. The processor implements internal MSRs that allow
ACPI processor temperature to be monitored and processor performance to be modulated in predefined duty cycles
under software control.
23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.
24 FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions are supported for fast save and

FXSR restore of the floating-point context. Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR instructions.

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 s Self Snoop. The processor suppor'ts the management of conflicting memory types by performing a snoop of its
own cache structure for transactions issued to the bus.

28 HTT Multi-Threading. The physical processor package is capable of supporting more than one logical processor.

29 ™ Thermal Monitor. The processor implements the thermal monitor automatic thermal control circuitry (TCC).

30 Reserved | Reserved

31 Pending Break Enable. The processor supports the use of the FERR#/PBE# pin when the processor is in the

stop-clock state (STPCLK# is asserted) to signal the processor that an interrupt is pending and that the
processor should return to normal operation to handle the interrupt. Bit 10 (PBE enable) in the
IA32_MISC_ENABLE MSR enables this capability.

PBE

INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the processor’s internal caches
and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

® The least-significant byte in register EAX (register AL) indicates the number of times the CPUID instruction
must be executed with an input value of 2 to get a complete description of the processor’s caches and TLBs.
The first member of the family of Pentium 4 processors will return a 1.

® The most significant bit (bit 31) of each register indicates whether the register contains valid information (set
to 0) or is reserved (set to 1).

® If aregister contains valid information, the information is contained in 1 byte descriptors. Table 2-28 shows the
encoding of these descriptors. Note that the order of descriptors in the EAX, EBX, ECX, and EDX registers is not
defined; that is, specific bytes are not designated to contain descriptors for specific cache or TLB types. The
descriptors may appear in any order.

Ref. # 319433-014 2-41

APPLICATION PROGRAMMING MODEL

Table 2-28. Encoding of Cache and TLB Descriptors

Descriptor Value

Cache or TLB Description

OOH

Null descriptor

O1H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries

02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

O5H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

OAH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

OBH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

OCH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache; 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-level cache

41H 2nd-level cache; 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache: 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache; 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon processor MP, Family OFH, Model O6H);
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

4DH 3rd-level cache: 16MByte, 16-way set associative, 64 byte line size

4€EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLBO: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLBO: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages,128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

2-42

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-28. Encoding of Cache and TLB Descriptors (Continued)

Descriptor Value Cache or TLB Description

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-uop, 8-way set associative

71H Trace cache: 16 K-pop, 8-way set associative

72H Trace cache: 32 K-uop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache: 128 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7AH 2nd-level cache; 256 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines per sector
7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per sector
7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache; 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache: 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache; 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

BOH Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries

B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries

B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries

B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries

FOH 64-Byte prefetching

F1H 128-Byte prefetching

Example 2-1. Example of Cache and TLB Interpretation
The first member of the family of Pentium 4 processors returns the following information about caches and TLBs
when the CPUID executes with an input value of 2:

EAX 66 5B 50 01H
EBX OH
ECX OH
EDX 00 7A 70 OOH

Which means:

® The least-significant byte (byte 0) of register EAX is set to O1H. This indicates that CPUID needs to be executed
once with an input value of 2 to retrieve complete information about caches and TLBs.

® The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to 0, indicating that each register
contains valid 1-byte descriptors.

® Bytes 1, 2, and 3 of register EAX indicate that the processor has:
— 50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-MByte pages.
— B5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

— 66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte cache line size.

Ref. # 319433-014 2-43

APPLICATION PROGRAMMING MODEL

® The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
® Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:
— OOH - NULL descriptor.
— 70H - Trace cache: 12 K-pop, 8-way set associative.
— T7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored, 64-byte cache line size.
— OOH - NULL descriptor.

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 4 and ECX contains an index value, the processor returns encoded data that
describe a set of deterministic cache parameters (for the cache level associated with the input in ECX). Valid index
values start from 0.

Software can enumerate the deterministic cache parameters for each level of the cache hierarchy starting with an
index value of 0, until the parameters report the value associated with the cache type field is 0. The architecturally
defined fields reported by deterministic cache parameters are documented in Table 2-23.

The CPUID leaf 4 also reports data that can be used to derive the topology of processor cores in a physical package.
This information is constant for all valid index values. Software can query the raw data reported by executing
CPUID with EAX=4 and ECX=0 and use it as part of the topology enumeration algorithm described in Chapter 8,
“Multiple-Processor Management,” in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume
3A.

INPUT EAX = 5: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 5, the processor returns information about features available to
MONITOR/MWAIT instructions. The MONITOR instruction is used for address-range monitoring in conjunction with
MWAIT instruction. The MWAIT instruction optionally provides additional extensions for advanced power manage-
ment. See Table 2-23.

INPUT EAX = 6: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 6, the processor returns information about thermal and power management
features. See Table 2-23.

INPUT EAX = 7: Returns Structured Extended Feature Enumeration Information

When CPUID executes with EAX set to 7 and ECX = 0, the processor returns information about the maximum
number of sub-leaves that contain extended feature flags. See Table 2-23.

When CPUID executes with EAX set to 7 and ECX = n (n > land less than the number of non-zero bits in
CPUID.(EAX=07H, ECX= OH).EAX, the processor returns information about extended feature flags. See Table
2-23. In sub-leaf 0, only EAX has the number of sub-leaves. In sub-leaf O, EBX, ECX & EDX all contain extended
feature flags.

Table 2-29. Structured Extended Feature Leaf, Function 0, EBX Register

Bit # Mnemonic Description
0 RWFSGSBASE A value of 1 indicates the processor supports RD/WR FSGSBASE instructions
1-31 Reserved Reserved

INPUT EAX = 9: Returns Direct Cache Access Information

When CPUID executes with EAX set to 9, the processor returns information about Direct Cache Access capabilities.
See Table 2-23.

2-44 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

INPUT EAX = 10: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 10, the processor returns information about support for architectural perfor-
mance monitoring capabilities. Architectural performance monitoring is supported if the version ID (see Table
2-23) is greater than Pn 0. See Table 2-23.

For each version of architectural performance monitoring capability, software must enumerate this leaf to discover
the programming facilities and the architectural performance events available in the processor. The details are
described in Chapter 17, “Debugging, Branch Profiles and Time-Stamp Counter,” in the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

INPUT EAX = 11: Returns Extended Topology Information

When CPUID executes with EAX set to 11, the processor returns information about extended topology enumeration
data. Software must detect the presence of CPUID leaf OBH by verifying (a) the highest leaf index supported by
CPUID is >= 0BH, and (b) CPUID.OBH:EBX[15:0] reports a non-zero value.

INPUT EAX = 13: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 13 and ECX = 0, the processor returns information about the bit-vector
representation of all processor state extensions that are supported in the processor and storage size requirements
of the XSAVE/XRSTOR area. See Table 2-23.

When CPUID executes with EAX set to 13 and ECX = n (n > l1and less than the number of non-zero bits in
CPUID.(EAX=0DH, ECX= OH).EAX and CPUID.(EAX=0DH, ECX= 0OH).EDX), the processor returns information
about the size and offset of each processor extended state save area within the XSAVE/XRSTOR area. See Table
2-23.

METHODS FOR RETURNING BRANDING INFORMATION

Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s maximum operating frequency
2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are available in early processors, see
Section: “ldentification of Earlier 1A-32 Processors” in Chapter 14 of the Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 1.

The Processor Brand String Method

Figure 2-5 describes the algorithm used for detection of the brand string. Processor brand identification software
should execute this algorithm on all Intel 64 and I1A-32 processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identification string and the maximum
operating frequency of the processor to the EAX, EBX, ECX, and EDX registers.

Ref. # 319433-014 2-45

APPLICATION PROGRAMMING MODEL

Input: EAX=
0x80000000

False Processor Brand
IF (EAX & 0x80000000) String Not
Supported
CPUID
True=
Function
Supported Extended
EAX Return Value =
Max. Extended CPUID
Function Index
True Processor Brand

IF (EAX Return Value
= 0x80000004)

String Supported

OM15194

Figure 2-5. Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through 80000004H. For each input
value, CPUID returns 16 ASCII characters using EAX, EBX, ECX, and EDX. The returned string will be NULL-termi-

nated.
Table 2-30 shows the brand string that is returned by the first processor in the Pentium 4 processor family.

2-46 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-30. Processor Brand String Returned with Pentium 4 Processor

EAX Input Value Return Values ASCII Equivalent

80000002H EAX = 20202020H o
EBX = 20202020H .
ECX = 20202020H .
EDX = 6E492020H “nl "

80000003H EAX = 286(6574H “(let”
EBX =50202952H “P)R"
ECX = 69746E65H “itne”
EDX = 52286D75H “R(mu”

80000004H EAX = 20342029H "4y
EBX = 20555043H “UPC”
ECX =30303531H “0051"
EDX = 007A484DH “\0zHM"

Extracting the Maximum Processor Frequency from Brand Strings

Figure 2-6 provides an algorithm which software can use to extract the maximum processor operating frequency
from the processor brand string.

NOTE

When a frequency is given in a brand string, it is the maximum qualified frequency of the processor,
not the frequency at which the processor is currently running.

Ref. # 319433-014 2-47

APPLICATION PROGRAMMING MODEL

Scan "Brand String" in
Reverse Byte Order

"zZHM", or
"zZHG", or
T

Match
Substring

IF Substring Matched

Determine "Freq"

True
and "Multiplier"

False

If "zZHM"

Report Error

Multiplier = 1 x 10°

If "zHG"

Determine "Multiplier"

Multiplier = 1 x 10°

If "zHT"

W\

Multiplier = 1 x 10"

Scan Digits

Determine "Freq"

Until Blank

In Reverse Order

A

Max. Qualified
Frequency =
"Freq" x "Multiplier"

Reverse Digits
To Decimal Value

"Freq" = XY.Z if
Digits ="Z.YX"

OM15195

Figure 2-6. Algorithm for Extracting Maximum Processor Frequency

The Processor Brand Index Method

The brand index method (introduced with Pentium® 11l Xeon® processors) provides an entry point into a brand

identification table that is maintained in memory by system software and is accessible from system- and user-level
code. In this table, each brand index is associate with an ASCII brand identification string that identifies the official
Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the low byte in EBX. Software can
then use this index to locate the brand identification string for the processor in the brand identification table. The
first entry (brand index 0) in this table is reserved, allowing for backward compatibility with processors that do not
support the brand identification feature. Starting with processor signature family ID = OFH, model = 03H, brand

index method is no longer supported. Use brand string method instead.

Table 2-31 shows brand indices that have identification strings associated with them.

2-48

Ref. #319433-014

APPLICATION PROGRAMMING MODEL

Table 2-31. Mapping of Brand Indices; and Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String
OOH This processor does not support the brand identification feature
OTH Intel(R) Celeron(R) processor1
02H Intel(R) Pentium(R) lll processor1
O03H Intel(R) Pentium(R) Ill Xeon(R) processor; If processor signature = 000006B1h, then Intel(R) Celeron(R)
processor
04H Intel(R) Pentium(R) Ill processor
06H Mobile Intel(R) Pentium(R) Ill processor-M
07H Mobile Intel(R) Celeron(R) processor1
08H Intel(R) Pentium(R) 4 processor
OSH Intel(R) Pentium(R) 4 processor
OAH Intel(R) Celeron(R) processor1
OBH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor MP
OCH Intel(R) Xeon(R) processor MP
OEH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature = 00000F13h, then Intel(R) Xeon(R) processor
OFH Mobile Intel(R) Celeron(R) processor1
11H Mobile Genuine Intel(R) processor
12H Intel(R) Celeron(R) M processor
13H Mobile Intel(R) Celeron(R) processor1
14H Intel(R) Celeron(R) processor
15H Mobile Genuine Intel(R) processor
16H Intel(R) Pentium(R) M processor
17H Mobile Intel(R) Celeron(R) processor1
18H - OFFH RESERVED
NOTES:

1.Indicates versions of these processors that were introduced after the Pentium Il

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any 1A-32 processor earlier than the
Intel486 processor.

Operation
IA32_BIOS_SIGN_ID MSR « Update with installed microcode revision number;

CASE (EAX) OF

EAX = 0:
EAX « Highest basic function input value understood by CPUID;
EBX « Vendor identification string;
EDX <« Vendor identification string;
ECX « Vendor identification string;

BREAK;

EAX = 1H:
EAX[3:0] « Stepping ID;
EAX[7:4] < Model;

Ref. # 319433-014 2-49

APPLICATION PROGRAMMING MODEL

EAX[11:8] «<— Family;
EAX[13:12] < Processor type;
EAX[15:14] < Reserved;
EAX[19:16] « Extended Model;
EAX[27:20] <— Extended Family;
EAX[31:28] < Reserved;
EBX][7:0] « Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] <~ CLFLUSH Line Size;
EBX[16:23] < Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] « Initial APIC ID;
ECX « Feature flags; (* See Figure 2-3. *)
EDX « Feature flags; (* See Figure 2-4. *)
BREAK;
EAX = 2H:
EAX < Cache and TLB information;
EBX « Cache and TLB information;
ECX « Cache and TLB information;
EDX « Cache and TLB information;
BREAK;
EAX = 3H:
EAX « Reserved;
EBX « Reserved;
ECX « ProcessorSerialNumber[31:0];
(* Pentium IIl processors only, otherwise reserved. *)
EDX < ProcessorSerialNumber[63:32];
(* Pentium IIl processors only, otherwise reserved. *
BREAK
EAX = 4H:
EAX <« Deterministic Cache Parameters Leaf; (* See Table 2-23. *)
EBX <« Deterministic Cache Parameters Leaf;
ECX « Deterministic Cache Parameters Leaf;
EDX « Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:
EAX < MONITOR/MWAIT Leaf; (* See Table 2-23. *)
EBX < MONITOR/MWAIT Leaf;
ECX < MONITOR/MWAIT Leaf;
EDX <~ MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX < Thermal and Power Management Leaf; (* See Table 2-23. *)
EBX « Thermal and Power Management Leaf;
ECX « Thermal and Power Management Leaf;
EDX « Thermal and Power Management Leaf;
BREAK;
EAX=7H:
EAX « Structured Extended Feature Leaf; (* See Table 2-23. *);
EBX <« Structured Extended Feature Leaf;
ECX « Structured Extended Feature Leaf;
EDX « Structured Extended Feature Leaf;
BREAK;
EAX = 8H:
EAX < Reserved = 0;
EBX « Reserved = 0;

2-50 Ref. #319433-014

APPLICATION PROGRAMMING MODEL

ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = 9H:
EAX « Direct Cache Access Information Leaf; (* See Table 2-23. *)
EBX <« Direct Cache Access Information Leaf;
ECX « Direct Cache Access Information Leaf;
EDX « Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
EAX « Architectural Performance Monitoring Leaf; (* See Table 2-23. *)
EBX « Architectural Performance Monitoring Leaf;
ECX « Architectural Performance Monitoring Leaf;
EDX « Architectural Performance Monitoring Leaf;
BREAK
EAX = BH:
EAX « Extended Topology Enumeration Leaf; (* See Table 2-23. *)
EBX « Extended Topology Enumeration Leaf;
ECX « Extended Topology Enumeration Leaf;
EDX « Extended Topology Enumeration Leaf;
BREAK;
EAX = CH:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = DH:
EAX « Processor Extended State Enumeration Leaf; (* See Table 2-23. *)
EBX <« Processor Extended State Enumeration Leaf;
ECX « Processor Extended State Enumeration Leaf;
EDX « Processor Extended State Enumeration Leaf;
BREAK;
BREAK;
EAX = 80000000H:
EAX « Highest extended function input value understood by CPUID;
EBX « Reserved;
ECX « Reserved;
EDX < Reserved;
BREAK;
EAX = 80000001H:
EAX < Reserved;
EBX « Reserved;
ECX « Extended Feature Bits (* See Table 2-23.*);
EDX «— Extended Feature Bits (* See Table 2-23. %);
BREAK;
EAX = 80000002H:
EAX « Processor Brand String;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX « Processor Brand String, continued;

Ref. # 319433-014 2-51

APPLICATION PROGRAMMING MODEL

EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX « Processor Brand String, continued;
EBX « Processor Brand String, continued;
ECX « Processor Brand String, continued;
EDX « Processor Brand String, continued;
BREAK;
EAX = 80000005H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX < Reserved = 0;
BREAK;
EAX = 80000006H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Cache information;
EDX <« Reserved = 0;
BREAK;
EAX = 80000007H:
EAX « Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX <« Reserved = 0;
BREAK;
EAX = 80000008H:
EAX < Reserved = 0;
EBX « Reserved = 0;
ECX « Reserved = 0;
EDX <« Reserved = 0;
BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX < Reserved; (* Information returned for highest basic information leaf. *)
EBX « Reserved; (* Information returned for highest basic information leaf. *)
ECX « Reserved; (* Information returned for highest basic information leaf. *)
EDX « Reserved; (* Information returned for highest basic information leaf. *)
BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier 1A-32 processors that do not support the CPUID instruction, execution of the instruc-
tion results in an invalid opcode (#UD) exception being generated.§

2-52 Ref. #319433-014

SYSTEM PROGRAMMING MODEL

CHAPTER 3
SYSTEM PROGRAMMING MODEL

This chapter describes the operating system programming considerations for AVX, F16C, AVX2 and FMA. The AES
extensions and PCLMULQDQ instruction follow the same system software requirements for XMM state support and
SIMD floating-point exception support as SSE2, SSE3, SSSE3, SSE4 (see Chapter 12 of 1A-32 Intel Architecture
Software Developer’s Manual, Volumes 3A).

The AVX, F16C, AVX2 and FMA extensions operate on 256-bit YMM registers, and require operating system to
supports processor extended state management using XSAVE/XRSTOR instructions. VAESDEC/VAESDE-
CLAST/VAESENC/VAESENCLAST/VAESIMC/VAESKEYGENASSIST/VPCLMULQDQ follow the same system program-
ming requirements as AVX and FMA instructions operating on YMM states.

The basic requirements for an operating system using XSAVE/XRSTOR to manage processor extended states for
current and future Intel Architecture processors can be found in Chapter 12 of 1A-32 Intel Architecture Software
Developer’'s Manual, Volumes 3A. This chapter covers additional requirements for OS to support YMM state.

3.1 YMM STATE, VEX PREFIX AND SUPPORTED OPERATING MODES

AVX, F16C, AVX2 and FMA instructions operates on YMM states and requires VEX prefix encoding. SIMD instruc-
tions operating on XMM states (i.e. not accessing the upper 128 bits of YMM) generally do not use VEX prefix. Not
all instructions that require VEX prefix encoding need YMM or XMM registers as operands.

For processors that support YMM states, the YMM state exists in all operating modes. However, the available inter-
faces to access YMM states may vary in different modes. The processor's support for instruction extensions that
employ VEX prefix encoding is independent of the processor's support for YMM state.

Instructions requiring VEX prefix encoding generally are supported in 64-bit, 32-bit modes, and 16-bit protected
mode. They are not supported in Real mode, Virtual-8086 mode or entering into SMM mode.

Note that bits 255:128 of YMM register state are maintained across transitions into and out of these modes.
Because, XSAVE/XRSTOR instruction can operate in all operating modes, it is possible that the processor's YMM
register state can be modified by software in any operating mode by executing XRSTOR. The YMM registers can be
updated by XRSTOR using the state information stored in the XSAVE/XRSTOR area residing in memory.

3.2 YMM STATE MANAGEMENT

Operating systems must use the XSAVE/XRSTOR instructions for YMM state management. The XSAVE/XRSTOR
instructions also provide flexible and efficient interface to manage XMM/MXCSR states and x87 FPU states in
conjunction with new processor extended states.

An OS must enable its YMM state management to support AVX and FMA extensions. Otherwise, an attempt to
execute an instruction in AVX or FMA extensions (including an enhanced 128-bit SIMD instructions using VEX
encoding) will cause a #UD exception.

3.2.1 Detection of YMM State Support

Detection of hardware support for new processor extended state is provided by the main leaf of CPUID leaf function
ODH with index ECX = 0. Specifically, the return value in EDX:EAX of CPUID.(EAX=0DH, ECX=0) provides a 64-bit
wide bit vector of hardware support of processor state components, beginning with bit O of EAX corresponding to
x87 FPU state, CPUID.(EAX=0DH, ECX=0):EAX[1] corresponding to SSE state (XMM registers and MXCSR),
CPUID.(EAX=0DH, ECX=0):EAX[2] corresponding to YMM states.

3.2.2 Enabling of YMM State

An OS can enable YMM state support with the following steps:

Ref. # 319433-014 3-1

SYSTEM PROGRAMMING MODEL

® Verify the processor supports XSAVE/XRSTOR/XSETBV/XGETBYV instructions and the
XFEATURE_ENABLED_MASK register by checking CPUID.1.ECX.XSAVE[bit 26]=1.

® Verify the processor supports YMM state (i.e. bit 2 of XSFEATURE_ENABLED_MASK is valid) by checking
CPUID.(EAX=0DH, ECX=0):EAX.YMM[2]. The OS should also verify CPUID.(EAX=0DH, ECX=0):EAX.SSE[bit
1]=1, because the lower 128-bits of an YMM register are aliased to an XMM register.

The OS must determine the buffer size requirement for the XSAVE area that will be used by XSAVE/XRSTOR
(see CPUID instruction in Section 2.9).

® Set CR4.0SXSAVE[bit 18]=1 to enable the use of XSETBV/XGETBYV instructions to write/read the
XFEATURE_ENABLED_MASK register.

® Supply an appropriate mask via EDX:EAX to execute XSETBV to enable the processor state components that
the OS wishes to manage using XSAVE/XRSTOR instruction. To enable x87 FPU, SSE and YMM state
management using XSAVE/XRSTOR, the enable mask is EDX=0H, EAX=7H (The individual bits of
XFEATURE_ENABLED_MASK is listed in Table 3-1).

To enable YMM state, the OS must use EDX:EAX[2:1] = 11B when executing XSETBV. An attempt to execute
XSETBV with EDX:EAX[2:1] = 10B causes a #GP(0) exception.

Table 3-1. XFEATURE_ENABLED_MASK and Processor State Components

Bit Meaning

0-x87 If set, the processor supports x87 FPU state management via XSAVE/XRSTOR. This bit must be 1 if
CPUID.OTH:ECX.XSAVE[26] = 1.
If set, the processor supports SSE state (XMM and MXCSR) management via XSAVE/XRSTOR. This bit

1-SSE P
must be set to ‘1’ to enable AVX.

>-YMM If set, the processor supports YMM state (upper 128 bits of YMM registers) management via XSAVE. This
bit must be set to ‘1" to enable AVX and FMA.

3.2.3 Enabling of SIMD Floating-Exception Support

AVX and FMA instruction may generate SIMD floating-point exceptions. An OS must enable SIMD floating-point
exception support by setting CR4.0SXMMEXCPT[bit 10]=1.

The effect of CR4 setting that affects AVX and FMA enabling is listed in Table 3-2

Table 3-2. CR4 bits for AVX New Instructions technology support
Bit Meaning

CR4.0SXSAVE[bit 18] If set, the OS supports use of XSETBV/XGETBV instruction to access the XFEATURE_ENABLED_MASK
register, XSAVE/XRSTOR to manage processor extended state. Must be set to ‘1’ to enable AVX and
FMA.

CR4.0SXMMEXCPTI[bit 10] | Must be set to 1 to enable SIMD floating-point exceptions. This applies to AVX, FMA operating on YMM
states, and legacy 128-bit SIMD floating-point instructions operating on XMM states.

CR4.0SFXSR[bit 9] Ignored by AVX and FMA instructions operating on YMM states.
Must be set to 1 to enable SIMD instructions operating on XMM state.

3.24 The Layout of XSAVE Area

The OS must determine the buffer size requirement by querying CPUID with EAX=0DH, ECX=0. If the OS wishes to
enable all processor extended state components in the XFEATURE_ENABLED_MASK, it can allocate the buffer size
according to CPUID.(EAX=0DH, ECX=0):ECX.

After the memory buffer for XSAVE is allocated, the entire buffer must to cleared to zero prior to use by XSAVE.

For processors that support SSE and YMM states, the XSAVE area layout is listed in Table 3-3. The register fields of
the first 512 byte of the XSAVE area are identical to those of the FXSAVE/FXRSTOR area.

3-2 Ref. #319433-014

SYSTEM PROGRAMMING MODEL

Table 3-3. Layout of XSAVE Area For Processor Supporting YMM State

Save Areas Offset (Byte) Size (Bytes)
FPU/SSE SaveArea 0 512
Header 512 64
Ext_Save_Area_2 (YMM) CPUID.(EAX=0DH, ECX=2):EBX CPUID.(EAX=0DH, ECX=2):EAX

The format of the header is as follows (see Table 3-4):

Table 3-4. XSAVE Header Format

15:8 7:0 Byte Offset from Byte Offset from
Header XSAVE Area
Reserved (Must be zero) XSTATE_BV 0 512
Reserved Reserved (Must be zero) 16 528
Reserved Reserved 32 544
Reserved Reserved 48 560

The layout of the Ext_Save_Area[YMM] contains 16 of the upper 128-bits of the YMM registers, it is shown in
Table 3-5.

Table 3-5. XSAVE Save Area Layout for YMM State (Ext_Save_Area_2)

31 16 15 0 sﬁa_();;f’i:\r:e? Byte Offset from XSAVE Area
YMM1[255:128] YMMO[255:128] 0 576
YMM3[255:128] YMM2[255:128] 32 608
YMM5[255:128] YMM4[255:128] 64 640
YMM7[255:128] YMM6[255:128] 96 672
YMM9[255:128] YMM8[255:128] 128 704
YMM11[255:128] YMM10[255:128] 160 736
YMM13[255:128] YMM12[255:128] 192 768
YMM15[255:128] YMM14[255:128] 224 800

3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR

The processor’s action as a result of executing XRSTOR, on the MXCSR, XMM and YMM registers, are listed in Table
3-6 (Both bit 1 and bit 2 of the XFEATURE_ENABLED_MASK register are presumed to be 1). The XMM registers may
be initialized by the processor (See XRSTOR operation in Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 2B). When the MXCSR register is updated from memory, reserved bit checking is enforced. The
saving/restoring of MXCSR is bound to both the SSE state and YMM state. MXCSR save/restore will not be bound to
any future states.

Ref. # 319433-014 3-3

SYSTEM PROGRAMMING MODEL

Table 3-6. XRSTOR Action on MXCSR, XMM Registers, YMM Registers

EDX:EAX XSATE_BV . .
Bit 2 Bit 1 Bit 2 Bit 1 MXCSR YMM_H Registers XMM Registers
0 0 X None None None
0 1 X Load/Check None Init by processor
0 1 X 1 Load/Check None Load
1 0 0 X Load/Check Init by processor None
1 0 1 X Load/Check Load None
1 1 0 0 Load/Check Init by processor Init by processor
1 1 0 1 Load/Check Init by processor Load
1 1 1 0 Load/Check Load Init by processor
1 1 1 1 Load/Check Load Load

The processor supplied init values for each processor state component used by XRSTOR is listed in Table 3-7.

Table 3-7. Processor Supplied Init Values XRSTOR May Use

Processor State Component

Processor Supplied Register Values

x87 FPU State

FCW « 037FH; FTW « OFFFFH; FSW «— OH; FPU CS « OH;
FPU DS « OH; FPU IP «— OH; FPU DP « 0; STO-ST7 «- O;

SSE State!

If 64-bit Mode: XMMO-XMM15 « OH;
Else XMMO-XMM7 « OH

YMM State'

If 64-bit Mode: YMMO_H-YMM15_H « OH;
Else YMMO_H-YMM7_H « OH

NOTES:

1. MXCSR state is not updated by processor supplied values. MXCSR state can only be updated by XRSTOR from state information

stored in XSAVE/XRSTOR area.

The action of XSAVE is listed in Table 3-8.

Table 3-8. XSAVE Action on MXCSR, XMM, YMM Register

EDX:EAX

XFEATURE_ENABLED_MAS

K MXCSR YMM_H Registers XMM Registers
Bit 2 Bit 1 Bit 2 Bit 1
0 0 X X None None None
0 1 X 1 Store None Store
0 1 X 0 None None None
1 0 0 X None None None
1 0 1 1 Store Store None
1 1 0 0 None None None
1 1 0 1 Store None Store
1 1 1 1 Store Store Store

3-4

Ref. #319433-014

SYSTEM PROGRAMMING MODEL

3.2.6 Processor Extended State Save Optimization and XSAVEOPT

The XSAVEOPT instruction paired with XRSTOR is designed to provide a high performance method for system soft-
ware to perform state save and restore.

A processor may indicate its support for the XSAVEOPT instruction if CPUID.(EAX=0DH,
ECX=1):EAX.XSAVEOPT[Bit 0] = 1. The functionality of XSAVEOPT is similar to XSAVE. Software can use
XSAVEOPT/XRSTOR in a pair-wise manner similar to XSAVE/XRSTOR to save and restore processor extended
states.

The syntax and operands for XSAVEOPT instructions are identical to XSAVE, i.e. the mask operand in EDX:EAX
specifies the subset of enabled features to be saved.

Note that software using XSAVEOPT must observe the same restrictions as XSAVE while allocating a new save
area. i.e., the header area must be initialized to zeroes. The first 64-bits in the save image header starting at offset
512 are referred to as XHEADER.BV. However, the instruction differs from XSAVE in several important aspects:

1. If a component state in the processor specified by the save mask corresponds to an INIT state, the instruction
may clear the corresponding bit in XHEADER.BV, but may not write out the state (unlike the XSAVE instruction,
which always writes out the state).

2. If the processor determines that the component state specified by the save mask hasn't been modified since
the last XRSTOR, the instruction may not write out the state to the save area.

3. A implication of this optimization is that software which needs to examine the saved image must first check the
XHEADER.BV to see if any bits are clear. If the header bit is clear, it means that the state is INIT and the saved
memory image may not correspond to the actual processor state.

4. The performance of XSAVEOPT will always be better than or at least equal to that of XSAVE.

3.2.6.1 XSAVEOPT Usage Guidelines
When using the XSAVEOPT facility, software must be aware of the following guidelines:

1. The processor uses a tracking mechanism to determine which state components will be written to memory by
the XSAVEOPT instruction. The mechanism includes three sub-conditions that are recorded internally each time
XRSTOR is executed and evaluated on the invocation of the next XSAVEOPT. If a change is detected in any one
of these sub-conditions, XSAVEOPT will behave exactly as XSAVE. The three sub-conditions are:

— current CPL of the logical processor
— indication whether or not the logical processor is in VMX non-root operation
— linear address of the XSAVE/XRSTOR area

2. Upon allocation of a new XSAVE/XRSTOR area and before an XSAVE or XSAVEOPT instruction is used, the save
area header (HEADER.XSTATE) must be initialized to zeroes for proper operation.

3. XSAVEOPT is designed primarily for use in context switch operations. The values stored by the XSAVEOPT
instruction depend on the values previously stored in a given XSAVE area.

4. Manual modifications to the XSAVE area between an XRSTOR instruction and the matching XSAVEOPT may
result in data corruption.

5. For optimization to be performed properly, the XRSTOR XSAVEOPT pair must use the same segment when
referencing the XSAVE area and the base of that segment must be unchanged between the two operations.

6. Software should avoid executing XSAVEOPT into a buffer from which it hadn’t previously executed a XRSTOR.
For newly allocated buffers, software can execute XRSTOR with the linear address of the buffer and a restore
mask of EDX:EAX = 0. Executing XRSTOR(0:0) doesn’t restore any state, but ensures expected operation of
the XSAVEOPT instruction.

7. The XSAVE area can be moved or even paged, but the contents at the linear address of the save area at an
XSAVEOPT must be the same as that when the previous XRSTOR was performed.

A destination operand not aligned to 64-byte boundary (in either 64-bit or 32-bit modes) will result in a general-
protection (#GP) exception being generated. In 64-bit mode the upper 32 bits of RDX and RAX are ignored.

Ref. # 319433-014 3-5

SYSTEM PROGRAMMING MODEL

3.3 RESET BEHAVIOR

At processor reset

« YMMO-16 bits[255:0] are set to zero.

e XFEATURE_ENABLED_ MASK][2:1] is set to zero, XFEATURE_ENABLED_MASK]O] is set to 1.
e CR4.0SXSAVE[bit 18] (and its mirror CPUID.1.ECX.OSXSAVE[bit 27]) is set to O.

3.4 EMULATION

Setting the CRO.EMbit to 1 provides a technique to emulate Legacy SSE floating-point instruction sets in software.
This technique is not supported with AVX instructions, nor FMA instructions.

If an operating system wishes to emulate AVX instructions, set XFEATURE_ENABLED_MASK][2:1] to zero. This will
cause AVX instructions to #UD. Emulation of FMA by operating system can be done similarly as with emulating AVX
instructions.

3.5 WRITING AVX FLOATING-POINT EXCEPTION HANDLERS

AVX and FMA floating-point exceptions are handled in an entirely analogous way to Legacy SSE floating-point
exceptions. To handle unmasked SIMD floating-point exceptions, the operating system or executive must provide
an exception handler. The section titled “SSE and SSE2 SIMD Floating-Point Exceptions” in Chapter 11, “Program-
ming with Streaming SIMD Extensions 2 (SSE2),” of the 1A-32 Intel® Architecture Software Developer’s Manual,
Volume 1, describes the SIMD floating-point exception classes and gives suggestions for writing an exception
handler to handle them.

To indicate that the operating system provides a handler for SIMD floating-point exceptions (#XM), the CR4.0SXM-
MEXCPT flag (bit 10) must be set.

§

3-6 Ref. #319433-014

INSTRUCTION FORMAT

CHAPTER 4
INSTRUCTION FORMAT

AVX F16C, AVX2 and FMA instructions are encoded using a more efficient format than previous instruction exten-
sions in the Intel 64 and 1A-32 architecture. The improved encoding format uses a new prefix referred to as “VEX“.
The VEX prefix may be two or three bytes long, depending on the instruction semantics. Despite the length of the
VEX prefix, the instruction encoding format using VEX addresses two important issues: (a) there exists inefficiency
in instruction encoding due to SIMD prefixes and some fields of the REX prefix, (b) Both SIMD prefixes and REX
prefix increase in instruction byte-length. This chapter describes the instruction encoding format using VEX.

VEX-prefix encoding enables a subset of AVX2 instructions to support “vector SIM“ form of memory addressing.
This is described in Section 4.2.

VEX-prefix encoding also enables some general purpose instructions to support three-operand syntax. This is
described in Section 4.3.

4.1 INSTRUCTION FORMATS

Legacy instruction set extensions in 1A-32 architecture employs one or more “single-purpose” byte as an “escape
opcode”, or required SIMD prefix (66H, F2H, F3H) to expand the processing capability of the instruction set. Intel
64 architecture uses the REX prefix to expand the encoding of register access in instruction operands. Both SIMD
prefixes and REX prefix carry the side effect that they can cause the length of an instruction to increase signifi-
cantly. Legacy Intel 64 and 1A-32 instruction set are limited to supporting instruction syntax of only two operands
that can be encoded to access registers (and only one can access a memory address).

Instruction encoding using VEX prefix provides several advantages:

® Instruction syntax support for three operands and up-to four operands when necessary. For example, the third
source register used by VBLENDVPD is encoded using bits 7:4 of the immediate byte.

® Encoding support for vector length of 128 bits (using XMM registers) and 256 bits (using YMM registers)
® Encoding support for instruction syntax of non-destructive source operands.

® Elimination of escape opcode byte (OFH), SIMD prefix byte (66H, F2H, F3H) via a compact bit field represen-
tation within the VEX prefix.

® Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-
R15) for direct register access, memory addressing, or accessing XMM8-XMM15 (including YMM8-YMM15).

® Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by
REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only because only a
subset of SIMD instructions need them.

¢ Extensibility for future instruction extensions without significant instruction length increase.

Figure 4-1 shows the Intel 64 instruction encoding format with VEX prefix support. Legacy instruction without a
VEX prefix is fully supported and unchanged. The use of VEX prefix in an Intel 64 instruction is optional, but a VEX
prefix is required for Intel 64 instructions that operate on YMM registers or support three and four operand syntax.
VEX prefix is not a constant-valued, “single-purpose” byte like OFH, 66H, F2H, F3H in legacy SSE instructions. VEX
prefix provides substantially richer capability than the REX prefix.

Bytes 2,3 1 1 0,1 0124 01

[Prefixes] [VEX] OPCODE| [ModrM| | [SIB] DIsP | [[IMM]

Figure 4-1. Instruction Encoding Format with VEX Prefix

Ref. # 319433-014 4-1

INSTRUCTION FORMAT

4.1.1 VEX and the LOCK prefix
Any VEX-encoded instruction with a LOCK prefix preceding VEX will #UD.

4.1.2 VEX and the 66H, F2H, and F3H prefixes
Any VEX-encoded instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.

4.1.3 VEX and the REX prefix
Any VEX-encoded instruction with a REX prefix proceeding VEX will #UD.

414 The VEX Prefix

The VEX prefix is encoded in either the two-byte form (the first byte must be C5H) or in the three-byte form (the
first byte must be C4H). The two-byte VEX is used mainly for 128-bit, scalar and the most common 256-bit AVX
instructions, while the three-byte VEX provides a compact replacement of REX and 3-byte opcode instructions
(including AVX and FMA instructions). Beyond the first byte of the VEX prefix it consists of a number of bit fields
providing specific capability; they are shown in Figure 4-2.

The bit fields of the VEX prefix can be summarized by its functional purposes:

® Non-destructive source register encoding (applicable to three and four operand syntax): This is the first source
operand in the instruction syntax. It is represented by the notation, VEX.vvvv. This field is encoded using 1’'s
complement form (inverted form), i.e. XMMO/YMMO/RO is encoded as 1111B, XMM15/YMM15/R15 is encoded
as 0000B.

® Vector length encoding: This 1-bit field represented by the notation VEX.L. L= 0 means vector length is 128 bits
wide, L=1 means 256 bit vector. The value of this field is written as VEX.128 or VEX.256 in this document to
distinguish encoded values of other VEX bit fields.

® REX prefix functionality: Full REX prefix functionality is provided in the three-byte form of VEX prefix. However
the VEX bit fields providing REX functionality are encoded using 1’s complement form, i.e. XMM0Q/YMMO/RO is
encoded as 1111B, XMM15/YMM15/R15 is encoded as O000B.

— Two-byte form of the VEX prefix only provides the equivalent functionality of REX.R, using 1’'s complement
encoding. This is represented as VEX.R.

— Three-byte form of the VEX prefix provides REX.R, REX.X, REX.B functionality using 1's complement
encoding and three dedicated bit fields represented as VEX.R, VEX.X, VEX.B.

— Three-byte form of the VEX prefix provides the functionality of REX.W only to specific instructions that need
to override default 32-bit operand size for a general purpose register to 64-bit size in 64-bit mode. For
those applicable instructions, VEX.W field provides the same functionality as REX.W. VEX.W field can
provide completely different functionality for other instructions.

Consequently, the use of REX prefix with VEX encoded instructions is not allowed. However, the intent of the
REX prefix for expanding register set is reserved for future instruction set extensions using VEX prefix
encoding format.

® Compaction of SIMD prefix: Legacy SSE instructions effectively use SIMD prefixes (66H, F2H, F3H) as an
opcode extension field. VEX prefix encoding allows the functional capability of such legacy SSE instructions
(operating on XMM registers, bits 255:128 of corresponding YMM unmodified) to be encoded using the VEX.pp
field without the presence of any SIMD prefix. The VEX-encoded 128-bit instruction will zero-out bits 255:128
of the destination register. VEX-encoded instruction may have 128 bit vector length or 256 bits length.

® Compaction of two-byte and three-byte opcode: More recently introduced legacy SSE instructions employ two
and three-byte opcode. The one or two leading bytes are: OFH, and OFH 3AH/0OFH 38H. The one-byte escape
(OFH) and two-byte escape (OFH 3AH, OFH 38H) can also be interpreted as an opcode extension field. The
VEX.mmmmm field provides compaction to allow many legacy instruction to be encoded without the constant
byte sequence, OFH, OFH 3AH, OFH 38H. These VEX-encoded instruction may have 128 bit vector length or 256
bits length.

4-2 Ref. #319433-014

INSTRUCTION FORMAT

The VEX prefix is required to be the last prefix and immediately precedes the opcode bytes. It must follow any
other prefixes. If VEX prefix is present a REX prefix is not supported.

The 3-byte VEX leaves room for future expansion with 3 reserved bits. REX and the 66h/F2h/F3h prefixes are
reclaimed for future use.

VEX prefix has a two-byte form and a three byte form. If an instruction syntax can be encoded using the two-byte
form, it can also be encoded using the three byte form of VEX. The latter increases the length of the instruction by
one byte. This may be helpful in some situations for code alignment.

The VEX prefix supports 256-bit versions of floating-point SSE, SSE2, SSE3, and SSE4 instructions. VEX-encoded
128-bit vector integer instructions are supported in AVX. 256-bit vector integer instructions are supported in AVX2
but not AVX. Table B-1 of Appendix B lists promoted, VEX-128 encoded vector integer instructions in AVX.

Table B-2 lists 128-bit and 256-bit, promoted VEX-encoded vector integer instructions. Note, certain new instruc-
tion functionality can only be encoded with the VEX prefix (See Appendix B, Table B-3, Table B-4, Table B-5).

The VEX prefix will #UD on any instruction containing MMX register sources or destinations.
The following subsections describe the various fields in two or three-byte VEX prefix:

4.1.4.1 VEX Byte 0, bits[7:0]

VEX Byte 0, bits [7:0] must contain the value 11000101b (C5h) or 11000100b (C4h). The 3-byte VEX uses the C4h
first byte, while the 2-byte VEX uses the C5h first byte.

4.1.42 VEXByte1,bit[7]- R’

VEX Byte 1, bit [7] contains a bit analogous to a bit inverted REX.R. In protected and compatibility modes the bit
must be set to ‘1’ otherwise the instruction is LES or LDS. This bit is present in both 2- and 3-byte VEX prefixes.
The usage of WRXB bits for legacy instructions is explained in detail section 2.2.1.2 of Intel 64 and 1A-32 Architec-
tures Software developer’s manual, Volume 2A. This bit is stored in bit inverted format.

4.1.43 3-byte VEX byte 1, bit[6] - ‘X’

Bit[6] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.X. It is an extension of the SIB Index
field in 64-bit modes. In 32-bit modes, this bit must be set to ‘1’ otherwise the instruction is LES or LDS. This bit is
available only in the 3-byte VEX prefix. This bit is stored in bit inverted format.

Ref. # 319433-014 4-3

INSTRUCTION FORMAT

ByteO Bytel Byte2
(Bit Position) 7 0 7654 0 7 6 3210
3-byte VEX 11000100 RXB| mmmmm W[ww |L|pp
7 07 6 3210
2-byte VEX 11000101 Rl ww [L]|pp

R: REX.Rin1's complement (inverted) form
1: Same as REX.R=0 (must be 1 in 32-bit mode)
0: Same as REX.R=1 (64-hit mode only)

X: REX.X in 1's complement (inverted) form
1: Same as REX.X=0 (must be 1 in 32-hit mode)
0: Same as REX.X=1 (64-hit mode only)

B: REX.B in 1's complement (inverted) form

1: Same as REX.B=0 (Ignored in 32-bit mode).
0: Same as REX.B=1 (64-bit mode only)

W: opcode specific (use like REX.W, or used for opcode

extension, or ignored, depending on the opcode byte)

m-mmmm:
00000: Reserved for future use (will #UD)
00001: implied OF leading opcode byte
00010: implied OF 38 leading opcode bytes
00011: implied OF 3A leading opcode bytes
00100-11111: Reserved for future use (will #UD)

vvwv: aregister specifier (in 1's complement form) or 1111 if unused.

L: Vector Length

0: scalar or 128-hit vector
1. 256-hit vector

pp: opcode extension providing equivalent functionality of a SIMD prefix
00: None
01: 66
10: F3
11: F2

Figure 4-2. VEX bitfields

41.4.4 3-byte VEX byte 1, bit[5] - ‘B’

Bit[5] of the 3-byte VEX byte 1 encodes a bit analogous to a bit inverted REX.B. In 64-bit modes, it is an extension
of the ModR/M r/m field, or the SIB base field. In 32-bit modes, this bit is ignored.

This bit is available only in the 3-byte VEX prefix.
This bit is stored in bit inverted format.

4-4 Ref. #319433-014

INSTRUCTION FORMAT

41.45 3-byte VEX byte 2, bit[7] - ‘W’

Bit[7] of the 3-byte VEX byte 2 is represented by the notation VEX.W. It can provide following functions, depending

on the specific opcode.

= For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have a
general-purpose register operand with its operand size attribute promotable by REX.W), if REX.W promotes
the operand size attribute of the general-purpose register operand in legacy SSE instruction, VEX.W has
same meaning in the corresponding AVX equivalent form. In 32-bit modes, VEX.W is silently ignored.

= For AVX instructions that have equivalent legacy SSE instructions (typically these SSE instructions have oper-
ands with their operand size attribute fixed and not promotable by REX.W), if REX.W is don’t care in legacy
SSE instruction, VEX.W is ignored in the corresponding AVX equivalent form irrespective of mode.

= For new AVX instructions where VEX.W has no defined function (typically these meant the combination of the
opcode byte and VEX.mmmmm did not have any equivalent SSE functions), VEX.W is reserved as zero and
setting to other than zero will cause instruction to #UD.

4.1.4.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘'vvvv’ the Source or dest
Register Specifier

In 32-bit mode the VEX first byte C4 and C5 alias onto the LES and LDS instructions. To maintain compatibility with
existing programs the VEX 2nd byte, bits [7:6] must be 11b. To achieve this, the VEX payload bits are selected to
place only inverted, 64-bit valid fields (extended register selectors) in these upper bits.

The 2-byte VEX Byte 1, bits [6:3] and the 3-byte VEX, Byte 2, bits [6:3] encode a field (shorthand VEX.vvvv) that
for instructions with 2 or more source registers and an XMM or YMM or memory destination encodes the first source
register specifier stored in inverted (1's complement) form.

VEX.vvvv is not used by the instructions with one source (except certain shifts, see below) or on instructions with
no XMM or YMM or memory destination. If an instruction does not use VEX.vvvv then it should be set to 1111b
otherwise instruction will #UD.

In 64-bit mode all 4 bits may be used. See Table 4-1 for the encoding of the XMM or YMM registers. In 32-bit and
16-bit modes bit 6 must be 1 (if bit 6 is not 1, the 2-byte VEX version will generate LDS instruction and the 3-byte
VEX version will ignore this bit).

Table 4-1. VEX.vvvv to Register Name Mapping

VEX.vvwv Dest Register Valid in Legacy/Compatibility 32-bit modes?
1111B XMM0/YMMO Valid
11108 XMM1/YMM1 Valid
1101B XMM2/YMM2 Valid
11008 XMM3/YMM3 Valid
1011B XMM4/YMM4 Valid
1010B XMM5/YMM5 Valid
1001B XMM6/YMM6 Valid
10008B XMM7/YMM7 Valid
0111B XMM8/YMM8 Invalid
0110B XMM9/YMM9 Invalid
0101B XMM10/YMM10 Invalid
0100B XMM11/YMM11 Invalid
0011B XMM12/YMM12 Invalid
0010B XMM13/YMM13 Invalid
0001B XMM14/YMM14 Invalid
0000B XMM15/YMM15 Invalid

Ref. # 319433-014 4-5

INSTRUCTION FORMAT

The VEX.vvvyv field is encoded in bit inverted format for accessing a register operand.

4.1.5 Instruction Operand Encoding and VEX.vvvv, ModR/M

VEX-encoded instructions support three-operand and four-operand instruction syntax. Some VEX-encoded instruc-
tions have syntax with less than three operands, e.g. VEX-encoded pack shift instructions support one source
operand and one destination operand).

The roles of VEX.vvvy, reg field of ModR/M byte (ModR/M.reg), r/m field of ModR/M byte (ModR/M.r/m) with
respect to encoding destination and source operands vary with different type of instruction syntax.

The role of VEX.vvvv can be summarized to three situations:

® VEX.vvvv encodes the first source register operand, specified in inverted (1’s complement) form and is valid for
instructions with 2 or more source operands.

® VEX.vvvv encodes the destination register operand, specified in 1’'s complement form for certain vector shifts.
The instructions where VEX.vvvv is used as a destination are listed in Table 4-2. The notation in the “Opcode”
column in Table 4-2 is described in detail in section 5.1.1

® VEX.vvvv does not encode any operand, the field is reserved and should contain 1111b.

Table 4-2. Instructions with a VEX.vvvv Destination

Opcode Instruction mnemonic
VEX.NDD.128.66.0F 73 /7 ib VPSLLDQ xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 73 /3 ib VPSRLDQ xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 71 /2 ib VPSRLW xmm1, xmm2, imm8
VEX.NDD.128.66.0F 72 /2 ib VPSRLD xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 73 /2 ib VPSRLQ xmm1, xmm2, imm8
VEX.NDD.128.66.0F 71 /4 ib VPSRAW xmm1, xmm2, imm8
VEX.NDD.128.66.0F 72 /4 ib VPSRAD xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 71 /6 ib VPSLLW xmm1, xmm2, imm8
VEX.NDD.128.66.0F 72 /6 ib VPSLLD xmm1, xmmZ2, imm8
VEX.NDD.128.66.0F 73 /6 ib VPSLLQ xmm1, xmm2, imm8

The role of ModR/M.r/m field can be summarized to three situations:
® ModR/M.r/m encodes the instruction operand that references a memory address.

® For some instructions that do not support memory addressing semantics, ModR/M.r/m encodes either the
destination register operand or a source register operand.

® For the gather family of instructions in AVX2, ModR/M.r/m support vector SIB memory addressing (see Section
4.2).

The role of ModR/M.reg field can be summarized to two situations:
® ModR/M.reg encodes either the destination register operand or a source register operand.

® For some instructions, ModR/M.reg is treated as an opcode extension and not used to encode any instruction
operand.

For instruction syntax that support four operands, VEX.vvvv, ModR/M.r/m, ModR/M.reg encodes three of the four
operands. The role of bits 7:4 of the immediate byte serves the following situation:

® Imm8[7:4] encodes the third source register operand.

4.1.5.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”

Bits[4:0] of the 3-byte VEX byte 1 encode an implied leading opcode byte (OF, OF 38, or OF 3A). Several bits are
reserved for future use and will #UD unless 0.

4-6 Ref. #319433-014

INSTRUCTION FORMAT

Table 4-3. VEX.m-mmmm Interpretation

VEX.m-mmmm Implied Leading Opcode Bytes
00000B Reserved
00001B OF
00010B OF 38
00011B OF 3A
00100-11111B Reserved
(2-byte VEX) OF

VEX.m-mmmm is only available on the 3-byte VEX. The 2-byte VEX implies a leading OFh opcode byte.

4.1.5.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L"

The vector length field, VEX.L, is encoded in bit[2] of either the second byte of 2-byte VEX, or the third byte of 3-
byte VEX. If “VEX.L = 17, it indicates 256-bit vector operation. “VEX.L = 0” indicates scalar and 128-bit vector oper-
ations.

The instruction VZEROUPPER is a special case that is encoded with VEX.L = 0, although its operation zero’s bits
255:128 of all YMM registers accessible in the current operating mode.

See the following table.

Table 4-4. VEX.L Interpretation

VEX.L Vector Length
0 128-bit (or 32/64-bit scalar)
1 256-bit

4153 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

Up to one implied prefix is encoded by bits[1:0] of either the 2-byte VEX byte 1 or the 3-byte VEX byte 2. The prefix
behaves as if it was encoded prior to VEX, but after all other encoded prefixes.

See the following table.

Table 4-5. VEX.pp Interpretation

PP Implies this prefix after other prefixes but before VEX
00B None

01B 66

10B F3

11B F2

4.1.6 The Opcode Byte

One (and only one) opcode byte follows the 2 or 3 byte VEX. Legal opcodes are specified in Appendix B, in color.
Any instruction that uses illegal opcode will #UD.

4.1.7 The MODRM, SIB, and Displacement Bytes

The encodings are unchanged but the interpretation of reg_field or rm_field differs (see above).

Ref. # 319433-014 4-7

INSTRUCTION FORMAT

4.1.8 The Third Source Operand (Immediate Byte)

VEX-encoded instructions can support instruction with a four operand syntax. VBLENDVPD, VBLENDVPS, and
PBLENDVB use imm8[7:4] to encode one of the source registers.

4.1.9 AVX Instructions and the Upper 128-bits of YMM registers

If an instruction with a destination XMM register is encoded with a VEX prefix, the processor zeroes the upper 128
bits of the equivalent YMM register. Legacy SSE instructions without VEX preserve the upper 128-bits.

4.1.9.1 Vector Length Transition and Programming Considerations

An instruction encoded with a VEX.128 prefix that loads a YMM register operand operates as follows:
® Data is loaded into bits 127:0 of the register

® Bits above bit 127 in the register are cleared.

Thus, such an instruction clears bits 255:128 of a destination YMM register on processors with a maximum vector-
register width of 256 bits. In the event that future processors extend the vector registers to greater widths, an
instruction encoded with a VEX.128 or VEX.256 prefix will also clear any bits beyond bit 255. (This is in contrast
with legacy SSE instructions, which have no VEX prefix; these modify only bits 127:0 of any destination register
operand.)

Programmers should bear in mind that instructions encoded with VEX.128 and VEX.256 prefixes will clear any
future extensions to the vector registers. A calling function that uses such extensions should save their state before
calling legacy functions. This is not possible for involuntary calls (e.g., into an interrupt-service routine). It is
recommended that software handling involuntary calls accommodate this by not executing instructions encoded
with VEX.128 and VEX.256 prefixes. In the event that it is not possible or desirable to restrict these instructions,
then software must take special care to avoid actions that would, on future processors, zero the upper bits of vector
registers.

Processors that support further vector-register extensions (defining bits beyond bit 255) will also extend the XSAVE
and XRSTOR instructions to save and restore these extensions. To ensure forward compatibility, software that
handles involuntary calls and that uses instructions encoded with VEX.128 and VEX.256 prefixes should first save
and then restore the vector registers (with any extensions) using the XSAVE and XRSTOR instructions with
save/restore masks that set bits that correspond to all vector-register extensions. ldeally, software should rely on
a mechanism that is cognizant of which bits to set. (E.g., an OS mechanism that sets the save/restore mask bits
for all vector-register extensions that are enabled in XCR0.) Saving and restoring state with instructions other than
XSAVE and XRSTOR will, on future processors with wider vector registers, corrupt the extended state of the vector
registers - even if doing so functions correctly on processors supporting 256-bit vector registers. (The same is true
if XSAVE and XRSTOR are used with a save/restore mask that does not set bits corresponding to all supported
extensions to the vector registers.)

4.1.10 AVXInstruction Length

The AVX and FMA instructions described in this document (including VEX and ignoring other prefixes) do not exceed
11 bytes in length, but may increase in the future. The maximum length of an Intel 64 and IA-32 instruction
remains 15 bytes.

4.2 VECTOR SIB (VSIB) MEMORY ADDRESSING

In AVX2, an SIB byte that follows the ModR/M byte can support VSIB memory addressing to an array of linear
addresses. VSIB addressing is only supported in a subset of AVX2 instructions. VSIB memory addressing requires
32-bit or 64-bit effective address. In 32-bit mode, VSIB addressing is not supported when address size attribute is
overridden to 16 bits. In 16-bit protected mode, VSIB memory addressing is permitted if address size attribute is
overridden to 32 bits. Additionally, VSIB memory addressing is supported only with VEX prefix.

In VSIB memory addressing, the SIB byte consists of:

4-8 Ref. #319433-014

INSTRUCTION FORMAT

® The scale field (bit 7:6) specifies the scale factor.

® The index field (bits 5:3) specifies the register number of the vector index register, each element in the vector
register specifies an index.

® The base field (bits 2:0) specifies the register number of the base register.

Table 4-6 shows the 32-bit VSIB addressing form. It is organized to give 256 possible values of the SIB byte (in
hexadecimal). General purpose registers used as a base are indicated across the top of the table, along with corre-
sponding values for the SIB byte’s base field. The register names also include R8L-R15L applicable only in 64-bit
mode (when address size override prefix is used, but the value of VEX.B is not shown in Table 4-6). In 32-bit mode,
R8L-R15L does not apply.

Table rows in the body of the table indicate the vector index register used as the index field and each supported
scaling factor shown separately. Vector registers used in the index field can be XMM or YMM registers. The left-most
column includes vector registers VR8-VR15 (i.e. XMM8/YMM8-XMM15/YMM15), which are only available in 64-bit
mode and does not apply if encoding in 32-bit mode.

Table 4-6. 32-Bit VSIB Addressing Forms of the SIB Byte

r32 EAX/ ECX/ EDX/ EBX/ ESP/ EBP/ Esl/ EDI/
R8L ROL R10L R11L R12L R13L" |R14L R15L
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS Index Value of SIB Byte (in Hexadecimal)

VRO/VR8 *1 00 000 00 01 02 03 04 05 06 07
VR1/VR9 001 08 09 0A 0B 0C oD 0E OF
VR2/VR10 010 10 11 12 13 14 15 16 17
VR3/VR11 011 18 19 1A 1B 1C 1D 1€ 1F
VR4/VR12 100 20 21 22 23 24 25 26 27
VR5/VR13 101 28 29 2A 2B 2C 2D 2E 2F
VR6/VR14 110 30 31 32 33 34 35 36 37
VR7/VR15 111 38 39 3A 3B 3C 3D 3E 3F
VRO/VR8 *2 |01 000 40 41 42 43 44 45 46 47
VR1/VR9 001 48 49 4A 4B 4C 4D 4€ 4F
VR2/VR10 010 50 51 52 53 54 55 56 57
VR3/VR11 011 58 59 5A 5B 5C 5D 5€E 5F
VR4/VR12 100 60 61 62 63 64 65 66 67
VR5/VR13 101 68 69 6A 6B 6C 6D 6E 6F
VR6/VR14 110 70 71 72 73 74 75 76 77
VR7/VR15 111 78 79 7A 7B 7C 7D 7€ 7F
VRO/VR8 *4 |10 000 80 81 82 83 84 85 86 87
VR1/VR9 001 88 89 8A 8B 8C 8D 8E 8F
VR2/VR10 010 90 91 92 93 94 95 96 97
VR3/VR11 011 98 89 9A 9B 9C D 9E 9F
VR4/VR12 100 A0 Al A2 A3 A4 A5 A6 A7
VR5/VR13 101 A8 A9 AA AB AC AD AE AF
VR6/VR14 110 BO B1 B2 B3 B4 B5 B6 B7
VR7/VR15 111 B8 B9 BA BB BC BD BE BF
VRO/VR8 8 |1 000 co C1 c2 C3 C4 c5 C6 c7
VR1/VR9 001 c8 C9 CA CB cC CD CE CF
VR2/VR10 010 DO D1 D2 D3 D4 D5 D6 D7
VR3/VR11 011 D8 D9 DA DB DC DD DE DF
VR4/VR12 100 €0 E1 €2 €3 €4) E6 €7
VR5/VR13 101 €8 €9 EA EB €C ED EE EF
VR6/VR14 110 FO F1 F2 F3 F4 F5 F6 F7
VR7/VR15 111 F8 F9 FA FB FC FD FE FF

Ref. # 319433-014 4-9

INSTRUCTION FORMAT

NOTES:
1. If ModR/M.mod = 00b, the base address is zero, then effective address is computed as [scaled vector index] + disp32. Otherwise the
base address is computed as [EBP/R13]+ disp, the displacement is either 8 bit or 32 bit depending on the value of ModR/M.mod:
MOD Effective Address

00b [Scaled Vector Register] + Disp32
01b [Scaled Vector Register] + Disp8 + [EBP/R13]
10b [Scaled Vector Register] + Disp32 + [EBP/R13]

4.2.1 64-bit Mode VSIB Memory Addressing

In 64-bit mode VSIB memory addressing uses the VEX.B field and the base field of the SIB byte to encode one of
the 16 general-purpose register as the base register. The VEX.X field and the index field of the SIB byte encode one
of the 16 vector registers as the vector index register.

In 64-bit mode the top row of Table 4-6 base register should be interpreted as the full 64-bit of each register.

4.3 VEX ENCODING SUPPORT FOR GPR INSTRUCTIONS

VEX prefix may be used to encode instructions that operate on neither YMM nor XMM registers. VEX-encoded
general-purpose-register instructions have the following properties:

® Instruction syntax support for three encodable operands.

® Encoding support for instruction syntax of non-destructive source operand, destination operand encoded via
VEX.vvvv, and destructive three-operand syntax.

® Elimination of escape opcode byte (OFH), two-byte escape via a compact bit field representation within the VEX
prefix.

® Elimination of the need to use REX prefix to encode the extended half of general-purpose register sets (R8-R15)
for direct register access or memory addressing.

® Flexible and more compact bit fields are provided in the VEX prefix to retain the full functionality provided by
REX prefix. REX.W, REX.X, REX.B functionalities are provided in the three-byte VEX prefix only.

® VEX-encoded GPR instructions are encoded with VEX.L=0.

Any VEX-encoded GPR instruction with a 66H, F2H, or F3H prefix preceding VEX will #UD.
Any VEX-encoded GPR instruction with a REX prefix proceeding VEX will #UD.
VEX-encoded GPR instructions are not supported in real and virtual 8086 modes.

4-10 Ref. #319433-014

INSTRUCTION SET REFERENCE

CHAPTER 5
INSTRUCTION SET REFERENCE

Instructions that are described in this document follow the general documentation convention established in Intel
64 and IA-32 Architectures Software Developer’'s Manual Volume 2A and 2B. Additional notations and conventions
adopted in this document are listed in Section 5.1. Section 5.2 covers supplemental information that applies to a
specific subset of instructions.

5.1 INTERPRETING INSTRUCTION REFERENCE PAGES

This section describes the format of information contained in the instruction reference pages in this chapter. It
explains notational conventions and abbreviations used in these sections that are outside of those conventions
described in Section 3.1 of the Intel 64 and 1A-32 Architectures Software Developer’s Manual Volume 2A.

5.1.1 Instruction Format

The following is an example of the format used for each instruction description in this chapter. The table below
provides an example summary table:

Ref. # 319433-014 5-1

INSTRUCTION SET REFERENCE

(V)ADDSD ADD Scalar Double — Precision Floating-Point Values (THIS IS AN EXAMPLE)

Opcode/ Op/ 64/32- CPUID Description
Instruction En bit Mode Feature
Flag
F2 OF 58 /r A VIV SSE2 Add the low double-precision floating-point value from
ADDSD xmm1, xmm2/m64 xmmZ2/mem to xmm1 and store the result in xmm1.
VEX.NDS.128.F2.0F.WIG 58 /r B VIV AVX Add the low double-precision floating-point value from
VADDSD xmm1, xmm2, xmm3/mem to xmmZ2 and store the result in xmm1.
xmm3/m64
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
5.1.2 Opcode Column in the Instruction Summary Table

For notation and conventions applicable to instructions that do not use VEX prefix, consult Section 3.1 of the Intel
64 and IA-32 Architectures Software Developer’s Manual Volume 2A.

In the Instruction Summary Table, the Opcode column presents each instruction encoded using the VEX prefix in
following form (including the modR/M byte if applicable, the immediate byte if applicable):

VEX.[NDS,NDD,DDS].[128,256,L.Z,L1G].[66,F2,F3].0F/0F3A/0F38.[WO,W1, WIG] opcode [/r]

[/ib,/is4]

5-2

VEX: indicates the presence of the VEX prefix is required. The VEX prefix can be encoded using the three-byte
form (the first byte is C4H), or using the two-byte form (the first byte is C5H). The two-byte form of VEX only
applies to those instructions that do not require the following fields to be encoded: VEX.mmmmm, VEX.W,
VEX.X, VEX.B. Refer to Section 4.1.4 for more detail on the VEX prefix

The encoding of various sub-fields of the VEX prefix is described using the following notations:

NDS, NDD, DDS: specifies that VEX.vvvv field is valid for the encoding of a register operand:

VEX.NDS: VEX.vvvv encodes the first source register in an instruction syntax where the content of
source registers will be preserved.

VEX.NDD: VEX.vvvv encodes the destination register that cannot be encoded by ModR/M:reg field.

VEX.DDS: VEX.vvvv encodes the second source register in a three-operand instruction syntax where
the content of first source register will be overwritten by the result.

If none of NDS, NDD, and DDS is present, VEX.vvvv must be 1111b (i.e. VEX.vvvv does not encode an
operand). The VEX.vvvv field can be encoded using either the 2-byte or 3-byte form of the VEX prefix.

128,256,LZ,L1G: VEX.L field can be O (denoted by VEX.128 or VEX.LZ) or 1 (denoted by VEX.256). The
VEX.L field can be encoded using either the 2-byte or 3-byte form of the VEX prefix. The presence of the
notation VEX.256 or VEX.128 in the opcode column should be interpreted as follows:

If VEX.256 is present in the opcode column: The semantics of the instruction must be encoded with
VEX.L = 1. An attempt to encode this instruction with VEX.L= O can result in one of two situations: (a)
if VEX.128 version is defined, the processor will behave according to the defined VEX.128 behavior; (b)
an #UD occurs if there is no VEX.128 version defined.

If VEX.128 is present in the opcode column but there is no VEX.256 version defined for the same opcode
byte: Two situations apply: (a) For VEX-encoded, 128-bit SIMD integer instructions, software must
encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded with VEX.L=1
by causing an #UD exception; (b) For VEX-encoded, 128-bit packed floating-point instructions,

Ref. #319433-014

INSTRUCTION SET REFERENCE

software must encode the instruction with VEX.L = 0. The processor will treat the opcode byte encoded
with VEX.L= 1 by causing an #UD exception (e.g. VMOVLPS).

e If VEX.LIG is present in the opcode column: The VEX.L value is ignored. This generally applies to VEX-
encoded scalar SIMD floating-point instructions. Scalar SIMD floating-point instruction can be distin-
guished from the mnemonic of the instruction. Generally, the last two letters of the instruction
mnemonic would be either “SS*, “SD", or “SI* for SIMD floating-point conversion instructions.

* If VEX.LZ is present in the opcode column: The VEX.L must be encoded to be 0B, an #UD occurs if
VEX.L is not zero.

— 66,F2,F3: The presence or absence of these value maps to the VEX.pp field encodings. If absent, this
corresponds to VEX.pp=00B. If present, the corresponding VEX.pp value affects the “opcode” byte in the
same way as if a SIMD prefix (66H, F2H or F3H) does to the ensuing opcode byte. Thus a non-zero encoding
of VEX.pp may be considered as an implied 66H/F2H/F3H prefix. The VEX.pp field may be encoded using
either the 2-byte or 3-byte form of the VEX prefix.

— OF,0F3A,0F38: The presence maps to a valid encoding of the VEX.mmmmm field. Only three encoded
values of VEX.mmmmm are defined as valid, corresponding to the escape byte sequence of OFH, OF3AH
and OF38H. The effect of a valid VEX.mmmmm encoding on the ensuing opcode byte is same as if the
corresponding escape byte sequence on the ensuing opcode byte for non-VEX encoded instructions. Thus a
valid encoding of VEX.mmmmm may be consider as an implies escape byte sequence of either OFH, OF3AH
or OF38H. The VEX.mmmmm field must be encoded using the 3-byte form of VEX prefix.

— OF,0F3A,0F38 and 2-byte/3-byte VEX. The presence of OF3A and OF38 in the opcode column implies
that opcode can only be encoded by the three-byte form of VEX. The presence of OF in the opcode column
does not preclude the opcode to be encoded by the two-byte of VEX if the semantics of the opcode does not
require any subfield of VEX not present in the two-byte form of the VEX prefix.

— WO: VEX.W=0.
— W1: VEX.W=1.

— The presence of WO/W1 in the opcode column applies to two situations: (a) it is treated as an extended
opcode bit, (b) the instruction semantics support an operand size promotion to 64-bit of a general-purpose
register operand or a 32-bit memory operand. The presence of W1 in the opcode column implies the opcode
must be encoded using the 3-byte form of the VEX prefix. The presence of WO in the opcode column does
not preclude the opcode to be encoded using the C5H form of the VEX prefix, if the semantics of the opcode
does not require other VEX subfields not present in the two-byte form of the VEX prefix. Please see Section
4.1.4 on the subfield definitions within VEX.

— WIG: If WIG is present, the instruction may be encoded using the C5H form (if VEX.mmmmm is not
required); or when using the C4H form of VEX prefix, VEX.W value is ignored.

opcode: Instruction opcode.
/r — Indicates that the ModR/M byte of the instruction contains a register operand and an r/m operand.

ib: A 1-byte immediate operand to the instruction that follows the opcode, ModR/M bytes or scale/indexing
bytes.

/is4: An 8-bit immediate byte is present specifying a source register in imm[7:4] and containing an
instruction-specific payload in imm[3:0].

In general, the encoding of the VEX.R, VEX.X, and VEX.B fields are not shown explicitly in the opcode column.
The encoding scheme of VEX.R, VEX.X, and VEX.B fields must follow the rules defined in Section 4.1.4.

5.1.3 Instruction Column in the Instruction Summary Table

<additions to the eponymous PRM section>

ymm — A YMM register. The 256-bit YMM registers are: YMMO through YMM7; YMMS8 through YMM15 are
available in 64-bit mode.

m256 — A 32-byte operand in memory. This nomenclature is used only with AVX and FMA instructions.

vm32x,vm32y — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index

Ref. # 319433-014 5-3

INSTRUCTION SET REFERENCE

register with individual elements of 32-bit index value. The vector index register is an XMM register if expressed
as vm32Xx. The vector index register is a YMM register if expressed as vm32y.

® vm64x,vm64y — A vector array of memory operands specified using VSIB memory addressing. The array of
memory addresses are specified using a common base register, a constant scale factor, and a vector index
register with individual element of 64-bit index value. The vector index register is an XMM register if expressed
as vm64x. The vector index register is a YMM register if expressed as vm64y.

®* ymm/m256 — A YMM register or 256-bit memory operand.
® <YMMO=> — Indicates use of the YMMO register as an implicit argument.

® SRC1 — Denotes the first source operand in the instruction syntax of an instruction encoded with the VEX
prefix and having two or more source operands.

® SRC2 — Denotes the second source operand in the instruction syntax of an instruction encoded with the VEX
prefix and having two or more source operands.

® SRC3 — Denotes the third source operand in the instruction syntax of an instruction encoded with the VEX
prefix and having three source operands.

® SRC — The source in a AVX single-source instruction or the source in a Legacy SSE instruction.

® DST — the destination in a AVX instruction. In Legacy SSE instructions can be either the destination, first
source, or both. This field is encoded by reg_field.

5.14 Operand Encoding column in the Instruction Summary Table

The “operand encoding” column is abbreviated as Op/En in the Instruction Summary table heading. Each entry
corresponds to a specific instruction syntax in the immediate column to its left and points to a corresponding row
in a separate instruction operand encoding table immediately following the instruction summary table. The operand
encoding table in each instruction reference page lists each instruction operand (according to each instruction
syntax and operand ordering shown in the instruction column) relative to the ModRM byte, VEX.vvvv field or addi-
tional operand encoding placement.

5.1.5 64/32 bit Mode Support column in the Instruction Summary Table

The “64/32 bit Mode Support” column in the Instruction Summary table indicates whether an opcode sequence is
supported in (a) 64-bit mode or (b) the Compatibility mode and other 1A-32 modes that apply in conjunction with
the CPUID feature flag associated specific instruction extensions.

The 64-bit mode support is to the left of the ‘slash’ and has the following notation:
= V — Supported.
= | — Not supported.

= N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may represent part of a sequence
of valid instructions in other modes).

= N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bitmode.
« N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.

= N.S. — Indicates an instruction syntax that requires an address override prefix in 64-bit mode and is not sup-
ported. Using an address override prefix in 64-bit mode may result in model-specific execution behavior.

The compatibility/Legacy mode support is to the right of the ‘slash’ and has the following notation:
= V — Supported.
= | — Not supported.

= N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not encodable; the opcode sequence is not
applicable as an individual instruction in compatibility mode or 1A-32 mode. The opcode may represent a valid
sequence of legacy IA-32 instructions.

5-4 Ref. #319433-014

INSTRUCTION SET REFERENCE

5.1.6 CPUID Support column in the Instruction Summary Table

The fourth column holds abbreviated CPUID feature flags (e.g. appropriate bit in CPUID.1.ECX, CPUID.1.EDX,
CPUID.(EAX=7,ECX=0).EBX, CPUID.80O00O0001H.ECX for
SSE/SSE2/SSE3/SSSE3/SSE4.1/SSE4.2/AVX/FP16/RDRAND/AVX2/BMI1/BMI2/LZCNT support) that indicate
processor support for the instruction. If the corresponding flag is ‘0’, the instruction will #UD.

5.2 SUMMARY OF TERMS

® “Legacy SSE”: Refers to SSE, SSE2, SSE3, SSSE3, SSE4, and any future instruction sets referencing XMM
registers and encoded without a VEX prefix.

® XGETBV, XSETBV, XSAVE, XRSTOR are defined in 1A-32 Intel Architecture Software Developer’'s Manual,
Volumes 3A and Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B.

® VEX: refers to a two-byte or three-byte prefix. AVX and FMA instructions are encoded using a VEX prefix.
® VEX.vvvv. The VEX bitfield specifying a source or destination register (in 1’s complement form).

® rm_field: shorthand for the ModR/M r/m field and any REX.B

® reg_field: shorthand for the ModR/M reg field and any REX.R

® VLMAX: the maximum vector register width pertaining to the instruction. This is not the vector-length
encoding in the instruction's prefix but is instead determined by the current value of XCRO. For existing
processors, VLMAX is 256 whenever XFEATURE_ENABLED_MASK.YMM[Dbit 2] is 1. Future processors may
defined new bits in XFEATURE_ENABLED_MASK whose setting may imply other values for VLMAX.

VLMAX Definition
XCRO Component VLMAX
XCRO.YMM 256

5.3 INSTRUCTION SET REFERENCE

<AVX2 instructions are listed below>

Ref. # 319433-014 5-5

INSTRUCTION SET REFERENCE

MPSADBW — Multiple Sum of Absolute Differences

Opcode/ Op/ 64/32- CPUID Description
Instruction En bit Feature

Mode Flag
66 OF3A 42 /rib A VIV SSE4_1 Sums absolute 8-bit integer difference of adjacent groups of 4
MPSADBW xmm1, xmm2/m128, byte integers in xmm1 and xmm2/m128 and writes the results
imms in xmm1. Starting offsets within xmm1 and xmm2/m128 are

determined by imm8.

VEX.NDS.128.66.0F3A.WIG 42 /r B VIV AVX Sums absolute 8-bit integer difference of adjacent groups of 4
ib byte integers in xmm2 and xmm3/m128 and writes the results
VMPSADBW xmm1, xmm2, in xmm1. Starting offsets within xmm2 and xmm3/m128 are
xmm3/m128, imm8 determined by imm8.

VEX.NDS.256.66.0F3A.WIG 42 /r B VIV AVX2 Sums absolute 8-bit integer difference of adjacent groups of 4
ib byte integers in xmm2 and ymm3/m128 and writes the results
VMPSADBW ymm1, ymm?, in ymm/1. Starting offsets within ymm2 and xmm3/m128 are
ymm3/m256, imm8 determined by imm8.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)MPSADBW sums the absolute difference of 4 unsigned bytes (block_2) in the second source operand with
sequential groups of 4 unsigned bytes (block_1) in the first source operand. The immediate byte provides bit fields
that specify the initial offset of block_1 within the first source operand, and the offset of block_2 within the second
source operand. The offset granularity in both source operands are 32 bits. The sum-absolute-difference (SAD)
operation is repeated 8 times for (V)MPSADW between the same block_2 (fixed offset within the second source
operand) and a variable block_1 (offset is shifted by 8 bits for each SAD operation) in the first source operand. Each
16-bit result of eight SAD operations is written to the respective word in the destination operand.

128-bit Legacy SSE version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand.
Imm[2]*32 specifies the initial bit offset of the block 1 within the first source operand. The first source operand
and destination operand are the same. The first source and destination operands are XMM registers. The second
source operand is either an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM
destination register remain unchanged. Bits 7:3 of the immediate byte are ignored.

VEX.128 encoded version: Imm8[1:0]*32 specifies the bit offset of block_2 within the second source operand.
Imm[2]*32 specifies the initial bit offset of the block_1 within the first source operand. The first source and desti-
nation operands are XMM registers. The second source operand is either an XMM register or a 128-bit memory
location. Bits (127:128) of the corresponding YMM register are zeroed. Bits 7:3 of the immediate byte are ignored.

VEX.256 encoded version: The sum-absolute-difference (SAD) operation is repeated 8 times for MPSADW between
the same block_2 (fixed offset within the second source operand) and a variable block_1 (offset is shifted by 8 bits
for each SAD operation) in the first source operand. Each 16-bit result of eight SAD operations between block_2
and block_1 is written to the respective word in the lower 128 bits of the destination operand.

Additionally, VMPSADBW performs another eight SAD operations on block_4 of the second source operand and

block_3 of the first source operand. (Imm8[4:3]*32 + 128) specifies the bit offset of block_4 within the second
source operand. (Imm[5]*32+128) specifies the initial bit offset of the block_3 within the first source operand.
Each 16-bit result of eight SAD operations between block_4 and block_3 is written to the respective word in the
upper 128 bits of the destination operand.

The first source operand is a YMM register. The second source register can be a YMM register or a 256-bit memory
location. The destination operand is a YMM register. Bits 7:6 of the immediate byte are ignored.

5-6 Ref. #319433-014

INSTRUCTION SET REFERENCE

Imm[4:3]*32+128
255 224 192 | 128
Src2 A
& Imm([5]*32+128
|
H T
Src1
255 / / / l 144 128
Destination
Imm[1:0]*32
127 96 64 | 0
Src2 A
(R8s Imm(2]*32
|
y'4 |4 v
I
Src1
127 / / r/ l 16 0
Destination

Figure 5-1. VMPSADBW Operation

Operation

VMPSADBW (VEX.256 encoded version)

SRC2_OFFSET < imm8[1:0]*32

SRC1_OFFSET < imm8[2]*32

SRC1_BYTEQD € SRC1[SRC1_OFFSET+7:SRC1_OFFSET]
SRC1_BYTET € SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]
SRC1_BYTEZ2 € SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3 €« SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4 €<SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]
SRC1_BYTES € SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTEG < SRC1[SRCT_OFFSET+55:SRC1_OFFSET+48]
SRC1_BYTE7 < SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]
SRC1_BYTE8B € SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTEY9 € SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTET0 <« SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

Ref. # 319433-014

5-7

INSTRUCTION SET REFERENCE

SRC2_BYTEO <SRCZ[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTET & SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTEZ < SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3 < SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMPO < ABS(SRC1_BYTEO - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTEZ - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] « TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE1 - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTEZ - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTEZ - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[47:32] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE3 - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTES - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTEG - SRC2_BYTE3)
DEST[63:48] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE4 - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTES - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTEG - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTES - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTEG - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[95:80] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTEG - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTES - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[111:96] <« TEMPO + TEMP1 + TEMPZ2 + TEMP3

TEMPO < ABS(SRC1_BYTE7 - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTES - SRC2_BYTE1)

TEMP2 < ABS(SRC1_BYTES - SRC2_BYTE2)

TEMP3 < ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] €« TEMPO + TEMP1 + TEMPZ + TEMP3

SRC2_OFFSET < imm8[4:3]*32 + 128

SRC1_OFFSET < imm8[5]*32 + 128

SRC1_BYTEO < SRC1[SRC1_OFFSET+7:SRC1_OFFSET]
SRC1_BYTET <« SRC1[SRC1_OFFSET+15:SRC1_OFFSET+8]
SRC1_BYTEZ < SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3 < SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4 < SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]

5-8

Ref. #319433-014

SRC1_BYTES <« SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTEG < SRC1[SRC1_OFFSET+55:SRCT_OFFSET+48]
SRC1_BYTE7 < SRC1[SRC1_OFFSET+63:SRC1_OFFSET+56]
SRC1_BYTE8 < SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTEY9 < SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTE10 <« SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTEOD <SRCZ[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTET < SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTEZ < SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3 < SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMPO < ABS(SRC1_BYTEO - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTET - SRC2_BYTET1)
TEMP2 < ABS(SRC1_BYTEZ - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[143:128] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO <ABS(SRC1_BYTET - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTEZ - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE3 - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[159:144] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTEZ - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTE3 - SRC2_BYTET1)
TEMP2 < ABS(SRC1_BYTE4 - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[175:160] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO <ABS(SRC1_BYTE3 - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTES - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTEG - SRC2_BYTE3)
DEST[191:176] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE4 - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTES - SRC2_BYTET1)
TEMP2 < ABS(SRC1_BYTEG - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[207:192] <« TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTES - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTEG - SRC2_BYTET1)
TEMP2 < ABS(SRC1_BYTE7 - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[223:208] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTEG - SRC2_BYTEO)
TEMP1 < ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTES - SRC2_BYTEZ)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[239:224] < TEMPO + TEMP1 + TEMPZ + TEMP3

TEMPO < ABS(SRC1_BYTE7 - SRC2_BYTEO)

TEMP1 < ABS(SRC1_BYTES - SRC2_BYTET1)

TEMP2 < ABS(SRC1_BYTES - SRC2_BYTE2)

TEMP3 < ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[255:240] < TEMPO + TEMP1 + TEMPZ + TEMP3

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-9

INSTRUCTION SET REFERENCE

VMPSADBW (VEX.128 encoded version)

SRC2_OFFSET < imm8[1:0]*32

SRC1_OFFSET < imm8[2]*32

SRC1_BYTEO ¢ SRC1[SRC1_OFFSET+7:SRCT_OFFSET]
SRC1_BYTET € SRC1[SRC1_OFFSET+15:SRCT_OFFSET+8]
SRC1_BYTEZ2 € SRC1[SRC1_OFFSET+23:SRC1_OFFSET+16]
SRC1_BYTE3 € SRC1[SRC1_OFFSET+31:SRC1_OFFSET+24]
SRC1_BYTE4 € SRC1[SRC1_OFFSET+39:SRC1_OFFSET+32]
SRC1_BYTES € SRC1[SRC1_OFFSET+47:SRC1_OFFSET+40]
SRC1_BYTEG ¢ SRC1[SRC1_OFFSET+55:SRCT_OFFSET+48]
SRC1_BYTE7 € SRC1[SRC1_OFFSET+63:SRCT_OFFSET+56]
SRC1_BYTE8B ¢ SRC1[SRC1_OFFSET+71:SRC1_OFFSET+64]
SRC1_BYTE9 € SRC1[SRC1_OFFSET+79:SRC1_OFFSET+72]
SRC1_BYTE10 € SRC1[SRC1_OFFSET+87:SRC1_OFFSET+80]

SRC2_BYTEO <SRCZ[SRC2_OFFSET+7:SRC2_OFFSET]
SRC2_BYTE1 & SRC2[SRC2_OFFSET+15:SRC2_OFFSET+8]
SRC2_BYTEZ < SRC2[SRC2_OFFSET+23:SRC2_OFFSET+16]
SRC2_BYTE3 < SRC2[SRC2_OFFSET+31:SRC2_OFFSET+24]

TEMPO < ABS(SRC1_BYTEO - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE1 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTEZ - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTE3 - SRC2_BYTE3)
DEST[15:0] « TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE1 - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTEZ - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE3 - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTE4 - SRC2_BYTE3)
DEST[31:16] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTEZ - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE3 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE4 - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[47:32] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE3 - SRC2_BYTEO)

TEMP1 < ABS(SRC1_BYTE4 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTES - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTEG - SRC2_BYTE3)
DEST[63:48] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTE4 - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTES - SRC2_BYTET1)
TEMP2 < ABS(SRC1_BYTEG - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTE7 - SRC2_BYTE3)
DEST[79:64] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTES - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTEG - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTE7 - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)
DEST[95:80] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(SRC1_BYTEG - SRC2_BYTEOQ)

TEMP1 < ABS(SRC1_BYTE7 - SRC2_BYTE1)
TEMP2 < ABS(SRC1_BYTES - SRC2_BYTE2)
TEMP3 < ABS(SRC1_BYTES - SRC2_BYTE3)

5-10

Ref. #319433-014

INSTRUCTION SET REFERENCE

DEST[111:96] < TEMPO + TEMP1 + TEMPZ2 + TEMP3

TEMPO < ABS(SRC1_BYTE7 - SRC2_BYTEO)

TEMP1 < ABS(SRC1_BYTES - SRC2_BYTET1)

TEMP2 < ABS(SRC1_BYTES - SRC2_BYTEZ)

TEMP3 < ABS(SRC1_BYTE10 - SRC2_BYTE3)
DEST[127:112] <« TEMPO + TEMP1 + TEMPZ + TEMP3

DEST[VLMAX:128] « O

MPSADBW (128-bit Legacy SSE version)

SRC_OFFSET < imm8[1:0]*32

DEST_OFFSET < imm8[2]*32

DEST_BYTEQ < DEST[DEST_OFFSET+7:DEST_OFFSET]
DEST_BYTET < DEST[DEST_OFFSET+15:DEST_OFFSET+8]
DEST_BYTE2 < DEST[DEST_OFFSET+23:DEST_OFFSET+16]
DEST_BYTE3 <« DEST[DEST_OFFSET+31:DEST_OFFSET+24]
DEST_BYTE4 < DEST[DEST_OFFSET+39:DEST_OFFSET+32]
DEST_BYTES € DEST[DEST_OFFSET+47:DEST_OFFSET+40]
DEST_BYTEG < DEST[DEST_OFFSET+55:DEST_OFFSET+48]
DEST_BYTE7 €« DEST[DEST_OFFSET+63:DEST_OFFSET+56]
DEST_BYTEB < DEST[DEST_OFFSET+71:DEST_OFFSET+64]
DEST_BYTE9 < DEST[DEST_OFFSET+79:DEST_OFFSET+72]
DEST_BYTET0 <« DEST[DEST_OFFSET+87:DEST_OFFSET+80]

SRC_BYTEO <SRC[SRC_OFFSET+7:SRC_OFFSET]
SRC_BYTE1 & SRC[SRC_OFFSET+15:SRC_OFFSET+8]
SRC_BYTEZ2 <SRC[SRC_OFFSET+23:SRC_OFFSET+16]
SRC_BYTE3 < SRC[SRC_OFFSET+31:SRC_OFFSET+24]

TEMPO < ABS(DEST_BYTEO - SRC_BYTEQ)

TEMP1 < ABS(DEST_BYTET - SRC_BYTET)

TEMP2 < ABS(DEST_BYTEZ - SRC_BYTEZ2)

TEMP3 < ABS(DEST_BYTE3 - SRC_BYTE3)
DEST[15:0] « TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(DEST_BYTET - SRC_BYTEQ)

TEMP1 < ABS(DEST_BYTEZ - SRC_BYTET)

TEMP2 < ABS(DEST_BYTE3 - SRC_BYTEZ2)

TEMP3 < ABS(DEST_BYTE4 - SRC_BYTE3)
DEST[31:16] <« TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(DEST_BYTEZ - SRC_BYTEOQ
TEMP1 < ABS(DEST_BYTE3 - SRC_BYTE1
TEMP2 < ABS(DEST_BYTE4 - SRC_BYTEZ2
TEMP3 < ABS(DEST_BYTES - SRC_BYTE3
DEST[47:32] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(DEST_BYTE3 - SRC_BYTEQ)

TEMP1 < ABS(DEST_BYTE4 - SRC_BYTET)

TEMP2 < ABS(DEST_BYTES - SRC_BYTEZ2)

TEMP3 < ABS(DEST_BYTEG - SRC_BYTE3)
DEST[63:48] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(DEST_BYTE4 - SRC_BYTEQ)

TEMP1 < ABS(DEST_BYTES - SRC_BYTET)

TEMP2 < ABS(DEST_BYTEG - SRC_BYTEZ2)

TEMP3 <ABS(DEST_BYTE? - SRC_BYTE3)

—_— — — —

Ref. # 319433-014 5-11

INSTRUCTION SET REFERENCE

DEST[79:64] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(DEST_BYTES - SRC_BYTEQ)

TEMP1 < ABS(DEST_BYTEG - SRC_BYTET)

TEMP2 < ABS(DEST_BYTE7 - SRC_BYTEZ2)

TEMP3 < ABS(DEST_BYTES - SRC_BYTE3)
DEST[95:80] < TEMPO + TEMP1 + TEMPZ + TEMP3
TEMPO < ABS(DEST_BYTEG - SRC_BYTEQ)

TEMP1 < ABS(DEST_BYTE7 - SRC_BYTET)

TEMP2 < ABS(DEST_BYTES - SRC_BYTEZ2)

TEMP3 < ABS(DEST_BYTES - SRC_BYTE3)
DEST[111:96] <« TEMPO + TEMP1 + TEMPZ2 + TEMP3

TEMPO < ABS(DEST_BYTE7 - SRC_BYTEQ)
TEMP1 < ABS(DEST_BYTES - SRC_BYTET)
TEMP2 < ABS(DEST_BYTES - SRC_BYTEZ2)
TEMP3 < ABS(DEST_BYTE10 - SRC_BYTE3)
DEST[127:112] &« TEMPO + TEMP1 + TEMP2Z + TE
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(VIMPSADBW: __m128i _mm_mpsadbw_epu8 (__m128is1,__m128is2, const int mask);

VMPSADBW: __m256i _mm256_mpsadbw_epu8 (__m256is1, __m256i s2, const int mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-12

Ref. #319433-014

INSTRUCTION SET REFERENCE

PABSB/PABSW/PABSD — Packed Absolute Value

Opcode/ Op/ 64/32- CPUID Description
Instruction En bit Feature

Mode Flag
66 0F381C/r A VIV SSSE3 Compute the absolute value of bytes in xmm2/m128 and store
PABSB xmm1, xmm2/m128 UNSIGNED result in xmm1.
66 OF 381D /r A VIV SSSE3 Compute the absolute value of 16-bit integers in xmm2/m128
PABSW xmm1, xmm2/m128 and store UNSIGNED result in xmm1.
66 OF 38 1E/r A VIV SSSE3 Compute the absolute value of 32-bit integers in xmm2/m128
PABSD xmm1, xmm2/m128 and store UNSIGNED result in xmm1.
VEX.128.66.0F38WIG 1C/r A VIV AVX Compute the absolute value of bytes in xmm2/m128 and store
VPABSB xmm1, xmm2/m128 UNSIGNED result in xmm1.
VEX.128.66.0F38WIG 1D /r A VIV AVX Compute the absolute value of 16-bit integers in xmm2/m128
VPABSW xmm1, xmm2/m128 and store UNSIGNED result in xmm1.
VEX.128.66.0F38.WIG 1E/r A VIV AVX Compute the absolute value of 32-bit integers in xmm2/m128
VPABSD xmm1, xmm2/m128 and store UNSIGNED result in xmm1.
VEX.256.66.0F38.WIG 1C/r A VIV AVX2 Compute the absolute value of bytes in ymm2/m256 and store
VPABSB ymm1, ymm2/m256 UNSIGNED result in ymm1.
VEX.256.66.0F38.WIG 1D /r A VIV AVX2 Compute the absolute value of 16-bit integers in ymm2/m256
VPABSW ymm1, ymm2/m256 and store UNSIGNED result in ymm1.
VEX.256.66.0F38.WIG 1E /r A VIV AVX2 Compute the absolute value of 32-bit integers in ymm2/m256
VPABSD ymm1, ymm2/m256 and store UNSIGNED result in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

(V)PABSB/W/D computes the absolute value of each data element of the source operand (the second operand) and
stores the UNSIGNED results in the destination operand (the first operand). (V)PABSB operates on signed bytes,
(V)PABSW operates on 16-bit words, and (V)PABSD operates on signed 32-bit integers. The source operand can be
an XMM register or a YMM register or a 128-bit memory location or 256-bit memory location. The destination
operand can be an XMM or a YMM register. Both operands can be MMX register or XMM registers.

VEX.256 encoded version: The first source operand is a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

VEX.128 encoded version: The source operand is an XMM register or 128-bit memory location. The destination
operand is an XMM register. The upper bits (255:128) of the corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The source operand can be an XMM register or a 128-bit memory location. The desti-
nation is not distinct from the first source XMM register and the upper bits (255:128) of the corresponding YMM
register destination are unmodified.

Ref. # 319433-014 5-13

INSTRUCTION SET REFERENCE

Operation

PABSB with 128 bit operands:
Unsigned DEST[7:0] € ABS(SRC[7:.0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120] €< ABS(SRC[127:120])

VPABSB with 128 bit operands:
Unsigned DEST[7:0] € ABS(SRC[7:.0])
Repeat operation for 2nd through 15th bytes
Unsigned DEST[127:120]« ABS(SRC[127:120])

VPABSB with 256 bit operands:
Unsigned DEST[7:0]¢ ABS(SRC[7:.0])
Repeat operation for 2nd through 31st bytes
Unsigned DEST[255:248] < ABS(SRC[255:248])

PABSW with 128 bit operands:
Unsigned DEST[15:0]¢ ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112]« ABS(SRC[127:112])

VPABSW with 128 bit operands:
Unsigned DEST[15:0] < ABS(SRC[15:0])
Repeat operation for 2nd through 7th 16-bit words
Unsigned DEST[127:112]¢ ABS(SRC[127:112])

VPABSW with 256 bit operands:
Unsigned DEST[15:0]¢ ABS(SRC[15:0])
Repeat operation for 2nd through 15th 16-bit words
Unsigned DEST[255:240] < ABS(SRC[255:240])

PABSD with 128 bit operands:
Unsigned DEST[31:0]¢ ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96]< ABS(SRC[127:96])

VPABSD with 128 bit operands:
Unsigned DEST[31:0]¢ ABS(SRC[31:0])
Repeat operation for 2nd through 3rd 32-bit double words
Unsigned DEST[127:96]< ABS(SRC[127:96])

VPABSD with 256 bit operands:
Unsigned DEST[31:0] < ABS(SRC[31:0])
Repeat operation for 2nd through 7th 32-bit double words
Unsigned DEST[255:224] €< ABS(SR(C[255:224])

Intel C/C++ Compiler Intrinsic Equivalent
PABSB: __m128i _mm_abs_epi8 (_m128i a)

VPABSB: _ m128i _mm_abs_epi8 (__m128ia)
VPABSB: __m256i _mm256_abs_epi8 (__m256i a)

5-14

Ref. #319433-014

PABSW: __m128i _mm_abs_epi16 (__m128ia)
VPABSW: _ m128i_mm_abs_epi16 (__m128ia)
VPABSW: _ m256i_mm256_abs_epil6 (__m256i a)
PABSD: __m128i _mm_abs_epi32 (__m128ia)
VPABSD: _ m128i_mm_abs_epi32 (__m128ia)
VPABSD: __ m256i_mm256_abs_epi32 (__m256i a)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-15

INSTRUCTION SET REFERENCE

PACKSSWB/PACKSSDW — Pack with Signed Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 0OF63/r A VIV SSE2 Converts 8 packed signed word integers from xmm1 and from
PACKSSWB xmm1, xmm2/m128 xxm2/m128into 16 packed signed byte integers in xmm1 using
signed saturation.
66 OF 6B /r A VIV SSE2 Converts 4 packed signed doubleword integers from xmm1 and
PACKSSDW xmm1, xmm2/m128 from xmmZ2/m128into 8 packed signed word integers in
xmm7using signed saturation.
VEX.NDS.128.66.0F.WIG 63 /r B VIV AVX Converts 8 packed signed word integers from xmmZ and from
VPACKSSWB xmm1, xmm2, xmm3/m128into 16 packed signed byte integers in xmm1 using
xmm3/m128 signed saturation.
VEX.NDS.128.66.0F.WIG 6B /r B VIV AVX Converts 4 packed signed doubleword integers from xmmZ2 and
VPACKSSDW xmm1, xmm2, from xmm3/m128into 8 packed signed word integers in
xmm3/m128 xmm1using signed saturation.

VEX.NDS.256.66.0F.WIG 63 /r B VIV AVX2 Converts 16 packed signed word integers from ymmZ and from
VPACKSSWB ymm1, ymm?2, ymm3/m256 into 32 packed signed byte integers in ymm1 using

ymm3/m256 signed saturation.

VEX.NDS.256.66.0F.WIG 6B /r B VIV AVX2 Converts 8 packed signed doubleword integers from ymmZ and
VPACKSSDW ymm1, ymm2, from ymm3/m256 into 16 packed signed word integers in
ymm3/m256 ymm1using signed saturation.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvwv ModRM:r/m (r) NA
Description

The PACKSSWB or VPACKSSWB instruction converts 8 or 16 signed word integers from the first source operand and
8 or 16 signed word integers from the second source operand into 16 or 32 signed byte integers and stores the
result in the destination operand. If a signed word integer value is beyond the range of a signed byte integer (that
is, greater than 7FH for a positive integer or greater than 80H for a negative integer), the saturated signed byte
integer value of 7FH or 80H, respectively, is stored in the destination.

The PACKSSDW instruction packs 4 or 8 signed doublewords from the first source operand and 4 or 8 signed
doublewords from the second source operand into 8 or 16 signed words in the destination operand. If a signed
doubleword integer value is beyond the range of a signed word (that is, greater than 7FFFH for a positive integer
or greater than 8000H for a negative integer), the saturated signed word integer value of 7FFFH or 8000H, respec-
tively, is stored into the destination.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

5-16 Ref. #319433-014

Operation

PACKSSWB instruction (128-bit Legacy SSE version)

DEST[7:0]« SaturateSignedWordToSignedByte (DEST[15:0]);
DEST[15:8] € SaturateSignedWordToSignedByte (DEST[31:16]);
DEST[23:16] < SaturateSignedWordToSignedByte (DEST[47:32]);
DEST[31:24] < SaturateSignedWordToSignedByte (DEST[63:48]);
DEST[39:32] < SaturateSignedWordToSignedByte (DEST[79:64]);
DEST[47:40] < SaturateSignedwWordToSignedByte (DEST[95:80]);
DEST[55:48] < SaturateSignedWordToSignedByte (DEST[111:96]);
DEST[63:56] < SaturateSignedWordToSignedByte (DEST[127:112]);
DEST[71:64] < SaturateSignedWordToSignedByte (SRC[15:0]);
DEST[79:72] € SaturateSignedWordToSignedByte (SRC[31:16]);
DEST[87:80] < SaturateSignedwWordToSignedByte (SRC[47:32]);
DEST[95:88] < SaturateSignedWordToSignedByte (SRC[63:48]);
DEST[103:96] < SaturateSignedWordToSignedByte (SRC[79:64]);
DEST[111:104] €< SaturateSignedWordToSignedByte (SRC[95:801]);
DEST[119:112] € SaturateSignedWordToSignedByte (SRC[111:96]);
DEST[127:120] < SaturateSignedWordToSignedByte (SRC[127:112]);

— . — p—

PACKSSDW instruction (128-bit Legacy SSE version)

DEST[15:0] € SaturateSignedDwordToSignedWord (DEST[31:0]);
DEST[31:16] € SaturateSignedDwordToSignedWord (DEST[63:32]);
DEST[47:32] € SaturateSignedDwordToSignedWord (DEST[95:64]);
DEST[63:48] < SaturateSignedDwordToSignedWord (DEST[127:96]);
DEST[79:64] < SaturateSignedDwordToSignedWord (SRC[31:0]);
DEST[95:80] <« SaturateSignedDwordToSignedWord (SRC[63:32]);
DEST[111:96] < SaturateSignedDwordToSignedWord (SRC[95:64]);
DEST[127:112] € SaturateSignedDwordToSignedWord (SRC[127:96]);

VPACKSSWB instruction (VEX.128 encoded version)

DEST[7:0]« SaturateSignedwWordToSignedByte (SRC1[15:0]);
DEST[15:8] € SaturateSignedWordToSignedByte (SRC1[31:16]);
DEST[23:16] € SaturateSignedWordToSignedByte (SRC1[47:32]);
DEST[31:24] < SaturateSignedWordToSignedByte (SRC1[63:48]);
DEST[39:32] < SaturateSignedWordToSignedByte (SRC1[79:64])
DEST[47:40] < SaturateSignedWordToSignedByte (SRC1[95:80]);
DEST[55:48] < SaturateSignedWordToSignedByte (SRC1[111:96]);
DEST[63:56] €< SaturateSignedWordToSignedByte (SRC1[127:112]);
DEST[71:64] < SaturateSignedWordToSignedByte (SRC2[15:0]);
DEST[79:72] € SaturateSignedWordToSignedByte (SRC2[31:16]);
DEST[87:80] < SaturateSignedWordToSignedByte (SRC2[47:32]);
DEST[95:88] < SaturateSignedWordToSignedByte (SRC2[63:48]);
DEST[103:96] < SaturateSignedWordToSignedByte (SRC2[79:64]);
DEST[111:104] €« SaturateSignedWordToSignedByte (SRC2[95:801));
DEST[119:112] € SaturateSignedWordToSignedByte (SRC2[111:96]);
DEST[127:120] < SaturateSignedWordToSignedByte (SRC2[127:112]);
DEST[VLMAX:128]< O;

i

o~ p— p— p— p— p— p—

VPACKSSDW instruction (VEX.128 encoded version)

DEST[15:0] € SaturateSignedDwordToSignedWord (SRC1[31:0]);
DEST[31:16] €« SaturateSignedDwordToSignedWord (SRC1[63:32]);
DEST[47:32] < SaturateSignedDwordToSignedWord (SRC1[95:64]);
DEST[63:48] < SaturateSignedDwordToSignedWord (SRC1[127:96]);

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-17

INSTRUCTION SET REFERENCE

DEST[79:64] < SaturateSignedDwordToSignedWord (SRC2[31:0]);
DEST[95:80] < SaturateSignedDwordToSignedWord (SRC2[63:32]);
DEST[111:96] < SaturateSignedDwordToSignedWord (SRC2[95:64]);
DEST[127:112] €« SaturateSignedDwordToSignedWord (SRC2[127:96]);
DEST[VLMAX:128]¢ 0;

VPACKSSWB instruction (VEX.256 encoded version)
DEST[7:0]« SaturateSignedWordToSignedByte (SRC1[15:0]);
DEST[15:8] < SaturateSignedWordToSignedByte (SRC1[31:16]);
DEST[23:16] € SaturateSignedWordToSignedByte (SRC1[47:32]);
DEST[31:24] € SaturateSignedWordToSignedByte (SRC1[63:48));
DEST[39:32] €« SaturateSignedWordToSignedByte (SRC1[79:64])
DEST[47:40] € SaturateSignedWordToSignedByte (SRC1[95:801);
DEST[55:48] < SaturateSignedWordToSignedByte (SRC1[111:96]);
DEST[63:56] < SaturateSignedWordToSignedByte (SRC1[127:112]);
DEST[71:64] € SaturateSignedWordToSignedByte (SRC2[15:0]);
DEST[79:72] € SaturateSignedWordToSignedByte (SRC2[31:16]);
DEST[87:80] < SaturateSignedWordToSignedByte (SRC2[47:32]);
DEST[95:88] < SaturateSignedWordToSignedByte (SRC2[63:48));
DEST[103:96] < SaturateSignedWordToSignedByte (SRC2[79:64]);
DEST[111:104] < SaturateSignedwWordToSignedByte (SRC2[95:80]);
DEST[119:112] &« SaturateSignedWordToSignedByte (SRC2[111:96]);
DEST[127:120] < SaturateSignedWordToSignedByte (SRC2[127:112]);
DEST[135:128]« SaturateSignedWordToSignedByte (SRC1[143:128]);
DEST[143:136] < SaturateSignedWordToSignedByte (SRC1[159:144])
DEST[151:144] < SaturateSignedWordToSignedByte (SRC1[175:160])
DEST[159:152] < SaturateSignedwWordToSignedByte (SRC1[191:176])
DEST[167:160] < SaturateSignedWordToSignedByte (SRC1[207:192])
DEST[175:168] < SaturateSignedwWordToSignedByte (SRC1[223:208])
DEST[183:176] < SaturateSignedWordToSignedByte (SRC1[239:224])
DEST[191:184] < SaturateSignedWordToSignedByte (SRC1[255:240]);
DEST[199:192] < SaturateSignedWordToSignedByte (SRC2[143:128]);

)
)
)
)
)
)
)

I’

—~ o~~~ o~~~ —~

r

r

r

r

I’

"

DEST[207:200] €« SaturateSignedWordToSignedByte (SRC2[159:144]
DEST[215:208] < SaturateSignedWordToSignedByte (SRC2[175:160]
DEST[223:216] € SaturateSignedWordToSignedByte (SRC2[191:176]
DEST[231:224] €< SaturateSignedWordToSignedByte (SRC2[207:192]
DEST[239:232] €« SaturateSignedWordToSignedByte (SRC2[223:208]
DEST[247:240] < SaturateSignedWordToSignedByte (SRC2[239:224]
DEST[255:248] < SaturateSignedWordToSignedByte (SRC2[255:240]

r

r

r

I’

r

r

Py

r

VPACKSSDW instruction (VEX.256 encoded version)
DEST[15:0] € SaturateSignedDwordToSignedwWord (SRC1[31:0]);
DEST[31:16] €« SaturateSignedDwordToSignedWord (SRC1[63:32]);
DEST[47:32] € SaturateSignedDwordToSignedWord (SRC1[95:64));
DEST[63:48] < SaturateSignedDwordToSignedwWord (SRC1[127:96]);
DEST[79:64] < SaturateSignedDwordToSignedWord (SRC2[31:0]);
DEST[95:80] < SaturateSignedDwordToSignedwWord (SRC2[63:32]);
DEST[111:96] < SaturateSignedDwordToSignedWord (SRC2[95:64]);
DEST[127:112] €« SaturateSignedDwordToSignedWord (SRC2[127:96]);

DEST[143:128] < SaturateSignedDwordToSignedWord (SRC1[159:128]
DEST[159:144] < SaturateSignedDwordToSignedWord (SRC1[191:160]
DEST[175:160] < SaturateSignedDwordToSignedWord (SRC1[223:192]
DEST[191:176] < SaturateSignedDwordToSignedWord (SRC1[255:224]
DEST[207:192] € SaturateSignedDwordToSignedWord (SRC2[159:128]

5-18

Ref. #319433-014

INSTRUCTION SET REFERENCE

DEST[223:208] < SaturateSignedDwordToSignedword (SRC2[191:160]);
DEST[239:224] < SaturateSignedDwordToSignedwWord (SRC2[223:192]);
DEST[255:240] < SaturateSignedDwordToSignedwWord (SRC2[255:224]);

Intel C/C++ Compiler Intrinsic Equivalent

(V)PACKSSWB: __m128i _mm_packs_epi16(_m128im1,_m128i m2)
(V)PACKSSDW: __m128i _mm_packs_epi32(_m128im1,_m128i m2)
VPACKSSWB: __m256i _mm256_packs_epi16(_m256i m1, __m256i m2)
VPACKSSDW: __m256i _mm256_packs_epi32(_m256i m1, _m256i m2)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-19

INSTRUCTION SET REFERENCE

PACKUSDW — Pack with Unsigned Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 0F382B/r A VIV SSE4_1 Convert 4 packed signed doubleword integers from xmm1 and 4
PACKUSDW xmm1, xmm2/m128 packed signed doubleword integers from xmm2/m128into 8
packed unsigned word integers in xmm1 using unsigned satura-
tion.
VEX.NDS.128.66.0F38wIG2B/r B VIV AVX Convert 4 packed signed doubleword integers from xmmZ2 and 4
VPACKUSDW xmm1,xmm2, packed signed doubleword integers from xmm3/m128into 8
xmm3/m128 packed unsigned word integers in xmm1 using unsigned satura-
tion.

VEX.NDS.256.66.0F38WIG2B/r B VIV AVX2 Convert 8 packed signed doubleword integers from ymmZ and 8

VPACKUSDW ymm1, ymm2, packed signed doubleword integers from ymm3/m128into 16
ymm3/m256 packed unsigned word integers in ymm1 using unsigned satura-
tion.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
Description

Converts packed signed doubleword integers into packed unsigned word integers using unsigned saturation to
handle overflow conditions. If the signed doubleword value is beyond the range of an unsigned word (that is,
greater than FFFFH or less than 0000H), the saturated unsigned word integer value of FFFFH or O000H, respec-
tively, is stored in the destination.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

Operation

PACKUSDW (Legacy SSE instruction)

TMP[15:0] < (DEST[31:0] < 0)? 0 : DEST[15:0];

DEST[15:0] « (DEST[31:0] > FFFFH) ? FFFFH : TMP[15:0];
TMP[31:16] €« (DEST[63:32] < 0)? 0: DEST[47:32];
DEST[31:16] €« (DEST[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] € (DEST[95:64] < 0)? 0 : DEST[79:64];
DEST[47:32] € (DEST[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] €« (DEST[127:96] < 0)? 0 : DEST[111:96];
DEST[63:48] < (DEST[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] < (SRC[31:0] < 0) ? 0: SRC[15:0];

DEST[63:48] < (SRC[31:0] > FFFFH) ? FFFFH : TMP[79:64] ;
TMP[95:80] € (SRC[63:32] < 0) 7 0: SRC[47:32];

5-20 Ref. #319433-014

DEST[95:80] € (SRC[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] & (SRC[95:64] < 0)? O': SRC[79:64];

DEST[111:96] € (SRC[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] € (SRC[127:96] < 0)? 0': SRC[111:96];
DEST[127:112] € (SRC[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;

PACKUSDW (VEX.128 encoded version)

TMP[15:0] € (SRC1[31:0] < 0)? 0: SRC1[15:0];

DEST[15:0] € (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0] ;
TMP[31:16] € (SRC1[63:32] < 0)? 0: SRC1[47:32];

DEST[31:16] €« (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] € (SRC1[95:64] < 0)? 0: SRC1[79:64];

DEST[47:32] € (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] €< (SRC1[127:96] < 0)? 0: SRC1[111:96];
DEST[63:48] < (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] €< (SRC2[31:0] < 0)? 0: SRC2[15:0];

DEST[63:48] < (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64];
TMP[95:80] € (SRC2[63:32] < 0) ? 0: SRC2[47:32];

DEST[95:80] €« (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] € (SRC2[95:64] < 0) ? 0: SRC2[79:64];
DEST[111:96] €« (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] € (SRC2[127:96] < 0)? 0: SRC2[111:96];
DEST[127:112] € (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112];
DEST[VLMAX:128] < O;

VPACKUSDW (VEX.256 encoded version)

TMP[15:0] € (SRC1[31:0] < 0)? 0: SRC1[15:0];

DEST[15:0] € (SRC1[31:0] > FFFFH) ? FFFFH : TMP[15:0];
TMP[31:16] € (SRC1[63:32] < 0)? 0: SRC1[47:32];

DEST[31:16] €« (SRC1[63:32] > FFFFH) ? FFFFH : TMP[31:16] ;
TMP[47:32] € (SRC1[95:64] < 0)? 0: SRC1[79:64];

DEST[47:32] € (SRC1[95:64] > FFFFH) ? FFFFH : TMP[47:32] ;
TMP[63:48] €< (SRC1[127:96] < 0)? 0: SRC1[111:96];
DEST[63:48] < (SRC1[127:96] > FFFFH) ? FFFFH : TMP[63:48] ;
TMP[79:64] < (SRC2[31:0] < 0)? 0: SRC2[15:0];

DEST[63:48] < (SRC2[31:0] > FFFFH) ? FFFFH : TMP[79:64];
TMP[95:80] € (SRC2[63:32] < 0) ? 0: SRC2[47:32];

DEST[95:80] €« (SRC2[63:32] > FFFFH) ? FFFFH : TMP[95:80] ;
TMP[111:96] € (SRC2[95:64] < 0) ? 0: SRC2[79:64];
DEST[111:96] €« (SRC2[95:64] > FFFFH) ? FFFFH : TMP[111:96] ;
TMP[127:112] € (SRC2[127:96]1 < 0)? 0: SRC2[111:96];
DEST[128:112] € (SRC2[127:96] > FFFFH) ? FFFFH : TMP[127:112] ;
TMP[143:128] € (SRC1[159:128] < 0)? 0: SRC1[143:128];

DEST[143:128] < (SRC1[159:128] > FFFFH) ? FFFFH : TMP[143:128] ;

TMP[159:144] < (SRC1[191:160] < 0) 7 0 : SRC1[175:160];

DEST[159:144] < (SRC1[191:160] > FFFFH) ? FFFFH : TMP[159:144] ;

TMP[175:160] € (SRC1[223:192] < 0) 7 0: SRC1[207:192];

DEST[175:160] €« (SRC1[223:192] > FFFFH) ? FFFFH : TMP[175:160] ;

TMP[191:176] € (SRC1[255:224] < 0) 7 0: SRC1[239:224];

DEST[191:176] <« (SRC1[255:224] > FFFFH) ? FFFFH : TMP[191:176] ;

TMP[207:192] € (SRC2[159:128] < 0) 7 0: SRC2[143:128];

DEST[207:192] < (SRC2[159:128] > FFFFH) ? FFFFH : TMP[207:192] ;

TMP[223:208] € (SRC2[191:160] < 0) 7 0 : SRC2[175:160];

DEST[223:208] < (SRC2[191:160] > FFFFH) ? FFFFH : TMP[223:208] ;

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-21

INSTRUCTION SET REFERENCE

TMP[239:224] € (SRC2[223:192] < 0) 7 0: SRC2[207:192];
DEST[239:224] < (SRC2[223:192] > FFFFH) ? FFFFH : TMP[239:224] ;
TMP[255:240] € (SRC2[255:224] < 0) 7 0: SRC2[239:224];
DEST[255:240] < (SRC2[255:224] > FFFFH) ? FFFFH : TMP[255:240] ;

Intel C/C++ Compiler Intrinsic Equivalent
(V)PACKUSDW: __m128i _mm_packus_epi32(_m128im1, __m128i m2);
VPACKUSDW: __m256i _mm256_packus_epi32(_m256i m1, __m256i m2);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-22 Ref. #319433-014

INSTRUCTION SET REFERENCE

PACKUSWB — Pack with Unsigned Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag

66 OF 67 /r A VIV SSE2 Converts 8 signed word integers from xmm7 and 8 signed word
PACKUSWB xmm1, xmm2/m128 integers from xmmZ2/m128into 16 unsigned byte integers in

xmm1 using unsigned saturation.
VEX.NDS.128.66.0F.WIG 67 /r B VIV AVX Converts 8 signed word integers from xmmZ2 and 8 signed word
VPACKUSWB xmm1,xmm2, integers from xmm3/m128into 16 unsigned byte integers in
xmm3/m128 xmm1 using unsigned saturation.
VEX.NDS.256.66.0F.WIG 67 /r B VIV AVX2 Converts 16 signed word integers from ymmZ2 and 16signed word
VPACKUSWB ymm1, ymm2, integers from ymm3/m256 into 32 unsigned byte integers in
ymm3/m256 ymm1 using unsigned saturation.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Converts 8 or 16 signed word integers from the first source operand and 8 or 16 signed word integers from the
second source operand into 16 or 32 unsigned byte integers and stores the result in the destination operand. If a
signed word integer value is beyond the range of an unsigned byte integer (that is, greater than FFH or less than
00H), the saturated unsigned byte integer value of FFH or OOH, respectively, is stored in the destination.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

Operation

PACKUSWB (Legacy SSE instruction)
DEST[7:0]¢SaturateSignedWordToUnsignedByte (DEST[15:0]);
DEST[15:8] <« SaturateSignedWordToUnsignedByte (DEST[31:16]);
DEST[23:16] <SaturateSignedWordToUnsignedByte (DEST[47:32]);
DEST[31:24] €< SaturateSignedWordToUnsignedByte (DEST[63:48]);
DEST[39:32] €< SaturateSignedWordToUnsignedByte (DEST[79:64]);
DEST[47:40] < SaturateSignedWordToUnsignedByte (DEST[95:80]);
DEST[55:48] < SaturateSignedWordToUnsignedByte (DEST[111:96]);
DEST[63:56] < SaturateSignedWordToUnsignedByte (DEST[127:112]);
DEST[71:64] < SaturateSignedwWordToUnsignedByte (SRC[15:0]);
DEST[79:72] < SaturateSignedwWordToUnsignedByte (SRC[31:16]);
DEST[87:80] < SaturateSignedWordToUnsignedByte (SRC[47:32]);
DEST[95:88] < SaturateSignedWordToUnsignedByte (SRC[63:48));
DEST[103:96] €< SaturateSignedWordToUnsignedByte (SRC[79:64]);
DEST[111:104] €< SaturateSignedWordToUnsignedByte (SRC[95:80]);

Ref. # 319433-014 5-23

INSTRUCTION SET REFERENCE

DEST[119:112] €« SaturateSignedWordToUnsignedByte (SRC[111:96]);
DEST[127:120] < SaturateSignedWordToUnsignedByte (SRC[127:112]);

PACKUSWB (VEX.128 encoded version)
DEST[7:0]« SaturateSignedWordToUnsignedByte (SRC1[15:01);
DEST[15:8] < SaturateSignedwWordToUnsignedByte (SRC1[31:16]);
DEST[23:16] <SaturateSignedWordToUnsignedByte (SRC1[47:32]);
DEST[31:24] €< SaturateSignedWordToUnsignedByte (SRC1[63:48]);
DEST[39:32] < SaturateSignedWordToUnsignedByte (SRC1[79:64]);
DEST[47:40] < SaturateSignedWordToUnsignedByte (SRC1[95:801);
DEST[55:48] < SaturateSignedWordToUnsignedByte (SRC1[111:96]);
DEST[63:56] < SaturateSignedWordToUnsignedByte (SRC1[127:112]);
DEST[71:64] € SaturateSignedWordToUnsignedByte (SRC2[15:0]);
DEST[79:72] €« SaturateSignedWordToUnsignedByte (SRC2[31:16]);
DEST[87:80] < SaturateSignedWordToUnsignedByte (SRC2[47:32]);
DEST[95:88] < SaturateSignedWordToUnsignedByte (SRC2[63:48]);
DEST[103:96] < SaturateSignedWordToUnsignedByte (SRC2[79:64]);
DEST[111:104] < SaturateSignedWordToUnsignedByte (SRC2[95:80]);
DEST[119:112] & SaturateSignedWordToUnsignedByte (SRC2[111:96]);
DEST[127:120] € SaturateSignedWordToUnsignedByte (SRC2[127:112]);
DEST[VLMAX:128] <« (;

VPACKUSWB (VEX.256 encoded version)
DEST[7:0]« SaturateSignedWordToUnsignedByte (SRC1[15:0]);
DEST[15:8] «SaturateSignedwWordToUnsignedByte (SRC1[31:16]);
DEST[23:16] <SaturateSignedWordToUnsignedByte (SRC1[47:32]);
DEST[31:24] €< SaturateSignedWordToUnsignedByte (SRC1[63:48]);
DEST[39:32] < SaturateSignedwWordToUnsignedByte (SRC1[79:64));
DEST[47:40] €< SaturateSignedWordToUnsignedByte (SRC1[95:801);
DEST[55:48] < SaturateSignedWordToUnsignedByte (SRC1[111:96]);
DEST[63:56] < SaturateSignedWordToUnsignedByte (SRC1[127:112]);
DEST[71:64] <SaturateSignedWordToUnsignedByte (SRC2[15:0]);
DEST[79:72] € SaturateSignedWordToUnsignedByte (SRC2[31:16]);
DEST[87:80] < SaturateSignedWordToUnsignedByte (SRC2[47:32]);
DEST[95:88] < SaturateSignedWordToUnsignedByte (SRC2[63:48]);
DEST[103:96] < SaturateSignedWordToUnsignedByte (SRC2[79:64]);
DEST[111:104] < SaturateSignedwWordToUnsignedByte (SRC2[95:80]);
DEST[119:112] & SaturateSignedWordToUnsignedByte (SRC2[111:96]);
DEST[127:120] < SaturateSignedWordToUnsignedByte (SRC2[127:112]);
DEST[135:128]« SaturateSignedWordToUnsignedByte (SRC1[143:128]);
DEST[143:136] <SaturateSignedWordToUnsignedByte (SRC1[159:144]);
DEST[151:144] <SaturateSignedwWordToUnsignedByte (SRC1[175:160]);
DEST[159:152] < SaturateSignedwWordToUnsignedByte (SRC1[191:176]);
DEST[167:160] < SaturateSignedWordToUnsignedByte (SRC1[207:192]

—_ e~~~

DEST[175:168] < SaturateSignedWordToUnsignedByte (SRC1[223:208]));
DEST[183:176] < SaturateSignedWordToUnsignedByte (SRC1[239:224]
DEST[191:184] < SaturateSignedWordToUnsignedByte (SRC1[255:240]
DEST[199:192] <« SaturateSignedWordToUnsignedByte (SRC2[143:128]));

()
()
()
()
()
DEST[207:200] < SaturateSignedWordToUnsignedByte (SRC2[159:144]);
()
()
()
()
()

’

’

DEST[215:208] < SaturateSignedWordToUnsignedByte (SRC2[175:160]
DEST[223:216] < SaturateSignedWordToUnsignedByte (SRC2[191:176]
DEST[231:224] < SaturateSignedWordToUnsignedByte (SRC2[207:192]
DEST[239:232] < SaturateSignedWordToUnsignedByte (SRC2[223:208]
DEST[247:240] < SaturateSignedWordToUnsignedByte (SRC2[239:224]

’

’

’

r

’

5-24 Ref. #319433-014

INSTRUCTION SET REFERENCE

DEST[255:248] < SaturateSignedWordToUnsignedByte (SRC2[255:240]);

Intel C/C++ Compiler Intrinsic Equivalent
(V)PACKUSWB: __m128i _mm_packus_epi16(_m128im1, __m128i m2);
VPACKUSWB: __m256i _mm256_packus_epil16(_m256i m1, __m256i m2);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-25

INSTRUCTION SET REFERENCE

PADDB/PADDW/PADDD/PADDQ — Add Packed Integers

Opcode/
Instruction

66 OF FC/r
PADDB xmm1, xmmZ2/m128

66 0FFD /r
PADDW xmm1, xmmZ2/m128

66 OF FE /r
PADDD xmm1, xmmZ2/m128

66 OF D4/r
PADDQ xmm1, xmm2/m128

VEX.NDS.128.66.0FWIG FC /r

VPADDB xmm1, xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG FD /r

VPADDW xmm1, xmmZ2,
xmm3/m128

VEX.NDS.128.66.0FWIG FE /r

VPADDD xmm1, xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG D4 /r

VPADDQ xmm1, xmmZ2,
xmm3/m128

VEX.NDS.256.66.0FWIG FC /r

VPADDB ymm1, ymmZ2,
ymm3/m256

VEX.NDS.256.66.0F.WIG FD /r

VPADDW ymm1, ymmZ2,
ymm3/m256

VEX.NDS.256.66.0FWIG FE /r

VPADDD ymm1, ymmZ,
ymm3/m256

VEX.NDS.256.66.0F.WIG D4 /r

VPADDQ ymm1, ymm2,
ymm3/m256

Op/
En

A

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSEZ2

SSEZ

SSE2

AVX

AVX

AVX

AVX

AVX2

AVX2

AVX2

AVX2

Description

Add packed byte integers from xmm2/m128 and xmm1.

Add packed word integers from xmm2/m128 and xmm1.

Add packed doubleword integers from xmm2/m128 and xmm]1.

Add packed quadword integers from xmmZ2/m128 and xmm1.

Add packed byte integers from xmmZ, and xmm3/m128 and store
in xmm1.

Add packed word integers from xmmZ2, xmm3/m128 and store in
xmm1.

Add packed doubleword integers from xmmZ2, xmm3/m128 and
store in xmm]1.

Add packed quadword integers from xmmZ2, xmm3/m128 and store
in xmm1.

Add packed byte integers from ymmZ, and ymm3/m256 and store
in ymm1.

Add packed word integers from ymmZ, ymm3/mZ256 and store in
ymmT.

Add packed doubleword integers from ymmZ2, ymm3/mZ256 and
store in ymm1.

Add packed quadword integers from ymmZ2, ymm3/m256 and store
in ymm1.

5-26

Ref. #319433-014

INSTRUCTION SET REFERENCE

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

The PADDB and VPADDB instructions add packed byte integers from the first source operand and second source
operand and store the packed integer result in destination operand. When an individual result is too large to be
represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to the destination
operand (that is, the carry is ignored).

The PADDW and VPADDW instructions add packed word integers from the first source operand and second source
operand and store the packed integer result in destination operand. When an individual result is too large to be
represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written to the destination
operand.

The PADDD and VPADDD instructions add packed doubleword integers from the first source operand and second
source operand and store the packed integer result in destination operand. When an individual result is too large
to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits are written to the desti-
nation operand.

The PADDQ and VPADDQ instructions add packed quadword integers from the first source operand and second
source operand and store the packed integer result in destination operand. When a quadword result is too large to
be represented in 64 bits (overflow), the result is wrapped around and the low 64 bits are written to the destination
element (that is, the carry is ignored).

Note that the (V)PADDB, (V)PADDW, (V)PADDD and (V)PADDQ instructions can operate on either unsigned or
signed (two's complement notation) packed integers; however, it does not set bits in the EFLAGS register to indi-
cate overflow and/or a carry. To prevent undetected overflow conditions, software must control the ranges of
values operated on.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

Operation

PADDB (Legacy SSE instruction)
DEST[7:0]¢ DEST[7:0] + SRC[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120]¢« DEST[127:120] + SRC[127:120];

PADDW (Legacy SSE instruction)
DEST[15:0] € DEST[15:0] + SRC[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112]« DEST[127:112] + SRC[127:112];

PADDD (Legacy SSE instruction)
DEST[31:0]« DEST[31:0] + SRC[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96]¢ DEST[127:96] + SRC[127:96];

Ref. # 319433-014 5-27

INSTRUCTION SET REFERENCE

PADDQ (Legacy SSE instruction)
DEST[63:0]¢ DEST[63:0] + SRC[63:0];
DEST[127:64]¢ DEST[127:64] + SRC[127:64];

VPADDB (VEX.128 encoded instruction)
DEST[7:0]¢ SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 14th byte *)
DEST[127:120]« SRC1[127:120] + SRC2[127:120];
DEST[VLMAX:128] <« (;

VPADDW (VEX.128 encoded instruction)
DEST[15:0] € SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 7th word *)
DEST[127:112]« SRC1[127:112] + SRC2[127:112];
DEST[VLMAX:128] < (;

VPADDD (VEX.128 encoded instruction)
DEST[31:0]¢ SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 3th doubleword *)
DEST[127:96] €< SRC1[127:96] + SRC2[127:96];
DEST[VLMAX:128] < O;

VPADDQ (VEX.128 encoded instruction)
DEST[63:0]¢ SRC1[63:0] + SRC2[63:0];
DEST[127:64] € SRC1[127:64] + SRC2[127:64];
DEST[VLMAX:128] < (;

VPADDB (VEX.256 encoded instruction)
DEST[7:0]¢ SRC1[7:0] + SRC2[7:0];
(* Repeat add operation for 2nd through 31th byte *)
DEST[255:248]¢ SRC1[255:248] + SRC2[255:248];

VPADDW (VEX.256 encoded instruction)
DEST[15:0] € SRC1[15:0] + SRC2[15:0];
(* Repeat add operation for 2nd through 15th word *)
DEST[255:240]¢ SRC1[255:240] + SRC2[255:240];

VPADDD (VEX.256 encoded instruction)
DEST[31:0]¢ SRC1[31:0] + SRC2[31:0];
(* Repeat add operation for 2nd and 7th doubleword *)
DEST[255:224] € SRC1[255:224] + SRC2[255:224];

VPADDQ (VEX.256 encoded instruction)
DEST[63:0]¢ SRC1[63:0] + SRC2[63:0];
DEST[127:64] € SRC1[127:64] + SRC2[127:64];
DEST[191:128]¢ SRC1[191:128] + SRC2[191:128];
DEST[255:192] € SRC1[255:192] + SRC2[255:192];

Intel C/C++ Compiler Intrinsic Equivalent

(V)PADDB: __m128i _mm_add_epi8 (__m128ia,__m128ib)
(V)PADDW: __m128i _mm_add_epi16 (_m128ia, __m128ib)
(V)PADDD: __m128i _mm_add_epi32 (_m128ia,_m128ib)

5-28 Ref. #319433-014

INSTRUCTION SET REFERENCE

(V)PADDQ: __m128i _mm_add_epi64 (_m128i3a, __m128ib)
VPADDB: __m256i _mm256_add_epi8 (__m256ia,__m256ib)
VPADDW: __m256i _mm256_add_epi16 (_m256i a, __m256i b)
VPADDD: __m256i _mm256_add_epi32 (_m256i a, __m256i b)
VPADDQ: __m256i _mm256_add_epi64 (_m256i a, __m256i b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-29

INSTRUCTION SET REFERENCE

PADDSB/PADDSW — Add Packed Signed Integers with Signed Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OFEC/r A VIV SSE2 Add packed signed byte integers from xmmZ2/m128 and xmm1 and
PADDSB xmm1, xmm2/m128 saturate the results.
66 OFED /r A VIV SSE2 Add packed signed word integers from xmmZ2/m128 and xmm1 and
PADDSW xmm1, xmm2/m128 saturate the results.
VEX.NDS.128.66.0F.WIG EC /r B VIV AVX Add packed signed byte integers from xmm2, and xmm3/m128 and
VPADDSB xmm1, xmm?2, store the saturated results in xmm1.
xmm3/m128
VEX.NDS.128.66.0F.WIG ED /r B VIV AVX Add packed signed word integers from xmmZ2, and xmm3/m128 and
VPADDSW xmm1, xmm?2, store the saturated results in xmm1.
xmm3/m128

VEX.NDS.256.66.0F.WIG EC /r B VIV AVX2 Add packed signed byte integers from ymm2, and ymm3/m256 and

VPADDSB ymm1, ymmZ2, store the saturated results in ymm1.

ymm3/m256

VEX.NDS.256.66.0F.WIG ED /r B VIV AVX2 Add packed signed word integers from ymm2, and ymm3/m256 and
VVPADDSW ymm1, ymmZ2, store the saturated results in ymm1.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvwv ModRM:r/m (r) NA
Description

(V)PADDSB performs a SIMD add of the packed signed integers with saturation from the first source operand and
second source operand and stores the packed integer results in the destination operand. When an individual byte
result is beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value
of 7FH or 80H, respectively, is written to the destination operand.

(V)PADDSW performs a SIMD add of the packed signed word integers with saturation from the first source operand
and second source operand and stores the packed integer results in the destination operand. When an individual
word result is beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the satu-
rated value of 7FFFH or 8000H, respectively, is written to the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

5-30 Ref. #319433-014

Operation

PADDSB (Legacy SSE instruction)
DEST[7:0] €« SaturateToSignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120]« SaturateToSignedByte (DEST[127:120] + SRC[127:120]));

PADDSW (Legacy SSE instruction)
DEST[15:0] € SaturateToSignedword (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] € SaturateToSignedWord (DEST[127:112] + SRC[127:112])

VPADDSB (VEX.128 encoded version)
DEST[7:0] €« SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120]€ SaturateToSignedByte (SRC1[127:120] + SRC2[127:120]);
DEST[VLMAX:128]« 0

VPADDSW (VEX.128 encoded version)
DEST[15:0] € SaturateToSignedword (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] € SaturateToSignedWord (SRC1[127:112] + SRC2[127:112])
DEST[VLMAX:128]¢< 0

VPADDSB (VEX.256 encoded version)
DEST[7:0] €« SaturateToSignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 31st bytes *)
DEST[255:248] < SaturateToSignedByte (SRC1[255:248] + SRC2[255:248]);

VPADDSW (VEX.256 encoded version)
DEST[15:0] € SaturateToSignedword (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 15th words *)
DEST[255:240] €« SaturateToSignedWord (SRC1[255:240] + SRC2[255:240])

Intel C/C++ Compiler Intrinsic Equivalent

PADDSB: __m128i _mm_adds_epi8 (_m128ia, __m128ib)
PADDSW: __m128i _mm_adds_epi16 (_m128ia, __m128ib)
VPADDSB: __m128i _mm_adds_epi8 (_m128ia, __m128ib)
VPADDSW: __m128i _mm_adds_epi16 (_m128ia, __m128ib)
VPADDSB: __m256i _mm256_adds_epi8 (_m256i a, __m256i b)
VPADDSW: __m256i _mm256_adds_epi16 (_m256ia, __m256i b)

SIMD Floating-Point Exceptions

None

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-31

INSTRUCTION SET REFERENCE

PADDUSB/PADDUSW — Add Packed Unsigned Integers with Unsigned Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF DC/r A VIV SSE2 Add packed unsigned byte integers from xmm2/m128 and xmm1
PADDUSB xmm1, xmm2/m128 and saturate the results.
66 OF DD /r A VIV SSE2 Add packed signed word integers from xmm2/m128 and xmm1 and
PADDUSW xmm1, xmm2/m128 saturate the results.

VEX.NDS.128.66.0F.WIG DC /r B VIV AVX Add packed unsigned byte integers from xmm2, and xmm3/m128
VPADDUSB xmm1, xmm2, and store the saturated results in xmm1.

xmm3/m128

VEX.NDS.128.66.0F.WIG DD /r B VIV AVX Add packed unsigned word integers from xmm2, and xmm3/m128
VPADDUSW xmm1, xmmZ2, and store the saturated results in xmm1.

xmm3/m128

VEX.NDS.256.66.0F.WIG DC /r B VIV AVX2 Add packed unsigned byte integers from ymmZ2, and ymm3/m256

VPADDUSB ymm1, ymmZ2, and store the saturated results in ymm1.

ymm3/m256

VEX.NDS.256.66.0F.wIG DD /r B VIV AVX2 Add packed unsigned word integers from ymmZ2, and ymm3/m256
VVPADDUSW ymm1, ymmZ2, and store the saturated results in ymm1.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PADDUSB performs a SIMD add of the packed unsigned integers with saturation from the first source operand
and second source operand and stores the packed integer results in the destination operand. When an individual
byte result is beyond the range of an unsigned byte integer (that is, greater than FFH), the saturated value of FFH
is written to the destination operand.

(V)PADDUSW performs a SIMD add of the packed unsigned word integers with saturation from the first source
operand and second source operand and stores the packed integer results in the destination operand. When an
individual word result is beyond the range of an unsigned word integer (that is, greater than FFFFH), the saturated
value of FFFFH is written to the destination operand.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

5-32 Ref. #319433-014

Operation

PADDUSB (Legacy SSE instruction)
DEST[7:0] €« SaturateToUnsignedByte (DEST[7:0] + SRC[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120]« SaturateToUnsignedByte (DEST[127:120] + SRC[127:120]);

PADDUSW (Legacy SSE instruction)
DEST[15:0] €« SaturateToUnsignedWord (DEST[15:0] + SRC[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] €« SaturateToUnsignedWord (DEST[127:112] + SRC[127:112])

VPADDUSB (VEX.128 encoded version)
DEST[7:0] €« SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 14th bytes *)
DEST[127:120]« SaturateToUnsignedByte (SRC1[127:120] + SRC2[127:120]);
DEST[VLMAX:128]¢« 0

VPADDUSW (VEX.128 encoded version)
DEST[15:0] € SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 7th words *)
DEST[127:112] € SaturateToUnsignedWord (SRC1[127:112] + SRC2[127:112])
DEST[VLMAX:128]¢< 0

VPADDUSB (VEX.256 encoded version)
DEST[7:0] €« SaturateToUnsignedByte (SRC1[7:0] + SRC2[7:0]);
(* Repeat add operation for 2nd through 31st bytes *)
DEST[255:248] < SaturateToUnsignedByte (SRC1[255:248] + SRC2[255:248));

VPADDUSW (VEX.256 encoded version)
DEST[15:0] € SaturateToUnsignedWord (SRC1[15:0] + SRC2[15:0]);
(* Repeat add operation for 2nd through 15th words *)
DEST[255:240] < SaturateToUnsignedWord (SRC1[255:240] + SRC2[255:240])

Intel C/C++ Compiler Intrinsic Equivalent

(V)PADDUSB: __m128i _mm_adds_epu8 (_m128ia, __m128ib)
(V)PADDUSW: __m128i _mm_adds_epul6 (_m128ia,__m128ib)
VPADDUSB: __m256i _mm256_adds_epu8 (_m256i a, __m256i b)
VPADDUSW: __m256i _mm256_adds_epu16 (_m256i a, __m256i b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-33

INSTRUCTION SET REFERENCE

PALIGNR — Byte Align

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF 3BAOF /rib A VIV SSSE3 Concatenate destination and source operands, extract byte
PALIGNR xmm1, xmm2/m128, aligned result shifted to the right by constant value in imm8 and
imm8 result is stored in xmm1.
VEX.NDS.128.66.0F3AWIGOF /rib B VIV AVX Concatenate xmmZ2 and xmm3/m128 into a 32-byte intermedi-
VPALIGNR xmm1, xmm?2, ate result, extract byte aligned result shifted to the right by con-
xmm3/m128, imm8 stant value in imm8 and result is stored in xmm1.

VEX.NDS.256.66.0F3AWIGOF /rib B VIV AVX2 Concatenate pairs of 16 bytes in ymm2 and ymm3/m256 into

VPALIGNR ymm1, ymm2, 32-byte intermediate result, extract byte-aligned, 16-byte result

ymm3/m256, imm8 shifted to the right by constant values in imm8 from each inter-
mediate result, and two 16-byte results are stored in ymm/1

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PALIGNR concatenates two blocks of 16-byte data from the first source operand and the second source operand
into an intermediate 32-byte composite, shifts the composite at byte granularity to the right by a constant imme-
diate, and extracts the right aligned 16-byte result into the destination. The immediate value is considered
unsigned. Immediate shift counts larger than 32 for 128-bit operands produces a zero result.

Legacy SSE instructions: In 64-bit mode use the REX prefix to access additional registers.
128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination register remain unchanged.

VEX.256 encoded version: The first source operand is a YMM register and contains two 16-byte blocks. The second
source operand is a YMM register or a 256-bit memory location containing two 16-byte block. The destination
operand is a YMM register and contain two 16-byte results. The imm8[7:0] is the common shift count used for the
two lower 16-byte block sources and the two upper 16-byte block sources. The low 16-byte block of the two source
operands produce the low 16-byte result of the destination operand, the high 16-byte block of the two source oper-
ands produce the high 16-byte result of the destination operand.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

Concatenation is done with 128-bit data in the first and second source operand for both 128-bit and 256-bit
instructions. The high 128-bits of the intermediate composite 256-bit result came from the 128-bit data from the
first source operand; the low 128-bits of the intermediate result came from the 128-bit data of the second source
operand.

5-34 Ref. #319433-014

INSTRUCTION SET REFERENCE

127 0 127 0
SRC1 \ \ SRC2
| <]

Imm38[7:0]*8
255 128 255 128
SRC1 \\ s
Imm8|[7:0]8

255 128 1 0
DEST| # s\ Y |pest

Figure 5-2. 256-bit VPALIGN Instruction Operation

Operation

PALIGNR
temp1[255:0] < ((DEST[127:0] << 128) OR SRC[127:0])>>(imm8*8);
DEST[127:0] < temp1[127:0]

DEST[VLMAX:128] (Unmodified)

VPALIGNR (VEX.128 encoded version)

temp1[255:0] €< ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8*8);
DEST[127:0] € temp1[127:0]

DEST[VLMAX:128] <« 0

VPALIGNR (VEX.256 encoded version)

temp1[255:0] € ((SRC1[127:0] << 128) OR SRC2[127:0])>>(imm8[7:0]*8);
DEST[127:0] €& temp1[127:0]

temp1[255:0] € ((SRC1[255:128] << 128) OR SRC2[255:128])>>(imm8[7:0]*8);
DEST[255:128] < temp1[127:0]

Intel C/C++ Compiler Intrinsic Equivalent

(V)PALIGNR;: __m128i _mm_alignr_epi8 (_m128ia, __m128ib, int n)
VPALIGNR: __m256i _mm256_alignr_epi8 (__m256i a, __m256i b, const int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

5-35

INSTRUCTION SET REFERENCE

PAND — Logical AND

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF DB /r A VIV SSE? Bitwise AND of xmm2/m128 and xmm1.

PAND xmm1, xmmZ2/.m128

VEX.NDS.128.66.0F.WIG DB /r B VIV AVX Bitwise AND of xmmZ2, and xmm3/m128 and store result in
VPAND xmm1, xmm2, xmm3/.m128 xmm1.
VEX.NDS.256.66.0F.WIG DB /r B VIV AVX2 Bitwise AND of ymmZ2, and ymm3/m256 and store result in
VPAND ymm1, ymm2, ymm3/.m256 ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a bitwise logical AND operation on the first source operand and second source operand and stores the
result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second
operands are 1, otherwise it is set to O.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

Operation

PAND (Legacy SSE instruction)
DEST[127:0] € (DEST[127:0] AND SRC[127:0])

VPAND (VEX.128 encoded instruction)
DEST[127:0] € (SRC1[127:0] AND SRC2[127:0])
DEST[VLMAX:128] « 0

VPAND (VEX.256 encoded instruction)
DEST[255:0] € (SRC1[255:0] AND SRC2[255:0])

Intel C/C++ Compiler Intrinsic Equivalent

(V)PAND: _m128i _mm_and_si128 (_m128ia, _m128ib)

VPAND: __m256i _mm256_and_si256 (_m256i a, __m256i b)

SIMD Floating-Point Exceptions

None

5-36 Ref. #319433-014

INSTRUCTION SET REFERENCE

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-37

INSTRUCTION SET REFERENCE

PANDN — Logical AND NOT

Opcode/ Op/ 64/32 CPUID

Instruction En -bit Feature
Mode Flag

66 OF DF /t A VIV SSE?

PANDN xmm1, xmm2/.m128

VEX.NDS.128.66.0F.WIG DF /r B VIV AVX

VPANDN xmm1, xmm2, xmm1.
xmm3/m128

VEX.NDS.256.66.0F.WIG DF /r B VIV AVX2

VPANDN ymm1, ymmZ2, ymm1.
ymm3/.m256

Description

Bitwise AND NOT of xmm2/m128 and xmm1.

Bitwise AND NOT of xmm2, and xmm3/m128 and store result in

Bitwise AND NOT of ymmZ2, and ymm3/m256 and store result in

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a bitwise logical NOT operation on the first source operand, then performs bitwise AND with second
source operand and stores the result in the destination operand. Each bit of the result is set to 1 if the corre-
sponding bit in the first operand is 0O and the corresponding bit in the second operand is 1, otherwise it is set to 0.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the

corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

Operation

PANDN (Legacy SSE instruction)
DEST[127:0] €< ((NOT DEST[127:0]) AND SRC[127:0])

VPANDN (VEX.128 encoded instruction)
DEST[127:0] < ((NOT SRC1[127:0]) AND SRC2[127:0])
DEST[VLMAX:128] < 0

VPANDN (VEX.256 encoded instruction)
DEST[255:0] €< ((NOT SRC1[255:0]) AND SRC2[255:0])

Intel C/C++ Compiler Intrinsic Equivalent
(VJPANDN: __m128i_mm_andnot_si128 (_m128ia, __m128ib)
VPANDN:

__m256i _mm256_andnot_si256 (__m256ia, __m256i b)

5-38

Ref. #319433-014

INSTRUCTION SET REFERENCE

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-39

INSTRUCTION SET REFERENCE

PAVGB/PAVGW — Average Packed Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF €Q, /r A VIV SSE2 Average packed unsigned byte integers from xmm2/m128 and
PAVGB xmm1, xmm2/m128 xmm?T with rounding.
66 OF €3, /r A VIV SSEe2 Average packed unsigned word integers from xmmZ2/m128 and
PAVGW xmm1, xmm2/m128 xmm1 with rounding.

VEX.NDS.128.66.0F.WIG EO /r B VIV AVX Average packed unsigned byte integers from xmm¢Z, and

VPAVGB xmm1, xmmZ2, xmm3/m128 with rounding and store to xmm1.

xmm3/m128

VEX.NDS.128.66.0F.WIG E3 /r B VIV AVX Average packed unsigned word integers from xmmz2, xmm3/m128
VPAVGW xmm1, xmmZ2, with rounding to xmm1.

xmm3/m128

VEX.NDS.256.66.0F.WIG EO /r B VIV AVX2 Average packed unsigned byte integers from ymmZ2, and

VVPAVGB ymm 1, ymm2, ymm3/mZ256 with rounding and store to ymm1.

ymm3/m256

VEX.NDS.256.66.0F.WIG E3 /r B VIV AVX2 Average packed unsigned word integers from ymmZ2, ymm3/m256
VPAVGW ymm1, ymmZ2, with rounding to ymm1.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD average of the packed unsigned integers from the second source operand and the first operand,
and stores the results in the destination operand. For each corresponding pair of data elements in the first and
second operands, the elements are added together, a 1 is added to the temporary sum, and that result is shifted
right one bit position.

The (V)PAVGB instruction operates on packed unsigned bytes and the (V)PAVGW instruction operates on packed
unsigned words.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

VEX.128 encoded version: The first source operand is an XMM register. The second source operand is an XMM
register or 128-bit memory location. The destination operand is an XMM register. The upper bits (255:128) of the
corresponding YMM register destination are zeroed.

128-bit Legacy SSE version: The first source operand is an XMM register. The second operand can be an XMM
register or a 128-bit memory location. The destination is not distinct from the first source XMM register and the
upper bits (255:128) of the corresponding YMM register destination are unmodified.

5-40 Ref. #319433-014

INSTRUCTION SET REFERENCE

Operation

PAVGB (Legacy SSE instruction)
DEST[7:0] € (SRC[7:0] + DEST[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 15)
SRC[63:56] €« (SRC[127:120] + DEST[127:120)] + 1) >> 1;

PAVGW (Legacy SSE instruction)
SRC[15:0] € (SRC[15:0] + DEST[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 7)
DEST[127:48] < (SRC[127:112] + DEST[127:112] + 1) >> 1;

VPAVGB (VEX.128 encoded instruction)
DEST[7:0] € (SRC1[7:0] + SRC2[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 15)
DEST[127:48] < (SRC1[127:112] + SRC2[127:112] + 1) >> 1;
DEST[VLMAX:128] € 0

VPAVGW (VEX.128 encoded instruction)
DEST[15:0] €« (SRC1[15:0] + SRC2[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 7)
DEST[127:4] € (SRC1[127:112] + SRC2[127:112] + 1) >> 1;
DEST[VLMAX:128] < 0

VPAVGB (VEX.256 encoded instruction)
DEST[7:0] € (SRC1[7:0] + SRC2[7:0] + 1) >> 1; (* Temp sum before shifting is 9 bits *)
(* Repeat operation performed for bytes 2 through 31)
DEST[255:248] €« (SRC1[255:248] + SRC2[255:248] + 1) >> 1;

VPAVGW (VEX.256 encoded instruction)
DEST[15:0] €« (SRC1[15:0] + SRC2[15:0] + 1) >> 1; (* Temp sum before shifting is 17 bits *)
(* Repeat operation performed for words 2 through 15)
DEST[255:14]) € (SRC1[255:240] + SRC2[255:240] + 1) >> 1;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PAVGB: __m128i_mm_avg_epu8 (__m128i3a, __m128ib)
(V)PAVGW: __ m128i_mm_avg epul6 (_m128ia, __m128ib)
VPAVGB: __m256i _mm256_avg_epu8 (__m256ia, __m256ib)
VPAVGW: __m256i_mm256_avg_epul6 (_m256ia, __m256ib)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-41

INSTRUCTION SET REFERENCE

PBLENDVB — Variable Blend Packed Bytes

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 0F3810/r A VIV SSE4_1 Select byte values from xmm1 and xmm2/m128 from mask
PBLENDVB xmm1, xmm2/m128, specified in the high bit of each byte in XMMO and store the val-
<XMMO0> ues into xmm1.
VEX.NDS.128.66.0F3AW04C/r/is4 B VIV AVX Select byte values from xmm2 and xmm3/m128 from mask
VPBLENDVB xmm1, xmm2, specified in the high bit of each byte in xmm4 and store the val-
xmm3/m128, xmmé4 ues into xmm1.
VEX.NDS.256.66.0F3AW04C/r/is4 B VIV AVX2 Select byte values from ymmZ2 and ymm3/m256 from mask
VPBLENDVB ymm1, ymm2, specified in the high bit of each byte in ymm4 and store the val-
ymm3/m256, ymm4 ues into ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) imm([3:0](r)
Description

Conditionally copy byte elements from the second source operand and the first source operand depending on mask
bits defined in the mask register operand. The mask bits are the most significant bit in each byte element of the
mask register.

Each byte element of the destination operand is copied from the corresponding byte element in the second source
operand if a mask bit is "1", or the corresponding byte element in the first source operand if a mask bit is "0".

The register assignment of the implicit third operand is defined to be the architectural register XMMO.

128-bit Legacy SSE version: The first source operand and the destination operand is the same. Bits (255:128) of
the corresponding YMM destination register remain unchanged. The mask register operand is implicitly defined to
be the architectural register XMMO. An attempt to execute PBLENDVB with a VEX prefix will cause #UD.

VEX.128 encoded version: The first source operand and the destination operand are XMM registers. The second
source operand is an XMM register or 128-bit memory location. The mask operand is the third source register, and
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is
ignored. The upper bits (255:128) of the corresponding YMM register (destination register) are zeroed.

VEX.256 encoded version: The first source operand and the destination operand are YMM registers. The second
source operand is an YMM register or 256-bit memory location. The third source register is an YMM register and
encoded in bits[7:4] of the immediate byte(imm8). The bits[3:0] of imm8 are ignored. In 32-bit mode, imm8[7] is
ignored.

VPBLENDVB permits the mask to be any XMM or YMM register. In contrast, PBLENDVB treats XMMO implicitly as the
mask and do not support non-destructive destination operation. An attempt to execute PBLENDVB encoded with a
VEX prefix will cause a #UD exception.

Operation

VPBLENDVB (VEX.256 encoded version)

MASK <« SRC3

IF (MASK[7] == 1) THEN DEST[7:0] ? SRC2[7:0];
ELSE DEST[7:0] € SRC1[7:0];

IF (MASK[15] == 1) THEN DEST[15:8] ? SRC2[15:8];
ELSE DEST[15:8] < SRC1[15:8];

5-42 Ref. #319433-014

IF (MASK[23] == 1) THEN DEST[23:16] ? SRC2[23:16]

ELSE DEST[23:16] < SRC1[23:16];

IF (MASK[31] == 1) THEN DEST[31:24] ? SRC2[31:24]

ELSE DEST[31:24] < SRC1[31:24];

IF (MASK[39] == 1) THEN DEST[39:32] ? SRC2[39:32]

ELSE DEST[39:32] < SRC1[39:32];

IF (MASK[47] == 1) THEN DEST[47:40] ? SRC2[47:40]

ELSE DEST[47:40] < SRC1[47:40];

IF (MASK[55] == 1) THEN DEST[55:48] ? SRC2[55:48]

ELSE DEST[55:48] < SRC1[55:48];

IF (MASK[63] == 1) THEN DEST[63:56] ? SRC2[63:56]

ELSE DEST[63:56] < SRC1[63:56];

IF (MASK[71] == 1) THEN DEST[71:64] ? SRC2[71:64]

ELSE DEST[71:64] €< SRC1[71:64];

IF (MASK[79] == 1) THEN DEST[79:72] ? SRC2[79:72]

ELSE DEST[79:72] € SRC1[79:72];

IF (MASK[87] == 1) THEN DEST[87:80] ? SRC2[87:80]

ELSE DEST[87:80] < SRC1[87:80];

IF (MASK[95] == 1) THEN DEST[95:88] < SRC2[95:88]

ELSE DEST[95:88] < SRC1[95:88];

IF (MASK[103] == 1) THEN DEST[103:96] < SRC2[103:96]
ELSE DEST[103:96] < SRC1[103:96];

IF (MASK[111] == 1) THEN DEST[111:104] < SRC2[111:104]
ELSE DEST[111:104] < SRC1[111:104];

IF (MASK[119] == 1) THEN DEST[119:112] € SRC2[119:112]
ELSE DEST[119:112] € SRC1[119:112];

IF (MASK[127] == 1) THEN DEST[127:120] < SRC2[127:120]
ELSE DEST[127:120] < SRC1[127:120])

IF (MASK[135] == 1) THEN DEST[135:128] < SRC2[135:128];
ELSE DEST[135:128] < SRC1[135:128];

IF (MASK[143] == 1) THEN DEST[143:136] < SRC2[143:136];
ELSE DEST[[143:136] < SRC1[143:136];

IF (MASK[151] == 1) THEN DEST[151:144] & SRC2[151:144]
ELSE DEST[151:144] < SRC1[151:144];

IF (MASK[159] == 1) THEN DEST[159:152] < SRC2[159:152]
ELSE DEST[159:152] € SRC1[159:152];

IF (MASK[167] == 1) THEN DEST[167:160] < SRC2[167:160]
ELSE DEST[167:160] < SRC1[167:160];

IF (MASK[175] == 1) THEN DEST[175:168] < SRC2[175:168]
ELSE DEST[175:168] < SRC1[175:168;

IF (MASK[183] == 1) THEN DEST[183:176] < SRC2[183:176]
ELSE DEST[183:176] < SRC1[183:176;

IF (MASK[191] == 1) THEN DEST[191:184] < SRC2[191:184]
ELSE DEST[191:184] < SRC1[191:184];

IF (MASK[199] == 1) THEN DEST[199:192] < SRC2[199:192]
ELSE DEST[199:192] < SRC1[199:192];

IF (MASK[207] == 1) THEN DEST[207:200] < SRC2[207:200]
ELSE DEST[207:200] €< SRC1[207:200]

IF (MASK[215] == 1) THEN DEST[215:208] < SRC2[215:208]
ELSE DEST[215:208] < SRC1[215:208;

IF (MASK[223] == 1) THEN DEST[223:216] < SRC2[223:216]
ELSE DEST[223:216] < SRC1[223:216;

IF (MASK[231] == 1) THEN DEST[231:224] < SRC2[231:224]
ELSE DEST[231:224] €< SRC1[231:224];

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-43

INSTRUCTION SET REFERENCE

IF (MASK[239] == 1) THEN DEST[239:232] < SRC2[239:232]
ELSE DEST[239:232] < SRC1[239:232];
IF (MASK[247] == 1) THEN DEST[247:240] < SRC2[247:240]
ELSE DEST[247:240] < SRC1[247:240];
IF (MASK[255] == 1) THEN DEST[255:248] < SRC2[255:248]
ELSE DEST[255:248] < SRC1[255:248]

VPBLENDVB (VEX.128 encoded version)

MASK €< XMMO

IF (MASK[7] == 1) THEN DEST[7:0] €« SRC2[7:0];

ELSE DEST[7:0] € SRC1[7:0];

IF (MASK[15] == 1) THEN DEST[15:8] < SRC2[15:8];

ELSE DEST[15:8] € SRC1[15:8];

IF (MASK[23] == 1) THEN DEST[23:16] € SRC2[23:16]
ELSE DEST[23:16] € SRC1[23:16];

IF (MASK[31] == 1) THEN DEST[31:24] € SRC2[31:24]
ELSE DEST[31:24] € SRC1[31:24];

IF (MASK[39] == 1) THEN DEST[39:32] €< SRC2[39:32]
ELSE DEST[39:32] € SRC1[39:32];

IF (MASK[47] == 1) THEN DEST[47:40] € SRC2[47:40]
ELSE DEST[47:40] < SRC1[47:40];

IF (MASK[55] == 1) THEN DEST[55:48] € SRC2[55:48]
ELSE DEST[55:48] € SRC1[55:48];

IF (MASK[63] == 1) THEN DEST[63:56] €< SRC2[63:56]
ELSE DEST[63:56] < SRC1[63:56];

IF (MASK[71] == 1) THEN DEST[71:64] € SRC2[71:64]
ELSE DEST[71:64] €« SRC1[71:64];

IF (MASK[79] == 1) THEN DEST[79:72] €< SRC2[79:72]
ELSE DEST[79:72] € SRC1[79:72];

IF (MASK[87] == 1) THEN DEST[87:80] €< SRC2[87:80]
ELSE DEST[87:80] < SRC1[87:80];

IF (MASK[95] == 1) THEN DEST[95:88] < SRC2[95:88]
ELSE DEST[95:88] < SRC1[95:88];

IF (MASK[103] == 1) THEN DEST[103:96] € SRC2[103:96]
ELSE DEST[103:96] < SRC1[103:96];

IF (MASK[111] == 1) THEN DEST[111:104] < SRC2[111:104]
ELSE DEST[111:104] € SRC1[111:104];

IF (MASK[119] == 1) THEN DEST[119:112] € SRC2[119:112]
ELSE DEST[119:112] € SRC1[119:112];

IF (MASK[127] == 1) THEN DEST[127:120] € SRC2[127:120]
ELSE DEST[127:120] € SRC1[127:120])
DEST[VLMAX:128]1 < 0

PBLENDVB (128-bit Legacy SSE version)

MASK €< XMMO

IF (MASK[7] == 1) THEN DEST[7:0] €< SRC[7:0];

ELSE DEST[7:0] €« DEST[7:0];

IF (MASK[15] == 1) THEN DEST[15:8] < SRC[15:8];
ELSE DEST[15:8] €< DEST[15:8];

IF (MASK[23] == 1) THEN DEST[23:16] € SRC[23:16]
ELSE DEST[23:16] < DEST[23:16];

IF (MASK[31] == 1) THEN DEST[31:24] € SRC[31:24]
ELSE DEST[31:24] < DEST[31:24];

IF (MASK[39] == 1) THEN DEST[39:32] €< SRC[39:32]

5-44

Ref. #319433-014

ELSE DEST[39:32] < DEST[39:32];
IF (MASK[47] == 1) THEN DEST[47:40] & SRC[47:40]

ELSE DEST[47:40] < DEST[47:40];

IF (MASK[55] == 1) THEN DEST[55:48] & SRC[55:48]

ELSE DEST[55:48] < DEST[55:48];

IF (MASK[63] == 1) THEN DEST[63:56] < SRC[63:56]

ELSE DEST[63:56] < DEST[63:56];

IF (MASK[71] == 1) THEN DEST[71:64] & SRC[71:64]

ELSE DEST[71:64] < DEST[71:64];

IF (MASK[79] == 1) THEN DEST[79:72] € SRC[79:72]

ELSE DEST[79:72] < DEST[79:72];

IF (MASK[87] == 1) THEN DEST[87:80] < SRC[87:80]

ELSE DEST[87:80] < DEST[87:80];

IF (MASK[95] == 1) THEN DEST[95:88] < SRC[95:88]

ELSE DEST[95:88] < DEST[95:88];

IF (MASK[103] == 1) THEN DEST[103:96] < SRC[103:96]
ELSE DEST[103:96] < DEST[103:96];

IF (MASK[111] == 1) THEN DEST[111:104] & SRC[111:104]
ELSE DEST[111:104] < DEST[111:104];

IF (MASK[119] == 1) THEN DEST[119:112] & SRC[119:112]
ELSE DEST[119:112] < DEST[119:112];

IF (MASK[127] == 1) THEN DEST[127:120] & SRC[127:120]
ELSE DEST[127:120] < DEST[127:120])

DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V) PBLENDVB: __m128i _mm_blendv_epi8 (_m128iv1, __m128iv2, __m128i mask);
VPBLENDVB: __m256i _mm256_blendv_epi8 (__m256iv1, __m256iv2, __m256i mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally,
#UD If VEX.W = 1.

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-45

INSTRUCTION SET REFERENCE

PBLENDW — Blend Packed Words

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF 3AQE /rib A VIV SSE4_1 Select words from xmm1 and xmm2/m128 from mask specified
PBLENDW xmm1, xmm2/m128, in imm8 and store the values into xmm1.
imm3
VEX.NDS.128.66.0F3AWIGOE/rib B VIV AVX Select words from xmm2 and xmm3/m128 from mask specified
VPBLENDW xmm1, xmm?2, in imm8 and store the values into xmm1.

xmm3/m128, imm8

VEX.NDS.256.66.0F3AWIGOE/rib B VIV AVX2 Select words from ymm2 and ymm3/m256 from mask specified
VPBLENDW ymm1, ymm2, in imm8 and store the values into ymm1.

ymm3/m256, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reqg (, rw) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Words from the source operand (second operand) are conditionally written to the destination operand (first
operand) depending on bits in the immediate operand (third operand). The immediate bits (bits 7:0) form a mask
that determines whether the corresponding word in the destination is copied from the source. If a bit in the mask,
corresponding to a word, is “1", then the word is copied, else the word is unchanged.

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

Operation

VPBLENDW (VEX.256 encoded version)

IF (imm8[0] == 1) THEN DEST[15:0] € SRC2[15:0]
ELSE DEST[15:0] € SRC1[15:0]

IF imm8[1] == 1) THEN DEST[31:16] € SRC2[31:16]
ELSE DEST[31:16] € SRC1[31:16]

IF imm8[2] == 1) THEN DEST[47:32] € SRC2[47:32]
ELSE DEST[47:32] € SRC1[47:32]

IF (imm8[3] == 1) THEN DEST[63:48] € SRC2[63:48]
ELSE DEST[63:48] € SRC1[63:48]

IF imm8[4] == 1) THEN DEST[79:64] € SRC2[79:64]
ELSE DEST[79:64] € SRC1[79:64]

IF (imm8[5] == 1) THEN DEST[95:80] € SRC2[95:80]
ELSE DEST[95:80] € SRC1[95:80]

IF (imm8[6] == 1) THEN DEST[111:96] €« SRC2[111:96]
ELSE DEST[111:96] €« SRC1[111:96]

5-46 Ref. #319433-014

IF (imm8[7] == 1) THEN DEST[127:112] & SRC2[127:112]
ELSE DEST[127:112] € SRC1[127:112]
IF (imm8[0] == 1) THEN DEST[143:128] < SRC2[143:128]
ELSE DEST[143:128] < SRC1[143:128]
IF (imm8[1] == 1) THEN DEST[159:144] & SRC2[159:144]
ELSE DEST[159:144] €< SRC1[159:144]
IF (imm8[2] == 1) THEN DEST[175:160] < SRC2[175:160]
ELSE DEST[175:160] €< SRC1[175:160]
IF (imm8[3] == 1) THEN DEST[191:176] & SRC2[191:176]
ELSE DEST[191:176] < SRC1[191:176]
IF (imm8[4] == 1) THEN DEST[207:192] & SRC2[207:192]
ELSE DEST[207:192] € SRC1[207:192]
IF (imm8[5] == 1) THEN DEST[223:208] < SRC2[223:208]
ELSE DEST[223:208] < SRC1[223:208]
IF (imm8[6] == 1) THEN DEST[239:224] < SRC2[239:224]
ELSE DEST[239:224] < SRC1[239:224]
IF (imm8[7] == 1) THEN DEST[255:240] & SRC2[255:240]
ELSE DEST[255:240] €< SRC1[255:240]

VPBLENDW (VEX.128 encoded version)

IF (imm8[0] == 1) THEN DEST[15:0] < SRC2[15:0]
ELSE DEST[15:0] € SRC1[15:0]

IF imm8[1] == 1) THEN DEST[31:16] €& SRC2[31:16]
ELSE DEST[31:16] < SRC1[31:16]

IF imm8[2] == 1) THEN DEST[47:32] €& SRC2[47:32]
ELSE DEST[47:32] < SRC1[47:32]

IF imm8[3] == 1) THEN DEST[63:48] & SRC2[63:48]
ELSE DEST[63:48] < SRC1[63:48]

IF imm8[4] == 1) THEN DEST[79:64] €& SRC2[79:64]
ELSE DEST[79:64] < SRC1[79:64]

IF (imm8[5] == 1) THEN DEST[95:80] €& SRC2[95:80]
ELSE DEST[95:80] < SRC1[95:80]

IF imm8[6] == 1) THEN DEST[111:96] €< SRC2[111:96]
ELSE DEST[111:96] €« SRC1[111:96]

IF imm8[7] == 1) THEN DEST[127:112] € SRC2[127:112]
ELSE DEST[127:112] € SRC1[127:112]
DEST[VLMAX:128] < 0

PBLENDW (128-bit Legacy SSE version)

IF (imm8[0] == 1) THEN DEST[15:0] ¢ SRC[15:0]
ELSE DEST[15:0] < DEST[15:0]

IF (imm8[1] == 1) THEN DEST[31:16] € SRC[31:16]
ELSE DEST[31:16] €« DEST[31:16]

IF (imm8[2] == 1) THEN DEST[47:32] € SR([47:32]
ELSE DEST[47:32] €< DEST[47:32]

IF (imm8[3] == 1) THEN DEST[63:48] < SR([63:48]
ELSE DEST[63:48] < DEST[63:48]

IF (imm8[4] == 1) THEN DEST[79:64] €<SR([79:64]
ELSE DEST[79:64] < DEST[79:64]

IF (imm8[5] == 1) THEN DEST[95:80] < SR([95:80]
ELSE DEST[95:80] < DEST[95:80]

IF (imm8[6] == 1) THEN DEST[111:96] €< SRC[111:96]
ELSE DEST[111:96] < DEST[111:96]

IF (imm8[7] == 1) THEN DEST[127:112] €« SRC[127:112]

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-47

INSTRUCTION SET REFERENCE

ELSE DEST[127:112] €« DEST[127:112]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PBLENDW: __m128i _mm_blend_epi16 (_m128iv1, _m128iv2, const int mask)
VPBLENDW: __m256i _mm256_blend_epi16 (__m256i v1, _m256i v2, const int mask)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-48 Ref. #319433-014

INSTRUCTION SET REFERENCE

PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ — Compare Packed Integers for Equality

Opcode/
Instruction

66 OF 74 /It
PCMPEQB xmm1, xmm2/m128

66 OF 75 /r
PCMPEQW xmm1, xmm2/m128

66 OF 76 /r
PCMPEQD xmm1, xmm2/m128

66 OF 3829 /r
PCMPEQQ xmm1, xmm2/m128

VEX.NDS.128.66.0F.WIG 74 /r

VPCMPEQB xmm1, xmm2, xmm3
/m128

VEX.NDS.128.66.0F.WIG 75 /r

VPCMPEQW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 76 /r

VPCMPEQD xmm1, xmm?2,
xmm3/m128

VEX.NDS.128.66.0F38.WIG 29 /r

VPCMPEQQ xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F.WIG 74 /r

VPCMPEQB ymm1, ymm2, ymm3
/m256

VEX.NDS.256.66.0F.WIG 75 /r

VPCMPEQW ymm1, ymm2, ymm3
/m256

VEX.NDS.256.66.0F.WIG 76 /r

VPCMPEQD ymm1, ymm2, ymm3
/m256

VEX.NDS.256.66.0F38.WIG 29 /r

VPCMPEQQ ymm1, ymm2, ymm3
/m256

Op/
En

A

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSEZ2

SSEZ2

SSE4_1

AVX

AVX

AVX

AVX

AVX2

AVX2

AVX2

AVX2

Description

Compare packed bytes in xmm2/m128 and xmm1 for equality.

Compare packed words in xmm2/m128 and xmm1 for equality.

Compare packed doublewords in xmm2/m128 and xmm1 for

equality.

Compare packed quadwords in xmm2/m128 and xmm1 for
equality.

Compare packed bytes in xmm3/m128 and xmm2 for equality.

Compare packed words in xmm3/m128 and xmmZ2 for equality.

Compare packed doublewords in xmm3/m128 and xmm2 for
equality.

Compare packed quadwords in xmm3/m128 and xmmZ2 for
equality.

Compare packed bytes in ymm3/m256 and ymm?2 for equality.

Compare packed words in ymm3/m256 and ymm2 for equality.

Compare packed doublewords in ymm3/m256 and ymm?2 for
equality.

Compare packed quadwords in ymm3/m256 and ymm?2 for equal-
ity.

Ref. # 319433-014

5-49

INSTRUCTION SET REFERENCE

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvwv ModRM:r/m (r) NA
Description

Performs a SIMD compare for equality of the packed bytes, words, doublewords, or quadwords in the first source
operand and the second source operand. If a pair of data elements is equal the corresponding data element in the
destination operand is set to all 1s, otherwise it is set to all Os.

The (V)PCMPEQB instruction compares the corresponding bytes in the destination and source operands; the
(V)PCMPEQW instruction compares the corresponding words in the destination and source operands; the
(V)PCMPEQD instruction compares the corresponding doublewords in the destination and source operands, and the
(V)PCMPEQQ instruction compares the corresponding quadwords in the destination and source operands.

Legacy SSE instructions: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. In 64-bit mode using a REX prefix in the form of REX.R
permits this instruction to access additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

Operation

COMPARE_BYTES_EQUAL (SRC1, SRC2)
IF SRC1[7:0] = SRC2[7:0]
THEN DEST[7:0] € FFH;
ELSE DEST[7:0] € O; FI;
(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] = SRC2[127:120]
THEN DEST[127:120] €« FFH;
ELSE DEST[127:120] €« O; FI;

COMPARE_WORDS_EQUAL (SRC1, SRC2)
IF SRC1[15:0] = SRC2[15:0]
THEN DEST[15:0] € FFFFH;
ELSE DEST[15:0] €« O; FI;
(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] = SRC2[127:112]
THEN DEST[127:112] €« FFFFH;
ELSE DEST[127:112] €« O; FI;

COMPARE_DWORDS_EQUAL (SRC1, SRC2)
IF SRC1[31:0] = SRC2[31:0]
THEN DEST[31:0] € FFFFFFFFH;
ELSE DEST[31:0] €« O; FI;
(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] = SRC2[127:96]
THEN DEST[127:96] € FFFFFFFFH;
ELSE DEST[127:96] € O; FI;

5-50 Ref. #319433-014

COMPARE_QWORDS_EQUAL (SRCT, SRC2)
IF SRC1[63:0] = SRC2[63:0]
THEN DEST[63:0] & FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] € O; FI;
IF SRC1[127:64] = SRC2[127:64]
THEN DEST[127:64] & FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] < O; FI;

VPCMPEQB (VEX.256 encoded version)
DEST[127:0] < COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] €« COMPARE_BYTES_EQUAL(SRC1[255:128],SRC2[255:128])

VPCMPEQB (VEX.128 encoded version)
DEST[127:0] < COMPARE_BYTES_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128]1 < 0

PCMPEQB (128-bit Legacy SSE version)
DEST[127:0] < COMPARE_BYTES_EQUAL(DEST[127:0],SRC[127:0])
DEST[VLMAX:128] (Unmodified)

VPCMPEQW (VEX.256 encoded version)
DEST[127:0] < COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] < COMPARE_WORDS_EQUAL(SRC1[255:128],SRC2[255:128])

VPCMPEQW (VEX.128 encoded version)
DEST[127:0] < COMPARE_WORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128]1 < 0

PCMPEQW (128-bit Legacy SSE version)
DEST[127:0] < COMPARE_WORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[VLMAX:128] (Unmodified)

VPCMPEQD (VEX.256 encoded version)
DEST[127:0] < COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[255:128] < COMPARE_DWORDS_EQUAL(SRC1[255:128],SRC2[255:128])

VPCMPEQD (VEX.128 encoded version)
DEST[127:0] < COMPARE_DWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128] < 0

PCMPEQD (128-bit Legacy SSE version)
DEST[127:0] < COMPARE_DWORDS_EQUAL(DEST[127:0],SRC[127:0])
DEST[VLMAX:128] (Unmodified)

VPCMPEQQ (VEX.256 encoded version)
DEST[127:0] €< COMPARE_QWORDS_EQUAL(SRC1[127:01,SRC2[127:0])
DEST[255:128] <COMPARE_QWORDS_EQUAL(SRC1[255:128],SRC2[255:128])

VPCMPEQQ (VEX.128 encoded version)

DEST[127:0] < COMPARE_QWORDS_EQUAL(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128] « O

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-51

INSTRUCTION SET REFERENCE

PCMPEQQ (128-bit Legacy SSE version)
DEST[127:0] €< COMPARE_QWORDS_EQUAL(DEST[127:0]1SRC[127:0])
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PCMPEQB: __m128i _mm_cmpeq_epi8 (_m128ia,__m128iDb)
(V)PCMPEQW: _m128i _mm_cmpeq_epi16 (_m128ia, _m128ib)

(V)PCMPEQD: _m128i _mm_cmpeq_epi32 (_m128ia,__m128ib)
(V)PCMPEQQ: __m128i _mm_cmpeq_epi6b4(__m128ia,__m128ib);
VPCMPEQB: __m256i _mm256_cmpeq_epi8 (_m256i a, __m256i b)
VPCMPEQW: __m256i _mm256_cmpeq_epi16 (_m256i a3, __m256i b)
VPCMPEQD: __m256i _mm256_cmpeq_epi32 (_m256ia, __m256i b)
VPCMPEQQ: __m256i _mm256_cmpeq_epi64(_m256i a, __m256i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-52

Ref. #319433-014

INSTRUCTION SET REFERENCE

PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ — Compare Packed Integers for Greater Than

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF 64 /r A VIV SSE2 Compare packed signed byte integers in xmm1 and xmm2/m128
PCMPGTB xmm1, xmm2/m128 for greater than.
66 OF 65 /r A VIV SSE2 Compare packed signed word integers in xmm1 and xmm2/m128
PCMPGTW xmm1, xmm2/m128 for greater than.
66 OF 66 /r A VIV SSE2 Compare packed signed doubleword integers in xmm1 and
PCMPGTD xmm1, xmm2/m128 xmm2/m128 for greater than.
66 OF 3837 /r A VIV SSE4 2 Compare packed qwords in xmm2/m128 and xmm1 for greater
PCMPGTQ xmm1, xmm2/m128 than.
VEX.NDS.128.66.0F.WIG 64 /r B VIV AVX Compare packed signed byte integers in xmm2 and xmm3/m128
VPCMPGTB xmm1, xmmZ2, for greater than.
xmm3/m128
VEX.NDS.128.66.0F.WIG 65 /r B VIV AVX Compare packed signed word integers in xmmZ2 and xmm3/m128
VPCMPGTW xmm1, xmm2, for greater than.
xmm3/m128
VEX.NDS.128.66.0F.WIG 66 /r B VIV AVX Compare packed signed doubleword integers in xmmZ2 and
VPCMPGTD xmm1, xmm2, xmm3/m128 for greater than.
xmm3/m128
VEXNDS.128.66.0F38WIG37/r B VIV AVX Compare packed signed qwords in xmmZ2 and xmm3/m128 for
VPCMPGTQ xmm1, xmm2, greater than.
xmm3/m128

VEX.NDS.256.66.0F.WIG 64 /r B VIV AVX2 Compare packed signed byte integers in ymm2 and ymm3/m256

VPCMPGTB ymm1, ymm2, for greater than.

ymm3/m256

VEX.NDS.256.66.0F.WIG 65 /r B VIV AVX2 Compare packed signed word integers in ymm2 and ymm3/m256
VPCMPGTW ymm1, ymm2, for greater than.

ymm3/m256

VEX.NDS.256.66.0F.WIG 66 /r B VIV AVX2 Compare packed signed doubleword integers in ymmZ2 and
VPCMPGTD ymm1, ymm2, ymm3/m256 for greater than.

ymm3/m256

VEX.NDS.256.66.0F38WIG37/r B VIV AVX2 Compare packed signed qwords in ymmZ2 and ymm3/m256 for
VPCMPGTQ ymm1, ymm2, greater than.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA

Ref. # 319433-014 5-53

INSTRUCTION SET REFERENCE

Description

Performs a SIMD signed compare for the greater value of the packed byte, word, doubleword, or quadword integers
in the first source operand and the second source operand. If a data element in the first source operand is greater
than the corresponding date element in the second source operand the corresponding data element in the destina-
tion operand is set to all 1s, otherwise it is set to all Os.

The (V)PCMPGTB instruction compares the corresponding signed byte integers in the first and second source oper-
ands; the (V)PCMPGTW instruction compares the corresponding signed word integers in the first and second source
operands; the (V)PCMPGTD instruction compares the corresponding signed doubleword integers in the first and
second source operands, and the (V)PCMPGTQ instruction compares the corresponding signed qword integers in
the first and second source operands.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15). The second source operand can be an XMM register or a 128-bit memory loca-
tion. The first source operand and destination operand are XMM registers.

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers. Bits (255:128) of the corresponding YMM destina-
tion register remain unchanged.

VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source operand and destination operand are XMM registers. Bits (255:128) of the corresponding YMM register
are zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

Operation

COMPARE_BYTES_GREATER (SRC1, SRC2)
IF SRC1[7:0] > SRC2[7:0]
THEN DEST[7:0] €« FFH;
ELSE DEST[7:0] €« O; FI;
(* Continue comparison of 2nd through 15th bytes in SRC1 and SRC2 *)
IF SRC1[127:120] > SRC2[127:120]
THEN DEST[127:120] € FFH;
ELSE DEST[127:120] € O; FI;

COMPARE_WORDS_GREATER (SRC1, SRC2)
IF SRC1[15:0] > SRC2[15:0]
THEN DEST[15:0] €« FFFFH;
ELSE DEST[15:0] < O; FI;
(* Continue comparison of 2nd through 7th 16-bit words in SRC1 and SRC2 *)
IF SRC1[127:112] > SRC2[127:112]
THEN DEST[127:112] € FFFFH;
ELSE DEST[127:112] € O; FI;

COMPARE_DWORDS_GREATER (SRC1, SRC2)
IF SRC1[31:0] > SRC2[31:0]
THEN DEST[31:0] € FFFFFFFFH;
ELSE DEST[31:0] € O; FI;
(* Continue comparison of 2nd through 3rd 32-bit dwords in SRC1 and SRC2 *)
IF SRC1[127:96] > SRC2[127:96]
THEN DEST[127:96] <FFFFFFFFH;
ELSE DEST[127:96] < O; FI;

COMPARE_QWORDS_GREATER (SRC1, SRC2)

IF SRC1[63:0] > SRC2[63:0]
THEN DEST[63:0] ¢ FFFFFFFFFFFFFFFFH;

5-54 Ref. #319433-014

ELSE DEST[63:0] € O; FI;

IF SRC1[127:64] > SRC2[127:64]

THEN DEST[127:64] € FFFFFFFFFFFFFFFFH;
ELSE DEST[127:64] € O; FI;

VPCMPGTB (VEX.256 encoded version)

DEST[127:0] € COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] € COMPARE_BYTES_GREATER(SRC1[255:128],SRC2[255:128])
VPCMPGTB (VEX.128 encoded version)

DEST[127:0] € COMPARE_BYTES_GREATER(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128]1 €« 0

PCMPGTB (128-bit Legacy SSE version)
DEST[127:0] ¢ COMPARE_BYTES_GREATER(DEST[127:0],SRC[127:0])
DEST[VLMAX:128] (Unmodified)

VPCMPGTW (VEX.256 encoded version)
DEST[127:0] € COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] €< COMPARE_WORDS_GREATER(SRC1[255:128],SRC2[255:128])

VPCMPGTW (VEX.128 encoded version)
DEST[127:0] € COMPARE_WORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128]1 <« 0

PCMPGTW (128-bit Legacy SSE version)
DEST[127:0] €< COMPARE_WORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[VLMAX:128] (Unmodified)

VPCMPGTD (VEX.256 encoded version)
DEST[127:0] € COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] €< COMPARE_DWORDS_GREATER(SRC1[255:128],SRC2[255:128])

VPCMPGTD (VEX.128 encoded version)
DEST[127:0] € COMPARE_DWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128]1 €« 0

PCMPGTD (128-bit Legacy SSE version)
DEST[127:0] €< COMPARE_DWORDS_GREATER(DEST[127:0],SRC[127:0])
DEST[VLMAX:128] (Unmodified)

VPCMPGTQ (VEX.256 encoded version)
DEST[127:0] €< COMPARE_QWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[255:128] < COMPARE_QWORDS_GREATER(SRC1[255:128],SRC2[255:128])

VPCMPGTQ (VEX.128 encoded version)
DEST[127:0] €< COMPARE_QWORDS_GREATER(SRC1[127:0],SRC2[127:0])
DEST[VLMAX:128]1 < 0

PCMPGTQ (128-bit Legacy SSE version)

DEST[127:0] < COMPARE_QWORDS_GREATER(DEST[127:0],SRC2[127:0])
DEST[VLMAX:128] (Unmodified)

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-55

INSTRUCTION SET REFERENCE

Intel C/C++ Compiler Intrinsic Equivalent
(V)PCMPGTB: __m128i _mm_cmpgt_epi8 (_m128ia, _m128ib)
(VIPCMPGTW: __m128i _mm_cmpgt_epi16 (_m128ia, __m128ib)

(V)PCMPGTD: _m128i _mm_cmpgt_epi32 (_m128ia,__m128ib)
(V)PCMPGTQ: __m128i _mm_cmpgt_epi64(_m128ia, __m128ib);
VPCMPGTB: __m256i _mm256_cmpgt_epi8 (_m256i a, __m256i b)
VPCMPGTW: __m256i _mm256_cmpgt_epi16 (_m256i a, __m256ib)
VPCMPGTD: __m256i _mm256_cmpgt_epi32 (__m256ia, __m256ib)
VPCMPGTQ: __m256i _mm256_cmpgt_epi64(__m256ia, __m256i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-56

Ref. #319433-014

INSTRUCTION SET REFERENCE

PHADDW/PHADDD — Packed Horizontal Add

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF 3801 /r A VIV SSSE3 Add 16-bit signed integers horizontally, pack to xmm1.

PHADDW xmm1, xmm2/m128

66 0F3802 /r A VIV SSSE3 Add 32-bit signed integers horizontally, pack to xmm1.
PHADDD xmm1, xmm2/m128

VEX.NDS.128.66.0F38WIGO1/r B VIV AVX Add 16-bit signed integers horizontally, pack to xmm1.

VPHADDW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38WIG02/r B VIV AVX Add 32-bit signed integers horizontally, pack to xmm1.

VPHADDD xmm1, xmmz2,
xmm3/m128

VEXNDS.256.66.0F38WIGO1/r B VIV AVX2 Add 16-bit signed integers horizontally, pack to ymm1.

VVPHADDW ymm1, ymm2,
ymm3/m256

VEXNDS.256.66.0F38WIG02/r B VIV AVX2 Add 32-bit signed integers horizontally, pack to ymm1.
VVPHADDD ymm1, ymm2,

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PHADDW adds two adjacent 16-bit signed integers horizontally from the second source operand and the first
source operand and packs the 16-bit signed results to the destination operand. (V)PHADDD adds two adjacent 32-
bit signed integers horizontally from the second source operand and the first source operand and packs the 32-bit
signed results to the destination operand. The first source and destination operands are XMM registers. The second
source operand is an XMM register or a 128-bit memory location.

Legacy SSE instructions: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. In 64-bit mode use the REX prefix to access additional
registers.

128-bit Legacy SSE version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: Horizontal addition of two adjacent data elements of the low 16-bytes of the first and
second source operands are packed into the low 16-bytes of the destination operand. Horizontal addition of two
adjacent data elements of the high 16-bytes of the first and second source operands are packed into the high 16-
bytes of the destination operand. The second source operand can be an YMM register or a 256-bit memory location.
The first source and destination operands are YMM registers.

Ref. # 319433-014 5-57

INSTRUCTION SET REFERENCE

SRC2 Y7 | Y6

X6

X5

X4

X3

X0

Ay (YA, W\
NN

Dest

Figure 5-3. 256-bit VPHADDD Instruction Operation

Operation

VPHADDW (VEX.256 encoded version)
DEST[15:0] ¢ SRC1[31:16] + SRC1[15:0]
DEST[31:16] € SRC1[63:48] + SRC1[47:32]
DEST[47:32] € SRC1[95:80] + SRC1[79:64]
DEST[63:48] < SRC1[127:112] + SRC1[111:96]
DEST[79:64] € SRC2[31:16] + SRC2[15:0]
DEST[95:80] € SRC2[63:48] + SRC2[47:32]
DEST[111:96] € SRC2[95:80] + SRC2[79:64]
DEST[127:112] € SRC2[127:112] + SRC2[111:96]
DEST[143:128] € SRC1[159:144] + SRC1[143:128]
DEST[159:144] < SRC1[191:176] + SRC1[175:160]
DEST[175:160] €« SRC1[223:208] + SRC1[207:192]
DEST[191:176] €« SRC1[255:240] + SRC1[239:224]
DEST[207:192] €« SRC2[127:112] + SRC2[143:128]
DEST[223:208] < SRC2[159:144] + SRC2[175:160]
DEST[239:224] < SRC2[191:176] + SRC2[207:192]
DEST[255:240] ¢« SRC2[223:208] + SRC2[239:224]

VPHADDD (VEX.256 encoded version)

DEST[31-0] €« SRC1[63-32] + SRC1[31-0]
DEST[63-32] ¢ SRC1[127-96] + SRC1[95-64]
DEST[95-64] ¢ SRC2[63-32] + SRC2[31-0]
DEST[127-96] < SRC2[127-96] + SRC2[95-64]
DEST[159-128] < SRC1[191-160] + SRC1[159-128]
DEST[191-160] €« SRC1[255-224] + SRC1[223-192]
DEST[223-192] < SRC2[191-160] + SRC2[159-128]
DEST[255-224] €< SRC2[255-224] + SRC2[223-192]

VPHADDW (VEX.128 encoded version)
DEST[15:0] ¢ SRC1[31:16] + SRC1[15:0]
DEST[31:16] € SRC1[63:48] + SRC1[47:32]
DEST[47:32] € SRC1[95:80] + SRC1[79:64]
DEST[63:48] < SRC1[127:112] + SRC1[111:96]

5-58

\/ \/

SRC1

Ref. #319433-014

DEST[79:64] < SRC2[31:16] + SRC2[15:0]
DEST[95:80] < SRC2[63:48] + SRC2[47:32]
DEST[111:96] € SRC2[95:80] + SRC2[79:64]
DEST[127:112] € SRC2[127:112] + SRC2[111:96]
DEST[VLMAX:128] < 0

VPHADDD (VEX.128 encoded version)
DEST[31-0] ¢ SRC1[63-32] + SRC1[31-0]
DEST[63-32] € SRC1[127-96] + SRC1[95-64]
DEST[95-64] € SRC2[63-32] + SRC2[31-0]
DEST[127-96] € SRC2[127-96] + SRC2[95-64]
DEST[VLMAX:128]1 <« 0

PHADDW (128-bit Legacy SSE version)
DEST[15:0] ¢ DEST[31:16] + DEST[15:0]
DEST[31:16] € DEST[63:48] + DEST[47:32]
DEST[47:32] € DEST[95:80] + DEST[79:64]
DEST[63:48] < DEST[127:112] + DEST[111:96]
DEST[79:64] < SR([31:16] + SRC[15:0]
DEST[95:80] €< SR([63:48] + SR([47:32]
DEST[111:96] €« SRC[95:80] + SRC[79:64]
DEST[127:112] €« SRC[127:112] + SRC[111:96]
DEST[VLMAX:128] (Unmodified)

PHADDD (128-bit Legacy SSE version)
DEST[31-0] €« DEST[63-32] + DEST[31-0]
DEST[63-32] €< DEST[127-96] + DEST[95-64]
DEST[95-64] € SR([63-32] + SRC[31-0]
DEST[127-96] €« SRC[127-96] + SRC[95-64]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PHADDW: __m128i _mm_hadd_epi16 (__m128ia,__m128ib)
(V)PHADDD: __m128i _mm_hadd_epi32 (__m128ia, __m128ib)
VPHADDW: __m256i _mm256_hadd_epi16 (__m256i a, __m256i b)
VPHADDD: __m256i _mm256_hadd_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-59

INSTRUCTION SET REFERENCE

PHADDSW — Packed Horizontal Add with Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 0F 3803 /r A VIV SSSE3 Add 16-bit signed integers horizontally, pack saturated integers to
PHADDSW xmm1, xmm2/m128 xmmf.
VEX.NDS.128.66.0F38WIGO03/r B VIV AVX Add 16-bit signed integers horizontally, pack saturated integers to
VPHADDSW xmm1, xmmz2, xmm1.
xmm3/m128

VEX.NDS.256.66.0F38WIG03/r B VIV AVX2 Add 16-bit signed integers horizontally, pack saturated integers to

VPHADDSW ymm1, ymmZ, ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PHADDSW adds two adjacent signed 16-bit integers horizontally from the second source and first source oper-
ands and saturates the signed results; packs the signed, saturated 16-bit results to the destination operand.

128-bit Legacy SSE version: he first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: he first source and destination operands are XMM registers. The second source operand
is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

VPHADDSW (VEX.256 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[143:128]= SaturateToSignedWord(SRC1[159:144] + SRC1[143:128])
DEST[159:144] = SaturateToSignedWord(SRC1[191:176] + SRC1[175:160])
DEST[175:160] = SaturateToSignedwWord(SRC1[223:208] + SRC1[207:192])
DEST[191:176] = SaturateToSignedWord(SRC1[255:240] + SRC1[239:224])
DEST[207:192] = SaturateToSignedWord(SRC2[127:112] + SRC2[143:128])
DEST[223:208] = SaturateToSignedWord(SRC2[159:144] + SRC2[175:160])
DEST[239:224] = SaturateToSignedWord(SRC2[191-160] + SRC2[159-128])
DEST[255:240] = SaturateToSignedWord(SRC2[255:240] + SRC2[239:224])

—_— e — ==

5-60 Ref. #319433-014

VPHADDSW (VEX.128 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[31:16] + SRC1[15:0])
DEST[31:16] = SaturateToSignedWord(SRC1[63:48] + SRC1[47:32])
DEST[47:32] = SaturateToSignedWord(SRC1[95:80] + SRC1[79:64])
DEST[63:48] = SaturateToSignedWord(SRC1[127:112] + SRC1[111:96])
DEST[79:64] = SaturateToSignedWord(SRC2[31:16] + SRC2[15:0])
DEST[95:80] = SaturateToSignedWord(SRC2[63:48] + SRC2[47:32])
DEST[111:96] = SaturateToSignedWord(SRC2[95:80] + SRC2[79:64])
DEST[127:112] = SaturateToSignedWord(SRC2[127:112] + SRC2[111:96])
DEST[VLMAX:128]1 €« 0

PHADDSW (128-bit Legacy SSE version)

DEST[15:0]= SaturateToSignedWord(DEST[31:16] + DEST[15:0])
DEST[31:16] = SaturateToSignedWord(DEST[63:48] + DEST[47:32])
DEST[47:32] = SaturateToSignedWord(DEST[95:80] + DEST[79:64])
DEST[63:48] = SaturateToSignedWord(DEST[127:112] + DEST[111:96])
DEST[79:64] = SaturateToSignedWord(SRC[31:16] + SRC[15:0])
DEST[95:80] = SaturateToSignedWord(SRC[63:48] + SRC[47:32])
DEST[111:96] = SaturateToSignedWord(SRC[95:80] + SRC[79:64])
DEST[127:112] = SaturateToSignedWord(SRC[127:112] + SRC[111:96])
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PHADDSW: __m128i_mm_hadds_epi16 (__m128ia,__m128ib)
VPHADDSW: __m256i _mm256_hadds_epi16 (__m256ia, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-61

INSTRUCTION SET REFERENCE

PHSUBW/PHSUBD — Packed Horizontal Subtract

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 0F 3805 /r A VIV SSSE3 Subtract 16-bit signed integers horizontally, pack to xmm1.

PHSUBW xmm1, xmm2/m128

66 OF 3806 /r A VIV SSSE3 Subtract 32-bit signed integers horizontally, pack to xmm1.
PHSUBD xmm1, xmm2/m128

VEX.NDS.128.66.0F38WIGO5/r B VIV AVX Subtract 16-bit signed integers horizontally, pack to xmm1.

VPHSUBW xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38WIG06/r B VIV AVX Subtract 32-bit signed integers horizontally, pack to xmm1.

VPHSUBD xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F38WIGO5/r B VIV AVX2 Subtract 16-bit signed integers horizontally, pack to ymm1.

VPHSUBW ymm1, ymm2,
ymm3/m256

VEX.NDS.256.66.0F38WIG06/r B VIV AVX2 Subtract 32-bit signed integers horizontally, pack to ymm1.
VPHSUBD ymm1, ymm2,

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PHSUBW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the
most significant word from the least significant word of each pair in the second source operand and destination
operands, and packs the signed 16-bit results to the destination operand. (V)PHSUBD performs horizontal subtrac-
tion on each adjacent pair of 32-bit signed integers by subtracting the most significant doubleword from the least
significant doubleword of each pair, and packs the signed 32-bit result to the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

5-62 Ref. #319433-014

INSTRUCTION SET REFERENCE

Operation

VPHSUBW (VEX.256 encoded version)
DEST[15:0] € SRC1[15:0] - SRC1[31:16]
DEST[31:16] €« SRC1[47:32] - SRC1[63:48]
DEST[47:32] € SRC1[79:64] - SRC1[95:80]
DEST[63:48] < SRC1[111:96] - SRC1[127:112]
DEST[79:64] < SRC2[15:0] - SRC2[31:16]
DEST[95:80] € SRC2[47:32] - SRC2[63:48]
DEST[111:96] € SRC2[79:64] - SRC2[95:80]
DEST[127:112] € SRC2[111:96] - SRC2[127:112]
DEST[143:128] €« SRC1[143:128] - SRC1[159:144]
DEST[159:144] <« SRC1[175:160] - SRC1[191:176]
DEST[175:160] €« SRC1[207:192] - SRC1[223:208]
DEST[191:176] €« SRC1[239:224] - SRC1[255:240]
DEST[207:192] € SRC2[143:128] - SRC2[159:144]
DEST[223:208] < SRC2[175:160] - SRC2[191:176]
DEST[239:224] < SRC2[207:192] - SRC2[223:208]
DEST[255:240] € SRC2[239:224] - SRC2[255:240]

VPHSUBD (VEX.256 encoded version)
DEST[31:0] < SRC1[31:0] - SRC1[63:32]
DEST[63:32] € SRC1[95:64] - SRC1[127:96]
DEST[95:64] € SRC2[31:0] - SRC2[63:32]
DEST[127:96] € SRC2[95:64] - SRC2[127:96]
DEST[159:128] €« SRC1[159:128] - SRC1[191:160]
DEST[191:160] €« SRC1[223:192] - SRC1[255:224]
DEST[223:192] € SRC2[159:128] - SRC2[191:160]
DEST[255:224] € SRC2[223:192] - SRC2[255:224]

VPHSUBW (VEX.128 encoded version)
DEST[15:0] € SRC1[15:0] - SRC1[31:16]
DEST[31:16] €« SRC1[47:32] - SRC1[63:48]
DEST[47:32] € SRC1[79:64] - SRC1[95:80]
DEST[63:48] < SRC1[111:96] - SRC1[127:112]
DEST[79:64] < SRC2[15:0] - SRC2[31:16]
DEST[95:80] € SRC2[47:32] - SRC2[63:48]
DEST[111:96] € SRC2[79:64] - SRC2[95:80]
DEST[127:112] € SRC2[111:96] - SRC2[127:112]
DEST[VLMAX:128] « 0

VPHSUBD (VEX.128 encoded version)
DEST[31:0] €< SRC1[31:0] - SRC1[63:32]
DEST[63:32] € SRC1[95:64] - SRC1[127:96]
DEST[95:64] € SRC2[31:0] - SRC2[63:32]
DEST[127:96] € SRC2[95:64] - SRC2[127:96]
DEST[VLMAX:128] « 0

PHSUBW (128-bit Legacy SSE version)
DEST[15:0] € DEST[15:0] - DEST[31:16]
DEST[31:16] < DEST[47:32] - DEST[63:48]
DEST[47:32] < DEST[79:64] - DEST[95:80]
DEST[63:48] < DEST[111:96] - DEST[127:112]
DEST[79:64] < SRC[15:0] - SRC[31:16]

Ref. # 319433-014 5-63

INSTRUCTION SET REFERENCE

DEST[95:80] € SRC[47:32] - SRC[63:48]
DEST[111:96] € SRC[79:64] - SRC[95:80]
DEST[127:112] € SRC[111:96] - SRC[127:112]
DEST[VLMAX:128] (Unmodified)

PHSUBD (128-bit Legacy SSE version)
DEST[31:0] €« DEST[31:0] - DEST[63:32]
DEST[63:32] € DEST[95:64] - DEST[127:96]
DEST[95:64] < SR([31:0] - SRC[63:32]
DEST[127:96] € SRC[95:64] - SRC[127:96]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PHSUBW: __m128i _mm_hsub_epi16 (__m128ia, __m128ib)
(V)PHSUBD: __m128i _mm_hsub_epi32 (_m128ia,__m128iDb)
VPHSUBW: __m256i _mm256_hsub_epi16 (__m256i a, __m256i b)
VPHSUBD: __m256i _mm256_hsub_epi32 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

5-64

Ref. #319433-014

INSTRUCTION SET REFERENCE

PHSUBSW — Packed Horizontal Subtract with Saturation

Opcode/ Op/ 64/32

Instruction En -bit
Mode

66 OF 3807 /r A VIV

PHSUBSW xmm1, xmm2/m128

VEX.NDS.128.66.0F38WIGO7 /r B VIV

VPHSUBSW xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F38WIG07 /r B VIV
VPHSUBSW ymm1, ymm2,

CPUID
Feature
Flag

SSSE3

AVX

AVX2

Description

Subtract 16-bit signed integer horizontally, pack saturated inte-
gers to xmm1.

Subtract 16-bit signed integer horizontally, pack saturated inte-
gers to xmm1.

Subtract 16-bit signed integer horizontally, pack saturated inte-
gers toymm1.

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PHSUBSW performs horizontal subtraction on each adjacent pair of 16-bit signed integers by subtracting the
most significant word from the least significant word of each pair in the second source and first source operands.
The signed, saturated 16-bit results are packed to the destination operand. The destination and first source
operand are XMM registers. The second operand can be an XMM register or a 128-bit memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination

register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are

zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Ref. # 319433-014

5-65

INSTRUCTION SET REFERENCE

Operation

VPHSUBSW (VEX.256 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:801])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[143:128]= SaturateToSignedWord(SRC1[143:128] - SRC1[159:144])
DEST[159:144] = SaturateToSignedWord(SRC1[175:160] - SRC1[191:176])
DEST[175:160] = SaturateToSignedWord(SRC1[207:192] - SRC1[223:208])
DEST[191:176] = SaturateToSignedWord(SRC1[239:224] - SRC1[255:240])
DEST[207:192] = SaturateToSignedWord(SRC2[143:128] - SRC2[159:144])
DEST[223:208] = SaturateToSignedWord(SRC2[175:160] - SRC2[191:176])
DEST[239:224] = SaturateToSignedWord(SRC2[207:192] - SRC2[223:208])
DEST[255:240] = SaturateToSignedWord(SRC2[239:224] - SRC2[255:240])

_—=== ==

VPHSUBSW (VEX.128 encoded version)

DEST[15:0]= SaturateToSignedWord(SRC1[15:0] - SRC1[31:16])
DEST[31:16] = SaturateToSignedWord(SRC1[47:32] - SRC1[63:48])
DEST[47:32] = SaturateToSignedWord(SRC1[79:64] - SRC1[95:801])
DEST[63:48] = SaturateToSignedWord(SRC1[111:96] - SRC1[127:112])
DEST[79:64] = SaturateToSignedWord(SRC2[15:0] - SRC2[31:16])
DEST[95:80] = SaturateToSignedWord(SRC2[47:32] - SRC2[63:48])
DEST[111:96] = SaturateToSignedWord(SRC2[79:64] - SRC2[95:80])
DEST[127:112] = SaturateToSignedWord(SRC2[111:96] - SRC2[127:112])
DEST[VLMAX:128] « 0

PHSUBSW (128-bit Legacy SSE version)

DEST[15:0]= SaturateToSignedwWord(DEST[15:0] - DEST[31:16])
DEST[31:16] = SaturateToSignedWord(DEST[47:32] - DEST[63:48])
DEST[47:32] = SaturateToSignedWord(DEST[79:64]) - DEST[95:80]
DEST[63:48] = SaturateToSignedWord(DEST[111:96] - DEST[127:112])
DEST[79:64] = SaturateToSignedWord(SRC[15:0] - SRC[31:16])
DEST[95:80] = SaturateToSignedWord(SRC[47:32] - SRC[63:48])
DEST[111:96] = SaturateToSignedWord(SRC[79:64] - SRC[95:80])
DEST[127:112] = SaturateToSignedWord(SRC[SRC[111:96] - 127:112])
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PHSUBSW: __m128i _mm_hsubs_epi16 (__m128ia, __m128ib)
VPHSUBSW: __m256i _mm256_hsubs_epi16 (__m256i a, __m256i b)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

5-66

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMADDUBSW — Multiply and Add Packed Integers

Opcode/ Op/ 64/32

Instruction En -bit
Mode

66 OF 3804 /r A VIV

PMADDUBSW xmm1, xmm2/m128

VEX.NDS.128.66.0F38.WIG 04 /r B VIV

VPMADDUBSW xmm1, xmmZ2,
xmm3/m128

VEX.NDS.256.66.0F38.WIG 04 /r B A
VPMADDUBSW ymm1, ymm2,

CPUID
Feature
Flag

SSSE3

AVX

AVX2

Description

Multiply signed and unsigned bytes, add horizontal pair of signed
words, pack saturated signed-words to xmm1.

Multiply signed and unsigned bytes, add horizontal pair of signed
words, pack saturated signed-words to xmm1.

Multiply signed and unsigned bytes, add horizontal pair of signed
words, pack saturated signed-words to ymm1.

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PMADDUBSW multiplies vertically each unsigned byte of the first source operand with the corresponding signed
byte of the second source operand, producing intermediate signed 16-bit integers. Each adjacent pair of signed
words is added and the saturated result is packed to the destination operand. For example, the lowest-order bytes
(bits 7:0) in the first source and second source operands are multiplied and the intermediate signed word result is
added with the corresponding intermediate result from the 2nd lowest-order bytes (bits 15:8) of the operands; the
sign-saturated result is stored in the lowest word of the destination register (15:0). The same operation is

performed on the other pairs of adjacent bytes.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination

register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are

zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The

first source and destination operands are YMM registers.

Operation

VPMADDUBSW (VEX.256 encoded version)

DEST[15:0] < SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])

// Repeat operation for 2nd through 15th word

DEST[255:240] < SaturateToSignedword(SRC2[255:248]*SRC1[255:248]+ SRC2[247:240]* SRC1[247:240])

VPMADDUBSW (VEX.128 encoded version)

DEST[15:0] < SaturateToSignedWord(SRC2[15:8]* SRC1[15:8]+SRC2[7:0]*SRC1[7:0])

// Repeat operation for 2nd through 7th word

DEST[127:112] < SaturateToSignedword(SRC2[127:120]*SRC1[127:120]+ SRC2[119:112]* SRC1[119:112])

DEST[VLMAX:128] < 0

Ref. # 319433-014

5-67

INSTRUCTION SET REFERENCE

PMADDUBSW (128-bit Legacy SSE version)

DEST[15:0] € SaturateToSignedWord(SRC[15:8]* DEST[15:8]+SRC[7:0]*DEST[7:0]);

// Repeat operation for 2nd through 7th word

DEST[127:112] €« SaturateToSignedWord(SRC[127:120]*DEST[127:120]+ SRC[119:112]* DEST[119:112]);
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMADDUBSW: __m128i _mm_maddubs_epi16 (_m128ia,__m128ib)
VPMADDUBSW: __m256i _mm256_maddubs_epi16 (__m256ia, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-68

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMADDWD — Multiply and Add Packed Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF F5 /r A VIV SSE2 Multiply the packed word integers in xmm1 by the packed word
PMADDWD xmm1, xmm2/m128 integers in xmm2/m128, add adjacent doubleword results, and

store in xmm1.

VEX.NDS.128.66.0F.WIG F5 /r B VIV AVX Multiply the packed word integers in xmmZ2 by the packed word
VPMADDWD xmm1, xmm2, integers in xmm3/m128, add adjacent doubleword results, and
xmm3/m128 store in xmm1.

VEX.NDS.256.66.0FWIG F5 /r B VIV AVX2 Multiply the packed word integers in ymmZ2 by the packed word
VPMADDWD ymm1, ymm2, integers in ymm3/m256, add adjacent doubleword results, and

ymm3/m256 store in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Multiplies the individual signed words of the first source operand by the corresponding signed words of the second
source operand, producing temporary signed, doubleword results. The adjacent doubleword results are then
summed and stored in the destination operand. For example, the corresponding low-order words (15:0) and (31-
16) in the second source and first source operands are multiplied by one another and the doubleword results are
added together and stored in the low doubleword of the destination register (31-0). The same operation is
performed on the other pairs of adjacent words.

The (V)PMADDWD instruction wraps around only in one situation: when the 2 pairs of words being operated on in
a group are all 8000H. In this case, the result wraps around to 80000000H.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source

operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

VPMADDWD (VEX.256 encoded version)

DEST[31:0] € (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])

DEST[63:32] €« (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] €« (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:801])
DEST[127:96] €« (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[159:128] < (SRC1[143:128] * SRC2[143:128]) + (SRC1[159:144] * SRC2[159:144]
DEST[191:160] < (SRC1[175:160] * SRC2[175:160]) + (SRC1[191:176] * SRC2[191:176]
DEST[223:192] € (SRC1[207:192] * SRC2[207:192]) + (SRC1[223:208] * SRC2[223:208]
DEST[255:224] < (SRC1[239:224] * SRC2[239:224]) + (SRC1[255:240] * SRC2[255:240]

Pl

Ref. # 319433-014 5-69

INSTRUCTION SET REFERENCE

VPMADDWD (VEX.128 encoded version)

DEST[31:0] €« (SRC1[15:0] * SRC2[15:0]) + (SRC1[31:16] * SRC2[31:16])

DEST[63:32] € (SRC1[47:32] * SRC2[47:32]) + (SRC1[63:48] * SRC2[63:48])
DEST[95:64] € (SRC1[79:64] * SRC2[79:64]) + (SRC1[95:80] * SRC2[95:80])
DEST[127:96] €« (SRC1[111:96] * SRC2[111:96]) + (SRC1[127:112] * SRC2[127:112])
DEST[VLMAX:128]1 < 0

PMADDWD (128-bit Legacy SSE version)

DEST[31:0] « (DEST[15:0] * SRC[15:0]) + (DEST[31:16] * SRC[31:16])

DEST[63:32] € (DEST[47:32] * SRC[47:32]) + (DEST[63:48] * SRC[63:48])
DEST[95:64] €< (DEST[79:64] * SRC[79:64]) + (DEST[95:80] * SRC[95:80])
DEST[127:96] < (DEST[111:96] * SRC[111:96]) + (DEST[127:112] * SRC[127:112])
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMADDWD: __m128i _mm_madd_epi16 (__m128ia,_m128ib)
VPMADDWD: __m256i _mm256_madd_epi16 (_m256i a3, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-70

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMAXSB/PMAXSW/PMAXSD — Maximum of Packed Signed Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF 383C/r A VIV SSE4_1 Compare packed signed byte integers in xmm1 and xmm2/m128
PMAXSB xmm1, xmm2/m128 and store packed maximum values in xmm1.
66 OF EE /r A VIV SSE2 Compare packed signed word integers in xmm2/m128 and xmm1
PMAXSW xmm1, xmm2/m128 and stores maximum packed values in xmm1.
66 OF 383D /r A VIV SSE4_1 Compare packed signed dword integers in xmm1 and
PMAXSD xmm1, xmm2/m128 xmm2/m128 and store packed maximum values in xmm1.

VEXNDS.128.66.0F38WIG3C/r B VIV AVX Compare packed signed byte integers in xmm2 and xmm3/m128

VPMAXSB xmm1, xmm2, and store packed maximum values in xmm1.

xmm3/m128

VEX.NDS.128.66.0F.WIG EE /r B VIV AVX Compare packed signed word integers in xmm3/m128 and xmm2
VPMAXSW xmm1, xmm2, and store packed maximum values in xmm1.

xmm3/m128

VEXNDS.128.66.0F38WIG3D/r B VIV AVX Compare packed signed dword integers in xmm2 and
VPMAXSD xmm1, xmm2, xmm3/m128 and store packed maximum values in xmm1.

xmm3/m128

VEXNDS.256.66.0F38WIG3C/r B VIV AVX2 Compare packed signed byte integers in ymm2 and ymm3/m128

VPMAXSB ymm1, ymm2, and store packed maximum values in ymm1.

ymm3/m256

VEX.NDS.256.66.0F.WIG EE /r B VIV AVX2 Compare packed signed word integers in ymm3/m128 and ymm2
VPMAXSW ymm1, ymm2, and store packed maximum values in ymm1.

ymm3/m256

VEXNDS.256.66.0F38WIG3D/r B VIV AVX2 Compare packed signed dword integers in ymm2 and

VPMAXSD ymm1, ymm2, ymm3/m128 and store packed maximum values in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD compare of the packed signed byte, word, or dword integers in the second source operand and
the first source operand and returns the maximum value for each pair of integers to the destination operand. The
first source and destination operand is an XMM register; the second source operand is an XMM register or a 128-bit
memory location.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

Ref. # 319433-014 5-71

INSTRUCTION SET REFERENCE

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

PMAXSB (128-bit Legacy SSE version)
IF DEST[7:0] >SRC[7:0] THEN
DEST[7:0] « DEST[7:0];
ELSE
DEST[15:0] €« SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN
DEST[127:120] « DEST[127:120];
ELSE
DEST[127:120] € SRC[127:120]; FI;
DEST[VLMAX:128] (Unmodified)

VPMAXSB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[7:0] €« SRC2[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN
DEST[127:120] €« SRC1[127:120];
ELSE
DEST[127:120] €« SRC2[127:120]; FI;
DEST[VLMAX:128] « 0

VPMAXSB (VEX.256 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[15:0] € SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] >SRC2[255:248] THEN
DEST[255:248] €« SRC1[255:248];
ELSE
DEST[255:248] € SRC2[255:248]; FI;

PMAXSW (128-bit Legacy SSE version)
IF DEST[15:0] >SRC[15:0] THEN
DEST[15:0] €< DEST[15:0];
ELSE
DEST[15:0] € SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN
DEST[127:112] €« DEST[127:112];
ELSE
DEST[127:112] € SRC[127:112]; FI;
DEST[VLMAX:128] (Unmodified)

5-72 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPMAXSW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN
DEST[127:112] €« SRC1[127:112];
ELSE
DEST[127:112] € SRC2[127:112]; FI;
DEST[VLMAX:128]1 < 0

VPMAXSW (VEX.256 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] >SRC2[255:240] THEN
DEST[255:240] < SRC1[255:2407;
ELSE
DEST[255:240] €< SRC2[255:240]; FI;

PMAXSD (128-bit Legacy SSE version)
IF DEST[31:0] >SRC[31:0] THEN
DEST[31:0] €« DEST[31:0];
ELSE
DEST[31:0] €« SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] >SRC[127:95] THEN
DEST[127:95] € DEST[127:95];
ELSE
DEST[127:95] €« SRC[127:95]; FI;
DEST[VLMAX:128] (Unmodified)

VPMAXSD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN
DEST[127:95] € SRC1[127:95];
ELSE
DEST[127:95] € SRC2[127:95]; FI;
DEST[VLMAX:128] < 0

VPMAXSD (VEX.256 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] > SRC2[255:224] THEN

Ref. # 319433-014 5-73

INSTRUCTION SET REFERENCE

DEST[255:224] €< SRC1[255:224];
ELSE
DEST[255:224] €« SRC2[255:224]; F;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMAXSB: __m128i _mm_max_epi8 (__m128ia, __m128ib);
(V)PMAXSW: __m128i _mm_max_epi16 (_m128ia, __m128ib)
(V)PMAXSD: __m128i _mm_max_epi32 (_m128ia, _m128ib);
VPMAXSB: __m256i _mm256_max_epi8 (_m256i a, __m256i b);
VPMAXSW: __m256i _mm256_max_epi16 (_m256ia, __m256i b)
VPMAXSD: __m256i _mm256_max_epi32 (_m256i 3, __m256i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-74

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMAXUB/PMAXUW/PMAXUD — Maximum of Packed Unsigned Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF DE /r A VIV SSE2 Compare packed unsigned byte integers in xmm1 and
PMAXUB xmm1, xmm2/m128 xmm2/m128 and store packed maximum values in xmm1.
66 OF 38 3E/r A VIV SSE4_1 Compare packed unsigned word integers in xmm2/m128 and
PMAXUW xmm1, xmm2/m128 xmm?1 and stores maximum packed values in xmm1.
66 OF 38 3F /r A VIV SSE4_1 Compare packed unsigned dword integers in xmm1 and
PMAXUD xmm1, xmm2/m128 xmm2/m128 and store packed maximum values in xmm1.
VEX.NDS.128.66.0F.WIG DE /r B VIV AVX Compare packed unsigned byte integers in xmmZ2 and
VPMAXUB xmm1, xmm2, xmm3/m128 and store packed maximum values in xmm1.
xmm3/m128
VEX.NDS.128.66.0F38WIG3E/r B VIV AVX Compare packed unsigned word integers in xmm3/m128 and
VPMAXUW xmm1, xmm2, xmm2 and store maximum packed values in xmm1.
xmm3/m128
VEXNDS.128.66.0F38WIG3F/r B VIV AVX Compare packed unsigned dword integers in xmm2 and
VPMAXUD xmm1, xmm2, xmm3/m128 and store packed maximum values in xmm1.
xmm3/m128
VEX.NDS.256.66.0F.WIG DE /r B VIV AVX2 Compare packed unsigned byte integers in ymmZ2 and
VPMAXUB ymm1, ymmz2, ymm3/m256 and store packed maximum values in ymm1.
ymm3/m256
VEX.NDS.256.66.0F38WIG3E/r B VIV AVX2 Compare packed unsigned word integers in ymm3/m256 and
VPMAXUW ymm1, ymm2, ymmZ and store maximum packed values in ymm1.
ymm3/m256
VEX.NDS.256.66.0F38WIG3F/r B VIV AVX2 Compare packed unsigned dword integers in ymmZ2 and
VPMAXUD ymm1, ymm2, ymm3/m256 and store packed maximum values in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD compare of the packed unsigned byte, word, or dword integers in the second source operand and
the first source operand and returns the maximum value for each pair of integers to the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

Ref. # 319433-014 5-75

INSTRUCTION SET REFERENCE

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

PMAXUB (128-bit Legacy SSE version)
IF DEST[7:0] >SRC[7:0] THEN
DEST[7:0] <« DEST[7:0];
ELSE
DEST[15:0] €« SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] >SRC[127:120] THEN
DEST[127:120] €« DEST[127:120];
ELSE
DEST[127:120] € SRC[127:120]; FI;
DEST[VLMAX:128] (Unmodified)

VPMAXUB (VEX.128 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[7:0] €« SRC2[7:0]; Fl;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] >SRC2[127:120] THEN
DEST[127:120] €« SRC1[127:120];
ELSE
DEST[127:120] € SRC2[127:120]; FI;
DEST[VLMAX:128] < 0

VPMAXUB (VEX.256 encoded version)
IF SRC1[7:0] >SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[15:0] € SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] >SRC2[255:248] THEN
DEST[255:248] < SRC1[255:248];
ELSE
DEST[255:248] < SRC2[255:248]; FI;

PMAXUW (128-bit Legacy SSE version)
IF DEST[15:0] >SRC[15:0] THEN
DEST[15:0] ¢ DEST[15:0];
ELSE
DEST[15:0] € SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] >SRC[127:112] THEN
DEST[127:112] €« DEST[127:112];
ELSE
DEST[127:112] €« SRC[127:112]; FI;
DEST[VLMAX:128] (Unmodified)

5-76 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPMAXUW (VEX.128 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] >SRC2[127:112] THEN
DEST[127:112] €« SRC1[127:112];
ELSE
DEST[127:112] € SRC2[127:112]; FI;
DEST[VLMAX:128]1 < 0

VPMAXUW (VEX.256 encoded version)
IF SRC1[15:0] > SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] >SRC2[255:240] THEN
DEST[255:240] < SRC1[255:2407;
ELSE
DEST[255:240] €< SRC2[255:240]; FI;

PMAXUD (128-bit Legacy SSE version)
IF DEST[31:0] >SRC[31:0] THEN
DEST[31:0] €« DEST[31:0];
ELSE
DEST[31:0] €« SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] >SRC[127:95] THEN
DEST[127:95] € DEST[127:95];
ELSE
DEST[127:95] €« SRC[127:95]; FI;
DEST[VLMAX:128] (Unmodified)

VPMAXUD (VEX.128 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] > SRC2[127:95] THEN
DEST[127:95] € SRC1[127:95];
ELSE
DEST[127:95] € SRC2[127:95]; FI;
DEST[VLMAX:128] < 0

VPMAXUD (VEX.256 encoded version)
IF SRC1[31:0] > SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] > SRC2[255:224] THEN

Ref. # 319433-014 5-77

INSTRUCTION SET REFERENCE

DEST[255:224] €< SRC1[255:224];
ELSE
DEST[255:224] €« SRC2[255:224]; F;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMAXUB: __m128i _mm_max_epu8 (_m128ia, __m128ib);
(V)PMAXUW: __m128i _mm_max_epul6 (_m128ia, __m128ib)
(V)PMAXUD: __m128i _mm_max_epu32 (_m128ia, __m128ib);
VPMAXUB: __m256i _mm256_max_epu8 (_m256i 3, __m256i b);
VPMAXUW: __m256i _mm256_max_epul6 (_m256ia, __m256iDb)
VPMAXUD: __m256i _mm256_max_epu32 (_m256ia, __m256ib);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-78

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMINSB/PMINSW/PMINSD — Minimum of Packed Signed Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 0F 3838 /r A VIV SSE4 1 Compare packed signed byte integers in xmm1 and xmm2/m128
PMINSB xmm1, xmm2/m128 and store packed minimum values in xmm1.
66 OF EA /T A VIV SSE2 Compare packed signed word integers in xmm2/m128 and xmm 1
PMINSW xmm1, xmm2/m128 and store packed minimum values in xmm1.
66 OF 3839 /r A VIV SSE4_1 Compare packed signed dword integers in xmm1 and xmm2/m128
PMINSD xmm1, xmm2/m128 and store packed minimum values in xmm1.
VEXNDS.128.66.0F38WIG38/r B VIV AVX Compare packed signed byte integers in xmm2 and xmm3/m128
VPMINSB xmm1, xmm2, and store packed minimum values in xmm1.
xmm3/m128
VEX.NDS.128.66.0F.WIG EA /1 B VIV AVX Compare packed signed word integers in xmm3/m128 and xmm2
VPMINSW xmm1, xmm2, and return packed minimum values in xmm1.
xmm3/m128
VEXNDS.128.66.0F38WIG39/r B VIV AVX Compare packed signed dword integers in xmmZ2 and xmm3/m128
VPMINSD xmm1, xmm2, and store packed minimum values in xmm1.
xmm3/m128
VEX.NDS.256.66.0F38WIG38/r B VIV AVX2 Compare packed signed byte integers in ymm2 and ymm3/m256
VPMINSB ymm1, ymm2, and store packed minimum values in ymm1.
ymm3/m256
VEX.NDS.256.66.0F.WIG EA /1 B VIV AVX2 Compare packed signed word integers in ymm3/m256 and ymm?2
VPMINSW ymm1, ymm2, and return packed minimum values in ymm1.
ymm3/m256
VEXNDS.256.66.0F38WIG39/r B VIV AVX2 Compare packed signed dword integers in ymm2 and ymm3/m128
VPMINSD ymm1, ymm2, and store packed minimum values in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD compare of the packed signed byte, word, or dword integers in the second source operand and
the first source operand and returns the minimum value for each pair of integers to the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

Ref. # 319433-014 5-79

INSTRUCTION SET REFERENCE

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

PMINSB (128-bit Legacy SSE version)
IF DEST[7:0] < SRC[7:0] THEN
DEST[7:0] <« DEST[7:0];
ELSE
DEST[15:0] €« SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] €« DEST[127:120];
ELSE
DEST[127:120] € SRC[127:120]; FI;
DEST[VLMAX:128] (Unmodified)

VPMINSB (VEX.128 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[7:0] €« SRC2[7:0]; Fl;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN
DEST[127:120] €« SRC1[127:120];
ELSE
DEST[127:120] € SRC2[127:120]; FI;
DEST[VLMAX:128] < 0

VPMINSB (VEX.256 encoded version)
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[15:0] € SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] < SRC2[255:248] THEN
DEST[255:248] < SRC1[255:248];
ELSE
DEST[255:248] < SRC2[255:248]; FI;

PMINSW (128-bit Legacy SSE version)
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] ¢ DEST[15:0];
ELSE
DEST[15:0] € SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN
DEST[127:112] €« DEST[127:112];
ELSE
DEST[127:112] €« SRC[127:112]; FI;
DEST[VLMAX:128] (Unmodified)

5-80 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPMINSW (VEX.128 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN
DEST[127:112] €« SRC1[127:112];
ELSE
DEST[127:112] € SRC2[127:112]; FI;
DEST[VLMAX:128]1 < 0

VPMINSW (VEX.256 encoded version)
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] < SRC2[255:240] THEN
DEST[255:240] < SRC1[255:2407;
ELSE
DEST[255:240] €< SRC2[255:240]; FI;

PMINSD (128-bit Legacy SSE version)
IF DEST[31:0] < SRC[31:0] THEN
DEST[31:0] €« DEST[31:0];
ELSE
DEST[31:0] €« SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] < SRC[127:95] THEN
DEST[127:95] € DEST[127:95];
ELSE
DEST[127:95] €« SRC[127:95]; FI;
DEST[VLMAX:128] (Unmodified)

VPMINSD (VEX.128 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN
DEST[127:95] € SRC1[127:95];
ELSE
DEST[127:95] € SRC2[127:95]; FI;
DEST[VLMAX:128] < 0

VPMINSD (VEX.256 encoded version)
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] < SRC2[255:224] THEN

Ref. # 319433-014 5-81

INSTRUCTION SET REFERENCE

DEST[255:224] €< SRC1[255:224];
ELSE
DEST[255:224] €« SRC2[255:224]; F;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMINSB: __m128i _mm_min_epi8 (_m128ia, __m128ib);
(V)PMINSW: __m128i _mm_min_epi16 (_m128ia, __m128ib)
(V)PMINSD: __m128i _mm_min_epi32 (_m128ia, __m128ib);
VPMINSB: __m256i _mm256_min_epi8 (_m256i 3, __m256i b);
VPMINSW: __m256i _mm256_min_epi16 (_m256i a, __m256i b)
VPMINSD: __m256i _mm256_min_epi32 (__m256i a, __m256i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-82 Ref. #319433-014

INSTRUCTION SET REFERENCE

PMINUB/PMINUW/PMINUD — Minimum of Packed Unsigned Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF DA /r A VIV SSE2 Compare packed unsigned byte integers in xmm1 and
PMINUB xmm1, xmm2/m128 xmm2/m128 and store packed minimum values in xmm1.
66 OF 38 3A/r A VIV SSE4_1 Compare packed unsigned word integers in xmm2/m128 and
PMINUW xmm1, xmm2/m128 xmm1 and store packed minimum values in xmm1.
66 OF 38 3B /r A VIV SSE4_1 Compare packed unsigned dword integers in xmm1 and
PMINUD xmm1, xmm2/m128 xmm2/m128 and store packed minimum values in xmm1.

VEX.NDS.128.66.0F.WIG DA /r B VIV AVX Compare packed unsigned byte integers in xmm2 and
VPMINUB xmm1, xmm2, xmm3/m128 and store packed minimum values in xmm1.

xmm3/m128

VEX.NDS.128.66.0F38WIG3A/r B VIV AVX Compare packed unsigned word integers in xmm3/m128 and
VPMINUW xmm1, xmm2, xmmZ2 and return packed minimum values in xmm1.

xmm3/m128
VEX.NDS.128.66.0F38WIG3B/r B VIV AVX Compare packed unsigned dword integers in xmm2 and
VPMINUD xmm1, xmm2, xmm3/m128 and store packed minimum values in xmm1.

xmm3/m128

VEX.NDS.256.66.0F.WIG DA /r B VIV AVX2 Compare packed unsigned byte integers in ymm2 and

VPMINUB ymm1, ymm2, ymm3/m256 and store packed minimum values in ymm1.
ymm3/m256

VEX.NDS.256.66.0F38WIG3A/r B VIV AVX2 Compare packed unsigned word integers in ymm3/m256 and
VPMINUW ymm1, ymm2, ymmZ and return packed minimum values in ymm1.
ymm3/m256

VEXNDS.256.66.0F38WIG3B/r B VIV AVX2 Compare packed unsigned dword integers in ymm2 and
VPMINUD ymm1, ymm2, ymm3/m256 and store packed minimum values in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD compare of the packed unsigned byte, word, or dword integers in the second source operand and
the first source operand and returns the minimum value for each pair of integers to the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

Ref. # 319433-014 5-83

INSTRUCTION SET REFERENCE

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

PMINUB (128-bit Legacy SSE version)
PMINUB instruction for 128-bit operands:
IF DEST[7:0] < SRC[7:0] THEN
DEST[7:0] <« DEST[7:0];
ELSE
DEST[15:0] €« SRC[7:0]; FI;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF DEST[127:120] < SRC[127:120] THEN
DEST[127:120] € DEST[127:120];
ELSE
DEST[127:120] € SRC[127:120]; FI;
DEST[VLMAX:128] (Unmodified)

VPMINUB (VEX.128 encoded version)
VPMINUB instruction for 128-bit operands:
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[7:0] € SRC2[7:0]; Fl;
(* Repeat operation for 2nd through 15th bytes in source and destination operands *)
IF SRC1[127:120] < SRC2[127:120] THEN
DEST[127:120] €« SRC1[127:120];
ELSE
DEST[127:120] € SRC2[127:120]; FI;
DEST[VLMAX:128] < 0

VPMINUB (VEX.256 encoded version)
VPMINUB instruction for 128-bit operands:
IF SRC1[7:0] < SRC2[7:0] THEN
DEST[7:0] €« SRC1[7:0];
ELSE
DEST[15:0] € SRC2[7:0]; FI;
(* Repeat operation for 2nd through 31st bytes in source and destination operands *)
IF SRC1[255:248] < SRC2[255:248] THEN
DEST[255:248] < SRC1[255:248];
ELSE
DEST[255:248] < SRC2[255:248]; FI;

PMINUW (128-bit Legacy SSE version)
PMINUW instruction for 128-bit operands:
IF DEST[15:0] < SRC[15:0] THEN
DEST[15:0] ¢ DEST[15:0];
ELSE
DEST[15:0] € SRC[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:112] < SRC[127:112] THEN
DEST[127:112] < DEST[127:112];
ELSE
DEST[127:112] €« SRC[127:112]; FI;

5-84 Ref. #319433-014

INSTRUCTION SET REFERENCE

DEST[VLMAX:128] (Unmodified)

VPMINUW (VEX.128 encoded version)
VPMINUW instruction for 128-bit operands:
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] ¢ SRC2[15:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF SRC1[127:112] < SRC2[127:112] THEN
DEST[127:112] €« SRC1[127:112];
ELSE
DEST[127:112] € SRC2[127:112]; FI;
DEST[VLMAX:128]1 < 0

VPMINUW (VEX.256 encoded version)
VPMINUW instruction for 128-bit operands:
IF SRC1[15:0] < SRC2[15:0] THEN
DEST[15:0] ¢ SRC1[15:0];
ELSE
DEST[15:0] € SRC2[15:0]; FI;
(* Repeat operation for 2nd through 15th words in source and destination operands *)
IF SRC1[255:240] < SRC2[255:240] THEN
DEST[255:240] < SRC1[255:2407;
ELSE
DEST[255:240] €< SRC2[255:240]; FI;

PMINUD (128-bit Legacy SSE version)
PMINUD instruction for 128-bit operands:
IF DEST[31:0] < SRC[31:0] THEN
DEST[31:0] ¢« DEST[31:0];
ELSE
DEST[31:0] €« SRC[31:0]; FI;
(* Repeat operation for 2nd through 7th words in source and destination operands *)
IF DEST[127:95] < SRC[127:95] THEN
DEST[127:95] € DEST[127:95];
ELSE
DEST[127:95] €« SRC[127:95]; FI;
DEST[VLMAX:128] (Unmodified)

VPMINUD (VEX.128 encoded version)
VPMINUD instruction for 128-bit operands:
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] ¢« SRC1[31:0];
ELSE
DEST[31:0] €« SRC2[31:0]; FI;
(* Repeat operation for 2nd through 3rd dwords in source and destination operands *)
IF SRC1[127:95] < SRC2[127:95] THEN
DEST[127:95] € SRC1[127:95];
ELSE
DEST[127:95] € SRC2[127:95]; FI;
DEST[VLMAX:128]1 <« 0

Ref. # 319433-014 5-85

INSTRUCTION SET REFERENCE

VPMINUD (VEX.256 encoded version)
VPMINUD instruction for 128-bit operands:
IF SRC1[31:0] < SRC2[31:0] THEN
DEST[31:0] € SRC1[31:0];
ELSE
DEST[31:0] € SRC2[31:0]; FI;
(* Repeat operation for 2nd through 7th dwords in source and destination operands *)
IF SRC1[255:224] < SRC2[255:224] THEN
DEST[255:224] €« SRC1[255:224];
ELSE
DEST[255:224] € SRC2[255:224]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMINUB: __m128i _mm_min_epu8 (_m128ia, __m128ib)
(V)PMINUW: __m128i _mm_min_epul6 (_m128ia, __m128ib);
(V)PMINUD: __m128i _mm_min_epu32 (__m128ia,__m128ib);
VPMINUB: __m256i _mm256_min_epu8 (_m256i a3, __m256i b)
VPMINUW: __m256i _mm256_min_epu16 (_m256i a, __m256i b);
VVPMINUD: __m256i _mm256_min_epu32 (_m256ia, _ m256i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-86 Ref. #319433-014

INSTRUCTION SET REFERENCE

PMOVMSKB — Move Byte Mask

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF D7 /Ir A VIV SSE2 Move a 16-bit mask of xmm1 to reg. The upper bits of r32 or r64 are
PMOVMSKB reg, xmm1 filled with zeros.
VEX.128.66.0FWIG D7 /r A VIV AVX Move a 16-bit mask of xmm1 to reg. The upper bits of r32 or r64 are
VPMOVMSKB reg, xmm1 filled with zeros.

VEX.256.66.0F.WIG D7 /r A VIV AVX2 Move a 32-bit mask of ymm1 to reg. The upper bits of r64 are filled
VPMOVMSKB reg, ymm1 with zeros.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Creates a mask made up of the most significant bit of each byte of the source operand (second operand) and stores
the result in the low word or dword of the destination operand (first operand). The source operand is an XMM
register; the destination operand is a general-purpose register.

The mask is 16-bits for 128-bit source operand and 32-bits for 256-bit source operand. The destination operand is
a general-purpose register.

In 64-bit mode the default operand size of the destination operand is 64 bits. Bits 63:32 are filled with zero if the
source operand is a 256-bit YMM register. The upper bits above bit 15 are filled with zeros if the source operand is
a 128-bit XMM register. REX.W is ignored

VEX.128 encoded version: The source operand is XMM register.
VEX.256 encoded version: The source operand is YMM register.
Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPMOVMSKB instruction with 256-bit source operand and r32:
r32[0] € SRC[7];

r32[1] € SRC[15];

(* Repeat operation for bytes 3rd through 31%*)

r32[31] € SR(C[255];

VPMOVMSKB instruction with 256-bit source operand and r64:
r64[0] € SRC[7];

r64[1] €« SRC[15];

(* Repeat operation for bytes 2 through 31*)

r64[31] € SR(C[255];

r64[63:32] < ZERO_FILL;

PMOVMSKB instruction with 128-bit source operand and r32:
r32[0] € SRC[7];

r32[1] € SRC[15];

(* Repeat operation for bytes 2 through 14 *)

r32[15] €« SRC[127];

r32[31:16] € ZERO_FILL;

Ref. # 319433-014 5-87

INSTRUCTION SET REFERENCE

PMOVMSKB instruction with 128-bit source operand and r64:

r64[0] € SRC[7];

ré4[1] €< SRC[15];

(* Repeat operation for bytes 2 through 14 *)
r64[15] € SRC[127];

re64[63:16] € ZERO_FILL;

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMOVMSKB: int _mm_movemask_epi8 (_m128i a)

VPMOVMSKB: int _mm256_movemask_epi8 (_m256i a)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 7

5-88

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMOVSX — Packed Move with Sign Extend

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 0f 38 20 /r A VIV SSE4_1 Sign extend 8 packed 8-bit integers in the low 8 bytes of
PMOVSXBW xmm1, xmm2/m64 xmm2/m64 to 8 packed 16-bit integers in xmm1.
66 0f 3821 /r A VIV SSE4_1 Sign extend 4 packed 8-bit integers in the low 4 bytes of
PMOVSXBD xmm1, xmm2/m32 xmm2/m32 to 4 packed 32-bit integers in xmm1.
66 0f3822 /r A VIV SSE4_1 Sign extend 2 packed 8-bit integers in the low 2 bytes of
PMOVSXBQ xmm1, xmm2/m16 xmm2/m16 to 2 packed 64-bit integers in xmm1.
66 0f 38 23/r A VIV SSE4_1 Sign extend 4 packed 16-bit integers in the low 8 bytes of
PMOVSXWD xmm1, xmm2/m64 xmm2/m64 to 4 packed 32-bit integers in xmm1.
66 0f 3824 /r A VIV SSE4_1 Sign extend 2 packed 16-bit integers in the low 4 bytes of
PMOVSXWQ xmm1, xmm2/m32 xmm2/m32 to 2 packed 64-bit integers in xmm1.
66 0f 3825 /r A VIV SSE4_1 Sign extend 2 packed 32-bit integers in the low 8 bytes of
PMOVSXDQ xmm1, xmm2/m64 xmm2/m64 to 2 packed 64-bit integers in xmm1.
VEX.128.66.0F38.WIG 20 /r A VIV AVX Sign extend 8 packed 8-bit integers in the low 8 bytes of
VPMOVSXBW xmm1, xmm2/m64 to 8 packed 16-bit integers in xmm1.
xmm2/m64
VEX.128.66.0F38.WIG 21 /r A VIV AVX Sign extend 4 packed 8-bit integers in the low 4 bytes of
VPMOVSXBD xmm1, xmm2/m32 xmm2/m32 to 4 packed 32-bit integers in xmm1.
VEX.128.66.0F38.WIG 22 /r A VIV AVX Sign extend 2 packed 8-bit integers in the low 2 bytes of
VPMOVSXBQ xmm1, xmm2/m16 xmm2/m16 to 2 packed 64-bit integers in xmm1.
VEX.128.66.0F38.WIG 23 /r A VIV AVX Sign extend 4 packed 16-bit integers in the low 8 bytes of
VPMOVSXWD xmm1, xmm2/m64 to 4 packed 32-bit integers in xmm1.
xmm2/m64
VEX.128.66.0F38.WIG 24 /r A VIV AVX Sign extend 2 packed 16-bit integers in the low 4 bytes of
VPMOVSXWQ xmm1, xmm2/m32 to 2 packed 64-bit integers in xmm1.
xmm2/m32
VEX.128.66.0F38.WIG 25 /r A VIV AVX Sign extend 2 packed 32-bit integers in the low 8 bytes of
VPMOVSXDQ xmm1, xmm2/m64 xmm2/m64 to 2 packed 64-bit integers in xmm1.
VEX.256.66.0F38.WIG 20 /r A VIV AVX2 Sign extend 16 packed 8-bit integers in xmm2/m128 to 16 packed
VPMOVSXBW ymm1, 16-bit integers in ymm1.
xmm2/m128
VEX.256.66.0F38.WIG 21 /r A VIV AVX2 Sign extend 8 packed 8-bit integers in the low 8 bytes of
VPMOVSXBD ymm1, xmm2/m64 xmm2/m64 to 8 packed 32-bit integers in ymm1.
VEX.256.66.0F38.WIG 22 /r A VIV AVX2 Sign extend 4 packed 8-bit integers in the low 4 bytes of
VPMOVSXBQ ymm1, xmm2/m32 xmm2/m32 to 4 packed 64-bit integers in ymm1.

Ref. # 319433-014

INSTRUCTION SET REFERENCE

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.256.66.0F38.WIG 23 /r A VIV AVX2 Sign extend 8 packed 16-bit integers in the low 16 bytes of
VPMOVSXWD ymm1, xmm2/m128 to 8 packed 32-bit integers in ymm1.
xmm2/m128
VEX.256.66.0F38.WIG 24 /r A VIV AVX2 Sign extend 4 packed 16-bit integers in the low 8 bytes of
VPMOVSXWQ ymm1, xmm2/m64 to 4 packed 64-bit integers in ymm1.
xmm2/m64
VEX.256.66.0F38.WIG 25 /r A VIV AVX2 Sign extend 4 packed 32-bit integers in the low 16 bytes of
VPMOVSXDQ ymm1, xmm2/m128 to 4 packed 64-bit integers in ymm1.
xmm2/m128

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Packed byte, word, or dword integers in the low bytes of the source operand (second operand) are sign extended
to word, dword, or quadword integers and stored in packed signed bytes the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination register is YMM Register.

Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

Packed_Sign_Extend_BYTE_to_WORD(DEST, SRC)
DEST[15:0] < SignExtend(SRC[7:0]);
DEST[31:16] < SignExtend(SRC[15:8]);
DEST[47:32] < SignExtend(SRC[23:16]);
DEST[63:48] < SignExtend(SRC[31:24]);
DEST[79:64] < SignExtend(SRC[39:32))
DEST[95:80] < SignExtend(SRC[47:40]);
DEST[111:96] < SignExtend(SRC[55:48]);
DEST[127:112] € SignExtend(SRC[63:56]);

a

Packed_Sign_Extend_BYTE_to_DWORD(DEST, SRC)
DEST[31:0] < SignExtend(SRC[7:0]);

DEST[63:32] < SignExtend(SRC[15:8]);
DEST[95:64] < SignExtend(SRC[23:16]);
DEST[127:96] < SignExtend(SRC[31:24]);

Packed_Sign_Extend_BYTE_to_QWORD(DEST, SRC)
DEST[63:0] < SignExtend(SRC[7:0]);
DEST[127:64] < SignExtend(SRC[15:8]);

Packed_Sign_Extend_WORD_to_DWORD(DEST, SRC)
DEST[31:0] < SignExtend(SRC[15:0]);

5-90 Ref. #319433-014

DEST[63:32] < SignExtend(SRC[31:16]);
DEST[95:64] < SignExtend(SRC[47:32]);
DEST[127:96] < SignExtend(SRC[63:48]);

Packed_Sign_Extend_WORD_to_QWORD(DEST, SRC)
DEST[63:0] € SignExtend(SRC[15:0]);
DEST[127:64] < Signextend(SRC[31:16]);

Packed_Sign_Extend_DWORD_to_QWORD(DEST, SRC)
DEST[63:0] < SignExtend(SRC[31:0]);
DEST[127:64] < Signextend(SRC[63:32]);

VPMOVSXBW (VEX.256 encoded version)
Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])

VPMOVSXBD (VEX.256 encoded version)
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])
Packed_Sign_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])

VPMOVSXBQ (VEX.256 encoded version)
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])
Packed_Sign_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])

VPMOVSXWD (VEX.256 encoded version)
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])

VPMOVSXWQ (VEX.256 encoded version)
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])
Packed_Sign_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])

VPMOVSXDQ (VEX.256 encoded version)
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])
Packed_Sign_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])

VPMOVSXBW (VEX.128 encoded version)
Packed_Sign_Extend_BYTE_to_WORDDEST[127:0], SRC[127:0]()
DEST[VLMAX:128]1 < 0

VPMOVSXBD (VEX.128 encoded version)
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128]1 < 0

VPMOVSXBQ (VEX.128 encoded version)
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128]1 < 0

VPMOVSXWD (VEX.128 encoded version)

Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] < 0

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-91

INSTRUCTION SET REFERENCE

VPMOVSXWQ (VEX.128 encoded version)
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128]1 < 0

VPMOVSXDQ (VEX.128 encoded version)
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128]1 < 0

PMOVSXBW
Packed_Sign_Extend_BYTE_to_WORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] (Unmodified)

PMOVSXBD
Packed_Sign_Extend_BYTE_to_DWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] (Unmodified)

PMOVSXBQ
Packed_Sign_Extend_BYTE_to_QWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] (Unmodified)

PMOVSXWD
Packed_Sign_Extend_WORD_to_DWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] (Unmodified)

PMOVSXWQ
Packed_Sign_Extend_WORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] (Unmodified)

PMOVSXDQ
Packed_Sign_Extend_DWORD_to_QWORD(DEST[127:0], SRC[127:0])
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMOVSXBW: __m128i_mm_cvtepi8_epil16 (_m128ia);
(V)PMOVSXBD: __m128i _mm_cvtepi8_epi32 (_m128ia);
(V)PMOVSXBQ: __m128i _mm_cvtepi8_epi64 (_m128i a);
(V)PMOVSXWD: __m128i _mm_cvtepil6_epi32 (_m128ia);
(V)PMOVSXWQ: __m128i _mm_cvtepil6_epi64 (_m128i a);
(V)PMOVSXDQ: __m128i _mm_cvtepi32_epi64 (_m128i a);

VPMOVSXBW: __m256i _mm256_cvtepi8_epi16 (_m128ia);
\VPMOVSXBD: __m256i _mm256_cvtepi8_epi32 (__m128ia);
VPMOVSXBQ: __m256i _mm256_cvtepi8_epi6b4 (_m128i a);
VPMOVSXWD: __m256i _mm256_cvtepi16_epi32 (_m128ia);

VPMOVSXWQ: __m256i _mm256_cvtepil6_epi64 (_m128ia);
VPMOVSXDQ: __m256i _mm256_cvtepi32_epi6b4 (_m128i a);

5-92

Ref. #319433-014

INSTRUCTION SET REFERENCE

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 5

Ref. # 319433-014 5-93

INSTRUCTION SET REFERENCE

PMOVZX — Packed Move with Zero Extend

Opcode/
Instruction

66 0f 38 30 /r
PMOVZXBW xmm1, xmm2/m64

66 0f 3831 /r
PMOVZXBD xmm1, xmm2/m32

66 0f 3832 /r
PMOVZXBQ xmm1, xmm2/m16

66 0f3833/r
PMOVZXWD xmm1, xmm2/m64

66 0f 3834 /r
PMOVZXWQ xmm1, xmm2/m32

66 0f 3835 /r
PMOVZXDQ xmm1, xmm2/m64

VEX.128.66.0F38.WIG 30 /r
VPMOVZXBW xmm1, xmm2/m64

VEX.128.66.0F38.WIG 31 /r
VPMOVZXBD xmm1, xmm2/m32

VEX.128.66.0F38.WIG 32 /r
VPMOVZXBQ xmm1, xmm2/m16

VEX.128.66.0F38.WIG 33 /r
VPMOVZXWD xmm1, xmm2/m64

VEX.128.66.0F38.WIG 34 /r
VPMOVZXWQ xmm1, xmm2/m32

VEX.128.66.0F38.WIG 35 /r
VPMOVZXDQ xmm1, xmm2/m64

VEX.256.66.0F38.WIG 30 /r
VPMOVZXBW ymm1, xmmz2/m128

VEX.256.66.0F38.WIG 31 /r
VPMOVZXBD ymm1, xmm2/m64

VEX.256.66.0F38.WIG 32 /r
VPMOVZXBQ ymm1, xmm2/m32

VEX.256.66.0F38.WIG 33 /r
VPMOVZXWD ymm1, xmm2/m128

Op/
En

A

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE4_1

SSE4_1

SSE4_1

SSE4_1

SSE4_1

SSE4_1

AVX

AVX

AVX

AVX

AVX

AVX

AVX2

AVX2

AVX2

AVX2

Description

Zero extend 8 packed 8-bit integers in the low 8 bytes of
xmm2/m64 to 8 packed 16-bit integers in xmm1.

Zero extend 4 packed 8-bit integers in the low 4 bytes of
xmm2/m32 to 4 packed 32-bit integers in xmm1.

Zero extend 2 packed 8-bit integers in the low 2 bytes of
xmm2/m16 to 2 packed 64-bit integers in xmm]1.

Zero extend 4 packed 16-bit integers in the low 8 bytes of
xmm2/m64 to 4 packed 32-bit integers in xmm].

Zero extend 2 packed 16-bit integers in the low 4 bytes of
xmm2/m32 to 2 packed 64-bit integers in xmm1.

Zero extend 2 packed 32-bit integers in the low 8 bytes of
xmm2/m64 to 2 packed 64-bit integers in xmm1.

Zero extend 8 packed 8-bit integers in the low 8 bytes of
xmmZ2/m64 to 8 packed 16-bit integers in xmm1.

Zero extend 4 packed 8-bit integers in the low 4 bytes of
xmmZ2/m32 to 4 packed 32-bit integers in xmm1

Zero extend 2 packed 8-bit integers in the low 2 bytes of
xmm2/m16 to 2 packed 64-bit integers in xmm].

Zero extend 4 packed 16-bit integers in the low 8 bytes of
xmm2/m64 to 4 packed 32-bit integers in xmm1.

Zero extend 2 packed 16-bit integers in the low 4 bytes of
xmm2/m32 to 2 packed 64-bit integers in xmm1.

Zero extend 2 packed 32-bit integers in the low 8 bytes of
xmm2/m64 to 2 packed 64-bit integers in xmm1.

Zero extend 16 packed 8-bit integers in the low 16 bytes of
xmm2/m128 to 16 packed 16-bit integers in ymm1.

Zero extend 8 packed 8-bit integers in the low 8 bytes of
xmm2/m64 to 8 packed 32-bit integers in ymm1.

Zero extend 4 packed 8-bit integers in the low 4 bytes of
xmm2/m32 to 4 packed 64-bit integers in ymm1.

Zero extend 8 packed 16-bit integers in the low 16 bytes of
xmm2/m128 to 8 packed 32-bit integers in ymm1.

5-94

Ref. #319433-014

INSTRUCTION SET REFERENCE

Opcode/ Op/ 64/32

Instruction En -bit
Mode

VEX.256.66.0F38.WIG 34 /r A VIV

VPMOVZXWQ ymm1, xmm2/m64

VEX.256.66.0F38.WIG 35 /r A VIV
VPMOVZXDQ ymm1, xmm2/m128

CPUID
Feature
Flag

AVX2

AVX2

Description

Zero extend 4 packed 16-bit integers in the low 8 bytes of
xmm2/m64 to 4 packed 64-bit integers in xmm1.

Zero extend 4 packed 32-bit integers in the low 16 bytes of
xmm2/m128 to 4 packed 64-bit integers in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Packed byte, word, or dword integers in the low bytes of the source operand (second operand) are zero extended
to word, dword, or quadword integers and stored in packed signed bytes the destination operand.

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination register is YMM Register.

Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

Packed_Zero_Extend_BYTE_to_WORD(DEST, SRC)
DEST[15:0] €« ZeroExtend(SRC[7:0]);
DEST[31:16] € ZeroExtend(SRC[15:8));
DEST[47:32] € ZeroExtend(SRC[23:16]);
DEST[63:48] € ZeroExtend(SRC[31:24]);
DEST[79:64] € ZeroExtend(SRC[39:32]);
DEST[95:80] ¢ ZeroExtend(SRC[47:40]);
DEST[111:96] € ZeroExtend(SRC[55:48]);
DEST[127:112] € ZeroExtend(SRC[63:56]);

Packed_Zero_Extend_BYTE_to_DWORD(DEST, SRC)
DEST[31:0] €« ZeroExtend(SRC[7:0]);

DEST[63:32] € ZeroExtend(SRC[15:8));
DEST[95:64] € ZeroExtend(SRC[23:16]);
DEST[127:96] € ZeroExtend(SRC[31:24]);

Packed_Zero_Extend_BYTE_to_QWORD(DEST, SRC)
DEST[63:0] €« ZeroExtend(SRC[7:0]);
DEST[127:64] € ZeroExtend(SRC[15:8]);

Packed_Zero_Extend_WORD_to_DWORD(DEST, SRC)
DEST[31:0] €« ZeroExtend(SRC[15:0));

DEST[63:32] € ZeroExtend(SRC[31:16]);
DEST[95:64] € ZeroExtend(SRC[47:32]);
DEST[127:96] € ZeroExtend(SRC[63:48]);

Ref. # 319433-014

5-95

INSTRUCTION SET REFERENCE

Packed_Zero_Extend_WORD_to_QWORD(DEST, SRC)
DEST[63:0] €« ZeroExtend(SRC[15:0]);
DEST[127:64] €« ZeroExtend(SRC[31:16]);

Packed_Zero_Extend_DWORD_to_QWORD(DEST, SRC)
DEST[63:0] €« ZeroExtend(SRC[31:0]);
DEST[127:64] €« ZeroExtend(SRC[63:32]);

VPMOVZXBW (VEX.256 encoded version)
Packed_Zero_Extend_BYTE_to_WORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_BYTE_to_WORD(DEST[255:128], SRC[127:64])

VPMOVZXBD (VEX.256 encoded version)
Packed_Zero_Extend_BYTE_to_DWORD(DEST[127:0], SRC[31:0])
Packed_Zero_Extend_BYTE_to_DWORD(DEST[255:128], SRC[63:32])

VPMOVZXBQ (VEX.256 encoded version)
Packed_Zero_Extend_BYTE_to_QWORD(DEST[127:0], SRC[15:0])
Packed_Zero_Extend_BYTE_to_QWORD(DEST[255:128], SRC[31:16])

VPMOVZXWD (VEX.256 encoded version)
Packed_Zero_Extend_WORD_to_DWORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_WORD_to_DWORD(DEST[255:128], SRC[127:64])

VPMOVZXWQ (VEX.256 encoded version)
Packed_Zero_Extend_WORD_to_QWORD(DEST[127:0], SRC[31:0])
Packed_zZero_Extend_WORD_to_QWORD(DEST[255:128], SRC[63:32])

VPMOVZXDQ (VEX.256 encoded version)
Packed_Zero_Extend_DWORD_to_QWORD(DEST[127:0], SRC[63:0])
Packed_Zero_Extend_DWORD_to_QWORD(DEST[255:128], SRC[127:64])

VPMOVZXBW (VEX.128 encoded version)
Packed_Zero_Extend_BYTE_to_WORD()
DEST[VLMAX:128]1 < 0

VPMOVZXBD (VEX.128 encoded version)
Packed_Zero_Extend_BYTE_to_DWORD()
DEST[VLMAX:128]1 < 0

VPMOVZXBQ (VEX.128 encoded version)
Packed_Zero_Extend_BYTE_to_QWORD()
DEST[VLMAX:128]1 < 0

VPMOVZXWD (VEX.128 encoded version)
Packed_Zero_Extend_WORD_to_DWORD()
DEST[VLMAX:128]1 < 0

VPMOVZXWQ (VEX.128 encoded version)

Packed_Zero_Extend_WORD_to_QWORD()
DEST[VLMAX:128] < 0

5-96

Ref. #319433-014

VPMOVZXDQ (VEX.128 encoded version)
Packed_Zero_Extend_DWORD_to_QWORD()
DEST[VLMAX:128]1 €« 0

PMOVZXBW

Packed_Zero_Extend_BYTE_to_WORD()
DEST[VLMAX:128] (Unmodified)

PMOVZXBD

Packed_Zero_Extend_BYTE_to_DWORD()
DEST[VLMAX:128] (Unmodified)

PMOVZXBQ

Packed_Zero_Extend_BYTE_to_QWORD()
DEST[VLMAX:128] (Unmodified)

PMOVZXWD

Packed_Zero_Extend_WORD_to_DWORD()
DEST[VLMAX:128] (Unmodified)

PMOVZXWQ

Packed_Zero_Extend_WORD_to_QWORD()
DEST[VLMAX:128] (Unmodified)

PMOVZXDQ

Packed_Zero_Extend_DWORD_to_QWORD()
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMOVZXBW:
(V)PMOVZXBD:
(V)PMOVZXBQ:
(V)PMOVZXWD:

(V)PMOVZXWQ:

(V)PMOVZXDQ:
VPMOVZXBW:
VPMOVZXBD:
VPMOVZXBQ:
VPMOVZXWD:
VPMOVZXWQ:
VPMOVZXDQ:

__m128i _mm_cvtepu8_epi16 (__m128ia);
__m128i _mm_cvtepu8_epi32 (_m128ia);
__m128i _mm_cvtepu8_epi64 (_m128ia);
__m128i _mm_cvtepul16_epi32 (_m128ia);
__m128i _mm_cvtepul16_epi64 (_m128ia);
__m128i _mm_cvtepu32_epi64 (_m128ia);
__m256i _mm256_cvtepu8_epi16 (_m128ia);
__m256i _mm256_cvtepu8_epi32 (_m128ia);
__m256i _mm256_cvtepu8_epi64 (_m128ia);
__m256i _mm256_cvtepu16_epi32 (_m128ia);
__m256i _mm256_cvtepul6_epi64 (_m128ia);
__m256i _mm256_cvtepu32_epi64 (_m128ia);

SIMD Floating-Point Exceptions

None

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-97

INSTRUCTION SET REFERENCE

Other Exceptions
See Exceptions Type 5

5-98 Ref. #319433-014

INSTRUCTION SET REFERENCE

PMULDQ — Multiply Packed Doubleword Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag

66 0F 3828 /r A VIV SSE4_1 Multiply packed signed doubleword integers in xmm1 by packed
PMULDQ xmm1, xmm2/m128 signed doubleword integers in xmm2/m128, and store the quad-

word results in xmm1.
VEX.NDS.128.66.0F38WIG28/r B VIV AVX Multiply packed signed doubleword integers in xmm2 by packed
VPMULDQ xmm1, xmm2, signed doubleword integers in xmm3/m128, and store the quad-
xmm3/m128 word results in xmm1.

VEX.NDS.256.66.0F38WIG28/r B VIV AVX2 Multiply packed signed doubleword integers in ymmZ2 by packed
VPMULDQ ymm1, ymm2, signed doubleword integers in ymm3/m256, and store the quad-
ymm3/m256 word results in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Multiplies the first source operand by the second source operand and stores the result in the destination operand.

For PMULDQ and VPMULDQ (VEX.128 encoded version), the second source operand is two packed signed double-
word integers stored in the first (low) and third doublewords of an XMM register or a 128-bit memory location. The
first source operand is two packed signed doubleword integers stored in the first and third doublewords of an XMM
register. The destination contains two packed signed quadword integers stored in an XMM register. For 128-bit
memory operands, 128 bits are fetched from memory, but only the first and third doublewords are used in the
computation.

For VPMULDQ (VEX.256 encoded version), the second source operand is four packed signed doubleword integers
stored in the first (low), third, fifth and seventh doublewords of an YMM register or a 256-bit memory location. The
first source operand is four packed signed doubleword integers stored in the first, third, fifth and seventh double-
words of an XMM register. The destination contains four packed signed quadword integers stored in an YMM
register. For 256-bit memory operands, 256 bits are fetched from memory, but only the first, third, fifth and
seventh doublewords are used in the computation.

When a quadword result is too large to be represented in 64 bits (overflow), the result is wrapped around and the
low 64 bits are written to the destination element (that is, the carry is ignored).

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Ref. # 319433-014 5-99

INSTRUCTION SET REFERENCE

Operation

VPMULDQ (VEX.256 encoded version)

DEST[63:0] < SRC1[31:0] * SRC2[31:0]
DEST[127:64] € SRC1[95:64] * SRC2[95:64]
DEST[191:128] €« SRC1[159:128] * SRC2[159:128]
DEST[255:192] €« SRC1[223:192] * SRC2[223:192]

VPMULDQ (VEX.128 encoded version)
DEST[63:0] € SRC1[31:0] * SRC2[31:0]
DEST[127:64] € SRC1[95:64] * SRC2[95:64]
DEST[VLMAX:128] < 0

PMULDAQ (128-bit Legacy SSE version)
DEST[63:0] < DEST[31:0] * SRC[31:0]
DEST[127:64] < DEST[95:64] * SRC[95:64]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMULDQ: __m128i _mm_mul_epi32(_m128ia, __m128ib);

VPMULDQ: __m256i _mm256_mul_epi32(_m256i 3, __m256i b);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

5-100

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMULHRSW — Multiply Packed Unsigned Integers with Round and Scale

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF 380B /r A VIV SSSE3 Multiply 16-bit signed words, scale and round signed doublewords,
PMULHRSW xmm1, xmm2/m128 pack high 16 bits to xmm?1.
VEXNDS.128.66.0F38WIGOB/r B VIV AVX Multiply 16-bit signed words, scale and round signed doublewords,
VPMULHRSW xmm1, xmm2, pack high 16 bits to xmm1.
xmm3/m128

VEXNDS.256.66.0F38WIGOB/r B VIV AVX2 Multiply 16-bit signed words, scale and round signed doublewords,

VPMULHRSW ymm1, ymmz2, pack high 16 bits to ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

PMULHRSW multiplies vertically each signed 16-bit integer from the first source operand with the corresponding
signed 16-bit integer of the second source operand, producing intermediate, signed 32-bit integers. Each interme-
diate 32-bit integer is truncated to the 18 most significant bits. Rounding is always performed by adding 1 to the
least significant bit of the 18-bit intermediate result. The final result is obtained by selecting the 16 bits immedi-
ately to the right of the most significant bit of each 18-bit intermediate result and packed to the destination
operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

VPMULHRSW (VEX.256 encoded version)

temp0[31:0] € INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1
temp1[31:0] € INT32 ((SRC1[31:16] * SRC2[31:16]) >>14) + 1
temp2[31:0] € INT32 ((SRC1[47:32] * SRC2[47:32]) >>14) + 1
temp3[31:0] € INT32 ((SRC1[63:48] * SRC2[63:48]) >>14) + 1
temp4[31:0] € INT32 ((SRC1[79:64] * SRC2[79:64]) >>14) + 1
temp5[31:0] € INT32 ((SRC1[95:80] * SRC2[95:80]) >>14) + 1
temp6[31:0] € INT32 ((SRC1[111:96] * SRC2[111:96]) >>14) + 1
temp7[31:0] € INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1
temp8[31:0] €< INT32 ((SRC1[143:128] * SRC2[143:128]) >>14) + 1
temp9[31:0] € INT32 ((SRC1[159:144] * SRC2[159:144]) >>14) + 1
temp10[31:0] € INT32 ((SRC1[75:160] * SRC2[175:160]) >>14) + 1
temp11[31:0] € INT32 ((SRC1[191:176] * SRC2[191:176]) >>14) + 1
temp12[31:0] € INT32 ((SRC1[207:192] * SRC2[207:192]) >>14) + 1

Py

Ref. # 319433-014 5-101

INSTRUCTION SET REFERENCE

temp13[31:0] € INT32 ((SRC1[223:208] * SRC2[223:208]) >>14) + 1
temp14[31:0] € INT32 ((SRC1[239:224] * SRC2[239:224]) >>14) + 1
temp15[31:0] € INT32 ((SRC1[255:240] * SRC2[255:240) >>14) + 1

DEST[15:0] < tempO[16:1]
DEST[31:16] € temp1[16:1]
DEST[47:32] € temp2[16:1]
DEST[63:48] < temp3[16:1]
DEST[79:64] € temp4[16:1]
DEST[95:80] < temp5[16:1]
DEST[111:96] < temp6[16:1]
DEST[127:112] € temp7[16:1]
DEST[143:128] < temp8[16:1]
DEST[159:144] < temp9[16:1]
DEST[175:160] € temp10[16:1]
DEST[191:176] € temp11[16:1]
DEST[207:192] € temp12[16:1]
DEST[223:208] < temp13[16:1]
DEST[239:224] < temp14[16:1]
DEST[255:240] < temp15[16:1]

VPMULHRSW (VEX.128 encoded version)
tempO0[31:0] € INT32 ((SRC1[15:0] * SRC2[15:0]) >>14) + 1

temp1[31:0] € INT32 (
temp2[31:0] € INT32 (
temp3[31:0] € INT32 (
temp4[31:0] € INT32 (
temp5[31:0] € INT32 (
temp6[31:0] € INT32 (

(

=

DEST[15:0] < tempO[16:1]
DEST[31:16] € temp1[16:1]
DEST[47:32] € temp2[16:1]
DEST[63:48] < temp3[16:1]
DEST[79:64] < temp4[16:1]
DEST[95:80] € temp5[16:1]
DEST[111:96] < temp6[16:1]
DEST[127:112] € temp7[16:1]
DEST[VLMAX:128] < 0

SRC1[31:16] * SRC2[31:16]) >>14
SRC1[47:32] * SRC2[47:32]) >>14
SRC1[63:48] * SRC2[63:48]) >>14
SRC1[79:64] * SRC2[79:64]) >>14
SRC1[95:80] * SRC2[95:80]) >>14) + 1
SRC1[111:96] * SRC2[111:96]) >>14) + 1

temp7[31:0] € INT32 ((SRC1[127:112] * SRC2[127:112) >>14) + 1

+1
+1
+1
+1

—_— — — —

PMULHRSW (128-bit Legacy SSE version)
tempO[31:0] € INT32 ((DEST[15:0] * SRC[15:0]) >>14) + 1

temp1[31:0] € INT32 (
temp2[31:0] € INT32 (
temp3[31:0] € INT32 (
temp4[31:0] € INT32 (
temp5[31:0] € INT32 (
temp6[31:0] € INT32 (

(

=__"a_ARmARAA)

DEST[15:0] < tempO[16:1]
DEST[31:16] € temp1[16:1]
DEST[47:32] € temp2[16:1]
DEST[63:48] < temp3[16:1]
DEST[79:64] € temp4[16:1]

5-102

DEST[31:16] * SRC[31:16]) >>14
DEST[47:32] * SRC[47:32]) >>14
DEST[63:48] * SRC[63:48]) >>14
DEST[79:64] * SRC[79:64]) >>14
DEST[95:80] * SRC[95:80]) >>14) + 1
DEST[111:96] * SRC[111:96]) >>14) + 1

temp7[31:0] € INT32 ((DEST[127:112] * SRC[127:112) >>14) + 1

+1
+1
+1
+1

—_— — —

Ref. #319433-014

INSTRUCTION SET REFERENCE

DEST[95:80] & temp5[16:1]
DEST[111:96] < temp6[16:1]

DEST[127:112] € temp7[16:1]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMULHRSW: __m128i _mm_mulhrs_epi16 (__m128ia, __m128ib)
VPMULHRSW: __m256i _mm256_mulhrs_epi16 (__m256ia, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-103

INSTRUCTION SET REFERENCE

PMULHUW — Multiply Packed Unsigned Integers and Store High Result

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF E4 /1 A VIV SSE2 Multiply the packed unsigned word integers in xmm1 and
PMULHUW xmm1, xmm2/m128 xmm2/m128, and store the high 16 bits of the results in xmm1.
VEX.NDS.128.66.0F.WIG E4 /1 B VIV AVX Multiply the packed unsigned word integers in xmmZ2 and
VPMULHUW xmm1, xmm2, xmm3/m128, and store the high 16 bits of the results in xmm1.
xmm3/m128

VEX.NDS.256.66.0F.WIG E4 /1 B VIV AVX2 Multiply the packed unsigned word integers in ymmZ2 and
VPMULHUW ymm1, ymm2, ymm3/m256, and store the high 16 bits of the results in ymm1.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD unsigned multiply of the packed unsigned word integers in the first source operand and the
second source operand, and stores the high 16 bits of each 32-bit intermediate results in the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

PMULHUW (VEX.256 encoded version)
TEMPO[31:0] € SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] €« SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] € SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] < SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] € SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] € SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] €« SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] €« SRC1[127:112] * SRC2[127:112]
TEMP8[31:0] < SRC1[143:128] * SRC2[143:128]
TEMP9Y[31:0] € SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] ¢ SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] € SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] ¢ SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] ¢ SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] € SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] ¢ SRC1[255:240] * SRC2[255:240]

5-104 Ref. #319433-014

DEST[15:0] < TEMPO[31:16]
DEST[31:16] < TEMP1[31:16]
DEST[47:32] < TEMP2[31:16]
DEST[63:48] < TEMP3[31:16]
DEST[79:64] < TEMP4[31:16]
DEST[95:80] < TEMP5[31:16]
DEST[111:96] < TEMPG[31:16]
DEST[127:112] < TEMP7[31:16]
DEST[143:128] < TEMPS[31:16]
DEST[159:144] < TEMPY[31:16]
DEST[175:160] < TEMP10[31:16]
DEST[191:176] < TEMP11[31:16]
DEST[207:192] < TEMP12[31:16]
DEST[223:208] < TEMP13[31:16]
DEST[239:224] < TEMP14[31:16]
DEST[255:240] < TEMP15[31:16]

PMULHUW (VEX.128 encoded version)
TEMPO[31:0] € SRC1[15:0] * SRC2[15:0]
TEMP1[31:0] € SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] € SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] € SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] € SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] € SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] € SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] € SRC1[127:112] * SRC2[127:112]
DEST[15:0] ¢ TEMPO[31:16]

DEST[31:16] €« TEMP1[31:16]

DEST[47:32] €« TEMP2[31:16]

DEST[63:48] <« TEMP3[31:16]

DEST[79:64] < TEMP4[31:16]

DEST[95:80] €« TEMP5[31:16]

DEST[111:96] €« TEMP6[31:16]
DEST[127:112] ¢ TEMP7[31:16]
DEST[VLMAX:128]1 < 0

PMULHUW (128-bit Legacy SSE version)
TEMPO[31:0] € DEST[15:0] * SRC[15:0]
TEMP1[31:0] € DEST[31:16] * SRC[31:16]
TEMP2[31:0] € DEST[47:32] * SRC[47:32]
TEMP3[31:0] € DEST[63:48] * SRC[63:48]
TEMP4[31:0] € DEST[79:64] * SR([79:64]
TEMP5[31:0] € DEST[95:80] * SRC[95:80]
TEMP6[31:0] € DEST[111:96] * SRC[111:96]
TEMP7[31:0] € DEST[127:112] * SRC[127:112]
DEST[15:0] ¢ TEMPO[31:16]

DEST[31:16] €« TEMP1[31:16]

DEST[47:32] €« TEMP2[31:16]

DEST[63:48] < TEMP3[31:16]

DEST[79:64] < TEMP4[31:16]

DEST[95:80] < TEMP5[31:16]

DEST[111:96] €« TEMP6[31:16]
DEST[127:112] ¢ TEMP7[31:16]
DEST[VLMAX:128] (Unmodified)

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-105

INSTRUCTION SET REFERENCE

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMULHUW: __m128i _mm_mulhi_epu16 (_m128ia,_m128ib)
VPMULHUW: __m256i _mm256_mulhi_epu16 (_m256i a, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-106

Ref. #319433-014

INSTRUCTION SET REFERENCE

PMULHW — Multiply Packed Integers and Store High Result

Opcode/ Op/ 64/3

Instruction En 2-bit
Mode

66 OF E5 /r A VIV

PMULHW xmm1, xmm2/m128

VEX.NDS.128.66.0FWIG E5 /r B VIV

VPMULHW xmm1, xmmZ2,
xmm3/m128

VEX.NDS.256.66.0FWIG E5 /r B VIV
VPMULHW ymm1, ymmZ2,

CPUID Description

Featur

e Flag

SSE2 Multiply the packed signed word integers in xmm1 and
xmm2/m128, and store the high 16 bits of the results in xmm1.

AVX Multiply the packed signed word integers in xmm2 and
xmm3/m128, and store the high 16 bits of the results in xmm1.

AVX2 Multiply the packed signed word integers in ymmZ2 and
ymm3/m256, and store the high 16 bits of the results in ymm1.

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD signed multiply of the packed sighed word integers in the first source operand and the second

source operand, and stores the high 16 bits

of each intermediate 32-bit result in the destination operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination

register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are

zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

Operation

PMULHW (VEX.256 encoded version)

TEMPO[31:0] < SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)

TEMP1[31:0] < SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] < SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] & SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] < SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] & SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] < SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] < SRC1[127:112] * SRC2[127:112]
TEMPS[31:0] < SRC1[143:128] * SRC2[143:128]
TEMP9[31:0] < SRC1[159:144] * SRC2[159:144]
TEMP10[31:0] €< SRC1[175:160] * SRC2[175:160]
TEMP11[31:0] < SRC1[191:176] * SRC2[191:176]
TEMP12[31:0] < SRC1[207:192] * SRC2[207:192]
TEMP13[31:0] < SRC1[223:208] * SRC2[223:208]
TEMP14[31:0] €< SRC1[239:224] * SRC2[239:224]
TEMP15[31:0] €< SRC1[255:240] * SRC2[255:240]

Ref. # 319433-014

5-107

INSTRUCTION SET REFERENCE

DEST[15:0] < TEMPO[31:16]
DEST[31:16] < TEMP1[31:16]
DEST[47:32] < TEMP2[31:16]
DEST[63:48] < TEMP3[31:16]
DEST[79:64] < TEMPA[31:16]
DEST[95:80] < TEMP5[31:16]
DEST[111:96] < TEMPE[31:16]
DEST[127:112] < TEMP7[31:16]
DEST[143:128] < TEMPS[31:16]
DEST[159:144] < TEMPY[31:16]
DEST[175:160] < TEMP10[31:16]
DEST[191:176] < TEMP11[31:16]
DEST[207:192] < TEMP12[31:16]
DEST[223:208] < TEMP13[31:16]
DEST[239:224] < TEMP14[31:16]
DEST[255:240] < TEMP15[31:16]

PMULHW (VEX.128 encoded version)
TEMPO[31:0] € SRC1[15:0] * SRC2[15:0] (*Signed Multiplication*)
TEMP1[31:0] € SRC1[31:16] * SRC2[31:16]
TEMP2[31:0] € SRC1[47:32] * SRC2[47:32]
TEMP3[31:0] € SRC1[63:48] * SRC2[63:48]
TEMP4[31:0] € SRC1[79:64] * SRC2[79:64]
TEMP5[31:0] € SRC1[95:80] * SRC2[95:80]
TEMP6[31:0] € SRC1[111:96] * SRC2[111:96]
TEMP7[31:0] € SRC1[127:112] * SRC2[127:112]
DEST[15:0] ¢ TEMPO[31:16]

DEST[31:16] €« TEMP1[31:16]

DEST[47:32] € TEMP2[31:16]

DEST[63:48] < TEMP3[31:16]

DEST[79:64] €< TEMP4[31:16]

DEST[95:80] < TEMP5[31:16]

DEST[111:96] €« TEMP6[31:16]

DEST[127:112] €« TEMP7[31:16]
DEST[VLMAX:128]1 < 0

PMULHW (128-bit Legacy SSE version)
TEMPO[31:0] € DEST[15:0] * SRC[15:0] (*Signed Multiplication*)
TEMP1[31:0] € DEST[31:16] * SRC[31:16]
TEMP2[31:0] € DEST[47:32] * SRC[47:32]
TEMP3[31:0] € DEST[63:48] * SRC[63:48]
TEMP4[31:0] € DEST[79:64] * SRC[79:64]
TEMP5[31:0] € DEST[95:80] * SRC[95:80]
TEMP6[31:0] €< DEST[111:96] * SRC[111:96]
TEMP7[31:0] € DEST[127:112] * SRC[127:112]
DEST[15:0] ¢ TEMPO[31:16]

DEST[31:16] € TEMP1[31:16]

DEST[47:32] € TEMP2[31:16]

DEST[63:48] < TEMP3[31:16]

DEST[79:64] < TEMP4[31:16]

DEST[95:80] < TEMP5[31:16]

DEST[111:96] €« TEMP6[31:16]

DEST[127:112] €« TEMP7[31:16]
DEST[VLMAX:128] (Unmodified)

5-108 Ref. #319433-014

INSTRUCTION SET REFERENCE

Intel C/C++ Compiler Intrinsic Equivalent
(V)PMULHW: __m128i _mm_mulhi_epi16 (_m128ia,__m128ib)
VPMULHW: __m256i _mm256_mulhi_epi16 (_m256i a, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-109

INSTRUCTION SET REFERENCE

PMULLW/PMULLD — Multiply Packed Integers and Store Low Result

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF D5 /r A VIV SSE2 Multiply the packed signed word integers in xmm1 and
PMULLW xmm1, xmm2/m128 xmm2/m128, and store the low 16 bits of the results in xmm1.
66 OF 3840 /r A VIV SSE4_1 Multiply the packed dword signed integers in xmm1 and
PMULLD xmm1, xmm2/m128 xmm2/m128 and store the low 32 bits of each product in xmm1.
VEX.NDS.128.66.0F.WIG D5 /r B VIV AVX Multiply the packed signed word integers in xmmZ2 and
VPMULLW xmm1, xmm2, xmm3/m128, and store the low 16 bits of the results in xmm1.
xmm3/m128
VEX.NDS.128.66.0F38WIG40/r B VIV AVX Multiply the packed dword signed integers in xmmZ2 and
VPMULLD xmm1, xmm2, xmm3/m128 and store the low 32 bits of each product in xmm1.
xmm3/m128

VEX.NDS.256.66.0F.WIG D5 /r B VIV AVX2 Multiply the packed signed word integers in ymm2 and

VPMULLW ymm1, ymm2, ymm3/m256, and store the low 16 bits of the results in ymm1.
ymm3/m256

VEX.NDS.256.66.0F38WIG40/r B VIV AVX2 Multiply the packed dword signed integers in ymm2 and
VPMULLD ymm1, ymm2, ymm3/m256 and store the low 32 bits of each product in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD signed multiply of the packed signed word (dword) integers in the first source operand and the
second source operand and stores the low 16(32) bits of each intermediate 32-bit(64-bit) result in the destination
operand.

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand can be an YMM register or a 256-bit memory location. The
first source and destination operands are YMM registers.

5-110 Ref. #319433-014

Operation

VPMULLD (VEX.256 encoded version)
Temp0[63:0] €< SRC1[31:0] * SRC2[31:0]
Temp1[63:0] €< SRC1[63:32] * SRC2[63:32]
Temp2[63:0] €< SRC1[95:64] * SRC2[95:64]
Temp3[63:0] € SRC1[127:96] * SRC2[127:96]
Temp4[63:0] € SRC1[159:128] * SRC2[159:128]
Temp5[63:0] € SRC1[191:160] * SRC2[191:160]
Temp6[63:0] € SRC1[223:192] * SRC2[223:192]
Temp7[63:0] € SRC1[255:224] * SRC2[255:224]

DEST[31:0] € TempO[31:0]
DEST[63:32] €< Temp1[31:0]
DEST[95:64] < Temp2[31:0]
DEST[127:96] €« Temp3[31:0]
DEST[159:128] €« Temp4([31:0]
DEST[191:160] €« Temp5[31:0]
DEST[223:192] €« Temp6[31:0]
DEST[255:224] €« Temp7[31:0]

VPMULLD (VEX.128 encoded version)
Temp0[63:0] € SRC1[31:0] * SRC2[31:0]
Temp1[63:0] € SRC1[63:32] * SRC2[63:32]
Temp2[63:0] € SRC1[95:64] * SRC2[95:64]
Temp3[63:0] € SRC1[127:96] * SRC2[127:96]
DEST[31:0] €« TempO[31:0]

DEST[63:32] €< Temp1[31:0]

DEST[95:64] < Temp2[31:0]

DEST[127:96] €« Temp3[31:0]
DEST[VLMAX:128] « 0

PMULLD (128-bit Legacy SSE version)
Temp0[63:0] € DEST[31:0] * SRC[31:0]
Temp1[63:0] € DEST[63:32] * SRC[63:32]
Temp2[63:0] € DEST[95:64] * SRC[95:64]
Temp3[63:0] € DEST[127:96] * SRC[127:96]
DEST[31:0] € TempO[31:0]

DEST[63:32] €< Temp1[31:0]

DEST[95:64] < Temp2[31:0]

DEST[127:96] €« Temp3[31:0]
DEST[VLMAX:128] (Unmodified)

VPMULLW (VEX.256 encoded version)
Temp0[31:0] € SRC1[15:0] * SRC2[15:0]
Temp1[31:0] € SRC1[31:16] * SRC2[31:16]
Temp2[31:0] € SRC1[47:32] * SRC2[47:32]
Temp3[31:0] €< SRC1[63:48] * SRC2[63:48]
Temp4[31:0] € SRC1[79:64] * SRC2[79:64]
Temp5[31:0] €< SRC1[95:80] * SRC2[95:80]
Temp6[31:0] € SRC1[111:96] * SRC2[111:96]
Temp7[31:0] € SRC1[127:112] * SRC2[127:112]
Temp8[31:0] €« SRC1[143:128] * SRC2[143:128]
Temp9[31:0] € SRC1[159:144] * SRC2[159:144]

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-111

INSTRUCTION SET REFERENCE

Temp10[31:0] € SRC1[175:160] * SRC2[175:160]
Temp11[31:0] € SRC1[191:176] * SRC2[191:176]
Temp12[31:0] € SRC1[207:192] * SRC2[207:192]
Temp13[31:0] < SRC1[223:208] * SRC2[223:208]
Temp14[31:0] € SRC1[239:224] * SRC2[239:224]
Temp15[31:0] € SRC1[255:240] * SRC2[255:240]

DEST[15:0] € TempO[15:0]
DEST[31:16] < Temp1[15:0]
DEST[47:32] €« Temp2[15:0]
DEST[63:48] < Temp3[15:0]
DEST[79:64] < Temp4[15:0]
DEST[95:80] < TempS5[15:0]
DEST[111:96] €< Temp6[15:0]
DEST[127:112] € Temp7[15:0]
DEST[143:128] < Temp8[15:0]
DEST[159:144] < Temp9[15:0]
DEST[175:160] < Temp10[15:0]
DEST[191:176] € Temp11[15:0]
DEST[207:192] < TEMP12[15:0]
DEST[223:208] < Temp13[15:0]
DEST[239:224] €< Temp14[15:0]
DEST[255:240] < Temp15[15:0]

VPMULLW (VEX.128 encoded version)
TempO[31:0] € SRC1[15:0] * SRC2[15:0]
Temp1[31:0] € SRC1[31:16] * SRC2[31:16]
Temp2[31:0] € SRC1[47:32] * SRC2[47:32]
Temp3[31:0] €« SRC1[63:48] * SRC2[63:48]
Temp4[31:0] € SRC1[79:64] * SRC2[79:64]
Temp5[31:0] € SRC1[95:80] * SRC2[95:80]
Temp6[31:0] € SRC1[111:96] * SRC2[111:96]
Temp7[31:0] € SRC1[127:112] * SRC2[127:112]
DEST[15:0] ¢ TempO[15:0]

DEST[31:16] € Temp1[15:0]

DEST[47:32] € Temp2[15:0]

DEST[63:48] < Temp3[15:0]

DEST[79:64] €< Temp4[15:0]

DEST[95:80] € Temp5[15:0]

DEST[111:96] € Temp6[15:0]

DEST[127:112] €« Temp7[15:0]
DEST[VLMAX:128]1 < 0

PMULLW (128-bit Legacy SSE version)
TempO[31:0] €« DEST[15:0] * SRC[15:0]
Temp1[31:0] € DEST[31:16] * SRC[31:16]
Temp2[31:0] € DEST[47:32] * SRC[47:32]
Temp3[31:0] €& DEST[63:48] * SRC[63:48]
Temp4[31:0] € DEST[79:64] * SRC[79:64]
Temp5[31:0] € DEST[95:80] * SRC[95:80]
Temp6[31:0] € DEST[111:96] * SRC[111:96]
Temp7[31:0] € DEST[127:112] * SRC[127:112]
DEST[15:0] ¢ TempO[15:0]

DEST[31:16] € Temp1[15:0]

DEST[47:32] € Temp2[15:0]

5-112

Ref. #319433-014

INSTRUCTION SET REFERENCE

DEST[63:48] < Temp3[15:0]
DEST[79:64] < Temp4[15:0]
DEST[95:80] < Temp5[15:0]
DEST[111:96] < Temp6[15:0]
DEST[127:112] € Temp7[15:0]
DEST[127:96] < Temp3[31:0];
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMULLW: __m128i _mm_mullo_epi16 (_m128ia, __m128ib);
(V)PMULLD: __m128i _mm_mullo_epi32(_m128ia, __m128ib);
VPMULLW: __m256i _mm256_mullo_epi16 (_m256i a, __m256i b);
VPMULLD: __m256i _mm256_mullo_epi32(_m256i a, __m256i b);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-113

INSTRUCTION SET REFERENCE

PMULUDQ — Multiply Packed Unsigned Doubleword Integers

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF F4 /r A VIV SSE4_1 Multiply packed unsigned doubleword integers in xmm1 by packed
PMULUDQ xmm1, xmm2/m128 unsigned doubleword integers in xmm2/m128, and store the quad-

word results in xmm1.

VEX.NDS.128.66.0F.WIG F4 /r B VIV AVX Multiply packed unsigned doubleword integers in xmmZ2 by packed
VPMULUDQ xmm1, xmm2, unsigned doubleword integers in xmm3/m128, and store the quad-
xmm3/m128 word results in xmm1.

VEX.NDS.256.66.0F.WIG F4 /r B VIV AVX2 Multiply packed unsigned doubleword integers in ymm2 by packed
VPMULUDQ ymm1, ymm?2, unsigned doubleword integers in ymm3/m256, and store the quad-
ymm3/m256 word results in ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvwv ModRM:r/m (r) NA
Description

Multiplies packed unsigned doubleword integers in the first source operand by the packed unsigned doubleword
integers in second source operand and stores packed unsigned quadword results in the destination operand.

128-bit Legacy SSE version: The second source operand is two packed unsigned doubleword integers stored in the
first (low) and third doublewords of an XMM register or a 128-bit memory location. For 128-bit memory operands,
128 bits are fetched from memory, but only the first and third doublewords are used in the computation.The first
source operand is two packed unsigned doubleword integers stored in the first and third doublewords of an XMM
register. The destination contains two packed unsigned quadword integers stored in an XMM register. Bits
(255:128) of the corresponding YMM destination register remain unchanged.

VEX.128 encoded version: The second source operand is two packed unsigned doubleword integers stored in the
first (low) and third doublewords of an XMM register or a 128-bit memory location. For 128-bit memory operands,
128 bits are fetched from memory, but only the first and third doublewords are used in the computation.The first
source operand is two packed unsigned doubleword integers stored in the first and third doublewords of an XMM
register. The destination contains two packed unsigned quadword integers stored in an XMM register. Bits
(255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The second source operand is four packed unsigned doubleword integers stored in the
first (low), third, fifth and seventh doublewords of a YMM register or a 256-bit memory location. For 256-bit
memory operands, 256 bits are fetched from memory, but only the first, third, fifth and seventh doublewords are
used in the computation.The first source operand is four packed unsigned doubleword integers stored in the first,
third, fifth and seventh doublewords of an YMM register. The destination contains four packed unaligned quadword
integers stored in an YMM register.

Operation

VPMULUDQ (VEX.256 encoded version)
DEST[63:0] ¢« SRC1[31:0] * SRC2[31:0]
DEST[127:64] < SRC1[95:64] * SRC2[95:64
DEST[191:128] ¢« SRC1[159:128] * SRC2[159:128]
DEST[255:192] € SRC1[223:192] * SRC2[223:192]

5-114 Ref. #319433-014

VPMULUDQ (VEX.128 encoded version)
DEST[63:0] € SRC1[31:0] * SRC2[31:0]
DEST[127:64] € SRC1[95:64] * SRC2[95:64]
DEST[VLMAX:128]1 < 0

PMULUDQ (128-bit Legacy SSE version)
DEST[63:0] ¢ DEST[31:01* SRC[31:0]
DEST[127:64] < DEST[95:64] * SRC[95:64]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PMULUDQ: __m128i _mm_mul_epu32(__m128ia, __m128ib);

VPMULUDQ: __m256i _mm256_mul_epu32(_m256i a, __m256i b);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-115

INSTRUCTION SET REFERENCE

POR — Bitwise Logical OR

POR xmm1, xmm2/m128

VPOR xmm1, xmm2, xmm3/m128

VPOR ymm1, ymm2, ymm3/m256

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF EB /r A VIV SSEZ2 Bitwise OR of xmm2/m128 and xmm1.

VEX.NDS.128.66.0F.WIG EB /r B VIV AVX Bitwise OR of xmm2/m128 and xmm3.

VEX.NDS.256.66.0F.WIG EB /r B VIV AVX2 Bitwise OR of ymm2/m256 and ymm3.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvwv ModRM:r/m (r) NA
Description

Performs a bitwise logical OR operation on the second source operand and the first source operand and stores the
result in the destination operand. Each bit of the result is set to 1 if either of the corresponding bits of the first and

second operands are 1, otherwise it is set to O.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source and destination operands can be XMM registers. Bits (255:128) of the corresponding YMM destination

register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source and destination operands can be XMM registers. Bits (255:128) of the corresponding YMM register are

zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first

source and destination operands can be YMM registers.

Operation

VPOR (VEX.256 encoded version)
DEST ¢ SRC1 OR SRC2

VPOR (VEX.128 encoded version)
DEST[127:0] € (SRC[127:0] OR SRC2[127:0])
DEST[VLMAX:128] € 0

POR (128-bit Legacy SSE version)
DEST[127:0] < (SRC[127:0] OR SRC2[127:0])
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)POR: __m128i _mm_or_si128 (__m128ia, __m128ib)

VPOR: __m256i _mm256_or_si256 (_m256i a, __m256i b)

5-116

Ref. #319433-014

INSTRUCTION SET REFERENCE

SIMD Floating-Point Exceptions

none

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-117

INSTRUCTION SET REFERENCE

PSADBW — Compute Sum of Absolute Differences

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF F6 /1 A VIV SSE? Computes the absolute differences of the packed unsigned byte
PSADBW xmm1, xmm2/m128 integers from xmm2 /m128 and xmm1; the 8 low differences and 8

high differences are then summed separately to produce two
unsigned word integer results.

VEX.NDS.128.66.0FWIGF6/r B VIV AVX Computes the absolute differences of the packed unsigned byte
VPSADBW xmm1, xmm2, integers from xmm3 /m128 and xmmZ2; the 8 low differences and 8
xmm3/m128 high differences are then summed separately to produce two

unsigned word integer results.

VEX.NDS.256.66.0FWIGF6/r B VIV AVX2 Computes the absolute differences of the packed unsigned byte

VPSADBW ymm1, ymm?2, integers from ymm3 /m256 and ymm¢Z; then each consecutive 8 dif-

ymm3/m256 ferences are summed separately to produce four unsigned word
integer results.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
Description

Computes the absolute value of the difference of packed groups of 8 unsigned byte integers from the second source
operand and from the first source operand. The first 8 differences are summed to produce an unsigned word
integer that is stored in the low word of the destination; the second 8 differences are summed to produce an
unsigned word in bits 79:64 of the destination. In case of VEX.256 encoded version, the third group of 8 differences
are summed to produce an unsigned word in bits[143:128] of the destination register and the fourth group of 8
differences are summed to produce an unsigned word in bits[207:192] of the destination register. The remaining
words of the destination are set to O.

128-bit Legacy SSE version: The first source operand and destination register are XMM registers. The second
source operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM desti-
nation register remain unchanged.

VEX.128 encoded version: The first source operand and destination register are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The first source operand and destination register are YMM registers. The second source
operand is an YMM register or a 256-bit memory location.

Operation

VPSADBW (VEX.256 encoded version)

TEMPO < ABS(SRC1[7:0]- SRC2[7:0])

(* Repeat operation for bytes 2 through 30%)
TEMP31 <« ABS(SRC1[255:248] - SRC2[255:248])
DEST[15:0] €«SUM(TEMPO:TEMP7)

DEST[63:16] €< 000000000000H

DEST[79:64] < SUM(TEMP8:TEMP15)
DEST[127:80] < 00000000000H
DEST[143:128] <SUM(TEMP16:TEMP23)

5-118 Ref. #319433-014

DEST[191:144] < 000000000000H
DEST[207:192] < SUM(TEMP24:TEMP31)
DEST[223:208] < 00000000000H

VPSADBW (VEX.128 encoded version)

TEMPO < ABS(SRC1[7:0] - SRC2[7:0])

(* Repeat operation for bytes 2 through 14 *)
TEMP15 € ABS(SRC1[127:120] - SRC2[127:120])
DEST[15:0] € SUM(TEMPO:TEMP7)

DEST[63:16] € 000000000000H

DEST[79:64] €< SUM(TEMP8.TEMP15)
DEST[127:80] < 00000000000H
DEST[VLMAX:128]1 €« 0

PSADBW (128-bit Legacy SSE version)

TEMPO < ABS(DEST[7:0] - SRC[7:0])

(* Repeat operation for bytes 2 through 14 *)
TEMP15 <« ABS(DEST[127:120] - SRC[127:120])
DEST[15:0] € SUM(TEMPO:TEMP7)

DEST[63:16] € 000000000000H

DEST[79:64] €< SUM(TEMP8:TEMP15)
DEST[127:80] €< 00000000000

DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSADBW: __m128i _mm_sad_epu8(_m128ia, _m128ib)
VPSADBW: __m256i _mm256_sad_epu8(_m256i a, __m256ib)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-119

INSTRUCTION SET REFERENCE

PSHUFB — Packed Shuffle Bytes

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF 3800 /r A VIV SSSE3 Shuffle bytes in xmm1 according to contents of xmm2/m128.

PSHUFB xmm1, xmm2/m128

VEX.NDS.128.66.0F38WIG00/r B VIV AVX Shuffle bytes in xmmZ2 according to contents of xmm3/m128.

VPSHUFB xmm1, xmmZ2,
xmm3/m128

VEX.NDS.256.66.0F38WIGO00/r B VIV AVX2 Shuffle bytes in ymmZ2 according to contents of ymm3/m256.
VPSHUFB ymm1, ymmZ2,

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

PSHUFB performs in-place shuffles of bytes in the first source operand according to the shuffle control mask in the
second source operand. The instruction permutes the data in the first source operand, leaving the shuffle mask
unaffected. If the most significant bit (bit[7]) of each byte of the shuffle control mask is set, then constant zero is
written in the result byte. Each byte in the shuffle control mask forms an index to permute the corresponding byte
in the first source operand. The value of each index is the least significant 4 bits of the shuffle control byte. The first
source and destination operands are XMM registers. The second source is either an XMM register or a 128-bit
memory location.

128-bit Legacy SSE version: The first source and destination operands are the same. Bits (255:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the destination YMM register are zeroed.

VEX.256 encoded version: Bits (255:128) of the destination YMM register stores the 16-byte shuffle result of the
upper 16 bytes of the first source operand, using the upper 16-bytes of the second source operand as control mask.
The value of each index is for the high 128-bit lane is the least significant 4 bits of the respective shuffle control
byte. The index value selects a source data element within each 128-bit lane.

Operation

VPSHUFB (VEX.256 encoded version)
fori=0to15¢
if (SRC2[(i * 8)+7] == 1) then
DEST[(i*8)+7.(i*8)+0] <« O;
else
index[3..0] € SRC2[(i*8)+3 .. (i*8)+0];
DEST[(i*8)+7.(i*8)+0] €« SRC1[(index*8+7).(index*8+0)];
endif
if (SRC2[128 + (i * 8)+7] == 1) then
DEST[128 + (i*8)+7..(i*8)+0] < O;
else
index[3..0] € SRC2[128 + (i*8)+3 .. (i*8)+0];
DEST[128 + (i*8)+7..(i*8)+0] €« SRC1[128 + (index*8+7).(index*8+0)];
endif

5-120 Ref. #319433-014

}

VPSHUFB (VEX.128 encoded version)
fori=0to15¢
if (SRC2[(i * 8)+7] == 1) then
DESTI[(i*8)+7.(i*8)+0] <« O;
else
index[3..0] € SRC2[(i*8)+3 .. (i*8)+0];
DESTI[(i*8)+7.(i*8)+0] €« SRC1[(index*8+7).(index*8+0)];
endif

}
DEST[VLMAX:128] < O

PSHUFB (128-bit Legacy SSE version)
fori=0to15¢
if (SRC[(i * 8)+7]==1) then
DESTI[(i*8)+7.(i*8)+0] <« O;
else
index[3..0] € SRC[(i*8)+3 .. (i*8)+0];
DESTI[(i*8)+7.(i*8)+0] €« DEST[(index*8+7).(index*8+0)];
endif

}
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSHUFB: __m128i _mm_shuffle_epi8(_m128ia, __m128ib)
VPSHUFB: __m256i _mm256_shuffle_epi8(_m256i a, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-121

INSTRUCTION SET REFERENCE

PSHUFD — Shuffle Packed Doublewords

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 0F 70 /rib A VIV SSE2 Shuffle the doublewords in xmm2/m128 based on the encoding
PSHUFD xmm1, xmm2/m128, imm8 in imm8 and store the result in xmm1.
VEX.128.66.0F.WIG 70 /rib A VIV AVX Shuffle the doublewords in xmm2/m128 based on the encoding
VPSHUFD xmm1, xmm2/m128, in imm8 and store the result in xmm1.
imm8
VEX.256.66.0F.WIG 70 /rib A VIV AVX2 Shuffle the doublewords in ymm2/m256 based on the encoding
VPSHUFD ymm1, ymm2/m256, in imm8 and store the result in ymm1.
imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Copies doublewords from the source operand and inserts them in the destination operand at the locations selected
with the immediate control operand. Figure 5-4 shows the operation of the 256-bit VPSHUFD instruction and the
encoding of the order operand. Each 2-bit field in the order operand selects the contents of one doubleword loca-
tion within a 128-bit lane and copy to the target element in the destination operand. For example, bits 0 and 1 of
the order operand targets the first doubleword element in the low and high 128-bit lane of the destination operand
for 256-bit VPSHUFD. The encoded value of bits 1:0 of the order operand (see the field encoding in Figure 5-4)
determines which doubleword element (from the respective 128-bit lane) of the source operand will be copied to
doubleword O of the destination operand.

For 128-bit operation, only the low 128-bit lane are operative. The source operand can be an XMM register or a
128-bit memory location. The destination operand is an XMM register. The order operand is an 8-bit immediate.
Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword
location in the destination operand.

SRC X7 X6 X5 X4 X3 X2 X1 X0
DEST Y7 Y6 Y5 | Y4 Y3 Y2 Y1 YO0 ’
Encoding 0oB :)%

of Fieldsin 01B - X5 . !
ORDER of Fieldsin 01B - X1
ORDER 10B - X6 ORDER 10B - X2
Operand 11B - X7 76543210 B

Operand 11B - X3

Figure 5-4. 256-bit VPSHUFD Instruction Operation

5-122 Ref. #319433-014

INSTRUCTION SET REFERENCE

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: Bits (255:128) of the destination stores the shuffled results of the upper 16 bytes of the
source operand using the immediate byte as the order operand.

Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPSHUFD (VEX.256 encoded version)

DEST[31:0] € (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] €< (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] < (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] < (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
DEST[159:128] €« (SRC[255:128] >> (ORDER[1:0] * 32))[31:01;
DEST[191:160] €« (SRC[255:128] >> (ORDER[3:2] * 32))[31:0;
DEST[223:192] < (SRC[255:128] >> (ORDER[5:4] * 32))[31:0;
DEST[255:224] < (SRC[255:128] >> (ORDER[7:6] * 32))[31:0];

— — ~— ~—

VPSHUFD (VEX.128 encoded version)

DEST[31:0] € (SRC[127:0] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] < (SRC[127:0] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] < (SRC[127:0] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] < (SRC[127:0] >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX:128] <« 0

PSHUFD (128-bit Legacy SSE version)

DEST[31:0] € (SRC[255:128] >> (ORDER[1:0] * 32))[31:0];
DEST[63:32] €« (SRC[255:128] >> (ORDER[3:2] * 32))[31:0];
DEST[95:64] < (SRC[255:128] >> (ORDER[5:4] * 32))[31:0];
DEST[127:96] < (SRC[255:128] >> (ORDER[7:6] * 32))[31:0];
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSHUFD: __m128i _mm_shuffle_epi32(_m128i 3, const int n)
VPSHUFD: __m256i _mm256_shuffle_epi32(_m256i a, const int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-123

INSTRUCTION SET REFERENCE

PSHUFHW — Shuffle Packed High Words

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
F30F 70 /rib A VIV SSE2 Shuffle the high words in xmm2/m128 based on the encoding in
PSHUFHW xmm1, xmm2/m128, imm8 and store the result in xmm1.
imm8
VEX.128.F3.0FWIG 70 /r ib A VIV AVX Shuffle the high words in xmm2/m128 based on the encoding in
VPSHUFHW xmm1, xmm2/m128, imm8 and store the result in xmm1.
imm3
VEX.256.F3.0FWIG 70 /r ib A VIV AVX2 Shuffle the high words in ymm2/m256 based on the encoding in
VPSHUFHW ymm1, ymm2/m256, imm8 and store the result in ymm1.
imm3

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Copies words from the high quadword of a 128-bit lane of the source operand and inserts them in the high quad-
word of the destination operand at word locations (of the respective lane) selected with the immediate operand .
This 256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illus-
trated in Figure 5-4. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate
operand selects the contents of one word location in the high quadword of the destination operand. The binary
encodings of the immediate operand fields select words (0, 1, 2 or 3, 4) from the high quadword of the source
operand to be copied to the destination operand. The low quadword of the source operand is copied to the low
quadword of the destination operand, for each 128-bit lane.

Note that this instruction permits a word in the high quadword of the source operand to be copied to more than one
word location in the high quadword of the destination operand.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register
or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register
or a 256-bit memory location.

Note: In VEX encoded versions VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.

Operation

VPSHUFHW (VEX.256 encoded version)
DEST[63:0] €« SRC1[63:0]

DEST[79:64] €< (SRC1 >> (imm[1:0] *16))[79:64]
DEST[95:80] €« (SRCT >> (imm[3:2] * 16))[79:64]
DEST[111:96] €« (SRCT >> (imm[5:4] * 16))[79:64]
DEST[127:112] €« (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[191:128] €« SRC1[191:128]

DEST[207192] € (SRC1 >> (imm[1:0] *16))[207:192]

5-124 Ref. #319433-014

DEST[223:208] € (SRC1 >> (imm[3:2] * 16))[207:192]
DEST[239:224] € (SRC1 >> (imm[5:4] * 16))[207:192]
DEST[255:240] € (SRC1 >> (imm[7:6] * 16))[207:192]

VPSHUFHW (VEX.128 encoded version)
DEST[63:0] ¢ SRC1[63:0]

DEST[79:64] €< (SRCT >> (imm[1:0] *16))[79:64]
DEST[95:80] €< (SRCT >> (imm[3:2] * 16))[79:64]
DEST[111:96] €« (SRCT >> (imm[5:4] * 16))[79:64]
DEST[127:112] € (SRC1 >> (imm[7:6] * 16))[79:64]
DEST[VLMAX:128]1 €« 0

PSHUFHW (128-bit Legacy SSE version)
DEST[63:0] ¢« SRC[63:0]

DEST[79:64] €< (SRC >> (imm[1:0] *16))[79:64]
DEST[95:80] €< (SRC >> (imm[3:2] * 16))[79:64]
DEST[111:96] €« (SRC >> (imm[5:4] * 16))[79:64]
DEST[127:112] € (SRC >> (imm[7:6] * 16))[79:64]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSHUFHW: __m128i _mm_shufflehi_epi16(_m128i a, const int n)

VPSHUFHW: __m256i _mm256_shufflehi_epi16(__m256i a, const int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-125

INSTRUCTION SET REFERENCE

PSHUFLW — Shuffle Packed Low Words

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
F20F 70 /rib A VIV SSE2 Shuffle the low words in xmm2/m128 based on the encoding in
PSHUFLW xmm1, xmm2/m128, imm8 and store the result in xmm1.
imm3
VEX.128.F2.0FWIG 70 /r ib A VIV AVX Shuffle the low words in xmm2/m128 based on the encoding in
VPSHUFLW xmmT1, imm8 and store the result in xmm1.

xmm2/m128, imm8

VEX.256.F2.0FWIG 70 /r ib A VIV AVX2 Shuffle the low words in ymm2/m256 based on the encoding in
VPSHUFLW ymm1, imm8 and store the result in ymm1.

ymmZ2/m256, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Copies words from the low quadword of a 128-bit lane of the source operand and inserts them in the low quadword
of the destination operand at word locations (of the respective lane) selected with the immediate operand. The
256-bit operation is similar to the in-lane operation used by the 256-bit VPSHUFD instruction, which is illustrated
in Figure 5-4. For 128-bit operation, only the low 128-bit lane is operative. Each 2-bit field in the immediate
operand selects the contents of one word location in the low quadword of the destination operand. The binary
encodings of the immediate operand fields select words (0, 1, 2 or 3) from the low quadword of the source operand
to be copied to the destination operand. The high quadword of the source operand is copied to the high quadword
of the destination operand, for each 128-bit lane.

Note that this instruction permits a word in the low quadword of the source operand to be copied to more than one
word location in the low quadword of the destination operand.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The destination operand is an XMM register. The source operand can be an XMM
register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination register remain
unchanged.

VEX.128 encoded version: The destination operand is an XMM register. The source operand can be an XMM register
or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination operand is an YMM register. The source operand can be an YMM register
or a 256-bit memory location.

Operation

VPSHUFLW (VEX.256 encoded version)

DEST[15:0] € (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] €« (SRC1 >> (imm[3:2] * 16))[15:0]
DEST[47:32] € (SRC1 >> (imm[5:4] * 16))[15:0]
DEST[63:48] < (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] <« SRC1[127:64]

DEST[143:128] < (SRC1 >> (imm[1:0] *16))[143:128]
DEST[159:144] < (SRC1 >> (imm[3:2] * 16))[143:128]
DEST[175:160] € (SRC1 >> (imm[5:4] * 16))[143:128]

5-126 Ref. #319433-014

DEST[191:176] € (SRC1 >> (imm[7:6] * 16))[143:128]
DEST[255:192] € SRC1[255:192]

VPSHUFLW (VEX.128 encoded version)
DEST[15:0] € (SRC1 >> (imm[1:0] *16))[15:0]
DEST[31:16] €< (SRCT >> (imm[3:2] * 16))[15:0]
DEST[47:32] € (SRCT >> (imm[5:4] * 16))[15:0]
DEST[63:48] < (SRC1 >> (imm[7:6] * 16))[15:0]
DEST[127:64] € SRC1[127:64]
DEST[VLMAX:128]1 €« 0

PSHUFLW (128-bit Legacy SSE version)
DEST[15:0] € (SRC >> (imm[1:0] *16))[15:0]
DEST[31:16] €< (SRC >> (imm[3:2] * 16))[15:0]
DEST[47:32] € (SRC >> (imm[5:4] * 16))[15:0]
DEST[63:48] €< (SRC >> (imm[7:6] * 16))[15:0]
DEST[127:64] < SRC[127:64]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSHUFLW: ~ __m128i _mm_shufflelo_epi16(__m128i g, const int n)

VPSHUFLW: __m256i _mm256_shufflelo_epi16(__m256i a, const int n)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-127

INSTRUCTION SET REFERENCE

PSIGNB/PSIGNW/PSIGND — Packed SIGN

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 0F 3808 /r A VIV SSSE3 Negate packed byte integers in xmm1 if the corresponding sign in
PSIGNB xmm1, xmm2/m128 xmm2/m128 is less than zero.
66 OF 3809 /r A VIV SSSE3 Negate packed 16-bit integers in xmm1 if the corresponding sign
PSIGNW xmm1, xmm2/m128 in xmm2/m128is less than zero.
66 OF 38 0A /r A VIV SSSE3 Negate packed doubleword integers in xmm1 if the corresponding
PSIGND xmm1, xmm2/m128 sign in xmm2/m128 is less than zero.
VEX.NDS.128.66.0F38WIG08/r B VIV AVX Negate packed byte integers in xmm?Z if the corresponding sign in
VPSIGNB xmm1, xmm2, xmm3/m128is less than zero.
xmm3/m128
VEX.NDS.128.66.0F38WIG09/r B VIV AVX Negate packed 16-bit integers in xmmZ if the corresponding sign
VPSIGNW xmm1, xmm2, in xmm3/m128 is less than zero.
xmm3/m128
VEX.NDS.128.66.0F38WIGOA/r B VIV AVX Negate packed doubleword integers in xmmZ if the corresponding
VPSIGND xmm1, xmm2, sign in xmm3/m128 is less than zero.
xmm3/m128

VEX.NDS.256.66.0F38WIG08/r B VIV AVX2 Negate packed byte integers in ymmZ2 if the corresponding sign in

VPSIGNB ymm1, ymm2, ymm3/m256 is less than zero.

ymm3/m256

VEX.NDS.256.66.0F38WIG09/r B VIV AVX2 Negate packed 16-bit integers in ymmZ2 if the corresponding sign
VPSIGNW ymm1, ymm2, in ymm3/m256 is less than zero.

ymm3/m256

VEX.NDS.256.66.0F38WIGOA/r B VIV AVX2 Negate packed doubleword integers in ymmZ if the corresponding
VPSIGND ymm1, ymm2, sign in ymm3/m256 is less than zero.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

(V)PSIGNB/(V)PSIGNW/(V)PSIGND negates each data element of the first source operand if the sign of the corre-
sponding data element in the second source operand is less than zero. If the sign of a data element in the second
source operand is positive, the corresponding data element in the first source operand is unchanged. If a data
element in the second source operand is zero, the corresponding data element in the first source operand is set to
zero.

(V)PSIGNB operates on signed bytes. (V)PSIGNW operates on 16-bit signed words. (V)PSIGND operates on signed
32-bit integers.

Legacy SSE instructions: In 64-bit mode use the REX prefix to access additional registers.

5-128 Ref. #319433-014

INSTRUCTION SET REFERENCE

128-bit Legacy SSE version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The first source and destination operands are XMM registers. The second source
operand is an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The first source and destination operands are YMM registers. The second source
operand is an YMM register or a 256-bit memory location.

Operation

BYTE_SIGN_256b(SRC1, SRC2)
if (SRC2[7..0]1<0)
DEST[7..0] €< Neg(SRC1[7..0])
else if(SRC2[7.0]1==0)
DEST[7..0] <« O
else if(SRC2[7..0] > 0)
DEST[7..0] € SRC1[7..0]
Repeat operation for 2nd through 31th bytes
if (SRC2[255..248]<0)
DEST[255..248] €< Neg(SRC1[255..248])
else if(SRC2[255..248] == 0)
DEST[255..248] €« 0
else if(SRC2[255..248] > 0)
DEST[255..248] € SRC1[255..248]

BYTE_SIGN(SRC1, SRC2)
if (SRC2[7.0]<0)
DESTI[7..0] € Neg(SRC1[7..0])
else if(SRC2[7.0]==0)
DEST[7..0] <« 0O
else if(SRC2[7..0] > 0)
DEST[7..0] € SRC1[7..0]
Repeat operation for 2nd through 15th bytes
if (SRC2[127.120]1<0)
DEST[127..120] €< Neg(SRC1[127..120])
else if(SRC2[127..120]==0)
DEST[127..120] €« O
else if(SRC2[127..120] > 0)
DEST[127..120] € SRC1[127..120]

WORD_SIGN_256b(SRC1, SRC2)
if (SRC2[15.0]1<0)
DEST[15..0] € Neg(SRC1[15...0])
else if(SRC2[15..0] ==0)
DEST[15..01 < 0
else if(SRC2[15.0]1 > 0)
DEST[15..0] € SRC1[15..0]
Repeat operation for 2nd through 15th words
if (SRC2[255.240]1<0)
DEST[255..240] € Neg(SRC1[255..240])
else if(SRC2[255.240] ==0)
DEST[255.240] €« 0
else if(SRC2[255.240] > 0)

Ref. # 319433-014 5-129

INSTRUCTION SET REFERENCE

DEST[255..240] € SRC1[255..240]
WORD_SIGN(SRCT, SRC2)
if (SRC2[15.01<0)
DEST[15..0] € Neg(SRC1[15..0])
else if(SRC2[15.0]1==0)
DEST[15..01 <0
else if(SRC2[15.0]1>0)
DEST[15..0] € SRC1[15..0]
Repeat operation for 2nd through 7th words
if (SRC2[127.112]1<0)
DEST[127..112] € Neg(SRC1[127..112])
else if(SRC2[127..112]==0)
DEST[127..112]1 €< 0
else if(SRC2[127..112] > 0)
DEST[127..112] € SRC1[127..112]

DWORD_SIGN_256b(SRC1, SRC2)
if (SRC2[31.0]1<0)
DEST[31..0] € Neg(SRC1[31..0])
else if(SRC2[31.0]1==0)
DEST[31..01< 0
else if(SRC2[31.0]1>0)
DEST[31..0] € SRC1[31..0]
Repeat operation for 2nd through 7th double words
if (SRC2[255..224]1<0)
DEST[255..224] € Neg(SRC1[255..224])
else if(SRC2[255..224]1 == 0)
DEST[255..224] <0
else if(SRC2[255..224] > 0)
DEST[255..224] € SRC1[255..224]

DWORD_SIGN(SRC1, SRC2)
if (SRC2[31.01<0)
DEST[31..0] € Neg(SRC1[31..0])
else if(SRC2[31.0]1==0)
DEST[31..01< 0
else if(SRC2[31.0]1>0)
DEST[31..0] € SRC1[31..0]
Repeat operation for 2nd through 3rd double words
if (SRC2[127.96]<0)
DEST[127..96] € Neg(SRC1[127..96])
else if(SRC2[127..96]1==0)
DEST[127..96] €0
else if(SRC2[127..96]1>0)
DEST[127..96] € SRC1[127..96]

VPSIGNB (VEX.256 encoded version)
DEST[255:0] €BYTE_SIGN_256b(SRC1, SRC2)

VPSIGNB (VEX.128 encoded version)

DEST[127:0] €BYTE_SIGN(SRC1, SRC2)
DEST[VLMAX:128] <« O

5-130

Ref. #319433-014

PSIGNB (128-bit Legacy SSE version)
DEST[127:0] €BYTE_SIGN(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

VPSIGNW (VEX.256 encoded version)
DEST[255:0] €<WORD_SIGN(SRC1, SRC2)

VPSIGNW (VEX.128 encoded version)
DEST[127:0] €WORD_SIGN(SRC1, SRC2)
DEST[VLMAX:128]1 €« 0

PSIGNW (128-bit Legacy SSE version)
DEST[127:0] €WORD_SIGN(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

VPSIGND (VEX.256 encoded version)
DEST[255:0] < DWORD_SIGN(SRC1, SRC2)

VPSIGND (VEX.128 encoded version)
DEST[127:0] < DWORD_SIGN(SRC1, SRC2)
DEST[VLMAX:128]1 < 0

PSIGND (128-bit Legacy SSE version)
DEST[127:0] ¢ DWORD_SIGN(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSIGNB: __m128i _mm_sign_epi8 (_m128ia,__m128ib)
(V)PSIGNW: __m128i _mm_sign_epi16 (_m128ia, __m128iDb)
(V)PSIGND: __m128i _mm_sign_epi32 (__m128ia,_m128iDb)
VPSIGNB: __m256i _mm256_sign_epi8 (__m256i a, __m256i b)
VPSIGNW: __m256i _mm256_sign_epi16 (__m256i a, __m256i b)
VPSIGND: __m256i _mm256_sign_epi32 (__m256ia, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-131

INSTRUCTION SET REFERENCE

PSLLDQ — Byte Shift Left

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 OF 73 /7 ib A VIV SSEe2 Shift xmm1 left by imm8 bytes while shifting in Os.

PSLLDQ xmm1, imm8

VEX.NDD.128.66.0FWIG 73 /7ib B VIV AVX Shift xmmZ2 left by imm8 bytes while shifting in Os and store
VPSLLDQ xmm1, xmm2, imm8 result in xmm1.

VEX.NDD.256.66.0FWIG73/7ib B VIV AVX2 Shift ymmZ2 left by imm8 bytes while shifting in Os and store
VPSLLDQ ymm1, ymmZ2, imm8 result in ymmT.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) NA NA NA
B VEX.vvvv (w) ModRM:r/m (R) NA NA
Description

Shifts the byte elements within a 128-bit lane of the source operand to the left by the number of bytes specified in
the count operand . The empty low-order bytes are cleared (set to all 0s). If the value specified by the count
operand is greater than 15, the destination operand is set to all Os.

The source and destination operands are XMM registers. The count operand is an 8-bit immediate.

128-bit Legacy SSE version: The source and destination operands are the same. Bits (255:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The source operand is a YMM register. The destination operand is a YMM register. The
count operand applies to both the low and high 128-bit lanes.

Note: In VEX encoded versions VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the
source register.

Operation

VPSLLDQ (VEX.256 encoded version)

TEMP € COUNT

IF (TEMP > 15) THEN TEMP ? 16; FI
DEST[127:0] € SRC[127:0] << (TEMP * 8)
DEST[255:128] €« SRC[255:128] << (TEMP * 8)

VPSLLDQ (VEX.128 encoded version)
TEMP € COUNT

IF (TEMP > 15) THEN TEMP < 16; Fl
DEST €« SRC << (TEMP * 8)
DEST[VLMAX:128] € 0

PSLLDQ(128-bit Legacy SSE version)
TEMP € COUNT

IF (TEMP > 15) THEN TEMP < 16; Fl
DEST €« DEST << (TEMP * 8)
DEST[VLMAX:128] (Unmodified)

5-132 Ref. #319433-014

INSTRUCTION SET REFERENCE

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSLLDQ: __m128i _mm_slli_si128 (_m128i a, const int imm)

VPSLLDQ: __m256i _mm256_slli_si256 (_m256i a, const int imm)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-133

INSTRUCTION SET REFERENCE

PSLLW/PSLLD/PSLLQ — Bit Shift Left

Opcode/
Instruction

66 OF F1/r
PSLLW xmm1, xmm2/m128

66 0F71/6ib
PSLLW xmm1, imm8

66 OF F2 /It
PSLLD xmm1, xmm2/m128

66 OF 72 /6ib
PSLLD xmm1, imm8

66 OF F3 /r
PSLLQ xmm1, xmm2/m128

66 OF 73 /6 ib
PSLLQ xmm1, imm8

VEX.NDS.128.66.0F.WIG F1 /r

VPSLLW xmm1, xmmZ,
xmm3/m128

VEX.NDD.128.66.0F.WIG 71 /6 ib
VPSLLW xmm1, xmmZ2, imm8

VEX.NDS.128.66.0FWIG F2 /r

VPSLLD xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0FWIG 72 /6 ib
VPSLLD xmm1, xmmZ2, imm8

VEX.NDS.128.66.0FWIG F3 /r

VPSLLQ xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0F.WIG 73 /6 ib
VPSLLQ xmm1, xmm2, imm8

VEX.NDS.256.66.0FWIG F1 /r

VPSLLW ymm1, ymmZ2,
xmm3/m128

VEX.NDD.256.66.0F.WIG 71 /6 ib
VPSLLW ymm1, ymm2, imm8

VEX.NDS.256.66.0F.WIG F2 /r

VPSLLD ymm1, ymmZ2,
xmm3/m128

Op/
En

B

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSE2

SSE2

SSE2

SSE2

SSE2

AVX

AVX

AVX

AVX

AVX

AVX

AvXz2

AVX2

AvVX2

Description

Shift words in xmm1 left by amount specified in xmm2/m128
while shifting in Os.

Shift words in xmm1 left by imm8 while shifting in Os.

Shift doublewords in xmm1 left by amount specified in
xmm2/m128 while shifting in Os.

Shift doublewords in xmm1 left by imm8 while shifting in Os.
Shift quadwords in xmm1 left by amount specified in xmm2/m128
while shifting in Os.

Shift quadwords in xmm1 left by imm8 while shifting in Os.

Shift words in xmmZ2 left by amount specified in xmm3/m128
while shifting in Os.

Shift words in xmm2 left by imm8 while shifting in Os.

Shift doublewords in xmm?2 left by amount specified in
xmm3/m128 while shifting in Os.

Shift doublewords in xmm?2 left by imm8 while shifting in Os.

Shift quadwords in xmm?2 left by amount specified in xmm3/m128
while shifting in Os.

Shift quadwords in xmmZ2 left by imm8 while shifting in Os.

Shift words in ymmZ2 left by amount specified in xmm3/m128
while shifting in Os.

Shift words in ymmZ2 left by imm8 while shifting in Os.

Shift doublewords in ymm?2 left by amount specified in
xmm3/m128 while shifting in Os.

5-134

Ref. #319433-014

INSTRUCTION SET REFERENCE

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag

VEX.NDD.256.66.0FWIG72/6ib C VIV AVX2 Shift doublewords in ymm2 left by imm8 while shifting in Os.
VPSLLD ymm1, ymmZ2, imm8

VEX.NDS.256.66.0F.WIG F3 /r D VIV AVX2 Shift quadwords in ymm2 left by amount specified in xmm3/m128

VPSLLQ ymm1, ymmZ2, while shifting in Os.
xmm3/m128

VEX.NDD.256.66.0FWIG73/6ib C VIV AVX2 Shift quadwords in ymmZ left by imm8 while shifting in Os.
VPSLLQ ymm1, ymmZ, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) NA NA NA
B ModRM:reg (w) ModRM:r/m (r) NA NA
C VEX.vvwv (w) ModRM:r/m (R) NA NA
D ModRM:reg (w) VEX.vwwv (1) ModRM:r/m (r) NA
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the first source operand to the
left by the number of bits specified in the count operand. As the bits in the data elements are shifted left, the empty
low-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for words), 31
(for doublewords), or 63 (for a quadword), then the destination operand is set to all Os.

Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source
operand is a memory address, 128 bits are loaded.

The PSLLW instruction shifts each of the words in the first source operand to the left by the number of bits specified
in the count operand, the PSLLD instruction shifts each of the doublewords in the first source operand, and the
PSLLQ instruction shifts the quadword (or quadwords) in the first source operand.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (255:128) of the
corresponding YMM destination register remain unchanged. The count operand can be either an XMM register or a
128-bit memory location or an 8-bit immediate.

VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (255:128) of the
corresponding YMM destination register are zeroed. The count operand can be either an XMM register or a 128-bit
memory location or an 8-bit immediate.

VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an XMM register or a 128-bit memory location or an 8-bit immediate.

Note: In VEX encoded versions of shifts with an immediate count (VEX.128.66.0F 71-73 /6), VEX.vvvv encodes the
destination register, and VEX.B + ModRM.r/m encodes the source register.

Ref. # 319433-014 5-135

INSTRUCTION SET REFERENCE

Operation

LOGICAL_LEFT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[127:0] < 00000000000000000000000000000000H
ELSE
DEST[15:0] € ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] € ZeroExtend(SRC[127:112] << COUNT);
Fl;

LOGICAL_LEFT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[127:0] < 00000000000000000000000000000000H
ELSE
DEST[31:0] € ZeroExtend(SRC[31:0] << COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] € ZeroExtend(SRC[127:96] << COUNT);
Fl;

LOGICAL_LEFT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[127:0] ¢ 00000000000000000000000000000000H
ELSE
DEST[63:0] €« ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] € ZeroExtend(SRC[127:64] << COUNT);
Fl;

LOGICAL_LEFT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[127:0] < 00000000000000000000000000000000H
DEST[255:128] < 00000000000000000000000000000000H
ELSE
DEST[15:0] € ZeroExtend(SRC[15:0] << COUNT);
(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] €« ZeroExtend(SRC[255:240] << COUNT);
Fl;

LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT & COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[127:0] < 00000000000000000000000000000000H
DEST[255:128] < 00000000000000000000000000000000H
ELSE
DEST[31:0] & ZeroExtend(SRC[31:0] << COUNT);

5-136

Ref. #319433-014

(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] < ZeroExtend(SRC[255:224] << COUNT);
Fl;

LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)

COUNT <« COUNT_SRC[63:0];

IF (COUNT > 63)

THEN
DEST[127:0] €< 00000000000000000000000000000000H
DEST[255:128] ¢ 00000000000000000000000000000000H

ELSE
DEST[63:0] €« ZeroExtend(SRC[63:0] << COUNT);
DEST[127:64] € ZeroExtend(SRC[127:64] << COUNT)
DEST[191:128] € ZeroExtend(SRC[191:128] << COUNT);
DEST[255:192] € ZeroExtend(SRC[255:192] << COUNT);

Fl;

VPSLLW (ymm, ymm, xmm/m128)
DEST[255:0] €< LOGICAL_LEFT_SHIFT_WORDS_256b(SRC1, SRC2)

VPSLLW (ymm, imm8)
DEST[255:0] € LOGICAL_LEFT_SHIFT_WORD_256bS(SRC1, imm8)

VPSLLW (xmm, xmm, xmm/m128)
DEST[127:0] € LOGICAL_LEFT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX:128] €< 0O

VPSLLW (xmm, imm8)
DEST[127:0] € LOGICAL_LEFT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX:128]1 €« 0

PSLLW (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_LEFT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSLLW (xmm, imm8)
DEST[127:0] € LOGICAL_LEFT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

VPSLLD (ymm, ymm, xmm/m128)
DEST[255:0] € LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, SRC2)

VPSLLD (ymm, imm8)
DEST[127:0] < LOGICAL_LEFT_SHIFT_DWORDS_256b(SRC1, imm8)

VPSLLD (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_LEFT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX:128] €< 0O

VPSLLD (xmm, imm8)

DEST[127:0] € LOGICAL_LEFT_SHIFT_DWORDS(SRCT, imm8)
DEST[VLMAX:128] « O

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-137

INSTRUCTION SET REFERENCE

PSLLD (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_LEFT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSLLD (xmm, imm8)
DEST[127:0] < LOGICAL_LEFT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

VPSLLQ (ymm, ymm, xmm/m128)
DEST[255:0] < LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, SRC2)

VPSLLQ (ymm, imm8)
DEST[255:0] < LOGICAL_LEFT_SHIFT_QWORDS_256b(SRC1, imm8)

VPSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_LEFT_SHIFT_QWORDS(SRCT, SRC2)
DEST[VLMAX:128] < O

VPSLLQ (xmm, imm8)
DEST[127:0] € LOGICAL_LEFT_SHIFT_QWORDS(SRC1, imm8)
DEST[VLMAX:128]1 < 0

PSLLQ (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_LEFT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSLLQ (xmm, imm8)
DEST[127:0] € LOGICAL_LEFT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSLLW: __m128i _mm_slli_epi16 (__m128i m, int count)
(V)PSLLW: __m128i _mm_sll_epi16 (__m128i m, __m128i count)
(V)PSLLD: __m128i _mm_slli_epi32 (__m128i m, int count)
(V)PSLLD: __m128i _mm_sll_epi32 (__m128im, __m128i count)
(V)PSLLQ: __m128i _mm_slli_epi64 (__m128i m, int count)
(V)PSLLQ: __m128i _mm_sll_epi64 (__m128i m, __m128i count)
VPSLLW: __m256i _mm256_slli_epi16 (__m256i m, int count)
VPSLLW: __m256i _mm256_sll_epi16 (__m256i m, __m128i count)
VPSLLD: __m256i _mm256_slli_epi32 (__m256i m, int count)
VPSLLD: __m256i _mm256_sll_epi32 (__m256i m, __m128i count)
VPSLLQ: __m256i _mm256_slli_epi64 (__m256i m, int count)
VPSLLQ: __m256i _mm256_sll_epi64 (__m256i m, __m128i count)

SIMD Floating-Point Exceptions
None

5-138

Ref. #319433-014

INSTRUCTION SET REFERENCE

Other Exceptions
Same as Exceptions Type 4

Ref. # 319433-014 5-139

INSTRUCTION SET REFERENCE

PSRAW/PSRAD — Bit Shift Arithmetic Right

Opcode/ Op/ 64/32 CPUID

Instruction En -bit Feature
Mode Flag

66 OF E1/r B VIV SSE2

PSRAW xmm1, xmm2/m128

66 0F71/4ib A VIV SSE2

PSRAW xmm1, imm8

66 OF E2 /T B VIV SSE2

PSRAD xmm1, xmm2/m128

66 0F72/4ib A VIV SSE2

PSRAD xmm1, imm8

VEX.NDS.128.66.0F.WIG E1 /r D VIV AVX

VPSRAW xmm1, xmmZ2,

xmm3/m128

VEX.NDD.128.66.0FWIG 71 /4ib C VIV AVX

VPSRAW xmm1, xmm2, imm8

VEX.NDS.128.66.0F.WIG E2 /r D VIV AVX

VPSRAD xmm1, xmmZ2,

xmm3/m128

VEX.NDD.128.66.0FWIG72/4ib C VIV AVX

VPSRAD xmm1, xmmZ2, imm8

VEX.NDS.256.66.0F.WIG E1 /r D VIV AVX2

VPSRAW ymm1, ymm2,

xmm3/m128

VEX.NDD.256.66.0FWIG 71 /4ib C VIV AVX2

VPSRAW ymm1, ymm2, imm8

VEX.NDS.256.66.0F.WIG E2 /t D VIV AVX2

VPSRAD ymm1, ymm2,

xmm3/m128

VEX.NDD.256.66.0FWIG72/4ib C VIV AVX2

VPSRAD ymm1, ymmZ2, imm8

Description

Shift words in xmm1 right by amount specified in xmm2/m128
while shifting in sign bits.

Shift words in xmm1 right by imm8 while shifting in sign bits.

Shift doublewords in xmm1 right by amount specified in
xmm2/m128 while shifting in sign bits.

Shift doublewords in xmm1 right by imm8 while shifting in sign
bits.

Shift words in xmmZ2 right by amount specified in xmm3/m128
while shifting in sign bits.

Shift words in xmm2 right by imm8 while shifting in sign bits.

Shift doublewords in xmm2 right by amount specified in
xmm3/m128 while shifting in sign bits.

Shift doublewords in xmm2 right by imm8 while shifting in sign
bits.

Shift words in ymmZ2 right by amount specified in xmm3/m128
while shifting in sign bits.

Shift words in ymm2 right by imm8 while shifting in sign bits.

Shift doublewords in ymm2 right by amount specified in
xmm3/m128 while shifting in sign bits.

Shift doublewords in ymm2 right by imm8 while shifting in sign
bits.

Instruction Operand Encoding

Op/En Operand 1 Operand 2
A ModRM:r/m (r, w) NA
B ModRM:reg (w) ModRM:r/m (
C VEX.vvwv (w) ModRM:r/m (
D ModRM:reg (w) VEX.vvwv (r)

r)
R)

Operand 3 Operand 4
NA NA
NA NA
NA NA
ModRM:r/m (r) NA

5-140

Ref. #319433-014

INSTRUCTION SET REFERENCE

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the first source operand to the
right by the number of bits specified in the count operand. As the bits in the data elements are shifted right, the
empty high-order bits are filled with the initial value of the sign bit of the data. If the value specified by the count
operand is greater than 15 (for words), or 31 (for doublewords), then the destination operand is filled with the
initial value of the sign bit.

Note that only the first 64-bits of a 128-bit count operand are checked to compute the count. If the second source
operand is a memory address, 128 bits are loaded.

The (V)PSRAW instruction shifts each of the words in the first source operand to the right by the number of bits
specified in the count operand; the (V)PSRAD instruction shifts each of the doublewords in the first source operand.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The destination and first source operands are XMM registers. Bits (255:128) of the
corresponding YMM destination register remain unchanged. The count operand can be either an XMM register or a
128-bit memory location or an 8-bit immediate.

VEX.128 encoded version: The destination and first source operands are XMM registers. Bits (255:128) of the
corresponding YMM destination register are zeroed. The count operand can be either an XMM register or a 128-bit
memory location or an 8-bit immediate.

VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an XMM register or a 128-bit memory location or an 8-bit immediate.

Operation

ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 15)

COUNT « 15;
Fl;
DEST[15:0] €« SignExtend(SRC[15:0] >> COUNT);

(* Repeat shift operation for 2nd through 15th words *)
DEST[255:240] < SignExtend(SRC[255:240] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 31)

COUNT « 31;
Fl;
DEST[31:0] < SignExtend(SRC[31:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)
DEST[255:224] < SignExtend(SRC[255:224] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 15)

COUNT « 15;
Fl;
DEST[15:0] €« SignExtend(SRC[15:0] >> COUNT);

(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] < SignExtend(SRC[127:112] >> COUNT);

ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)

COUNT & COUNT_SRC[63:0];
IF (COUNT > 31)

Ref. # 319433-014 5-141

INSTRUCTION SET REFERENCE

COUNT <« 31;
Fl;
DEST[31:0] € SignExtend(SRC[31:0] >> COUNT);

(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] < SignExtend(SRC[127:96] >> COUNT);

VPSRAW (ymm, ymm, xmm/m128)
DEST[255:0] € ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)

VPSRAW (ymm, imm8)
DEST[255:0] ¢ ARITHMETIC_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)

VPSRAW (xmm, xmm, Xxmm/m128)
DEST[127:0] €« ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX:128] < O

VPSRAW (xmm, imm8)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_WORDS(SRC1, imm8)
DEST[VLMAX:128]1 < 0

PSRAW (xmm, xmm, xmm/m128)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSRAW (xmm, imm8)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

VPSRAD (ymm, ymm, xmm/m128)
DEST[255:0] € ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)

VPSRAD (ymm, imm8)
DEST[255:0] ¢ ARITHMETIC_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)

VPSRAD (xmm, xmm, Xxmm/m128)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, SRC2)
DEST[VLMAX:128] < O

VPSRAD (xmm, imm8)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_DWORDS(SRC1, imm8)
DEST[VLMAX:128]1 < 0

PSRAD (xmm, xmm, xmm/m128)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSRAD (xmm, imm8)
DEST[127:0] € ARITHMETIC_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSRAW: __m128i _mm_srai_epi16 (__m128i m, int count)

VPSRAW: __m256i _mm256_srai_epi16 (__m256i m, int count)

5-142

Ref. #319433-014

INSTRUCTION SET REFERENCE

(V)PSRAW: __m128i _mm_sra_epi16 (__m128im, __m128i count)
VPSRAW: __m256i _mm256_sra_epi16 (__m256i m, __m128i count)
(V)PSRAD: __m128i _mm_srai_epi32 (__m128i m, int count)

VPSRAD: __m256i _mm256_srai_epi32 (__m256i m, int count)
(V)PSRAD: __m128i _mm_sra_epi32 (__m128im, __m128i count)

VPSRAD: __m256i _mm256_sra_epi32 (__m256i m, __m128i count)

SIMD Floating-Point Exceptions

None

Other Exceptions
Same as Exceptions Type 4

Ref. # 319433-014 5-143

INSTRUCTION SET REFERENCE

PSRLDQ — Byte Shift Right

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
66 0F73/3ib A VIV SSE2 Shift xmm1 right by imm8 bytes while shifting in Os.

PSRLDQ xmm1, imm8

VEX.NDD.128.66.0FWIG73/3ib B VIV AVX Shift xmm?1 right by imm8 bytes while shifting in Os.
VPSRLDQ xmm1, xmmz2, imm8

VEX.NDD.256.66.0FWIG73/3ib B VIV AVX2 Shift ymm1 right by imm8 bytes while shifting in Os.
VPSRLDQ ymm1, ymmZ2, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) NA NA NA
B VEX.vvvv (w) ModRM:r/m (R) NA NA
Description

Shifts the byte elements within a 128-bit lane of the source operand to the right by the number of bytes specified
in the count operand. The empty high-order bytes are cleared (set to all 0s). If the value specified by the count
operand is greater than 15, the destination operand is set to all Os.

The source and destination operands are XMM registers. The count operand is an 8-bit immediate.

128-bit Legacy SSE version: The source and destination operands are the same. Bits (255:128) of the corre-
sponding YMM destination register remain unchanged.

VEX.128 encoded version: Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The source operand is a YMM register. The destination operand is a YMM register. The
count operand applies to both the low and high 128-bit lanes.

Note: In VEX encoded versions VEX.vvvv encodes the destination register, and VEX.B + ModRM.r/m encodes the
source register.

Operation

VPSRLDQ (VEX.256 encoded version)

TEMP € COUNT

IF (TEMP > 15) THEN TEMP < 16; Fl
DEST[127:0] € SRC[127:0] >> (TEMP * 8)
DEST[255:128] €« SRC[255:128] >> (TEMP * 8)

VPSRLDQ (VEX.128 encoded version)
TEMP € COUNT

IF (TEMP > 15) THEN TEMP < 16; FI
DEST €« SRC >> (TEMP * 8)
DEST[VLMAX:128] € 0

PSRLDQ(128-bit Legacy SSE version)
TEMP € COUNT

IF (TEMP > 15) THEN TEMP < 16; Fl
DEST €« DEST >> (TEMP * 8)
DEST[VLMAX:128] (Unmodified)

5-144 Ref. #319433-014

INSTRUCTION SET REFERENCE

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSRLDQ: __m128i _mm_srli_si128 (_m128i a, int imm)

VPSRLDQ: __m256i _mm256_srli_si256 (_m256i a, const int imm)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-145

INSTRUCTION SET REFERENCE

PSRLW/PSRLD/PSRLQ — Shift Packed Data Right Logical

Opcode/
Instruction

66 OF D1 /r
PSRLW xmm1, xmm2/m128

66 0F 71 /2ib
PSRLW xmm1, imm8

66 OF D2 /r
PSRLD xmm1, xmm2/m128

66 OF 72 /2 ib
PSRLD xmm1, imm8

66 OF D3 /r
PSRLQ xmm1, xmm2/m128

66 OF 73 /2 ib
PSRLQ xmm1, imm8

VEX.NDS.128.66.0FWIG D1 /r

VPSRLW xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0FWIG 71 /2 ib
VPSRLW xmm1, xmm2, imm8

VEX.NDS.128.66.0F.WIG D2 /r

VPSRLD xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0FWIG 72 /2 ib
VPSRLD xmm1, xmmZ2, imm8

VEX.NDS.128.66.0FWIG D3 /r

VPSRLQ xmm1, xmm2,
xmm3/m128

VEX.NDD.128.66.0F.WIG 73 /2 ib
VPSRLQ xmm1, xmm2, imm8

VEX.NDS.256.66.0FWIG D1 /r

VPSRLW ymm1, ymmZ2,
xmm3/m128

VEX.NDD.256.66.0F.WIG 71 /2 ib
VPSRLW ymm1, ymmz2, imm8

VEX.NDS.256.66.0FWIG D2 /r

VPSRLD ymm1, ymmZ2,
xmm3/m128

Op/
En

B

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSE2

SSE2

SSE2

SSE2

SSE2

AVX

AVX

AVX

AVX

AVX

AVX

AVX2

AVX2

AVX2

Description

Shift words in xmm1 right by amount specified in xmm2/m128
while shifting in Os.

Shift words in xmm1 right by imm8 while shifting in Os.

Shift doublewords in xmm1 right by amount specified in
xmm2/m128 while shifting in Os.

Shift doublewords in xmm1 right by imm8 while shifting in Os.
Shift quadwords in xmm1 right by amount specified in
xmm2/m128 while shifting in Os.

Shift quadwords in xmm1 right by imm8 while shifting in Os.

Shift words in xmmZ2 right by amount specified in xmm3/m128
while shifting in Os.

Shift words in xmmZ2 right by imm8 while shifting in Os.

Shift doublewords in xmm?2 right by amount specified in
xmm3/m128 while shifting in Os.

Shift doublewords in xmmZ right by imm8 while shifting in Os.

Shift quadwords in xmmZ2 right by amount specified in
xmm3/m128 while shifting in Os.

Shift quadwords in xmmZ2 right by imm8 while shifting in Os.

Shift words in ymm2 right by amount specified in xmm3/m128
while shifting in Os.

Shift words in ymm2 right by imm8 while shifting in Os.

Shift doublewords in ymm2 right by amount specified in
xmm3/m128 while shifting in Os.

5-146

Ref. #319433-014

INSTRUCTION SET REFERENCE

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag

VEX.NDD.256.66.0FWIG72/2ib C VIV AVX2 Shift doublewords in ymm2 right by imm8 while shifting in Os.
VPSRLD ymm1, ymmg, imm8

VEX.NDS.256.66.0F.WIG D3 /r D VIV AVX2 Shift quadwords in ymmZ right by amount specified in
VPSRLQ ymm1, ymm2, xmm3/m128 while shifting in Os.

xmm3/m128

VEX.NDD.256.66.0FWIG73/2ib C VIV AVX2 Shift quadwords in ymm2 right by imm8 while shifting in Os.
VPSRLQ ymm1, ymm2, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r, w) NA NA NA
B ModRM:reg (w) ModRM:r/m (r) NA NA
C VEX.vvwv (w) ModRM:r/m (R) NA NA
D ModRM:reg (w) VEX.vwwv (1) ModRM:r/m (r) NA
Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the first source operand to the
right by the number of bits specified in the count operand. As the bits in the data elements are shifted right, the
empty high-order bits are cleared (set to 0). If the value specified by the count operand is greater than 15 (for
words), 31 (for doublewords), or 63 (for a quadword), then the destination operand is set to all Os.

The destination and first source operands are XMM registers. The count operand can be either an XMM register or
a 128-bit memory location or an 8-bit immediate. If the second source operand is a memory address, 128 bits are
loaded. Note that only the first 64-bits of a 128-bit count operand are checked to compute the count.

The PSRLW instruction shifts each of the words in the first source operand to the right by the number of bits spec-
ified in the count operand; the PSRLD instruction shifts each of the doublewords in the first source operand; and
the PSRLQ instruction shifts the quadword (or quadwords) in the first source operand.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: Bits (255:128) of the corresponding YMM destination register remain unchanged.
VEX.128 encoded version: Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 128-bit memory location or an 8-bit immediate.

Note: In VEX encoded versions of shifts with an immediate count (VEX.128.66.0F 71-73 /2), VEX.vvvv encodes the
destination register, and VEX.B + ModRM.r/m encodes the source register.

Operation

LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC, COUNT_SRC)
COUNT € COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[255:0] € 0
ELSE
DEST[15:0] € ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 15th words *)

Ref. # 319433-014 5-147

INSTRUCTION SET REFERENCE

DEST[255:240] € ZeroExtend(SRC[255:240] >> COUNT);
Fl;

LOGICAL_RIGHT_SHIFT_WORDS(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 15)
THEN
DEST[127:0] < 00000000000000000000000000000000H
ELSE
DEST[15:0] €« ZeroExtend(SRC[15:0] >> COUNT);
(* Repeat shift operation for 2nd through 7th words *)
DEST[127:112] & ZeroExtend(SRC[127:112] >> COUNT);
Fl;

LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[255:0] < 0
ELSE
DEST[31:0] €« ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[255:224] & ZeroExtend(SRC[255:224] >> COUNT);
Fl;

LOGICAL_RIGHT_SHIFT_DWORDS(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 31)
THEN
DEST[127:0] < 00000000000000000000000000000000H
ELSE
DEST[31:0] €« ZeroExtend(SRC[31:0] >> COUNT);
(* Repeat shift operation for 2nd through 3rd words *)
DEST[127:96] < ZeroExtend(SRC[127:96] >> COUNT);
Fl;

LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC, COUNT_SRC)
COUNT <« COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[255:0] ¢« 0
ELSE
DEST[63:0] € ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] €« ZeroExtend(SRC[127:64] >> COUNT);
DEST[191:128] € Zerotxtend(SRC[191:128] >> COUNT);
DEST[255:192] € ZeroExtend(SRC[255:192] >> COUNT);
Fl;

LOGICAL_RIGHT_SHIFT_QWORDS(SRC, COUNT_SRC)
COUNT € COUNT_SRC[63:0];
IF (COUNT > 63)
THEN
DEST[127:0] € 00000000000000000000000000000000H
ELSE

5-148

Ref. #319433-014

DEST[63:0] ¢« ZeroExtend(SRC[63:0] >> COUNT);
DEST[127:64] €« ZeroExtend(SRC[127:64] >> COUNT);
Fl;

VPSRLW (ymm, ymm, xmm/m128)
DEST[255:0] €< LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, SRC2)

VPSRLW (ymm, imm8)
DEST[255:0] € LOGICAL_RIGHT_SHIFT_WORDS_256b(SRC1, imm8)

VPSRLW (xmm, xmm, xmm/m128)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_WORDS(SRC1, SRC2)
DEST[VLMAX:128] < 0O

VPSRLW (xmm, imm8)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_WORDS(SRCT, imm3)
DEST[VLMAX:128]1 < 0

PSRLW (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_RIGHT_SHIFT_WORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSRLW (xmm, imm8)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_WORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

VPSRLD (ymm, ymm, xmm/m128)
DEST[255:0] € LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, SRC2)

VPSRLD (ymm, imm8)
DEST[255:0] €< LOGICAL_RIGHT_SHIFT_DWORDS_256b(SRC1, imm8)

VPSRLD (xmm, xmm, xmm/m128)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_DWORDS(SRCT, SRC2)
DEST[VLMAX:128] < O

VPSRLD (xmm, imm8)
DEST[127:0] €< LOGICAL_RIGHT_SHIFT_DWORDS(SRCT, imm8)
DEST[VLMAX:128] < 0

PSRLD (xmm, xmm, xmm/m128)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_DWORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSRLD (xmm, imm8)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_DWORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

VPSRLQ (ymm, ymm, xmm/m128)
DEST[255:0] < LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, SRC2)

VPSRLQ (ymm, imm8)
DEST[255:0] < LOGICAL_RIGHT_SHIFT_QWORDS_256b(SRC1, imm8)

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-149

INSTRUCTION SET REFERENCE

VPSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_RIGHT_SHIFT_QWORDS(SRC1, SRC2)
DEST[VLMAX:128] < O

VPSRLQ (xmm, imm8)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_QWORDS(SRCT, imm8)
DEST[VLMAX:128]1 < 0

PSRLQ (xmm, xmm, xmm/m128)
DEST[127:0] €< LOGICAL_RIGHT_SHIFT_QWORDS(DEST, SRC)
DEST[VLMAX:128] (Unmodified)

PSRLQ (xmm, imm8)
DEST[127:0] € LOGICAL_RIGHT_SHIFT_QWORDS(DEST, imm8)
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(VIPSRLW: __m128i _mm_srli_epi16 (__m128i m, int count)

VPSRLW: __m256i _mm256_srli_epi16 (__m256i m, int count)

(VIPSRLW: ~ __m128i _mm_srl_epi16 (_m128im,

VPSRLW: __m256i _mm256_srl_epi16 (__m256i m, __m128i count)

(VIPSRLD: __m128i _mm_srli_epi32 (__m128i m, int count)

VPSRLD: __m256i _mm256_srli_epi32 (__m256i m, int count)
(VIPSRLD: __m128i _mm_srl_epi32 (__m128im, __m128i count)

VPSRLD: __m256i _mm256_srl_epi32 (__m256i m, __m128i count)

(V)PSRLQ: _m128i _mm_srli_epi64 (__m128i m, int count)

VPSRLQ: __m256i _mm256_srli_epi64 (__m256i m, int count)
(V)PSRLQ: _m128i _mm_srl_epi64 (__m128im, _m128i count)

VPSRLQ: __m256i _mm256_srl_epi64 (__m256i m,

SIMD Floating-Point Exceptions
None

Other Exceptions
Same as Exceptions Type 4

5-150

m128i count)

m128i count)

Ref. #319433-014

INSTRUCTION SET REFERENCE

PSUBB/PSUBW/PSUBD/PSUBQ — Packed Integer Subtract

Opcode/
Instruction

66 OF F8 /r
PSUBB xmm1, xmm2/m128

66 OF F9 /r
PSUBW xmm1, xmm2/m128

66 OF FA /It
PSUBD xmm1, xmm2/m128

66 OF FB/r
PSUBQ xmm1, xmm2/m128

VEX.NDS.128.66.0FWIG F8 /r

VPSUBB xmm1, xmm?2,
xmm3/m128

VEX.NDS.128.66.0F.WIG FS /r

VPSUBW xmm1, xmmZ,
xmm3/m128

VEX.NDS.128.66.0FWIG FA /r

VPSUBD xmm1, xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG FB /r

VPSUBQ xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F.WIG F8 /r

VPSUBB ymm1, ymm2,
ymm3/m256

VEX.NDS.256.66.0F.WIG FS /r

VPSUBW ymm1, ymm2,
ymm3/m256

VEX.NDS.256.66.0F.WIG FA /r

VPSUBD ymm1, ymmZ,
ymm3/m256

VEX.NDS.256.66.0F.WIG FB /r

VPSUBQ ymm1, ymm2,
ymm3/m256

Op/
En

A

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSE2

SSE2

SSE2

AVX

AVX

AVX

AVX

AVX2

AVX2

AvX2

AvX2

Description

Subtract packed byte integers in xmm2/m128 from xmm1.

Subtract packed word integers in xmm2/m128 from xmm1.

Subtract packed doubleword integers in xmm2/m128 from xmm1.

Subtract packed quadword integers in xmm2/m128 from xmm1.

Subtract packed byte integers in xmm3/m128 from xmm2.

Subtract packed word integers in xmm3/m128 from xmm2.

Subtract packed doubleword integers in xmm3/m128 from xmm2.

Subtract packed quadword integers in xmm3/m128 from xmmZ2.

Subtract packed byte integers in ymm3/m256 from ymm?2.

Subtract packed word integers in ymm3/m256 from ymm2.

Subtract packed doubleword integers in ymm3/m256 from ymm2.

Subtract packed quadword integers in ymm3/m256 from ymm2.

Ref. # 319433-014

5-151

INSTRUCTION SET REFERENCE

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
Description

Subtracts the packed byte, word, doubleword, or quadword integers in the second source operand from the first
source operand and stores the result in the destination operand. When a result is too large to be represented in the
8/16/32/64 integer (overflow), the result is wrapped around and the low bits are written to the destination element
(that is, the carry is ignored).

Note that these instructions can operate on either unsigned or signed (two’s complement notation) integers;

however, it does not set bits in the EFLAGS register to indicate overflow and/or a carry. To prevent undetected over-
flow conditions, software must control the ranges of the values operated on.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (127:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first
source operand and destination operands are YMM registers.

Operation

VPSUBB (VEX.256 encoded version)

DEST[7:0] € SRC1[7:0]-SRC2[7:0]

DEST[15:8] €« SRC1[15:8]-SRC2[15:8]
DEST[23:16] € SRC1[23:16]-SRC2[23:16]
DEST[31:24] € SRC1[31:24]-SRC2[31:24]
DEST[39:32] € SRC1[39:32]-SRC2[39:32]
DEST[47:40] € SRC1[47:40]-SRC2[47:40]
DEST[55:48] € SRC1[55:48]-SRC2[55:48]
DEST[63:56] € SRC1[63:56]-SRC2[63:56]
DEST[71:64] € SRC1[71:64]-SRC2[71:64]
DEST[79:72] € SRC1[79:72]-SRC2[79:72]
DEST[87:80] € SRC1[87:80]-SRC2[87:80]
DEST[95:88] € SRC1[95:88]-SRC2[95:88]
DEST[103:96] €« SRC1[103:96]-SRC2[103:96]
DEST[111:104] €« SRC1[111:104]-SRC2[111:104]
DEST[119:112] € SRC1[119:112]-SRC2[119:112]
DEST[127:120] € SRC1[127:120]-SRC2[127:120]
DEST[135:128] €« SRC1[135:128]-SRC2[135:128]
DEST[143:136] €< SRC1[143:136]-SRC2[143:136]
DEST[151:144] €« SRC1[151:144]-SRC2[151:144]
DEST[159:152] € SRC1[159:152]-SRC2[159:152]
DEST[167:160] €« SRC1[167:160]-SRC2[167:160]
DEST[175:168] €« SRC1[175:168]-SRC2[175:168]
DEST[183:176] €« SRC1[183:176]-SRC2[183:176]
DEST[191:184] <« SRC1[191:184]-SRC2[191:184]
DEST[199:192] €« SRC1[199:192]-SRC2[199:192]
DEST[207:200] €« SRC1[207:200]-SRC2[207:200]
DEST[215:208] €« SRC1[215:208]-SRC2[215:208]
DEST[223:216] €« SRC1[223:216]-SRC2[223:216]

5-152 Ref. #319433-014

DEST[231:224] € SRC1[231:224]-SRC2[231:224]
DEST[239:232] < SRC1[239:232]-SRC2[239:232]
DEST[247:240] < SRC1[247:240]-SRC2[247:240]
DEST[255:248] < SRC1[255:248]-SRC2[255:248]

VPSUBB (VEX.128 encoded version)
DEST[7:0] € SRC1[7:0]-SRC2[7:0]
DEST[15:8] € SRC1[15:8]-SRC2[15:8]
DEST[23:16] € SRC1[23:16]-SRC2[23:16]
DEST[31:24] € SRC1[31:24]-SRC2[31:24]
DEST[39:32] € SRC1[39:32]-SRC2[39:32]
DEST[47:40] € SRC1[47:40]-SRC2[47:40]
DEST[55:48] € SRC1[55:48]-SRC2[55:48]
DEST[63:56] € SRC1[63:56]-SRC2[63:56]
DEST[71:64] € SRC1[71:64]-SRC2[71:64]
DEST[79:72] € SRC1[79:72]-SRC2[79:72]
DEST[87:80] < SRC1[87:80]-SRC2[87:80]
DEST[95:88] € SRC1[95:88]-SRC2[95:88]

DEST[103:96] < SRC1[103:96]-SRC2[103:96]
DEST[111:104] < SRC1[111:104]-SRC2[111:104]
DEST[119:112] € SRC1[119:112]-SRC2[119:112]
DEST[127:120] € SRC1[127:120]-SRC2[127:120]

DEST[VLMAX:128] « O

PSUBB (128-bit Legacy SSE version)
DEST[7:0] €« DEST[7:0]-SRC[7:0]
DEST[15:8] € DEST[15:8]-SRC[15:8]
DEST[23:16] € DEST[23:16]-SRC[23:16]
DEST[31:24] € DEST[31:24]-SRC[31:24]
DEST[39:32] € DEST[39:32]-SRC[39:32]
DEST[47:40] < DEST[47:40]-SRC[47:40]
DEST[55:48] < DEST[55:48]-SRC[55:48]
DEST[63:56] € DEST[63:56]-SRC[63:56]
DEST[71:64] € DEST[71:64]-SRC[71:64]
DEST[79:72] € DEST[79:72]-SRC[79:72]
DEST[87:80] < DEST[87:80]-SRC[87:80]
DEST[95:88] < DEST[95:88]-SRC[95:88]

DEST[103:96] < DEST[103:96]-SRC[103:96]
DEST[111:104] €< DEST[111:104]-SRC[111:104]
DEST[119:112] € DEST[119:112]-SRC[119:112]
DEST[127:120] €« DEST[127:120]-SRC[127:120]

DEST[VLMAX:128] (Unmodified)

VPSUBW (VEX.256 encoded version)

DEST[15:0] € SRC1[15:0]-SRC2[15:0]

DEST[31:16] € SRC1[31:16]-SRC2[31:16]
DEST[47:32] € SRC1[47:32]-SRC2[47:32]
DEST[63:48] < SRC1[63:48]-SRC2[63:48]
DEST[79:64] € SRC1[79:64]-SRC2[79:64]
DEST[95:80] € SRC1[95:80]-SRC2[95:80]

DEST[111:96] < SRC1[111:96]-SRC2[111:96]
DEST[127:112] € SRC1[127:112]-SRC2[127:112]
DEST[143:128] < SRC1[143:128]-SRC2[143:128]
DEST[159:144] < SRC1[159:144]-SRC2[159:144]

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-153

INSTRUCTION SET REFERENCE

DEST[175:160] < SRC1[175:160]-SRC2[175:160]
DEST[191:176] < SRC1[191:176]-SRC2[191:176]
DEST[207:192] < SRC1207:192]-SRC2[207:192]
DEST[223:208] < SRC1[223:208]-SRC2[223:208]
DEST[239:224] < SRC1[239:224]-SRC2[239:224]
DEST[255:240] < SRC1[255:240]-SRC2[255:240]

VPSUBW (VEX.128 encoded version)
DEST[15:0] ¢ SRC1[15:0]-SRC2[15:0]
DEST[31:16] € SRC1[31:16]-SRC2[31:16]
DEST[47:32] € SRC1[47:32]-SRC2[47:32]
DEST[63:48] € SRC1[63:48]-SRC2[63:48]
DEST[79:64] € SRC1[79:64]-SRC2[79:64]
DEST[95:80] € SRC1[95:80]-SRC2[95:80]
DEST[111:96] € SRC1[111:96]-SRC2[111:96]
DEST[127:112] € SRC1[127:112]-SRC2[127:112]
DEST[VLMAX:128]1 < 0

PSUBW (128-bit Legacy SSE version)
DEST[15:0] € DEST[15:0]-SRC[15:0]
DEST[31:16] € DEST[31:16]-SRC[31:16]
DEST[47:32] € DEST[47:32]-SR(C[47:32]
DEST[63:48] < DEST[63:48]-SRC[63:48]
DEST[79:64] € DEST[79:64]-SRC[79:64]
DEST[95:80] € DEST[95:80]-SRC[95:80]
DEST[111:96] < DEST[111:96]-SRC[111:96]
DEST[127:112] € DEST[127:112]-SRC[127:112]
DEST[VLMAX:128] (Unmodified)

VPSUBD (VEX.128 encoded version)

DEST[31:0] ¢ SRC1[31:0]-SRC2[31:0]
DEST[63:32] € SRC1[63:32]-SRC2[63:32]
DEST[95:64] € SRC1[95:64]-SRC2[95:64]
DEST[127:96] € SRC1[127:96]-SRC2[127:96]
DEST[159:128] €« SRC1[159:128]-SRC2[159:128]
DEST[191:160] €< SRC1[191:160]-SRC2[191:160]
DEST[223:192] €« SRC1[223:192]-SRC2[223:192]
DEST[255:224] €< SRC1[255:224]-SRC2[255:224]

VPSUBD (VEX.128 encoded version)
DEST[31:0] ¢ SRC1[31:0]-SRC2[31:0]
DEST[63:32] € SRC1[63:32]-SRC2[63:32]
DEST[95:64] € SRC1[95:64]-SRC2[95:64]
DEST[127:96] € SRC1[127:96]-SRC2[127:96]
DEST[VLMAX:128]1 < 0

PSUBD (128-bit Legacy SSE version)
DEST[31:0] ¢« DEST[31:0]-SRC[31:0]
DEST[63:32] € DEST[63:32]-SR(C[63:32]
DEST[95:64] € DEST[95:64]-SRC[95:64]
DEST[127:96] € DEST[127:96]-SRC[127:96]
DEST[VLMAX:128] (Unmodified)

5-154

Ref. #319433-014

INSTRUCTION SET REFERENCE

VPSUBQ (VEX.256 encoded version)

DEST[63:0] ¢ SRC1[63:0]-SRC2[63:0]
DEST[127:64] < SRC1[127:64]-SRC2[127:64]
DEST[191:128] € SRC1[191:128]-SRC2[191:128]
DEST[255:192] € SRC1[255:192]-SRC2[255:192]

VPSUBQ (VEX.128 encoded version)
DEST[63:0] € SRC1[63:0]-SRC2[63:0]
DEST[127:64] < SRC1[127:64]-SRC2[127:64]
DEST[VLMAX:128]1 €« 0

PSUBQ (128-bit Legacy SSE version)
DEST[63:0] € DEST[63:0]-SRC[63:0]
DEST[127:64] < DEST[127:64]-SRC[127:64]
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent
(V)PSUBB: __m128i _mm_sub_epi8 (__m128ia, __m128ib)
(V)PSUBW: __m128i _mm_sub_epi16(__m128ia, __m128ib)

(V)PSUBD: __m128i _mm_sub_epi32 (_m128ia,__m128ib)

(V)PSUBQ: __m128i _mm_sub_epi64(_m128im1, __m128im2)

VPSUBB: __m256i _mm256_sub_epi8 (_m256i a, __m256i b)
VPSUBW: __m256i _mm256_sub_epi16 (_m256i a, __m256i b)
VPSUBD: __m256i _mm256_sub_epi32 (_m256ia, __m256ib)
VPSUBQ: __m256i _mm256_sub_epi64(_m256im1, _m256i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-155

INSTRUCTION SET REFERENCE

PSUBSB/PSUBSW — Subtract Packed Signed Integers with Signed Saturation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 OF EB /1 A VIV SSE2 Subtract packed signed byte integers in xmm2/m128 from packed
PSUBSB xmm1, xmm2/m128 signed byte integers in xmm1 and saturate results.
66 OF E9 /r A VIV SSE2 Subtract packed signed word integers in xmm2/m128 from packed
PSUBSW xmm1, xmm2/m128 signed word integers in xmm1 and saturate results.
VEXNNDS.128.66.0FWIGEB/r B VIV AVX Subtract packed signed byte integers in xmm3/m128 from packed
VPSUBSB xmm1, xmm2, signed byte integers in xmm2 and saturate results.
xmm3/m128
VEXNNDS.128.66.0FWIGES/r B VIV AVX Subtract packed signed word integers in xmm3/m128 from packed
VPSUBSW xmm1, xmm2, signed word integers in xmmZ2 and saturate results.
xmm3/m128
VEX.NDS.256.66.0FWIGEB/r B VIV AVX2 Subtract packed signed byte integers in ymm3/m256 from packed
VPSUBSB ymm1, ymm2, signed byte integers in ymmZ2 and saturate results.
ymm3/m256
VEX.NDS.256.66.0FWIGES/r B VIV AVX2 Subtract packed signed word integers in ymm3/m256 from packed
VPSUBSW ymm1, ymm2, signed word integers in ymmZ2 and saturate results.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD subtract of the packed signed integers of the second source operand from the packed signed inte-
gers of the first source operand, and stores the packed integer results in the destination operand. See Figure 9-4
in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a SIMD oper-
ation. Overflow is handled with signed saturation, as described in the following paragraphs.

The (V)PSUBSB instruction subtracts packed signed byte integers. When an individual byte result is beyond the
range of a signed byte integer (that is, greater than 7FH or less than 80H), the saturated value of 7FH or 80H,
respectively, is written to the destination operand.

The (V)PSUBSW instruction subtracts packed signed word integers. When an individual word result is beyond the
range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the saturated value of 7FFFH or
8000H, respectively, is written to the destination operand.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (127:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first
source operand and destination operands are YMM registers.

5-156 Ref. #319433-014

Operation

VPSUBSB (VEX.256 encoded version)

DEST[7:0] € SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 31th bytes *)

DEST[255:248] < SaturateToSignedByte (SRC1[255:248] - SRC2[255:248]);

VPSUBSB (VEX.128 encoded version)

DEST[7:0] € SaturateToSignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] €« SaturateToSignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX:128] « 0

PSUBSB (128-bit Legacy SSE Version)

DEST[7:0] € SaturateToSignedByte (DEST[7:0] - SRC[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] €« SaturateToSignedByte (DEST[127:120] - SRC[127:120]);
DEST[VLMAX:128] (Unmodified)

VPSUBSW (VEX.256 encoded version)

DEST[15:0] < SaturateToSignedwWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 15th words *)

DEST[255:240] <« SaturateToSignedwWord (SRC1[255:240] - SRC2[255:240]);

VPSUBSW (VEX.128 encoded version)

DEST[15:0] < SaturateToSignedwWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] €« SaturateToSignedwWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX:128] « 0

PSUBSW (128-bit Legacy SSE Version)

DEST[15:0] € SaturateToSignedWord (DEST[15:0] - SRC[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] €« SaturateToSignedWord (DEST[127:112] - SRC[127:112]);
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSUBSB: __m128i _mm_subs_epi8(__m128im1, _m128i m2)
(V)PSUBSW: __m128i _mm_subs_epi16(_m128im1, __m128i m2)
VPSUBSB: __m256i _mm256_subs_epi8(__m256i m1, __m256i m2)
VPSUBSW: __m256i _mm256_subs_epi16(_m256i m1, __m256i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-157

INSTRUCTION SET REFERENCE

PSUBUSB/PSUBUSW — Subtract Packed Unsigned Integers with Unsigned Saturation

Opcode/ Op/ 64/3 CPUID Description
Instruction En 2-bit Feature

Mode Flag
66 OF D8 /r A VIV SSE2 Subtract packed unsigned byte integers in xmm2/m128 from packed
PSUBUSB xmm1, xmm2/m128 unsigned byte integers in xmm1 and saturate result.
66 OF D9 /r A VIV SSE2 Subtract packed unsigned word integers in xmm2/m128 from packed
PSUBUSW xmm1, xmm2/m128 unsigned word integers in xmm1 and saturate result.
VEX.NDS.128.66.0F.WIG D8 /r B VIV AVX Subtract packed unsigned byte integers in xmm3/m128 from packed
VPSUBUSB xmm1, xmm2, unsigned byte integers in xmmZ2 and saturate result.
xmm3/m128

VEX.NDS.128.66.0F.WIG D9 /r B VIV AVX Subtract packed unsigned word integers in xmm3/m128 from packed
VPSUBUSW xmm1, xmm2, unsigned word integers in xmmZ2 and saturate result.

xmm3/m128

VEX.NDS.256.66.0F.WIG D8 /r B VIV AVX2 Subtract packed unsigned byte integers in ymm3/m256 from packed

VPSUBUSB ymm1, ymm2, unsigned byte integers in ymmZ2 and saturate result.

ymm3/m256

VEX.NDS.256.66.0F.WIG D9 /r B VIV AVX2 Subtract packed unsigned word integers in ymm3/m256 from packed
VPSUBUSW ymm1, ymm2, unsigned word integers in ymmZ2 and saturate result.

ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a SIMD subtract of the packed unsigned integers of the second source operand from the packed unsigned
integers of the first source operand and stores the packed unsigned integer results in the destination operand. See
Figure 9-4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for an illustration of a
SIMD operation. Overflow is handled with unsigned saturation, as described in the following paragraphs.

The first source and destination operands are XMM registers. The second source operand can be either an XMM
register or a 128-bit memory location.

The PSUBUSB instruction subtracts packed unsigned byte integers. When an individual byte result is less than zero,
the saturated value of OOH is written to the destination operand.

The PSUBUSW instruction subtracts packed unsigned word integers. When an individual word result is less than
zero, the saturated value of OOOOH is written to the destination operand.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (127:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first
source operand and destination operands are YMM registers.

5-158 Ref. #319433-014

Operation

VPSUBUSB (VEX.256 encoded version)

DEST[7:0] €« SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 31st bytes *)

DEST[255:148] < SaturateToUnsignedByte (SRC1[255:248] - SRC2[255:248));

VPSUBUSB (VEX.128 encoded version)

DEST[7:0] €« SaturateToUnsignedByte (SRC1[7:0] - SRC2[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] < SaturateToUnsignedByte (SRC1[127:120] - SRC2[127:120]);
DEST[VLMAX:128] « 0

PSUBUSB (128-bit Legacy SSE Version)

DEST[7:0] € SaturateToUnsignedByte (DEST[7:0] - SRC[7:0]);

(* Repeat subtract operation for 2nd through 14th bytes *)

DEST[127:120] €« SaturateToUnsignedByte (DEST[127:120] - SRC[127:120]);
DEST[VLMAX:128] (Unmodified)

VPSUBUSW (VEX.256 encoded version)

DEST[15:0] € SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 15th words *)

DEST[255:240] <« SaturateToUnsignedWord (SRC1[255:240] - SRC2[255:240));

VPSUBUSW (VEX.128 encoded version)

DEST[15:0] € SaturateToUnsignedWord (SRC1[15:0] - SRC2[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] €« SaturateToUnsignedWord (SRC1[127:112] - SRC2[127:112]);
DEST[VLMAX:128] « 0

PSUBUSW (128-bit Legacy SSE Version)

DEST[15:0] € SaturateToUnsignedWord (DEST[15:0] - SRC[15:0]);

(* Repeat subtract operation for 2nd through 7th words *)

DEST[127:112] €« SaturateToUnsignedWord (DEST[127:112] - SRC[127:112]);
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PSUBUSB: __m128i _mm_subs_epu8(_m128i m1, _m128i m2)
(V)PSUBUSW: __m128i _mm_subs_epul16(_m128im1,_m128i m2)
VPSUBUSB: __m256i _mm256_subs_epu8(_m256i m1, __m256i m2)
VPSUBUSW: __m256i _mm256_subs_epu16(_m256i m1, __m256i m2)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-159

INSTRUCTION SET REFERENCE

PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ — Unpack High Data

Opcode/
Instruction

66 OF 68/r
PUNPCKHBW xmm1,xmm2/m128

66 OF 69/r
PUNPCKHWD xmm1,xmm2/m128

66 OF 6A/r
PUNPCKHDQ xmm1, xmm2/m128

66 OF 6D/r

PUNPCKHQDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F.WIG 68 /r

VPUNPCKHBW xmm1,xmm?2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 69 /r

VPUNPCKHWD xmm1,xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 6A /r

VPUNPCKHDQ xmm1, xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 6D /r

VPUNPCKHQDQ xmm1, xmmZ2,
xmm3/m128

VEX.NDS.256.66.0F.WIG 68 /r

VPUNPCKHBW ymm1, ymmZ,
ymm3/m256

VEX.NDS.256.66.0F.WIG 69 /r

VPUNPCKHWD ymm1, ymmZ,
ymm3/m256

VEX.NDS.256.66.0F.WIG 6A /r

VPUNPCKHDQ ymm1, ymm2,
ymm3/m256

VEX.NDS.256.66.0F.WIG 6D /r

VPUNPCKHQDQ ymm1, ymmZ,
ymm3/m256

Op/
En

A

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSE2

SSE2

SSE2

AVX

AVX

AVX

AVX

AVX2

AVX2

AVX2

AVX2

Description

Interleave high-order bytes from xmm1 and xmm2/m128 into
xmm1.

Interleave high-order words from xmm1 and xmm2/m128 into
xmm1.

Interleave high-order doublewords from xmm1 and
xmm2/m128 into xmm1.

Interleave high-order quadword from xmm1 and xmm2/m128
into xmm1 register.

Interleave high-order bytes from xmmZ2 and xmm3/m128 into
xmm1.

Interleave high-order words from xmm2 and xmm3/m128 into
xmm1.

Interleave high-order doublewords from xmmZ2 and
xmm3/m128 into xmm1.

Interleave high-order quadword from xmm2 and xmm3/m128
into xmm1 register.

Interleave high-order bytes from ymm?2 and ymm3/m256 into
ymm1 register.

Interleave high-order words from ymmZ2 and ymm3/m256 into
ymm1 register.

Interleave high-order doublewords from ymm2 and
ymm3/m256 into ymm1 register.

Interleave high-order quadword from ymm2 and ymm3/m256
into ymm1 register.

5-160

Ref. #319433-014

INSTRUCTION SET REFERENCE

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Unpacks and interleaves the high-order data elements (bytes, words, doublewords, and quadwords) of the first
source operand and second source operand into the destination operand. (Figure F-2 shows the unpack operation
for bytes in 64-bit operands.). The low-order data elements are ignored.

255 31 0 255 31 0
SRC| Y7 |Y6 | Y5|Y4 |Y3|Y2|Y1]|YO X7 | X6 | X5| X4 | X3 |X2 | X1|X0
255 0

DEST| Y7 | X7 |Y6 | X6 |Y3 | X3 |Y2 | X2

Figure 5-5. 256-bit VPUNPCKHDQ Instruction Operation

When the source data comes from a 128-bit memory operand an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking will still be enforced.

The PUNPCKHBW instruction interleaves the high-order bytes of the source and destination operands, the
PUNPCKHWD instruction interleaves the high-order words of the source and destination operands, the
PUNPCKHDQ instruction interleaves the high order doubleword (or doublewords) of the source and destination
operands, and the PUNPCKHQDQ instruction interleaves the high-order quadwords of the source and destination
operands.

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (127:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first
source operand and destination operands are YMM registers.

Operation

INTERLEAVE_HIGH_BYTES_256b (SRC1, SRC2)
DEST[7:0] € SRC1[71:64]
DEST[15:8] < SRC2[71:64]
DEST[23:16] € SRC1[79:72]
DEST[31:24] € SRC2[79:72]
DEST[39:32] < SRC1[87:80]
DEST[47:40] < SRC2[87:80]
DEST[55:48] < SRC1[95:88]
DEST[63:56] <SRC2[95:88]
DEST[71:64] < SRC1[103:96]
DEST[79:72] €< SRC2[103:96]
DEST[87:80] < SRC1[111:104]

Ref. # 319433-014 5-161

INSTRUCTION SET REFERENCE

DEST[95:88] < SRC2[111:104]
DEST[103:96] < SRC1[119:112]

DEST[111:104] € SRC2[119:112]
DEST[119:112] € SRC1[127:120]
DEST[127:120] € SRC2[127:120]
DEST[135:128] € SRC1[199:192]
DEST[143:136] € SRC2[199:192]
DEST[151:144] € SRC1[207:200]
DEST[159:152] € SRC2[207:200]
DEST[167:160] < SRC1[215:208]
DEST[175:168] € SRC2[215:208]
DEST[183:176] € SRC1[223:216]
DEST[191:184] <SRC2[223:216]
DEST[199:192] €« SRC1[231:224]
DEST[207:200] €< SRC2[231:224]
DEST[215:208] < SRC1[239:232]
DEST[223:216] < SRC2[239:232]
DEST[231:224] € SRC1[247:240]
DEST[239:232] €« SRC2[247:240]
DEST[247:240] €< SRC1[255:248]
DEST[255:248] < SRC2[255:248]

INTERLEAVE_HIGH_BYTES (SRC1, SRC2)
DEST[7:0] € SRC1[71:64]
DEST[15:8] € SRC2[71:64]
DEST[23:16] € SRC1[79:72]
DEST[31:24] € SRC2[79:72]
DEST[39:32] < SRC1[87:80]
DEST[47:40] < SRC2[87:80]
DEST[55:48] < SRC1[95:88]
DEST[63:56] <SRC2[95:88]
DEST[71:64] < SRC1[103:96]
DEST[79:72] €< SRC2[103:96]
DEST[87:80] < SRC1[111:104]
DEST[95:88] < SRC2[111:104]
DEST[103:96] < SRC1[119:112]
DEST[111:104] € SRC2[119:112]
DEST[119:112] € SRC1[127:120]
DEST[127:120] € SRC2[127:120]

INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)
DEST[15:0] €< SRC1[79:64]
DEST[31:16] €« SRC2[79:64]
DEST[47:32] €< SRC1[95:80]
DEST[63:48] < SRC2[95:80]
DEST[79:64] < SRC1[111:96]
DEST[95:80] < SRC2[111:96]
DEST[111:96] €« SRC1[127:112]
DEST[127:112] € SRC2[127:112]
DEST[143:128] < SRC1[207:192]
DEST[159:144] < SRC2[207:192]
DEST[175:160] € SRC1[223:208]
DEST[191:176] € SRC2[223:208]
DEST[207:192] €« SRC1[239:224]

5-162 Ref. #319433-014

DEST[223:208] < SRC2[239:224]
DEST[239:224] €< SRC1[255:240]
DEST[255:240] €< SRC2[255:240]

INTERLEAVE_HIGH_WORDS (SRC1, SRC2)
DEST[15:0] < SRC1[79:64]

DEST[31:16] €& SRC2[79:64]

DEST[47:32] €< SRC1[95:80]

DEST[63:48] < SRC2[95:80]

DEST[79:64] < SRC1[111:96]
DEST[95:80] < SRC2[111:96]
DEST[111:96] €SRC1[127:112]
DEST[127:112] € SRC2[127:112]

INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)
DEST[31:0] < SRC1[95:64]

DEST[63:32] €< SRC2[95:64]

DEST[95:64] < SRC1[127:96]

DEST[127:96] < SRC2[127:96]

DEST[159:128] < SRC1[223:192]

DEST[191:160] €« SRC2[223:192]

DEST[223:192] € SRC1[255:224]

DEST[255:224] € SRC2[255:224]

INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[31:0] < SRC1[95:64]

DEST[63:32] €< SRC2[95:64]

DEST[95:64] < SRC1[127:96]
DEST[127:96] < SRC2[127:96]

INTERLEAVE_HIGH_QWORDS_256b(SRC1, SRC2)
DEST[63:0] < SRC1[127:64]

DEST[127:64] < SRC2[127:64]

DEST[191:128] €« SRC1[255:192]

DEST[255:192] € SRC2[255:192]

INTERLEAVE_HIGH_QWORDS(SRC1, SRC2)
DEST[63:0] < SRC1[127:64]
DEST[127:64] < SRC2[127:64]

PUNPCKHBW (128-bit Legacy SSE Version)
DEST[127:0] € INTERLEAVE_HIGH_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHBW (VEX.128 encoded version)
DEST[127:0] € INTERLEAVE_HIGH_BYTES(SRC1, SRC2)
DEST[255:127] « 0

VPUNPCKHBW (VEX.256 encoded version)
DEST[255:0] € INTERLEAVE_HIGH_BYTES_256b(SRC1, SRC2)

PUNPCKHWD (128-bit Legacy SSE Version)

DEST[127:0] € INTERLEAVE_HIGH_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-163

INSTRUCTION SET REFERENCE

VPUNPCKHWD (VEX.128 encoded version)
DEST[127:0] € INTERLEAVE_HIGH_WORDS(SRCT, SRC2)
DEST[255:127] <« 0

VPUNPCKHWD (VEX.256 encoded version)
DEST[255:0] € INTERLEAVE_HIGH_WORDS_256b(SRC1, SRC2)

PUNPCKHDQ (128-bit Legacy SSE Version)
DEST[127:0] € INTERLEAVE_HIGH_DWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHDQ (VEX.128 encoded version)
DEST[127:0] € INTERLEAVE_HIGH_DWORDS(SRC1, SRC2)
DEST[255:127] <« 0

VPUNPCKHDQ (VEX.256 encoded version)
DEST[255:0] € INTERLEAVE_HIGH_DWORDS_256b(SRC1, SRC2)

PUNPCKHQDQ (128-bit Legacy SSE Version)
DEST[127:0] € INTERLEAVE_HIGH_QWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKHQDQ (VEX.128 encoded version)
DEST[127:0] €< INTERLEAVE_HIGH_QWORDS(SRCT, SRC2)
DEST[255:127] <« 0

VPUNPCKHQDQ (VEX.256 encoded version)
DEST[255:0] € INTERLEAVE_HIGH_QWORDS_256(SRC1, SRC2)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PUNPCKHBW: __m128i _mm_unpackhi_epi8(_m128i m1, _m128i m2)
VPUNPCKHBW: __m256i _mm256_unpackhi_epi8(_m256i m1, __m256i m2)
(V)PUNPCKHWD: __m128i _mm_unpackhi_epi16(_m128im1,__m128i m2)
VPUNPCKHWD: __m256i _mm256_unpackhi_epi16(_m256i m1,__m256i m2)
(V)PUNPCKHDQ: __m128i _mm_unpackhi_epi32(_m128im1, _m128i m2)
VPUNPCKHDQ: __m256i _mm256_unpackhi_epi32(__m256i m1, __m256i m2)
(V)PUNPCKHQDQ: __m128i _mm_unpackhi_epi64 (_m128ia, __m128ib)
VPUNPCKHQDQ: __m256i _mm256_unpackhi_epi64 (_m256i a, __m256i b)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-164 Ref. #319433-014

INSTRUCTION SET REFERENCE

PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ — Unpack Low Data

Opcode/
Instruction

66 OF 60/r
PUNPCKLBW xmm1,xmm2/m128

66 OF 61/r
PUNPCKLWD xmm1,xmm2/m128

66 OF 62/r
PUNPCKLDQ xmm1, xmm2/m128

66 OF 6C/r
PUNPCKLQDQ xmm1, xmm2/m128

VEX.NDS.128.66.0F.WIG 60 /r

VPUNPCKLBW xmm1,xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 61 /r

VPUNPCKLWD xmm1,xmmZ2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 62 /r

VPUNPCKLDQ xmm1, xmm?2,
xmm3/m128

VEX.NDS.128.66.0F.WIG 6C /r

VPUNPCKLQDQ xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F.WIG 60 /r

VPUNPCKLBW ymm1, ymmZ2,
ymm3/m256

VEX.NDS.256.66.0F.WIG 61 /r

VPUNPCKLWD ymm1, ymm2,
ymm3/m256

VEX.NDS.256.66.0F.WIG 62 /r

VPUNPCKLDQ ymm1, ymmZ2,
ymm3/m256

VEX.NDS.256.66.0F.WIG 6C /r

VPUNPCKLQDQ ymm1, ymmZ,
ymm3/m256

Op/
En

A

64/32
-bit
Mode
VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

VIV

CPUID
Feature
Flag

SSE2

SSE2

SSE2

SSE2

AVX

AVX

AVX

AVX

AVX2

AVX2

AVX2

AVX2

Description

Interleave low-order bytes from xmm1 and xmm2/m128 into
xmm1.

Interleave low-order words from xmm?1 and xmm2/m128 into
xmm1.

Interleave low-order doublewords from xmm1 and xmm2/m128
into xmm?1.

Interleave low-order quadword from xmm1 and xmm2/m128
into xmm1 register.

Interleave low-order bytes from xmmZ2 and xmm3/m128 into
xmm1.

Interleave low-order words from xmm2 and xmm3/m128 into
xmm1.

Interleave low-order doublewords from xmm2 and xmm3/m128
into xmm1.

Interleave low-order quadword from xmm2 and xmm3/m128
into xmm1 register.

Interleave low-order bytes from ymmZ2 and ymm3/m256 into
ymm1 register.

Interleave low-order words from ymmZ2 and ymm3/m256 into
ymm1 register.

Interleave low-order doublewords from ymmZ2 and ymm3/m256
into ymm1 register.

Interleave low-order quadword from ymm2 and ymm3/m256
into ymm1 register.

Ref. # 319433-014

5-165

INSTRUCTION SET REFERENCE

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Unpacks and interleaves the low-order data elements (bytes, words, doublewords, and quadwords) of the first
source operand and second source operand into the destination operand. (Figure 5-6 shows the unpack operation
for bytes in 64-bit operands.). The high-order data elements are ignored.

3(Y2|Y1|YO0 X7 | X6 | X5| X4 | X3 |X2|X1|X
Y3 |X3[Y2|X2|Y1|X1[Y0 |X0

DEST

SRC| Y7 |Y6 | Y5|Y4|Y 0 |DEST

Figure 5-6. 128-bit PUNPCKLBW Instruction Operation using 64-bit Operands

When the source data comes from a 128-bit memory operand an implementation may fetch only the appropriate
64 bits; however, alignment to a 16-byte boundary and normal segment checking will still be enforced.

The PUNPCKLBW instruction interleaves the low-order bytes of the source and destination operands, the
PUNPCKLWD instruction interleaves the low-order words of the source and destination operands, the PUNPCKLDQ
instruction interleaves the low order doubleword (or doublewords) of the source and destination operands, and the
PUNPCKLQDQ instruction interleaves the low-order quadwords of the source and destination operands.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (127:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first
source operand and destination operands are YMM registers.

255 310 255 31 0
SRC| Y7 |Y6 | Y5|Y4|Y3|Y2]|Y1]|YO X7 | X6 | X5| X4 | X3 [X2 | X1 | X0
55 0

DEST| Y5 | X5|Y4 | X4|Y1|X1|Y0 | X0

Figure 5-7. 256-bit VPUNPCKLDAQ Instruction Operation

5-166 Ref. #319433-014

INSTRUCTION SET REFERENCE

Operation

INTERLEAVE_BYTES_256b (SRC1, SRC2)
DEST[7:0] < SRC1[7:0]
DEST[15:8] < SRC2[7:0]
DEST[23:16] < SRC1[15:8]
DEST[31:24] < SRC2[15:8]
DEST[39:32] < SRC1[23:16]
DEST[47:40] < SRC2[23:16]
DEST[55:48] < SRC1[31:24]
DEST[63:56] <SRC2[31:24]
DEST[71:64] < SRC1[39:32]
DEST[79:72] < SRC2[39:32]
DEST[87:80] < SRC1[47:40]
DEST[95:88] < SRC2[47:40]
DEST[103:96] < SRC1[55:48]
DEST[111:104] & SRC2[55:48]
DEST[119:112] < SRC1[63:56]
DEST[127:120] < SRC2[63:56]
DEST[135:128] < SRC1[135:128]
DEST[143:136] < SRC2[135:128]
DEST[151:144] < SRC1[143:136]
DEST[159:152] < SRC2[143:136]
DEST[167:160] < SRC1[151:144]
DEST[175:168] < SRC2[151:144]
DEST[183:176] < SRC1[159:152]
DEST[191:184] <SRC2[159:152]
DEST[199:192] < SRC1[167:160]
DEST[207:200] < SRC2[167:160]
DEST[215:208] < SRC1[175:168]
DEST[223:216] < SRC2[175:168]
DEST[231:224] < SRC1[183:176]
DEST[239:232] < SRC2[183:176]
DEST[247:240] < SRC1[191:184]
DEST[255:248] < SRC2[191:184]

INTERLEAVE_BYTES (SRC1, SRC2)
DEST[7:0] & SRC1[7:0]
DEST[15:8] < SRC2[7:0]
DEST[23:16] & SRC2[15:8]
DEST[31:24] & SRC2[15:8]
DEST[39:32] < SRC1[23:16]
DEST[47:40] < SRC2[23:16]
DEST[55:48] < SRC1[31:24]
DEST[63:56] <SRC2[31:24]
DEST[71:64] < SRC1[39:32]
DEST[79:72] < SRC2[39:32]
DEST[87:80] < SRC1[47:40]
DEST[95:88] < SRC2[47:40]
DEST[103:96] < SRC1[55:48]
DEST[111:104] & SRC2[55:48]
DEST[119:112] <& SRC1[63:56]
DEST[127:120] < SRC2[63:56]

Ref. # 319433-014 5-167

INSTRUCTION SET REFERENCE

INTERLEAVE_WORDS_256b(SRC1, SRC2)
DEST[15:0] € SRC1[15:0]
DEST[31:16] € SRC2[15:0]
DEST[47:32] € SRC1[31:16]
DEST[63:48] < SRC2[31:16]
DEST[79:64] €< SRC1[47:32]
DEST[95:80] €« SRC2[47:32]
DEST[111:96] < SRC1[63:48]
DEST[127:112] € SRC2[63:48]
DEST[143:128] < SRC1[143:128]
DEST[159:144] < SRC2[143:128]
DEST[175:160] € SRC1[159:144]
DEST[191:176] € SRC2[159:144]
DEST[207:192] €« SRC1[175:160]
DEST[223:208] €< SRC2[175:160]
DEST[239:224] €< SRC1[191:176]
DEST[255:240] < SRC2[191:176]

INTERLEAVE_WORDS (SRC1, SRC2)
DEST[15:0] € SRC1[15:0]
DEST[31:16] € SRC2[15:0]
DEST[47:32] €< SRC1[31:16]
DEST[63:48] < SRC2[31:16]
DEST[79:64] < SRC1[47:32]
DEST[95:80] €« SRC2[47:32]
DEST[111:96] < SRC1[63:48]
DEST[127:112] € SRC2[63:48]

INTERLEAVE_DWORDS_256b(SRC1, SRC2)
DEST[31:0] < SRC1[31:0]

DEST[63:32] < SRC2[31:0]

DEST[95:64] < SRC1[63:32]

DEST[127:96] < SRC2[63:32]
DEST[159:128] < SRC1[159:128]
DEST[191:160] < SRC2[159:128]
DEST[223:192] €< SRC1[191:160]
DEST[255:224] < SRC2[191:160]

INTERLEAVE_DWORDS(SRC1, SRC2)
DEST[31:0] < SRC1[31:0]

DEST[63:32] < SRC2[31:0]

DEST[95:64] < SRC1[63:32]

DEST[127:96] < SRC2[63:32]
INTERLEAVE_QWORDS_256b(SRC1, SRC2)
DEST[63:0] < SRC1[63:0]

DEST[127:64] < SRC2[63:0]
DEST[191:128] < SRC1[191:128]
DEST[255:192] < SRC2[191:128]

INTERLEAVE_QWORDS(SRC1, SRC2)

DEST[63:0] < SRC1[63:0]
DEST[127:64] < SRC2[63:0]

5-168 Ref. #319433-014

INSTRUCTION SET REFERENCE

PUNPCKLBW
DEST[127:0] € INTERLEAVE_BYTES(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLBW (VEX.128 encoded instruction)
DEST[127:0] €< INTERLEAVE_BYTES(SRCT, SRC2)
DEST[255:127] « 0

VPUNPCKLBW (VEX.256 encoded instruction)
DEST[255:0] € INTERLEAVE_BYTES_128b(SRC1, SRC2)

PUNPCKLWD
DEST[127:0] € INTERLEAVE_WORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLWD (VEX.128 encoded instruction)
DEST[127:0] € INTERLEAVE_WORDS(SRCT, SRC2)
DEST[255:127] « 0

VPUNPCKLWD (VEX.256 encoded instruction)
DEST[255:0] < INTERLEAVE_WORDS(SRCT, SRC2)

PUNPCKLDQ
DEST[127:0] € INTERLEAVE_DWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLDQ (VEX.128 encoded instruction)
DEST[127:0] €< INTERLEAVE_DWORDS(SRCT, SRC2)
DEST[255:127] « 0

VPUNPCKLDQ (VEX.256 encoded instruction)
DEST[255:0] € INTERLEAVE_DWORDS(SRCT, SRC2)

PUNPCKLQDQ
DEST[127:0] € INTERLEAVE_QWORDS(DEST, SRC)
DEST[255:127] (Unmodified)

VPUNPCKLQDQ (VEX.128 encoded instruction)
DEST[127:0] < INTERLEAVE_QWORDS(SRC1, SRC2)
DEST[255:127] <« 0

VPUNPCKLQDQ (VEX.256 encoded instruction)
DEST[255:0] < INTERLEAVE_QWORDS(SRC1, SRC2)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PUNPCKLBW: __m128i _mm_unpacklo_epi8 (__m128i m1, _m128i m2)
VPUNPCKLBW: __m256i _mm256_unpacklo_epi8 (__m256i m1, __m256i m2)
(V)PUNPCKLWD: __m128i _mm_unpacklo_epi16 (__m128im1, __m128i m2)
VPUNPCKLWD: __m256i _mm256_unpacklo_epi16 (__m256i m1, _m256i m2)
(V)PUNPCKLDQ: __m128i _mm_unpacklo_epi32 (__m128im1,_m128i m2)

Ref. # 319433-014 5-169

INSTRUCTION SET REFERENCE

VPUNPCKLDQ: __m256i _mm256_unpacklo_epi32 (__m256i m1, __m256i m2)
(V)PUNPCKLQDQ: __m128i _mm_unpacklo_epi64 (__m128i m1,_m128i m2)
VPUNPCKLQDQ: __m256i _mm256_unpacklo_epi64 (__m256i m1, __m256i m2)

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 4

5-170 Ref. #319433-014

INSTRUCTION SET REFERENCE

PXOR — Exclusive Or

Opcode/ Op/ 64/3 CPUID Description
Instruction En 2-bit Feature
Mode Flag
66 OF EF /r A VIV SSEZ2 Bitwise XOR of xmm2/m128 and xmm1.

PXOR xmm1, xmm2/m128

VEX.NDS.128.66.0F.WIG EF /r B VIV AVX Bitwise XOR of xmm3/m128 and xmmZ2.
VPXOR xmm1, xmm2, xmm3/m128

VEX.NDS.256.66.0F.WIG EF /1 B VIV AVX2 Bitwise XOR of ymm3/m256 and ymmZ.
VPXOR ymm1, ymm2, ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
B ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs a bitwise logical XOR operation on the second source operand and the first source operand and stores the
result in the destination operand. Each bit of the result is set to 1 if the corresponding bits of the first and second
operands differ, otherwise it is set to O.

Legacy SSE instructions: In 64-bit mode using a REX prefix in the form of REX.R permits this instruction to access
additional registers (XMM8-XMM15).

128-bit Legacy SSE version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (255:128) of the corresponding YMM destination
register remain unchanged.

VEX.128 encoded version: The second source operand is an XMM register or a 128-bit memory location. The first
source operand and destination operands are XMM registers. Bits (127:128) of the corresponding YMM register are
zeroed.

VEX.256 encoded version: The second source operand is an YMM register or a 256-bit memory location. The first
source operand and destination operands are YMM registers.

Operation

VPXOR (VEX.256 encoded version)
DEST €« SRC1 XOR SRC2

VPXOR (VEX.128 encoded version)
DEST €« SRC1 XOR SRC2
DEST[VLMAX:128] € 0

PXOR (128-bit Legacy SSE version)
DEST <« DEST XOR SRC
DEST[VLMAX:128] (Unmodified)

Intel C/C++ Compiler Intrinsic Equivalent

(V)PXOR: __m128i_mm_xor_si128 (_m128ia,__m128ib)

VPXOR;: __m256i _mm256_xor_si256 (_m256i a, __m256i b)

Ref. # 319433-014 5-171

INSTRUCTION SET REFERENCE

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4

5-172

Ref. #319433-014

INSTRUCTION SET REFERENCE

MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
66 0F382A/r A VIV SSE4_1 Move double quadword from m128 to xmm1 using non-temporal hint
MOVNTDQA xmm1, m128 if WC memory type.
VEX.128.66.0F38.WIG 2A /t A VIV AVX Move double quadword from m128 to xmm using non-temporal hint if
VMOVNTDQA xmm1, m128 WC memory type.
VEX.256.66.0F38.WIG 2A /r A VIV AVX2 Move 256-bit data from m256 to ymm using non-temporal hint if WC
VMOVNTDQA ymm1, m256 memory type.

Instruction Operand Encoding1

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

MOVNTDQA loads a double quadword from the source operand (second operand) to the destination operand (first
operand) using a non-temporal hint if the memory source is WC (write combining) memory type. For WC memory
type, the nontemporal hint may be implemented by loading a temporary internal buffer with the equivalent of an
aligned cache line without filling this data to the cache. Any memory-type aliased lines in the cache will be snooped
and flushed. Subsequent MOVNTDQA reads to unread portions of the WC cache line will receive data from the
temporary internal buffer if data is available. The temporary internal buffer may be flushed by the processor at any
time for any reason, for example:

= A load operation other than a MOVNTDQA which references memory already resident in a temporary internal
buffer.

= A non-WC reference to memory already resident in a temporary internal buffer.

= Interleaving of reads and writes to a single temporary internal buffer.

= Repeated (V)MOVNTDQA loads of a particular 16-byte item in a streaming line.

= Certain micro-architectural conditions including resource shortages, detection of a mis-speculation condition,
and various fault conditions.

The non-temporal hint is implemented by using a write combining (WC) memory type protocol when reading the
data from memory. Using this protocol, the processor

does not read the data into the cache hierarchy, nor does it fetch the corresponding cache line from memory into
the cache hierarchy. The memory type of the region being read can override the non-temporal hint, if the memory
address specified for the non-temporal read is not a WC memory region. Information on non-temporal reads and
writes can be found in “Caching of Temporal vs. Non-Temporal Data” in Chapter 10 in the Intel® 64 and 1A-32
Architecture Software Developer’s Manual, Volume 3A.

Because the WC protocol uses a weakly-ordered memory consistency model, a fencing operation implemented
with a MFENCE instruction should be used in conjunction with MOVNTDQA instructions if multiple processors might
use different memory types for the referenced memory locations or to synchronize reads of a processor with writes
by other agents in the system. A processor’s implementation of the streaming load hint does not override the effec-
tive memory type, but the implementation of the hint is processor dependent. For example, a processor implemen-
tation may choose to ignore the hint and process the instruction as a normal MOVDQA for any memory type.
Alternatively, another implementation may optimize cache reads generated by MOVNTDQA on WB memory type to
reduce cache evictions.

The 128-bit (V)MOVNTDQA addresses must be 16-byte aligned or the instruction will cause a #GP.
The 256-bit VMOVNTDQA addresses must be 32-byte aligned or the instruction will cause a #GP.

1. ModRM.MOD = 011B required

Ref. # 319433-014 5-173

INSTRUCTION SET REFERENCE

Operation

MOVNTDQA (128bit- Legacy SSE form)
DEST « SRC
DEST[VLMAX:128] (Unmodified)

VMOVNTDQA (VEX.128 encoded form)
DEST ¢ SRC
DEST[VLMAX:128] < 0

VMOVNTDQA (VEX.256 encoded form)
DEST[255:0] € SRC[255:0]

Intel C/C++ Compiler Intrinsic Equivalent
(V)MOVNTDQA: __m128i _mm_stream_load_si128 (__m128i *p);
VMOVNTDQA: __m256i _mm256_stream_load_si256 (const __m256i *p);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Typel; additionally
#UD If VEX.vvvv 1= 1111B.

5-174 Ref. #319433-014

INSTRUCTION SET REFERENCE

VBROADCAST — Broadcast Floating-Point Data

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.128.66.0F38.W0 18 /r A VIV AVX Broadcast single-precision floating-point element in mem to four loca-
VBROADCASTSS xmm1, m32 tions in xmm1.
VEX.256.66.0F38.W0 18 /r A VIV AVX Broadcast single-precision floating-point element in mem to eight loca-
VBROADCASTSS ymm1, m32 tions in ymm1.
VEX.256.66.0F38.W0 19 /r A VIV AVX Broadcast double-precision floating-point element in mem to four loca-
VBROADCASTSD ymm1, m64 tions in ymm1.
VEX.128.66.0F38.W0 18/r A VIV AVX2 Broadcast the low single-precision floating-point element in the
VBROADCASTSS xmmT1, source operand to four locations in xmm1.
Xmm2

VEX.256.66.0F38.W0 18 /r A VIV AVX2 Broadcast low single-precision floating-point element in the source

VBROADCASTSS ymm1, operand to eight locations in ymm1.
Xmm2

VEX.256.66.0F38.W0 19 /r A VIV AVX2 Broadcast low double-precision floating-point element in the source

VBROADCASTSD ymm1, operand to four locations in ymm1.
Xmm2

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Take the low floating-point data element from the source operand (second operand) and broadcast to all elements
of the destination operand (first operand).

The destination operand is a YMM register. The source operand is an XMM register, only the low 32-bit or 64-bit
data element is used.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
An attempt to execute VBROADCASTSD encoded with VEX.L= 0 will cause an #UD exception.

Operation

VBROADCASTSS (128 bit version)
temp < SRC[31:0]

FORj<0TO3

DEST[31+j*32: j*32] €« temp
ENDFOR

DEST[VLMAX:128] « 0

VBROADCASTSS (VEX.256 encoded version)
temp < SRC[31:0]

FORj<0TO7

DEST[31+j*32: j*32] €« temp

ENDFOR

Ref. # 319433-014 5-175

INSTRUCTION SET REFERENCE

VBROADCASTSD (VEX.256 encoded version)
temp < SRC[63:0]

DEST[63:0] €« temp

DEST[127:64] € temp

DEST[191:128] < temp

DEST[255:192] €« temp

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTSS: __m128 _mm_broadcastss_ps(__m128);
VBROADCASTSS: __m256 _mm256_broadcastss_ps(__m128);
VBROADCASTSD: __m256d _mm256_broadcastsd_pd(__m128d);

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 6; additionally

#UD If VEX.L = O for VBROADCASTSD,
If VEX.W = 1.

5-176

Ref. #319433-014

INSTRUCTION SET REFERENCE

VBROADCASTF128/1128 — Broadcast 128-Bit Data

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.256.66.0F38.W0 1A/t A VIV AVX Broadcast 128 bits of floating-point data in mem to low and high 128-
VBROADCASTF128 ymm1, bits in ymm1.
m128

VEX.256.66.0F38.W0 5A /r A VIV AVX2 Broadcast 128 bits of integer data in mem to low and high 128-bits in

VBROADCASTI128 ymm1, ymm1.
m128

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

VBROADCASTF128 and VBROADCASTI128 load 128-bit data from the source operand (second operand) and
broadcast to the destination operand (first operand).

The destination operand is a YMM register. The source operand is 128-bit memory location. Register source encod-
ings for VBROADCASTF128 and VBROADCASTI128 are reserved and will #UD.

VBROADCASTF128 and VBROADCASTI128 are only supported as 256-bit wide versions.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Attempts to execute any VPBROADCAST™ instruction with VEX.W = 1 will cause #UD.

An attempt to execute VBROADCASTF128 or VBROADCASTI128 encoded with VEX.L= 0 will cause an #UD excep-
tion.

m128i X0

DEST| X0 X0

Figure 5-8. VBROADCASTI128 Operation

Operation

VBROADCASTF128/VBROADCASTI128
temp < SR(C[127:0]

DEST[127:0] €« temp

DEST[255:128] < temp

Ref. # 319433-014 5-177

INSTRUCTION SET REFERENCE

Intel C/C++ Compiler Intrinsic Equivalent

VBROADCASTF128: __m256 _mm256_broadcast_ps(__m128 *);
VBROADCASTF128: __m256d _mm256_broadcast_pd(__m128d *);
VBROADCASTI128: __m256i _mm256_broadcastsi128_si256(_m128i);

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 6; additionally

#UD If VEX.L=0,
If VEX.W = 1.

5-178

Ref. #319433-014

VPBLENDD — Blend Packed Dwords

INSTRUCTION SET REFERENCE

Opcode/
Instruction

VEX.NDS.128.66.0F3A.W0 02 /r ib

VPBLENDD xmm1, xmmZ2,
xmm3/m128, imm8

VEX.NDS.256.66.0F3A.W0 02 /r ib

VPBLENDD ymm1, ymm2,
ymm3/m256, imm8

Op/
En

A

A

64/32
-bit
Mode
VIV

VIV

CPUID
Feature
Flag

AVX2

AVX2

Description

Select dwords from xmm2 and xmm3/m128 from mask speci-
fied in imm8 and store the values into xmm1.

Select dwords from ymm?2 and ymm3/m256 from mask specified
in imm8 and store the values into ymm1.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Dword elements from the source operand (second operand) are conditionally written to the destination operand
(first operand) depending on bits in the immediate operand (third operand). The immediate bits (bits 7:0) form a
mask that determines whether the corresponding word in the destination is copied from the source. If a bit in the
mask, corresponding to a word, is “1", then the word is copied, else the word is unchanged.

VEX.128 encoded version: The second source operand can be an XMM register or a 128-bit memory location. The
first source and destination operands are XMM registers. Bits (255:128) of the corresponding YMM register are

zeroed.

VEX.256 encoded version: The first source operand is a YMM register. The second source operand is a YMM register
or a 256-bit memory location. The destination operand is a YMM register.

Operation

VPBLENDD (VEX.256 encoded version)
IF (imm8[0] == 1) THEN DEST[31:0] ¢ SRC2[31:0]

ELSE DEST[31:0] < SRC1[31:0]

IF (imm8[1] == 1) THEN DEST[63:32] < SRC2[63:32]

ELSE DEST[63:32] < SRC1[63:32]

IF (imm8[2] == 1) THEN DEST[95:64] < SRC2[95:64]

ELSE DEST[95:64] €< SRC1[95:64]

IF (imm8[3] == 1) THEN DEST[127:96] & SRC2[127:96]
ELSE DEST[127:96] < SRC1[127:96]

IF (imm8[4] == 1) THEN DEST[159:128] < SRC2[159:128]
ELSE DEST[159:128] €< SRC1[159:128]
IF (imm8[5] == 1) THEN DEST[191:160] < SRC2[191:160]
ELSE DEST[191:160] €< SRC1[191:160]
IF (imm8[6] == 1) THEN DEST[223:192] < SRC2[223:192]
ELSE DEST[223:192] € SRC1[223:192]
IF (imm8[7] == 1) THEN DEST[255:224] & SRC2[255:224]
ELSE DEST[255:224] €< SRC1[255:224]

Ref. # 319433-014

5-179

INSTRUCTION SET REFERENCE

VPBLENDD (VEX.128 encoded version)

IF (imm8[0] == 1) THEN DEST[31:0] ¢ SRC2[31:0]
ELSE DEST[31:0] € SRC1[31:0]

IF (imm8[1] == 1) THEN DEST[63:32] € SRC2[63:32]
ELSE DEST[63:32] € SRC1[63:32]

IF (imm8[2] == 1) THEN DEST[95:64] < SRC2[95:64]
ELSE DEST[95:64] € SRC1[95:64]

IF (imm8[3] == 1) THEN DEST[127:96] < SRC2[127:96]
ELSE DEST[127:96] < SRC1[127:96]
DEST[VLMAX:128]1 < 0

Intel C/C++ Compiler Intrinsic Equivalent
VPBLENDD: __m128i _mm_blend_epi32 (_m128iv1, _m128iv2, const int mask)
VPBLENDD: __m256i _mm256_blend_epi32 (__m256i v1, _m256i v2, const int mask)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.

5-180

Ref. #319433-014

INSTRUCTION SET REFERENCE

VPBROADCAST — Broadcast Integer Data

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.128.66.0F38.W0 78 /r A VIV AVX2 Broadcast a byte integer in the source operand to sixteen locations in
VPBROADCASTB xmmT1, xmm1.
xmm2/m8

VEX.256.66.0F38.W0 78 /r A VIV AVX2 Broadcast a byte integer in the source operand to thirty-two locations

VPBROADCASTB ymmT1, in ymm1.
xmm2/m8

VEX.128.66.0F38.W0 79 /r A VIV AVX2 Broadcast a word integer in the source operand to eight locations in

VPBROADCASTW xmm1, xmm1.
xmm2/m16

VEX.256.66.0F38.W0 79 /r A VIV AVX2 Broadcast a word integer in the source operand to sixteen locations in

VPBROADCASTW ymm1, ymm1.
xmm2/m16

VEX.128.66.0F38.W0 58 /r A VIV AVX2 Broadcast a dword integer in the source operand to four locations in

VPBROADCASTD xmm1, xmm1.
xmm2/m32

VEX.256.66.0F38.W0 58 /r A VIV AVX2 Broadcast a dword integer in the source operand to eight locations in

VPBROADCASTD ymm1, ymm1.
xmmZ2/m32

VEX.128.66.0F38.W0 59 /r A VIV AVX2 Broadcast a qword element in mem to two locations in xmm1.
VPBROADCASTQ xmmT1,

xmm2/m64

VEX.256.66.0F38.W0 59 /r A VIV AVX2 Broadcast a qword element in mem to four locations in ymm1.

VPBROADCASTQ ymmT1,
xmm2/m64
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Load integer data from the source operand (second operand) and broadcast to all elements of the destination
operand (first operand).

The destination operand is a YMM register. The source operand is 8-bit, 16-bit 32-bit, 64-bit memory location or the
low 8-bit, 16-bit 32-bit, 64-bit data in an XMM register. VPBROADCASTB/D/W/Q also support XMM register as the
source operand.

VPBROADCASTB/W/D/Q is supported in both 128-bit and 256-bit wide versions.

Note: In VEX-encoded versions, VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
Attempts to execute any VPBROADCAST™ instruction with VEX.W = 1 will cause #UD.

Ref. # 319433-014 5-181

INSTRUCTION SET REFERENCE

DES

bEST o | o | o | o | xo | xo | xo | xo]

Figure 5-10. VPBROADCASTD Operation (128-bit version)

m64 X0

DEST| X0 | X0 | X0 | X0

Figure 5-11. VPBROADCASTQ Operation

Operation

VPBROADCASTB (VEX.128 encoded version)
temp € SR([7:0]

FORj < 0TO 15

DEST[7+)*8: j*8] €« temp

ENDFOR

DEST[VLMAX:128] € 0

5-182 Ref. #319433-014

VPBROADCASTB (VEX.256 encoded version)
temp < SRC[7:0]

FORj <« 0TO 31

DEST[7+j*8: j*8] < temp

ENDFOR

VPBROADCASTW (VEX.128 encoded version)
temp < SRC[15:0]

FORj«<0TO7

DEST[15+j*16:j*16] €« temp

ENDFOR

DEST[VLMAX:128] < 0

VPBROADCASTW (VEX.256 encoded version)
temp < SRC[15:0]

FORj«< 0TO 15

DEST[15+j*16:j*16] <« temp

ENDFOR

VPBROADCASTD (128 bit version)
temp < SRC[31:0]

FORj«<0TO3
DEST[31+j*32:j*32] <« temp
ENDFOR

DEST[VLMAX:128] €< 0

VPBROADCASTD (VEX.256 encoded version)
temp < SRC[31:0]

FORj«<0TO7

DEST[31+j*32:j*32] <« temp

ENDFOR

VPBROADCASTQ (VEX.128 encoded version)
temp < SRC[63:0]

DEST[63:0] &« temp

DEST[127:64] < temp

DEST[VLMAX:128] < 0O

VPBROADCASTQ (VEX.256 encoded version)
temp < SRC[63:0]

DEST[63:0] &« temp

DEST[127:64] < temp

DEST[191:128] < temp

DEST[255:192] < temp

Intel C/C++ Compiler Intrinsic Equivalent

VPBROADCASTB:

VPBROADCASTW:

VPBROADCASTD:
VPBROADCASTQ:
VPBROADCASTB:

Ref. # 319433-014

__m256i _mm256_broadcastb_epi8(_m128i);

__m256i _mm256_broadcastw_epi16(_m128i);

__m256i _mm256_broadcastd_epi32(_m128i);
__m256i _mm256_broadcastq_epi64(_m128i);

__m128i _mm_broadcastb_epi8(__m128i);

INSTRUCTION SET REFERENCE

5-183

INSTRUCTION SET REFERENCE

VPBROADCASTW: __m128i _mm_broadcastw_epi16(_m128i);
VVPBROADCASTD: __m128i _mm_broadcastd_epi32(_m128i);
VPBROADCASTQ: __m128i _mm_broadcastq_epi64(_m128i);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.W = 1.

5-184 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPERMD — Full Doublewords Element Permutation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.NDS.256.66.0F38W036/r A VIV AVX2 Permute doublewords in ymm3/m256 using indexes in ymmZ2 and
VPERMD ymm1, ymm2, store the result in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vwwv ModRM:r/m (r) NA
Description

Use the index values in each dword element of the first source operand (the second operand) to select a dword
element in the second source operand (the third operand), the resultant dword value from the second source
operand is copied to the destination operand (the first operand) in the corresponding position of the index element.
Note that this instruction permits a doubleword in the source operand to be copied to more than one doubleword
location in the destination operand.

An attempt to execute VPERMD encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMD (VEX.256 encoded version)

DEST[31:0] € (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0;
DEST[63:32] €« (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] €« (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] € (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] €« (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] € (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] € (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] < (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];

— — — ~—

Intel C/C++ Compiler Intrinsic Equivalent
VPERMD: _ m256i_mm256_permutevar8x32_epi32(_m256ia, __m256i offsets);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L = O for VPERMD,
If VEX.W = 1.

Ref. # 319433-014 5-185

INSTRUCTION SET REFERENCE

VPERMPD — Permute Double-Precision Floating-Point Elements

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.256.66.0F3A.W1 01 /rib A VIV AVX2 Permute double-precision floating-point elements in ymm2/m256
VPERMPD ymm1, ymm2/m256, using indexes in imm8 and store the result in ymm1.
imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Use two-bit index values in the immediate byte to select a double-precision floating-point element in the source
operand; the resultant data from the source operand is copied to the corresponding element of the destination
operand in the order of the index field. Note that this instruction permits a gqword in the source operand to be copied
to multiple location in the destination operand.

An attempt to execute VPERMPD encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMPD (VEX.256 encoded version)

DEST[63:0] € (SRC[255:0] >> (IMM8[1:0] * 64))[63:01;
DEST[127:64] €< (SRC[255:0] >> (IMMB8[3:2] * 64))[63:0];
DEST[191:128] < (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
DEST[255:192] < (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

VPERMPD: __m256d _mm256_permute4x64_pd(__m256d a, int control) ;

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L =0.

5-186 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPERMPS — Permute Single-Precision Floating-Point Elements

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.NDS.256.66.0F38W016/r A VIV AVX2 Permute single-precision floating-point elements in ymm3/m256
VPERMPS ymm1, ymm2, using indexes in ymmZ2 and store the result in ymm1.
ymm3/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvvv ModRM:r/m (r) NA
Description

Use the index values in each dword element of the first source operand (the second operand) to select a single-
precision floating-point element in the second source operand (the third operand), the resultant data from the
second source operand is copied to the destination operand (the first operand) in the corresponding position of the
index element. Note that this instruction permits a doubleword in the source operand to be copied to more than
one doubleword location in the destination operand.

An attempt to execute VPERMPS encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMPS (VEX.256 encoded version)

DEST[31:0] € (SRC2[255:0] >> (SRC1[2:0] * 32))[31:0];
DEST[63:32] € (SRC2[255:0] >> (SRC1[34:32] * 32))[31:0];
DEST[95:64] € (SRC2[255:0] >> (SRC1[66:64] * 32))[31:0];
DEST[127:96] €< (SRC2[255:0] >> (SRC1[98:96] * 32))[31:0];
DEST[159:128] <« (SRC2[255:0] >> (SRC1[130:128] * 32))[31:0];
DEST[191:160] €« (SRC2[255:0] >> (SRC1[162:160] * 32))[31:0];
DEST[223:192] < (SRC2[255:0] >> (SRC1[194:192] * 32))[31:0];
DEST[255:224] € (SRC2[255:0] >> (SRC1[226:224] * 32))[31:0];

— — — ~—

Intel C/C++ Compiler Intrinsic Equivalent
VPERMPS: __m256i _mm256_permutevar8x32_ps(__m256 a, __m256i offsets)

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L =0,
If VEX.W = 1.

Ref. # 319433-014 5-187

INSTRUCTION SET REFERENCE

VPERMQ — Qwords Element Permutation

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.256.66.0F3A.W1 00 /rib A VIV AVX2 Permute qwords in ymm2/m256 using indexes in imm8 and store
VPERMQ ymm1, ymm2/m256, the result in ymm1.
imm3

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Use two-bit index values in the immediate byte to select a qword element in the source operand, the resultant
gword value from the source operand is copied to the corresponding element of the destination operand in the
order of the index field. Note that this instruction permits a qword in the source operand to be copied to multiple
locations in the destination operand.

An attempt to execute VPERMQ encoded with VEX.L= 0 will cause an #UD exception.

Operation

VPERMQ (VEX.256 encoded version)

DEST[63:0] € (SRC[255:0] >> (IMM8[1:0] * 64))[63:0];
DEST[127:64] €« (SRC[255:0] >> (IMM8[3:2] * 64))[63:0];
DEST[191:128] < (SRC[255:0] >> (IMM8[5:4] * 64))[63:0];
DEST[255:192] € (SRC[255:0] >> (IMM8[7:6] * 64))[63:0];

Intel C/C++ Compiler Intrinsic Equivalent

VPERMQ: __m256i _mm256_permute4x64_epi64(__m256i g, int control)

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 4; additionally
#UD If VEX.L =0.

5-188 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPERMZ21128 — Permute Integer Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.NDS.256.66.0F3AW046/rib A VIV AVX2 Permute 128-bit integer data in ymm2 and ymm3/mem using
VPERM21128 ymm1, ymm2, controls from imm8 and store result in ymm1.

ymm3/m256, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Permute 128 bit integer data from the first source operand (second operand) and second source operand (third
operand) using bits in the 8-bit immediate and store results in the destination operand (first operand). The first
source operand is a YMM register, the second source operand is a YMM register or a 256-bit memory location, and

the destination operand is a YMM register.

SRC? Y1 | A |

SRC| X1 | X0 |

DEST| X0, X1, YO, or Y1 X0, X1, YO, or Y1

Figure 5-12. VPERM21128 Operation

Imm8[1:0] select the source for the first destination 128-bit field, imm8[5:4] select the source for the second
destination field. If imm8[3] is set, the low 128-bit field is zeroed. If imm8[7] is set, the high 128-bit field is

zeroed.
VEX.L must be 1, otherwise the instruction will #UD.

Ref. # 319433-014 5-189

INSTRUCTION SET REFERENCE

Operation

VPERM2I128

CASE IMM8[1:0] of

0: DEST[127:0] € SRC1[127:0]

1: DEST[127:0] € SRC1[255:128]

2: DEST[127:0] € SRC2[127:0]

3: DEST[127:0] € SRC2[255:128]
ESAC

CASE IMM8[5:4] of

0: DEST[255:128] €« SRC1[127:0]

1: DEST[255:128] € SRC1[255:128]
2: DEST[255:128] € SRC2[127:0]

3: DEST[255:128] € SRC2[255:128]
ESAC

IF (imm8[3])

DEST[127:0] €« O

Fl

IF (mm8[7])
DEST[255:128] < 0
Al

Intel C/C++ Compiler Intrinsic Equivalent

VPERMZ2I128: __m256i _mm256_permute2x128_si256 (__m256ia, __m256i b, int control)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L =0,

If VEX.W = 1.

5-190

Ref. #319433-014

INSTRUCTION SET REFERENCE

VEXTRACTI128 — Extract packed Integer Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Modet Flag
VEX.256.66.0F3AW039/rib A VIV AVX2 Extract 128 bits of integer data from ymm2 and store results in
VEXTRACTI128 xmm1/mem.

xmm1/m128, ymmZ, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (w) ModRM:reg (r) NA NA
Description

Extracts 128-bits of packed integer values from the source operand (second operand) at a 128-bit offset from
imm8[0] into the destination operand (first operand). The destination may be either an XMM register or a 128-bit
memory location.

VEX.vvvv is reserved and must be 1111b otherwise instructions will #UD.
The high 7 bits of the immediate are ignored.
An attempt to execute VEXTRACTI128 encoded with VEX.L= 0 will cause an #UD exception.

Operation

VEXTRACTI128 (memory destination form)
CASE (imm8[0]) OF

0: DEST[127:0] € SRC1[127:0]

1. DEST[127:0] € SRC1[255:128]
ESAC.

VEXTRACTI128 (register destination form)
CASE (imm8[0]) OF
0: DEST[127:0] € SRC1[127:0]
1. DEST[127:0] € SRC1[255:128]
ESAC.
DEST[VLMAX:128] <« 0

Intel C/C++ Compiler Intrinsic Equivalent
VEXTRACTIT28: __m128i_mm256_extracti128_si256(__m256i 3, int offset);

SIMD Floating-Point Exceptions

None

Other Exceptions

See Exceptions Type 6; additionally

#UD IF VEX.L =0,
If VEX.W = 1.

Ref. # 319433-014 5-191

INSTRUCTION SET REFERENCE

VINSERTI128 — Insert Packed Integer Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.NDS.256.66.0F3AW038/rib A VIV AVX2 Insert 128-bits of integer data from xmm3/mem and the remain-
VINSERTI128 ymm1, ymm2, ing values from ymmZ into ymm1

xmm3/m128, imm8

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Performs an insertion of 128-bits of packed integer data from the second source operand (third operand) into an

the destination operand (first operand) at a 128-bit offset from imm8[0]. The remaining portions of the destination
are written by the corresponding fields of the first source operand (second operand). The second source operand

can be either an XMM register or a 128-bit memory location.

The high 7 bits of the immediate are ignhored.
VEX.L must be 1; an attempt to execute this instruction with VEX.L=0 will cause #UD.

Operation

VINSERTI128
TEMP[255:0] < SRC1[255:0]
CASE (imm8[0]) OF

0: TEMP[127:0] <SRC2[127:0]

1: TEMP[255:128] < SRC2[127:0]
ESAC
DEST < TEMP

Intel C/C++ Compiler Intrinsic Equivalent
VINSERTI128: __m256i _mm256_inserti128_si256 (__m256ia, __m128ib, int offset);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 6; additionally
#UD If VEX.L =0,

If VEX.W = 1.

5-192 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPMASKMOV — Conditional SIMD Integer Packed Loads and Stores

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.NDS.128.66.0F38W08C/r A VIV AVX2 Conditionally load dword values from m128 using mask in xmm2
VPMASKMOVD xmm1, xmm2, and store in xmm1.
m128

VEX.NDS.256.66.0F38W08C/r A VIV AVX2 Conditionally load dword values from m256 using mask in ymm2

VPMASKMOVD ymm1, ymm2, and store in ymm1.
m256

VEX.NDS.128.66.0F38W18C/r A VIV AVX2 Conditionally load qword values from m128 using mask in xmm2

VPMASKMOVQ xmm1, xmm2, and store in xmm1.
m128

VEX.NDS.256.66.0F38W18C/r A VIV AVX2 Conditionally load qword values from m256 using mask in ymm?2

VPMASKMOVQ ymm1, ymm2, and store in ymm1.
m256

VEX.NDS.128.66.0F38W08E/r B VIV AVX2 Conditionally store dword values from xmm2 using mask in xmm1.

VPMASKMOVD m128, xmm1,
XxmmZ2

VEX.NDS.256.66.0F38WO8E/r B VIV AVX2 Conditionally store dword values from ymmZ2 using mask in ymm1.

VPMASKMOVD m256, ymm1,
ymmZ2

VEX.NDS.128.66.0F38W18E/r B VIV AVX2 Conditionally store qword values from xmmZ2 using mask in xmm1.

VPMASKMOVQ m128, xmm1,
XxmmZ2

VEX.NDS.256.66.0F38W18E/r B VIV AVX2 Conditionally store qword values from ymmZ2 using mask in ymm1.
VPMASKMOVQ m256, ymm1,

ymmZ2
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vwwv ModRM:r/m (r) NA
B ModRM:r/m (w) VEX.vvwv ModRM:reg (r) NA
Description

Conditionally moves packed data elements from the second source operand into the corresponding data element
of the destination operand, depending on the mask bits associated with each data element. The mask bits are
specified in the first source operand.

The mask bit for each data element is the most significant bit of that element in the first source operand. If a mask
is 1, the corresponding data element is copied from the second source operand to the destination operand. If the
mask is O, the corresponding data element is set to zero in the load form of these instructions, and unmaodified in
the store form.

Ref. # 319433-014 5-193

INSTRUCTION SET REFERENCE

The second source operand is a memory address for the load form of these instructions. The destination operand is
a memory address for the store form of these instructions. The other operands are either XMM registers (for
VEX.128 version) or YMM registers (for VEX.256 version).

Faults occur only due to mask-bit required memory accesses that caused the faults. Faults will not occur due to
referencing any memory location if the corresponding mask bit for that memory location is 0. For example, no
faults will be detected if the mask bits are all zero.

Unlike previous MASKMOV instructions (MASKMOVQ and MASKMOVDQU), a nontemporal hint is not applied to
these instructions.

Instruction behavior on alignment check reporting with mask bits of less than all 1s are the same as with mask bits
of all 1s.

VMASKMOV should not be used to access memory mapped 1/0 as the ordering of the individual loads or stores it
does is implementation specific.

In cases where mask bits indicate data should not be loaded or stored paging A and D bits will be set in an imple-
mentation dependent way. However, A and D bits are always set for pages where data is actually loaded/stored.

Note: for load forms, the first source (the mask) is encoded in VEX.vvvv; the second source is encoded in rm_field,
and the destination register is encoded in reg_field.

Note: for store forms, the first source (the mask) is encoded in VEX.vvvv; the second source register is encoded in
reg_field, and the destination memory location is encoded in rm_field.

Operation

VPMASKMOVD - 256-bit load

DEST[31:0] < IF (SRC1[31]) Load_32(mem) ELSE O
DEST[63:32] < IF (SRC1[63]) Load_32(mem + 4) ELSE O
DEST[95:64] < IF (SRC1[95]) Load_32(mem + 8) ELSE O
DEST[127:96] < IF (SRC1[127]) Load_32(mem + 12) ELSE O
DEST[159:128] < IF (SRC1[159]) Load_32(mem + 16) ELSE O
DEST[191:160] < IF (SRC1[191]) Load_32(mem + 20) ELSE O
DEST[223:192] < IF (SRC1[223]) Load_32(mem + 24) ELSE O
DEST[255:224] < IF (SRC1[255]) Load_32(mem + 28) ELSE O

VPMASKMOVD -128-bit load

DEST[31:0] < IF (SRC1[31]) Load_32(mem) ELSE O
DEST[63:32] < IF (SRC1[63]) Load_32(mem + 4) ELSE O
DEST[95:64] < IF (SRC1[95]) Load_32(mem + 8) ELSE O
DEST[127:97] <« IF (SRC1[127]) Load_32(mem + 12) ELSE O
DEST[VLMAX:128] €« O

VPMASKMOVQ - 256-bit load

DEST[63:0] < IF (SRC1[63]) Load_64(mem) ELSE O
DEST[127:64] <« IF (SRC1[127]) Load_64(mem + 8) ELSE O
DEST[195:128] < IF (SRC1[191]) Load_64(mem + 16) ELSE O
DEST[255:196] < IF (SRC1[255]) Load_64(mem + 24) ELSE O

VPMASKMOVQ - 128-bit load

DEST[63:0] < IF (SRC1[63]) Load_64(mem) ELSE O
DEST[127:64] < IF (SRC1[127]) Load_64(mem + 16) ELSE O
DEST[VLMAX:128] <« O

5-194 Ref. #319433-014

VPMASKMOVD - 256-bit store

IF (SRC1[31]) DEST[31:0] € SRC2[31:0]

IF (SRC1[63]) DEST[63:32] < SRC2[63:32]

IF (SRC1[95]) DEST[95:64] < SRC2[95:64]

IF (SRC1[127]) DEST[127:96] & SRC2[127:96]

IF (SRC1[159]) DEST[159:128] <SRC2[159:128]
IF (SRC1[191]) DEST[191:160] < SRC2[191:160]
IF (SRC1[223]) DEST[223:192] €< SRC2[223:192]
IF (SRC1[255]) DEST[255:224] € SRC2[255:224]

VPMASKMOVD - 128-bit store

IF (SRC1[31]) DEST[31:0] € SRC2[31:0]

IF (SRC1[63]) DEST[63:32] & SRC2[63:32]

IF (SRC1[95]) DEST[95:64] < SRC2[95:64]

IF (SRC1[127]) DEST[127:96] < SRC2[127:96]

VPMASKMOVQ - 256-bit store

IF (SRC1[63]) DEST[63:0] < SRC2[63:0]

IF (SRC1[127]) DEST[127:64] <SRC2[127:64]

IF (SRC1[191]) DEST[191:128] €< SRC2[191:128]
IF (SRC1[255]) DEST[255:192] €< SRC2[255:192]

VPMASKMOVQ - 128-bit store
IF (SRC1[63]) DEST[63:0] < SRC2[63:0]
IF (SRC1[127]) DEST[127:64] <SRC2[127:64]

Intel C/C++ Compiler Intrinsic Equivalent

VPMASKMOVD: __m256i _mm256_maskload_epi32(int const *a, __m256i mask)
VPMASKMOVD: void _mm256_maskstore_epi32(int *a, __m256i mask, __m256i b)
VPMASKMOVQ: __m256i_mm256_maskload_epi64(__int64 const *a,
VPMASKMOVQ: void _mm256_maskstore_epi64(__int64 *a, __m256i mask, __m256d b);
VPMASKMOVD: __m128i_mm_maskload_epi32(int const *a, __m128i mask)
VPMASKMOVD: void _mm_maskstore_epi32(int *a,
VPMASKMOVQ: __m128i _mm_maskload_epi64(__int cont *3, __m128i mask);
VPMASKMOVQ: void _mm_maskstore_epi64(__int64 *a, __m128i mask, __m128ib);

SIMD Floating-Point Exceptions
None

Other Exceptions

See Exceptions Type 6 (No AC# reported for any mask bit combinations).

Ref. # 319433-014

m256i mask);

INSTRUCTION SET REFERENCE

5-195

INSTRUCTION SET REFERENCE

VPSLLVD/VPSLLVQ — Variable Bit Shift Left Logical

Opcode/
Instruction

VEX.NDS.128.66.0F38.W0 47 /r

VPSLLYD xmm1, xmmZ,
xmm3/m128

VEX.NDS.128.66.0F38.W1 47 /r

VPSLLYQ xmm1, xmm2,
xmm3/m128

VEX.NDS.256.66.0F38.W0 47 /r

VPSLLVD ymm1, ymmZ2,
ymm3/m256

VEX.NDS.256.66.0F38.W1 47 /r
VPSLLVQ ymm1, ymm2,

Op/
En

A

64/32 CPUID
-bit Feature
Mode Flag
VIV AVX2
VIV AVX2
VIV AVX2
VIV AVX2

Description

Shift bits in doublewords in xmmz2 left by amount specified in the
corresponding element of xmm3/m128 while shifting in Os.

Shift bits in quadwords in xmm?2 left by amount specified in the
corresponding element of xmm3/m128 while shifting in Os.

Shift bits in doublewords in ymm?2 left by amount specified in the
corresponding element of ymm3/m256 while shifting in Os.

Shift bits in quadwords in ymm?2 left by amount specified in the
corresponding element of ymm3/m256 while shifting in Os.

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv ModRM:r/m (r) NA
Description

Shifts the bits in the individual data elements (doublewords, or quadword) in the first source operand to the left by
the count value of respective data elements in the second source operand. As the bits in the data elements are
shifted left, the empty low-order bits are cleared (set to 0).

The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 31 (for double-
words), or 63 (for a quadword), then the destination data element are written with 0.

VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be
either an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 256-bit memory location.

Operation

VPSLLVD (VEX.128 version)
COUNT_O € SRC2[31:0]

(* Repeat Each COUNT_ for the 2nd through 4th dwords of SRC2*)

COUNT_3 <« SRC2[127: 96];
IF COUNT_O < 32 THEN

DEST[31:0] < ZeroExtend(SRC1[31:0] << COUNT_O);

ELSE
DEST[31:0] < O;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 32 THEN

DEST[127:96] € ZeroExtend(SRC1[127:96] << COUNT_3);

ELSE
DEST[127:96] < O;
DEST[VLMAX:128] € O;

5-196

Ref. #319433-014

VPSLLVD (VEX.256 version)
COUNT_O « SRC2[31:0];
(* Repeat Each COUNT_ for the 2nd through 7th dwords of SRC2*)
COUNT_7 €« SRC2[255: 224];
IF COUNT_0 < 32 THEN
DEST[31:0] € ZeroExtend(SRC1[31:0] << COUNT_0);
ELSE
DEST[31:0] €« C;
(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN
DEST[255:224] € ZeroExtend(SRC1[255:224] << COUNT_7);
ELSE
DEST[255:224] < O;

VPSLLVQ (VEX.128 version)

COUNT_O € SRC2[63: O];

COUNT_1 € SRC2[127 : 64];

IF COUNT_O < 64THEN

DEST[63:0] & ZeroExtend(SRC1[63:0] << COUNT_O);
ELSE

DEST[63:0] < O;

IF COUNT_1 < 64 THEN

DEST[127:64] & ZeroExtend(SRC1[127:64] << COUNT_1);
ELSE

DEST[127:96] < O;

DEST[VLMAX:128] € 0;

VPSLLVQ (VEX.256 version)
COUNT_O < SRC2[5: 0];
(* Repeat Each COUNT_ for the 2nd through 4th dwords of SRC2*)
COUNT_3 « SRC2[197:192];
IF COUNT_O < 64THEN
DEST[63:0] €& ZeroExtend(SRC1[63:0] << COUNT_0);
ELSE
DEST[63:0] <« O;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 64 THEN
DEST[255:192] € ZeroExtend(SRC1[255:192] << COUNT_3);
ELSE
DEST[255:192] € O;

Intel C/C++ Compiler Intrinsic Equivalent

VPSLLVD: __m256i _mm256_sllv_epi32 (__m256i m, _m256i count)
VPSLLVD: __m128i_mm_sllv_epi32 (__m128im, __m128i count)
VPSLLVQ: __m256i _mm256_sllv_epi64 (__m256i m, __m256i count)
VPSLLVQ: __m128i_mm_sllv_epi6b4 (__m128im, __m128i count)

SIMD Floating-Point Exceptions

None

Ref. # 319433-014

INSTRUCTION SET REFERENCE

5-197

INSTRUCTION SET REFERENCE

Other Exceptions
See Exceptions Type 4

5-198 Ref. #319433-014

INSTRUCTION SET REFERENCE

VPSRAVD — Variable Bit Shift Right Arithmetic

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.NDS.128.66.0F38W046/r A VIV AVX2 Shift bits in doublewords in xmmZ2 right by amount specified in the
VPSRAVD xmm1, xmm2, corresponding element of xmm3/m128 while shifting in the sign
xmm3/m128 bits.

VEX.NDS.256.66.0F38W046/r A VIV AVX2 Shift bits in doublewords in ymm2 right by amount specified in the
VPSRAVD ymm1, ymm2, corresponding element of ymm3/m256 while shifting in the sign

ymm3/m256 bits.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vwwv ModRM:r/m (r) NA
Description

Shifts the bits in the individual doubleword data elements in the first source operand to the right by the count value
of respective data elements in the second source operand. As the bits in each data element are shifted right, the
empty high-order bits are filled with the sign bit of the source element.

The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 31, then the
destination data element are filled with the corresponding sign bit of the source element.

VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be
either an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 256-bit memory location.

Operation

VPSRAVD (VEX.128 version)
COUNT_O « SRC2[31: 0]
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 €« SRC2[127:112];
IF COUNT_O < 32 THEN
DEST[31:0] €« SignExtend(SRC1[31:0] >> COUNT_O);
ELSE
For (i = 0 to 31) DESTI[i + 0] € (SRC1[31]);
Fl;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 32 THEN
DEST[127:96] €< SignExtend(SRC1[127:96] >> COUNT_3);
ELSE
For (i = 0 to 31) DESTIi + 96] < (SRC1[127]);
Fl;
DEST[VLMAX:128] <« 0;

Ref. # 319433-014 5-199

INSTRUCTION SET REFERENCE

VPSRAVD (VEX.256 version)
COUNT_O <« SRCZ2[31:0];
(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)
COUNT_7 €« SRC2[255: 224];
IF COUNT_O < 32 THEN
DEST[31:0] €< SignExtend(SRC1[31:0] >> COUNT_O);
ELSE
For (i = 0 to 31) DESTIi + 0] €« (SRC1[31]);
Fl;
(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN
DEST[255:224] < SignExtend(SRC1[255:224] >> COUNT_7);
ELSE
For (i = 0 to 31) DESTIi + 224] < (SRC1[255]);
Fl;

Intel C/C++ Compiler Intrinsic Equivalent
VPSRAVD: __m256i _mm256_srav_epi32 (__m256i m, __m256i count)
VPSRAVD: __m128i _mm_srav_epi32 (__m128im, _m128i count)

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 4; additionally
#UD If VEX.W = 1.

5-200

Ref. #319433-014

INSTRUCTION SET REFERENCE

VPSRLVD/VPSRLVQ — Variable Bit Shift Right Logical

Opcode/
Instruction

VEX.NDS.128.66.0F38.W0 45 /r

VPSRLVD xmm1, xmm2,
xmm3/m128

VEX.NDS.128.66.0F38.W1 45 /r

VPSRLVQ xmm1, xmmZ2,
xmm3/m128

VEX.NDS.256.66.0F38.W0 45 /r

VPSRLVD ymm1, ymmZ,
ymm3/m256

VEX.NDS.256.66.0F38.W1 45 /r
VPSRLVQ ymm1, ymm2,

Op/
EN

A

64/32 CPUID
-bit Feature
Mode Flag
VIV AVX2
VIV AVX2
VIV AVX2
VIV AVX2

Description

Shift bits in doublewords in xmmZ2 right by amount specified in the
corresponding element of xmm3/m128 while shifting in Os.

Shift bits in quadwords in xmm?2 right by amount specified in the
corresponding element of xmm3/m128 while shifting in Os.

Shift bits in doublewords in ymmZ2 right by amount specified in the
corresponding element of ymm3/m256 while shifting in Os.

Shift bits in quadwords in ymm?2 right by amount specified in the
corresponding element of ymm3/m256 while shifting in Os.

ymm3/m256
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vwwv ModRM:r/m (r) NA
Description

Shifts the bits in the individual data elements (doublewords, or quadword) in the first source operand to the right
by the count value of respective data elements in the second source operand. As the bits in the data elements are
shifted right, the empty high-order bits are cleared (set to 0).

The count values are specified individually in each data element of the second source operand. If the unsigned
integer value specified in the respective data element of the second source operand is greater than 31 (for double-
words), or 63 (for a quadword), then the destination data element are written with O.

VEX.128 encoded version: The destination and first source operands are XMM registers. The count operand can be
either an XMM register or a 128-bit memory location. Bits (255:128) of the corresponding YMM register are zeroed.

VEX.256 encoded version: The destination and first source operands are YMM registers. The count operand can be
either an YMM register or a 256-bit memory location.

Operation

VPSRLVD (VEX.128 version)
COUNT_O € SRC2[31:0]

(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)

COUNT_3 « SRCZ2[127 : 96];
IF COUNT_O < 32 THEN

DEST[31:0] & ZeroExtend(SRC1[31:0] >> COUNT_O);

ELSE
DEST[31:0] < O;

(* Repeat shift operation for 2nd through 4th dwords *)

IF COUNT_3 < 32 THEN

DEST[127:96] € ZeroExtend(SRC1[127:96] >> COUNT_3);

ELSE
DEST[127:96] < O;
DEST[VLMAX:128] € O;

Ref. # 319433-014

5-201

INSTRUCTION SET REFERENCE

VPSRLVD (VEX.256 version)
COUNT_O « SRC2[31:07;
(* Repeat Each COUNT_i for the 2nd through 7th dwords of SRC2*)
COUNT_7 € SRC2[255: 224];
IF COUNT_O < 32 THEN
DEST[31:0] €« ZerokExtend(SRC1[31:0] >> COUNT_O);
ELSE
DEST[31:0] « O;
(* Repeat shift operation for 2nd through 7th dwords *)
IF COUNT_7 < 32 THEN
DEST[255:224] € ZeroExtend(SRC1[255:224] >> COUNT_7);
ELSE
DEST[255:224] < O;

VPSRLVQ (VEX.128 version)

COUNT_O & SRC2[63: 0];

COUNT_1 € SRC2[127 : 64];

IF COUNT_O < 64 THEN

DEST[63:0] < ZeroExtend(SRC1[63:0] >> COUNT_O);
ELSE

DEST[63:0] < O;

IF COUNT_1 < 64THEN

DEST[127:64] & ZeroExtend(SRC1[127:64] >> COUNT_1);
ELSE

DEST[127:64] < O;

DEST[VLMAX:128] < 0;

VPSRLVQ (VEX.256 version)
COUNT_O « SRC2[63:0];
(* Repeat Each COUNT_i for the 2nd through 4th dwords of SRC2*)
COUNT_3 « SRC2[255:192];
IF COUNT_O < 64 THEN
DEST[63:0] ¢« ZerokExtend(SRC1[63:0] >> COUNT_O);
ELSE
DEST[63:0] <« O;
(* Repeat shift operation for 2nd through 4th dwords *)
IF COUNT_3 < 64THEN
DEST[255:192] € ZeroExtend(SRC1[255:192] >> COUNT_3);
ELSE
DEST[255:192] < O;

Intel C/C++ Compiler Intrinsic Equivalent

VPSRLVD: __m256i_mm256_srlv_epi32 (__m256i m, __m256i count);
VPSRLVD: __m128i _mm_srlv_epi32 (__m128i m, _m128i count);
VPSRLVQ: _m256i_mm256_srlv_epi64 (__m256i m, __m256i count);

VPSRLVQ: __m128i_mm_srlv_epi64 (__m128i m, _m128i count);

SIMD Floating-Point Exceptions

None

5-202

Ref. #319433-014

INSTRUCTION SET REFERENCE

Other Exceptions
See Exceptions Type 4

Ref. # 319433-014 5-203

INSTRUCTION SET REFERENCE

VGATHERDPD/VGATHERQPD — Gather Packed DP FP Values Using Signed Dword/Qword Indices

Opcode/ Op/ 64/3 CPUID Description
Instruction En 2-bit Feature
Mode Flag
VEX.DDS.128.66.0F38.W1 92 /r A VIV AVX2 Using dword indices specified in vm32Xx, gather double-preci-
VGATHERDPD xmm1, vm32X, Xmm?2 sion FP values from memory conditioned on mask specified by

xmm2. Conditionally gathered elements are merged into xmm1.

VEX.DDS.128.66.0F38.W1 93 /r A VIV AVX2 Using qword indices specified in vm64x, gather double-preci-
VGATHERQPD xmm1, vm64x, xmm?2 sion FP values from memory conditioned on mask specified by
xmmZ. Conditionally gathered elements are merged into xmm1.

VEX.DDS.256.66.0F38.W1 92 /r A VIV AVX2 Using dword indices specified in vm32x, gather double-preci-
VGATHERDPD ymm1, vm32x, ymm2 sion FP values from memory conditioned on mask specified by
ymmZ2. Conditionally gathered elements are merged into ymm1.

VEX.DDS.256.66.0F38.W1 93 /r A VIV AVX2 Using gword indices specified in vm64y, gather double-preci-
VGATHERQPD ymm1, vm64y, ymm?2 sion FP values from memory conditioned on mask specified by
ymmZ2. Conditionally gathered elements are merged into ymm1.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base, VEX.vvvv (r, w) NA
VectorReg(R): VSIB:index

Description

The instruction conditionally loads up to 2 or 4 double-precision floating-point values from memory addresses
specified by the memory operand (the second operand) and using gword indices. The memory operand uses the
VSIB form of the SIB byte to specify a general purpose register operand as the common base, a vector register for
an array of indices relative to the base and a constant scale factor.

The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the

corresponding element of the destination register is left unchanged. The width of data element in the destination

register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.

Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 double-
precision floating-point values from the VSIB addressing memory operand, and updates the destination register.

This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask operand are partially updated; those elements that have been gathered are placed into the
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.

If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception
before gathering any elements.

VEX.128 version: The instruction will gather two double-precision floating-point values. For dword indices, only the
lower two indices in the vector index register are used.

VEX.256 version: The instruction will gather four double-precision floating-point values. For dword indices, only
the lower four indices in the vector index register are used.

5-204 Ref. #319433-014

INSTRUCTION SET REFERENCE

Note that:

If any pair of the index, mask, or destination registers are the same, this instruction results a #UD fault.

The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.

Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

This instruction does not perform AC checks, and so will never deliver an AC fault.
This instruction will cause a #UD if the address size attribute is 16-bit.

This instruction should not be used to access memory mapped 1/0 as the ordering of the individual loads it does
is implementation specific, and some implementations may use loads larger than the data element size or load
elements an indeterminate number of times.

The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address
bits are ignored.

Operation

DEST <« SRC1;

BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];

DISP: optional 1, 4 byte displacement;

MASK €« SRC3;

VGATHERDPD (VEX.128 version)
FORj<O0to1

i < j*64
IF MASK[63+i] THEN
MASK([i +63:i] € OXFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK]i +63:i] < O;
Fl;

ENDFOR
FORj€ Oto 1

k<j*32;
i €< j*64
DATA_ADDR <« BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN
DESTI[i +63:i] €« FETCH_64BITS(DATA_ADDRY); // a fault exits the instruction
FI;
MASKi +63:i] € O;

ENDFOR

MASK[VLMAX:128] €« 0;

DEST[VLMAX:128] < O;

(non-masked elements of the mask register have the content of respective element cleared)

Ref. # 319433-014 5-205

INSTRUCTION SET REFERENCE

VGATHERQPD (VEX.128 version)
FORj¢<0to1
i €j*64
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK[i +63:i] € 0;
Fl;
ENDFOR
FORj¢<0to1
i €j*64
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX 1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN
DESTIi +63:i] €« FETCH_64BITS(DATA_ADDR); // a fault exits this instruction
Fl;
MASK[i +63:i] € O;
ENDFOR
MASK[VLMAX:128] < 0;
DEST[VLMAX:128] € O;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPD (VEX.256 version)
FORj¢< Oto3
i €j*64
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK[i +63:i] € 0;
Fl;
ENDFOR
FORj¢« Oto3
i €j*64
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX 1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN
DESTIi +63:i] €« FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +63:i] € O;
ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERDPD (VEX.256 version)
FORj«<0to3
i €j*64
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASKTi +63:i] €< O;
FI;
ENDFOR
FORj«<0to3
k<j*32;
i €j*64
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

5-206 Ref. #319433-014

INSTRUCTION SET REFERENCE

DESTIi +63:i] €« FETCH_64BITS(DATA_ADDRY); // a fault exits the instruction
Fl;
MASK[i +63:i] €< O;
ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent
VGATHERDPD: __m128d _mm_i32gather_pd (double const * base, __m128iindex, const int scale);

VGATHERDPD: __m128d _mm_mask_i32gather_pd (__m128d src, double const * base, __m128iindex, __m128d mask, const int
scale);

VGATHERDPD: __m256d _mm256_i32gather_pd (double const * base, __m128i index, const int scale);

VGATHERDPD: __ m256d _mm256_mask_i32gather_pd (__m256d src, double const * base, __m128iindex,
scale);

m256d mask, const int

VGATHERQPD: __m128d _mm_i64gather_pd (double const * base, __m128iindex, const int scale);

VGATHERQPD: __m128d_mm_mask_i64gather_pd (__m128d src, double const * base, __m128i index, __m128d mask, const int
scale);

VGATHERQPD: __m256d_mm256_i64gather_pd (double const * base, __m256i index, const int scale);

VGATHERQPD: _ m256d_mm256_mask_i64gather_pd (__m256d src, double const * base,
scale);

m256iindex, __m256d mask, const int

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 12

Ref. # 319433-014 5-207

INSTRUCTION SET REFERENCE

VGATHERDPS/VGATHERQPS — Gather Packed SP FP values Using Signed Dword/Qword Indices

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.DDS.128.66.0F38.W0 92 /r A VIV AVX2 Using dword indices specified in vm32x, gather single-precision
VGATHERDPS xmm1, vm32x, xmm2 FP values from memory conditioned on mask specified by

xmm2. Conditionally gathered elements are merged into xmm1.

VEX.DDS.128.66.0F38.W0 93 /r A VIV AVX2 Using qword indices specified in vm64x, gather single-precision
VGATHERQPS xmm1, vm64x, xmm2 FP values from memory conditioned on mask specified by
xmmZ2. Conditionally gathered elements are merged into xmm1.

VEX.DDS.256.66.0F38.W0 92 /r A VIV AVX2 Using dword indices specified in vm3_2y, gather single-precision
VGATHERDPS ymm1, vm32y, ymm2 FP values from memory conditioned on mask specified by
ymmZ. Conditionally gathered elements are merged into ymm1.
VEX.DDS.256.66.0F38.W0 93 /r A VIV AVX2 Using qword indices specified in vm64y, gather single-precision
VGATHERQPS xmm1, vm64y, xmm2 FP values from memory conditioned on mask specified by

xmmZ2. Conditionally gathered elements are merged into xmm1.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base, VEX.vvvv (r, w) NA
VectorReg(R): VSIB:index

Description

The instruction conditionally loads up to 4 or 8 single-precision floating-point values from memory addresses spec-
ified by the memory operand (the second operand) and using dword indices. The memory operand uses the VSIB
form of the SIB byte to specify a general purpose register operand as the common base, a vector register for an
array of indices relative to the base and a constant scale factor.

The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the

corresponding element of the destination register is left unchanged. The width of data element in the destination

register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.

Using qword indices, the instruction conditionally loads up to 2 or 4 single-precision floating-point values from the
VSIB addressing memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits
of the destination register are zero’ed with gword indices.

This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask operand are partially updated; those elements that have been gathered are placed into the
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.

If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception
before gathering any elements.

VEX.128 version: For dword indices, the instruction will gather four single-precision floating-point values. For
gword indices, the instruction will gather two values and zeroes the upper 64 bits of the destination.

VEX.256 version: For dword indices, the instruction will gather eight single-precision floating-point values. For
gword indices, the instruction will gather four values and zeroes the upper 128 bits of the destination.

5-208 Ref. #319433-014

INSTRUCTION SET REFERENCE

Note that:

If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.

The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.

Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

This instruction does not perform AC checks, and so will never deliver an AC fault.
This instruction will cause a #UD if the address size attribute is 16-bit.

This instruction should not be used to access memory mapped 1/0 as the ordering of the individual loads it does
is implementation specific, and some implementations may use loads larger than the data element size or load
elements an indeterminate number of times.

The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address
bits are ignored.

Operation

DEST <« SRC1;

BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];

DISP: optional 1, 4 byte displacement;

MASK €« SRC3;

VGATHERDPS (VEX.128 version)
FORj< 0to3

i€<j*32
IF MASK[31+i] THEN
MASK(i +31:i] € OXFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] €« O;
Fl;

ENDFOR
MASK[VLMAX:128] < 0;
FORj< 0103

i€<j*32
DATA_ADDR <« BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] €« FETCH_32BITS(DATA_ADDRY); // a fault exits the instruction
FI;
MASK[i +31:i] €« O;

ENDFOR
DEST[VLMAX:128] € O;
(non-masked elements of the mask register have the content of respective element cleared)

Ref. # 319433-014 5-209

INSTRUCTION SET REFERENCE

VGATHERQPS (VEX.128 version)
FORj¢« Oto3
i€j*32
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] € 0;
Fl;
ENDFOR
MASK[VLMAX:128] € 0;
FORj¢<0to1
k < j*64;
i€j*32
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] €« FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +31:i] € 0O;
ENDFOR
MASK[127:64] < 0;
DEST[VLMAX:64] < O;
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERDPS (VEX.256 version)
FORj¢«< Oto7
i€j*32
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] € O;
Fl;
ENDFOR
FORj¢« Oto7
i€j*32
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] €« FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +31:i] € O;
ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VGATHERQPS (VEX.256 version)
FORj< Oto7
i€j*32;
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] €< O;
FI;
ENDFOR
FORj< Oto3
k<j*64;
i€j*32;

5-210 Ref. #319433-014

INSTRUCTION SET REFERENCE

DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] € FETCH_32BITS(DATA_ADDRY); // a fault exits the instruction
Fl;
MASK[i +31:i] €< O;
ENDFOR
MASK[VLMAX:128] € 0;
DEST[VLMAX:128] €« O;
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VGATHERDPS: __m128 _mm_i32gather_ps (float const * base, __m128i index, const int scale);

VGATHERDPS: __m128 _mm_mask_i32gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);
VGATHERDPS: __m256 _mm256_i32gather_ps (float const * base, __m256i index, const int scale);

VGATHERDPS: __m256 _mm256_mask_i32gather_ps (__m256 src, float const * base, __m256i index, __m256 mask, const int
scale);

VGATHERQPS: __m128 _mm_i64gather_ps (float const * base, __m128i index, const int scale);
VGATHERQPS: __m128 _mm_mask_i64gather_ps (__m128 src, float const * base, __m128i index, __m128 mask, const int scale);

VGATHERQPS: __m128 _mm256_i64gather_ps (float const * base, __m256i index, const int scale);

VGATHERQPS: __m128 _mm256_mask_i64gather_ps (__m128 src, float const * base, __m256i index, __m128 mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12

Ref. # 319433-014 5-211

INSTRUCTION SET REFERENCE

VPGATHERDD/VPGATHERQD — Gather Packed Dword Values Using Signed Dword/Qword
Indices

Opcode/ Op/ 64/32 CPUID Description
Instruction €n -bit Feature

Mode Flag
VEX.DDS.128.66.0F38.W0 90 /r A VIV AVX2 Using dword indices specified in vm32x, gather dword values
VPGATHERDD xmm1, vin32Xx, from memory conditioned on mask specified by xmm¢2. Condi-
XMM?2 tionally gathered elements are merged into xmm1.
VEX.DDS.128.66.0F38.W0 91 /r A VIV AVX2 Using qword indices specified in vm64Xx, gather dword values
VPGATHERQD xmm1, vim64x, from memory conditioned on mask specified by xmm¢2. Condi-
XMM?2 tionally gathered elements are merged into xmm1.
VEX.DDS.256.66.0F38.W0 90 /r A VIV AVX2 Using dword indices specified in vm32y, gather dword from
VPGATHERDD ymm1, vm32y, ymm?2 memory conditioned on mask specified by ymm¢Z. Conditionally

gathered elements are merged into ymm1.

VEX.DDS.256.66.0F38.W0 91 /r A VIV AVX2 Using qword indices specified in vm64y, gather dword values
VPGATHERQD xmm1, vm64y, from memory conditioned on mask specified by xmmZ2. Condi-
XMm2 tionally gathered elements are merged into xmm1.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base, VEX.vvvv (r, w) NA
VectorReg(R): VSIB:index

Description

The instruction conditionally loads up to 4 or 8 dword values from memory addresses specified by the memory
operand (the second operand) and using dword indices. The memory operand uses the VSIB form of the SIB byte
to specify a general purpose register operand as the common base, a vector register for an array of indices relative
to the base and a constant scale factor.

The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the

corresponding element of the destination register is left unchanged. The width of data element in the destination

register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.

Using qword indices, the instruction conditionally loads up to 2 or 4 dword values from the VSIB addressing
memory operand, and updates the lower half of the destination register. The upper 128 or 256 bits of the destina-
tion register are zero’ed with qword indices.

This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask operand are partially updated; those elements that have been gathered are placed into the
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.

If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception
before gathering any elements.

VEX.128 version: For dword indices, the instruction will gather four dword values. For qword indices, the instruc-
tion will gather two values and zeroes the upper 64 bits of the destination.

5-212 Ref. #319433-014

INSTRUCTION SET REFERENCE

VEX.256 version: For dword indices, the instruction will gather eight dword values. For qword indices, the instruc-
tion will gather four values and zeroes the upper 128 bits of the destination.

Note that:

If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.

The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.

Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

This instruction does not perform AC checks, and so will never deliver an AC fault.
This instruction will cause a #UD if the address size attribute is 16-bit.

This instruction should not be used to access memory mapped 1/0 as the ordering of the individual loads it does
is implementation specific, and some implementations may use loads larger than the data element size or load
elements an indeterminate number of times.

The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address
bits are ignored.

Operation

DEST €« SRC1;

BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];

DISP; optional 1, 4 byte displacement;

MASK €« SRC3;

VPGATHERDD (VEX.128 version)
FORj< 0to3

i€j*32;
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK(i +31:i] € O;
Fl;

ENDFOR
MASK[VLMAX:128] & O;
FORj< 0to3

i<j*32
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] € FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASKTi +31:i] € O;

ENDFOR
DEST[VLMAX:128] < 0;
(non-masked elements of the mask register have the content of respective element cleared)

Ref. # 319433-014 5-213

INSTRUCTION SET REFERENCE

VPGATHERQD (VEX.128 version)
FORj¢« Oto3
i€j*32
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] € 0;
Fl;
ENDFOR
MASK[VLMAX:128] € 0;
FORj¢<0to1
k < j*64;
i€j*32
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] €« FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +31:i] € 0O;
ENDFOR
MASK[127:64] < 0;
DEST[VLMAX:64] < O;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDD (VEX.256 version)
FORj¢«< Oto7
i€j*32
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] € O;
Fl;
ENDFOR
FORj¢« Oto7
i€j*32
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[i+31:i])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] €« FETCH_32BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +31:i] € O;
ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERQD (VEX.256 version)
FORj< Oto7
i€j*32;
IF MASK[31+i] THEN
MASK]i +31:i] € OxFFFFFFFF; // extend from most significant bit
ELSE
MASK[i +31:i] €< O;
FI;
ENDFOR
FORj< Oto3
k<j*64;
i€j*32;

5-214 Ref. #319433-014

INSTRUCTION SET REFERENCE

DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX1[k+63:k])*SCALE + DISP;
IF MASK[31+i] THEN
DESTIi +31:i] € FETCH_32BITS(DATA_ADDRY); // a fault exits the instruction
Fl;
MASK[i +31:i] €< O;
ENDFOR
MASK[VLMAX:128] € 0;
DEST[VLMAX:128] €« O;
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent

VPGATHERDD: __m128i_mm_i32gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERDD: __m128i_mm_mask_i32gather_epi32 (__m128i src, int const * base, __m128i index, __m128i mask, const int scale);
VPGATHERDD: __m256i _mm256_i32gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERDD: __mZ256i_mm256_mask_i32gather_epi32 (__m256i src, int const * base, __m256i index, __m256i mask, const int scale);

VPGATHERQD: __m128i _mm_i64gather_epi32 (int const * base, __m128i index, const int scale);

VPGATHERQD: __m128i_mm_mask_i64gather_epi32 (__m128i src, int const * base, __m128iindex, __m128i mask, const int scale);
VPGATHERQD: __m128i_mm256_i64gather_epi32 (int const * base, __m256i index, const int scale);

VPGATHERQD: __m128i_mm256_mask_i64gather_epi32 (__m128i src, int const * base, __m256i index, __m128i mask, const int
scale);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Exceptions Type 12

Ref. # 319433-014 5-215

INSTRUCTION SET REFERENCE

VPGATHERDQ/VPGATHERQQ — Gather Packed Qword Values Using Signed Dword/Qword
Indices

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38.W1 90 /r A VIV AVX2 Using dword indices specified in vm32x, gather qword values from
VPGATHERDQ xmm1, vm32X, memory conditioned on mask specified by xmmZ2. Conditionally
XMm?2 gathered elements are merged into xmm1.

VEX.DDS.128.66.0F38.W1 91 /r A VIV AVX2 Using qword indices specified in vm64x, gather gqword values from
VPGATHERQQ xmm1, vm64x, memory conditioned on mask specified by xmm¢2. Conditionally
XMm?2 gathered elements are merged into xmm?1.

VEX.DDS.256.66.0F38.W1 90 /r A VIV AVX2 Using dword indices specified in vm32x, gather qword values from
VPGATHERDQ ymm1, vm32Xx, memory conditioned on mask specified by ymmZ. Conditionally
ymm2 gathered elements are merged into ymm1.

VEX.DDS.256.66.0F38.W1 91 /r A VIV AVX2 Using qword indices specified in vm64y, gather qword values from
VPGATHERQQ ymm1, vm64y, memory conditioned on mask specified by ymm¢Z. Conditionally
ymm2 gathered elements are merged into ymm1.

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r,w) BaseReg (R): VSIB:base, VEX.vvwv (r, w) NA
VectorReg(R): VSIB:index

Description

The instruction conditionally loads up to 2 or 4 qword values from memory addresses specified by the memory
operand (the second operand) and using gword indices. The memory operand uses the VSIB form of the SIB byte
to specify a general purpose register operand as the common base, a vector register for an array of indices relative
to the base and a constant scale factor.

The mask operand (the third operand) specifies the conditional load operation from each memory address and the
corresponding update of each data element of the destination operand (the first operand). Conditionality is speci-
fied by the most significant bit of each data element of the mask register. If an element’s mask bit is not set, the

corresponding element of the destination register is left unchanged. The width of data element in the destination

register and mask register are identical. The entire mask register will be set to zero by this instruction unless the
instruction causes an exception.

Using dword indices in the lower half of the mask register, the instruction conditionally loads up to 2 or 4 qword
values from the VSIB addressing memory operand, and updates the destination register.

This instruction can be suspended by an exception if at least one element is already gathered (i.e., if the exception
is triggered by an element other than the rightmost one with its mask bit set). When this happens, the destination
register and the mask operand are partially updated; those elements that have been gathered are placed into the
destination register and have their mask bits set to zero. If any traps or interrupts are pending from already gath-
ered elements, they will be delivered in lieu of the exception; in this case, EFLAG.RF is set to one so an instruction
breakpoint is not re-triggered when the instruction is continued.

If the data size and index size are different, part of the destination register and part of the mask register do not
correspond to any elements being gathered. This instruction sets those parts to zero. It may do this to one or both
of those registers even if the instruction triggers an exception, and even if the instruction triggers the exception
before gathering any elements.

VEX.128 version: The instruction will gather two qword values. For dword indices, only the lower two indices in the
vector index register are used.

5-216 Ref. #319433-014

INSTRUCTION SET REFERENCE

VEX.256 version: The instruction will gather four gqword values. For dword indices, only the lower four indices in
the vector index register are used.

Note that:

If any pair of the index, mask, or destination registers are the same, this instruction results a UD fault.

The values may be read from memory in any order. Memory ordering with other instructions follows the Intel-
64 memory-ordering model.

Faults are delivered in a right-to-left manner. That is, if a fault is triggered by an element and delivered, all
elements closer to the LSB of the destination will be completed (and non-faulting). Individual elements closer
to the MSB may or may not be completed. If a given element triggers multiple faults, they are delivered in the
conventional order.

Elements may be gathered in any order, but faults must be delivered in a right-to-left order; thus, elements to
the left of a faulting one may be gathered before the fault is delivered. A given implementation of this
instruction is repeatable - given the same input values and architectural state, the same set of elements to the
left of the faulting one will be gathered.

This instruction does not perform AC checks, and so will never deliver an AC fault.
This instruction will cause a #UD if the address size attribute is 16-bit.

This instruction should not be used to access memory mapped 1/0 as the ordering of the individual loads it does
is implementation specific, and some implementations may use loads larger than the data element size or load
elements an indeterminate number of times.

The scaled index may require more bits to represent than the address bits used by the processor (e.g., in 32-
bit mode, if the scale is greater than one). In this case, the most significant bits beyond the number of address
bits are ignored.

Operation

DEST €« SRC1;

BASE_ADDR: base register encoded in VSIB addressing;
VINDEX: the vector index register encoded by VSIB addressing;
SCALE: scale factor encoded by SIB:[7:6];

DISP; optional 1, 4 byte displacement;

MASK €« SRC3;

VPGATHERDQ (VEX.128 version)
FORj< Oto 1

i €<j*64;
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK(i +63:i] < O;
Fl;

ENDFOR
FORj< Oto 1

k<j*32
i €j*64,
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN
DESTIi +63:i] €« FETCH_64BITS(DATA_ADDRY); // a fault exits the instruction
Fl;
MASK[i +63:i] €< O;

ENDFOR

MASK[VLMAX:128] < 0;

DEST[VLMAX:128] < 0;

(non-masked elements of the mask register have the content of respective element cleared)

Ref. # 319433-014 5-217

INSTRUCTION SET REFERENCE

VPGATHERQQ (VEX.128 version)
FORj¢<0to1
i €j*64
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK[i +63:i] € 0;
Fl;
ENDFOR
FORj¢<0to1
i €j*64;
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX 1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN
DESTIi +63:i] € FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +63:i] € 0;
ENDFOR
MASK[VLMAX:128] < 0;
DEST[VLMAX:128] € O;
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERQQ (VEX.256 version)
FORj¢< Oto3
i €j*64
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK[i +63:i] € 0;
Fl;
ENDFOR
FORj¢« Oto3
i €j*64
DATA_ADDR < BASE_ADDR + (SignExtend(VINDEX 1[i+63:i])*SCALE + DISP;
IF MASK[63+i] THEN
DESTIi +63:i] €« FETCH_64BITS(DATA_ADDR); // a fault exits the instruction
Fl;
MASK[i +63:i] € 0;
ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

VPGATHERDQ (VEX.256 version)
FORj< Oto3
i €j*64;
IF MASK[63+i] THEN
MASK]i +63:i] € OxFFFFFFFF_FFFFFFFF; // extend from most significant bit
ELSE
MASK[i +63:i] < 0;
FI;
ENDFOR
FORj< Oto3
k€<j*32;
i €j*64;
DATA_ADDR < BASE_ADDR + (Signextend(VINDEX1[k+31:k])*SCALE + DISP;
IF MASK[63+i] THEN

5-218 Ref. #319433-014

INSTRUCTION SET REFERENCE

DESTIi +63:i] €« FETCH_64BITS(DATA_ADDRY); // a fault exits the instruction
Fl;
MASK[i +63:i] €< O;
ENDFOR
(non-masked elements of the mask register have the content of respective element cleared)

Intel C/C++ Compiler Intrinsic Equivalent
VPGATHERDQ: __m128i_mm_i32gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERDQ: __m128i _mm_mask_i32gather_epi64 (__m128i src, int64 const * base, __m128iindex, __m128i mask, const int
scale);

VPGATHERDQ: __m256i _mm256_i32gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERDQ: _ m256i_mm256_mask_i32gather_epi64 (__m256i src, int64 const * base,
scale);

m128iindex, __ m256i mask, const int

VPGATHERQQ: __m128i_mm_i64gather_epi64 (int64 const * base, __m128i index, const int scale);

VPGATHERQQ: __m128i_mm_mask_i64gather_epi64 (__m128isrc, int64 const * base, __m128iindex, __m128i mask, const int
scale);

VPGATHERQQ: __m256i _mm256_i64gather_epi64 (int64 const * base, __m256i index, const int scale);

VPGATHERQQ: _ m256i_mm256_mask_i64gather_epi64 (__m256i src, int64 const * base,
scale);

m256i index, __m256i mask, const int

SIMD Floating-Point Exceptions
None

Other Exceptions
See Exceptions Type 12

Ref. # 319433-014 5-219

INSTRUCTION SET REFERENCE

5-220 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

CHAPTER 6
INSTRUCTION SET REFERENCE - FMA

6.1 FMA INSTRUCTION SET REFERENCE

This section describes FMA instructions in details. Conventions and notations of instruction format can be found in
Section 5.1.

Ref. # 319433-014 6-1

INSTRUCTION SET REFERENCE - FMA

VFMADD132PD/VFMADD213PD/VFMADD231PD — Fused Multiply-Add of Packed Double-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38W198/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VFMADD132PD xmm0, xmm1, and xmm2/mem, add to xmm1 and put result in xmmO.
xmm2/m128
VEX.DDS.128.66.0F38.W1 A8 A VIV FMA Multiply packed double-precision floating-point values from xmmO
Ir and xmm1, add to xmm2/mem and put result in xmmoO.
VFMADD213PD xmmO, xmm1,
xmm2/m128
VEX.DDS.128.66.0F38.W1 B8 A VIV FMA Multiply packed double-precision floating-point values from xmm1
Ir and xmm2/mem, add to xmmO and put result in xmmO.
VFMADD231PD xmmO, xmm1,
xmm2/m128
VEX.DDS.256.66.0F38W198/r A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFMADD132PD ymmO, ymm1, and ymm2/mem, add to ymm1 and put result in ymmoO.
ymm2/m256
VEX.DDS.256.66.0F38.W1 A8 A VIV FMA Multiply packed double-precision floating-point values from ymmO
Ir and ymm1, add to ymm2/mem and put result in ymmoO.
VFMADDZ213PD ymmO, ymmT1,
ymm2/m256
VEX.DDS.256.66.0F38.W1 B8 A VIV FMA Multiply packed double-precision floating-point values from ymm?1
Ir and ymm2/mem, add to ymmO and put result in ymmoO.
VFMADD231PD ymmO, ymm1,
ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a set of SIMD multiply-add computation on packed double-precision floating-point values using three
source operands and writes the multiply-add results in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.

VFMADD132PD: Multiplies the two or four packed double-precision floating-point values from the first source
operand to the two or four packed double-precision floating-point values in the third source operand, adds the infi-
nite precision intermediate result to the two or four packed double-precision floating-point values in the second
source operand, performs rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

VFMADD213PD: Multiplies the two or four packed double-precision floating-point values from the second source
operand to the two or four packed double-precision floating-point values in the first source operand, adds the infi-
nite precision intermediate result to the two or four packed double-precision floating-point values in the third
source operand, performs rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).

6-2 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFMADD231PD: Multiplies the two or four packed double-precision floating-point values from the second source to
the two or four packed double-precision floating-point values in the third source operand, adds the infinite preci-
sion intermediate result to the two or four packed double-precision floating-point values in the first source
operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to
the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).
VFMADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL = 4
Fl
Fori=0to MAXVL-1{
n = 64%;
DEST[n+63:n] € RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] + SRC2[n+63:n])
1
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« 0
Fl

VFMADD213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] € RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] + SRC3[n+63:n])
1
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« 0
Fl

VFMADDZ231PD DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL =4
Fl

Ref. # 319433-014 6-3

INSTRUCTION SET REFERENCE - FMA

For i =0 to MAXVL-1{
n = 64%;
DEST[n+63:n] € RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] + DEST[n+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] € 0
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PD: _ m128d_mm_fmadd_pd (_m128da,__m128db,__m128dc);
VFMADD213PD: __m128d _mm_fmadd_pd (__m128da,__m128db,_m128dc);
VFMADDZ231PD: __m128d _mm_fmadd_pd (__m128da,__m128db,__m128dc);
VFMADD132PD: __m256d_mm256_fmadd_pd (__m256da, __m256db,__m256d c);
VFMADD213PD: __m256d _mm256_fmadd_pd (__m256da, __ m256db, __m256d c);
VFMADDZ231PD: __m256d _mm256_fmadd_pd (__m256d a, __m256db, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

6-4 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFMADD132PS/VFMADD213PS/VFMADD231PS — Fused Multiply-Add of Packed Single-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38W098/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFMADD132PS xmmO, xmm1, and xmm2/mem, add to xmm1 and put result in xmmoO.
xmm2/m128
VEX.DDS.128.66.0F38W0A8/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFMADD213PS xmmO, xmm1, and xmm1, add to xmm2/mem and put result in xmmoO.
xmm2/m128
VEX.DDS.128.66.0F38W0B8/r A VIV FMA Multiply packed single-precision floating-point values from xmm1
VFMADD231PS xmmO, xmm1, and xmm2/mem, add to xmmO and put result in xmmoO.
xmm2/m128
VEX.DDS.256.66.0F38W098/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFMADD132PS ymmO, ymm1, and ymm2/mem, add to ymm1 and put result in ymmO.
ymm2/m256
VEX.DDS.256.66.0F38W0A8/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFMADD213PS ymmO, ymm1, and ymm1, add to ymm2/mem and put result in ymmO.
ymm2/m256
VEX.DDS.256.66.0F38.0 B8 /r A VIV FMA Multiply packed single-precision floating-point values from ymm1
VFMADD231PS ymmO, ymm1, and ymm2/mem, add to ymmO and put result in ymmO.
ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a set of SIMD multiply-add computation on packed single-precision floating-point values using three
source operands and writes the multiply-add results in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.

VFMADD132PS: Multiplies the four or eight packed single-precision floating-point values from the first source
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the infi-
nite precision intermediate result to the four or eight packed single-precision floating-point values in the second
source operand, performs rounding and stores the resulting four or eight packed single-precision floating-point
values to the destination operand (first source operand).

VFMADD213PS: Multiplies the four or eight packed single-precision floating-point values from the second source
operand to the four or eight packed single-precision floating-point values in the first source operand, adds the infi-
nite precision intermediate result to the four or eight packed single-precision floating-point values in the third
source operand, performs rounding and stores the resulting the four or eight packed single-precision floating-point
values to the destination operand (first source operand).

VFMADD231PS: Multiplies the four or eight packed single-precision floating-point values from the second source
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the infi-
nite precision intermediate result to the four or eight packed single-precision floating-point values in the first

Ref. # 319433-014 6-5

INSTRUCTION SET REFERENCE - FMA

source operand, performs rounding and stores the resulting four or eight packed single-precision floating-point
values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori =0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

VFMADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori=0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(SRC2[n+31:n]*DEST[n+31:n] + SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

VFMADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori = 0 to MAXVL-1 {
n = 32%;

6-6 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

DEST[n+31:n] € RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])
}
IF (VEX.128) THEN

DEST[VLMAX-1:128] € 0
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132PS: __m128 _mm_fmadd_ps(_m1283a,_m128b,__m128c);
VFMADD213PS: __m128_mm_fmadd_ps (__m128a,_m128b,_m128¢c);
VFMADDZ231PS: __m128_mm_fmadd_ps (__m128a,__m128b,__m128¢c);
VFMADD132PS: __m256 _mm256_fmadd_ps (__m2563,__m256b, __m256 c);
VFMADD213PS: __m256 _mm256_fmadd_ps (__m256 a3, __m256 b, __m256 c);
VFMADDZ231PS: __m256 _mm256_fmadd_ps (__m256a,__ m256 b, __ m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

Ref. # 319433-014 6-7

INSTRUCTION SET REFERENCE - FMA

VFMADD132SD/VFMADD213SD/VFMADD231SD — Fused Multiply-Add of Scalar Double-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO and
99 /r xmm2/mem, add to xmm1 and put result in xmmoO.
VFMADD132SD xmmO, xmm1,
xmm2/m64
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO and
A9 /r xmm1, add to xmm2/mem and put result in xmmO.
VFMADDZ213SD xmmO, xmm1,
xmm2/m64
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmm1 and
B9 /r xmmZ2/mem, add to xmmO and put result in xmmO.
VFMADDZ231SD xmmO, xmm1,
xmm2/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a SIMD multiply-add computation on the low packed double-precision floating-point values using three
source operands and writes the multiply-add result in the destination operand. The destination operand is also the
first source operand. The second operand must be a SIMD register. The third source operand can be a SIMD
register or a memory location.

VFMADD132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand, adds the infinite precision inter-
mediate result to the low packed double-precision floating-point values in the second source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).

VFMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand to
the low packed double-precision floating-point value in the first source operand, adds the infinite precision interme-
diate result to the low packed double-precision floating-point value in the third source operand, performs rounding
and stores the resulting packed double-precision floating-point value to the destination operand (first source
operand).

VFMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand, adds the infinite precision intermediate
result to the low packed double-precision floating-point value in the first source operand, performs rounding and
stores the resulting packed double-precision floating-point value to the destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

6-8 Ref. #319433-014

Operation

INSTRUCTION SET REFERENCE - FMA

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations

with infinite precision inputs and outputs (no rounding).

VFMADD132SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] & 0

VFMADD213SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] & 0

VFMADD231SD DEST, SRC2, SRC3
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] & 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SD: __m128d _mm_fmadd_sd (_m128da,__m128db,__m128dc);
VFMADD213SD: __m128d_mm_fmadd_sd (_m128da,_m128db,_m128dc),
VFMADD231SD: __m128d_mm_fmadd_sd (__m128da,__m128db,_m128dc);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014

6-9

INSTRUCTION SET REFERENCE - FMA

VFMADD132SS/VFMADD213SS/VFMADD231SS — Fused Multiply-Add of Scalar Single-Precision
Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
99 /r xmm2/mem, add to xmm1 and put result in xmmoO.
VFMADD132SS xmmO, xmm1,
xmm2/m32
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
A9 /r xmm1, add to xmmZ2/mem and put result in xmmO.
VFMADD213SS xmmO, xmm1,
xmm2/m32
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmm1 and
B9 /r xmmZ2/mem, add to xmmO and put result in xmmO.
VFMADDZ231SS xmmO, xmm1,
xmm2/m32

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a SIMD multiply-add computation on packed single-precision floating-point values using three source
operands and writes the multiply-add results in the destination operand. The destination operand is also the first
source operand. The second operand must be a SIMD register. The third source operand can be a SIMD register or
a memory location.

VFMADD132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the
low packed single-precision floating-point value in the third source operand, adds the infinite precision interme-
diate result to the low packed single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).

VFMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand, adds the infinite precision interme-
diate result to the low packed single-precision floating-point value in the third source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).

VFMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the third source operand, adds the infinite precision interme-
diate result to the low packed single-precision floating-point value in the first source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

6-10 Ref. #319433-014

Operation

INSTRUCTION SET REFERENCE - FMA

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations

with infinite precision inputs and outputs (no rounding).

VFMADD132SS DEST, SRC2, SRC3

DEST[31:0] € RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] + SRC2[31:0])
DEST[127:32] < DEST[127:32]

DEST[VLMAX-1:128] & 0

VFMADD213SS DEST, SRC2, SRC3

DEST[31:0] € RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] + SRC3[31:0])
DEST[127:32] & DEST[127:32]

DEST[VLMAX-1:128] < 0

VFMADD231SS DEST, SRC2, SRC3
DEST[31:0] < RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] + DEST[31:0])
DEST[127:32] < DEST[127:32]

DEST[VLMAX-1:128] < 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMADD132SS: __m128_mm_fmadd_ss(_m1283a,__m128b,__m128c);

VFMADD213SS: __m128_mm_fmadd_ss(_m128a,__m128b,__m128c);
VFMADD231SS: __m128_mm_fmadd_ss(__m1283a,__m128b,_m128c);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014

INSTRUCTION SET REFERENCE - FMA

VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD — Fused Multiply-Alternating
Add/Subtract of Packed Double-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38W196/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VFMADDSUB132PD xmmo0, and xmm2/mem, add/subtract elements in xmm1 and put result in
xmm1, xmm2/m128 xmmoO.

VEX.DDS.128.66.0F38.W1 A6 A VIV FMA Multiply packed double-precision floating-point values from xmmO
Ir and xmm1, add/subtract elements in xmm2/mem and put result in

VFMADDSUBZ213PD xmmO, xmmoO.
xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W1 B6 A VIV FMA Multiply packed double-precision floating-point values from xmm1

Ir and xmm2/mem, add/subtract elements in xmmO and put result in
VFMADDSUB231PD xmm0, xmmoO.

xmm1, xmm2/m128

VEX.DDS.256.66.0F38W196/r A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFMADDSUB132PD ymmO, and ymm2/mem, add/subtract elements in ymm1 and put result in
ymm1, ynm2/m256 ymmo.

VEX.DDS.256.66.0F38.W1 A6 A VIV FMA Multiply packed double-precision floating-point values from ymmO
Ir and ymm1, add/subtract elements in ymm2/mem and put result in
VFMADDSUB213PD ymmoO, ymmoO.

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 B6 A VIV FMA Multiply packed double-precision floating-point values from ymm?1
Ir and ymm2/mem, add/subtract elements in ymmO and put result in
VFMADDSUB231PD ymmoO, ymmo.

ymm1, ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

VFMADDSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source
operand to the two or four packed double-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the even
double-precision floating-point values in the second source operand, performs rounding and stores the resulting
two or four packed double-precision floating-point values to the destination operand (first source operand).

VFMADDSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second
source operand to the two or four packed double-precision floating-point values in the first source operand. From
the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the
even double-precision floating-point values in the third source operand, performs rounding and stores the resulting
two or four packed double-precision floating-point values to the destination operand (first source operand).

VFMADDSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second
source operand to the two or four packed double-precision floating-point values in the third source operand. From
the infinite precision intermediate result, adds the odd double-precision floating-point elements and subtracts the

6-12 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

even double-precision floating-point values in the first source operand, performs rounding and stores the resulting
two or four packed double-precision floating-point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMADDSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] < RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[VLMAX-1:128] < 0
ELSEIF (VEX.256)
DEST[63:0] < RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] + SRC2[127:64])
DEST[191:128] < RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] - SRC2[191:128])
DEST[255:192] < RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] + SRC2[255:192]
Fi

VFMADDSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] < RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[VLMAX-1:128] < 0
ELSEIF (VEX.256)
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] + SRC3[127:64])
DEST[191:128] < RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] - SRC3[191:128])
DEST[255:192] < RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] + SRC3[255:192]
Fi

VFMADDSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[VLMAX-1:128] < 0
ELSEIF (VEX.256)
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] + DEST[127:64])
DEST[191:128] < RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] - DEST[191:128])
DEST[255:192] < RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] + DEST[255:192]
Fi

Ref. # 319433-014 6-13

INSTRUCTION SET REFERENCE - FMA

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PD: __m128d _mm_fmaddsub_pd (__m128da,__m128db,__m128dc);
VFMADDSUB213PD: __m128d_mm_fmaddsub_pd (__m128da,__m128db,__m128dc)
VFMADDSUBZ231PD: __m128d _mm_fmaddsub_pd (__m128da,__m128db,_m128dc);
VFMADDSUB132PD: __m256d _mm256_fmaddsub_pd (__m256d a,__m256d b, __m256d c);
VFMADDSUB213PD: __m256d_mm256_fmaddsub_pd (__m256da, __m256db,__m256d c);
VFMADDSUBZ231PD: __m256d_mm256_fmaddsub_pd (__m256d 3, __m256db, __ m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

6-14

Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS — Fused Multiply-Alternating
Add/Subtract of Packed Single-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction €n -bit Feature

Mode Flag
VEX.DDS.128.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from xmm0O and
96 /r xmm2/mem, add/subtract elements in xmm1 and put result in xmmO.
VFMADDSUB132PS xmmoO,

xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from xmm0O and

A6 /r xmm1, add/subtract elements in xmmZ2/mem and put result in xmmO.
VFMADDSUBZ213PS xmmoO,

xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from xmm1 and
B6 /r xmmZ2/mem, add/subtract elements in xmmO and put result in xmmoO.
VFMADDSUB231PS xmmoO,

xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from ymmO and
96 /r ymmZ2/mem, add/subtract elements in ymm1 and put result in ymmoO.
VFMADDSUB132PS ymmoO,

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from ymmO and
A6 /r ymm1, add/subtract elements in ymm2/mem and put result in ymmO.
VFMADDSUBZ213PS ymmoO,

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from ymm1 and
B6 /r ymmZ2/mem, add/subtract elements in ymmO and put result in ymmO.
VFMADDSUB231PS ymmoO,

ymm1, ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.wvvv (r) ModRM:r/m (r) NA
Description

VFMADDSUB132PS: Multiplies the four or eight packed single-precision floating-point values from the first source
operand to the four or eight packed single-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the even
single-precision floating-point values in the second source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand (first source operand).

VFMADDSUB213PS: Multiplies the four or eight packed single-precision floating-point values from the second
source operand to the four or eight packed single-precision floating-point values in the first source operand. From
the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the
even single-precision floating-point values in the third source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand (first source operand).

VFMADDSUB231PS: Multiplies the four or eight packed single-precision floating-point values from the second
source operand to the four or eight packed single-precision floating-point values in the third source operand. From

Ref. # 319433-014 6-15

INSTRUCTION SET REFERENCE - FMA

the infinite precision intermediate result, adds the odd single-precision floating-point elements and subtracts the
even single-precision floating-point values in the first source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMADDSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL = 4
Fl
Fori=0 to MAXVL -1{
n = 64%;
DEST[n+31:n] € RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
DEST[n+63:n+32] €< RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] + SRC2[n+63:n+32])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] <« O
Fl

VFMADDSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL = 4
Fl
Fori=0 to MAXVL -1{
n = 64%;
DEST[n+31:n] € RoundFPControl_MXCSR(SRCZ2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
DEST[n+63:n+32] €« RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] + SRC3[n+63:n+32])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] <« O
Fl

VFMADDSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4

6-16 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

Fl
Fori =0 to MAXVL-1{
n = 64%;
DEST[n+31:n] € RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])
DEST[n+63:n+32] € RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] + DEST[n+63:n+32])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] € 0
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VFMADDSUB132PS: __m128 _mm_fmaddsub_ps (__m1283a,__m128b,__m128¢);
VFMADDSUBZ213PS: __m128 _mm_fmaddsub_ps (__m128a,__m128b,_m128¢c);
VFMADDSUBZ231PS: __m128_mm_fmaddsub_ps (__m128a,__m128b,__m128¢c);
VFMADDSUB132PS: __m256 _mm256_fmaddsub_ps (__m256 a3, __m256 b, __m256 c);
VFMADDSUBZ213PS: __m256 _mm256_fmaddsub_ps (__m256 a,__m256 b, __m256 c);
VFMADDSUBZ231PS: __m256 _mm256_fmaddsub_ps (__m256 a,__m256 b, __ m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

Ref. # 319433-014 6-17

INSTRUCTION SET REFERENCE - FMA

VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD — Fused Multiply-Alternating
Subtract/Add of Packed Double-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38.W1 A VIV FMA Multiply packed double-precision floating-point values from xmmO and
97 Ir xmmZ2/mem, subtract/add elements in xmm1 and put result in xmmO.
VFMSUBADD132PD xmmoO,
xmm1, xmm2/m128
VEX.DDS.128.66.0F38.W1 A VIV FMA Multiply packed double-precision floating-point values from xmmO and
A7 Ir xmm1, subtract/add elements in xmm2/mem and put result in xmmO.
VFMSUBADDZ213PD xmm0,
xmm1, xmm2/m128
VEX.DDS.128.66.0F38.W1 A VIV FMA Multiply packed double-precision floating-point values from xmm1 and
B7 Ir xmmZ2/mem, subtract/add elements in xmmO and put result in xmmO.
VFMSUBADDZ231PD xmmoO,

xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W1 A VIV FMA Multiply packed double-precision floating-point values from ymmO and
97 Ir ymm2/mem, subtract/add elements in ymm1 and put result in ymmoO.
VFMSUBADD132PD ymmoO,

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 A VIV FMA Multiply packed double-precision floating-point values from ymmO and
A7 Ir ymm1, subtract/add elements in ymm2/mem and put result in ymmO.
VFMSUBADDZ213PD ymmoO,

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W1 A VIV FMA Multiply packed double-precision floating-point values from ymm1 and
B7 Ir ymm2/mem, subtract/add elements in ymmO and put result in ymmoO.
VFMSUBADDZ231PD ymmoO,

ymm1, ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

VFMSUBADD132PD: Multiplies the two or four packed double-precision floating-point values from the first source
operand to the two or four packed double-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the even
double-precision floating-point values in the second source operand, performs rounding and stores the resulting
two or four packed double-precision floating-point values to the destination operand (first source operand).

VFMSUBADD213PD: Multiplies the two or four packed double-precision floating-point values from the second
source operand to the two or four packed double-precision floating-point values in the first source operand. From
the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the
even double-precision floating-point values in the third source operand, performs rounding and stores the resulting
two or four packed double-precision floating-point values to the destination operand (first source operand).

VFMSUBADD231PD: Multiplies the two or four packed double-precision floating-point values from the second
source operand to the two or four packed double-precision floating-point values in the third source operand. From

6-18 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

the infinite precision intermediate result, subtracts the odd double-precision floating-point elements and adds the
even double-precision floating-point values in the first source operand, performs rounding and stores the resulting
two or four packed double-precision floating-point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMSUBADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] < RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] < RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[VLMAX-1:128] < 0
ELSEIF (VEX.256)
DEST[63:0] < RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] + SRC2[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(DEST[127:64]*SRC3[127:64] - SRC2[127:64])
DEST[191:128] < RoundFPControl_MXCSR(DEST[191:128]*SRC3[191:128] + SRC2[191:128])
DEST[255:192] < RoundFPControl_MXCSR(DEST[255:192]*SRC3[255:192] - SRC2[255:192]
Fi

VFMSUBADD213PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[VLMAX-1:128] < 0
ELSEIF (VEX.256)
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] + SRC3[63:0])
DEST[127:64] < RoundFPControl_MXCSR(SRC2[127:64]*DEST[127:64] - SRC3[127:64])
DEST[191:128] < RoundFPControl_MXCSR(SRC2[191:128]*DEST[191:128] + SRC3[191:128])
DEST[255:192] < RoundFPControl_MXCSR(SRC2[255:192]*DEST[255:192] - SRC3[255:192]
Fi

VFMSUBADD231PD DEST, SRC2, SRC3
IF (VEX.128) THEN
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] < RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[VLMAX-1:128] < 0
ELSEIF (VEX.256)
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] + DEST[63:0])
DEST[127:64] €< RoundFPControl_MXCSR(SRC2[127:64]*SRC3[127:64] - DEST[127:64])
DEST[191:128] < RoundFPControl_MXCSR(SRC2[191:128]*SRC3[191:128] + DEST[191:128])
DEST[255:192] < RoundFPControl_MXCSR(SRC2[255:192]*SRC3[255:192] - DEST[255:192]
Al

Ref. # 319433-014 6-19

INSTRUCTION SET REFERENCE - FMA

Intel C/C++ Compiler Intrinsic Equivalent
VFMSUBADD132PD: __m128d _mm_fmsubadd_pd (__m128da,__m128db,__m128dc);
VFMSUBADD213PD: __m128d _mm_fmsubadd_pd (__m128da,__m128db, __m128dc);

VFMSUBADDZ231PD: __m128d _mm_fmsubadd_pd (__m128da,__m128db,__m128dc);
VFMSUBADD132PD: __m256d _mm256_fmsubadd_pd (__m256d a, __m256d b, __m256d c);
VFMSUBADD213PD: __m256d _mm256_fmsubadd_pd (__m256da, __m256db, __m256d c);
VFMSUBADDZ231PD: __m256d _mm256_fmsubadd_pd (__m256d a, __m256db, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

6-20

Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS — Fused Multiply-Alternating
Subtract/Add of Packed Single-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from xmm0O and
97 Ir xmm2/mem, subtract/add elements in xmm1 and put result in xmmoO.
VFMSUBADD132PS xmmoO,

xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from xmmO and
A7 Ir xmm1, subtract/add elements in xmmZ2/mem and put result in xmmO.
VFMSUBADDZ213PS xmmoO,

xmm1, xmm2/m128

VEX.DDS.128.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from xmm1 and
B7 Ir xmmZ2/mem, subtract/add elements in xmmO and put result in xmmO.
VFMSUBADDZ231PS xmmoO,

xmm1, xmm2/m128

VEX.DDS.256.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from ymmO and
97 /r ymmZ2/mem, subtract/add elements in ymm1 and put result in ymmO.
VFMSUBADD132PS ymmoO,

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from ymmO and
A7 Ir ymm1, subtract/add elements in ymm2/mem and put result in ymmO.
VFMSUBADDZ213PS ymmoO,

ymm1, ymm2/m256

VEX.DDS.256.66.0F38.W0 A VIV FMA Multiply packed single-precision floating-point values from ymm1 and
B7 Ir ymmZ2/mem, subtract/add elements in ymmO and put result in ymmO.
VFMSUBADDZ231PS ymmoO,

ymm1, ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Description

VFMSUBADD132PS: Multiplies the four or eight packed single-precision floating-point values from the first source
operand to the four or eight packed single-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the odd single-precision floating-point elements and adds the even
single-precision floating-point values in the second source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand (first source operand).

VFMSUBADD213PS: Multiplies the four or eight packed single-precision floating-point values from the second
source operand to the four or eight packed single-precision floating-point values in the first source operand. From
the infinite precision intermediate result, subtracts the odd single-precision floating-point elements and adds the
even single-precision floating-point values in the third source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand (first source operand).

VFMSUBADD231PS: Multiplies the four or eight packed single-precision floating-point values from the second
source operand to the four or eight packed single-precision floating-point values in the third source operand. From

Ref. # 319433-014 6-21

INSTRUCTION SET REFERENCE - FMA

the infinite precision intermediate result, subtracts the odd single-precision floating-point elements and adds the
even single-precision floating-point values in the first source operand, performs rounding and stores the resulting
four or eight packed single-precision floating-point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMSUBADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL = 4
Fl
Fori=0 to MAXVL -1{
n = 64%;
DEST[n+31:n] € RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] + SRC2[n+31:n])
DEST[n+63:n+32] € RoundFPControl_MXCSR(DEST[n+63:n+32]*SRC3[n+63:n+32] -SRC2[n+63:n+32])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] « O
Fl

VFMSUBADD213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL = 4
Fl
Fori=0 to MAXVL -1{
n = 64%;
DEST[n+31:n] € RoundFPControl_MXCSR(SRCZ2[n+31:n]*DEST[n+31:n] +SRC3[n+31:n])
DEST[n+63:n+32] €< RoundFPControl_MXCSR(SRC2[n+63:n+32]*DEST[n+63:n+32] -SRC3[n+63:n+32])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] « O
Fl

VFMSUBADD231PS DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4

6-22 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

Fl
Fori =0 to MAXVL-1{
n = 64%;
DEST[n+31:n] € RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] + DEST[n+31:n])
DEST[n+63:n+32] € RoundFPControl_MXCSR(SRC2[n+63:n+32]*SRC3[n+63:n+32] -DEST[n+63:n+32])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] € 0
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUBADD132PS: __m128 _mm_fmsubadd_ps (__m128a,__m128b,_m128¢);
VFMSUBADDZ213PS: __m128_mm_fmsubadd_ps (__m128a,_m128b,_m128¢c);
VFMSUBADDZ231PS: __m128_mm_fmsubadd_ps (__m128a,__m128b,_m128¢c);
VFMSUBADD132PS: __m256 _mm256_fmsubadd_ps (__m2564a, __m256 b, __m256 c);
VFMSUBADDZ213PS: __m256 _mm256_fmsubadd_ps (__m256 3, __m256 b, __m256 ¢);
VFMSUBADD231PS: __m256 _mm256_fmsubadd_ps (__m256 a3, __m256 b, __m256 ¢);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

Ref. # 319433-014 6-23

INSTRUCTION SET REFERENCE - FMA

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD — Fused Multiply-Subtract of Packed Double-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38W19A/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VFMSUB132PD xmm0, xmm1, and xmm2/mem, subtract xmm1 and put result in xmmO.
xmm2/m128
VEX.DDS.128.66.0F38W1AA/T A VIV FMA Multiply packed double-precision floating-point values from xmmO
VFMSUB213PD xmm0, xmm1, and xmm1, subtract xmm2/mem and put result in xmmO.
xmm2/m128
VEX.DDS.128.66.0F38W1BA/r A VIV FMA Multiply packed double-precision floating-point values from xmm1
VFMSUB231PD xmmO0, xmm1, and xmm2/mem, subtract xmmO and put result in xmmO.
xmm2/m128

VEX.DDS.256.66.0F38W19A /T A VIV FMA Multiply packed double-precision floating-point values from ymmO

VFMSUB132PD ymmO, ymm1, and ymm2/mem, subtract ymm1 and put result in ymmoO.
ymm2/m256

VEX.DDS.256.66.0F38W1AA/T A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFMSUB213PD ymmO, ymm1, and ymm1, subtract ymm2/mem and put result in ymmoO.
ymm2/m256

VEX.DDS.256.66.0F38W1BA/T A VIV FMA Multiply packed double-precision floating-point values from ymm?1
VFMSUB231PD ymmO, ymm1, and ymm2/mem, subtract ymmO and put result in ymmoO.
ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a set of SIMD multiply-subtract computation on packed double-precision floating-point values using three
source operands and writes the multiply-subtract results in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source
operand to the two or four packed double-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the two or four packed double-precision floating-point values in the
second source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).

VFMSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second source
operand to the two or four packed double-precision floating-point values in the first source operand. From the infi-
nite precision intermediate result, subtracts the two or four packed double-precision floating-point values in the
third source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).

VFMSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second source to
the two or four packed double-precision floating-point values in the third source operand. From the infinite preci-
sion intermediate result, subtracts the two or four packed double-precision floating-point values in the first source
operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to

6-24 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

the destination operand (first source operand).VEX.256 encoded version: The destination operand (also first
source operand) is a YMM register and encoded in reg_field. The second source operand is a YMM register and
encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in
rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] €< RoundFPControl_MXCSR(DEST[n+63:n]*SRC3[n+63:n] - SRC2[n+63:n])
1
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« 0
Fl

VFMSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] €< RoundFPControl_MXCSR(SRC2[n+63:n]*DEST[n+63:n] - SRC3[n+63:n])
1
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

VFMSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =2
ELSEIF (VEX.256)
MAXVL = 4
Fl
Fori =0 to MAXVL-1{
n = 64%;
DEST[n+63:n] €< RoundFPControl_MXCSR(SRC2[n+63:n]*SRC3[n+63:n] - DEST[n+63:n])

Ref. # 319433-014 6-25

INSTRUCTION SET REFERENCE - FMA

}
IF (VEX.128) THEN

DEST[VLMAX-1:128] « O
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VFEMSUB132PD: __m128d _mm_fmsub_pd (__m128da,__m128db,_m128dc);

VFMSUB213PD: __m128d _mm_fmsub_pd (__m128da, __ m128db,_m128dc);
VFMSUBZ231PD: __m128d_mm_fmsub_pd (__m128da,__m128db,__m128dc);
VFMSUB132PD: __m256d_mm256_fmsub_pd (__m256da, _ m256d b, __m256d c);
VFMSUB213PD: __m256d_mm256_fmsub_pd (__m256d a, __m256db, __m256d c);
VFMSUBZ231PD: __m256d_mm256_fmsub_pd (__m256d a, __ m256db, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

6-26 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFMSUB132PS/VFMSUB213PS/VFMSUB231PS — Fused Multiply-Subtract of Packed Single-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38WO0SA/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFMSUB132PS xmmO0, xmm1, and xmm2/mem, subtract xmm1 and put result in xmmO.
xmm2/m128
VEX.DDS.128.66.0F38WOAA/T A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFMSUB213PS xmmO0, xmm1, and xmm1, subtract xmm2/mem and put result in xmmO.
xmm2/m128
VEX.DDS.128.66.0F38WOBA/r A VIV FMA Multiply packed single-precision floating-point values from xmm1
VFMSUB231PS xmmO, xmm1, and xmm2/mem, subtract xmmO and put result in xmmO.
xmm2/m128
VEX.DDS.256.66.0F38W0S9A/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFMSUB132PS ymmO, ymm1, and ymm2/mem, subtract ymm1 and put result in ymmoO.
ymm2/m256
VEX.DDS.256.66.0F38WOAA/T A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFMSUB213PS ymmO, ymm1, and ymm1, subtract ymm2/mem and put result in ymmoO.
ymm2/m256
VEX.DDS.256.66.0F38.0 BA /r A VIV FMA Multiply packed single-precision floating-point values from ymm1
VFMSUB231PS ymmO, ymm1, and ymm2/mem, subtract ymmO and put result in ymmoO.
ymm2/m256

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a set of SIMD multiply-subtract computation on packed single-precision floating-point values using three
source operands and writes the multiply-subtract results in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMSUB132PS: Multiplies the four or eight packed single-precision floating-point values from the first source
operand to the four or eight packed single-precision floating-point values in the third source operand. From the infi-
nite precision intermediate result, subtracts the four or eight packed single-precision floating-point values in the
second source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).

VFMSUB213PS: Multiplies the four or eight packed single-precision floating-point values from the second source
operand to the four or eight packed single-precision floating-point values in the first source operand. From the infi-
nite precision intermediate result, subtracts the four or eight packed single-precision floating-point values in the
third source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).

VFMSUB231PS: Multiplies the four or eight packed single-precision floating-point values from the second source to
the four or eight packed single-precision floating-point values in the third source operand. From the infinite preci-
sion intermediate result, subtracts the four or eight packed single-precision floating-point values in the first source

Ref. # 319433-014 6-27

INSTRUCTION SET REFERENCE - FMA

operand, performs rounding and stores the resulting four or eight packed single-precision floating-point values to
the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFMSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori =0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(DEST[n+31:n]*SRC3[n+31:n] - SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] <« O
Fl

VFMSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori=0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(SRCZ2[n+31:n]*DEST[n+31:n] - SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] « O
Fl

VFMSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
For i = 0 to MAXVL-1 {
n = 32%;

6-28 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

DEST[n+31:n] € RoundFPControl_MXCSR(SRC2[n+31:n]*SRC3[n+31:n] - DEST[n+31:n])

}
IF (VEX.128) THEN

DEST[VLMAX-1:128] <« O
Fl

Intel C/C++ Compiler Intrinsic Equivalent

VEMSUB132PS: __m128 _mm_fmsub_ps(_m128a,__m128b,__m128c);

VFMSUB213PS: __m128_mm_fmsub_ps (__m128a,_m128b,__m128¢c);
VFMSUB231PS: __m128_mm_fmsub_ps (__m128a,_m128b,__m128¢c);
VFMSUB132PS: __m256 _mm256_fmsub_ps (__m256 a,__m256b,__m256 c);
VFMSUB213PS: __m256 _mm256_fmsub_ps (__m256 a,__m256 b, __m256 c);
VFMSUB231PS: __m256 _mm256_fmsub_ps (__m256a,__m256 b,__m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

Ref. # 319433-014 6-29

INSTRUCTION SET REFERENCE - FMA

VFMSUB132SD/VFMSUB213SD/VFMSUB231SD — Fused Multiply-Subtract of Scalar Double-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO and
9B /r xmm2/mem, subtract xmm1 and put result in xmmO.
VFMSUB132SD xmmO, xmm1,
xmm2/m64
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO and
AB/r xmm1, subtract xmm2/mem and put result in xmmO.
VFEMSUB213SD xmmO, xmm1,
xmm2/m64
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmm1 and
BB /r xmmZ2/mem, subtract xmmO and put result in xmmaO.
VFMSUB231SD xmmO, xmm1,
xmm2/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a SIMD multiply-subtract computation on the low packed double-precision floating-point values using
three source operands and writes the multiply-add result in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to the
low packed double-precision floating-point value in the third source operand. From the infinite precision interme-
diate result, subtracts the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).

VFMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand to
the low packed double-precision floating-point value in the first source operand. From the infinite precision inter-
mediate result, subtracts the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).

VFMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand. From the infinite precision intermediate
result, subtracts the low packed double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

6-30 Ref. #319433-014

Operation

INSTRUCTION SET REFERENCE - FMA

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations

with infinite precision inputs and outputs (no rounding).

VFMSUB132SD DEST, SRC2, SRC3

DEST[63:0] € RoundFPControl_MXCSR(DEST[63:0]*SRC3[63:0] - SRC2[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] < 0

VFMSUB213SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*DEST[63:0] - SRC3[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] & 0

VFMSUB231SD DEST, SRC2, SRC3
DEST[63:0] < RoundFPControl_MXCSR(SRC2[63:0]*SRC3[63:0] - DEST[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] & 0

Intel C/C++ Compiler Intrinsic Equivalent

VFMSUB132SD: __m128d _mm_fmsub_sd (__m128da,__m128db,__m128dc);
VFMSUB213SD: __m128d _mm_fmsub_sd (__m128da,__m128db, __m128d«c);
VFMSUB231SD: __m128d _mm_fmsub_sd (__m128da,__m128db, __m128dc);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014

6-31

INSTRUCTION SET REFERENCE - FMA

VFMSUB132SS/VFMSUB213SS/VFMSUB231SS — Fused Multiply-Subtract of Scalar Single-
Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
9B /r xmm2/mem, subtract xmm1 and put result in xmmO.
VFMSUB132SS xmmO, xmmT1,
xmm2/m32
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
AB/r xmm1, subtract xmm2/mem and put result in xmmO.
VFMSUB213SS xmmO, xmm1,
xmm2/m32
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmm1 and
BB /r xmmZ2/mem, subtract xmmO and put result in xmmO.
VFMSUB231SS xmmO, xmm1,
xmm2/m32

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a SIMD multiply-subtract computation on the low packed single-precision floating-point values using
three source operands and writes the multiply-add result in the destination operand. The destination operand is
also the first source operand. The second operand must be a SIMD register. The third source operand can be a
SIMD register or a memory location.

VFMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to the
low packed single-precision floating-point value in the third source operand. From the infinite precision interme-
diate result, subtracts the low packed single-precision floating-point values in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).

VFMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand. From the infinite precision interme-
diate result, subtracts the low packed single-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).

VFMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low
packed single-precision floating-point value in the third source operand. From the infinite precision intermediate
result, subtracts the low packed single-precision floating-point value in the first source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

6-32 Ref. #319433-014

Operation

INSTRUCTION SET REFERENCE - FMA

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations

with infinite precision inputs and outputs (no rounding).

VFMSUB132SS DEST, SRC2, SRC3

DEST[31:0] € RoundFPControl_MXCSR(DEST[31:0]*SRC3[31:0] - SRC2[31:0])
DEST[127:32] < DEST[127:32]

DEST[VLMAX-1:128] < 0

VFMSUB213SS DEST, SRC2, SRC3

DEST[31:0] €« RoundFPControl_MXCSR(SRC2[31:0]*DEST[31:0] - SRC3[31:0]))
DEST[127:32] < DEST[127:32]

DEST[VLMAX-1:128] & 0

VFMSUB231SS DEST, SRC2, SRC3
DEST[31:0] < RoundFPControl_MXCSR(SRC2[31:0]*SRC3[63:0] - DEST[31:0])
DEST[127:32] < DEST[127:32]

DEST[VLMAX-1:128] < 0

Intel C/C++ Compiler Intrinsic Equivalent

VEMSUB132SS: __ m128_mm_fmsub_ss(_m128a,__m128b,_m128c);
VFMSUB213SS: __m128_mm_fmsub_ss(_m128a,__m128b,__m128c);
VFMSUB231SS: __m128_mm_fmsub_ss(_m128a,__m128b,_m128c);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014

6-33

INSTRUCTION SET REFERENCE - FMA

VFNMADD132PD/VFNMADD213PD/VFNMADD231PD — Fused Negative Multiply-Add of Packed
Double-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38W19C/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VENMADD132PD xmmO0, xmm1, and xmm2/mem, negate the multiplication result and add to xmm1
xmm2/m128 and put result in xmmoO.

VEX.DDS.128.66.0F38W1 AC/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VFNMADDZ213PD xmm0O, xmm1, and xmm1, negate the multiplication result and add to xmmZ2/mem
xmm2/m128 and put result in xmmoO.

VEX.DDS.128.66.0F38W1BC/r A VIV FMA Multiply packed double-precision floating-point values from xmm1
VFNMADD231PD xmmO, xmm1, and xmm2/mem, negate the multiplication result and add to xmmO
xmm2/m128 and put result in xmmoO.

VEX.DDS.256.66.0F38W19C/r A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFNMADD132PD ymmO, ymm1, and ymm2/mem, negate the multiplication result and add to ymm1
ymm2/m256 and put result in ymmO.

VEX.DDS.256.66.0F38W1TAC/r A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFNMADD213PD ymmO, ymmT, and ymm1, negate the multiplication result and add to ymm2/mem
ymm2/m256 and put result in ymmO.

VEX.DDS.256.66.0F38W1BC/r A VIV FMA Multiply packed double-precision floating-point values from ymm1
VFNMADD231PD ymmO, ymm1, and ymmZ2/mem, negate the multiplication result and add to ymmO
ymm2/m256 and put result in ymmO.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

VFNMADD132PD: Multiplies the two or four packed double-precision floating-point values from the first source
operand to the two or four packed double-precision floating-point values in the third source operand, adds the
negated infinite precision intermediate result to the two or four packed double-precision floating-point values in the
second source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).

VFNMADD213PD: Multiplies the two or four packed double-precision floating-point values from the second source
operand to the two or four packed double-precision floating-point values in the first source operand, adds the
negated infinite precision intermediate result to the two or four packed double-precision floating-point values in the
third source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).

VFNMADD231PD: Multiplies the two or four packed double-precision floating-point values from the second source
to the two or four packed double-precision floating-point values in the third source operand, adds the negated infi-
nite precision intermediate result to the two or four packed double-precision floating-point values in the first source
operand, performs rounding and stores the resulting two or four packed double-precision floating-point values to
the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

6-34 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFNMADD132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori=0 to MAXVL-1{

n = 64%i;

DEST[n+63:n] € RoundFPControl_MXCSR(-(DEST[n+63:n]*SRC3[n+63:n]) + SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] <« 0
Fl

VFNMADD?213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] € RoundFPControl_MXCSR(-(SRC2[n+63:n]*DEST[n+63:n]) + SRC3[n+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] < 0
Fl

VFNMADD?231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] € RoundFPControl_MXCSR(-(SRC2[n+63:n]*SRC3[n+63:n]) + DEST[N+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] <« 0
Fl

Ref. # 319433-014 6-35

INSTRUCTION SET REFERENCE - FMA

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132PD: __m128d _mm_fnmadd_pd (__m128da,_m128db,_m128dc);
VFNMADD213PD: __m128d _mm_fnmadd_pd (__m128da, __m128db,_m128dc);
VFNMADDZ231PD: __m128d _mm_fnmadd_pd (__m128da, __m128db,_m128dc);
VFNMADD132PD: __m256d _mm256_fnmadd_pd (__m256da, __m256db,__m256d c);
VFNMADD213PD: __m256d _mm256_fnmadd_pd (__m256da, __m256db, __m256d c);
VFNMADDZ231PD: __m256d _mm256_fnmadd_pd (__m256da, __ m256db, __ m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

6-36

Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFNMADD132PS/VFNMADD213PS/VFNMADD231PS — Fused Negative Multiply-Add of Packed

Single-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature
Mode Flag
VEX.DDS.128.66.0F38W0SC/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFNMADD132PS xmmO, xmm1, and xmm2/mem, negate the multiplication result and add to xmm1
Xxmm2/m128 and put result in xmmoO.
VEX.DDS.128.66.0F38WOAC/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFNMADD213PS xmmO, xmm1, and xmm1, negate the multiplication result and add to xmm2/mem
xmm2/m128 and put result in xmmoO.
VEX.DDS.128.66.0F38WOBC/r A VIV FMA Multiply packed single-precision floating-point values from xmm1
VFNMADD231PS xmmO, xmm1, and xmm2/mem, negate the multiplication result and add to xmmO
xmm2/m128 and put result in xmmoO.
VEX.DDS.256.66.0F38W09C/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFNMADD132PS ymmO, ymm1, and ymm2/mem, negate the multiplication result and add to ymm’1
ymm2/m256 and put result in ymmoO.
VEX.DDS.256.66.0F38WOAC/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFNMADD213PS ymmO, ymm1, and ymm1, negate the multiplication result and add to ymmZ2/mem
ymm2/m256 and put result in ymmoO.
VEX.DDS.256.66.0F38.0 BC /r A VIV FMA Multiply packed single-precision floating-point values from ymm1
VFNMADD231PS ymmO, ymm1, and ymm2/mem, negate the multiplication result and add to ymmO
ymm2/m256 and put result in ymmoO.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Description

VFNMADD132PS: Multiplies the four or eight packed single-precision floating-point values from the first source
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the
negated infinite precision intermediate result to the four or eight packed single-precision floating-point values in
the second source operand, performs rounding and stores the resulting four or eight packed single-precision
floating-point values to the destination operand (first source operand).

VFNMADD213PS: Multiplies the four or eight packed single-precision floating-point values from the second source
operand to the four or eight packed single-precision floating-point values in the first source operand, adds the
negated infinite precision intermediate result to the four or eight packed single-precision floating-point values in
the third source operand, performs rounding and stores the resulting the four or eight packed single-precision
floating-point values to the destination operand (first source operand).

VFNMADD231PS: Multiplies the four or eight packed single-precision floating-point values from the second source
operand to the four or eight packed single-precision floating-point values in the third source operand, adds the

negated infinite precision intermediate result to the four or eight packed single-precision floating-point values in
the first source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

Ref. # 319433-014

6-37

INSTRUCTION SET REFERENCE - FMA

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFNMADD132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
FI
Fori=0 to MAXVL-1{
n = 32%;
DEST[n+31:n] € RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) + SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] < 0
Fl

VFNMADD?213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
FI
Fori=0to MAXVL-1{
n = 32%;
DEST[n+31:n] €< RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) + SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] < 0
Fl

VFNMADD?231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori=0to MAXVL-1{
n = 32%;
DEST[n+31:n] €< RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) + DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] < 0
FI

6-38 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132PS: __ m128 _mm_fnmadd_ps (__m1283a,__m128b,__m128¢);
VFENMADD213PS: __m128 _mm_fnmadd_ps (_m1284a,_m128b,__m128¢);
VFENMADDZ231PS: __m128 _mm_fnmadd_ps (_m1283a,_m128b,__m128¢);
VFNMADD132PS: __m256 _mm256_fnmadd_ps (__m256 a,__m256 b, __m256 c);
VFNMADD213PS: __m256 _mm256_fnmadd_ps (__m256 a,__m256 b, __m256 c);
VFNMADDZ231PS: __m256 _mm256_fnmadd_ps (__m256a,__m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

Ref. # 319433-014 6-39

INSTRUCTION SET REFERENCE - FMA

VFNMADD132SD/VFNMADD213SD/VFNMADD231SD — Fused Negative Multiply-Add of Scalar
Double-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO and
oD /r xmm2/mem, negate the multiplication result and add to xmm1 and
VFNMADD132SD xmmO, xmm1, put result in xmmO.
xmm2/m64
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO and
AD/r xmm1, negate the multiplication result and add to xmmZ2/mem and
VFNMADD213SD xmm0, xmm1, put result in xmmO.
xmm2/m64
VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmm1 and
BD /r xmmZ2/mem, negate the multiplication result and add to xmmO and
VFNMADD231SD xmmO0, xmm1, put result in xmmO.
xmm2/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

VFNMADD2132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point values in the second source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).

VFNMADD213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand, adds the negated infinite preci-
sion intermediate result to the low packed double-precision floating-point value in the third source operand,
performs rounding and stores the resulting packed double-precision floating-point value to the destination operand
(first source operand).

VFNMADD231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand, adds the negated infinite precision inter-
mediate result to the low packed double-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

6-40 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFNMADD132SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) + SRC2[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] € 0

VFNMADD213SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) + SRC3[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] € 0

VFNMADD231SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) + DEST[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] < 0

Intel C/C++ Compiler Intrinsic Equivalent
VFNMADD132SD: __m128d _mm_fnmadd_sd (__m128da,__m128db,__m128dc);
VFNMADD213SD: __m128d _mm_fnmadd_sd (__m128da,__m128db,__m128dc);

VFNMADD231SD: __m128d _mm_fnmadd_sd (__m128da,__ m128db,__m128dc);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014 6-41

INSTRUCTION SET REFERENCE - FMA

VFNMADD132SS/VFNMADD213SS/VFNMADD231SS — Fused Negative Multiply-Add of Scalar
Single-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
oD /r xmm2/mem, negate the multiplication result and add to xmm1 and
VENMADD132SS xmmO, xmmT1, put result in xmmO.
xmm2/m32

VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and

AD/r xmm1, negate the multiplication result and add to xmmZ2/mem and
VFNMADD213SS xmm0, xmm1, put result in xmmO.

xmm2/m32

VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmm1 and
BD /r xmmZ2/mem, negate the multiplication result and add to xmmO and
VFNMADD231SS xmmO0, xmm1, put result in xmmO.

xmm2/m32

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Description

VFNMADD2132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand, adds the negated infinite precision
intermediate result to the low packed single-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).

VFNMADD213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand, adds the negated infinite precision
intermediate result to the low packed single-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).

VFNMADD231SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the third source operand, adds the negated infinite precision
intermediate result to the low packed single-precision floating-point value in the first source operand, performs
rounding and stores the resulting packed single-precision floating-point value to the destination operand (first
source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

6-42 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFNMADD132SS DEST, SRC2, SRC3

DEST[31:0] & RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) + SRC2[31:0])
DEST[127:32] € DEST[127:32]

DEST[VLMAX-1:128] < 0

VFNMADD213SS DEST, SRC2, SRC3

DEST[31:0] < RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) + SRC3[31:0])
DEST[127:32] € DEST[127:32]

DEST[VLMAX-1:128] < 0

VFNMADD231SS DEST, SRC2, SRC3

DEST[31:0] < RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) + DEST[31:0])
DEST[127:32] € DEST[127:32]

DEST[VLMAX-1:128] < 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMADD132SS: __m128_mm_fnmadd_ss (__m128a,_m128b,_m128¢)
VFNMADDZ213SS: __m128_mm_fnmadd_ss (__m1283a,_m128b,_m128¢)
VFNMADDZ231SS: __m128_mm_fnmadd_ss (__m128a,__m128b,__m128¢)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014 6-43

INSTRUCTION SET REFERENCE - FMA

VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD — Fused Negative Multiply-Subtract of
Packed Double-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.128.66.0F38W19E/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VFNMSUB132PD xmmO0, xmm1, and xmm2/mem, negate the multiplication result and subtract
xmm2/m128 xmm1 and put result in xmmO.
VEX.DDS.128.66.0F38.W1AE/r A VIV FMA Multiply packed double-precision floating-point values from xmmO
VENMSUB213PD xmmO0, xmm1, and xmm1, negate the multiplication result and subtract
xmm2/m128 xmmZ2/mem and put result in xmmO.
VEX.DDS.128.66.0F38W1BE/r A VIV FMA Multiply packed double-precision floating-point values from xmm1
VFNMSUB231PD xmmO0, xmm1, and xmm2/mem, negate the multiplication result and subtract
Xxmm2/m128 xmmO and put result in xmmO.
VEX.DDS.256.66.0F38W19E/r A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFNMSUB132PD ymmO, ymm1, and ymm2/mem, negate the multiplication result and subtract
ymm2/m256 ymm1 and put result in ymmO.
VEX.DDS.256.66.0F38W1 AE/r A VIV FMA Multiply packed double-precision floating-point values from ymmO
VFNMSUB213PD ymmO, ymm1, and ymm1, negate the multiplication result and subtract
ymm2/m256 ymmZ2/mem and put result in ymmoO.
VEX.DDS.256.66.0F38W1BE/r A VIV FMA Multiply packed double-precision floating-point values from ymm1
VFNMSUB231PD ymmO, ymm1, and ymm2/mem, negate the multiplication result and subtract
ymm2/m256 ymmO and put result in ymmO.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Description

VFENMSUB132PD: Multiplies the two or four packed double-precision floating-point values from the first source
operand to the two or four packed double-precision floating-point values in the third source operand. From negated
infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in
the second source operand, performs rounding and stores the resulting two or four packed double-precision
floating-point values to the destination operand (first source operand).

VFMSUB213PD: Multiplies the two or four packed double-precision floating-point values from the second source
operand to the two or four packed double-precision floating-point values in the first source operand. From negated
infinite precision intermediate results, subtracts the two or four packed double-precision floating-point values in
the third source operand, performs rounding and stores the resulting two or four packed double-precision floating-
point values to the destination operand (first source operand).

VFMSUB231PD: Multiplies the two or four packed double-precision floating-point values from the second source to
the two or four packed double-precision floating-point values in the third source operand. From negated infinite
precision intermediate results, subtracts the two or four packed double-precision floating-point values in the first
source operand, performs rounding and stores the resulting two or four packed double-precision floating-point
values to the destination operand (first source operand).VEX.256 encoded version: The destination operand (also
first source operand) is a YMM register and encoded in reg_field. The second source operand is a YMM register and
encoded in VEX.vvvv. The third source operand is a YMM register or a 256-bit memory location and encoded in
rm_field.

6-44 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations

involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFNMSUB132PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1 {

n = 64%;

DEST[n+63:n] < RoundFPControl_MXCSR(- (DEST[n+63:n]*SRC3[n+63:n]) - SRC2[n+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

VFNMSUB213PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL =4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] €< RoundFPControl_MXCSR(- (SRC2[n+63:n]*DEST[n+63:n]) - SRC3[n+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

VFNMSUB231PD DEST, SRC2, SRC3
IF (VEX.128) THEN

MAXVL =2
ELSEIF (VEX.256)

MAXVL = 4
Fl
Fori =0 to MAXVL-1{

n = 64%;

DEST[n+63:n] < RoundFPControl_MXCSR(- (SRC2[n+63:n]*SRC3[n+63:n]) - DEST[n+63:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

Ref. # 319433-014 6-45

INSTRUCTION SET REFERENCE - FMA

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132PD: __m128d_mm_fnmsub_pd (__m128da,__m128db,__m128dc);
VFNMSUB213PD: __m128d_mm_fnmsub_pd (__m128da,__ m128db,__m128dc);
VFNMSUBZ231PD: __m128d_mm_fnmsub_pd (__m128da,__ m128db,_m128dc);
VFNMSUB132PD: __m256d_mm256_fnmsub_pd (__m256d a3, _ m256db, __m256d c);
VFNMSUB213PD: __m256d_mm256_fnmsub_pd (__m256d a, __m256d b, __m256d c);
VFNMSUBZ231PD: __m256d _mm256_fnmsub_pd (__m256d a3, __ m256d b, __m256d c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

6-46 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS — Fused Negative Multiply-Subtract of

Packed Single-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction €n -bit Feature

Mode Flag
VEX.DDS.128.66.0F38.WOSE/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFNMSUB132PS xmmO, xmm1, and xmm2/mem, negate the multiplication result and subtract
xmm2/m128 xmm71 and put result in xmmO.
VEX.DDS.128.66.0F38.WOAE/r A VIV FMA Multiply packed single-precision floating-point values from xmmO
VFNMSUB213PS xmm0, xmm1, and xmm1, negate the multiplication result and subtract
xmm2/m128 xmmZ2/mem and put result in xmmO.
VEX.DDS.128.66.0F38.WOBE/r A VIV FMA Multiply packed single-precision floating-point values from xmm1
VFNMSUB231PS xmmO, xmm1, and xmm2/mem, negate the multiplication result and subtract
xmm2/m128 xmmO and put result in xmmO.
VEX.DDS.256.66.0F38W09E/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFNMSUB132PS ymmO, ymm1, and ymm2/mem, negate the multiplication result and subtract
ymm2/m256 ymm1 and put result in ymmoO.
VEX.DDS.256.66.0F38WOAE/r A VIV FMA Multiply packed single-precision floating-point values from ymmO
VFNMSUB213PS ymmO, ymm1, and ymm1, negate the multiplication result and subtract
ymm2/m256 ymmZ2/mem and put result in ymmoO.
VEX.DDS.256.66.0F38.0 BE /r A VIV FMA Multiply packed single-precision floating-point values from ymm1

VFNMSUB231PS ymmO, ymm1, and ymm2/mem, negate the multiplication result and subtract

ymm2/m256 ymmO and put result in ymmO.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

VFENMSUB132PS: Multiplies the four or eight packed single-precision floating-point values from the first source
operand to the four or eight packed single-precision floating-point values in the third source operand. From
negated infinite precision intermediate results, subtracts the four or eight packed single-precision floating-point
values in the second source operand, performs rounding and stores the resulting four or eight packed single-preci-
sion floating-point values to the destination operand (first source operand).

VFNMSUB213PS: Multiplies the four or eight packed single-precision floating-point values from the second source
operand to the four or eight packed single-precision floating-point values in the first source operand. From negated
infinite precision intermediate results, subtracts the four or eight packed single-precision floating-point values in
the third source operand, performs rounding and stores the resulting four or eight packed single-precision floating-
point values to the destination operand (first source operand).

VFNMSUB231PS: Multiplies the four or eight packed single-precision floating-point values from the second source
to the four or eight packed single-precision floating-point values in the third source operand. From negated infinite
precision intermediate results, subtracts the four or eight packed single-precision floating-point values in the first
source operand, performs rounding and stores the resulting four or eight packed single-precision floating-point
values to the destination operand (first source operand).

VEX.256 encoded version: The destination operand (also first source operand) is a YMM register and encoded in
reg_field. The second source operand is a YMM register and encoded in VEX.vvvv. The third source operand is a
YMM register or a 256-bit memory location and encoded in rm_field.

Ref. # 319433-014 6-47

INSTRUCTION SET REFERENCE - FMA

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 128-bit memory location and encoded in rm_field. The upper 128 bits of the YMM destination
register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

VFNMSUB132PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori=0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(- (DEST[n+31:n]*SRC3[n+31:n]) - SRC2[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] <« O
Fl

VFNMSUB213PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
Fori=0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(- (SRC2[n+31:n]*DEST[n+31:n]) - SRC3[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] « O
Fl

VFNMSUB231PS DEST, SRC2, SRC3
IF (VEX.128) THEN
MAXVL =4
ELSEIF (VEX.256)
MAXVL =8
Fl
For i =0 to MAXVL-1{
n=32%;
DEST[n+31:n] € RoundFPControl_MXCSR(- (SRC2[n+31:n]*SRC3[n+31:n]) - DEST[n+31:n])
}
IF (VEX.128) THEN
DEST[VLMAX-1:128] €« O
Fl

6-48 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

Intel C/C++ Compiler Intrinsic Equivalent

VFENMSUB132PS: __m128 _mm_fnmsub_ps (_m1283a,_m128b,__m128¢);
VFNMSUB213PS: __m128_mm_fnmsub_ps (_m128a,__m128b,_m128c);
VFNMSUBZ231PS: __m128_mm_fnmsub_ps (__m128a,__m128b,_m128¢c);
VFENMSUB132PS: __m256 _mm256_fnmsub_ps (__m2563a,__ m256 b, __m256 c);
VFNMSUB213PS: __m256 _mm256_fnmsub_ps (__m256a,__m256 b, __m256 ¢);
VFNMSUBZ231PS: __m256 _mm256_fnmsub_ps (__m256 3, __m256 b, __m256 c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 2

Ref. # 319433-014 6-49

INSTRUCTION SET REFERENCE - FMA

VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD — Fused Negative Multiply-Subtract of

Scalar Double-Precision Floating-Point Values

Opcode/ Op/ 64/32- CPUID Description
Instruction En bit Feature
Mode Flag

VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO

9F /r and xmm2/mem, negate the multiplication result and subtract

VFNMSUB132SD xmm0, xmm1, xmm1 and put result in xmmO.

xmm2/m64

VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmmO

AF /r and xmm1, negate the multiplication result and subtract

VFNMSUB213SD xmm0, xmm1, xmm2/mem and put result in xmmoO.

xmm2/m64

VEX.DDS.LIG.128.66.0F38.W1 A VIV FMA Multiply scalar double-precision floating-point value from xmm1

BF /r and xmm2/mem, negate the multiplication result and subtract

VFNMSUB231SD xmm0, xmm1, xmmO and put result in xmmO.

xmm2/m64

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA

Description

VFNMSUB132SD: Multiplies the low packed double-precision floating-point value from the first source operand to
the low packed double-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the second source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).

VFNMSUB213SD: Multiplies the low packed double-precision floating-point value from the second source operand
to the low packed double-precision floating-point value in the first source operand. From negated infinite precision
intermediate result, subtracts the low double-precision floating-point value in the third source operand, performs
rounding and stores the resulting packed double-precision floating-point value to the destination operand (first
source operand).

VFNMSUB231SD: Multiplies the low packed double-precision floating-point value from the second source to the low
packed double-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, subtracts the low double-precision floating-point value in the first source operand, performs rounding
and stores the resulting packed double-precision floating-point value to the destination operand (first source
operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 64-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

6-50 Ref. #319433-014

VFNMSUB132SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(- (DEST[63:0]*SRC3[63:0]) - SRC2[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] € 0

VFNMSUB213SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(- (SRC2[63:0]*DEST[63:0]) - SRC3[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] € 0

VFNMSUB231SD DEST, SRC2, SRC3

DEST[63:0] < RoundFPControl_MXCSR(- (SRC2[63:0]*SRC3[63:0]) - DEST[63:0])
DEST[127:64] < DEST[127:64]

DEST[VLMAX-1:128] < 0

Intel C/C++ Compiler Intrinsic Equivalent
VFNMSUB132SD: __m128d _mm_fnmsub_sd (_m128da,__m128db,__m128dc);
VENMSUB213SD: _m128d _mm_fnmsub_sd (__m128da,__m128db,__m128dc);
VFNMSUBZ231SD: __m128d_mm_fnmsub_sd (__m128d a,

m128db,_m128dc);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014

INSTRUCTION SET REFERENCE - FMA

6-51

INSTRUCTION SET REFERENCE - FMA

VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS — Fused Negative Multiply-Subtract of
Scalar Single-Precision Floating-Point Values

Opcode/ Op/ 64/32 CPUID Description
Instruction En -bit Feature

Mode Flag
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
9F /r xmm¢Z2/mem, negate the multiplication result and subtract xmm1
VFNMSUB132SS xmmO, xmm1, and put result in xmmO.
xmm2/m32
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmmO and
AF /r xmm1, negate the multiplication result and subtract xmm2/mem
VFNMSUB213SS xmmO0, xmm1, and put result in xmmoO.
xmm2/m32
VEX.DDS.LIG.128.66.0F38.W0 A VIV FMA Multiply scalar single-precision floating-point value from xmm1 and
BF /r xmmZ2/mem, negate the multiplication result and subtract xmmO
VFNMSUB231SS xmmO, xmm1, and put result in xmmo0.
xmm2/m32

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) VEX.vvvv (r) ModRM:r/m (r) NA
Description

VFNMSUB132SS: Multiplies the low packed single-precision floating-point value from the first source operand to
the low packed single-precision floating-point value in the third source operand. From negated infinite precision
intermediate result, the low single-precision floating-point value in the second source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).

VFNMSUB213SS: Multiplies the low packed single-precision floating-point value from the second source operand to
the low packed single-precision floating-point value in the first source operand. From negated infinite precision
intermediate result, the low single-precision floating-point value in the third source operand, performs rounding
and stores the resulting packed single-precision floating-point value to the destination operand (first source
operand).

VFNMSUB231SS: Multiplies the low packed single-precision floating-point value from the second source to the low
packed single-precision floating-point value in the third source operand. From negated infinite precision interme-
diate result, the low single-precision floating-point value in the first source operand, performs rounding and stores
the resulting packed single-precision floating-point value to the destination operand (first source operand).

VEX.128 encoded version: The destination operand (also first source operand) is a XMM register and encoded in
reg_field. The second source operand is a XMM register and encoded in VEX.vvvv. The third source operand is a
XMM register or a 32-bit memory location and encoded in rm_field. The upper bits ([255:128]) of the YMM desti-
nation register are zeroed.

Compiler tools may optionally support a complementary mnemonic for each instruction mnemonic listed in the
opcode/instruction column of the summary table. The behavior of the complementary mnemonic in situations
involving NANs are governed by the definition of the instruction mnemonic defined in the opcode/instruction
column. See also Section 2.3.1, “FMA Instruction Operand Order and Arithmetic Behavior”.

Operation

In the operations below, "+", "-", and "*" symbols represent addition, subtraction, and multiplication operations
with infinite precision inputs and outputs (no rounding).

6-52 Ref. #319433-014

INSTRUCTION SET REFERENCE - FMA

VFNMSUB132SS DEST, SRC2, SRC3

DEST[31:0] & RoundFPControl_MXCSR(- (DEST[31:0]*SRC3[31:0]) - SRC2[31:0])
DEST[127:32] € DEST[127:32]

DEST[VLMAX-1:128] < 0

VFNMSUB213SS DEST, SRC2, SRC3

DEST[31:0] & RoundFPControl_MXCSR(- (SRC2[31:0]*DEST[31:0]) - SRC3[31:0])
DEST[127:32] € DEST[127:32]

DEST[VLMAX-1:128] < 0

VFNMSUB231SS DEST, SRC2, SRC3

DEST[31:0] & RoundFPControl_MXCSR(- (SRC2[31:0]*SRC3[63:0]) - DEST[31:0])
DEST[127:32] € DEST[127:32]

DEST[VLMAX-1:128] < 0

Intel C/C++ Compiler Intrinsic Equivalent

VFNMSUB132SS: __m128_mm_fnmsub_ss (__m128a,__m128b,__m128c);
VFNMSUBZ213SS: __m128 _mm_fnmsub_ss (__m128a,__m128b,_m128c);
VFNMSUB231SS: __m128_mm_fnmsub_ss (__m128a,__m128b,__m128c);

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal

Other Exceptions
See Exceptions Type 3

Ref. # 319433-014 6-53

INSTRUCTION SET REFERENCE - FMA

6-54 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

CHAPTER 7
INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

This chapter describes the various general-purpose instructions, the majority of which are encoded using VEX
prefix.

7.1 INSTRUCTION FORMAT

The format used for describing each instruction as in the example below is described in Chapter 5.

ANDN — Logical AND NOT (THIS IS AN EXAMPLE)

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEX.NDS.LZ.0F38.WO F2 /r A VIV BMI1 Bitwise AND of inverted r32b with r/m32, store result in r32a.

ANDN r32a, r32b, r/m32

VEX.NDS.LZ. OF38.W1 F2 /r A V/NE BMI1 Bitwise AND of inverted r64b with r/m64, store result in r64b.
ANDN r64a, r64b, r/m64

Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4

A ModRM:reg (r, w) VEX.vvwv (r) ModRM:r/m (r) NA

7.2 INSTRUCTION SET REFERENCE

Ref. # 319433-014 7-1

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

ANDN — Logical AND NOT

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEX.NDS.LZ.0F38.WO F2 /r A VIV BMI1 Bitwise AND of inverted r32b with r/m32, store result in r32a.

ANDN r32a, r32b, r/m32

VEX.NDS.LZ. OF38.W1 F2 /It A V/NE BMI1 Bitwise AND of inverted r64b with r/m64, store result in r64a.
ANDN r64a, r64b, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

Performs a bitwise logical AND of inverted second operand (the first source operand) with the third operand (the
second source operand). The result is stored in the first operand (destination operand).

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

DEST « (NOT SRCT) bitwiseAND SRC2;
SF « DEST[OperandSize -1];
ZF « (DEST = 0);

Flags Affected

SF and ZF are updated based on result. OF and CF flags are cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent
Auto-generated from high-level language.

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-22.

7-2 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

BEXTR — Bit Field Extract

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag

VEXNDS'.LZOF38WOF7 /r A VIV BMI1 Contiguous bitwise extract from r/m32 using r32b as control; store
BEXR r32a, r/m32,r32b resultin r32a.

VEXNDS'.LZOF38W1F7/r A VINE BMIT Contiguous bitwise extract from r/m64 using r64b as control; store
BEXR r64a, r/m64, r64b resultinré4a

NOTES:

1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third
operand).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) VEX.vwwv (1) NA
Description

Extracts contiguous bits from the first source operand (the second operand) using an index value and length value
specified in the second source operand (the third operand). Bit 7:0 of the first source operand specifies the starting
bit position of bit extraction. A START value exceeding the operand size will not extract any bits from the second
source operand. Bit 15:8 of the second source operand specifies the maximum number of bits (LENGTH) beginning
at the START position to extract. Only bit positions up to (OperandSize -1) of the first source operand are extracted.
The extracted bits are written to the destination register, starting from the least significant bit. All higher order bits
in the destination operand (starting at bit position LENGTH) are zeroed. The destination register is cleared if no bits
are extracted.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

START « SRC2[7:0];

LEN « SRC2[15:8];

TEMP «— ZERO_EXTEND_TO_512 (SRC1);

DEST « ZERO_EXTEND(TEMP[START+LEN -1: START]);
ZF < (DEST = 0);

Flags Affected
ZF is updated based on the result. AF, SF, and PF are undefined. All other flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent
BEXTR: unsigned __int32 _bextr_u32(unsigned __int32 sr¢, unsigned __int32 start. unsigned __int32 len);

BEXTR: unsigned __int64 _bextr_u64(unsigned __int64 src, unsigned __int32 start. unsigned __int32 len);

SIMD Floating-Point Exceptions
None

Ref. # 319433-014 7-3

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Other Exceptions
See Table 2-22.

7-4 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

BLSI — Extract Lowest Set Isolated Bit

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEX.NDD.LZ.0OF38.WO F3 /3 A VIV BMI1 Extract lowest set bit from r/m32 and set that bit in r32.

BLSIr32, r/m32

VEX.NDD.LZ.OF38W1 F3 /3 A V/N.E. BMI1 Extract lowest set bit from r/m64, and set that bit in r64.
BLSI r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A VEX.vvvv (w) ModRM:r/m (r) NA NA
Description

Extracts the lowest set bit from the source operand and set the corresponding bit in the destination register. All
other bits in the destination operand are zeroed. If no bits are set in the source operand, BLSI sets all the bits in
the destination to 0 and sets ZF and CF.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

temp <« (-SRC) bitwiseAND (SRC);
SF « temp[OperandSize -1];
ZF « (temp = 0);
IFSRC=0
CF«O;
ELSE
CF«1;
Fl
DEST « temp;

Flags Affected
ZF and SF are updated based on the result. CF is set if the source is not zero. OF flags are cleared. AF and PF
flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent
BLSI: unsigned __int32 _blsi_u32(unsigned __int32 src);
BLSI: unsigned __int64 _blsi_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-22.

Ref. # 319433-014 7-5

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

BLSMSK — Get Mask Up to Lowest Set Bit

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEX.NDD.LZ.OF38.WO0 F3 /2 A VIV BMI1 Set all lower bits in r32 to “1” starting from bit O to lowest set bit in
BLSMSK r32, r/m32 r/m32.
VEX.NDD.LZ.OF38.W1 F3 /2 A V/N.E. BMI1 Set all lower bits in r64 to “1" starting from bit O to lowest set bit in
BLSMSK r64, r/m64 r/m64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A VEX.vvvv (w) ModRM:r/m (r) NA NA
Description

Sets all the lower bits of the destination operand to “1” up to and including lowest set bit (=1) in the source
operand. If source operand is zero, BLSMSK sets all bits of the destination operand to 1 and also sets CF to 1.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in hon-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

temp « (SRC-1) XOR (SRC) ;
SF « temp[OperandSize -1];
ZF < 0O;
IFSRC=0
CF«T;
ELSE
CF«O;
Fl
DEST « temp;

Flags Affected

SF is updated based on the result. CF is set if the source if zero. ZF and OF flags are cleared. AF and PF flag are
undefined.

Intel C/C++ Compiler Intrinsic Equivalent
BLSMSK: unsigned __int32 _blsmsk_u32(unsigned __int32 src);

BLSMSK: unsigned __int64 _blsmsk_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Table 2-22.

7-6 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

BLSR — Reset Lowest Set Bit

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEX.NDD.LZ.OF38.WO0 F3 /1 A VIV BMI1 Reset lowest set bit of r/m32, keep all other bits of r/m32 and write
BLSR r32, r/m32 result to r32.
VEX.NDD.LZ.OF38.W1 F3 /1 A VINE. BMI Reset lowest set bit of r/m64, keep all other bits of r/m64 and write
BLSR r64, r/m64 result to r64.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A VEX.vvwv (w) ModRM:r/m (r) NA NA
Description

Copies all bits from the source operand to the destination operand and resets (=0) the bit position in the destina-
tion operand that corresponds to the lowest set bit of the source operand. If the source operand is zero BLSR sets
CF.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

temp « (SRC-1) bitwiseAND (SRC);
SF « temp[OperandSize -1];
ZF « (temp = 0);
IFSRC=0
CF«T1;
ELSE
CF«O;
Fl
DEST « temp;

Flags Affected

ZF and SF flags are updated based on the result. CF is set if the source is zero. OF flag is cleared. AF and PF flags
are undefined.

Intel C/C++ Compiler Intrinsic Equivalent
BLSR: unsigned __int32 _blsr_u32(unsigned __int32 src);
BLSR: unsigned __int64 _blsr_ub64(unsigned __int64 src);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Table 2-22.

Ref. # 319433-014 7-7

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

BZHI — Zero High Bits Starting with Specified Bit Position

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag

VEXNDS'LZOF38WOF5/r A VIV BMI2 Zero bits in r/m32 starting with the position in r32b, write result to
BZHI r32a, r/m32, r32b r3ca.

VEXNDS'LZOF38W1F5/r A V/INE. BMI2 Zero bits in r/m64 starting with the position in r64b, write result to
BZHI r64a, r/m64, r64b rbda.
NOTES:

1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third
operand).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) VEX.vwwv (r) NA
Description

BZHI copies the bits of the first source operand (the second operand) into the destination operand (the first
operand) and clears the higher bits in the destination according to the INDEX value specified by the second source
operand (the third operand). The INDEX is specified by bits 7:0 of the second source operand. The INDEX value is
saturated at the value of OperandSize -1. CF is set, if the number contained in the 8 low bits of the third operand is
greater than OperandSize -1.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

N « SRC2[7:0]
DEST « SRC1
IF (N < OperandSize)
DEST[OperandSize-1:N] « 0
Fl
IF (N > OperandSize - 1)
CF«1
ELSE
CF«0
Fl

Flags Affected
ZF, CF and SF flags are updated based on the result. OF flag is cleared. AF and PF flags are undefined.

Intel C/C++ Compiler Intrinsic Equivalent
BZHI: unsigned __int32 _bzhi_u32(unsigned __int32 src, unsigned __int32 index);

BZHI; unsigned __int64 _bzhi_u64(unsigned __int64 src, unsigned __int32 index);

SIMD Floating-Point Exceptions
None

7-8 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Other Exceptions
See Table 2-22.

Ref. # 319433-014 7-9

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

LZCNT— Count the Number of Leading Zero Bits

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
F30FBD /r A VIV LZCNT Count the number of leading zero bits in r/m16, return result in r16.

LZCNT r16, r/m16

F30FBD/r A VIV LZCNT Count the number of leading zero bits in r/m32, return result in r32.
LZCNT r32, r/m32

REXW + F30FBD /r A VINE. LZCNT Count the number of leading zero bits in r/m64, return result in r64.
LZCNT r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Counts the number of leading most significant zero bits in a source operand (second operand) returning the result
into a destination (first operand).

LZCNT differs from BSR. For example, LZCNT will produce the operand size when the input operand is zero. It
should be noted that on processors that do not support LZCNT, the instruction byte encoding is executed as BSR.

In 64-bit mode 64-bit operand size requires REX.W=1.

Operation

temp « OperandSize - 1
DEST « 0
WHILE (temp >= 0) AND (Bit(SRC, temp) = 0)
DO
temp « temp - 1
DEST « DEST+ 1
oD

IF DEST = OperandSize
CF«1

ELSE
CF«0

Fl

IFDEST =0
ZF 1
ELSE
ZF <0
Fl

Flags Affected

ZF flag is set to 1 in case of zero output (most significant bit of the source is set), and to 0 otherwise, CF flag is set
to 1 if input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

7-10 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Intel C/C++ Compiler Intrinsic Equivalent
LZCNT: unsigned __int32 _lzcnt_u32(unsigned __int32 src);

LZCNT: unsigned __int64 _lzcnt_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-21.

Ref. # 319433-014 7-11

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

MULX — Unsigned Multiply Without Affecting Flags

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEXNDD.LZF2.0F38WOF6/r A VIV BMI2 Unsigned multiply of r/m32 with EDX without affecting arithmetic
MULX r32a, r32b, r/m32 flags.

VEX.NDD.LZF2.0F38W1F6/r A VINE. BMI2 Unsigned multiply of r/m64 with RDX without affecting arithmetic
MULX r64a, r64b, r/m64 flags.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv (w) ModRM:r/m (r) RDX/EDX is implied 64/32 bits
source
Description

Performs an unsigned multiplication of the implicit source operand (EDX/RDX) and the specified source operand
(the third operand) and stores the low half of the result in the second destination (second operand), the high half
of the result in the first destination operand (first operand), without reading or writing the arithmetic flags. This
enables efficient programming where the software can interleave add with carry operations and multiplications.

If the first and second operand are identical, it will contain the high half of the multiplication result.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation
// DEST1: ModRMireg
// DEST2: VEX.vwvv
IF (OperandSize = 32)
SRC1 « EDX;
DEST2 « (SRC1*SRC2)[31:0];
DEST1 « (SRC1*SRC2)[63:32];
ELSE IF (OperandSize = 64)
SRC1 « RDX;
DEST2 « (SRC1*SRC2)[63:0];
DEST1 « (SRC1*SRC2)[127:64];
Fl

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language when possible.
unsigned int mulx_u32(unsigned int a, unsigned int b, unsigned int * hi);
unsigned __int64 mulx_u64(unsigned __int64 a, unsigned __int64 b, unsigned ___int64 * hi);

SIMD Floating-Point Exceptions
None

7-12 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Other Exceptions
See Table 2-22.

Ref. # 319433-014 7-13

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

PDEP — Parallel Bits Deposit

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEXNDS.LZF2.0F38WOF5/r A VIV BMI2 Parallel deposit of bits from r32b using mask in r/m32, result is writ-
PDEP r32a, r32b, r/m32 tentor32a.

VEXNDS.LZF2.0F38W1F5/r A V/IN.E. BMI2 Parallel deposit of bits from r64b using mask in r/m64, result is writ-
PDEP r643, r64b, r/m64 ten to ré4a

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

PDEP uses a mask in the second source operand (the third operand) to transfer/scatter contiguous low order bits
in the first source operand (the second operand) into the destination (the first operand). PDEP takes the low bits
from the first source operand and deposit them in the destination operand at the corresponding bit locations that
are set in the second source operand (mask). All other bits (bits not set in mask) in destination are set to zero.

SRCL 1551/S30] SadS2s[S27| = — — - | S7| Se|Ss [Sa| S3| Sg Si| So

SRC2

(mask)o olof1 o] - — — 10/0/0/1/60

DEST | 0/ 0|0 [S3| Ol - — — _|s,|] 0|S;|0| 0[sy[0] O

Figure 7-1. PDEP Example

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

TEMP « SRCT;

MASK « SRC2;

DEST «0;

m« 0, ke~ 0;

DO WHILE m< OperandSize

IF MASK[m] =1 THEN

DEST[m] « TEMP[k];
k«—k+1;

Fl

m«m+1;

7-14 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

0D

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
PDEP: unsigned __int32 _pdep_u32(unsigned __int32 src, unsigned __int32 mask);

PDEP; unsigned __int64 _pdep_u64(unsigned __int64 src, unsigned __int32 mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-22.

Ref. # 319433-014 7-15

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

PEXT — Parallel Bits Extract

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
VEXNDS.LZF3.0F38WOF5/r A VIV BMI2 Parallel extract of bits from r32b using mask in r/m32, result is writ-
PEXT r32a, r32b, r/m32 ten to r32a.

VEXNDS.LZF3.0F38W1F5/r A VINE. BMI2 Parallel extract of bits from r64b using mask in r/m64, result is writ-
PEXT r64a, r64b, r/m64 ten to rb4a.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) VEX.vvwv (r) ModRM:r/m (r) NA
Description

PEXT uses a mask in the second source operand (the third operand) to transfer either contiguous or non-contig-
uous bits in the first source operand (the second operand) to contiguous low order bit positions in the destination
(the first operand). For each bit set in the MASK, PEXT extracts the corresponding bits from the first source operand
and writes them into contiguous lower bits of destination operand. The remaining upper bits of destination are
zeroed.

SRC1
S31[S30| S29S28(S27| = — — - | S7| S6|S5 | Sa| S3| Sz S1| So
SRC2 " ToTof1 [0]-——-[1f0o [1]lo]0o] 1] 0] o0
(mask)
DEST [0 | 0|00 |0 |- — ——-| O|0O | O|0 [SyS7 |S5|S2
bit3] - — — — — — — — — — — — — — — — — — - bit O

Figure 7-2. PEXT Example

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in hon-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

TEMP « SRC1;

MASK « SRC2;

DEST «0;

m« 0, k< 0;

DO WHILE m< OperandSize

IF MASK[m] = 1 THEN
DEST[k] « TEMP[m];
k«—kt+1;

7-16 Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Fl
m«m+1;

0D

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
PEXT: unsigned __int32 _pext_u32(unsigned __int32 src, unsigned __int32 mask);

PEXT: unsigned __int64 _pext_u64(unsigned __int64 src, unsigned __int32 mask);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-22.

Ref. # 319433-014 7-17

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

RORX — Rotate Right Logical Without Affecting Flags

Opcode/Instruction Op/ 64/32
En -bit
Mode
VEX.LZ.F2.0F3A.WO0 FO /r ib A VIV

RORX r32, r/m32, imm8

VEX.LZ.F2.0F3AW1 FO /rib A V/N.E.
RORX r64, r/m64, imm8

CPUID
Feature
Flag

BMI2

BMI2

Description

Rotate 32-bit r/m32 right imm8 times without affecting arithmetic
flags.

Rotate 64-bit r/m64 right imm8 times without affecting arithmetic
flags.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

Rotates the bits of second operand right by the count value specified in imm8 without affecting arithmetic flags.
The RORX instruction does not read or write the arithmetic flags.

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in hon-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

Operation

IF (OperandSize = 32)

y < imm8 AND 1FH;

DEST « (SRC >> y) | (SRC << (32-y));
ELSEIF (OperandSize = 64)

y « imm8 AND 3FH;

DEST « (SRC >> y) | (SRC << (64-y));
ENDIF

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

Auto-generated from high-level language.

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-22.

7-18

Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

SARX/SHLX/SHRX — Shift Without Affecting Flags

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag

VEXNDS'.LZF3.0F38WOF7/r A VIV BMI2 Shift r/m32 arithmetically right with count specified in r32b.
SARX 1323, r/m32, r32b

VEXNDS'.LZ.66.0F38WOF7/r A A% BMI2 Shift r/m32 logically left with count specified in r32b.
SHLXr32a, r/m32, r32b

VEXNDS'.LZF2.0F38WOF7/r A VIV BMI2 Shift r/m32 logically right with count specified in r32b.
SHRXr32a, r/m32, r32b

VEXNDS'.LZF3.0F38W1 F7/r A V/NE. BMI2 Shift r/m64 arithmetically right with count specified in r64b.
SARX r64a, r/m64, ré4b

VEXNDS'.LZ66.0F38W1E7/r A V/NE. BMI2 Shift r/m64 logically left with count specified in r64b.
SHLX r64a, r/m64, r64b

VEXNDS'.LZF2.0F38W1 E7/r A V/NE. BMI2 Shift r/m64 logically right with count specified in ré4b.
SHRX r64a, r/m64, ré4b
NOTES:

1. ModRM:r/m is used to encode the first source operand (second operand) and VEX.vvvv encodes the second source operand (third
operand).

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) VEX.vvwv (r) NA
Description

Shifts the bits of the first source operand (the second operand) to the left or right by a COUNT value specified in
the second source operand (the third operand). The result is written to the destination operand (the first operand).

The shift arithmetic right (SARX) and shift logical right (SHRX) instructions shift the bits of the destination operand
to the right (toward less significant bit locations), SARX keeps and propagates the most significant bit (sign bit)
while shifting.

The logical shift left (SHLX) shifts the bits of the destination operand to the left (toward more significant bit loca-
tions).

This instruction is not supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in
64-bit mode. In 64-bit mode operand size 64 requires VEX.W1. VEX.W1 is ignored in non-64-bit modes. An
attempt to execute this instruction with VEX.L not equal to O will cause #UD.

If the value specified in the first source operand exceeds OperandSize -1, the COUNT value is masked.
SARX,SHRX, and SHLX instructions do not update flags.

Operation

TEMP « SRCT;
IF VEXW1andCS.L=1
THEN

countMASK «3FH;

Ref. # 319433-014 7-19

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

ELSE
countMASK «1FH;
Fl
COUNT « (SRC2 AND countMASK)

DEST[OperandSize -1] = TEMP[OperandSize -1];
DO WHILE (COUNT != 0)
IF instruction is SHLX
THEN
DESTI[] « DEST *2;
ELSE IF instruction is SHRX
THEN
DEST[] «— DEST /2; //unsigned divide
ELSE // SARX
DEST[] «<— DEST /2; // signed divide, round toward negative infinity
Fl;
COUNT « COUNT - 1;
oD

Flags Affected
None.

Intel C/C++ Compiler Intrinsic Equivalent
Auto-generated from high-level language.

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-22.

7-20

Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

TZCNT — Count the Number of Trailing Zero Bits

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
F30FBC/r A VIV BMI1 Count the number of trailing zero bits in r/m16, return result in r16.

TZCNT r16, r/m16

F3 OF BC/r A VIV BMIN Count the number of trailing zero bits in r/m32, return result in r32
TZCNT r32, r/m32

REXW + F3 OF BC /r A V/N.E. BMI1 Count the number of trailing zero bits in r/m64, return result in r64.
TZCNT r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (w) ModRM:r/m (r) NA NA
Description

TZCNT counts the number of trailing least significant zero bits in source operand (second operand) and returns the
result in destination operand (first operand). TZCNT is an extension of the BSF instruction. The key difference
between TZCNT and BSF instruction is that TZCNT provides operand size as output when source operand is zero
while in the case of BSF instruction, if source operand is zero, the content of destination operand are undefined. On
processors that do not support TZCNT, the instruction byte encoding is executed as BSF.

Operation

temp < 0O
DEST « O
DO WHILE ((temp < OperandSize) and (SRC[temp] = 0))

temp « temp +1
DEST « DEST+ 1
oD

IF DEST = OperandSize
CF«1

ELSE
CF«<0

Fl

IFDEST =0
ZF <1
ELSE
ZF <0
Fl

Flags Affected

ZF is set to 1 in case of zero output (least significant bit of the source is set), and to O otherwise, CF is set to 1 if
the input was zero and cleared otherwise. OF, SF, PF and AF flags are undefined.

Ref. # 319433-014 7-21

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Intel C/C++ Compiler Intrinsic Equivalent
TZCNT: unsigned __int32 _tzcnt_u32(unsigned __int32 src);

TZCNT: unsigned __int64 _tzcnt_u64(unsigned __int64 src);

SIMD Floating-Point Exceptions
None

Other Exceptions
See Table 2-21.

7-22

Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

INVPCID — Invalidate Processor Context ID

Opcode/Instruction Op/ 64/32 CPUID Description
En -bit Feature
Mode Flag
66 0F 3882 /r A NE/NV INVPCID Invalidates entries in the TLBs and paging-structure caches based on
INVPCID r32, m128 invalidation type in r32 and descriptor in m128.
66 OF 3882 /r A V/NE INVPCID Invalidates entries in the TLBs and paging-structure caches based on
INVPCID r64, m128 invalidation type in r64 and descriptor in m128.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r) ModRM:r/m (r) NA NA
Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on the invali-
dation type specified in the first operand and processor context identifier (PCID) invalidate descriptor specified in
the second operand. The INVPCID descriptor is specified as a 16-byte memory operand and has no alignment
restriction.

The layout of the INVPCID descriptor is shown in Figure 7-3. In 64-bit mode the linear address field (bits 127:64)
in the INVPCID descriptor must satisfy canonical requirement unless the linear address field is ignored.

127 64 63 12 11 0
Linear Address Reserved (must be zero) | PCID |

Figure 7-3. INVPCID Descriptor

Outside 1A-32e mode, the register operand is always 32 bits, regardless of the value of CS.D. In 64-bit mode the
register operand has 64 bits; however, if bits 63:32 of the register operand are not zero, INVPCID fails due to an
attempt to use an unsupported INVPCID type (see below).

The INVPCID types supported by a logical processors are:

® Individual-address invalidation: If the INVPCID type is 0, the logical processor invalidates mappings for a single
linear address and tagged with the PCID specified in the INVPCID descriptor, except global translations. The
instruction may also invalidate global translations, mappings for other linear addresses, or mappings tagged
with other PCIDs.

® Single-context invalidation: If the INVPCID type is 1, the logical processor invalidates all mappings tagged with
the PCID specified in the INVPCID descriptor except global translations. In some cases, it may invalidate
mappings for other PCIDs as well.

® All-context invalidation: If the INVPCID type is 2, the logical processor invalidates all mappings tagged with any
PCID.

® All-context invalidation, retaining global translations: If the INVPCID type is 3, the logical processor invalidates
all mappings tagged with any PCID except global translations, ignoring the INVPCID descriptor. The instruction
may also invalidate global translations as well.

If an unsupported INVPCID type is specified, or if the reserved field in the descriptor is not zero, the instruction
fails.

Ref. # 319433-014 7-23

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Outside 1A-32e mode, the processor treats INVPCID as if all mappings are associated with PCID OOO0H.

Operation

INVPCID_TYPE « value of register operand; // must be in the range of 0-3
INVPCID_DESC « value of memory operand;

CASE INVPCID_TYPE OF
// individual-address invalidation retaining global translations

OP_PCID « INVPCID_DESC[11:0];
ADDR « INVPCID_DESC[127:64];
Invalidate mappings for ADDR tagged with OP_PCID except global translations;

// single PCID invalidation retaining globals

OP_PCID « INVPCID_DESC[11:0];
Invalidate all mappings tagged with OP_PCID except global translations;

// all PCID invalidation

Invalidate all mappings tagged with any PCID;

// all PCID invalidation retaining global translations

Invalidate all mappings tagged with any PCID except global translations;

(05
BREAK;

1:
BREAK;

2:
BREAK;

3:
BREAK;

ESAC;

Intel C/C++ Compiler Intrinsic Equivalent

INVPCID: void _invpcid(unsigned __int32 type, void * descriptor);

SIMD Floating-Point Exceptions

None

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD

If the current privilege level is not O.

If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

If an invalid type is specified in the register operand, i.e., INVPCID_TYPE > 3.

If bits 63:12 of INVPCID_DESC are not all zero.

If CR4.PCIDE=0, INVPCID_DESC[11:0] is not zero, and INVPCID_TYPE is either O, or 1.
If a page fault occurs in accessing the memory operand.

If the memory operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.

If if CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0)

#UD

7-24

If an invalid type is specified in the register operand, i.e INVPCID_TYPE > 3.

If bits 63:12 of INVPCID_DESC are not all zero.

If CR4.PCIDE=0, INVPCID_DESC[11:0] is not zero, and INVPCID_TYPE is either O, or 1.
If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.

If the LOCK prefix is used.

Ref. #319433-014

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

Virtual-8086 Mode Exceptions

#UD

The INVPCID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD

Ref. # 319433-014

If the current privilege level is not O.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is
in a non-canonical form.

If an invalid type is specified in the register operand.

If an invalid type is specified in the register operand, i.e INVPCID_TYPE > 3.

If bits 63:12 of INVPCID_DESC are not all zero.

If CR4.PCIDE=0, INVPCID_DESC[11:0] is not zero, and INVPCID_TYPE is either O, or 1.
If INVPCID_TYPE is 0, INVPCID_DESC[127:64] is not a canonical address.

If a page fault occurs in accessing the memory operand.

If the memory destination operand is in the SS segment and the memory address is in a non-
canonical form.

If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.INVPCID (bit 10) = 0.

7-25

INSTRUCTION SET REFERENCE - VEX-ENCODED GPR INSTRUCTIONS

7-26 Ref. #319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

CHAPTER 8
INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

8.1 OVERVIEW

This chapter describes the software programming interface to the Intel® Transactional Synchronization Extensions
of the Intel 64 architecture.

Multithreaded applications take advantage of increasing number of cores to achieve high performance. However,
writing multi-threaded applications requires programmers to reason about data sharing among multiple threads.
Access to shared data typically requires synchronization mechanisms. These mechanisms ensure multiple threads
update shared data by serializing operations on the shared data, often through the use of a critical section
protected by a lock. Since serialization limits concurrency, programmers try to limit synchronization overheads.
They do this either through minimizing the use of synchronization or through the use of fine-grain locks; where
multiple locks each protect different shared data. Unfortunately, this process is difficult and error prone; a missed
or incorrect synchronization can cause an application to fail. Conservatively adding synchronization and using
coarser granularity locks, where a few locks each protect many items of shared data, helps avoid correctness prob-
lems but limits performance due to excessive serialization. While programmers must use static information to
determine when to serialize, the determination as to whether actually to serialize is best done dynamically.

8.2 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Intel® Transactional Synchronization Extensions (Intel® TSX) allow the processor to determine dynamically
whether threads need to serialize through lock-protected critical sections, and to perform serialization only when
required. This lets the processor to expose and exploit concurrency hidden in an application due to dynamically
unnecessary synchronization.

With Intel TSX, programmer-specified code regions (also referred to as transactional regions) are executed
transactionally. If the transactional execution completes successfully, then all memory operations performed within
the transactional region will appear to have occurred instantaneously when viewed from other logical processors.
A processor makes architectural updates performed within the region visible to other logical processors only on a
successful commit, a process referred to as an atomic commit.

Intel TSX provides two software interfaces to specify regions of code for transactional execution. Hardware Lock
Elision (HLE) is a legacy compatible instruction set extension (comprising the XACQUIRE and XRELEASE prefixes)
to specify transactional regions. Restricted Transactional Memory (RTM) is a new instruction set interface
(comprising the XBEGIN, XEND, and XABORT instructions) for programmers to define transactional regions in a
more flexible manner than that possible with HLE. HLE is for programmers who prefer the backward compatibility
of the conventional mutual exclusion programming model and would like to run HLE-enabled software on legacy
hardware but would also like to take advantage of the new lock elision capabilities on hardware with HLE support.
RTM is for programmers who prefer a flexible interface to the transactional execution hardware. In addition, Intel
TSX also provides an XTEST instruction. This instruction allows software to query whether the logical processor is
transactionally executing in a transactional region identified by either HLE or RTM.

Since a successful transactional execution ensures an atomic commit, the processor executes the code region opti-
mistically without explicit synchronization. If synchronization was unnecessary for that specific execution, execu-
tion can commit without any cross-thread serialization. If the processor cannot commit atomically, the optimistic
execution fails. When this happens, the processor will roll back the execution, a process referred to as a transac-
tional abort. On a transactional abort, the processor will discard all updates performed in the region, restore
architectural state to appear as if the optimistic execution never occurred, and resume execution non-transaction-
ally.

A processor can perform a transactional abort for numerous reasons. A primary cause is due to conflicting accesses
between the transactionally executing logical processor and another logical processor. Such conflicting accesses
may prevent a successful transactional execution. Memory addresses read from within a transactional region
constitute the read-set of the transactional region and addresses written to within the transactional region consti-
tute the write-set of the transactional region. Intel TSX maintains the read- and write-sets at the granularity of a
cache line. A conflicting access occurs if another logical processor either reads a location that is part of the trans-

Ref. # 319433-014 8-1

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

actional region’s write-set or writes a location that is a part of either the read- or write-set of the transactional
region. A conflicting access typically means serialization is indeed required for this code region. Since Intel TSX
detects data conflicts at the granularity of a cache line, unrelated data locations placed in the same cache line will
be detected as conflicts. Transactional aborts may also occur due to limited transactional resources. For example,
the amount of data accessed in the region may exceed an implementation-specific capacity. Additionally, some
instructions and system events may cause transactional aborts. Frequent transactional aborts cause wasted cycles.

8.2.1 Hardware Lock Elision

Hardware Lock Elision (HLE) provides a legacy compatible instruction set interface for programmers to do transac-
tional execution. HLE provides two new instruction prefix hints: XACQUIRE and XRELEASE.

The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that is
protecting the critical section. The processor treats the indication as a hint to elide the write associated with the
lock acquire operation. Even though the lock acquire has an associated write operation to the lock, the processor
does not add the address of the lock to the transactional region’s write-set nor does it issue any write requests to
the lock. Instead, the address of the lock is added to the read-set. The logical processor enters transactional execu-
tion. If the lock was available before the XACQUIRE prefixed instruction, all other processors will continue to see it
as available afterwards. Since the transactionally executing logical processor neither added the address of the lock
to its write-set nor performed externally visible write operations to it, other logical processors can read the lock
without causing a data conflict. This allows other logical processors to also enter and concurrently execute the crit-
ical section protected by the lock. The processor automatically detects any data conflicts that occur during the
transactional execution and will perform a transactional abort if necessary.

Even though the eliding processor did not perform any external write operations to the lock, the hardware ensures
program order of operations on the lock. If the eliding processor itself reads the value of the lock in the critical
section, it will appear as if the processor had acquired the lock, i.e. the read will return the non-elided value. This
behavior makes an HLE execution functionally equivalent to an execution without the HLE prefixes.

The programmer uses the XRELEASE prefix in front of the instruction that is used to release the lock protecting the
critical section. This involves a write to the lock. If the instruction is restoring the value of the lock to the value it
had prior to the XACQUIRE prefixed lock acquire operation on the same lock, then the processor elides the external
write request associated with the release of the lock and does not add the address of the lock to the write-set. The
processor then attempts to commit the transactional execution.

With HLE, if multiple threads execute critical sections protected by the same lock but they do not perform any
conflicting operations on each other’s data, then the threads can execute concurrently and without serialization.
Even though the software uses lock acquisition operations on a common lock, the hardware recognizes this, elides
the lock, and executes the critical sections on the two threads without requiring any communication through the
lock — if such communication was dynamically unnecessary.

If the processor is unable to execute the region transactionally, it will execute the region non-transactionally and
without elision. HLE enabled software has the same forward progress guarantees as the underlying non-HLE lock-
based execution. For successful HLE execution, the lock and the critical section code must follow certain guidelines
(discussed in Section 8.3.3 and Section 8.3.8). These guidelines only affect performance; not following these
guidelines will not cause a functional failure.

Hardware without HLE support will ignore the XACQUIRE and XRELEASE prefix hints and will not perform any
elision since these prefixes correspond to the REPNE/REPE 1A-32 prefixes which are ignored on the instructions
where XACQUIRE and XRELEASE are valid. Importantly, HLE is compatible with the existing lock-based program-
ming model. Improper use of hints will not cause functional bugs though it may expose latent bugs already in the
code.

8.2.2 Restricted Transactional Memory

Restricted Transactional Memory (RTM) provides a flexible software interface for transactional execution. RTM
provides three new instructions—XBEGIN, XEND, and XABORT—for programmers to start, commit, and abort a
transactional execution.

The programmer uses the XBEGIN instruction to specify the start of the transactional code region and the XEND
instruction to specify the end of the transactional code region. The XBEGIN instruction takes an operand that

8-2 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

provides a relative offset to the fallback instruction address if the RTM region could not be successfully
executed transactionally.

A processor may abort RTM transactional execution for many reasons. The hardware automatically detects trans-
actional abort conditions and restarts execution from the fallback instruction address with the architectural state
corresponding to that at the start of the XBEGIN instruction and the EAX register updated to describe the abort
status.

The XABORT instruction allows programmers to abort the execution of an RTM region explicitly. The XABORT
instruction takes an 8 bit immediate argument that is loaded into the EAX register and will thus be available to soft-
ware following an RTM abort.

RTM instructions do not have any data memory location associated with them. While the hardware provides no
guarantees as to whether an RTM region will ever successfully commit transactionally, most transactions that
follow the recommended guidelines (See Section 8.3.8) are expected to successfully commit transactionally.
However, programmers must always provide an alternative code sequence in the fallback path to guarantee
forward progress. This may be as simple as acquiring a lock and executing the specified code region non-transac-
tionally. Further, a transaction that always aborts on a given implementation may complete transactionally on a
future implementation. Therefore, programmers must ensure the code paths for the transactional region and the
alternative code sequence are functionally tested.

8.3 INTEL® TSX APPLICATION PROGRAMMING MODEL

8.3.1 Detection of Transactional Synchronization Support

8.3.1.1 Detection of HLE Support

A processor supports HLE execution if CPUID.07H.EBX.HLE [bit 4] = 1. However, an application can use the HLE
prefixes (XACQUIRE and XRELEASE) without checking whether the processor supports HLE. Processors without
HLE support ignore these prefixes and will execute the code without entering transactional execution.

8.3.1.2 Detection of RTM Support

A processor supports RTM execution if CPUID.07H.EBX.RTM [bit 11] = 1. An application must check if the processor
supports RTM before it uses the RTM instructions (XBEGIN, XEND, XABORT). These instructions will generate a
#UD exception when used on a processor that does not support RTM.

8.3.1.3 Detection of XTEST Instruction

A processor supports the XTEST instruction if it supports either HLE or RTM. An application must check either of
these feature flags before using the XTEST instruction. This instruction will generate a #UD exception when used
on a processor that does not support either HLE or RTM.

8.3.2 Querying Transactional Execution Status

The XTEST instruction can be used to determine the transactional status of a transactional region specified by HLE
or RTM. Note, while the HLE prefixes are ignored on processors that do not support HLE, the XTEST instruction will
generate a #UD exception when used on processors that do not support either HLE or RTM.

8.3.3 Requirements for HLE Locks

For HLE execution to successfully commit transactionally, the lock must satisfy certain properties and access to the
lock must follow certain guidelines.

Ref. # 319433-014 8-3

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

® An XRELEASE prefixed instruction must restore the value of the elided lock to the value it had before the lock
acquisition. This allows hardware to safely elide locks by not adding them to the write-set. The data size and
data address of the lock release (XRELEASE prefixed) instruction must match that of the lock acquire
(XACQUIRE prefixed) and the lock must not cross a cache line boundary.

® Software should not write to the elided lock inside a transactional HLE region with any instruction other than an
XRELEASE prefixed instruction, otherwise it may cause a transactional abort. In addition, recursive locks
(where a thread acquires the same lock multiple times without first releasing the lock) may also cause a trans-
actional abort. Note that software can observe the result of the elided lock acquire inside the critical section.
Such a read operation will return the value of the write to the lock.

The processor automatically detects violations to these guidelines, and safely transitions to a non-transactional
execution without elision. Since Intel TSX detects conflicts at the granularity of a cache line, writes to data collo-
cated on the same cache line as the elided lock may be detected as data conflicts by other logical processors eliding
the same lock.

8.34 Transactional Nesting

Both HLE and RTM support nested transactional regions. However, a transactional abort restores state to the oper-
ation that started transactional execution: either the outermost XACQUIRE prefixed HLE eligible instruction or the
outermost XBEGIN instruction. The processor treats all nested transactions as one monolithic transaction.

8.3.4.1 HLE Nesting and Elision

Programmers can nest HLE regions up to an implementation specific depth of MAX_HLE_NEST_COUNT. Each logical
processor tracks the nesting count internally but this count is not available to software. An XACQUIRE prefixed HLE-
eligible instruction increments the nesting count, and an XRELEASE prefixed HLE-eligible instruction decrements it.
The logical processor enters transactional execution when the nesting count goes from zero to one. The logical
processor attempts to commit only when the nesting count becomes zero. A transactional abort may occur if the
nesting count exceeds MAX_HLE_NEST_COUNT.

In addition to supporting nested HLE regions, the processor can also elide multiple nested locks. The processor
tracks a lock for elision beginning with the XACQUIRE prefixed HLE eligible instruction for that lock and ending with
the XRELEASE prefixed HLE eligible instruction for that same lock. The processor can, at any one time, track up to
a MAX_HLE_ELIDED_LOCKS number of locks. For example, if the implementation supports a
MAX_HLE_ELIDED_LOCKS value of two and if the programmer nests three HLE identified critical sections (by
performing XACQUIRE prefixed HLE eligible instructions on three distinct locks without performing an intervening
XRELEASE prefixed HLE eligible instruction on any one of the locks), then the first two locks will be elided, but the
third won't be elided (but will be added to the transaction’s write-set). However, the execution will still continue
transactionally. Once an XRELEASE for one of the two elided locks is encountered, a subsequent lock acquired
through the XACQUIRE prefixed HLE eligible instruction will be elided.

The processor attempts to commit the HLE execution when all elided XACQUIRE and XRELEASE pairs have been
matched, the nesting count goes to zero, and the locks have satisfied the requirements described earlier. If execu-
tion cannot commit atomically, then execution transitions to a non-transactional execution without elision as if the
first instruction did not have an XACQUIRE prefix.

8.3.4.2 RTM Nesting

Programmers can nest RTM regions up to an implementation specific MAX_RTM_NEST_COUNT. The logical
processor tracks the nesting count internally but this count is not available to software. An XBEGIN instruction
increments the nesting count, and an XEND instruction decrements it. The logical processor attempts to commit
only if the nesting count becomes zero. A transactional abort occurs if the nesting count exceeds
MAX_RTM_NEST_COUNT.

8.34.3 Nesting HLE and RTM

HLE and RTM provide two alternative software interfaces to a common transactional execution capability. The
behavior when HLE and RTM are nested together—HLE inside RTM or RTM inside HLE—is implementation specific.
However, in all cases, the implementation will maintain HLE and RTM semantics. An implementation may choose to

8-4 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

ignore HLE hints when used inside RTM regions, and may cause a transactional abort when RTM instructions are
used inside HLE regions. In the latter case, the transition from transactional to non-transactional execution occurs
seamlessly since the processor will re-execute the HLE region without actually doing elision, and then execute the
RTM instructions.

8.3.5 RTM Abort Status Definition

RTM uses the EAX register to communicate abort status to software. Following an RTM abort the EAX register has
the following definition.

Table 8-1. RTM Abort Status Definition

EAX Register Bit Meaning
Position

0 Set if abort caused by XABORT instruction.
1 If set, the transaction may succeed on a retry. This bit is always clear if bit O is set.
2 Set if another logical processor conflicted with a memory address that was part of the transaction that aborted.
3 Set if an internal buffer overflowed.
4 Set if a debug breakpoint was hit.
5 Set if an abort occurred during execution of a nested transaction.

23:6 Reserved.

31:24 XABORT argument (only valid if bit O set, otherwise reserved).

The EAX abort status for RTM only provides causes for aborts. It does not by itself encode whether an abort or
commit occurred for the RTM region. The value of EAX can be 0 following an RTM abort. For example, a CPUID
instruction when used inside an RTM region causes a transactional abort and may not satisfy the requirements for
setting any of the EAX bits. This may result in an EAX value of 0.

8.3.6 RTM Memory Ordering

A successful RTM commit causes all memory operations in the RTM region to appear to execute atomically. A
successfully committed RTM region consisting of an XBEGIN followed by an XEND, even with no memory operations
in the RTM region, has the same ordering semantics as a LOCK prefixed instruction.

The XBEGIN instruction does not have fencing semantics. However, if an RTM execution aborts, all memory
updates from within the RTM region are discarded and never made visible to any other logical processor.

8.3.7 RTM-Enabled Debugger Support

By default, any debug exception inside an RTM region will cause a transactional abort and will redirect control flow
to the fallback instruction address with architectural state recovered and bit 4 in EAX set. However, to allow soft-
ware debuggers to intercept execution on debug exceptions, the RTM architecture provides additional capability.

If bit 11 of DR7 and bit 15 of the 1A32_DEBUGCTL_MSR are both 1, any RTM abort due to a debug exception (#DB)
or breakpoint exception (#BP) causes execution to roll back and restart from the XBEGIN instruction instead of the
fallback address. In this scenario, the EAX register will also be restored back to the point of the XBEGIN instruction.

8.3.8 Programming Considerations

Typical programmer-identified regions are expected to transactionally execute and commit successfully. However,
Intel TSX does not provide any such guarantee. A transactional execution may abort for many reasons. To take full

Ref. # 319433-014 8-5

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

advantage of the transactional capabilities, programmers should follow certain guidelines to increase the proba-
bility of their transactional execution committing successfully.

This section discusses various events that may cause transactional aborts. The architecture ensures that updates
performed within a transaction that subsequently aborts execution will never become visible. Only a committed
transactional execution updates architectural state. Transactional aborts never cause functional failures and only
affect performance.

8.3.8.1 Instruction Based Considerations

Programmers can use any instruction safely inside a transaction (HLE or RTM) and can use transactions at any priv-
ilege level. However, some instructions will always abort the transactional execution and cause execution to seam-
lessly and safely transition to a non-transactional path.

Intel TSX allows for most common instructions to be used inside transactions without causing aborts. The following
operations inside a transaction do not typically cause an abort.

® Operations on the instruction pointer register, general purpose registers (GPRs) and the status flags (CF, OF, SF,
PF, AF, and ZF).

® Operations on XMM and YMM registers and the MXCSR register

However, programmers must be careful when intermixing SSE and AVX operations inside a transactional region.
Intermixing SSE instructions accessing XMM registers and AVX instructions accessing YMM registers may cause
transactions to abort.

Programmers may use REP/REPNE prefixed string operations inside transactions. However, long strings may cause
aborts. Further, the use of CLD and STD instructions may cause aborts if they change the value of the DF flag.
However, if DF is 1, the STD instruction will not cause an abort. Similarly, if DF is O, the CLD instruction will not
cause an abort.

Instructions not enumerated here as causing abort when used inside a transaction will typically not cause a trans-
action to abort (examples include but are not limited to MFENCE, LFENCE, SFENCE, RDTSC, RDTSCP, etc.).

The following instructions will abort transactional execution on any implementation:

¢ XABORT
¢ CPUID
¢ PAUSE

In addition, in some implementations, the following instructions may always cause transactional aborts. These
instructions are not expected to be commonly used inside typical transactional regions. However, programmers
must not rely on these instructions to force a transactional abort, since whether they cause transactional aborts is
implementation dependent.

® Operations on X87 and MMX architecture state. This includes all MMX and X87 instructions, including the
FXRSTOR and FXSAVE instructions.

® Update to non-status portion of EFLAGS: CLI, STI, POPFD, POPFQ, CLTS.

® Instructions that update segment registers, debug registers and/or control registers: MOV to
DS/ES/FS/GS/SS, POP DS/ES/FS/GS/SS, LDS, LES, LFS, LGS, LSS, SWAPGS, WRFSBASE, WRGSBASE, LGDT,
SGDT, LIDT, SIDT, LLDT, SLDT, LTR, STR, Far CALL, Far JMP, Far RET, IRET, MOV to DRx, MOV to
CRO/CR2/CR3/CR4/CR8 and LMSW.

® Ring transitions: SYSENTER, SYSCALL, SYSEXIT, and SYSRET.

® TLB and Cacheability control: CLFLUSH, INVD, WBINVD, INVLPG, INVPCID, and memory instructions with a
non-temporal hint (MOVNTDQA, MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, and MOVNTQ).

® Processor state save: XSAVE, XSAVEOPT, and XRSTOR.
® Interrupts: INTn, INTO.
®]O: IN, INS, REP INS, OUT, OUTS, REP OUTS and their variants.

® VMX: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF,
VMXON, INVEPT, and INVVPID.

® SMX: GETSEC.

8-6 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

¢ UD2, RSM, RDMSR, WRMSR, HLT, MONITOR, MWAIT, XSETBV, VZEROUPPER, MASKMOVQ, and
V/MASKMOVDQU.

8.3.8.2 Runtime Considerations

In addition to the instruction-based considerations, runtime events may cause transactional execution to abort.
These may be due to data access patterns or micro-architectural implementation causes. Keep in mind that the
following list is not a comprehensive discussion of all abort causes.

Any fault or trap in a transaction that must be exposed to software will be suppressed. Transactional execution will
abort and execution will transition to a non-transactional execution, as if the fault or trap had never occurred. If
any exception is not masked, that will result in a transactional abort and it will be as if the exception had never
occurred.

Synchronous exception events (#DE, #0F, #NP, #SS, #GP, #BR, #UD, #AC, #XF, #PF, #NM, #TS, #MF, #DB,
#BP/INT3) that occur during transactional execution may cause an execution not to commit transactionally, and
require a non-transactional execution. These events are suppressed as if they had never occurred. With HLE, since
the non-transactional code path is identical to the transactional code path, these events will typically re-appear
when the instruction that caused the exception is re-executed non-transactionally, causing the associated synchro-
nous events to be delivered appropriately in the non-transactional execution.

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause the
transactional execution to abort and transition to a non-transactional execution. The asynchronous events will be
pended and handled after the transactional abort is processed.

Transactions only support write-back cacheable memory type operations. A transaction may always abort if it
includes operations on any other memory type. This includes instruction fetches to UC memory type.

Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags of the
referenced page table entry. The behavior of how the processor handles this is implementation specific. Some
implementations may allow the updates to these flags to become externally visible even if the transactional region
subsequently aborts. Some Intel TSX implementations may choose to abort the transactional execution if these
flags need to be updated. Further, a processor's page-table walk may generate accesses to its own transactionally
written but uncommitted state. Some Intel TSX implementations may choose to abort the execution of a transac-
tional region in such situations. Regardless, the architecture ensures that, if the transactional region aborts, then
the transactionally written state will not be made architecturally visible through the behavior of structures such as
TLBs.

Executing self-modifying code transactionally may also cause transactional aborts. Programmers must continue to
follow the Intel recommended guidelines for writing self-modifying and cross-modifying code even when employing
HLE and RTM.

While an implementation of RTM and HLE will typically provide sufficient resources for executing common transac-
tional regions, implementation constraints and excessive sizes for transactional regions may cause a transactional
execution to abort and transition to a non-transactional execution. The architecture provides no guarantee of the

amount of resources available to do transactional execution and does not guarantee that a transactional execution
will ever succeed.

Conflicting requests to a cache line accessed within a transactional region may prevent the transaction from
executing successfully. For example, if logical processor PO reads line A in a transactional region and another logical
processor P1 writes A (either inside or outside a transactional region) then logical processor PO may abort if logical
processor P1’s write interferes with processor PQO's ability to execute transactionally. Similarly, if PO writes line A in
a transactional region and Plreads or writes A (either inside or outside a transactional region), then PO may abort
if P1's access to A interferes with PO's ability to execute transactionally. In addition, other coherence traffic may at
times appear as conflicting requests and may cause aborts. While these false conflicts may happen, they are
expected to be uncommon. The conflict resolution policy to determine whether PO or P1 aborts in the above
scenarios is implementation specific.

8.4 INSTRUCTION REFERENCE

Conventions and notations of instruction format can be found in Section 5.1.

Ref. # 319433-014 8-7

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

8-8

Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

XACQUIRE/XRELEASE — Hardware Lock Elision Prefix Hints

Opcode/Instruction 64/32bit CPUID Description
Mode Feature
Support Flag
F2 VIV HLE' A hint used with an “XACQUIRE-enabled” instruction to start lock
XACQUIRE elision on the instruction memory operand address.
F3 VIV HLE A hint used with an “XRELEASE-enabled” instruction to end lock
XRELEASE elision on the instruction memory operand address.
NOTES:

1. Software is not required to check the HLE feature flag to use XACQUIRE or XRELEASE, as they are treated as reqgular prefix if HLE
feature flag reports 0.

Description

The XACQUIRE prefix is a hint to start lock elision on the memory address specified by the instruction and the
XRELEASE prefix is a hint to end lock elision on the memory address specified by the instruction.

The XACQUIRE prefix hint can only be used with the following instructions (these instructions are also referred to
as XACQUIRE-enabled when used with the XACQUIRE prefix):

® Instructions with an explicit LOCK prefix (FOH) prepended to forms of the instruction where the destination
operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG.

® The XCHG instruction either with or without the presence of the LOCK prefix.

The XRELEASE prefix hint can only be used with the following instructions (also referred to as XRELEASE-enabled
when used with the XRELEASE prefix):

® Instructions with an explicit LOCK prefix (FOH) prepended to forms of the instruction where the destination
operand is a memory operand: ADD, ADC, AND, BTC, BTR, BTS, CMPXCHG, CMPXCHGS8B, DEC, INC, NEG, NOT,
OR, SBB, SUB, XOR, XADD, and XCHG.

® The XCHG instruction either with or without the presence of the LOCK prefix.

® The "MOV mem, reg" (Opcode 88H/89H) and "MOV mem, imm" (Opcode C6H/C7H) instructions. In these
cases, the XRELEASE is recognized without the presence of the LOCK prefix.

The lock variables must satisfy the guidelines described in Section 8.3.3 for elision to be successful, otherwise an
HLE abort may be signaled.

If an encoded byte sequence that meets XACQUIRE/XRELEASE requirements includes both prefixes, then the HLE
semantic is determined by the prefix byte that is placed closest to the instruction opcode. For example, an F3F2C6
will not be treated as a XRELEASE-enabled instruction since the F2H (XACQUIRE) is closest to the instruction
opcode C6. Similarly, an F2F3FO prefixed instruction will be treated as a XRELEASE-enabled instruction since F3H
(XRELEASE) is closest to the instruction opcode.

Intel 64 and 1A-32 Compatibility
The effect of the XACQUIRE/XRELEASE prefix hint is the same in non-64-bit modes and in 64-bit mode.

For instructions that do not support the XACQUIRE hint, the presence of the F2H prefix behaves the same way as
prior hardware, according to

® REPNE/REPNZ semantics for string instructions,

® Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
® Cause #UD if prepending the VEX prefix.

® Undefined for non-string instructions or other situations.

For instructions that do not support the XRELEASE hint, the presence of the F3H prefix behaves the same way as
in prior hardware, according to

® REP/REPE/REPZ semantics for string instructions,

Ref. # 319433-014 8-9

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

® Serve as SIMD prefix for legacy SIMD instructions operating on XMM register
® Cause #UD if prepending the VEX prefix.

® Undefined for non-string instructions or other situations.

Operation
XACQUIRE
IF XACQUIRE-enabled instruction
THEN
IF (HLE_NEST_COUNT < MAX_HLE_NEST_COUNT) THEN
HLE_NEST_COUNT++
IF (HLE_NEST_COUNT = 1) THEN
HLE_ACTIVE « 1
IF 64-bit mode
THEN
restartRIP « instruction pointer of the XACQUIRE-enabled instruction
ELSE
restart€lP « instruction pointer of the XACQUIRE-enabled instruction
Fl;
Enter HLE Execution (* record register state, start tracking memory state *)
FI; (* HLE_NEST_COUNT = 1%)
IF ElisionBufferAvailable
THEN
Allocate elision buffer
Record address and data for forwarding and commit checking
Perform elision
ELSE
Perform lock acquire operation transactionally but without elision
Fl;
ELSE (* HLE_NEST_COUNT = MAX_HLE_NEST_COUNT *)
GOTO HLE_ABORT_PROCESSING
Fl;
ELSE
Treat instruction as non-XACQUIRE F2H prefixed legacy instruction
Fl;

XRELEASE

IF XRELEASE-enabled instruction
THEN
IF (HLE_NEST_COUNT > 0)
THEN
HLE_NEST_COUNT--
IF lock address matches in elision buffer THEN
IF lock satisfies address and value requirements THEN
Deallocate elision buffer
ELSE
GOTO HLE_ABORT_PROCESSING

Fl;
Fl;
IF (HLE_NEST_COUNT = 0)
THEN
IF NoAllocatedElisionBuffer
THEN

8-10

Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Try to commit transaction
IF fail to commit transaction
THEN
GOTO HLE_ABORT_PROCESSING;
ELSE (* commit success *)
HLE_ACTIVE «+ O

FI;
ELSE
GOTO HLE_ABORT_PROCESSING
Fl;
Fl;
Fl; (* HLE_NEST_COUNT >0 %)

ELSE
Treat instruction as non-XRELEASE F3H prefixed legacy instruction
Fl;

(* For any HLE abort condition encountered during HLE execution *)
HLE_ABORT_PROCESSING:
HLE_ACTIVE < 0O
HLE_NEST_COUNT « 0O
Restore architectural register state
Discard memory updates performed in transaction
Free any allocated lock elision buffers
IF 64-bit mode
THEN
RIP « restartRIP
ELSE
EIP « restart€IP
Fl;
Execute and retire instruction at RIP (or EIP) and ignore any HLE hint
END

SIMD Floating-Point Exceptions
None

Other Exceptions
#GP(0) If the use of prefix causes instruction length to exceed 15 bytes.

Ref. # 319433-014 8-11

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

XABORT — Transaction Abort

Opcode/Instruction Op/ 64/32bit CPUID Description
En Mode Feature
Support Flag
C6F8ib A VIV RTM Causes an RTM abort if in RTM execution
XABORT imm8

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A imm8 NA NA NA
Description

XABORT forces an RTM abort. Following an RTM abort, the logical processor resumes execution at the fallback
address computed through the outermost XBEGIN instruction. The EAX register is updated to reflect an XABORT
instruction caused the abort, and the imm8 argument will be provided in bits 31:24 of EAX.

Operation
XABORT
IFRTM_ACTIVE=0
THEN
Treat as NOP;
ELSE
GOTO RTM_ABORT_PROCESSING;
Fl;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:
Restore architectural register state;
Discard memory updates performed in transaction;
Update EAX with status and XABORT argument;
RTM_NEST_COUNT « O;
RTM_ACTIVE « O;
IF 64-bit Mode
THEN
RIP « fallbackRIP;
ELSE
EIP « fallbackElP;
Fl;
END

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent
XABORT: void _xabort(unsigned int);

SIMD Floating-Point Exceptions
None

8-12 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK prefix is used.

Ref. # 319433-014 8-13

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

XBEGIN — Transaction Begin

Opcode/Instruction Op/ 64/32bit CPUID Description
En Mode Feature
Support Flag
C7 F8 A VIV RTM Specifies the start of an RTM region. Provides a 16-bit relative
XBEGIN rel16 offset to compute the address of the fallback instruction address at

which execution resumes following an RTM abort.

C7 F8 A VIV RTM Specifies the start of an RTM region. Provides a 32-bit relative
XBEGIN rel32 offset to compute the address of the fallback instruction address at
which execution resumes following an RTM abort.

Instruction Operand Encoding

Op/En Operand 1 Operand?2 Operand3 Operand4
A Offset NA NA NA
Description

The XBEGIN instruction specifies the start of an RTM code region. If the logical processor was not already in trans-
actional execution, then the XBEGIN instruction causes the logical processor to transition into transactional execu-
tion. The XBEGIN instruction that transitions the logical processor into transactional execution is referred to as the
outermost XBEGIN instruction. The instruction also specifies a relative offset to compute the address of the fallback
code path following a transactional abort.

On an RTM abort, the logical processor discards all architectural register and memory updates performed during
the RTM execution and restores architectural state to that corresponding to the outermost XBEGIN instruction. The
fallback address following an abort is computed from the outermost XBEGIN instruction.

A relative offset (rell6 or rel32) is generally specified as a label in assembly code, but at the machine code level, it
is encoded as a signed, 16- or 32-bit immediate value. This value is added to the value in the EIP (or RIP) register.
(Here, the EIP (or RIP) register contains the address of the instruction following the XBEGIN instruction).

Operation
XBEGIN
IF RTM_NEST_COUNT < MAX_RTM_NEST_COUNT
THEN
RTM_NEST_COUNT++
IF RTM_NEST_COUNT =1 THEN
IF 64-bit Mode
THEN
tempRIP « RIP + SignExtend(IMM)
(* RIP is instruction following XBEGIN instruction *)
ELSE
tempEIP « EIP + SignExtend(IMM)
(* EIP is instruction following XBEGIN instruction *)
Fl;

IF (IA32_EFER.LMA = 0 or target mode = Compatibility mode)
and temp€ElP outside code segment limit
THEN #GP(0);
Fl;
IF 64-bit mode and tempRIP is not canonical
THEN #GP(0);
Fl;
IF 64-bit Mode

8-14 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

THEN
fallbackRIP « tempRIP
ELSE
IF 16-bit Mode
THEN
fallbackEIP « tempEIP AND OO0OFFFFH
ELSE (* 32-bit mode *)
fallback€IP « tempEIP
Fl;
Fl;
RTM_ACTIVE « 1
Enter RTM Execution (* record register state, start tracking memory state*)
Fl; (* RTM_NEST_COUNT =1 *)
ELSE (* RTM_NEST_COUNT = MAX_RTM_NEST_COUNT *)
GOTO RTM_ABORT_PROCESSING
Fl;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:
Restore architectural register state
Discard memory updates performed in transaction
Update EAX with status
RTM_NEST_COUNT « 0
RTM_ACTIVE < 0O
IF 64-bit mode
THEN
RIP « fallbackRIP
ELSE
EIP « fallback€IP
Fl;
END

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent
XBEGIN: unsigned int _xbegin(void);

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11]=0.
If LOCK prefix is used.
#GP(0) If the fallback address is outside the CS segment.

Real-Address Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):RTM[bit 11]=0.

If LOCK prefix is used.

Ref. # 319433-014 8-15

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Virtual-8086 Mode Exceptions
#GP(0) If the fallback address is outside the address space 0000H and FFFFH.
#UD CPUID.(EAX=7, ECX=0):RTM[bit 11]=0.

If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-bit Mode Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11] = O.
If LOCK prefix is used.
#GP(0) If the fallback address is non-canonical.

8-16 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

XEND — Transaction End

Opcode/Instruction Op/ 64/32bit CPUID Description
En Mode Feature
Support Flag
OF 01 D5 A VIV RTM Specifies the end of an RTM code region.
XEND

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A NA NA NA NA
Description

The instruction marks the end of an RTM code region. If this corresponds to the outermost scope (that is, including
this XEND instruction, the number of XBEGIN instructions is the same as number of XEND instructions), the logical
processor will attempt to commit the logical processor state atomically. If the commit fails, the logical processor
will rollback all architectural register and memory updates performed during the RTM execution. The logical
processor will resume execution at the fallback address computed from the outermost XBEGIN instruction. The
EAX register is updated to reflect RTM abort information.

XEND executed outside a transaction will cause a #GP (General Protection Fault).

Operation
XEND
IF (RTM_ACTIVE = 0) THEN
SIGNAL #GP
ELSE
RTM_NEST_COUNT--
IF (RTM_NEST_COUNT = 0) THEN
Try to commit transaction
IF fail to commit transaction
THEN
GOTO RTM_ABORT_PROCESSING;
ELSE (* commit success *)
RTM_ACTIVE <~ O
Fl;
FI;
Fl;

(* For any RTM abort condition encountered during RTM execution *)
RTM_ABORT_PROCESSING:

Restore architectural register state

Discard memory updates performed in transaction

Update EAX with status

RTM_NEST_COUNT « 0

RTM_ACTIVE <O

IF 64-bit Mode
THEN
RIP « fallbackRIP
ELSE
EIP « fallback€lP
Fl;
END

Ref. # 319433-014 8-17

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent
XEND: void _xend(void);

SIMD Floating-Point Exceptions
None

Other Exceptions

#UD CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK or 66H or F2H or F3H prefix is used.
#GP(0) If RTM_ACTIVE = 0.

8-18 Ref. # 319433-014

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

XTEST — Test If In Transactional Execution

Opcode/Instruction Op/ 64/32bit CPUID Description
En Mode Feature
Support Flag
OF 01 D6 A VIV HLE or Test if executing in a transactional region
XTEST RTM

Instruction Operand Encoding

Op/En Operand 1 Operand2 Operand3 Operand4
A NA NA NA NA
Description

The XTEST instruction queries the transactional execution status. If the instruction executes inside a transaction-
ally executing RTM region or a transactionally executing HLE region, then the ZF flag is cleared, else it is set.

Operation
XTEST
IF (RTM_ACTIVE = 1 OR HLE_ACTIVE = 1)
THEN
ZF <0
ELSE
ZF <1
Fl;

Flags Affected

The ZF flag is cleared if the instruction is executed transactionally; otherwise it is set to 1. The CF, OF, SF, PF, and
AF, flags are cleared.

Intel C/C++ Compiler Intrinsic Equivalent
XTEST: int _xtest(void);

SIMD Floating-Point Exceptions

None

Other Exceptions
#UD CPUID.(EAX=7, ECX=0):HLE[bit 4] = 0 and CPUID.(EAX=7, ECX=0):RTM[bit 11] = 0.
If LOCK or 66H or F2H or F3H prefix is used.

Ref. # 319433-014 8-19

INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

8-20 Ref. # 319433-014

ADDITIONAL NEW INSTRUCTIONS

CHAPTER 9
ADDITIONAL NEW INSTRUCTIONS

This chapter describes additional new instructions for future Intel 64 processors that provide enhancements in
selected application domains: ranging from random number generation to multi-precision arithmetic.

9.1 DETECTION OF NEW INSTRUCTIONS

Hardware support for flag-preserving add-carry instructions is indicated by the following feature flags:

e CPUID.(EAX=07H, ECX=0H):EBX.ADX[bit 19]=1 indicates the processor supports ADCX and ADOX instruc-
tions.

= Hardware support for the RDSEED instruction is indicated by CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit
18].

e CPUID.(EAX=8000_0001H):ECX[bit 8]=1 indicates PREFETCHW is supported.

9.2 RANDOM NUMBER INSTRUCTIONS

The instructions for generating random numbers to comply with NIST SP800-90A, SP800-90B, and SP800-90C
standards are described in this section.

9.2.1 RDRAND

The RDRAND instruction returns a random number. All Intel processors that support the RDRAND instruction indi-
cate the availability of the RDRAND instruction via reporting CPUID.01H:ECX.RDRAND[bit 30] = 1.

RDRAND returns random numbers that are supplied by a cryptographically secure, deterministic random bit gener-
ator (DRBG). The DRBG is designed to meet the NIST SP 800-90A standard. The DRBG is re-seeded frequently
from a on-chip non-deterministic entropy source to guarantee data returned by RDRAND is statistically uniform,
non-periodic and non-deterministic.

In order for the hardware design to meet its security goals, the random number generator continuously tests itself
and the random data it is generating. Runtime failures in the random number generator circuitry or statistically
anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as being
bad. In such extremely rare cases, the RDRAND instruction will return no data instead of bad data.

Under heavy load, with multiple cores executing RDRAND in parallel, it is possible, though unlikely, for the demand
of random numbers by software processes/threads to exceed the rate at which the random number generator
hardware can supply them. This will lead to the RDRAND instruction returning no data transitorily. The RDRAND
instruction indicates the occurrence of this rare situation by clearing the CF flag.

The RDRAND instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDRAND instruction to get random numbers retry for a limited number of itera-
tions while RDRAND returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal
with transitory underflows. A retry limit should be employed to prevent a hard failure in the RNG (expected to be
extremely rare) leading to a busy loop in software.

The intrinsic primitive for RDRAND is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND
instrinsic in a utility function, a loop to fetch a 64-bit random value with a retry count limit of 10. A C implementa-
tion might be written as follows:

Ref. #319433-014 9-1

ADDITIONAL NEW INSTRUCTIONS

#define SUCCESS 1
#define RETRY_LIMIT_EXCEEDED 0
#define RETRY_LIMIT 10

int get_random_64(unsigned __int 64 * arand)
{inti
for (i=0;i <RETRY_LIMIT;i++) {
if(_rdrand64_step(arand)) return SUCCESS;

}
return RETRY_LIMIT_EXCEEDED;

The RDRAND instruction is first introduced in third-generation Intel Core processors built on 22-nm process.

9.2.2 RDSEED

The RDSEED instruction returns a random number. All Intel processors that support the RDSEED instruction indi-
cate the availability of the RDSEED instruction via reporting CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] =
1.

RDSEED returns random numbers that are supplied by a cryptographically secure, enhanced non-deterministic
random bit generator (Enhanced NRBG). The NRBG is designed to meet the NIST SP 800-90B and NIST SP800-
90C standards.

In order for the hardware design to meet its security goals, the random number generator continuously tests
itself and the random data it is generating. Runtime failures in the random number generator circuitry or statisti-
cally anomalous data occurring by chance will be detected by the self test hardware and flag the resulting data as
being bad. In such extremely rare cases, the RDSEED instruction will return no data instead of bad data.

Under heavy load, with multiple cores executing RDSEED in parallel, it is possible for the demand of random
numbers by software processes/threads to exceed the rate at which the random number generator hardware can
supply them. This will lead to the RDSEED instruction returning no data transitorily. The RDSEED instruction indi-
cates the occurrence of this situation by clearing the CF flag.

The RDSEED instruction returns with the carry flag set (CF = 1) to indicate valid data is returned. It is recom-
mended that software using the RDSEED instruction to get random numbers retry for a limited number of itera-
tions while RDSEED returns CF=0 and complete when valid data is returned, indicated with CF=1. This will deal
with transitory underflows. A retry limit should be employed to prevent a hard failure in the NRBG (expected to
be extremely rare) leading to a busy loop in software.

The intrinsic primitive for RDSEED is defined to address software’s need for the common cases (CF = 1) and the
rare situations (CF = 0). The intrinsic primitive returns a value that reflects the value of the carry flag returned by
the underlying RDRAND instruction. The example below illustrates the recommended usage of an RDRAND
instrinsic in a utility function, a loop to fetch a 64 bit random value with a retry count limit of 10.

9.2.3 RDSEED and VMX interactions

A VM-execution control exists that allows the virtual machine monitor to trap on the instruction. The "RDSEED
exiting” VM-execution control is located at bit 16 of the secondary processor-based VM-execution controls. A VM
exit due to RDSEED will have exit reason 61 (decimal).

9-2 Ref. #319433-014

ADDITIONAL NEW INSTRUCTIONS

9.3 PAGING-MODE ACCESS ENHANCEMENT

Intel 64 architecture provided two paging mode modifiers that regulate instruction fetches from linear memory
address spaces: Execute-Disable (XD) and supervisor mode execution prevention (SMEP) are described in Chapter
4 of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

A third paging mode modifier is introduced to regulate data accesses, referred to as supervisor mode access
prevention (SMAP).

When SMAP is enabled, the processor disallows supervisor data accesses to pages that are accessible in user
mode. Disallowed accesses result in page-fault exceptions. Software may find it necessary to allow certain super-
visor accesses to user-accessible pages. For this reason, the SMAP architecture allows software to disable the
SMAP protections temporarily.

SMAP applies in all paging modes (32-bit paging, PAE paging, and 1A-32e paging) and to all page sizes (4-KByte,
2-MByte, 4-MByte, and 1-GByte). SMAP has no effect on processor operation if paging is disabled. SMAP has no
effect on the address translation provided by EPT. SMAP has no effect in operating modes that paging is not used.

9.3.1 Enumeration and Enabling
System software enables SMAP by setting the SMAP flag in control register CR4 (bit 21).

Processor support for SMAP is enumerated by the CPUID instruction. Specifically, the processor supports SMAP
only if CPUID.(EAX=07H,ECX=0H):EBX.SMAP[bit 20] = 1.

A processor will allow CR4.SMAP to be set only if SMAP is enumerated by CPUID as described above. CR4.SMAP
may be set if paging is disabled (if CRO.PG = 0), but it has no effect on processor operation in that case.

In addition, two new instructions: CLAC and STAC (see Section 9.6) are supported if and only if SMAP is enumer-
ated by CPUID as described above.

9.3.2 SMAP and Access Rights

Every access to a linear address is either a supervisor-mode access or a user-mode access. All accesses performed
while the current privilege level (CPL) is less than 3 are supervisor-mode accesses. If CPL = 3, accesses are gener-
ally user-mode accesses. However, some operations implicitly access system data structures, and the resulting
accesses to those data structures are supervisor-mode accesses regardless of CPL. Examples of such implicit
supervisor accesses include the following: accesses to the global descriptor table (GDT) or local descriptor table
(LDT) to load a segment descriptor; accesses to the interrupt descriptor table (IDT) when delivering an interrupt or
exception; and accesses to the task-state segment (TSS) as part of a task switch or change of CPL.

If CR4.SMAP = 1, supervisor-mode data accesses are not allowed to linear addresses that are accessible in user
mode. If CPL < 3, SMAP protections are disabled if EFLAGS.AC = 1. If CPL = 3, SMAP applies to all supervisor-mode
data accesses (these are implicit supervisor accesses) regardless of the value of EFLAGS.AC.

The following items detail how paging determines access rights for supervisor-mode data accesses:
® Data reads that are allowed:
— If CR4.SMAP = 0, data may be read from any linear address with a valid translation.
— If CR4.SMAP = 1, access rights depend on CPL and EFLAGS.AC.
e |If CPL < 3 and EFLAGS.AC = 1, data may be read from any linear address with a valid translation.

e If CPL = 3 (an implicit supervisor access) or EFLAGS.AC = 0, data may be read from any linear address
with a valid translation for which the U/S flag (bit 2) is O in at least one of the paging-structure entries
controlling the translation.

® Data writes that are allowed:
— If CRO.WP = 0 and CR4.SMAP = 0, data may be written to any linear address with a valid translation.
— If CRO.WP = 0 and CR4.SMAP = 1, access rights depend on CPL and EFLAGS.AC.
* If CPL < 3 and EFLAGS.AC = 1, data may be written to any linear address with a valid translation.

Ref. #319433-014 9-3

ADDITIONAL NEW INSTRUCTIONS

* If CPL = 3 (an implicit supervisor access) or EFLAGS.AC = 0, data may be written to any linear address
with a valid translation for which the U/S flag (bit 2) is O in at least one of the paging-structure entries
controlling the translation.

— If CRO.WP = 1 and CR4.SMAP = 0, data may be written to any linear address with a valid translation for
which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation.

— If CRO.WP = 1 and CR4.SMAP = 1, access rights depend on CPL and EFLAGS.AC.

®* |If CPL < 3 and EFLAGS.AC = 1, data may be written to any linear address with a valid translation for
which the R/W flag (bit 1) is 1 in every paging-structure entry controlling the translation.

* If CPL = 3 (an implicit supervisor access) or EFLAGS.AC = 0, data may be written to any linear address
with a valid translation for which the U/S flag (bit 2) is O in at least one of the paging-structure entries
controlling the translation and for which the R/W flag (bit 1) is 1 in every paging-structure entry
controlling the translation.

Supervisor-mode data accesses that are not allowed by SMAP cause page-fault exceptions (see Section 4). SMAP
has no effect on instruction fetches, user-mode data accesses, or supervisor-mode data accesses to supervisor-
only pages.

9.3.3 SMAP and Page-Fault Exceptions

If SMAP prevents a supervisor-mode access to a linear address, a page-fault exception (#PF) occurs.

SMAP does not define any new bits in the error code delivered by page-fault exceptions. Page-fault exceptions
induced by SMAP set the existing bits in the error code as follows:

P flag (bit 0).

SMAP causes a page-fault exception only if there is a valid translation for the linear address. Bit O of the
error code is 1 if there is a valid translation. Thus, page-fault exceptions caused by SMAP always set bit O of
the error code.

W/R (bit 1).

If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is O.

uU/s (bit 2).

SMAP causes page-fault exceptions only for supervisor-mode accesses. Bit 2 of the error code is O for
supervisor-mode accesses. Thus, page-fault exceptions caused by SMAP always clear bit 2 of the error code.
RSVD flag (bit 3).

SMAP causes a page-fault exception only if there is a valid translation for the linear address. Bit 3 of the
error code is O if there is a valid translation. Thus, page-fault exceptions caused by SMAP always clear bit 3
of the error code.

1/D flag (bit 4).

SMAP causes page-fault exceptions only for data accesses. Bit 4 of the error code is O for data accesses.
Thus, page-fault exceptions caused by SMAP always clear bit 4 of the error code.

The above items imply that the error code delivered by a page-fault exception due to SMAP is either 1 (for reads)
or 3 (for writes). Note that the only page-fault exceptions that deliver an error code of 1 are those induced by
SMAP. (If CRO.WP = 1, some page-fault exceptions may deliver an error code of 3 even if CR4.SMAP = 0.)

9.34 CR4.SMAP and Cached Translation Information

The MOV to CR4 instruction is not required to invalidate the TLBs or paging-structure caches because of changes
being made to CR4.SMAP. If PAE paging is in use, the MOV to CR4 instruction does not cause the PDPTE registers
to be reloaded because of changes being made to CR4.SMAP.

9-4

Ref. #319433-014

ADDITIONAL NEW INSTRUCTIONS

9.4 INSTRUCTION EXCEPTION SPECIFICATION

To use this reference of instruction exceptions, look at each instruction for a description of the particular exception
type of interest. The instruction’s corresponding CPUID feature flag can be identified in the fourth column of the
instruction summary table.

Note: #UD on CPUID feature flags=0 is not guaranteed in a virtualized environment if the hardware supports the
feature flag.

Table 9-1 lists exception conditions for ADCX and ADOX.

Table 9-1. Exception Definition (ADCX and ADOX Instructions)

(o] TV >
S| &=
: | 8 |22 5 ,
Exception 2 = | 5 § Y Cause of Exception
=1 Q ©o
E |85
> a v
Invalid Opcode, #UD X X X If ADX CPUID feature flag is ‘0",
X X X X If a LOCK prefix is present.
Stack, SS(0) X X X For an illegal address in the SS segment.
X If a memory address referencing the SS segment is in a non-canonical form.
General Protection, #GP(0) X For an illegal memory operand effective address in the CS, DS, ES, FS or GS
segments.
If the DS, €S, FS, or GS register is used to access memory and it contains a
null segment selector.
X If the memory address is in a non-canonical form.
X X If any part of the operand lies outside the effective address space from 0 to
FFFFH.
Page Fault #PF(fault-code) X X X For a page fault.
Alignment Check #AC(0) X X X If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

9.5 INSTRUCTION FORMAT

The format used for describing each instruction as in the example below is described in Chapter 3 of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 2A.

Ref. #319433-014 9-5

ADDITIONAL NEW INSTRUCTIONS

ADCX — Unsigned Integer Addition of Two Operands with Carry Flag (THIS IS AN EXAMPLE)

Opcode/ Op 64/32bit CPUID Description
Instruction En Mode Feature
Support Flag
66 OF 38F6 /r A VIV ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF

ADCXr32,r/m32

REX.w + 66 OF 38 F6 /r A V/NE ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF
ADCX r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA

9.6 INSTRUCTION SET REFERENCE

9-6 Ref. #319433-014

ADDITIONAL NEW INSTRUCTIONS

ADCX — Unsigned Integer Addition of Two Operands with Carry Flag

Opcode/ Op/ 64/32bit CPUID Description
Instruction En Mode Feature
Support Flag
66 OF 38 F6 /r A VIV ADX Unsigned addition of r32 with CF, r/m32 to r32, writes CF

ADCXr32,r/m32

REX.w + 66 OF 38 F6 /1 A V/NE ADX Unsigned addition of r64 with CF, r/m64 to r64, writes CF
ADCX r64, r/me4

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs an unsigned addition of the destination operand (first operand), the source operand (second operand)
and the carry-flag (CF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of
CF can represent a carry from a previous addition. The instruction sets the CF flag with the carry generated by the
unsigned addition of the operands.

The ADCX instruction is executed in the context of multi-precision addition, where we add a series of operands with
a carry-chain. At the beginning of a chain of additions, we need to make sure the CF is in a desired initial state.
Often, this initial state needs to be O, which can be achieved with an instruction to zero the CF (e.g. XOR).

This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode.

In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to addi-
tional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64 bits.

ADCX executes normally either inside or outside a transaction region.

Note: ADCX defines the OF flag differently than the ADD/ADC instructions as defined in Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN CF:DEST[63:0] < DEST[63:0] + SRC[63:0] + CF;
ELSE CF:DEST[31:0] «— DEST[31:0] + SRC[31:0] + CF;
Fl;

Flags Affected
CF is updated based on result. OF, SF, ZF, AF and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent
unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);
unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Table 9-1

Ref. #319433-014 9-7

ADDITIONAL NEW INSTRUCTIONS

ADOX — Unsigned Integer Addition of Two Operands with Overflow Flag

Opcode/ Op/ 64/32bit CPUID Description
Instruction En Mode Feature
Support Flag
F30F38F6 /r A VIV ADX Unsigned addition of r32 with OF, r/m32 to r32, writes OF

ADOX r32, r/m32

REX.w + F3 OF 38 F6 /r A V/NE ADX Unsigned addition of r64 with OF, r/m64 to r64, writes OF
ADOX r64, r/m64

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:reg (r, w) ModRM:r/m (r) NA NA
Description

Performs an unsigned addition of the destination operand (first operand), the source operand (second operand)
and the overflow-flag (OF) and stores the result in the destination operand. The destination operand is a general-
purpose register, whereas the source operand can be a general-purpose register or memory location. The state of
OF represents a carry from a previous addition. The instruction sets the OF flag with the carry generated by the
unsigned addition of the operands.

The ADOX instruction is executed in the context of multi-precision addition, where we add a series of operands
with a carry-chain. At the beginning of a chain of additions, we execute an instruction to zero the OF (e.g. XOR).

This instruction is supported in real mode and virtual-8086 mode. The operand size is always 32 bits if not in 64-
bit mode.

In 64-bit mode, the default operation size is 32 bits. Using a REX Prefix in the form of REX.R permits access to
additional registers (R8-15). Using REX Prefix in the form of REX.W promotes operation to 64-bits.

ADOX executes normally either inside or outside a transaction region.

Note: ADOX defines the CF and OF flags differently than the ADD/ADC instructions as defined in Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 2A.

Operation

IF OperandSize is 64-bit
THEN OF:DEST[63:0] « DEST[63:0] + SRC[63:0] + OF;
ELSE OF:DEST[31:0] «- DEST[31:0] + SRC[31:0] + OF;
FI;

Flags Affected
OF is updated based on result. CF, SF, ZF, AF and PF flags are unmodified.

Intel C/C++ Compiler Intrinsic Equivalent
unsigned char _addcarryx_u32 (unsigned char c_in, unsigned int src1, unsigned int src2, unsigned int *sum_out);
unsigned char _addcarryx_u64 (unsigned char c_in, unsigned __int64 src1, unsigned __int64 src2, unsigned __int64 *sum_out);

SIMD Floating-Point Exceptions

None

Other Exceptions
See Table 9-1

9-8 Ref. #319433-014

ADDITIONAL NEW INSTRUCTIONS

PREFETCHW—Prefetch Data into Caches in Anticipation of a Write

Opcode/ Op/ 64/32bit CPUID Description
Instruction En Mode Feature
Support Flag
OF 0D/ A VIV PRFCHW Move data from m8 closer to the processor in anticipation of a
PREFETCHW m8 write.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (r) NA NA NA
Description

Fetches the cache line of data from memory that contains the byte specified with the source operand to a location
in the 1st or 2nd level cache and invalidates all other cached instances of the line.

The source operand is a byte memory location. (Use of any ModR/M value other than a memory operand will lead
to unpredictable behavior.) If the line selected is already present in the lowest level cache and is already in an
exclusively owned state, no data movement occurs. Prefetches from non-writeback memory are ignored.

The PREFETCHW instruction is merely a hint and does not affect program behavior. If executed, this instruction
moves data closer to the processor and invalidates any other cached copy in anticipation of the line being written
to in the future.

The characteristic of prefetch locality hints is implementation-dependent, and can be overloaded or ignored by a
processor implementation. The amount of data prefetched is also processor implementation-dependent. It will,
however, be a minimum of 32 bytes.

It should be noted that processors are free to speculatively fetch and cache data with exclusive ownership from
system memory regions that permit such accesses (that is, the WB memory type). A PREFETCHW instruction is
considered a hint to this speculative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, a PREFETCHW instruction is not ordered with respect to the fence instructions
(MFENCE, SFENCE, and LFENCE) or locked memory references. A PREFETCHW instruction is also unordered with
respect to CLFLUSH instructions, other PREFETCHW instructions, or any other general instruction

It is ordered with respect to serializing instructions such as CPUID, WRMSR, OUT, and MOV CR.

This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation
FETCH_WITH_EXCLUSIVE_OWNERSHIP (m8);

Flags Affected
All flags are affected

C/C++ Compiler Intrinsic Equivalent

void _m_prefetchw(void *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Ref. #319433-014 9-9

ADDITIONAL NEW INSTRUCTIONS

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#UD If the LOCK prefix is used.

9-10

Ref. #319433-014

ADDITIONAL NEW INSTRUCTIONS

RDSEED—Read Random SEED

Opcode/ Op/ 64/32 CPUID Description
Instruction En bitMode Feature

Support Flag
OFC7 1717 A VIV RDSEED Read a 16-bit NIST SP800-90B & C compliant random value and
RDSEED r16 store in the destination register.
OF C7 /7 A VIV RDSEED Read a 32-bit NIST SP800-90B & C compliant random value and
RDSEED r32 store in the destination register.
REX.W + OF C7 /7 A VI RDSEED Read a 64-bit NIST SP800-90B & C compliant random value and
RDSEED r64 store in the destination register.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A ModRM:r/m (w) NA NA NA
Description

Loads a hardware generated random value and store it in the destination register. The random value is generated
from an Enhanced NRBG (Non Deterministic Random Bit Generator) that is compliant to NIST SP800-90B and NIST
SP800-90C in the XOR construction mode. The size of the random value is determined by the destination register
size and operating mode. The Carry Flag indicates whether a random value is available at the time the instruction
is executed. CF=1 indicates that the data in the destination is valid. Otherwise CF=0 and the data in the destina-
tion operand will be returned as zeros for the specified width. All other flags are forced to O in either situation.
Software must check the state of CF=1 for determining if a valid random seed value has been returned, otherwise
it is expected to loop and retry execution of RDSEED (see Section 1.2).

The RDSEED instruction is available at all privilege levels. The RDSEED instruction executes normally either inside
or outside a transaction region.

In 64-bit mode, the instruction's default operation size is 32 bits. Using a REX prefix in the form of REX.B permits
access to additional registers (R8-R15). Using a REX prefix in the form of REX.W promotes operation to 64 bit oper-
ands. See the summary chart at the beginning of this section for encoding data and limits.

Operation

IF HW_NRND_GEN.ready = 1
THEN
CASE of
osize is 64: DEST[63:0] <+ HW_NRND_GEN.data;
osize is 32: DEST[31:0] <« HW_NRND_GEN.data;
osize is 16: DEST[15:0] <+ HW_NRND_GEN.data;
ESAC;
CF«1;
ELSE
CASE of
osize is 64: DEST[63:0] « O;
osize is 32: DEST[31:0] « O;
osize is 16: DEST[15:0] « O;
ESAC;
CF«O;
Fl;

OF, SF, ZF, AF, PF « 0;

Ref. #319433-014 9-11

ADDITIONAL NEW INSTRUCTIONS

Flags Affected

All flags are affected

C/C++ Compiler Intrinsic Equivalent

RDSEED int _rdseed16_step(unsigned short *);
RDSEED int _rdseed32_step(unsigned int *);
RDSEED int _rdseed64_step(unsigned __int64 *);

Protected Mode Exceptions
#UD If the LOCK prefix is used.
If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.
If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.
If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If the F2H or F3H prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.RDSEED[bit 18] = 0

9-12

Ref. #319433-014

ADDITIONAL NEW INSTRUCTIONS

CLAC—Clear AC Flag in EFLAGS Register

Opcode/ Op/ 64/32bit CPUID Description
Instruction En Mode Feature
Support Flag
OFO01CA A VIV SMAP Clear only the AC flag in the EFLAGS register.
CLAC

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

CLAC clears the AC flag bit in EFLAGS/RFLAGS without affecting other bits. Attempt to execute CLAC when CPL >
0 will cause #UD.

This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation
EFLAGS.AC «- O;

Flags Affected

AC cleared, All other flags are unchanged
C/C++ Compiler Intrinsic Equivalent

Protected Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

Virtual-8086 Mode Exceptions
#UD The CLAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

Ref. #319433-014 9-13

ADDITIONAL NEW INSTRUCTIONS

STAC—Set AC Flag in EFLAGS Register

Opcode/ Op/ 64/32bit CPUID Description
Instruction En Mode Feature
Support Flag
OF01(CB A VIV SMAP Set only the AC flag in the EFLAGS register.
STAC

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
A NA NA NA NA
Description

STAC sets the AC flag bit in EFLAGS/RFLAGS without affecting other bits. Attempt to execute STAC when CPL > 0O
will cause #UD.

This instruction's operation is the same in non-64-bit modes and 64-bit mode.

Operation
EFLAGS.AC « 1;

Flags Affected

AC set, All other flags are unchanged
C/C++ Compiler Intrinsic Equivalent

Protected Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

Virtual-8086 Mode Exceptions
#UD The STAC instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] =0

64-Bit Mode Exceptions
#UD If the LOCK prefix is used.
If the CPL > 0.
If CPUID.(EAX=07H, ECX=0H):EBX.SMAP[bit 20] = 0

9-14 Ref. #319433-014

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret 1A-32 and Intel 64 architecture object code. Instructions are
divided into encoding groups:

® 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology,
SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2
through Table A-6.

® Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions.
The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or blank opcodes.

A.1 USING OPCODE TABLES

Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in
associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte
encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four
low-order bits to index a column of the table. For 2-byte opcodes beginning with OFH (Table A-3), skip any instruc-
tion prefixes, the OFH byte (OFH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values
of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with OF38H or
OF3AH (Table A-4), skip any instruction prefixes, OF38H or OF3AH and use the upper and lower 4-bit values of the
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on
how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits of opcodes at the
top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of OOH-BFH, bits 3-5 (the top
row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes
outside the range of O0OH-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies
the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1 Codes for Addressing Method

The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruc-
tion. No base register, index register, or scaling factor can be applied (for example, far IMP (EA)).

B The VEX.vvvv field of the VEX prefix selects a general purpose register.

C The reg field of the ModR/M byte selects a control register (for example, MOV (0OF20, 0F22)).

Ref. #319433-014 A-1

OPCODE MAP

A2.2

The reg field of the ModR/M byte selects a debug register (for example,
MOV (0OF21,0F23)).

A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, a displacement.

EFLAGS/RFLAGS Register.
The reg field of the ModR/M byte selects a general register (for example, AX (000)).

The VEX.vvvv field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined
by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to
destructive form.

Immediate data: the operand value is encoded in subsequent bytes of the instruction.

The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP
(OE9), LOOP).

The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, deter-
mined by operand type. (the MSB is ignored in 32-bit mode)

The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS,
CMPXCHGS8B).

The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word
(depending on address size attribute) in the instruction. No base register, index register, or scaling factor
can be applied (for example, MOV (A0-A3)).

The reg field of the ModR/M byte selects a packed quadword MMX technology register.

A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, and a displacement.

The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (OF20-0F23)).
The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register,
a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the
address is computed from a segment register and any of the following values: a base register, an index
register, a scaling factor, and a displacement.

Memory addressed by the DS:rSl register pair (for example, MOVS, CMPS, OUTS, or LODS).
Memory addressed by the ES:rDlI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

Codes for Operand Type

The following abbreviations are used to document operand types:

a

dq

A-2

Two one-word operands in memory or two double-word operands in memory, depending on operand-size
attribute (used only by the BOUND instruction).

Byte, regardless of operand-size attribute.
Byte or word, depending on operand-size attribute.
Doubleword, regardless of operand-size attribute.

Double-quadword, regardless of operand-size attribute.

Ref. #319433-014

OPCODE MAP

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.
pd 128-bit or 256-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mmO).

ps 128-bit or 256-bit packed single-precision floating-point data.

q Quadword, regardless of operand-size attribute.

qq Quad-Quadword (256-bits), regardless of operand-size attribute.

S 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.

Sss Scalar element of a 128-bit single-precision floating data.

Si Doubleword integer register (for example: eax).

Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
Word, regardless of operand-size attribute.

\%
w

X dqg or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
z

Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.2.3 Register Codes

When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL,
or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX
is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example:
eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when
the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by
adding “/x” to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that
the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size
attribute (just as for rCX).

A.2.4 Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row
(the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal
value). Each entry in the table lists one of the following types of opcodes:

® Instruction mnemonics and operand types using the notations listed in Section A.2
® Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following
the primary opcode fall into one of the following cases:

® A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter
2, “Instruction Format,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.
Operand types are listed according to notations listed in Section A.2.

Ref. #319433-014 A-3

OPCODE MAP

¢ A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

® Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or
entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes
Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:

® The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This
locates an opcode for ADD with two operands.

® The first operand (type GV) indicates a general register that is a word or doubleword depending on the operand-
size attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the
operand is a word or doubleword general-purpose register or a memory address.

® The ModR/M byte for this instruction is O5H, indicating that a 32-bit displacement follows (00000000H). The
reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers
indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section
A.4).

A2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in
length. Primary opcodes that are 2 bytes in length begin with an escape opcode OFH. The upper and lower four bits
of the second opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape
opcode (OFH). The upper and lower four bits of the third byte are used to index a particular row and column in Table
A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to
Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of
the following cases:

® A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter
2, “Instruction Format,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.
The operand types are listed according to notations listed in Section A.2.

® A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

® Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without
operands that are encoded using ModR/M (for example: OF77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes
Look-up opcode OFA4050000000003H for a SHLD instruction using Table A-3.

® The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and
Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.
— GvV: The reg field of the ModR/M byte selects a general-purpose register.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

® The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit
displacement is used to locate the first operand in memory and eAX as the second operand.

® The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The
last byte stores immediate byte that provides the count of the shift (O3H).

A-4 Ref. #319433-014

OPCODE MAP

® By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX,
3.

A.24.3 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4
bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes OF38H or OF3A. The upper
and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape
bytes (OF38H or OF3AH). The upper and lower four bits of the fourth byte are used to index a particular row and
column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the
following case:

® A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2,
“Instruction Format,” of the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes
Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

® 66H is a prefix and OF3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a
PALIGNR instruction with operands Vdq, Wdq, and Ib. Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.
— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

® The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMMO. The mod shows
that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.

® The last byte is the immediate byte (O8H).
® By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMMO, XMM1, 8.

A.2.4.4 VEX Prefix Instructions

Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the
VEX.mmmmm field encoding of implied OF, OF38H, OF3AH, respectively. Each entry in the opcode map of a VEX-
encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions.

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and
operand size/opcode information (VEX.L). See chapter 4 for details.

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries
are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present
all the operands are valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the
VEX.vvvv operand is not available and the prefix “v” is dropped from the mnemonic.

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated
by 'dq’, 256-bit vectors are indicated by 'qq’, and instructions with operands supporting either 128 or 256-bit,
determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and
VEX.L=1 are supported.

Ref. #319433-014 A-5

OPCODE MAP

A.2.5 Superscripts Utilized in Opcode Tables

Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by super-
scripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript Meaning of Symbol

Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, “Opcode Extensions For One-Byte
And Two-byte Opcodes”).

1B Use the OFOB opcode (UD2 instruction) or the OFBSH opcode when deliberately trying to generate an invalid opcode
exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents
different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M
byte needed to decode the instruction, see Table A-6.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix
combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).

064 Instruction is only available when in 64-bit mode.

de4 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size.

64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are
ignored for this instruction in 64-bit mode).

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX
prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can't be inferred from the data size.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS

See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with
sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not
presented on each page. Table footnotes for each table are presented on the last page of the table.

A-6 Ref. #319433-014

OPCODE MAP

Ref. #319433-014 A-7

OPCODE MAP

Table A-2. One-byte Opcode Map: (OOH — F7H) *

0 | 1 | 2 | 3 | 4 | 5 6 7
0 ADD PUSH POP
Esi64 ESi64
Eb, Gb ‘ Ev, Gv ‘ Gb, Eb ‘ Gv, Ev ‘ AL, Ib ‘ rAX, 1z
1 ADC PUSH POP.
| |
Ecd | Evev | GE | ey | ALb | mxE Ss Ss
2 AND SEG=ES DAAi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz (Prefix)
3 XOR SEG=SS AAAIB4
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz (Prefix)
4 INC'®* general register / REX°%* Prefixes
eAX eCX eDX eBX eSP eBP eSl eDI
REX REX.B REX.X REX.XB REX.R REX.RB REX.RX REX.RXB
5 PUSHY64 general register
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSlir14 rDI/r15
6 PUSHAI®4/ POPAIB4/ BOUND'64 ARPLI64 SEG=FS SEG=GS Operand Address
PUSHAD!®4 POPADI64 Gv, Ma Ew, Gw (Prefix) (Prefix) Size Size
MOVSXD©64 (Prefix) (Prefix)
Gy, Ev
7 Jecf®4, Ub - Short-displacement jump on condition
o NO B/NAE/C NB/AE/NC ZIE NZ/NE BE/NA NBE/A
8 Immediate Grp 1'A TEST XCHG
Eb, Ib Ev, Iz Eb, Ibi%4 Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv
9 NOP XCHG word, double-word or quad-word register with rAX
PAUSE(F3) rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/ir14 rDI/r15
XCHG 18, rAX
A MOV MOVS/B MOVS/W/D/Q CMPS/B CMPS/W/D
AL, Ob | rAX, Ov | Ob, AL | Ov, rAX Yb, Xb Yv, Xv Xb, Yb xv, v
B MOV immediate byte into byte register
AL/RSL, Ib | CL/RIL, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib
¢ Shift Grp 2'A RETNf64 RETNf64 LES®4 LDsi64 Grp 11'A - MOV
Iw Gz, Mp Gz, Mp
Eb, Ib ‘ Ev, Ib VEx+2byte VEX+1byte Eb, Ib Ev, Iz
D Shift Grp 21A AAMiB4 AADI%4 XLAT/
Eb, 1 Ev, 1 Eb, CL Ev, CL o o XLATB
E LOOPNEZ““/ LOOPEffZ‘;/ LoopPf64 Jrexz©4 IN ouT
LOOPNZ LoopPz Jo Jo AL, Ib eAX, Ib Ib, AL Ib, eAX
Jo Jb
F LOCK REPNE REP/REPE HLT cMC Unary Grp 3'A
(Prefix) XACQUIRE XRELEASE Eb -
(Prefix) (Prefix)

A-8

Ref. #319433-014

Table A-2. One-byte Opcode Map: (08H — FFH) *

OPCODE MAP

8 | 9 | A | B | c | D E F
0 OR PUiSSIj 2-byte
Eb, Gb ‘ Ev, Gv ‘ Gb, Eb ‘ Gv, Ev ‘ AL, Ib ‘ rAX, Iz cs (nglc:pA‘f3)
1 SBB PUSH POP
e | Evev | eE | ovev | AL, Ib | mx DS DS
2 suB SEG=CS DAS4
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz (Prefix)
3 CMP SEG=DS AAS64
Ebe | Evev | ebE | evEv | AL, Ib | X (Prefix)
4 DECi64 general register / REX°%* Prefixes
eAX eCX eDX eBX eSP eBP eS| eDI
REX.W REX.WB REX.WX REX.WXB REX.WR REX.WRB REX.WRX REX.WRXB
5 POP94 into general register
rAX/r8 rCX/r9 rDX/r10 BX/r11 rSP/r12 rBP/r13 rSlir14 rDI/r15
6 PUSH64 IMUL PUSHJ64 IMUL INS/ INS/ ouTS/ ouTS/
Iz Gv, Ev, Iz Ib Gv, Ev, Ib INSB INSW/ OUTSB ouTSW/
Yb, DX INSD DX, Xb OUTSD
Yz, DX DX, Xz
7 Jec™, Jb- Short displacement jump on condition
S NS PIPE NP/PO L/NGE NL/GE LE/NG NLE/G
8 MOV MOV LEA MOV Grp 1A'A popd64
Eb, Gb Ev, Gv Gb, Eb Gv, Ev Bv. Sw Gv. M Sw, Bw =
9 CBW/ CWD/ CALLF®4 FWAIT/ PUSHF/D/Q 964/ | POPF/D/Q 964/ SAHF LAHF
CWDE/ cDQ/ Ap WAIT Fv Fv
CDQE CcQo
A TEST STOS/B STOS/W/DIQ LODS/B LODS/W/D/Q SCAS/B SCAS/W/DIQ
AL Ib AX, Iz Yb, AL Yv, rAX AL, Xb rAX, Xv AL, Yb rAX, Xv
B MOV immediate word or double into word, double, or quad register
rAX/r8, Iv rCX/r9, lv rDX/r10, v BX/r11, Iv rSP/r12, Iv BP/r13, Iv rSl/ir14, Iv DI/r5, Iv
c ENTER LEAVEY64 RETF RETF INT 3 INT INTO®4 IRET/D/Q
Iw, Ib Iw Ib
D ESC (Escape to coprocessor instruction set)
E CALL™4 JVP IN ouT
Jz nearf®4 far'4 shortf®4 AL, DX eAX, DX DX, AL DX, eAX
Jz Ap Jb
F cLC sSTC cLI STI CLD STD INC/DEC INC/DEC
Grp 41A Grp 51A
NOTES:

*

Ref. #319433-014

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-9

OPCODE MAP

Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is OFH) *
pfx 0 1 2 3 4 5 6 7
Grp 6'A Grp 7'A LAR LSL SYSCALL%%4 CLTS SYSRET%4
0 Gv, Ew Gv, Ew
vmovups vmovups vmovips vmovips vunpcklps vunpckhps vmovhps"1 vmovhpsV1
Vps, Wps Wps, Vps Vq, Hg, Mq Mg, Vq Vx, Hx, Wx Vx, Hx, Wx Vdq, Hq, Mq Mg, Vq
vmovhlps vmovlhps
Vaq, Ha, Uq Vdgq, Hq, Uq
1 66 vmovupd vmovupd vmovlpd vmovlpd vunpcklpd vunpckhpd vmovhpd"1 vmovhpd"1
Vpd, Wpd Wpd,Vpd Vq, Hg, Mq Maq, Vq Vx,Hx,Wx Vx,Hx,Wx Vdq, Hq, Mq Maq, Vq
F3 vmovss vmovss vmovsldup vmovshdup
Vx, Hx, Wss Wss, Hx, Vss Vx, Wx Vx, Wx
F2 vmovsd vmovsd vmovddup
Vx, Hx, Wsd Wsd, Hx, Vsd Vx, Wx
MOV MOV MOV MOV
Rd, Cd Rd, Dd Cd, Rd Dd, Rd
2
3 WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC
CMOVcc, (Gy, Ev) - Conditional Move
4 (¢] NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA AINBE
vmovmskps vsqrtps vrsqrtps vrepps vandps vandnps vorps VXorps
Gy, Ups Vps, Wps Vps, Wps Vps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps
66 vmovmskpd vsqrtpd vandpd vandnpd vorpd vxorpd
5 Gy,Upd Vpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd
F3 vsqrtss vrsqrtss vrepss
Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss
vsqrtsd
F2 Vsd, Hsd, Wsd
punpcklbw punpcklwd punpckldq packsswb pcmpgtb pcmpgtw pcmpgtd packuswb
Pg, Qd Pg, Qd Pg, Qd Pg, Qq Pa, Qq Pa, Qq Pa, Qq Pg, Qq
6 66 vpunpcklbw vpunpcklwd vpunpckldq vpacksswb vpcmpgtb vpempgtw vpcmpgtd vpackuswb
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
pshufw (Grp 12™4) (Grp 13'4) (Grp 14'A) pcmpeqgb pcmpeqw pcmpeqd emms
Pqg, Qq, Ib Pq, Qq Pq, Qq Pq, Qq vzeroupper¥
vzeroall’
66 vpshufd vpcmpegb vpcmpeqw vpcmpeqd
7 Vx, Wx, Ib Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
vpshufhw
F8 Vx, Wx, Ib
vpshuflw
F2 Vx, Wx, Ib
A-10 Ref. #319433-014

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is OFH) *

OPCODE MAP

pfx 8 9 A B C D E F
INVD WBINVD 2-byte I-Hegal prefetchw(/1)
0 Opcodes Ev
uD2'8
Prefetch'™ NOP /0 Ev
(Grp 16"4)
1
vmovaps vmovaps cvtpi2ps vmovntps cvttps2pi cvtps2pi vucomiss vcomiss
Vps, Wps Wps, Vps Vps, Qpi Mps, Vps Ppi, Wps Ppi, Wps Vss, Wss Vss, Wss
66 vmovapd vmovapd cvtpi2pd vmovntpd cvttpd2pi cvtpd2pi vucomisd vcomisd
5 Vpd, Wpd Wpd,Vpd Vpd, Qpi Mpd, Vpd Ppi, Wpd Qpi, Wpd Vsd, Wsd Vsd, Wsd
F3 vevtsi2ss vevitss2si vevtss2si
Vss, Hss, Ey Gy, Wss Gy, Wss
F2 vevtsi2sd vevitsd2si vevtsd2si
Vsd, Hsd, Ey Gy, Wsd Gy, Wsd
3-byte escape 3-byte escape
3 (Table A-4) (Table A-5)
CMOVcc(Gy, Ev) - Conditional Move
4 S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
vaddps vmulps vevtps2pd vevtdg2ps vsubps vminps vdivps vmaxps
Vps, Hps, Wps Vps, Hps, Wps Vpd, Wps Vps, Wdq Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps
66 vaddpd vmulpd vevtpd2ps vevtps2dq vsubpd vminpd vdivpd vmaxpd
5 Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vps, Wpd Vdq, Wps Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd
F3 vaddss vmulss vevtss2sd vevttps2dq vsubss vminss vdivss vMaxss
Vss, Hss, Wss Vss, Hss, Wss Vsd, Hx, Wss Vdq, Wps Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss
F2 vaddsd vmulsd vevtsd2ss vsubsd vminsd vdivsd vmaxsd
Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vss, Hx, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd
punpckhbw punpckhwd punpckhdq packssdw movd/q movq
Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pd, Ey Pg, Qq
6 66 vpunpckhbw vpunpckhwd vpunpckhdq vpackssdw vpunpcklgdqg vpunpckhqdq vmovd/q vmovdga
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vy, Ey Vx, Wx
vmovdqu
F3 Vx, Wx
VMREAD VMWRITE movd/q movq
Ey, Gy Gy, By Ey, Pd Qgq, Pq
66 vhaddpd vhsubpd vmovd/q vmovdqga
Vpd, Hpd, Wpd Vpd, Hpd, Wpd Ey, Vy Wx,Vx
7 F3 vmovq vmovdqu
Vq, Wq Wx,Vx
vhaddps vhsubps
F2 Vps, Hps, Wps Vps, Hps, Wps
Ref. #319433-014 A-11

OPCODE MAP

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is OFH) *

pfx 0 | 1 | 2 | 3 | 4 | 5 | 6 7
Jcc™?, Jz - Long-displacement jump on condition
8 (@] NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
SETcc, Eb - Byte Set on condition
9 o NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
PUSHI4 popPIs4 CPUID BT SHLD SHLD
A FS FS Ev, Gv Ev, Gy, Ib Ev, Gy, CL
CMPXCHG LSS BTR LFS LGS MOVZX
B Eb, Gb Ev, Gv Gv. Mp Ev, Gv Gv. Mp Gv. Mp Gv, Eb Gv, Ew
XADD XADD vempps movnti pinsrw pextrw vshufps Grp 9'A
Eb, Gb Ev, Gv Vps,Hps,Wps,|b My, Gy Pq,Ry/Mw, b Gd, Nq, Ib Vps,Hps,Wps,Ib
66 vemppd vpinsrw vpextrw vshufpd
c Vpd,Hpd,Wpd,Ib Vdq,Hdq,Ry/Mw, b Gd, Udq, Ib Vpd,Hpd,Wpd,Ib
vempss
F3 Vss,Hss,Wss,Ib
F2 vempsd
Vsd,Hsd,Wsd,lb
psriw psrid psriq paddq pmullw pmovmskb
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pg, Qq Gd, Nq
66 vaddsubpd vpsriw vpsrid vpsriq vpaddq vpmullw vmovq vpmovmskb
b Vpd, Hpd, Wpd Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Wq, Vq Gd, Ux
movqg2dq
F3 Vdg, Ng
F2 vaddsubps movdqg2q
Vps, Hps, Wps Pq, Uq
pavgb psraw psrad pavgw pmulhuw pmulhw movntq
Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pa, Qq Ma, Pq
66 vpavgb vpsraw vpsrad vpavgw vpmulhuw vpmulhw vevttpd2dq vmovntdq
£ Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Wpd Mx, Vx
vevtdg2pd
F8 Vx, Wpd
vevtpd2dq
F2 Vx, Wpd
psliw pslid psliq pmuludq pmaddwd psadbw maskmovq
Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pq, Qq Pg, Qq Pg, Ng
F 66 vpsllw vpslid vpsliq vpmuludg vpmaddwd vpsadbw vmaskmovdqu
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vdq, Udq
viddqu
F2 VX, Mx

A-12

Ref. #319433-014

OPCODE MAP

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is OFH) *

pfx 8 | 9 | A L B | c | D | E | F
s Jec™4, Jz - Long-displacement jump on condition
s | NS | PIPE | NP/PO | L/NGE | NL/GE | LEING | NLE/G
SETcc, Eb - Byte Set on condition
9 S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
A PUSHJ%4 pOpdc4 RSM BTS SHRD SHRD (Grp 15141 IMUL
GS GS Ev, Gv Ev, Gy, Ib Ev, Gy, CL Gy, Ev
JMPE Grp 10'A Grp 81A BTC BSF BSR MOVSX
(reserved for Invalid Opcode1B Ev, Ib Ev, Gv Gy, Ev Gy, Ev Gv. Eb Gv.E
B emulator on IPF) v, v, EW
F3 POPCNT TZCNT LZCNT
Gy, Ev Gy, Ev Gy, Ev
BSWAP
RAX/EAX/ RCX/ECX/ RDX/EDX/ RBX/EBX/ RSP/ESP/ RBP/EBP/ RSI/ESI/ RDI/EDI/
R8/R8D R9/R9D R10/R10D R11/R11D R12/R12D R13/R13D R14/R14D R15/R15D
C
psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
Pg, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pa, Qq
66 vpsubusb vpsubusw vpminub vpand vpaddusb vpaddusw vpmaxub vpandn
b Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
F2
psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
Pg, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pa, Qq
66 vpsubsb vpsubsw vpminsw vpor vpaddsb vpaddsw vpmaxsw vpxor
£ Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
F2
psubb psubw psubd psubq paddb paddw paddd
Pg, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq
F 66 vpsubb vpsubw vpsubd vpsubq vpaddb vpaddw vpaddd
Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F2
NOTES:

* Al blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014 A-13

OPCODE MAP

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *

pfx 0 1 2 3 4 5 6 7
pshufb phaddw phaddd phaddsw pmaddubsw phsubw phsubd phsubsw
Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pq, Qq Pa, Qq Pa, Qq
0
66 vpshufb vphaddw vphaddd vphaddsw vpmaddubsw vphsubw vphsubd vphsubsw
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
pblendvb vevtph2ps¥ blendvps blendvpd vpermps" vptest
Vdq, Wdq Vx, Wx, Ib Vdq, Wdq Vdq, Wdq Vaqq, Hqq, Wqq Vx, Wx
1 66
2 66 vpmovsxbw vpmovsxbd vpmovsxbq vpmovsxwd vpmovsxwq vpmovsxdq
Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mw Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mq
3 66 vpmovzxbw vpmovzxbd vpmovzxbq vpmovzxwd VPMOoVZXw(q vpmovzxdq vpermd” vpcmpgtq
Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mw Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mq Vqq, Hqq, Wqq VX, Hx, Wx
4 66 vpmulld vphminposuw vpsrivd/q” vpsravd" vpslivd/q”
Vx, Hx, Wx Vdq, Wdq Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
5
6
7
INVEPT INVVPID INVPCID
8 66 Gy, Mdq Gy, Mdq Gy, Mdq
9 66 vgatherdd/q" vgatherqd/q" vgatherdps/d¥ vgatherqgps/d¥ vfmaddsub132ps/d¥ | vfmsubadd132ps/d’
Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx
A 66 vfmaddsub213ps/d¥ | vfmsubadd213ps/d¥
Vx,Hx,Wx Vx,Hx,Wx
B 66 vfmaddsub231ps/d¥ | vfmsubadd231ps/d¥
Vx,Hx,Wx Vx,Hx,Wx
C
D
E
MOVBE MOVBE ANDNY BZHIY BEXTRY
Gy, My My, Gy Gy, By, Ey Gy, Ey, By Gy, Ey, By
66 MOVBE MOVBE ADCX SHLXY
Gw, Mw Mw, Gw Gy, By Gy, Ey, By
1A PEXTY ADOX SARXY
P B Gy, By, Ey Gy, By Gy, Ey, By
F2 CRC32 CRC32 PDEPY MULXY SHRXY
Gd, Eb Gd, Ey Gy, By, Ey By,Gy.rDX,Ey Gy, Ey, By
66 & CRC32 CRC32
F2 Gd, Eb Gd, Ew

A-14

Ref. #319433-014

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H) *

OPCODE MAP

pfx 8 9 A B C D E F
psignb psignw psignd pmulhrsw
Pg, Qq Pa, Qq Pa, Qq Pg, Qq
0 vpsignb vpsignw vpsignd vpmulhrsw vpermilps¥ vpermilpd¥ vtestps¥ vtestpd”
66 Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx,Hx,Wx Vx,Hx,Wx Vx, Wx Vx, Wx
pabsb pabsw pabsd
1 Pg, Qq Pa, Qq Pa, Qq
66 vbroadcastss¥ |vbroadcastsd' Vqg, vbroadcastf128"Vqq, vpabsb vpabsw vpabsd
Vx, Wd Wq Mdqg Vx, Wx Vx, Wx Vx, Wx
2 66 vpmuldq vpcmpeqq vmovntdga vpackusdw vmaskmovps" vmaskmovpd” vmaskmovps" vmaskmovpd¥
Vx, Hx, Wx Vx, Hx, Wx Vx, Mx Vx, Hx, Wx Vx,Hx,Mx Vx,Hx,Mx Mx,Hx,Vx Mx,Hx,Vx
3 66 vpminsb vpminsd vpminuw vpminud vpmaxsb vpmaxsd vpmaxuw vpmaxud
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
4
5 66 vpbroadcastd” vpbroadcastq” vbroadcasti128¥
Vx, Wx VX, Wx Vqq, Mdq
6
7 66 vpbroadcastb¥ vpbroadcastw"
Vx, Wx Vx, Wx
vpmaskmovd/q” vpmaskmovd/q”
8 66 Vx,Hx,Mx Mx,Vx,Hx
9 66 vfmadd132ps/d¥ vfmadd132ss/d" vfmsub132ps/d" vfmsub132ss/d" vfnmadd132ps/d” vfnmadd132ss/d" vfnmsub132ps/d¥ vfnmsub132ss/d¥
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
A 66 vfmadd213ps/d¥ vfmadd213ss/d’ vfmsub213ps/d" vfmsub213ss/d" vfnmadd213ps/d" vfnmadd213ss/d¥ vfnmsub213ps/d¥ vfnmsub213ss/d¥
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
B 66 vfmadd231ps/d¥ vfmadd231ss/d vfmsub231ps/d" vfmsub231ss/d" vfnmadd231ps/d” vfnmadd231ss/d" vfnmsub231ps/d¥ vfnmsub231ss/d¥
VX, Hx, Wx VX, Hx, Wx VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
C
D 66 VAESIMC VAESENC VAESENCLAST VAESDEC VAESDECLAST
Vdq, Wdq Vdq,Hdg,Wdq Vdg,Hdg,Wdq Vdq,Hdq,Wdgq Vdqg,Hdq,Wdg
E
66
F F3
F2
66 & F2
NOTES:

*

Ref. #319433-014

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-15

OPCODE MAP

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *

pfx 0 1 2 3 4 5 6 7
vpermq" vpermpd" vpblendd” vpermilps” vpermilpd” vperm2f128Y
Vqq, Wqq, Ib Vqg, Wqg, Ib Vx,Hx,Wx,Ib Vx, Wx, Ib Vx, Wx, Ib Vqq,Haq,Waqg,lb
0 66
1 66 vpextrb vpextrw vpextrd/q vextractps
Rd/Mb, Vdq, Ib Rd/Mw, Vdq, Ib Ey, Vdq, Ib Ed, Vdq, Ib
2 66 vpinsrb vinsertps vpinsrd/q
Vdq,Hdq,Ry/Mb,Ib [Vdq,Hdq,Udg/Md,Ib| Vdq,Hdq,Ey,lb
3
4 66 vdpps vdppd vmpsadbw vpclmulgdq vperm2i128Y
Vx,Hx,Wx,Ib Vdq,Hdq,Wdgq,Ib Vx,Hx,Wx,Ib Vdq,Hdq,Wdgq,lb Vqq,Hqq,Wqgq,lb
5
6 66 vpcmpestrm vpcmpestri vpcmpistrm vpcmpistri
Vdqg, Wdq, Ib Vdg, Wdq, Ib Vdq, Wdq, Ib Vdq, Wdq, Ib
7
8
9
A
B
C
D
E
F RORXY
P2l oyEnw

A-16

Ref. #319433-014

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 3AH) *

OPCODE MAP

pfx 8 9 A B C D E F
palignr

0 Pq, Qq, Ib

66 vroundps vroundpd vroundss vroundsd vblendps vblendpd vpblendw vpalignr

Vx,Wx,|b Vx,Wx,lb Vss,Wss, b Vsd,Wsd,Ib Vx,Hx,Wx,Ib Vx,Hx,Wx,|b Vx,Hx,Wx,|b Vx,Hx,Wx,Ib
vinsertf128¥ vextractf128¥ vevtps2phY
1 | 66 | Vaq,Hqq,Wqq,lb Wdq,Vqa,lb Wx, VX, b
2
3 | 66 vinserti128¥ vextracti128¥
Vqq,Hqq,Wqq,Ib Wdq,Vqq,Ib
4 | 66 vblendvps¥ vblendvpd" vpblendvbY
Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx

5
6
7
8
9
A
B
C
> [eseom
E
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014

OPCODE MAP

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of
the opcode.

mod | nnn ‘ R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group nhumber. Group numbers
(from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can be
established using the third column of the table.

A4.1 Opcode Look-up Examples Using Opcode Extensions

An Example is provided below.

Example A-4. Interpreting an ADD Instruction
An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
® Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B.

® The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing
mode (for example: mem = 00B, 01B, 10B).

Example A-5. Looking Up OFO1C3H

Look up opcode OF01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and Table A-6:
® OF tells us that this instruction is in the 2-byte opcode map.

® 01 (row O, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.

® (C3is the ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows
in Table A-6.

® The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
® Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A4.2 Opcode Extension Tables
See Table A-6 below.

A-18 Ref. #319433-014

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

OPCODE MAP

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
Opcode Group | Mod 7,6 | pfx 000 001 010 011 100 101 110 111
80-83 1 mem, 11B ADD OR ADC SBB AND SuUB XOR CMP
8F 1A mem, 11B POP
C0,C1 reg, imm mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR
DO, D1 reg, 1 2
D2, D3 reg, CL
6. F7 3 mem, 11B TEST NOT NEG MUL IMUL DIV IDIV
’ Ib/lz AL/rAX AL/rAX AL/rAX AL/rAX
mem, 11B INC DEC
FE 2 Eb Eb
- G mem, 11B INC DEC CALLNf®4 CALLF JMPN64 JMPF PUSHI64
Ev Ev Ev Ep Ev Mp Ev
OF 00 6 mem, 11B SLDT STR LLDT LTR VERR VERW
Rv/Mw Rv/Mw Ew Ew Ew Ew
mem SGDT SIDT LGDT LIDT SMSW LMSW INVLPG
Ms Ms Ms Ms Mw/Rv Ew Mb
11B VMCALL (001)| MONITOR |[XGETBV (000)| SWAPGS
VMLAUNCH (000) XSETBV (001) 984(000)
OF 01 7 (010) MWAIT (001) |\ o RDTSCP (001)
VMRESUME | CLAC (010) (100)
(011) VMXOFF| STAC (011) | xeND (101)
(100) XTEST (110)
OF BA 8 mem, 11B BT BTS BTR BTC
CMPXCH8B Mq| VMPTRLD VMPTRST
CMPXCHG16B Mq Mq
Mdq
mem 66 VMCLEAR
OF C7 9 Mq
F3 VMXON VMPTRST
Mq Mq
1B RDRAND RDSEED
Rv Rv
mem
OF B9 10
1B
mem MOV
ce 1B Eb, 1b XABORT (000) I
1
c7 mem MOV
118 Bv, Iz XBEGIN (000) Jz
mem
psriw psraw psliw
OF 71 12 "B Ng, Ib Ng, Ib Ng, Ib
66 vpsriw vpsraw vpsliw
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib
mem
psrid psrad pslid
OF 72 13 "B Ng, Ib Ng, Ib Ng, Ib
66 vpsrid vpsrad vpslid
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib
mem
psrlq psliq
OF 73 14 "B Ng, Ib Ng, Ib
66 vpsriq vpsridq vpslig vpslidq
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,lb

Ref. #319433-014

OPCODE MAP

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)
Opcode Group | Mod 76 | pfx 000 001 010 011 100 101 110 111
mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR | XSAVEOPT clflush
OF AE 15 Ifence mfence sfence
F3 RDFSBASE | RDGSBASE | WRFSBASE | WRGSBASE
11B Ry Ry Ry Ry
mem prefetch prefetch prefetch prefetch
OF 18 16 NTA TO T1 T2
11B
VEX.OF38 F3 - mem BLSRY BLSMSKY BLSIY
. 1B By, Ey By, Ey By, Ey
NOTES:

* Al blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-20

Ref. #319433-014

OPCODE MAP

A.5 ESCAPE OPCODE INSTRUCTIONS

Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7
through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes
has a ModR/M byte. If the ModR/M byte is within the range of OOH-BFH, bits 3-5 of the ModR/M byte are used as
an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is
outside the range of O0OH through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes

Examples are provided below.

Example A-6. Opcode with ModR/M Byte in the O0OH through BFH Range
DD0504000000H can be interpreted as follows:

® The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the
OOH through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real
instruction (see Table A-9).

® The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this
opcode).

Example A-7. Opcode with ModR/M Byte outside the 00H through BFH Range
D8C1H can be interpreted as follows:

® This example illustrates an opcode with a ModR/M byte outside the range of OOH through BFH. The instruction
can be located in Section A.4.

® In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as
operands).

A.5.2 Escape Opcode Instruction Tables

Tables are listed below.

A.5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M
byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7. D8 Opcode Map When ModR/M Byte is Within O0H to BFH *
nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 1008 101B 110B 111B
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
single-real single-real single-real single-real single-real single-real single-real single-real
NOTES:

*

Ref. #319433-014

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-21

OPCODE MAP

Table A-8 shows the map if the ModR/M byte is outside the range of OOH-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 \ 1 \ 2 | 3 | 4 \ 5 \ 6 7
C FADD
ST(O)ST(0) | STO).ST(1) | ST0).ST) | ST0).8T(3) | ST0).8T(4) | ST(0).87(5) | sT(0).8T(6) | ST(0).8T(7)
D FCOM
STO)ST(O) | sT0).ST() | sT0).T@) | sT0).8T(3) | sT0).8T(4) | sT(0).875) | sT).876) | sT(0).8T(7)
E FSUB
ST(O)ST(0) | STO).ST(1) | ST0).ST@) | ST0).8T(3) | ST0).8T(4) | sT(0).8T(5) | sT(0).8T(6) | ST(0).ST(7)
F FDIV
sT0).570) | sT0),sT(1) | sT0)sT@) | s10)sT@3) | st10)sT@4) | sT0)sT65) | st@).sT16) | sT0).5T(7)
8 \ 9 \ A | B | C \ D \ E F
C FMUL
ST(O)ST(0) | STO).ST(1) | ST0).ST@) | ST0).8T(3) | ST0).8T(4) | sT(0).8T(5) | sT(0).8T(6) | ST(0).ST(7)
D FCOMP
STO)ST(O) | STO).ST() | sTO)T@) | sT0).8T(3) | sT0).8T(4) | sT(0).87(5) | sT(0).876) | sT(0).8T(7)
E FSUBR
ST(O)ST(0) | STO).ST(1) | ST).ST) | ST0).ST(3) | ST0).8T(4) | ST(0).8T(5) | sT(0).8T(6) | ST(0).8T(7)
F FDIVR
sT(0)sT0) | sT)sT(1) | sT0).sT@ | sT0),s13) | sT0)sT@4) | sT0).8T65) | sT0)sT6) | ST(O).ST(D)
NOTES:

*

A5.2.2

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M
byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-9. D9 Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD FST FSTP FLDENV FLDCW FSTENV FSTCW
single-real single-real single-real 14/28 bytes 2 bytes 14/28 bytes 2 bytes
NOTES:

*

A-22

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014

OPCODE MAP

Table A-10 shows the map if the ModR/M byte is outside the range of OOH-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside O0OH to BFH *
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM
F F2XM!1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP
8 | 9 | A | B | C | D | E | F

c FXCH

ST(0),ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0)ST(3) | ST(0).ST@4) | ST(0)ST(5) | ST(0),ST(E) | ST(0)ST(7)
D
E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ
F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.23 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M
byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-11. DA Opcode Map When ModR/M Byte is Within OOH to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B

FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer

NOTES:
* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014 A-23

OPCODE MAP

Table A-12 shows the map if the ModR/M byte is outside the range of OOH-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-12. DA Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 | 1 \ 2 \ 3 | 4 \ 5 \ 6 \ 7
FCMOVB
ST(0)ST(0) | ST(0)ST(1) | ST(0)ST@) | ST(O)STE) | ST()STM) | STO).ST() | STO).STE6) | ST)ST()
FCMOVBE
ST(0),ST(0) | ST(0),ST(1) | ST(0)STR) | ST(0)ST@) | ST(0).STA) | ST(0).ST(B) | ST(0),STE6) | ST(0)ST(7)
8 | 9 \ A \ B | c \ D \ E \ F
FCMOVE
ST(0)ST(0) | ST(0)ST(1) | ST(0)ST@) | ST(0)STE) | ST(0)STW) | STO).ST() | STO).ST6) | ST)ST()
FCMOVU
ST(0),ST(0) | ST(0),ST(1) | ST(0)STR) | ST(0)ST@) | ST(0).ST®) | ST(0).ST(B) | ST(0),STE6) | ST(0)ST(7)
FUCOMPP

NOTES:

*

A5.2.4

Escape Opcodes with DB as First Byte

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M
byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-13. DB Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte

0ooB

001B

010B

011B

100B

101B

110B

111B

FILD
dword-integer

FISTTP
dword-integer

FIST
dword-integer

FISTP
dword-integer

FLD
extended-real

FSTP
extended-real

NOTES:

*

A-24

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014

OPCODE MAP

Table A-14 shows the map if the ModR/M byte is outside the range of OOH-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-14. DB Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 \ 1 | 2 | 3 \ 4 \ 5 \ 6 \ 7
C FCMOVNB
ST(0)ST(0) | ST(O)ST(1) | ST(0)ST(2) | ST(0).STE) | ST(0)STW) | STO).ST() | STO).STE6) | STO).ST()
D FCMOVNBE
ST(0)ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0)ST@E) | ST(0).ST@4) | ST(O)ST(G) | ST(O).STE) | ST(0)ST(7)
E FCLEX FINIT
F FCOMI
ST(0)ST(0) | ST)ST() | STO)ST(R) | ST(0)STE) | ST(O).ST®) | ST(0)ST(5) | ST(O).ST(E) | ST(O).ST(T)
8 \ 9 | A | B \ c \ D \ E \ F
C FCMOVNE
ST(0)ST(0) | ST(0)ST(1) | ST(O)ST() | ST(0)ST(3) | ST()STM) | ST(O)STE) | STO).STE) | STO)ST)
D FCMOVNU
ST(0)ST(0) | ST(0)ST(1) | ST(O)ST() | ST(0)STE) | ST()STM) | ST(O)STE) | STO).STE) | STO)ST)
E FUCOMI
ST(0),ST(0) | ST(0)ST(1) | ST(0),STR) | ST(O)STE) | ST(0).STM) | ST(O)STEG) | ST(0).STE6) | ST(0).8T(7)
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.2.5 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M
byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-15. DC Opcode Map When ModR/M Byte is Within O0H to BFH *
nnn Field of ModR/M Byte (refer to Figure A-1)

000B 001B 010B 011B 100B 101B 110B 111B
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
double-real double-real double-real double-real double-real double-real double-real double-real
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014 A-25

OPCODE MAP

Table A-16 shows the map if the ModR/M byte is outside the range of OOH-BFH. In this case the first digit of the ModR/M byte
selects the table row and the second digit selects the column.

Table A-16. DC Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 | 1 \ 2 | 3 \ 4 | 5 \ 6 \ 7
c FADD
ST(0).ST(0) | ST(1)ST(0) | ST@)ST(O) | STM)STO) | STW)STO) | ST()ST(O) | STE).STO) | ST().ST()
D
| | | | | | |
E FSUBR
ST(0)ST(0) | ST(1)ST(0) | ST@)ST(O) | STM)STO) | STW)STO) | ST()ST(O) | STE).ST(O) | ST().ST()
F FDIVR
ST(0)ST(0) | sT()STO) | ST@),ST(0) | STE)STO) | STA).ST(O) | ST(B)ST(O) | STE).STIO) | ST(T).ST(0)
8 | 9 \ A | B \ C | D \ E \ F
c FMUL
ST(0)ST(0) | ST(1)ST(0) | ST@)ST(O) | STM)STO) | STW)STO) | ST()ST(O) | STE).ST(O) | ST().ST()
D
| | | | | | |
E FSUB
ST(0)ST(0) | ST(1)ST(0) | ST@)ST(O) | STM)STO) | STW)STO) | ST()ST(O) | STE).ST(O) | ST().ST()
F FDIV
ST(0)ST(0) | sT(1)ST(O) | ST@),ST(0) | STE)STO) | STA).ST(O) | ST(E)STO) | STE).STIO) | ST(T).ST(0)
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A.5.2.6 Escape Opcodes with DD as First Byte

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M
byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH "

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD FISTTP FST FSTP FRSTOR FSAVE FSTSW
double-real integer64 double-real double-real 98/108bytes 98/108bytes 2 bytes
NOTES:

*

A-26

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014

OPCODE MAP

Table A-18 shows the map if the ModR/M byte is outside the range of OOH-BFH. The first digit of the ModR/M byte selects the table
row and the second digit selects the column.

Table A-18. DD Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 \ 1 | 2 \ 3 \ 4 \ 5 \ 6 | 7
C FFREE
st) | sty | st | st® | stw | ste) | s1e) | sT()
D FST
st) | sty | st | st® | stw | ste) | s1e) | sT()
E FUCOM
ST(0),ST(0) | ST(1)ST(0) | ST(2).8T(0) | ST(3)STO) | STA)ST(O) | ST(G).STO) | STE)STO) | ST()ST(O)
F
8 \ 9 | A \ B \ c \ D \ E | F
C
| | | | | | |
D FSTP
st) | sty | st | st® | stw | ste) | sTe) | sT(D)
E FUCOMP
ST(0) ST(1) ST(2) ST(3) ST() ST(5) ST(6) ST(7)
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map
if the ModR/M byte is in the range of OOH-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruc-
tion.

Table A-19. DE Opcode Map When ModR/M Byte is Within OOH to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
word-integer word-integer word-integer word-integer word-integer word-integer word-integer word-integer
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014 A-27

OPCODE MAP

Table A-20 shows the opcode map if the ModR/M byte is outside the range of OOH-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-20. DE Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 | 1 \ 2 | 3 | 4 \ 5 \ 6 7
C FADDP
ST(0).ST(0) | ST()ST(O) | ST@).STO) | ST(3).ST(O) | ST)STO) | STE)STO) | STE)STO) | ST(7)STO)
D
E | | | FSULRP | |
ST(0).ST(0) | ST(1)ST(O) | ST@).STO) | ST(3).ST(O) | ST)STO) | STE)STO) | STE)STO) | ST(7)STO)
F FDIVRP
ST(0)ST(0) | sT()STO) | ST@).8T(0) | STE)STO) | ST@).ST(O) | STG)ST(O) | ST(6).ST(O) | ST(7).ST(O)
8 | 9 \ A | B | c \ D \ E F
C FMULP
ST(0).ST(0) | ST(1)ST(O) | sT@).sT(0) | sTE).ST(O) | STM).STO) | ST(5)8TO) | ST(E)STO) | ST(7).5T(0)
D FCOMPP
E FSUBP
ST(0).ST(0) | ST(1)ST(O) | ST@).STO) | ST(3).ST(O) | ST)STO) | STE)STO) | STE)STO) | ST(7)STO)
F FDIVP
ST(0)ST(0) | ST()ST(O) | ST@).8T00). | STE)STO) | ST@).ST(O) | ST(G)ST(O) | STE).ST(O) | ST(M).ST(O)
NOTES:

*

A5.2.8

Escape Opcodes with DF As First Byte

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode
map if the ModR/M byte is in the range of OOH-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-21. DF Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FILD FISTTP FIST FISTP FBLD FILD FBSTP FISTP
word-integer word-integer word-integer word-integer packed-BCD gword-integer packed-BCD qword-integer
NOTES:

*

A-28

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Ref. #319433-014

OPCODE MAP

Table A-22 shows the opcode map if the ModR/M byte is outside the range of OOH-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-22. DF Opcode Map When ModR/M Byte is Outside O0H to BFH "

0 | 1 \ 2 \ 3 | 4 \ 5 | 6 \ 7
c
| | | | | | |
D
E FSTSW
AX
F FCOMIP
ST(0)ST(0) | sT(0)sT(1) | sT()ST@) | ST(0).ST3) | ST(O).STM) | ST(0)ST(5) | sST(O).STE) | ST(0)ST(V)
8 | 9 \ A \ B | C \ D | E \ F
c
| | | | | | |
D
| | | | | | |
E FUCOMIP
ST(0),ST(0) | ST(O)ST(1) | STO)STR) | ST(O)STE) | ST(O)ST@) | ST(O)STG) | ST(O).STE) | STO)ST(7)
F
NOTES:

*

Ref. #319433-014

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-29

OPCODE MAP

A-30 Ref. #319433-014

INSTRUCTION SUMMARY

APPENDIX B
INSTRUCTION SUMMARY

B.1 AVX INSTRUCTIONS

In AVX, most SSE/SSE2/SSE3/SSSE3/SSE4 Instructions have been promoted to support VEX.128 encodings
which, for non-memory-store versions implies support for zeroing upper bits of YMM registers. Table B-1 summa-
rizes the promotion status for existing instructions. The column “VEX.256” indicates whether 256-bit vector form
of the instruction using the VEX.256 prefix encoding is supported. The column “VEX.128” indicates whether the
instruction using VEX.128 prefix encoding is supported.

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

yes yes YY OF 1X MOVUPS

no yes MOVSS scalar

yes yes MOVUPD

no yes MOVSD scalar

no ves MOVLPS Note 1

no yes MOVLPD Note 1

no yes MOVLHPS Redundant with VPERMILPS
ves yes MOVDDUP

yes yes MOVSLDUP

yes yes UNPCKLPS

ves yes UNPCKLPD

yes yes UNPCKHPS

yes yes UNPCKHPD

no yes MOVHPS Note 1

no yes MOVHPD Note 1

no yes MOVHLPS Redundant with VPERMILPS
ves ves MOVAPS

yes yes MOVSHDUP

yes yes MOVAPD

no no CVTPI2PS MMX

no yes CVTSIZSS scalar

no no CVTPI2PD MMX

no yes CVTSI2SD scalar

yes yes MOVNTPS

yes yes MOVNTPD

no no CVTTPS2PI MMX

no yes CVTTSS2SI scalar

no no CVTTPD2PI MMX

Ref. # 319433-014

B-1

INSTRUCTION SUMMARY

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

no yes CVTTSD2SI scalar
no no CVTPS2PI MMX
no yes CVTSS2SI scalar
no no CVTPD2PI MMX
no yes CVTSDzSI scalar
no ves UCOMISS scalar
no yes UCOMISD scalar
no yes COMISS scalar
no yes COMISD scalar
yes yes YY OF 5X MOVMSKPS

yes yes MOVMSKPD

yes yes SQRTPS

no yes SQRTSS scalar
yes yes SQRTPD

no yes SQRTSD scalar
yes yes RSQRTPS

no yes RSQRTSS scalar
ves yes RCPPS

no yes RCPSS scalar
yes yes ANDPS

ves ves ANDPD

yes yes ANDNPS

yes yes ANDNPD

yes yes ORPS

yes yes ORPD

yes yes XORPS

yes ves XORPD

yes yes ADDPS

no yes ADDSS scalar
yes yes ADDPD

no yes ADDSD scalar
yes yes MULPS

no yes MULSS scalar
yes yes MULPD

no yes MULSD scalar
yes yes CVTPS2PD

no yes CVTSS2SD scalar
yes yes CVTPD2PS

B-2

Ref. #319433-014

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

INSTRUCTION SUMMARY

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

no yes CVTSD2SS scalar
yes yes CVTDQ2PS

ves yes CVTPS2DQ

yes yes CVTTPS2DQ

yes yes SUBPS

no yes SUBSS scalar
ves yes SUBPD

no yes SUBSD scalar
yes ves MINPS

no yes MINSS scalar
yes yes MINPD

no yes MINSD scalar
yes yes DIVPS

no yes DIVSS scalar
ves yes DIVPD

no yes DIVSD scalar
yes yes MAXPS

no yes MAXSS scalar
yes yes MAXPD

no yes MAXSD scalar
no yes YY OF 6X PUNPCKLBW VI

no yes PUNPCKLWD Vi

no yes PUNPCKLDQ Vi

no yes PACKSSWB VI

no yes PCMPGTB Vi

no yes PCMPGTW Vi

no yes PCMPGTD Vi

no yes PACKUSWB Vi

no yes PUNPCKHBW Vi

no yes PUNPCKHWD Vi

no yes PUNPCKHDQ Vi

no yes PACKSSDW VI

no yes PUNPCKLQDQ Vi

no yes PUNPCKHQDQ VI

no yes MOVD scalar
no yes MOvQ scalar
yes yes MOVDQA

yes yes MOVDQU

Ref. # 319433-014

B-3

INSTRUCTION SUMMARY

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

no ves YY OF 7X PSHUFD Vi
no yes PSHUFHW Vi
no yes PSHUFLW Vi
no yes PCMPEQB Vi
no yes PCMPEQW Vi
no yes PCMPEQD Vi
yes ves HADDPD

yes yes HADDPS

ves ves HSUBPD

yes yes HSUBPS

no yes MOVD Vi
no yes MOvQ Vi
yes yes MOVDQA

yes yes MOVDQU

no yes YY OF AX LDMXCSR

no yes STMXCSR

yes yes YY OF CX CMPPS

no yes CMPSS scalar
yes yes CMPPD

no yes CMPSD scalar
no yes PINSRW Vi
no yes PEXTRW Vi
yes yes SHUFPS

yes yes SHUFPD

yes yes YY OF DX ADDSUBPD

yes yes ADDSUBPS

no yes PSRLW Vi
no yes PSRLD Vi
no yes PSRLQ Vi
no yes PADDQ VI
no yes PMULLW Vi
no no MOVQzDQ MMX
no no MOVDQz2Q MMX
no yes PMOVMSKB Vi
no yes PSUBUSB Vi
no ves PSUBUSW Vi
no yes PMINUB Vi
no yes PAND Vi

B-4

Ref. #319433-014

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

INSTRUCTION SUMMARY

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

no yes PADDUSB Vi
no yes PADDUSW Vi
no ves PMAXUB Vi
no ves PANDN Vi
no yes YY OF EX PAVGB VI
no ves PSRAW VI
no yes PSRAD Vi
no yes PAVGW VI
no yes PMULHUW Vi
no yes PMULHW Vi
ves yes CVTPD2DQ

yes yes CVTTPD2DQ

ves yes CVTDQ2PD

yes yes MOVNTDQ VI
no yes PSUBSB Vi
no yes PSUBSW Vi
no yes PMINSW VI
no yes POR VI
no yes PADDSB Vi
no yes PADDSW Vi
no ves PMAXSW VI
no yes PXOR Vi
ves yes YY OF FX LDDQU Vi
no yes PSLLW VI
no yes PSLLD Vi
no yes PSLLQ VI
no yes PMULUDQ VI
no yes PMADDWD Vi
no yes PSADBW VI
no yes MASKMOVDQU

no yes PSUBB Vi
no yes PSUBW VI
no yes PSUBD Vi
no yes PSUBQ VI
no yes PADDB VI
no yes PADDW Vi
no yes PADDD Vi
no yes SSSE3 PHADDW VI

Ref. # 319433-014

B-5

INSTRUCTION SUMMARY

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

no yes PHADDSW Vi

no yes PHADDD Vi

no yes PHSUBW Vi

no ves PHSUBSW Vi

no yes PHSUBD Vi

no yes PMADDUBSW VI

no yes PALIGNR Vi

no yes PSHUFB Vi

no ves PMULHRSW Vi

no yes PSIGNB Vi

no yes PSIGNW Vi

no yes PSIGND Vi

no yes PABSB Vi

no yes PABSW Vi

no ves PABSD Vi

yes yes SSE4.1 BLENDPS

yes yes BLENDPD

ves yes BLENDVPS Note 2
yes yes BLENDVPD Note 2
no yes DPPD

yes yes DPPS

no yes EXTRACTPS Note 3
no yes INSERTPS Note 3
no ves MOVNTDQA

no yes MPSADBW Vi

no yes PACKUSDW Vi

no yes PBLENDVB Vi

no yes PBLENDW Vi

no yes PCMPEQQ Vi

no ves PEXTRD Vi

no yes PEXTRQ Vi

no yes PEXTRB Vi

no ves PEXTRW Vi

no yes PHMINPOSUW Vi

no yes PINSRB Vi

no yes PINSRD Vi

no yes PINSRQ Vi

no yes PMAXSB Vi

B-6

Ref. #319433-014

Table B-1. Promoted SSE/SSE2/SSE3/SSSE3/SSE4 Instructions in AVX

INSTRUCTION SUMMARY

VEX.256 VEX.128 Group Instruction If No, Reason?
Encoding Encoding

no yes PMAXSD Vi

no yes PMAXUD VI

no ves PMAXUW Vi

no yes PMINSB Vi

no yes PMINSD VI

no ves PMINUD VI

no yes PMINUW Vi

no yes PMOVSXxx VI

no ves PMOVZXxx VI

no yes PMULDQ VI

no yes PMULLD VI
ves ves PTEST

yes yes ROUNDPD

yes yes ROUNDPS

no yes ROUNDSD scalar
no yes ROUNDSS scalar
no yes SSE4.2 PCMPGTQ Vi

no no SSE4.2 CRC32c integer
no yes PCMPESTRI Vi

no yes PCMPESTRM Vi

no yes PCMPISTRI Vi

no yes PCMPISTRM Vi

no no POPCNT POPCNT integer
no yes AESNI AESDEC VI

no yes AESDECLAST Vi

no yes AESENC Vi

no yes AESECNLAST Vi

no yes AESIMC Vi

no yes AESKEYGENASSIST Vi

no yes CLMUL PCLMULQDQ Vi

Description of Column “If No, Reason?”

MMX: Instructions referencing MMX registers do not support VEX.

Scalar: Scalar instructions are not promoted to 256-bit.

integer: Integer instructions are not promoted.

VI: “Vector Integer” instructions are not promoted to 256-bit.

Note 1: MOVLPD/PS and MOVHPD/PS are not promoted to 256-bit. The equivalent functionality are provided by
VINSERTF128 and VEXTRACTF128 instructions as the existing instructions have no natural 256b extension.

Note 2: BLENDVPD and BLENDVPS are superseded by the more flexible VBLENDVPD and VBLENDVPS.

Ref. # 319433-014

B-7

INSTRUCTION SUMMARY

Note 3: It is expected that using 128-bit INSERTPS followed by a VINSERTF128 would be better than promoting
INSERTPS to 256-bit (for example).

B.2 PROMOTED VECTOR INTEGER INSTRUCTIONS IN AVX2

In AVX2, most SSE/SSE2/SSE3/SSSE3/SSE4 vector integer instructions have been promoted to support VEX.256
encodings. Table B-2 summarizes the promotion status for existing instructions. The column “VEX.128” indicates
whether the instruction using VEX.128 prefix encoding is supported.

The column “VEX.256” indicates whether 256-bit vector form of the instruction using the VEX.256 prefix encoding
is supported, and under which feature flag.

Table B-2. Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction
AVX2 AVX YY OF 6X PUNPCKLBW
AVX2 AVX PUNPCKLWD
AVX2 AVX PUNPCKLDQ
AVX2 AVX PACKSSWB
AVX2 AVX PCMPGTB
AVX2 AVX PCMPGTW
AVX2 AVX PCMPGTD
AVX2 AVX PACKUSWB
AVX2 AVX PUNPCKHBW
AVX2 AVX PUNPCKHWD
AVX2 AVX PUNPCKHDQ
AVX2 AVX PACKSSDW
AVX2 AVX PUNPCKLQDQ
AVX2 AVX PUNPCKHQDQ
no AVX MOVD

no AVX MOVQ

AVX AVX MOVDQA
AVX AVX MOVDQU
AVX2 AVX YY OF 7X PSHUFD
AVX2 AVX PSHUFHW
AVX2 AVX PSHUFLW
AVX2 AVX PCMPEQB
AVX2 AVX PCMPEQW
AVX2 AVX PCMPEQD
AVX AVX MOVDQA
AVX AVX MOVDQU

no AVX PINSRW

no AVX PEXTRW
AVX2 AVX PSRLW

B-8 Ref. #319433-014

Table B-2. Promoted Vector Integer SIMD Instructions in AVX2

INSTRUCTION SUMMARY

VEX.256 Encoding VEX.128 Encoding Group Instruction
AVX2 AVX PSRLD
AVX2 AVX PSRLQ
AVX2 AVX PADDQ
AVX2 AVX PMULLW
AVX2 AVX PMOVMSKB
AVX2 AVX PSUBUSB
AVX2 AVX PSUBUSW
AVX2 AVX PMINUB
AVX2 AVX PAND
AVX2 AVX PADDUSB
AVX2 AVX PADDUSW
AVX2 AVX PMAXUB
AVX2 AVX PANDN
AVX2 AVX YY OF EX PAVGB
AVX2 AVX PSRAW
AVX2 AVX PSRAD
AVX2 AVX PAVGW
AVX2 AVX PMULHUW
AVX2 AVX PMULHW
AVX AVX MOVNTDQ
AVX2 AVX PSUBSB
AVX2 AVX PSUBSW
AVX2 AVX PMINSW
AVX2 AVX POR

AVX2 AVX PADDSB
AVX2 AVX PADDSW
AVX2 AVX PMAXSW
AVX2 AVX PXOR
AVX AVX YY OF FX LDDQU
AVX2 AVX PSLLW
AVX2 AVX PSLLD
AVX2 AVX PSLLQ
AVX2 AVX PMULUDQ
AVX2 AVX PMADDWD
AVX2 AVX PSADBW
AVX2 AVX PSUBB
AVX2 AVX PSUBW
AVX2 AVX PSUBD

Ref. # 319433-014

B-9

INSTRUCTION SUMMARY

Table B-2. Promoted Vector Integer SIMD Instructions in AVX2

VEX.256 Encoding VEX.128 Encoding Group Instruction
AVX2 AVX PSUBQ
AVX2 AVX PADDB
AVX2 AVX PADDW
AVX2 AVX PADDD
AVX2 AVX SSSE3 PHADDW
AVX2 AVX PHADDSW
AVX2 AVX PHADDD
AVX2 AVX PHSUBW
AVX2 AVX PHSUBSW
AVX2 AVX PHSUBD
AVX2 AVX PMADDUBSW
AVX2 AVX PALIGNR
AVX2 AVX PSHUFB
AVX2 AVX PMULHRSW
AVX2 AVX PSIGNB
AVX2 AVX PSIGNW
AVX2 AVX PSIGND
AVX2 AVX PABSB
AVX2 AVX PABSW
AVX2 AVX PABSD
AVX2 AVX MOVNTDQA
AVX2 AVX MPSADBW
AVX2 AVX PACKUSDW
AVX2 AVX PBLENDVB
AVX2 AVX PBLENDW
AVX2 AVX PCMPEQQ
no AVX PEXTRD

no AVX PEXTRQ

no AVX PEXTRB

no AVX PEXTRW

no AVX PHMINPOSUW
no AVX PINSRB

no AVX PINSRD

no AVX PINSRQ
AVX2 AVX PMAXSB
AVX2 AVX PMAXSD
AVX2 AVX PMAXUD
AVX2 AVX PMAXUW

B-10

Ref. #319433-014

Table B-2. Promoted Vector Integer SIMD Instructions in AVX2

INSTRUCTION SUMMARY

VEX.256 Encoding VEX.128 Encoding Group Instruction
AVX2 AVX PMINSB
AVX2 AVX PMINSD
AVX2 AVX PMINUD
AVX2 AVX PMINUW
AVX2 AVX PMOVSXxx
AVX2 AVX PMOVZXxx
AVX2 AVX PMULDQ
AVX2 AVX PMULLD
AVX AVX PTEST

AVX2 AVX SSE4.2 PCMPGTQ

no AVX PCMPESTRI
no AVX PCMPESTRM
no AVX PCMPISTRI
no AVX PCMPISTRM
no AVX AESNI AESDEC

no AVX AESDECLAST
no AVX AESENC

no AVX AESECNLAST
no AVX AESIMC

no AVX AESKEYGENASSIST
no AVX CLMUL pPCLMULQDQ

Table B-3 compares complementary SIMD functionalities introduced in AVX and AVX2. instructions.

Table B-3. VEX-Only SIMD Instructions in AVX and AVX2

AVX2 AVX Comment
VBROADCASTI128 VBROADCASTF128 256-bit only
VBROADCASTSD ymm1, xmm VBROADCASTSD ymm1, m64 256-bit only
VBROADCASTSS (from xmm) VBROADCASTSS (from m32)
VEXTRACTI128 VEXTRACTF128 256-bit only
VINSERTI128 VINSERTF128 256-bit only
VPMASKMOVD VMASKMOVPS
VPMASKMOVQ! VMASKMOVPD
VPERMILPD in-lane
VPERMILPS in-lane
VPERM21128 VPERM2F128 256-bit only
VPERMD cross-lane
VPERMPS cross-lane
VPERMQ cross-lane

Ref. # 319433-014

INSTRUCTION SUMMARY

Table B-3. VEX-Only SIMD Instructions in AVX and AVX2

AVX2

AVX

Comment

VVPERMPD

cross-lane

VTESTPD

VTESTPS

VPBLENDD

VPSLLVD/Q

VVPSRAVD

VPSRLVD/Q

VVGATHERDPD/QPD

VVGATHERDPS/QPS

VVPGATHERDD/QD

VPGATHERDQ/QQ

Table B-4. New Primitive in AVX2 Instructions

Opcode

Instruction

Description

VEX.NDS.256.66.0F38.W0 36 /r

VPERMD ymm1, ymmZ2, ymm3/m256

Permute doublewords in ymm3/m256 using
indexes in ymmZ2 and store the result in ymm1.

VEX.NDS.256.66.0F3A.W1 01 /r

VPERMPD ymm1, ymm2/m256, imm8

Permute double-precision FP elements in
ymm2/m256 using indexes in imm8 and store
the result in ymm1.

VEX.NDS.256.66.0F38.W0 16 /r

VPERMPS ymm1, ymmZ2, ymm3/m256

Permute single-precision FP elements in
ymm3/m256 using indexes in ymm2 and store
the result in ymm1.

VEX.NDS.256.66.0F3A.W1 00 /r

VPERMQ ymm1, ymm2/m256, imm8

Permute quadwords in ymm2/m256 using
indexes in imm8 and store the result in ymm1.

VEX.NDS.128.66.0F38.W0 47 /r

VPSLLVD xmm1, xmm2, xmm3/m128

Shift doublewords in xmm?2 left by amount speci-
fied in the corresponding element of
xmm3/m128 while shifting in Os.

VEX.NDS.128.66.0F38.W1 47 /r

VPSLLVQ xmm1, xmm2, xmm3/m128

Shift quadwords in xmmZ2 left by amount speci-
fied in the corresponding element of
xmm3/m128 while shifting in Os.

VEX.NDS.256.66.0F38.W0 47 /r

VPSLLVD ymm1, ymm2, ymm3/m256

Shift doublewords in ymm?Z left by amount speci-
fied in the corresponding element of
ymm3/m256 while shifting in Os.

VEX.NDS.256.66.0F38.\W1 47 /r

VPSLLVQ ymm1, ymm2, ymm3/m256

Shift quadwords in ymmZ2 left by amount speci-
fied in the corresponding element of
ymm3/m256 while shifting in Os.

VEX.NDS.128.66.0F38.W0 46 /r

VPSRAVD xmm1, xmm2, xmm3/m128

Shift doublewords in xmmZ2 right by amount
specified in the corresponding element of
xmm3/m128 while shifting in the sign bits.

VEX.NDS.128.66.0F38.W0 45 /r

VPSRLVD xmm1, xmmZ2, xmm3/m128

Shift doublewords in xmmZ2 right by amount
specified in the corresponding element of
xmm3/m128 while shifting in Os.

VEX.NDS.128.66.0F38.W145r

VPSRLVQ xmm1, xmm2, xmm3/m128

Shift quadwords in xmmZ2 right by amount speci-
fied in the corresponding element of
xmm3/m128 while shifting in Os.

B-12

Ref. #319433-014

INSTRUCTION SUMMARY

Opcode Instruction Description

VEX.NDS.256.66.0F38W0 45 /r | VPSRLVD ymm1, ymm2, ymm3/m256 Shift doublewords in ymmZ2 right by amount
specified in the corresponding element of
ymm3/m256 while shifting in Os.

VEX.NDS.256.66.0F38W1 45 /r | VPSRLVQ ymm1, ymm2, ymm3/m256 Shift quadwords in ymmZ2 right by amount speci-
fied in the corresponding element of
ymm3/m256 while shifting in Os.

VEX.DDS.128.66.0F38.W0 90 /r VGATHERDD xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather
dword values from memory conditioned on mask
specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.DDS.128.66.0F38.W0 91 /r | VGATHERQD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather
dword values from memory conditioned on mask
specified by xmmZ2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.DDS.256.66.0F38.W0 S0 /r | VGATHERDD ymm1, vm32y, ymmZ2 Using dword indices specified in vm32y, gather
dword values from memory conditioned on mask
specified by ymm2. Conditionally gathered ele-
ments are merged into ymm1.

VEX.DDS.256.66.0F38.W0 91 /r VGATHERQD ymm1, vm64y, ymm?2 Using qword indices specified in vm64y, gather
dword values from memory conditioned on mask
specified by ymmZ2. Conditionally gathered ele-
ments are merged into ymm1.

VEX.DDS.128.66.0F38.W1 92 /r VGATHERDPD xmm1, vm32x, xmm2 Using dword indices specified in vm32Xx, gather
double-precision FP values from memory condi-
tioned on mask specified by xmm2. Conditionally
gathered elements are merged into xmm1.

VEX.DDS.128.66.0F38.W1 93 /r VGATHERQPD xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather
double-precision FP values from memory condi-
tioned on mask specified by xmm2. Conditionally
gathered elements are merged into xmm1.

VEX.DDS.256.66.0F38.W1 92 /r VGATHERDPD ymm1, vm32x, ymm2 Using dword indices specified in vm32Xx, gather
double-precision FP values from memory condi-
tioned on mask specified by ymm¢Z. Conditionally
gathered elements are merged into ymm1.

VEX.DDS.256.66.0F38.W1 93 /r | VGATHERQPD ymm1, vm64y ymm?2 Using qword indices specified in vm64y, gather
double-precision FP values from memory condi-
tioned on mask specified by ymm2. Conditionally
gathered elements are merged into ymm1.

VEX.DDS.128.66.0F38.W0 92 /r | VGATHERDPS xmm1, vm32x, xmm2 Using dword indices specified in vm32x, gather
single-precision FP values from memory condi-
tioned on mask specified by xmm2. Conditionally
gathered elements are merged into xmm1.

VEX.DDS.128.66.0F38.W0 93 /r VGATHERQPS xmm1, vm64x, xmm2 Using qword indices specified in vm64x, gather
single-precision FP values from memory condi-
tioned on mask specified by xmm2. Conditionally
gathered elements are merged into xmm1.

VEX.DDS.256.66.0F38.W0 92 /r VGATHERDPS ymm1, vm32y, ymm2 Using dword indices specified in vm32y, gather
single-precision FP values from memory condi-
tioned on mask specified by ymm2. Conditionally
gathered elements are merged into ymm71.

VEX.DDS.256.66.0F38.W0 93 /r VGATHERQPS ymm1, vm64y, ymm2 Using qword indices specified in vm64y, gather
single-precision FP values from memory condi-
tioned on mask specified by ymm2. Conditionally
gathered elements are merged into ymm1.

Ref. # 319433-014 B-13

INSTRUCTION SUMMARY

Opcode

Instruction

Description

VEX.DDS.128.66.0F38.W1 90 /r

VGATHERDQ xmm1, vm32x, xmm2

Using dword indices specified in vm32x, gather
qword values from memory conditioned on mask
specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.DDS.128.66.0F38.W1 91 /r

VGATHERQQ xmm1, vm64x, xmm?2

Using qword indices specified in vm64x, gather
qword values from memory conditioned on mask
specified by xmm2. Conditionally gathered ele-
ments are merged into xmm1.

VEX.DDS.256.66.0F38.W1 90 /r

VGATHERDQ ymm1, vm32x, ymmZ2

Using dword indices specified in vm32x, gather
gword values from memory conditioned on mask
specified by ymmZ2. Conditionally gathered ele-
ments are merged into ymm1.

VEX.DDS.256.66.0F38.W1 91 /r

VGATHERQQ ymm1, vm64y, ymm2

Using qword indices specified in vm64y, gather
gword values from memory conditioned on mask
specified by ymmZ2. Conditionally gathered ele-
ments are merged into ymm1.

Table B-5. FMA Instructions

Opcode

Instruction

Description

VEX.DDS.128.66.0F38.W1 98 /r

VFMADD132PD xmmO, xmm1, xmm2/m128

Multiply packed double-precision floating-point
values from xmmO and xmm2/mem, add to
xmm1 and put result in xmmO.

VEX.DDS.128.66.0F38.W1 A8 /r

VFMADDZ213PD xmmO, xmm1, xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmO, add to
xmm2/mem and put result in xmmO.

VEX.DDS.128.66.0F38.W1 B8 /r

VFMADD231PD xmmO, xmm1, xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmm2/mem, add to
xmmO and put result in xmmO.

VEX.DDS.256.66.0F38.W1 98 /r

VFMADD132PD ymmO, ymm1, ymm2/m256

Multiply packed double-precision floating-point
values from ymmO and ymm2/mem, add to
ymm1 and put result in ymmO.

VEX.DDS.256.66.0F38.W1 A8 /r

VFMADDZ213PD ymmO, ymm1, ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmoO, add to
ymm2/mem and put result in ymmoO.

VEX.DDS.256.66.0F38.W1 B8 /r

VFMADDZ231PD ymmO, ymm1, ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymm2/mem, add to
ymmO and put result in ymmO.

VEX.DDS.128.66.0F38.W0 98 /r

VFMADD132PS xmmO, xmm1, xmmZ2/m128

Multiply packed single-precision floating-point
values from xmmO and xmm2/mem, add to
xmm1 and put result in xmmO.

VEX.DDS.128.66.0F38.W0 A8 /r

VFMADDZ213PS xmmO, xmm1, xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmO, add to
xmm2/mem and put result in xmmO.

VEX.DDS.128.66.0F38.W0 B8 /r

VFMADDZ231PS xmmO, xmm1, xmmZ2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmm2/mem, add to
xmmO and put result in xmmO.

VEX.DDS.256.66.0F38.W0 98 /r

VFMADD132PS ymmO, ymm1, ymm2/m256,
ymm3

Multiply packed single-precision floating-point
values from ymmO and ymm2/mem, add to
ymm1 and put result in ymmO.

B-14

Ref. #319433-014

INSTRUCTION SUMMARY

Opcode

Instruction

Description

VEX.DDS.256.66.0F38.WO0 A8 /r

VFMADD213PS ymmOQ, ymm1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmoO, add to
ymm2/mem and put result in ymmoO.

VEX.DDS.256.66.0F38.W0 B8 /r

VFMADD231PS ymmO, ymm1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmZ2/mem, add to
ymmO and put result in ymmO.

VEX.DDS.128.66.0F38.W1 99 /r

VFMADD132SD xmmO, xmm1,

xmm2/m64

Multiply scalar double-precision floating-point
value in xmmO and xmm2/mem, add to xmm 1
and put result in xmmO.

VEX.DDS.128.66.0F38.W1 A9 /r

VFMADD213SD xmmO, xmm1,

xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmmO, add to xmmZ2/mem
and put result in xmmO.

VEX.DDS.128.66.0F38.W1 B9 /r

VFMADD231SD xmmO, xmm1,

Xxmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmm2/mem, add to xmmO
and put result in xmmO.

VEX.DDS.128.66.0F38.W0 99 /r

VFMADD132SS xmmO, xmm1,

Xxmm2/m32

Multiply scalar single-precision floating-point
value in xmmO and xmm2/mem, add to xmm 1
and put result in xmmO.

VEX.DDS.128.66.0F38.WO0 A9 /r

VFMADD213SS xmmO, xmm1,

xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmmO, add to xmmZ2/mem
and put result in xmmO.

VEX.DDS.128.66.0F38.W0 B9 /r

VFMADD231SS xmmO, xmm1,

Xxmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmm2/mem, add to xmmO
and put result in xmmO.

VEX.DDS.128.66.0F38.W1 96 /r

VFMADDSUB132PD xmmO, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmmO and xmmZ2/mem, add/sub-
tract elements in xmm1 and put result in
xmmoO.

VEX.DDS.128.66.0F38.W1 A6 /r

VFMADDSUBZ213PD xmmO, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmO, add/subtract
elements in xmm2/mem and put result in
xmmoO.

VEX.DDS.128.66.0F38.W1 B6 /r

VFMADDSUB231PD xmm0O, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmZ2/mem, add/sub-
tract elements in xmmO and put result in
xmmoO.

VEX.DDS.256.66.0F38.W1 96 /r

VFMADDSUB132PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymmQO and ymm2/mem, add/sub-
tract elements in ymm1 and put result in
ymmoO.

VEX.DDS.256.66.0F38.W1 A6 /r

VFMADDSUB213PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmoO, add/subtract
elements in ymm2/mem and put result in
ymmoO.

VEX.DDS.256.66.0F38.W1 B6 /r

VFMADDSUB231PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymmO and ymm1, add/subtract
elements in ymm2/mem and put result in
ymmO.

VEX.DDS.128.66.0F38.W0 96 /r

VFMADDSUB132PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmmO and xmmZ2/mem, add/sub-
tract xmm1 and put result in xmmoO.

Ref. # 319433-014

B-15

INSTRUCTION SUMMARY

Opcode

Instruction

Description

VEX.DDS.128.66.0F38.W0 A6 /r

VFMADDSUBZ213PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmO, add/subtract
xmm2/mem and put result in xmmoO.

VEX.DDS.128.66.0F38.W0 B6 /r

VFMADDSUBZ231PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmZ2/mem, add/sub-
tract xmmO and put result in xmmoO.

VEX.DDS.256.66.0F38.W0 96 /r

VFMADDSUB132PS ymmOQ, ymmT1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymmO and ymmZ2/mem, add/sub-
tract ymm1 and put result in ymmO.

VEX.DDS.256.66.0F38.W0 A6 /r

VFMADDSUB213PS ymmO, ymmT1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmO, add/subtract
ymmZ2/mem and put result in ymmO.

VEX.DDS.256.66.0F38.W0 B6 /r

VFMADDSUB231PS ymmO, ymmT1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmZ2/mem, add/sub-
tract ymmO and put result in ymmO.

VEX.DDS.128.66.0F38.W1 97 /r

VFMSUBADD132PD xmmO, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmmO and xmmZ2/mem, sub-
tract/add elements in xmm1 and put result in
xmmoO.

VEX.DDS.128.66.0F38.W1 A7 /r

VFMSUBADD213PD xmm0O, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmO, subtract/add
elements in xmm2/mem and put result in
xmmoO.

VEX.DDS.128.66.0F38.W1 B7 /r

VFMSUBADDZ231PD xmm0O, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmZ2/mem, sub-
tract/add elements in xmmO and put result in
xmmoO.

VEX.DDS.256.66.0F38.W1 97 /r

VFMSUBADD132PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymmO and ymm2/mem, sub-
tract/add elements in ymm1 and put result in
ymmoO.

VEX.DDS.256.66.0F38.W1 A7 /r

VFMSUBADDZ213PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmoO, subtract/add
elements in ymm2/mem and put result in
ymmoO.

VEX.DDS.256.66.0F38.W1 B7 /r

VFMSUBADDZ231PD ymm0O, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymm2/mem, sub-
tract/add elements in ymmO and put result in
ymmO.

VEX.DDS.128.66.0F38.W0 97 /r

VFMSUBADD132PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmmO and xmm2/mem, sub-
tract/add xmm1 and put result in xmmoO.

VEX.DDS.128.66.0F38.W0 A7 /r

VFMSUBADD213PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmO, subtract/add
xmm2/mem and put result in xmmoO.

VEX.DDS.128.66.0F38.W0 B7 /r

VFMSUBADD231PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmm2/mem, sub-
tract/add xmmO and put result in xmmoO.

VEX.DDS.256.66.0F38.W0 97 /r

VFMSUBADD132PS ymmO, ymm1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymmO and ymmZ2/mem, sub-
tract/add ymm1 and put result in ymmoO.

B-16

Ref. #319433-014

INSTRUCTION SUMMARY

Opcode

Instruction

Description

VEX.DDS.256.66.0F38.WO0 A7 /r

VFMSUBADD213PS ymmO, ymmT,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmO, subtract/add
ymm2/mem and put result in ymmoO.

VEX.DDS.256.66.0F38.W0 B7 /r

VFMSUBADDZ231PS ymmO, ymm1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmZ2/mem, sub-
tract/add ymmO and put result in ymmoO.

VEX.DDS.128.66.0F38.W1 9A /r

VFMSUB132PD xmmO, xmm1,

xmm2/m128

Multiply packed double-precision floating-point
values from xmmO and xmm2/mem, subtract
xmm1 and put result in xmmoO.

VEX.DDS.128.66.0F38.W1 AA /r

VFMSUB213PD xmmO, xmm1,

xmmz2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmO, subtract
xmm2/mem and put result in xmmO.

VEX.DDS.128.66.0F38.W1 BA /r

VFMSUB231PD xmmO, xmm1,

xmmz2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmm2/mem, subtract
xmmO and put result in xmmoO.

VEX.DDS.256.66.0F38.W1 9A /r

VFMSUB132PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymmO and ymm2/mem, subtract
ymm1 and put result in ymmO.

VEX.DDS.256.66.0F38.W1 AA /r

VFMSUB213PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmO, subtract
ymmZ2/mem and put result in ymmoO.

VEX.DDS.256.66.0F38.W1 BA /r

VFMSUB231PD ymmO, ymm1,

ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymm2/mem, subtract
ymmO and put result in ymmO.

VEX.DDS.128.66.0F38.W0 9A /r

VFMSUB132PS xmm0, xmm1,

xmmz2/m128

Multiply packed single-precision floating-point
values from xmmO and xmm2/mem, subtract
xmm1 and put result in xmmoO.

VEX.DDS.128.66.0F38.W0 AA /r

VFMSUB213PS xmm0, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmO, subtract
xmm2/mem and put result in xmmO.

VEX.DDS.128.66.0F38.W0 BA /r

VFMSUB231PS xmmO, xmm1,

xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmm2/mem, subtract
xmmO and put result in xmmoO.

VEX.DDS.256.66.0F38.W0 9A /r

VFMSUB132PS ymmOQ, ymm1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymmO and ymm2/mem, subtract
ymm1 and put result in ymmO.

VEX.DDS.256.66.0F38.W0 AA /r

VFMSUB213PS ymmO, ymmT1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmO, subtract
ymmZ2/mem and put result in ymmoO.

VEX.DDS.256.66.0F38.WO0 BA /r

VFMSUB231PS ymmO, ymmT1,

ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymm2/mem, subtract
ymmO and put result in ymmO.

VEX.DDS.128.66.0F38.W1 9B /r

VFMSUB132SD xmmO, xmm1,

xmm2/m64

Multiply scalar double-precision floating-point
value in xmmO and xmmZ2/mem, subtract xmm 1
and put result in xmmO.

VEX.DDS.128.66.0F38.W1 AB /r

VFMSUB213SD xmmO, xmm1,

xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmmO, subtract xmmZ2/mem
and put result in xmmO.

VEX.DDS.128.66.0F38.W1 BB /r

VFMSUB231SD xmmO, xmm1,

xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmmZ2/mem, subtract xmmO
and put result in xmmO.

Ref. # 319433-014

B-17

INSTRUCTION SUMMARY

Opcode

Instruction

Description

VEX.DDS.128.66.0F38.W0 9B /r

VFMSUB132SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmmO and xmmZ2/mem, subtract xmm
and put result in xmmoO.

VEX.DDS.128.66.0F38.W0 AB /r

VFMSUB213SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmmO, subtract xmm2/mem
and put result in xmmoO.

VEX.DDS.128.66.0F38.WO0 BB /r

VFMSUB231SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmm2/mem, subtract xmmO
and put result in xmmoO.

VEX.DDS.128.66.0F38.W1 9C /r

VFNMADD132PD xmmO, xmm1,
xmm2/m128

Multiply packed double-precision floating-point
values from xmmO and xmmZ2/mem, negate the
multiplication result and add to xmm1. Put the
result in xmmO.

VEX.DDS.128.66.0F38.W1 AC /r

VFNMADD213PD xmmO, xmm1,
xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmO, negate the mul-
tiplication result and add to xmm2/mem. Put
the result in xmmO.

VEX.DDS.128.66.0F38.W1 BC /r

VFNMADD231PD xmmO, xmm1,
xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmZ2/mem, negate the
multiplication result and add to xmmO. Put the
result in xmmoO.

VEX.DDS.256.66.0F38.W1 9C /r

VFNMADD132PD ymmO, ymm1,
ymm2/m256

Multiply packed double-precision floating-point
values from ymmO and ymm2/mem, negate the
multiplication result and add to ymm1. Put the
result in ymmaO.

VEX.DDS.256.66.0F38.W1 AC /r

VFNMADDZ213PD ymmO, ymm1,
ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmO, negate the mul-
tiplication result and add to ymm2/mem. Put
the result in ymmO.

VEX.DDS.256.66.0F38.W1 BC /r

VFNMADD231PD ymmO, ymmT,
ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymm2/mem, negate the
multiplication result and add to ymmoO. Put the
result in ymmoO.

VEX.DDS.128.66.0F38.W0 9C /r

VFNMADD132PS xmm0, xmm1,
xmm2/m128

Multiply packed single-precision floating-point
values from xmmO and xmmZ2/mem, negate the
multiplication result and add to xmm1. Put the
result in xmmO.

VEX.DDS.128.66.0F38.W0 AC /r

VFNMADD213PS xmm0, xmm1,
xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmO, negate the mul-
tiplication result and add to xmm2/mem. Put
the result in xmmO.

VEX.DDS.128.66.0F38.W0 BC /r

VFNMADDZ231PS xmmO, xmm1,
xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmZ2/mem, negate the
multiplication result and add to xmmO. Put the
result in xmmoO.

VEX.DDS.256.66.0F38.W0 9C /r

VFNMADD132PS ymmO, ymm1,
ymm2/m256

Multiply packed single-precision floating-point
values from ymmO and ymm2/mem, negate the
multiplication result and add to ymm1. Put the
result in ymmaO.

VEX.DDS.256.66.0F38.W0 AC /r

VFNMADDZ213PS ymmO, ymm1,
ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmO, negate the mul-
tiplication result and add to ymm2/mem. Put
the result in ymmO.

B-18

Ref. #319433-014

INSTRUCTION SUMMARY

Opcode

Instruction

Description

VEX.DDS.256.66.0F38.WO0 BC /r

VFNMADDZ231PS ymmO, ymm1,
ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymm2/mem, negate the
multiplication result and add to ymmO. Put the
result in ymmO.

VEX.DDS.128.66.0F38.W1 9D /r

VFNMADD132SD xmmO, xmm1, xmm2/m64

Multiply scalar double-precision floating-point
value in xmmO and xmm2/mem, negate the
multiplication result and add to xmm1. Put the
result in xmmoO.

VEX.DDS.128.66.0F38.W1 AD /r

VFNMADD213SD xmmO, xmm1, xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmmO, negate the multipli-
cation result and add to xmm2/mem. Put the
result in xmmO.

VEX.DDS.128.66.0F38.W1 BD /r

VFNMADDZ231SD xmmO, xmm1, xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmmZ2/mem, negate the
multiplication result and add to xmmaO. Put the
result in xmmoO.

VEX.DDS.128.66.0F38.W0 9D /r

VFNMADD132SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmmO and xmmZ2/mem, negate the
multiplication result and add to xmm1. Put the
result in xmmoO.

VEX.DDS.128.66.0F38.W0 AD /r

VFNMADDZ213SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmmO, negate the multipli-
cation result and add to xmm2/mem. Put the
result in xmmO.

VEX.DDS.128.66.0F38.W0O BD /r

VFNMADD231SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmm2/mem, negate the
multiplication result and add to xmmO. Put the
result in xmmO.

VEX.DDS.128.66.0F38.W1 SE /r

VFNMSUB132PD xmmO, xmm1,
xmm2/m128

Multiply packed double-precision floating-point
values from xmmO and xmm2/mem, negate the
multiplication result and subtract xmm1. Put
the result in xmmoO.

VEX.DDS.128.66.0F38.W1 AE /r

VFNMSUBZ213PD xmmO, xmm1,
xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmO, negate the mul-
tiplication result and subtract xmm2/mem. Put
the result in xmmoO.

VEX.DDS.128.66.0F38.W1 BE /r

VFNMSUBZ231PD xmmO, xmm1,
xmm2/m128

Multiply packed double-precision floating-point
values from xmm1 and xmmZ2/mem, negate the
multiplication result and subtract xmmO. Put
the result in xmmoO.

VEX.DDS.256.66.0F38.W1 SE /r

VFNMSUB132PD ymmO, ymm1,
ymm2/m256

Multiply packed double-precision floating-point
values from ymmO and ymm2/mem, negate the
multiplication result and subtract ymm1. Put
the result in ymmO.

VEX.DDS.256.66.0F38.W1 AE /r

VFNMSUB213PD ymmO, ymm1,
ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmO, negate the mul-
tiplication result and subtract ymm2/mem. Put
the result in ymmoO.

VEX.DDS.256.66.0F38.W1 BE /r

VFNMSUBZ231PD ymmQO, ymm1,
ymm2/m256

Multiply packed double-precision floating-point
values from ymm1 and ymmZ2/mem, negate the
multiplication result and subtract ymmoO. Put
the result in ymmO.

Ref. # 319433-014

B-19

INSTRUCTION SUMMARY

Opcode Instruction Description
VEX.DDS.128.66.0F38W0 9€ /r | VFNMSUB132PS xmmO, xmm1, Multiply packed single-precision floating-point
xmm2/m128 values from xmmO and xmmZ2/mem, negate the

multiplication result and subtract xmm1. Put
the result in xmmO.

VEX.DDS.128.66.0F38.W0 AE /r

VFNMSUB213PS xmmO, xmm1,
xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmmO, negate the mul-
tiplication result and subtract xmm2/mem. Put
the result in xmmoO.

VEX.DDS.128.66.0F38.W0 BE /r

VFNMSUB231PS xmmO, xmm1,
xmm2/m128

Multiply packed single-precision floating-point
values from xmm1 and xmm2/mem, negate the
multiplication result and subtract xmmO. Put
the result in xmmoO.

VEX.DDS.256.66.0F38.W0 SE /r

VFNMSUB132PS ymmO, ymm1, ymm2/m256

Multiply packed single-precision floating-point
values from ymmO and ymm2/mem, negate the
multiplication result and subtract ymm1. Put
the result in ymmO.

VEX.DDS.256.66.0F38.W0 AE /r

VFNMSUBZ213PS ymmO, ymm1, ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymmO, negate the mul-
tiplication result and subtract ymm2/mem. Put
the result in ymmO.

VEX.DDS.256.66.0F38.W0 BE /r

VFNMSUB231PS ymmO, ymm1, ymm2/m256

Multiply packed single-precision floating-point
values from ymm1 and ymm2/mem, negate the
multiplication result and subtract ymmO. Put
the result in ymmoO.

VEX.DDS.128.66.0F38.W1 9F /r

VFNMSUB132SD xmmO, xmm1, xmm2/m64

Multiply scalar double-precision floating-point
value in xmmO and xmm2/mem, negate the
multiplication result and subtract xmm1. Put
the result in xmmO.

VEX.DDS.128.66.0F38.W1 AF /r

VFNMSUB213SD xmmO, xmm1, xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmmO, negate the multipli-
cation result and subtract xmm2/mem. Put the
result in xmmO.

VEX.DDS.128.66.0F38.W1 BF /r

VFNMSUB231SD xmmO, xmm1, xmm2/m64

Multiply scalar double-precision floating-point
value in xmm1 and xmm2/mem, negate the
multiplication result and subtract xmmO. Put
the result in xmmoO.

VEX.DDS.128.66.0F38.W0 SF /r

VFNMSUB132SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmmO and xmm2/mem, negate the
multiplication result and subtract xmm1. Put
the result in xmmoO.

VEX.DDS.128.66.0F38.W0 AF /r

VFNMSUBZ213SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmmO, negate the multipli-
cation result and subtract xmm2/mem. Put the
result in xmmoO.

VEX.DDS.128.66.0F38.W0 BF /r

VFNMSUB231SS xmmO, xmm1, xmm2/m32

Multiply scalar single-precision floating-point
value in xmm1 and xmm2/mem, negate the
multiplication result and subtract xmmO. Put
the result in xmmoO.

B-20

Ref. #319433-014

INSTRUCTION SUMMARY

Table B-6. VEX-Encoded and Other General-Purpose Instruction Sets

Opcode

Instruction

Description

VEX.NDS.LZ.OF38.WO F2 /r

ANDN r32a, r32b, r/m32

Bitwise AND of inverted r32b with r/m32, store result in r32a

VEX.NDS.LZOF38.W1 F2 /r

ANDN r64a, r64b, r/m64

Bitwise AND of inverted r64b with r/m64, store result in r64a

VEX.NDS.LZ.0OF38.WO0 F7 /r

BEXTR r32a, r/m32, r32b

Contiguous bitwise extract from r/m32 using r32b as control;
store result in r32a.

VEX.NDS.LZ.OF38.W1 F7 /It

BEXTR r64a, r/m64, ré4b

Contiguous bitwise extract from r/m64 using r64b as control;
store result in ré4a.

VEX.NDD.LZ.0F38.WO0 F3 /3

BLSIr32, r/m32

Set all lower bits in r32 to “1” starting from bit O to lowest set
bit inr/m32

VEXNDD.LZOF38W1 F3 /3

BLSI r64, r/m64

Set all lower bits in r64 to “1” starting from bit O to lowest set
bitin r/m64

VEX.NDD.LZ.OF38.WO0 F3 /2 BLSMSK r32, r/m32 Extract lowest bit from r/m32 and set that bitin r32
VEX.NDD.LZ.OF38.W1 F3 /2 BLSMSK r64, r/m64 Extract lowest bit from r/m64 and set that bit in r64
VEX.NDD.LZ.0F38.WO0 F3 /1 BLSR r32, r/m32 Reset lowest set bit of r/m32, keep all other bits of r/m32 and

write result to r32

VEX.NDD.LZ.OF38.W1 F3 /1

BLSR r64, r/m64

Reset lowest set bit of r/m64, keep all other bits of r/m64 and
write result to r64

VEX.NDS.LZ.OF38.WO F5 /r

BZHIr323, r/m32, r32b

Zero bits in r/m32 starting with the position in r32b, write
result to r32a.

VEX.NDS.LZ.OF38.W1 F5 /r

BZHI r643, r/m64, r64b

Zero bits in r/m64 starting with the position in r64b, write
result to r64a.

F30FBD /r LZCNT r16,r/m16 Count the number of leading zero bits in r/m16, return result in
rié

F30FBD /r LZCNT r32,r/m32 Count the number of leading zero bits in r/m32, return result in
r32

REXW + F3 OF BD /r LZCNT r64, r/m64 Count the number of leading zero bits in r/m64, return result in
re4.

VEX.NDD.LZ.F2.0F38.W0 F6 /r | MULX r32a, r32b, r/m32 Unsigned multiply of r/m32 with EDX without affecting arith-

metic flags.

VEX.NDD.LZ.F2.0F38.W1 F6 /r

MULX r64a, r64b, r/m64

Unsigned multiply of r/m64 with RDX without affecting arith-
metic flags.

VEX.NDS.LZ.F2.0F38.WO F5 /r

PDEP r323a, r32b, r/m32

Parallel deposit of bits from r32b using mask in r/m32, result is
written to r32a.

VEXNDS.LZ.F2.0F38.W1 F5 /r

PDEP r64a, r64b, r/m64

Parallel deposit of bits from r64b using mask in r/m64, result is
written to ré4a

VEX.NDS.LZ.F3.0F38.WO0 F5 /r

PEXT r32a, r32b, r/m32

Parallel extract of bits from r32b using mask in r/m32, result is
written to r32a.

VEX.NDS.LZ.F3.0F38.W1 F5 /r

PEXT r64a, r64b, r/m64

Parallel extract of bits from r64b using mask in r/m64, result is
written to ré4a

VEX.LZ.OF3A.WO FO /rib

RORX r32, r/m32, imm8

Rotate 32-bit r/m32 right imm8 times without affecting arith-
metic flags.

VEX.LZ.OF3AW1 FO /rib

RORX r64, r/m64, imm8

Rotate 64-bit r/m64 right imm8 times without affecting arith-
metic flags.

VEX.NDS.LZ.F3.0F38WO F7 /r | SARX r32a,r/m32,r32b Shift r/m32 arithmetically right with count specified in r32b.
VEX.NDS.LZF3.0F38W1 F7 /r | SARX r64a, r/m64, ré4b Shift r/m64 arithmetically right with count specified in ré4b.
VEX.NDS.LZ.66.0F38WO F7 /r | SHLX r32a, r/m32, r32b Shift r/m32 logically left with count specified in r32b.
VEX.NDS.LZ.66.0F38.W1 F7 /r | SHLX r64a, r/m64, ré4b Shift r/m64 logically left with count specified in r64b.
VEX.NDS.LZ.F2.0F38WO F7 /r | SHRX r32a,r/m32,r32b Shift r/m32 logically right with count specified in r32b.

VEXNDS.LZ.F2.0F38W1 F7 /r

SHRX r64a, r/m64, r64b

Shift r/m64 logically right with count specified in r64b.

Ref. # 319433-014

B-21

INSTRUCTION SUMMARY

Opcode Instruction Description

F3 OF BC/r TZCNT r16,r/m16 Count the number of trailing zero bits in r/m16, return result in
rié

F3 OF BC/r TZCNT r32, r/m32 Count the number of trailing zero bits in r/m32, return result in

r32

REX.W + F3 OF BC /r

TZCNT r64, r/m64
re4.

Count the number of trailing zero bits in r/m64, return result in

66 OF 3882 /r

INVPCID r32, m128

Invalidates entries in the TLBs and paging-structure caches
based on invalidation type in r32 and descriptor in m128.

66 0F 3882 /r

INVPCID r64, m128

Invalidates entries in the TLBs and paging-structure caches
based on invalidation type in r64 and descriptor in m128.

Table B-7. New Instructions Introduced in Processors Based on Intel Microarchitecture Code Name Ivy Bridge

Opcode Instruction Description

F3 OF AE/O RDFSBASE r32 Read FS base register and place the 32-bit result in
the destination register.

REX.W + F3 OF AE /O RDFSBASE r64 Read FS base register and place the 64-bit result in
the destination register.

F3 OF AE /1 RDGSBASE r32 Read GS base register and place the 32-bit result in
destination register.

REX.W + F3 OF AE /1 RDGSBASE r64 Read GS base register and place the 64-bit result in
destination register.

OFC7 /6 RDRANDr16 Read a 16-bit random number and store in the desti-
nation register.

OFC7 /6 RDRAND r32 Read a 32-bit random number and store in the desti-
nation register.

REX.W + OF C7 /6 RDRAND r64 Read a 64-bit random number and store in the desti-
nation register.

F3 OF AE /2 WRFSBASE r32 Write the 32-bit value in the source register to FS
base register.

REX.W + F3 OF AE /2 WRFSBASE r64 Write the 64-bit value in the source register to FS
base register.

F3 OF AE /3 WRGSBASE r32 Write the 32-bit value in the source register to GS
base register.

REX.W + F3 OF AE /3 WRGSBASE r64 Write the 64-bit value in the source register to GS

base register.

VEX.256.66.0F38.W0 13 /r

VCVTPHZPS ymm1, xmm2/m128

Convert eight packed half precision (16-bit) floating-
point values in xmm2/m128 to packed single-preci-
sion floating-point value in ymm1.

VEX.128.66.0F38.W0 13 /r

VCVTPH2PS xmm1, xmm2/m64

Convert four packed half precision (16-bit) floating-
point values in xmm2/m64 to packed single-preci-
sion floating-point value in xmm1.

VEX.256.66.0F3AWO0 1D /rib

VCVTPS2PH xmm1/m128, ymm2, imm8

Convert eight packed single-precision floating-point
value in ymm?Z2 to packed half-precision (16-bit)
floating-point value in xmm1/mem. Imm8 provides
rounding controls.

VEX.128.66.0F3AWO0.1D /rib

VCVTPS2PH xmm1/m64, xmmZ2, imm8

Convert four packed single-precision floating-point
value in xmm?2 to packed half-precision (16-bit)
floating-point value in xmm1/mem. Imm8 provides
rounding controls.

B-22

Ref. #319433-014

INDEX

B
BEXTR - Bit Field EXEract.o et e e e 7-3
BLSI - Extract Lowest Set Isolated Bit. 7-5
BLSMSK - Get Mask Up to LOWESt Set Bit et e e e e 7-6
BLSR - Reset LOWESTE Set Bit.t e e 7-7
Brand iNformation 2-45
ProcessOr Brand INAeX e 2-48
PrOCESSOr Brand STriNg o et e 2-45
BZHI - Zero High Bits Starting with Specified Bit POSItION. e 7-8
C
Cache and TLB infOrmation. e e e e e e 2-41
CaChe INCIUSIVENESS e e e e e e e e 2-29
CLFLUSH instruction
CPUID flag. . . oot e e e e e e e e 2-40
CMOVCC flag . . o oo e e e e e e 2-40
CMOVcc instructions
CPUID flag. . . oot e e e e e e e e 2-40
CMPXCHG16B instruction
CPUID DIt . .o 2-38
CMPXCHGSB instruction
CPUID flag. . . o oot e e e e 2-40
CPUID INSTIUCLIONo e 2-27, 2-40
36-bit PAge SIZe EXEENSION.o 2-40
APIC ON-ChIP . .o e 2-40
basic CPUID INfOrmation et e e e e e e e e e 2-28
cache and TLB CharaCteristiCs.o e e e e e e e e 2-28, 2-42
CLELUSH flag . . . o oot e e e e e e e e e e e 2-40
CLFLUSH instruction cache liNe Size e e e 2-37
CMPXCHGILEB flag oot e e e e 2-38
CMPXCHGSB flago v ottt e e e e e e e e e s 2-40
CPL qualified debug StOre 2-38
debug extensions, CRA. DE 2-40
debug StOore SUPPOITEdo e 2-41
deterministic cache parameters leaf 2-28, 2-30, 2-31, 2-32
extended function INFOrmMaAatioN e 2-33
feature INTOIMAtioN 2-39
FPU ON-CRi. . e 2-40
FOAVE flag. . . oot 2-41
FXRSTOR flag . . o oottt e e e e 2-41
HT technology flag.o e e e e e 2-41
1A-32e mode available 2-33
INPUL IMIES FOr EAX L e e e e e e e e e e e 2-34
LI ConteXt 1D . .. e 2-38
local APIC physical 1D e e 2-37
machine check arChiteCtUre. e e e 2-40
machine CheCK EXCEPLION e e e e e e e 2-40
MEMOIY TYPE FANJE FEISTEIS oottt ittt et et e e e e e e e e e e e 2-40
MONITOR feature iINfOrmMatioN. et e e e e e e e e e e e 2-44
MONITOR/MWAIT flag . . . oot e e e e e e e e e e e e e e e e e 2-38
MONITOR/MWAIT L af. . . . o e e e e e e e e e 2-29, 2-30, 2-31
MWAIT feature INfOrmation e e e e e e 2-44
page attribute table. e 2-40
PAJE SIZE EXTEENSION. . . . ottt e e e 2-40
performance MoNItOrinNg fEatUIES. L. et e e e e e 2-45
physical address Dits. 2-34
physical address eXEENSION 2-40
POWEr MANAGEMENTttt et e et e e e e 2-44, 2-45
ProcessOr Brand INAeX 2-37, 2-45
Processor Brand StrinNgot 2-33, 2-45
ProCESSOr Serial NMUIMDET. . . o e 2-40
ProCesSSOr Lype fleld. . ..o 2-36
PTE global Dit 2-40
RDMSR flag . . .o e 2-40
returned N EBX . ..o 2-37
returned iN ECX & ED Xo e 2-37
Sl SO0 . . .o 2-41
SpeedStep teChNOIOQYo 2-38
SS2 eXtenSIONS Tlag.o 2-41

Ref. # 319433-014 -1

SSE eXtensions flag o 2-41

SSE3 eXteNSIONS flag.ot e e e e 2-38
SSSE3 exXtensions flag 2-38
SYSENTER flag . . . oo 2-40
SYSEXIT flag . . . oot 2-40
thermal managemMENt e 2-44, 2-45
thermal MONITOr e 2-38, 2-41
L SIE] = U] o oo 18 [) (= 2-40
USING CPUID . . e e e e e e 2-27
VENAOT ID SEIING . . . oottt et e e e e 2-34
VerSION INfOrMatioN e 2-28, 2-44
virtual 8086 MoOde flag oo e e 2-40
Virtual address DIt e 2-34
WRMSR flag. . . . oo e e e 2-40
F
Feature information, PrOCESSOr e e e e e e e et e e e e e 2-27
FIMA OB atiON . .ottt e e e 2-5,2-6
FXRSTOR instruction
CPUID flag . - . o oot e e e e e e 2-41
FXSAVE instruction
CPUID flag . - - o oot e e e e e e 2-41
H
Hardware Lock Elision (HLE) e e e e e e e e e e e e e e e 8-1, 8-2
Hyper-Threading Technology
CPUID flag . . . o e ettt e e e e e e e e e 2-41
|
1A-32e mode
CPUID flag . . . ot oot e e e e e e e e e e 2-33
Intel Transactional SYyNChronization e e e 8-1
INVPCID - Invalidate Processor Context ID. e e e e e e e 7-23
L
LI ConteXt 1D . . .o e 2-38
LZCNT - Count the Number of Leading Zero Bits. e e e e e e 7-10
M
Machine check architecture
CPUID flag . .« o ettt e e e e e e e e e e e 2-40
Lo 1= o o [0 o PSP 2-40
MMX instructions
CPUID flag for teChNOIOGY oo e e e e e e e e e e e e 2-41
Model & family INfOrmMation e 2-44
MONITOR instruction
CPUID flag . . . o vttt e e e e e e e e 2-38
FRATUIE data.o e 2-44
MOVNTDQA - Load Double Quadword Non-Temporal Aligned Hint s 5-173
MPSADBW - Multiple Sum of Absolute Differences e e 5-6
MULX - Unsigned Multiply Without Affecting Flags. e e e e 7-12
MWAIT instruction
CPUID flag . . o oottt e e e e e e e e e e e e 2-38
feature data. 2-44
O
Opcodes
addressing method COdes fOr A-1
EXEBNSIONS & . . .ottt e e e A-18
eXEENSIONS tAbIES . . . e A-19
OIOUP MU S . . o e e e e e e e e e A-18
integers
ONE-DYIE OPCOUESo A-8
TWO-DYIE OPCOTES oot A-8
Key 10 abbreviations e A-1
I0OK-UP BXaAMIPIES. . . ottt e A-3, A-18, A-21
MOAR /M DYt . . . A-18
ONE-DYTE OPCOUES.ot e e e e A-3, A-8
[o] oo Yo L= o/g =T o 1= A-1

I-2 Ref. # 319433-014

operand typPe COOES FOr.ot e A-2

FEgISTEr COUBS fOr. . . .o e e e A-3

SUPEISCIIPES 1N 1aDIES . . .o e A-6

TWO-DYTE OPCOESo e e A-4, A-5, A-8

X87 ESC INSLrUCLION OPCOES. . . . o oottt e et e A-21
P
PABSB/PABSW/PABSD - Packed Absolute Value e 5-13
PACKSSWB/PACKSSDW - Pack with Signed Saturation e e e e 5-16
PACKUSDW - Pack with Unsigned Saturation e e e e 5-20
PACKUSWB - Pack with Unsigned Saturation e e e e e e e e 5-23
PADDB/PADDW/PADDD/PADDQ - Add Packed INtegers. 5-26
PADDSB/PADDSW - Add Packed Signed Integers with Signed Saturation. i 5-30
PADDUSB/PADDUSW - Add Packed Unsigned Integers with Unsigned Saturation..................., 5-32
PALIGNR - Byte AlIgN . . .o e e e e e e e e e 5-34
PAND - LOGICal ANDo e e e 5-36
PANDN - Logical AND NOT . ..ttt e e e e e e e et e e e e e e e e e e 5-38
PAVGB/PAVGW - Average Packed INtegers. e e e e e e 5-40
PBLENDVB - Variable Blend Packed Bytes. e e e 5-42
PBLENDW - Blend Packed WOIAS.ottt e e e e e e e e e e e e e e e e e e 5-46
PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ - Compare Packed Integers for Equality 5-49
PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ - Compare Packed Integers for Greater Than............. 5-53
PDEP - Parallel Bits DePOSItottt e e e e 7-14
Pending break enable. 2-41
Performance-monitoring counters

CPUID INQUITY fO . . o e e e e e e e e e e e 2-45
PEXT - Parallel Bits EXEFacCto e e e e e e e e e e e e e e e e 7-16
PHADDSW - Packed Horizontal Add with Saturation. e 5-60
PHADDWY/PHADDD - Packed Horizontal Add e e e e e 5-57
PHSUBSW - Packed Horizontal Subtract with Saturation e e 5-65
PHSUBW/PHSUBD - Packed Horizontal SUDTract e e 5-62
PMADDUBSW - Multiply and Add Packed INtegers. e e e 5-67
PMADDWD - Multiply and Add Packed INtegers e 5-69
PMAXSB/PMAXSW/PMAXSD - Maximum of Packed Signed INtegerst e e e 5-71
PMAXUB/PMAXUW/PMAXUD - Maximum of Packed Unsigned INtegers. 5-75
PMINSB/PMINSW/PMINSD - Minimum of Packed Signed INntegers. e 5-79
PMINUB/PMINUW/PMINUD - Minimum of Packed Unsigned INtegerst e e 5-83
PMOVMSKB - MOVE BYte MaskKo e e e e e e e e e e e e 5-87
PMOVSX - Packed Move with Sign EXtEeNd. e 5-89
PMOVZX - Packed Move with Zero EXTENd.o e e e 5-94
PMULDQ - Multiply Packed Doubleword INTEQersS.o e e e e e e e e e e e 5-99
PMULHRSW - Multiply Packed Unsigned Integers with Round and Scale 5-101
PMULHUW - Multiply Packed Unsigned Integers and Store High Result 5-104
PMULHW - Multiply Packed Integers and Store High ResuUlt e 5-107
PMULLW/PMULLD - Multiply Packed Integers and Store Low Result e 5-110
PMULUDQ - Multiply Packed Unsigned Doubleword INtegers e e e e e 5-114
POR - Bitwise LOQICal OF e e e e e e 5-116
PSADBW - Compute Sum of Absolute Differences. 5-118
PSHUFB - Packed Shuffle Bytes e e e e e e e e e e e e e e e e e e 5-120
PSHUFD - Shuffle Packed DoUDIEWOIdS e e e e e e e e 5-122
PSHUFHW - Shuffle Packed High WOrdS. e e e 5-124
PSHUFLW - Shuffle Packed LOW WOKAS e e e e e e e e e e e e e 5-126
PSIGNB/PSIGNW/PSIGND - Packed SIGN e e e e e e e e e e e e e e e 5-128
PSLLDQ - Byte Shift Left. e e e e 5-132
PSLLW/PSLLD/PSLLQ - Bit Shift Left.o e 5-134
PSRAW/PSRAD - Bit Shift Arithmetic Right e 5-140
PSRLDQ - Byte Shift RiIght e 5-144
PSRLW/PSRLD/PSRLQ - Shift Packed Data Right Logical. e e e e e e 5-146
PSUBB/PSUBW/PSUBD/PSUBQ - Packed Integer Subtract e 5-151
PSUBSB/PSUBSW - Subtract Packed Signed Integers with Signed Saturation 5-156
PSUBUSB/PSUBUSW - Subtract Packed Unsigned Integers with Unsigned Saturation............................... 5-158
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ - Unpack High Data 5-160
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ - Unpack LOw Datauuiiniiiiniaannnnn 5-165
PXOR = EXCIUSIVE OF . . oot e e e e e e e e e e e e e e e e 5-171
R
RDMSR instruction

CPUID flag. . . o oot e e e e 2-40
RORX - Rotate Right Logical Without Affecting Flags e e 7-18
S
SARX/SHLX/SHRX - Shift Without Affecting Flags e 7-19
Sl SO0 . . .o 2-41
SIB byte

32-bit addressing fOorms Of o 4-9
SpeedStep tECHNOIOQYot e 2-38

Ref. # 319433-014 -3

SSE extensions

CPUID flag . . . ot e et e e e e e e e e e 2-41
SSE2 extensions

CPUID flag . - - o oot e e e e e e e e e 2-41
SSE3

CPUID flag . - - o oot e e e e e e e e 2-38
SSE3 extensions

CPUID flag . . . oottt et e e e e e e e e e e e e e e e 2-38
SSSE3 extensions

CPUID flag . . . oottt e e e e e e e e 2-38
StepPINg INTOIrMaAtION e 2-44
SYSENTER instruction

CPUID flag . . - o v e et et e e e e e e e e e e e e e e 2-40
SYSEXIT instruction

CPUID flag . . . oottt e e e e e e e e 2-40
T
Thermal Monitor

CPUID flag . . . oottt e e e e e e e e e 2-41
Thermal MONItOr 2. . .. e e 2-38

CPUID flag . . . oottt e e e e e e e e e e 2-38
TIME STaMP COUNTT ottt e e e e e e e e e e e e e e 2-40
TZCNT - Count the Number of Trailing Zero Bits e s 7-21
Vv
VBROADCAST - Broadcast Floating-Point Data. e e e 5-175
VBROADCASTF128/1128 - Broadcast 128-Bit Datat e e e e 5-177
Version INfOrMationN, PrOCESSOK.ottt e e e et e e e e e e e e e e 2-27
B XK et 5-2
VEXTRACTI128 - Extract packed Integer ValUes e e e s 5-191
VB X B . ot 5-2
B X L ottt 5-2
VEX MMM L Lottt e et e e e e e e e e e e e e e e e e e e 5-2
G o] o 5-3
VB X R o 5-3
VE X O VIV Lo e e e e e e 5-2
X N 5-2
B X X ettt e 5-2

VFMADD132PD/VFMADD213PD/VFMADD231PD - Fused Multiply-Add of Packed Double-Precision Floating-Point Values . 6-2
VFMADD132SD/VFMADD213SD/VFMADD231SD - Fused Multiply-Add of Scalar Double-Precision Floating-Point Values. . 6-8
VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values . . 6-10
VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused Multiply-Alternating Add/Subtract of Packed Double-

Precision Floating-Point Values. e e e e 6-12
VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused Multiply-Alternating Add/Subtract of Packed Single-Precision
Floating-Point ValUes e e e e e 6-15

VFMSUB132PD/VFMSUB213PD/VFMSUB231PD - Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values6-24
VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values6-27
VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values6-30
VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values6-32
VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused Multiply-Alternating Subtract/Add of Packed Double-
Precision Floating-Point ValUes. e e e e e e 6-18
VFNMADD132PD/VFNMADD213PD/VFNMADD231PD Fused Negative Multiply-Add of Packed Double-Precision Floating-Point
-34

Valu
VFNMADD132PSNFNMADD213PS/VFNMADD231PS Fused Negative Multiply-Add of Packed Single-Precision Floating-Point

ValUBS . . 6-37
VFNMADD13ZSD/VFNMADD2138DNFNMADD2315D Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point
VAlUBS . ..o 6-40
VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD - Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point
VAlUBS . .. 6-44
VFNMSUBl?ZSD/VFNMSU8213SD/VFNMSU82318D - Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point
VAU . . 6-50
VGATHERDPD/VGATHERQPD - Gather Packed DP FP Values Using Signed Dword/Qword Indices 5-204
VGATHERDPS/VGATHERQPS - Gather Packed SP FP values Using Signed Dword/Qword Indices. 5-208
VINSERTF128- Insert Packed INteger ValUes e e e e e e e e e e 5-192
VPBLENDD - Blend Packed DWOIS e e e e e e e e e 5-179
VPBROADCAST - Broadcast Integer Datat e e e e 5-181
VPERM21128 - Permute Integer ValUes e e e e e e e e 5-189
VPERMD - Full Doublewords Element Permutation. e e 5-185
VPERMPD - Permute Double-Precision Floating-Point Elements e 5-186
VPERMPS - Permute Single-Precision Floating-Point Elements i e e e 5-187
VPERMQ - Qwords Element Permutation e e 5-188
VPGATHERDD/VPGATHERQD - Gather Packed Dword Values Using Signed Dword/Qword Indices 5-212
VPGATHERDQ/VPGATHERQQ - Gather Packed Qword values Using Signed Dword/Qword Indices 5-216
VPMASKMOQV - Conditional SIMD Integer Packed Loads and StOresttt 5-193
VPSLLVD/VPSLLVQ - Variable Bit Shift Left Logical e e 5-196
VPSRAVD - Variable Bit Shift Right Arithmetic e e e e e e e e 5-199
VPSRLVD/VPSRLVQ - Variable Bit Shift Right Logical e 5-201

-4 Ref. # 319433-014

w

WBINVD/INVD Dt e e e e e 2-29
WRMSR instruction

CPUID flag. . . oot e e e e e e e e 2-40
X
x87 FPU

INSTIUCTION OPCOES e e et e e e e e e e e e e A-21
XABORT - Transaction ADOKt. e e e 8-12
XACQUIRE/XRELEASE - Hardware Lock Elision Prefix HINts i e e e et e 8-9
XBEGIN - Transaction BegiNottt e e e e e e e e e e e 8-14
XEND - Transaction ENd e e e e 8-17
XFEATURE _ENALBED MASK . . ot e e e e e e e e e e e e e e e e e e e 2-2
KRS T O R . . 1-2, 2-2, 2-45, 3-1, 5-5
XS AVE . . 1-2, 2-2, 2-3, 2-4, 2-9, 2-38, 2-45, 3-1, 5-5
XTEST - Test If In Transactional EXECULION i et e e e e e e e e e 8-19

Ref. # 319433-014 I-5

Ref. # 319433-014

	Chapter 1 Intel® Advanced Vector Extensions
	1.1 About This Document
	1.2 Overview
	1.3 Intel® Advanced Vector Extensions Architecture Overview
	1.3.1 256-Bit Wide SIMD Register Support
	1.3.2 Instruction Syntax Enhancements
	1.3.3 VEX Prefix Instruction Encoding Support

	1.4 Overview AVX2
	1.5 Functional Overview
	1.5.1 256-bit Floating-Point Arithmetic Processing Enhancements
	1.5.2 256-bit Non-Arithmetic Instruction Enhancements
	1.5.3 Arithmetic Primitives for 128-bit Vector and Scalar processing
	1.5.4 Non-Arithmetic Primitives for 128-bit Vector and Scalar Processing
	1.5.5 AVX2 and 256-bit Vector Integer Processing

	1.6 General Purpose Instruction Set Enhancements
	1.7 Intel® Transactional Synchronization Extensions

	Chapter 2 Application Programming Model
	2.1 Detection of PCLMULQDQ and AES Instructions
	2.2 Detection of AVX and FMA Instructions
	2.2.1 Detection of FMA
	2.2.2 Detection of VEX-Encoded AES and VPCLMULQDQ
	2.2.3 Detection of AVX2
	2.2.4 Detection of VEX-encoded GPR Instructions

	2.3 Fused-Multiply-ADD (FMA) Numeric Behavior
	2.3.1 FMA Instruction Operand Order and Arithmetic Behavior

	2.4 Accessing YMM Registers
	2.5 Memory alignment
	2.6 SIMD floating-point ExCeptions
	2.7 Instruction Exception Specification
	2.7.1 Exceptions Type 1 (Aligned memory reference)
	2.7.2 Exceptions Type 2 (>=16 Byte Memory Reference, Unaligned)
	2.7.3 Exceptions Type 3 (<16 Byte memory argument)
	2.7.4 Exceptions Type 4 (>=16 Byte mem arg no alignment, no floating-point exceptions)
	2.7.5 Exceptions Type 5 (<16 Byte mem arg and no FP exceptions)
	2.7.6 Exceptions Type 6 (VEX-Encoded Instructions Without Legacy SSE Analogues)
	2.7.7 Exceptions Type 7 (No FP exceptions, no memory arg)
	2.7.8 Exceptions Type 8 (AVX and no memory argument)
	2.7.9 Exception Type 11 (VEX-only, mem arg no AC, floating-point exceptions)
	2.7.10 Exception Type 12 (VEX-only, VSIB mem arg, no AC, no floating-point exceptions)
	2.7.11 Exception Conditions for VEX-Encoded GPR Instructions

	2.8 Programming Considerations with 128-bit SIMD Instructions
	2.8.1 Clearing Upper YMM State Between AVX and Legacy SSE Instructions
	2.8.2 Using AVX 128-bit Instructions Instead of Legacy SSE instructions
	2.8.3 Unaligned Memory Access and Buffer Size Management

	2.9 CPUID Instruction
	CPUID-CPU Identification

	Chapter 3 System Programming Model
	3.1 YMM State, VEX Prefix and Supported Operating Modes
	3.2 YMM State Management
	3.2.1 Detection of YMM State Support
	3.2.2 Enabling of YMM State
	3.2.3 Enabling of SIMD Floating-Exception Support
	3.2.4 The Layout of XSAVE Area
	3.2.5 XSAVE/XRSTOR Interaction with YMM State and MXCSR
	3.2.6 Processor Extended State Save Optimization and XSAVEOPT
	3.2.6.1 XSAVEOPT Usage Guidelines

	3.3 Reset Behavior
	3.4 Emulation
	3.5 Writing AVX floating-point exception handlers

	Chapter 4 Instruction Format
	4.1 Instruction Formats
	4.1.1 VEX and the LOCK prefix
	4.1.2 VEX and the 66H, F2H, and F3H prefixes
	4.1.3 VEX and the REX prefix
	4.1.4 The VEX Prefix
	4.1.4.1 VEX Byte 0, bits[7:0]
	4.1.4.2 VEX Byte 1, bit [7] - ‘R’
	4.1.4.3 3-byte VEX byte 1, bit[6] - ‘X’
	4.1.4.4 3-byte VEX byte 1, bit[5] - ‘B’
	4.1.4.5 3-byte VEX byte 2, bit[7] - ‘W’
	4.1.4.6 2-byte VEX Byte 1, bits[6:3] and 3-byte VEX Byte 2, bits [6:3]- ‘vvvv’ the Source or dest Register Specifier

	4.1.5 Instruction Operand Encoding and VEX.vvvv, ModR/M
	4.1.5.1 3-byte VEX byte 1, bits[4:0] - “m-mmmm”
	4.1.5.2 2-byte VEX byte 1, bit[2], and 3-byte VEX byte 2, bit [2]- “L”
	4.1.5.3 2-byte VEX byte 1, bits[1:0], and 3-byte VEX byte 2, bits [1:0]- “pp”

	4.1.6 The Opcode Byte
	4.1.7 The MODRM, SIB, and Displacement Bytes
	4.1.8 The Third Source Operand (Immediate Byte)
	4.1.9 AVX Instructions and the Upper 128-bits of YMM registers
	4.1.9.1 Vector Length Transition and Programming Considerations

	4.1.10 AVX Instruction Length

	4.2 Vector SIB (VSIB) Memory Addressing
	4.2.1 64-bit Mode VSIB Memory Addressing

	4.3 VEX Encoding Support for GPR Instructions

	Chapter 5 Instruction Set Reference
	5.1 Interpreting InstructIon Reference Pages
	5.1.1 Instruction Format
	(V)ADDSD ADD Scalar Double - Precision Floating-Point Values (THIS IS AN EXAMPLE)

	5.1.2 Opcode Column in the Instruction Summary Table
	5.1.3 Instruction Column in the Instruction Summary Table
	5.1.4 Operand Encoding column in the Instruction Summary Table
	5.1.5 64/32 bit Mode Support column in the Instruction Summary Table
	5.1.6 CPUID Support column in the Instruction Summary Table

	5.2 Summary of Terms
	5.3 Instruction SET Reference
	MPSADBW - Multiple Sum of Absolute Differences
	PABSB/PABSW/PABSD - Packed Absolute Value
	PACKSSWB/PACKSSDW - Pack with Signed Saturation
	PACKUSDW - Pack with Unsigned Saturation
	PACKUSWB - Pack with Unsigned Saturation
	PADDB/PADDW/PADDD/PADDQ - Add Packed Integers
	PADDSB/PADDSW - Add Packed Signed Integers with Signed Saturation
	PADDUSB/PADDUSW - Add Packed Unsigned Integers with Unsigned Saturation
	PALIGNR - Byte Align
	PAND - Logical AND
	PANDN - Logical AND NOT
	PAVGB/PAVGW - Average Packed Integers
	PBLENDVB - Variable Blend Packed Bytes
	PBLENDW - Blend Packed Words
	PCMPEQB/PCMPEQW/PCMPEQD/PCMPEQQ - Compare Packed Integers for Equality
	PCMPGTB/PCMPGTW/PCMPGTD/PCMPGTQ - Compare Packed Integers for Greater Than
	PHADDW/PHADDD - Packed Horizontal Add
	PHADDSW - Packed Horizontal Add with Saturation
	PHSUBW/PHSUBD - Packed Horizontal Subtract
	PHSUBSW - Packed Horizontal Subtract with Saturation
	PMADDUBSW - Multiply and Add Packed Integers
	PMADDWD - Multiply and Add Packed Integers
	PMAXSB/PMAXSW/PMAXSD - Maximum of Packed Signed Integers
	PMAXUB/PMAXUW/PMAXUD - Maximum of Packed Unsigned Integers
	PMINSB/PMINSW/PMINSD - Minimum of Packed Signed Integers
	PMINUB/PMINUW/PMINUD - Minimum of Packed Unsigned Integers
	PMOVMSKB - Move Byte Mask
	PMOVSX - Packed Move with Sign Extend
	PMOVZX - Packed Move with Zero Extend
	PMULDQ - Multiply Packed Doubleword Integers
	PMULHRSW - Multiply Packed Unsigned Integers with Round and Scale
	PMULHUW - Multiply Packed Unsigned Integers and Store High Result
	PMULHW - Multiply Packed Integers and Store High Result
	PMULLW/PMULLD - Multiply Packed Integers and Store Low Result
	PMULUDQ - Multiply Packed Unsigned Doubleword Integers
	POR - Bitwise Logical OR
	PSADBW - Compute Sum of Absolute Differences
	PSHUFB - Packed Shuffle Bytes
	PSHUFD - Shuffle Packed Doublewords
	PSHUFHW - Shuffle Packed High Words
	PSHUFLW - Shuffle Packed Low Words
	PSIGNB/PSIGNW/PSIGND - Packed SIGN
	PSLLDQ - Byte Shift Left
	PSLLW/PSLLD/PSLLQ - Bit Shift Left
	PSRAW/PSRAD - Bit Shift Arithmetic Right
	PSRLDQ - Byte Shift Right
	PSRLW/PSRLD/PSRLQ - Shift Packed Data Right Logical
	PSUBB/PSUBW/PSUBD/PSUBQ - Packed Integer Subtract
	PSUBSB/PSUBSW - Subtract Packed Signed Integers with Signed Saturation
	PSUBUSB/PSUBUSW - Subtract Packed Unsigned Integers with Unsigned Saturation
	PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ - Unpack High Data
	PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ - Unpack Low Data
	PXOR - Exclusive Or
	MOVNTDQA - Load Double Quadword Non-Temporal Aligned Hint
	VBROADCAST - Broadcast Floating-Point Data
	VBROADCASTF128/I128 - Broadcast 128-Bit Data
	VPBLENDD - Blend Packed Dwords
	VPBROADCAST - Broadcast Integer Data
	VPERMD - Full Doublewords Element Permutation
	VPERMPD - Permute Double-Precision Floating-Point Elements
	VPERMPS - Permute Single-Precision Floating-Point Elements
	VPERMQ - Qwords Element Permutation
	VPERM2I128 - Permute Integer Values
	VEXTRACTI128 - Extract packed Integer Values
	VINSERTI128 - Insert Packed Integer Values
	VPMASKMOV - Conditional SIMD Integer Packed Loads and Stores
	VPSLLVD/VPSLLVQ - Variable Bit Shift Left Logical
	VPSRAVD - Variable Bit Shift Right Arithmetic
	VPSRLVD/VPSRLVQ - Variable Bit Shift Right Logical
	VGATHERDPD/VGATHERQPD - Gather Packed DP FP Values Using Signed Dword/Qword Indices
	VGATHERDPS/VGATHERQPS - Gather Packed SP FP values Using Signed Dword/Qword Indices
	VPGATHERDD/VPGATHERQD - Gather Packed Dword Values Using Signed Dword/Qword Indices
	VPGATHERDQ/VPGATHERQQ - Gather Packed Qword Values Using Signed Dword/Qword Indices

	Chapter 6 Instruction Set Reference - FMA
	6.1 FMA InstructIon SET Reference
	VFMADD132PD/VFMADD213PD/VFMADD231PD - Fused Multiply-Add of Packed Double- Precision Floating-Point Values
	VFMADD132PS/VFMADD213PS/VFMADD231PS - Fused Multiply-Add of Packed Single- Precision Floating-Point Values
	VFMADD132SD/VFMADD213SD/VFMADD231SD - Fused Multiply-Add of Scalar Double- Precision Floating-Point Values
	VFMADD132SS/VFMADD213SS/VFMADD231SS - Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
	VFMADDSUB132PD/VFMADDSUB213PD/VFMADDSUB231PD - Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
	VFMADDSUB132PS/VFMADDSUB213PS/VFMADDSUB231PS - Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
	VFMSUBADD132PD/VFMSUBADD213PD/VFMSUBADD231PD - Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
	VFMSUBADD132PS/VFMSUBADD213PS/VFMSUBADD231PS - Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
	VFMSUB132PD/VFMSUB213PD/VFMSUB231PD - Fused Multiply-Subtract of Packed Double- Precision Floating-Point Values
	VFMSUB132PS/VFMSUB213PS/VFMSUB231PS - Fused Multiply-Subtract of Packed Single- Precision Floating-Point Values
	VFMSUB132SD/VFMSUB213SD/VFMSUB231SD - Fused Multiply-Subtract of Scalar Double- Precision Floating-Point Values
	VFMSUB132SS/VFMSUB213SS/VFMSUB231SS - Fused Multiply-Subtract of Scalar Single- Precision Floating-Point Values
	VFNMADD132PD/VFNMADD213PD/VFNMADD231PD - Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
	VFNMADD132PS/VFNMADD213PS/VFNMADD231PS - Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
	VFNMADD132SD/VFNMADD213SD/VFNMADD231SD - Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
	VFNMADD132SS/VFNMADD213SS/VFNMADD231SS - Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
	VFNMSUB132PD/VFNMSUB213PD/VFNMSUB231PD - Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
	VFNMSUB132PS/VFNMSUB213PS/VFNMSUB231PS - Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
	VFNMSUB132SD/VFNMSUB213SD/VFNMSUB231SD - Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
	VFNMSUB132SS/VFNMSUB213SS/VFNMSUB231SS - Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values

	Chapter 7 Instruction Set Reference - VEX-Encoded GPR Instructions
	7.1 Instruction Format
	7.2 INSTRUCTION SET REFERENCE
	ANDN - Logical AND NOT
	BEXTR - Bit Field Extract
	BLSI - Extract Lowest Set Isolated Bit
	BLSMSK - Get Mask Up to Lowest Set Bit
	BLSR - Reset Lowest Set Bit
	BZHI - Zero High Bits Starting with Specified Bit Position
	LZCNT- Count the Number of Leading Zero Bits
	MULX - Unsigned Multiply Without Affecting Flags
	PDEP - Parallel Bits Deposit
	PEXT - Parallel Bits Extract
	RORX - Rotate Right Logical Without Affecting Flags
	SARX/SHLX/SHRX - Shift Without Affecting Flags
	TZCNT - Count the Number of Trailing Zero Bits
	INVPCID - Invalidate Processor Context ID

	Chapter 8 Intel® Transactional Synchronization Extensions
	8.1 Overview
	8.2 Intel® Transactional Synchronization Extensions
	8.2.1 Hardware Lock Elision
	8.2.2 Restricted Transactional Memory

	8.3 Intel® TSX Application Programming Model
	8.3.1 Detection of Transactional Synchronization Support
	8.3.1.1 Detection of HLE Support
	8.3.1.2 Detection of RTM Support
	8.3.1.3 Detection of XTEST Instruction

	8.3.2 Querying Transactional Execution Status
	8.3.3 Requirements for HLE Locks
	8.3.4 Transactional Nesting
	8.3.4.1 HLE Nesting and Elision
	8.3.4.2 RTM Nesting
	8.3.4.3 Nesting HLE and RTM

	8.3.5 RTM Abort Status Definition
	8.3.6 RTM Memory Ordering
	8.3.7 RTM-Enabled Debugger Support
	8.3.8 Programming Considerations
	8.3.8.1 Instruction Based Considerations
	8.3.8.2 Runtime Considerations

	8.4 Instruction Reference
	XACQUIRE/XRELEASE - Hardware Lock Elision Prefix Hints
	XABORT - Transaction Abort
	XBEGIN - Transaction Begin
	XEND - Transaction End
	XTEST - Test If In Transactional Execution

	Chapter 9 Additional New Instructions
	9.1 Detection of New Instructions
	9.2 Random Number Instructions
	9.2.1 RDRAND
	9.2.2 RDSEED
	9.2.3 RDSEED and VMX interactions

	9.3 Paging-Mode Access Enhancement
	9.3.1 Enumeration and Enabling
	9.3.2 SMAP and Access Rights
	9.3.3 SMAP and Page-Fault Exceptions
	9.3.4 CR4.SMAP and Cached Translation Information

	9.4 Instruction Exception Specification
	9.5 Instruction Format
	ADCX - Unsigned Integer Addition of Two Operands with Carry Flag (THIS IS AN EXAMPLE)

	9.6 INSTRUCTION SET REFERENCE
	ADCX - Unsigned Integer Addition of Two Operands with Carry Flag
	ADOX - Unsigned Integer Addition of Two Operands with Overflow Flag
	PREFETCHW-Prefetch Data into Caches in Anticipation of a Write
	RDSEED-Read Random SEED
	CLAC-Clear AC Flag in EFLAGS Register
	STAC-Set AC Flag in EFLAGS Register

	Appendix A Opcode Map
	A.1 Using Opcode Tables
	A.2 Key to Abbreviations
	A.2.1 Codes for Addressing Method
	A.2.2 Codes for Operand Type
	A.2.3 Register Codes
	A.2.4 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes
	A.2.4.1 One-Byte Opcode Instructions
	A.2.4.2 Two-Byte Opcode Instructions
	A.2.4.3 Three-Byte Opcode Instructions
	A.2.4.4 VEX Prefix Instructions

	A.2.5 Superscripts Utilized in Opcode Tables

	A.3 One, Two, and THREE-Byte Opcode Maps
	A.4 Opcode Extensions For One-Byte And Two-byte Opcodes
	A.4.1 Opcode Look-up Examples Using Opcode Extensions
	A.4.2 Opcode Extension Tables

	A.5 Escape Opcode Instructions
	A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes
	A.5.2 Escape Opcode Instruction Tables
	A.5.2.1 Escape Opcodes with D8 as First Byte
	A.5.2.2 Escape Opcodes with D9 as First Byte
	A.5.2.3 Escape Opcodes with DA as First Byte
	A.5.2.4 Escape Opcodes with DB as First Byte
	A.5.2.5 Escape Opcodes with DC as First Byte
	A.5.2.6 Escape Opcodes with DD as First Byte
	A.5.2.7 Escape Opcodes with DE as First Byte
	A.5.2.8 Escape Opcodes with DF As First Byte

	Appendix B Instruction Summary
	B.1 AVX Instructions
	B.2 Promoted Vector Integer Instructions in AVX2

